
WA8DED HOST MODE USER'S GUIDE
Paul T. Williamson, KB5MU

23 May 1986

Abstract: This document explains the use of Host mode with WA8DED's AX.25 Version 2 Multi-
channel TNC Firmware, Version 1.1 for the TAPR TNC-1. It is based on the information provided in the
WA8DED document (Version 1.0), the W6IXU mailbox software (13 May 1986 revision), and the
WA8DED Split Screen Terminal Emulator (SS, 28 April 1986 version). It is intended for use by an
application programmer attempting to communicate with the TNC in Host mode, and assumes that the
programmer is already familiar with user-mode operation of the WA8DED firmware.

 1

Chapter 1

What Is Host Mode?
WASBED's TNT firmware provides two entirely independent user interfaces. The default user

Interface is designed For use by a human operator at a terminal. Host Mode, on the other hand, is
designed for use by a specially-designed computer program. It allows the computer to maintain strict
control of the computer-TNT link, and to obtain control information that would otherwise be difficult to
extract from the normal data stream.

One of the most common bugaboos of computer-TNC interfacing has always been flow Control.

The TNC is capable of sending data faster than the Computer can process it, and likewise the computer
is capable of sending data faster than the TNC can transmit it. It is theoretically possible to solve this
problem with either hardware flow control (RTS/CTS wires in the RS-232 link) or software flow control
(XON/XOFF characters inserted in the data stream). Both of these methods are tricky and error-prone,
however. Hardware flow control may net always be available, and software -Flow control, even when i t
works adequately, leads to data transparency problems (i.e. what if the data being transmitted contains
XON or XOFF?). If everything is not exactly right, data will be lost.

WASBED's Host mode solves this problem by
 1. Speaking only when spoken to, and
 2. Limiting all data bursts to 256 bytes.

The first point allows the computer program to go off and do other things (write data out to disk, handle
the console, make coffee) without worrying about data coming from the TNC and dropping on the floor.
The second point allows computers that have a hard time handling fast serial data (e.g., a. Commodore
64 with no UART) to concentrate on the receiving task to fill a 256 byte buffer, then go off and process
the data without worrying about additional data arriving before it has time to process that batch. This
scheme is very forgiving of inefficient serial routines, so that faster computers can get away with simple
byte-level polling (e.g., a program for the IBM PC can use the BIOS serial port routines).

On the subject of serial routines, notice that the TNC does not handle either hardware or software
flow control when in Host mode. You must make sure that your serial drivers will not send unwanted
XON and XOFF characters to the TNC.

Since the TNC speaks only when spoken to, the computer must constantly poll the TNC to find
out what is happening on the link., In user mode., connected data received over the AX.25 link is
immediately displayed (if that channel is selected). In Host mode, the TNC is not allowed to send
information unsolicited, so the program must ask the TNC for data periodically. This implies that the
computer-TNC link will be busy most of the time. Frequent polling and a relatively high baud rate (say
4800 or 9600 baud) are desirable for applications that require quick response times.. A user monitoring
data in real time will notice delays if the delay between polls is too great.

The format of these short computer-TNC exchanges is carefully specified to eliminate ambiguity
and minimize overhead. The computer sends to the TNC in the following format:

{channel}{info/cmd}{count}{data...}

 Channel is the channel number to which the transmission pertains Info/cmd distinguishes
between information to be transmitted and commands to be acted upon by the TNC. Count specifies the
number of bytes to follow, and Data... are the actual data bytes or command bytes. The details of this
format will be discussed later. All computer-to-TNC transmissions must follow this format.

The TNC sends to the computer one of several different formats:

{channel}{code=0} short format

or

{channel}{code=1-5}{data...}{0} null-terminated format

or

 2

{channel}{code=6-7}{count}{data...} byte-count format

Notice that you can always tell what is to follow from the code received. The last format is
very similar to the computer-to-TNC format. The details of these formats will be described later. All
computer-to-TNC transmissions will follow one of these formats.

