

Ctrl

EDITORb ’ N K

Market-Driven Myth

.Tulv/August 1988

I‘m told by many in this industry that the marketing manager and volume buyer are king. I’m told
that the microcomputer industry has “matured” to a point where all the innovation (not to mention the
money) comes from end users, not engineers and programmers. I’m even told that there aren’t enough
people who still build hardware and write software to make it worthwhile for a magazine to concentrate
on meeting their needs.

Hogwash.
Certainly, there are many productive microcomputer and microprocessor users who haven’t the foggiest

notion of how their machines work, but that doesn’t mean that no one remembers what registers, counters,
timers and pull-up resistors are for. Instead, it points out that there are two groups of people in this field,
and their needs and interests are rapidly diverging.

The first group is made up of appliance buyers. They need lots of information about which appliance
to buy, but they don’t want to be confused by a lot of technical details. If they program, it’s in a spreadsheet
macro language. Connecting a printer or (for the adventurous) installing an internal modem runs them
to the limit of their hardware expertise. Marketing managers and media buyers like these folks, becaused
they don’t use a lot of jargon and they tend to have needs that can be met with feature updates instead
of real innovation. There are a lot of big, glossy magazines that are devoted to helping the buyers find
the appliances while giving them a light smattering of technology.

The second group is harder to pin a label on, but it includes people who build their own boards and
boxes, people who program in assembly language and C and folks who don’t like trusting in “magic” black
boxes, but who love making magical things happen with applications they put together. More powerful
processors and more sophisticated applications make it more difficult, and more important, for the
members of this group to keep up with innovative techniques and creative thinking in application design.
That’s where we come in. Our sub-logo is “The Computer Applications Journal” and we take that very
seriously. Let others talk about how to buy appliances; we want to help you build them.

In the real world, of course, being able to market what you build is important. It’s also important
to recognize that without the expertise and ability to build applicatons, marketing schemes are just so many
empty promises. I’ve seen the appliances, I’ve seen the builders, and it’s not hard to tell who’s really driving
the innovation in the industry.

m
rircirit r~llnr Ink

I
S

I N K
Letters to the Editor

Dear Steve,

Stupendous! Great magazine! I thought my friends
and myself were the only ones offbeat enough to think
of stuff like launching 2-liter [plastic] bottles (and
instrumenting the gantry no less!). I’m glad I sub-
scribed. Really.

I also have an article request. It’s an electronic
astronomy suggestion. Please bear with me. Telescopes
use clock drives. Clock drives are made by humans.
Humans have accuracy limitations (mostly due to pro-
duction costs). Clock drives, therefore, have to be
constantly corrected to make up for imperfections and
eccentricities in the gears when making astrophotos.
This is known as guiding. It is, needless to say, a pain
(especially 1 -hour and longer exposures). They do have
one redeeming feature: they use synchronous motors
(selsyns). This is what makes a drive corrector so easy
to build. It’s merely an adjustable (within limits)
square-wave inverter.

It occurs to me that one could time the errors (for
example, a friend has a 5-minute periodicity in the
worm gear that drives the polar gear) and write a
machine routine for a small 280 (or other) controller
board to clock the inverter at a user-defined rate
(maybe a look-up table). The user could then, using
a set of shorthand formulas, create the table, burn an
EPROM, and plug it in (i.e., compensate for known
errors in his own drive), This would eliminate the need
for a keyboard. The whole package need not be very
large or complex at all. We have discussed this at
considerable length and have not come up with a means
of feedback (photomultiplier or whatever) that seems
feasible. So, it seems that the error-cancellation-type
controller might be best.

If you or your crowd can think of something we
didn’t, I’d like to hear about it. Anyway, it would make
an interesting article. I’m sure there are a lot of amateur
astronomers out there that would be interested in such
a beast.

One last piece of input you may not have. Due to
atmospheric refraction, this would not work near the
horizon (unless you have feedback from the image), but

it would work fine near the zenith. It would at least cut
the strain of the guiding chore (maybe eliminate it
depending on magnification used and exposure time).
Also, a ROM socket and routine to add in corrections
for moon or planetary motions might be nice. So much
for article suggestions.

Once again, I have to say, your magazine is great
reading (and useful too). Oh, yes, an egg has a yolk not
a yoke (it still makes a mess of the turntable regardless

.). Had you ever considered trapping the yolk in the
hole in a 45 record? What effect would the spindle (or
lack of one) have on the integrity of the sac? Would
the concentric ridges in a turntable mat make the white
spread outward in jumps? It’d make a good article for
“The Amateur Scientist” in Scientific American . . .

C. Sherman
Hesperia, CA

Some things are better left to Scientific American.
Sorry about the spelling mistake but we is all enjeneers
‘round hea <sic>. Please note that it says “editorial
director” next to my name and not editor. Ain’t my job
man. Actually, I’ll bet our hit rate in copy editing is
better than the New York Times. There is a conscien-
tious staff here at CCINK. Last time I checked in their
office, however, they were trying to trap egg yolks in the
center holes of 45-RPM records. Wonder where they got
that idea?

-- Steve

(We thought he was talking about ox eggs! Ed.)

Dear Steve,

I have read your projects since you first started
writing for BYTE. After I scanned issue #2 of INK,
I could not wait to get to the computer to write this note.
I had to subscribe and just could not wait. I wish you

I Julv/Aueust 1988

and your staff the very best, and if issue #2 is any
indication, I believe that the best is now and also yet
to come. Keep up the good work.

C. Powell
Tampa, FL

Dear Steve,

I read with interest the discussion on Audio
Digitizing in “ConnecTime” of Circuit Cellar INK
[Vol. 1, No. 21. It happens that our “Digital Voice Card”
(DVC) may provide some of the answers to the
discussion there. The Digital Voice Card is of low cost
($95.00) and it produces good-quality digital voice. It
can be easily connected to audio equipment for
recording and playback.

Houng I-Yuan
President
Computer Age Ltd.
Box 730
Nobleton, Ontario
Canada IOG 1NO

Thanks for letting us know about your product.
While I believe much of the discussion dealt with high-
precision recording, low-cost digitized speech has its
niche. Coincidentally, there is a digitized audio board
in the works as a future CCINK project.

-- Steve

Dear Steve,

I am also very interested in receiving FAX on a
shortwave radio and displaying it on an Amiga 1000.
I am a research meteorologist studying hurricanes and
I would love to set something up in my office to receive
FAX maps. Later I would like to try receiving the
satellite data. I am also interested in dumping RTTY
transmissions (again, weather data) into the Amiga and
drawing simple maps.

P. Dodge
Miami, FL

This is an area that is a bit alien to me but perhaps
some budding author/inventor will be motivated enough
to provide us all with an article on doing this. Regarding
the Amiga in general, I would love to publish some
articles which use it.

BACK ISSUES AVAILABLE

May/June 1988 Issue

P o w e r - L i n e - B a s e d C o m p u t e r C o n t r o l - :.
Davidson n The Home Satellite Weather Center- $
Part 3: Weather Databases and System Software
Overview - Voorhees m Software Emulation of i
Full-Duplex Serial Channels - Curlew I Video j
Signal Timing and Real-Time Interrupt Control
- Nisley

iFi
lir

March/April 1988 Issue

Bottle Rockets: The Physics of Projectiles - I
Ciarcia/Nisley n The Home Satellite Weather j
Center-Part 2: NTSC Encoder Alignment and
System Overview - Voorhees m
Channel TemperatureLogging and Data Reduc- j
tion System - Riley q Digitizing Infrared Signals ! [
- Nisley

January/February 1988 Premier Issue

Motion Triggered Video Camera Multiplexor - 1
Ciarcia n Build a Video Handscanner/Identifier i
- Nisley n The Home Satellite Weather Center- 1
Part 1: RGBI to NTSC Converter - Voorhees m ’
Keyboard Scanning Subroutines - Nisley