 3

Chapter 2

Entering and Exiting Host Mode

Host mode is entered by giving a JHOST 1 command to the TNC in the usual way. This sounds
simple enough. Just send <ESC>JHOST1<CR> to the TNC. But what if something has already been
sent to the TNC (say by powerup transients)? The <ESC> will be treated as data (echoed as ^[by the
TNC) and the command will be lost. We can work around this by sending a ^U or ^X first, to clear the
junk out. It might also be a good idea to send an XON, in case the junk included an XOFF. So we send
^Q^X^[JHOST1^M (or, if you prefer the ASCII mnemonics, <DC1><CAN><ESC>JHOST1<CR>):

11 18 1B 4A 48 4F 53 54 31 0D
^Q ^X ^[J H O S T 1 CR

This will work every time, if the TNC is in user mode. If the TNC is in Host mode already, we should
detect that fact and recover. Host mode recovery will he discussed later in this document.

Exiting Host mode is a simple matter of sending a JHOST0 command to the TNC. The TNC will
acknowledge the JHOST0 command in the usual Host-mode fashion before returning to user mode, so
you can use your regular Host-mode transaction routine.

Note that a QRES command issued in Host-mode will dump you back into user mode. It does not

acknowledge in Host-mode fashion before doing so. The Host-mode parameter is not stored in
NOVRAM, so it is not possible to "wake up" in Host-mode. It is, however, possible to PERM other
parameters from Host mode.

 4

Chapter 3
Commanding the TNC

OK, now that were in Host mode,, let's look at a simple command exchange. We will gloss over

some of the details for this first look. Suppose we want to turn off Unattended mode. In normal user
mode, we would type <ESC>U0<CR>. That is, we would send a U0 command to the TNC. To send a
U0 command in Host mode, we have to assemble a transmission for the TNC according to the computer-
to-TNC format.

Recall that the computer-to-TNC format is:

{channel}{info/cmd}{count}{data...}

The first byte, channel, is the channel number. In user mode, it doesn’t matter what channel you are on
when you give a U command. Likewise, in Host mode, it doesn't matter which channel you send this
command to. Let's choose channel 0. The second byte is info/cmd; this is a command, so this byte has to
be 1. The command data we are going to send is simply "U0", the same ASCII string we would have
used between <ESC> and <CR> to do the same thing in user mode. This is two bytes long, so the count
byte should indicate two bytes. Count is encoded as (length - 1), so the third byte of the message should
be 2-1 =1

The following is an illustration of the required transmission. The top line lists the bytes to be sent
in hex notation. The first byte sent is on the left. Below each byte of the top line is an explanation of that
byte. This format will be used throughout this document to illustrate Host mode transmissions.

00 01 01 55 30
| | | U 0

 | | |
| | +-- Count = 1 (two bytes)
| + ---------- Info/cmd = 1 (this is a command)

 +-------------------- Channel = 0

Note that no carriage return is required or allowed. As soon as the byte count is fulfilled (i.e.,
when The last byte has been received) the TNC accepts the transmission as complete.

How do we know the TNC got the command OK? Simple: it responds with a status message. A

U0 command can't fail, so we can guess that the status message will be is success message. A U0
command doesn't return any information, either, so no data field will be present. So, we can guess that
the TNC will respond with a transmission in the short format:

00 00
| |
| +------- Code = 0 (Success, no data follows)
+----------------Channel 0

Now we can see the general shape of any computer-TNC transaction: the computer sends a command to
the TNC, and the TNC responds with an appropriate message. In writing a program to interface with
Host mode, we will have to take care of building these outgoing frames and interpreting the incoming
frames. If we take a hint from WA8DED and W6IXU, we will implement a single routine that does the
dirty work of sending a transmission and receiving the response.

In receiving the response, the routine will have to decide how many characters to read from the
serial port by looking at the code in the second byte of the TNC's message. This code tells it in which
format the transmission will be: short format with no following data, null-terminated format with some
data ending in a null, or byte-count format with a count and the specified number of bytes of
information.

Notice that the routine that receives the response doesn't have to have any knowledge of the

current state of the TNC or the application program. The meaning and encoding of the TNC's response
is completely determined by the data in that response. This simplifies the routine that receives the
response by isolating it from the complexities of the application program.

 5

Chapter 4
Polling the TNC: the G command

The most essential, basic transaction in Host mode is the G command polls a specific channel of

the TNC for events and data. A typical Host-mode application program will constantly send G
commands to the TNC and interpret the responses. Since the G command is a query to a specific
channel of the TNC, it is necessary to send G commands to all of the channels that may be in use. Data
received from a station connected on channel 1 (or or 3, or 4) will be sent to the computer as a response
to a G command directed to channel 1 or 2, or 3, or 4). Monitored data will be sent to the computer as a
G command directed to channel 0

The G command has three forms. A command of "G" will return any of the possible responses

that are available. A command of "G0" will return only information. A command of "G1" will return
only link status responses. This is useful when you are waiting for a link status change and do not wish
to handle data, or vice versa.

The only other thing that changes in a G command is the channel number. Be sure to send G
commands to all channels that may be active. You reed not send G commands to channel 4 if Y is 3, for
instance, but you must send G commands to channels 0 through 3. The unrestricted G command has the
following format:

0x 01 00 47

 | | | G
| | |
| | +------------ Count = 0 (one byte of data)
| +----------------------Info/cmd = 1 (this is a command)
+-------------------------------Channel = x (where x is 0, 1, 2, 3, or 4)

There are only a few possible responses to a G command. If the program polls the TNC

constantly with G commands, most of the replies will be “nothing available". This simply means nothing
new has happened on the link since the last poll. This response applies to any of the three forms of the G
command. Each of the other possible responses indicates an event on the AX.25 channel: a change in
Link Status (such as "DISCONNECTED"), which is evoked by G or G1, or receipt of a frame of
monitored or connected data, which is evoked by G or G0. The detailed formats of these responses will
be discussed later in this document.

Monitored information is handled specially by the G command. Monitored data is handled on

channel 0 of the TNC. The monitor header is transmitted separately from the monitor information. The
monitor header transmission indicates whether or not there is an associated information transmission to
come. If there is, it will be the next response on channel 0. This scheme has two results: it spares the
programmer the task of parsing out monitor information from the monitor header (if such is desired),
and it keeps the maximum transmission length down to the maximum data field size, rather than the data
field size plus the monitor header size (and thus allows he count to be a single byte). This scheme for
monitored data might be considered a violation of the rule that each computer-TNC transmission is self-
contained and self-explanatory. The monitored information transmission is qualified by the immediately
preceding monitor header transmission. You many want to treat a monitor header with information as a
special case in the application program, and grab the corresponding monitor information transmission
immediately.

 6

Chapter 5
Details of Computer to-TNC Format

As we said before, the computer-to-TNC transmissions must always follow this format:

{channel}{info/cmd}{count}{data…}

The three header bytes (channel, info/cmd, and count.) are expressed in binary. For instance, to

specify 0 for any of these values, send a NULL (^@, ‘\0' for C fans, CHR$(0) for BASIC fans). DON'T
send the ASCII character '0'.

The data field will contain one of the following:

1. Data to be transmitted via the AX.25 link.
2. A command string just like you might issue from the normal user mode

(the part strictly between the <ESC> and the <CR>).

3. "G", the Host-mode poll command.

If data for the AX.25 link is to be sent, the info/cmd byte must be zero (binary zero, remember,

not ASCII "0"). The data field may contain any bytes whatsoever, but not more than 256 of them. Count
up the data bytes and subtract one to find the value of the count byte. So if you're connected to me on
channel 2, and you want to say

Hello

to me, send the TNC this transmission:

02 00 05 48 65 6C 6C 6F 0D
| | | H e l l o CR
| | | |
| | | +(this is a data byte)
| | +- Count = 5 (six bytes of data)

 | +-----------Info/cmd = 0 (this is information to be sent)
+--------------------Channel = 2 (since I'm on your channel 2)

Note that the CR is sent as data, and will be transmitted through AX.25 link. It is not part of the
transmission format.

If the information is sent to channel 0, it will go out unproto to the address on channel 0 (default
CQ). If information is sent on channel 1 - 4 while that channel is not connected, it is ignored.