Send $3.00 plus $1 .OO for postage and han- I
dling for each issue you are requesting in check
or money order to:

/

Circuit Cellar INK
P.O. Box 772

Vernon, CT 06066

-- Steve

n

Stepper Moto
Sonar Sensor1_ * _ w . I

SCr

A Look at the Logic and COntro/
of Stepper Motors

by Steve Ciarcia & Ed Nisley ,

g_,.ltrasonic sensing is not a new be downloaded
topic in Circuit Cellar. I’ve pre- from the I
sented three projects (Nov. ‘78, Circuit Cellar Q
Nov. ‘80, and Oct. ‘84) on sensing BBS.
distances using ultrasonics. These I’m taking
past projects consisted mostly of a slightly different tact
hardware simply because I tend to this time, however. Since I have ex- TIOl it is still the
do things that way when left to my
own devices. Such projects are
quite educational for already-
computer-savy readers but some-
times leave people who think that
computers and toasters are close
relatives looking for the “rest.”
The “rest” is application software.

With Ed’s software help I de-
cided to redesign one of these
former projects, incorporate pres-
ent day technology, and provide
some of the missing application
software to broaden its appeal. The
Circuit Cellar Stepper Motor Scan-
ning Sonar Sensor (sonar scanner
for short) is a computer peripheral
which does a 360-degree scan of a
room and creates a map of the
objects in it.

The sonar scanner consists of
an ultrasonic transducer mounted
on the shaft of a stepper motor
controlled by a standard parallel
printer port. At each step the ultra-
sonic ranger records distances to all
objects within a range of 1.2 feet to
35 feet and plots a real-time
“radar” display on an IBM PC
monochrome or CGA display.
Software for controlling the step-
per motor and driving the display is
written in Turbo Pascal but easily
converted for use on other ma-
chines. Complete source code can

plained the basics of finding dis-
tances using ultrasonic ranging many
times, and that function in this proj-
ect is provided by an off-the-shelf
device, I will not dwell on that
activity. Instead, I want to use this
opportunity to describe more about
how stepper motors work and logic
used to drive them. With the addition
of a little Nisley software magic
added to the stepper motor, the result
will be a sonar scanner!

The basic principle of acoustic
range finding is simple enough: make
a noise and listen for the echoes. As
with most projects, actually getting a
circuit to work is a lot more difficult.
Rather than building a circuit from
discrete parts, I’ll use the TIOl range-
finder board and ultrasonic sensor as
a component and continue from there
with the design of a complete scan-
ning system. The TIOl was described
in detail in “An Ultrasonic Ranging
System,” Ciarcia’s Circuit Cellar,
BYTE, October 1984 (reprinted in
Ciarcia’s Circuit Cellar Volume V).

Given the rate at which elec-
tronic components become obsolete
you’d expect that the Texas Instru-
ments ultrasonic rangefinder board I
used in 1984 would be long gone by

most cost-effective and readily
available ultrasonic ranging unit.

Schematic 1 shows the com-
plete schematic of the sonar scan-
ner. The above photo shows the as-
sembled prototype. It consists of a
rather simple connection of the
TIOl ultrasonic ranger board and a
stepper motor to an IBM PC (or
compatible) parallel printer port.

Most rangefinders usually only
detect the distance to the nearest
object. In an application intended
to mimic a real radar we must scan
an area and display a map of eve-
rything “seen” in each direction,
including overlapping objects at
many distances. Such a new re-
quirement does not mean a com-
plete redesign of previous hard-
ware, however. While I might
never have mentioned it before,
the TIOl has the ability to register
“multiple echoes” already; the “B
INH” (which stands for “blanking
inhibit”) input allows the ECHO
output to be reset after each pulse
is detected.