If a command string is to be sent, the info/cmd byte must be one. The data field should contain

the ASCII command string. It does not contain <ESC> or <CR>, just the characters that would go
between them to form a normal user-mode command. For instance, to set TXDELAY to 30, send the
TNC this transmission:

00 01 02 54 33 30
| | | T 3 0
| | |

 | | +- Count = 2 (three bytes of data)
| +---- ------ Info/cmd = 1 (this is a command)
+-------------------- Channel = 0 (doesn't matter here)

The channel number is significant for the C, D, F, G, L, N O, and V commands. C, D, F, N, O,

and V commands are channel specific in exactly the same way as they are in user mode. The L
command is different in Host mode, and will be discussed later in this document. The G command has
already been discussed. The channel number is not significant for other commands. You may use
whatever channel number is convenient.

(WA8DED and W61 XU send these commands to channel 0).

 7

The byte-count format for the computer-to-TNC transmissions is used because it provides "data
transparency". This means that any bytes whatsoever may appear in the data field. The TNC can just
accept the next so many bytes from the computer without thinking about it. If a special character were
used to signal the end of the data, that character could not occur in the data. The null-terminated format
can use this scheme, since the data in these is guaranteed not to contain a null.

Unfortunately, the byte-count scheme is not very robust. If a character is lost or a spurious

character is inserted, the computer and TNC could stay out of synch forever. We must take pains to
detect loss of synch and to recover from the fault. Fortunately, the first byte of a transmission has only
five valid values (0-4) and the second byte has only two valid values (0 and 1), so it is possible to detect
a loss of synchronization in most cases. Timeouts can also be used to detect synch failures. Once the
error is detected, recovery is possible. Host mode recovery will be discussed later in this document..

 8

Chapter 6
Details of TNC to Computer Format

The TNC-to-computer transmission format is a bit more complicated than the computer-to-TNC

format. The key to decoding a transmission from the TNC is the code byte that follows the channel
number byte. The following table gives the code values:

TNC TO-COMPUTER CODES

Code Meaning Format
==== ====== =====
0 Success, nothing follows short format

(Nothing available)
1 Success, message follows null-terminated format.
2 Failure, message follows null-terminated format
3 Link status null-terminated format
4 Monitor header/no info null-terminated format
5 Monitor header/info null-terminated format
6 Monitor information byte-count format
7 Connected information byte-count format

These various formats are used for different purposes. Codes 0, 1, and 2 are responses to an
information or command transmission from the computer. If a batch of information was queued for
transmission successfully or if a command completes successfully without returning any information, a
code 0 transmission will be the reply:

02 00
 | |

| +---- Code = 1 (Success, nothing follows)
+------------- Channel = 2 (same as the info or command sent)

If the command is successful and returns information (like any command without an argument), a code 1
transmission will be the reply. The returned data will follow the code, "null terminated". This just means
that a 0 byte will appear after the last information byte. For example, consider an M command without
an argument. In user mode, the user would type <ESC>M<CR>, and the TNC would display something
like

* IUSCRT *

In Host mode, the command would be

00 01 00 4D
| | | M
| | |
| | +------------- Count = 0 (one data byte)
| +---------------------- Info/cmd = 1 (this is a command)

 +------------------------------- Channel = 0 (Doesn't matter here)

and the response might be

00 01 49 55 53 43 52 54 00
| | I U S C R T |
| | +--------- Null termination
| +---------------- Code = 1 (Success with info)
+------------------------- Channel = 0 (same as in the query)

If the command failed, or the information cannot be queued for transmission, a code 2 transmission with
one of these error messages will be the reply: '

 9

FAILURE MESSAGES

INVALID COMMAND
TNC BUSY - LINE IGNORED

CHANNEL ALREADY CONNECTED
STATION ALREADY CONNECTED

For example if you send a data line

03 00 0C 48 65 6C 6C 6F 20 74 68 65 72 65 2E 0D
| | | H e l l o t h e r e . CR
| | | |
| | | (this is a data byte) ----------------------------+
| | +--- Count = 12 (thirteen data bytes)
| +--------- Info/cmd = 0 (this is information)
+-------------- Channel = 3 (for instance)

when the TNC has no RAM available to buffer the data line, it will respond with code 2 failure message
to inform you of the condition:

03 02 54 40 43 20 42 55 53 59 20 2D 20 4C 49 4C 45 20 49 47 4C 4F 52 45 44 00
| | T N C B U S Y - L I N E I G N O R E D |
| | |
| +---- Code = 2 (Failure) Null terminator ----+
+---------Channel = 3 (same as the info sent)

If you send a bad command:

00 01 03 4A 55 4C 4B
| | | J U N K
| | |
| | +---- Count = 3 (four data bytes)
| +--------- Info/cmd = 1 (this is a command)
+------------- Channel = 0 (Doesn't matter here.)

It will complain about it with a code 2 failure message:

00 02 49 4E 56 41 4C 49 44 20 43 4F 4D 4D 41 4E 44 00
| | I N V A L I D C O M M A N D |
| | |
| +---- Code = 2 (Failure) Null termination --+
+---------- Channel = 0 (same as the command sent)

The remaining codes, 3 through 7, are used only as responses to a "G" poll command. A 0 code
can also be a response to a G poll. A 0 code means that nothing is available for that channel: that is, no
events worthy of notice have taken place on the channel polled. This is the most common response to a
G command..

0x 00
| |
| +--- Code = 0 (Nothing available)

 |------------- Channel = x (same as the G command)

A code of 3 signifies a Link Status message. These messages are:

LINK STATUS MESSAGES

({n}) BUSY fm {call} via {digipeaters}
({n}) CONNECTED to {call} via {digipeaters}
({n}) LINK RESET fm {call} via {digipeaters}
({n}) LINK RESET to {call} via {digipeaters}

 10

({n}) DISCONNECTED fm {call} via {digipeaters}
({n}) LINK FAILURE with {call} via {digipeaters}
CONNECT REQUEST fm {call} via {digipeaters}
({n}) FRAME REJECT (x y z) fm {call} via {digipeaters}
({n}) FRAME REJECT (x y z) to {call} via {digipeaters}

These messages should look familiar, since they are identical to the messages displayed by
TNC in user mode. {n} is the channel number. Notice that the channel number in the message is
redundant information. The channel number may be omitted from this message in a future release.

For instance, if I connect to you direct on channel 2, a poll of channel 2 (not necessarily the

one, depending on what else is going on) will return the event:

02 03 28 32 29 20 43 4F 4E 4E 45 43 54 45 44 20 74 6F 20 4B 42 35 4D 55 00
 | | (2) C O N N E C T E D t o K B 5 M U |
 | | |
 | +---- Code = 3 (Link Status) Null termination --+
 +-------- Channel = 2

Codes of 4 and 5 both signify a monitor header. This is a null-terminated format message
containing the

fm {call} to {call} via {digipeaters} ctl {name} pid {hex}

string that forms a monitor header. The monitor header is also identical to the monitor header displ
in user mode. If the code was 4, the monitored frame contained no information field, so the monito
header is all you get. If you monitor KB6C responding to a connect request from me and then poll
channel 0, you'll get:

0004666D204B42364320746F204B42354D552063746C2055612070494420463000
 | | f m K B 6 C t o K B 5 M U c t l U A p i d F 0 |
 | | |
 | +---- Code = 4 (Monitor, no info) Null termination ---+
+-------- Channel = 0 (Monitor info is always on channel 0)

If the code was 5, the monitored frame did contain an information field. In this case, anothe
command to channel 0 will return the monitored information with a code of 6. Since data transmiss
must be transparent, the monitored information is passed as a byte-count format transmission. That
is preceded by a count byte (one less than the number of bytes in the field). No null terminator is us
this case. Since codes 4, 5, and 6 pertain to monitored information, they will be seen only on chann
If you hear KB6C say "Hi" to NK6K, and than poll channel 0, you'll get:

0005666D204B42364320746F204E4B364B2063746C204930302070494420463000
	f m K B 6 C t o N K 6 K c t l I 0 0 p I d F 0		
	or whatever ----+-+		
+--- Code = 5 (Monitor, info follows) Null termination ----+			
 +------- Channel = 0 (Monitor info is always on channel 0)

and then the very next poll to channel 0 will get:

00 06 02 48 69 0D
| | | H i CR
| | | |
| | | +---- (this is a data byte)
| | +--- Count = 2 (three bytes of data)
| +------- Code = 6 (monitored information)
+------------ Channel = 0 (Monitor info is always on channel 0)

A code of 7 signifies connected information, so it will only be seen on a connected channel 1 throu

 11
13
the

 next

ayed
r

r G
ions
 is, it
ed in
el 0.

gh 4.