The time between the INIT
signal and each ECHO return is
proportional to the round trip dis-
tance between the ul t rasonic
transducer and the objects causing
the echoes. When each ECHO is
detected, the B INH input is pulsed

Schematic 1 - Complete schematic of the sonar scanner.

Ultrasonic Pulse Sent Out Timeout

INIT __j~
I

ECHO
Return Ethos /

1 v
'I 'I

B INH h h
I I
I Echo Reset Pulses I

Elapsed Time -+

Fiigure 1 - Pulse time relations between sonar input and output.

Listing 1 - Loop for timing round-trip travel of the sound waves.

: Trigger the rangefinder

in al,dx ; get current bits
and al,NOT blanking : blanking off
and al,NOT trigger : trigger on!
out dx,al ; ..* timing starts now
dec dx ; point to status again

; Run the timing loop until timeout or return array is full

looper label near
in al,dx ; get status bits
test al,echobit ; check if all done
jz gotecho : . . . 0 = echo

*--- no echo,, check for timeout

mov ax,TODlsw ; get current ticks
=mp ax,bx ; hit timeout value?
jb looper
jmp

: no, do again
goback ; yes, bail out

---- got an echo!
iotecho label near

mov dx,timeport
in

; get Timer1 value
al,dx ; . . . lsb

xchg al,ah
punt :
in

delay a bit
al,dx ; . . . lsb

xchg al,ah
sub ax,[bp]:.basetime ; convert to abs time
neg ax ; . . . flip sign
stosw : and save into array

mov
inc

dx,[bpJ.rangeport ; blip blanking
dx

in
; point to control

al,dx : set blanking bit
or al,blanking
punt : delay a bit
out dx,al
and al,NOT blanking ; clear blanking bit
punt ; delay a bit
out dx,al
dec dx ; point to status bits

loop looper ; count this echo

high and low to reset the ECHO
output. Even though the reset is
being handled in software it’s fast
enough not to miss any echoes from
closely spaced objects. The pro-
gram Ed wrote to measure the
ranges can store up to ten echoes for
each output pulse.

Figure 1 shows the timing rela-
tionships between the inputs and
outputs. Remember that the speed
of sound is about 1100 feet per
second and that the time shown in
the figure is for the round-trip
distance. Because the maximum
range of the TIOl is about 35 feet,
the maximum round-trip time is
about 64 ms (milliseconds). One
inch of range (not round-trip)
distance corresponds to about 150
us (microseconds).

Since Turbo Pascal doesn’t
offer a standard way to measure
time intervals that short, Ed de-
cided to use one of the 8253 hard-
ware timers available on the IBM
PC to time the pulses. Timer 0 in
the 8253 is used for the time-of-
day clock; it counts at the rate of
two ticks in 838 ns (for an obscure
reason it counts by twos rather than
ones, so it goes through a full 16-
bit count in 54.9 milliseconds). The
PC BIOS updates a word at
0040:006C every 54.9 ms (18.2
times per second) as part of keeping
the time-of-day clock running, so
we simply note the starting value of
that word and check the current
value when receiving an echo. Four
counts (220 ms) are allowed before
timing out.

The sonar plot program uses an
assembly language routine to
handle the high-speed timing dur-
ing each scan. Listing 1 shows the
core of this code. You’ll notice that
it spends most of its time watching
that BIOS clock location! The
Turbo Pascal code calls the assem-
bly code whenever it needs to
measure ranges.

That explains how we measure
distance but not how we aim the

1

1

scanner. As I mentioned earlier, the
ultrasonic sensor is mounted atop
the shaft of a stepper motor. To
aim the scanner around a room, we
drive the stepper motor in the
appropriate direction in discrete
increments.

An ordinary electric motor is
designed to rotate smoothly when
power is applied to it. This sort of
motor is found in everything from
washing machines to car windows,
wherever a constant rotary motion
is required. These motors can be
driven by either AC (alternating
current) or DC (direct current)
power supplies depending on the
application (and, of course, the
motor’s design!).