It is a byte-count format transmission, for data transparency. If you're connected to me on channel 4 and
I say "Hi", a poll of channel 4 will return

04 07 02 48 69 OD
 | | | H i CR

 | | | |
 | | | +---- (this is a data byte)
 | | +--- Count = 2 (three bytes of data)
 | +-------- Code = 7 (connected information)

 +------------ Channel = 4 (info was received on channel 4)

 12

Chapter 7
Querying Channel Status: the L command

One of the most powerful features of the Host mode is the ability to ask the TNC for a status

report on a given channel. This report is similar to the report given by the L command in user mode, but
more extensive. To obtain the Channel Status report, send an L command to the channel of interest. The
TNC will (barring error) respond with a code 1 packet. The information field of this packet will contain
six decimal number in ASCII delimited by spaces.

A typical Channel Status query:

01 01 00 4C
| | | L
| | |
| | +---- Count = 0 (one data byte)
| +------------- Info/cmd = 1 (this is a command)
+---------------------- Channel = 1 (give me a report on channel /)

A typical Channel Status report:

01 01 30 20 30 20 30 20 30 20 30 20 30 00
| | 0 0 0 0 0 0 |
| | |
| | null termination-------+
| +-------- Code = 1 (Success with info)
+----------------- Channel = 1 (this is a report on channel 1)

Channel 0 does not have as much state information as a regular connectable channel, so a Channel
Status query to channel 0:

00 01 00 4C
| | | L
| | |
| | +------------ Count = 0 (one data byte)
| +--------------------- Info/cmd = 1 (this is a command)
+------------------------------ Channel = 0 (give me a report on channel 0)

Will return a Channel Status report similar to this one.

00 01 30 20 33 00
| | 0 3 |
| | |
| | +---- null termination
| +------------------------ Code = 1 (Success with info)
+--------------------------------- Channel = 0 (this is a report on channel 0)

The interpretation of the returned information is as follows:

CHANNEL STATUS FORMAT

a b c d e f
a = Number of link status messages not yet displayed
b = Number of receive frames not yet displayed
c = Number of send frames not yet transmitted
d = Number of transmitted frames not yet acknowledged
e = Number of tries on current operation
f = Link state

Possible link states are:

 0 = Disconnected
1 = Link Setup
2 = Frame Reject

 13

3 = Disconnect Request
4 = Information Transfer
5 = Reject Frame Sent
6 = Waiting Acknowledgement
7 = Device Busy
8 = Remote Device Busy
9 = Both Devices Busy
10 = Waiting Acknowledgement and Device Busy
11 = Waiting Acknowledgement and Remote Busy
12 = Waiting Acknowledgement and Both Devices Busy
13 = Reject Frame Sent and Device Busy
14 = Reject Frame Sent and Remote Busy
15 = Reject Frame Sent and Both Devices Busy

NOTE 1: Only items a and b are displayed for channel 0.
NOTE 2: Only states 0 - 4 are possible if version 1 is in use.

How you will use the Channel Status report will depend on your application. An interactive

terminal program might simply display some or all of the information and leave it at that. A mailbox
program might want to wait for all packets to be acknowledged before starting a timeout timer or before
disconnecting. A mail forwarder would want to make sure all data was acknowledged before
considering its task done. Any program might want to give up if throughput is too low. These functions
are easy to implement with Host mode.

 14

Chapter 8
Host Mode Error Recovery

 What happens if something goes wrong on the computer-TNC link? Maybe there is a loose wire, or
maybe RF got into the RS-232 lines. Maybe it's just Murphy. For whatever reason, the data on the line
got corrupted. RS-232 links are very reliable, so you may never see an error, but the application program
should be ready to cope with one.