There are some uses that de-
mand motion measured in discrete
steps. A classic example is the
motor in a diskette drive that moves
the heads exactly one track per
step. Another is your printer’s
paper advance, moving the paper in
exact steps as the head scans the
page.

A stepper motor features a very
simple electrical interface that’s
easily adapted for computer con-
trol. In fact, it’s so simple that
steppers are often used in applica-
tions where you’d normally expect

a “smooth” DC or AC motor. If the
steps are small enough the resulting
motion is smooth enough for many
purposes. You wouldn’t want to have
one driving your stereo turntable, but
moving the tone arm in or out to
specific locations might be reason-
able.

The motors I’ll be describing are
ones designed to connect directly to
power supplies in the 5- to 15-volt
range and draw less than an ampere
of current. These are used in low-
power applications like printers and
simple robots. The larger industrial
steppers draw many amps from a 24-
volt supply and require a lot more
knowledge to incorporate their use
than I can convey in an introductory
article.

Although specialized stepper
motor driver ICs make designing a
system quite simple, it’s often diffi-
cult to buy them in small quantities.
For this project I used simple transis-
tor circuits so that you can build them
from readily available components.
The tradeoff is that all of the timing
and control is handled by software.

Figure 2a shows the simplest
possible stepper motor: a bar magnet
between two electromagnets. If the
electromagnets are energized so that
their North and South poles are

t N-0 I
Off

0

r--ji ~pq=iLsql;-;;i

Off
I s Off I+ 1 + I

I

+ N

-0

I

I Off

s
/

1

aligned, the bar magnet will seek a
stable position.

To “step” the motor, simply
reverse the direction of the current
flow in the electromagnets as
shown in Figure 2b. The bar
magnet will move to a new position
aligned 1800 from its previous di-
rection. Thus the motor has two
180° steps per revolution.

The problem is that there’s no
way to control which direction the
bar magnet will turn. The motor
can rotate either way when you
reverse the current, or it might just
flop back and forth instead of
making a complete revolution.

Figure 3a shows the simplest
possible stepper motor that’s actu-
ally useful: the same bar magnet

t N-cS

N

I!!S+ N

- cS

Figure 2 - Simplest Stepper Motor

t

S. .uN

S

bidN
S.uN

Figure 3 - Simplest Working Stepper

flanked by two pairs of electro-
magnets. The starting condition is
the same, with the upper and lower
electromagnets energized. By
turning those two off, then ener-
gizing the left and right electro-
magnets as shown in Figure 3b, the
bar magnet will rotate 900 CCW
(counterclockwise).

Next, turn off the horizontal
magnets and energize the vertical
ones as in Figure 3c to make a
second CCW step. The magnet is
aligned just as it was in Figure 2b,
but now we know exactly how it got
there. This motor has four 90”
steps per revolution.

Although there are four elec-
tromagnets shown in Figure 3, they
are always used in pairs to provide
both a North and South pole to align
the bar magnet. To reduce the
number of wires coming from the
“motor” you can connect the two
magnets in each pair together as
shown in Figure 4. You must pro-
vide a way to reverse the current in
each circuit as well as to turn it off
completely at exactly the right
times.

As you might expect, real step-
per motors are a bit more compli-
cated. The bar magnet is replaced

by a cylindrical rotor and the electro-
magnets become complex multipole
stator windings. But the principle
remains the same: you drive a current
through a stator coil and the rotor
aligns with the resulting magnetic
fields.

Figure 5 diagrams a (simple)
motor with a ten-pole rotor and a
twenty-pole stator, as seen looking
along the rotor shaft. Remember that
magnetic poles come in pairs of
North and South poles, so both the
rotor and stator must have an even
number of poles. (For those of you
new to motors, the stator is the
outside frame, with the rotor being
the central core attached to the shaft;
just remember that the stator is
stationary and the rotor rotates and
you’ll do all right.)