The error recovery program must assume that the TNC is in completely unknown state. It might
be expecting more bytes to fill a byte count (if bytes coming from the computer were lost). It might be
simply waiting for a transmission, but the computer thought there was an error since data was lost or
corrupted on its way from the TNC. What we want to do is hit the TNC with a stream of data that will
eventually bring it into a known state. Preferably, this process should generate little or no spurious data
on the AX5 link.

The first thing to do is dump any further data that may be coming from the TNC. We don't know
what it is, and so we can't use it. The possibility exists that this is connected information we're dropping
on the floor. This is just too bad. There is nothing we can do.

Next, we just send ^A's one at a time until the TNC responds. The first few ^A's may go to fulfill
a byte count that the TNC is waiting for. If this happens to be a connected information transmission,
these ^A's will go out on the AX.25 link. Tough. When any outstanding byte count is fulfilled (no more
than 256 should be required), the following five ^A's will be seen as a command on channel 1. This is
why ^A is chosen: to make the TNC interpret the extra transmission as a command.

 01 01 01 01 01
| | | ^A ^A
| | |
| | +------ Count of two bytes.
| +--------------- This is a command.
+------------------------ Channel #1.

A command of "^A^A" doesn't mean anything, so the TNC should respond with a failure message:

 01 02 49 4E 56 41 4C 49 44 20 43 4F 4D 4D 41 4E 44 00
 | | I N V A L I D C O M M A N D |
 | | |
 | +---- Failure message. Null termination --+

 +--------Same channel as the command specified

We don't really care what the response is, though. It may not be exactly what we expect. For instance,
the first ^A might fulfill the byte count of a garbled command. This would usually generate an error
message of some other type. All we need is to get the first response. Then we know that the TNC is
waiting for a command. This implies that we have to wait between ^A’s long enough to see if there is a
response yet. This can make the recovery process a slow one. For instance, if the TNC spuriously
receives 00 00 FF, it expects to see 256 data bytes following, so we will have to send 256 ^A's before
we get a response (which will probably be a success message, since this is just a data transmission to the
TNC). Fortunately, this error recovery process is s not required very often.

 15

Chapter 9
Acknowledgements and Comments

Thanks are of course due to Ronald E. Raikes, WA8DED, for creating the WASBED AX.25

Version 2 Multi-channel TNC Firmware, for writing SS, the split screen terminal emulator that takes
advantage of Host mode, and for proof reading this document for accuracy. Thanks are also due to Mike
Busch, W6IXU, for writing the mailbox software which was my first exposure to Host mode.

Comments on this document would be appreciated. You can send hem to me by packet (KB5MU
KA6IQA on WestNet), by CompuServe (75265,367), by telephone (619-458-1238) or by mail:

Paul T. Williamson, KB5MU
6583 Edmonton Ave.
San Diego, CA 92122

Heck, you could even send an NTS radiogram.

SS, the split screen terminal emulator, is an excellent example of Host-mode software. It is available for
non-commercial, non-profit use. It runs on an IBM PC or moderately compatible, and provides connect
status display continuously for all five TNC channels, a typing buffer, a transmitted data buffer, a
receive buffer, and a Link Status line at the bottom o the screen. It is written in C for the Microsoft C
Compiler version 3.0, with a trace of assembly language for interface to console services. I would be
happy to send a copy of it to anyone who is interested and sends me a diskette with return postage at the
above address.

The W6IXU Mailbox software is not available for distribution at this time. It will become
available for distribution by some means when it stabilizes and a suitable means of distribution is found.

 16

Table of Contents

1 What Is Host Mode? 2

2 Entering and Exiting Host Mode 4

3 Commanding the TNC 5

4 Polling the TNC: the G command 6

5 Details of Computer-to-TNC Format 7

6 Details of TNC-to-Computer Format 9

7 Querying Channel Status: the L command 13

8 Host Mode Error Recovery 15

9 Acknowledgements and Comments 16

 17