Despite the number of stator
poles, there are only two stator wind-
ings: each creates ten of the twenty
stator poles. Adjacent poles are
connected to different windings.
One set of ten poles is shown in gray
boxes, the other in gold. The sche-
matic diagram (Figure 5f) shows how
this motor would be represented in a
circuit.

Figure 5a shows the starting
conditions: winding 1 (gray) is ener-

Winding 1 1

Winding 2 y

_N0S
N

I!S
N

0S

Figure 4 - Pole winding connections for a simple stepper motor.

gized so that there is a South pole
at the top of the stator. The rotor’s
North and South poles are directly
opposite the stator’s poles. Winding
2 (gold) is not connected, so half the
poles are inactive.

Winding 1 is turned off and
winding 2 energized so that new
South poles are produced counter-
clockwise f rom the previous
Souths. The rotor moves one step
counterclockwise to align with the
new set of poles as shown in Figure
5b.

Next, winding 2 is turned off
and winding 1 turned on with the
current running in the opposite di-
rection. This produces a North pole
at the top of the stator, where there
was a South pole originally, but also
produces South poles counter-
clockwise from the previous ones.
The rotor makes another counter-
clockwise step to align with these
poles, and Figure 5c shows the
result.

By turning winding 1 off and
winding 2 back on with the current
in the opposite direction, the rotor
steps once again to the position
shown in Figure 5d.

Finally, winding 2 goes off and
winding 1 on with current in the
same direction it started with. This
returns the stator poles to the same
positions they started from, but the
rotor is displaced four steps
counterclockwise as shown in Fig-
ure 5e. Look carefully at the
sequence of events in Figure 5 to
verify that there’s no magic in-
volved.

The four steps can be summa-
rized in Table 1. Each line of the
table indicates one rotor step, so
moving through the table one line
at a time from top to bottom will
step the rotor counterclockwise.
When you get to the bottom of the
table, just start over at the top
again.

What happens if you reverse
directions and read the table from
bottom to top? It’s simple -- the

10 Circuit Cellar Ink

rotor turns clockwise, one step at a
time! When you get to the top of the
table, start at the bottom.

What happens if both windings
are energized at once? There will
be twice as many poles on the stator
as there are on the rotor, so the
rotor poles will align toward the
“average” of two adjacent stator
poles. In effect, this doubles the
number of rotor positions; natu-
rally, it’s called half-stepping
rather than double-stepping to
confuse the unwary.

Figure 6 shows what’s needed
to half-step the motor. It starts
with the rotor and stator in the same
state as Figure 5a. Instead of
turning winding 1 off and winding
2 on as before, both are energized
simultaneously to create a pair of
South poles at the top of the stator.
Figure 6b shows the rotor aligned

midway between the stator poles.
When winding 1 is then turned off,
the rotor moves to the position shown
in Figure 6c, which is identical with
the full step shown in Figure 5b.

Table 2 summarizes the half-
stepping process for a four-wire
motor, while Tables 3 and 4 show the
stepping in a half-stepping sequence
for a six-wire motor. There are now
eight half-steps required to bring the
stator winding currents back to the
starting condition. The rotor moves
through the same angle, taking eight
steps rather than four. As with Table
1, you can reverse the rotation direc-
tion by reading the table from bottom
to top.

The Pitter Patter of Little Steps

There are, predictably, several
types of small stepper motors. I’ve

described one of the simplest: a
two-winding, four-wire motor. It
has a variant with only three wires;
two are connected internally and
brought out together. Another type
has four windings and either five,
six or eight wires depending on the
internal connections. Figure 7
shows schematic diagrams for these
motors.

The advantage of a two-wind-
ing motor is that it’s somewhat
simpler to build because there are
only two wires inside. The disad-
vantage (as we’ll see) is that the
circuitry required to drive it is
more complex.

A four-winding motor has
simplified driver circuitry, but
requires more complicated motor
construction. However, because
the motors are produced in large
enough volume, it turns out that it’s

a b

I d e f
Figure 5 - Full-step sequence for counter-clockwise movement.

Julv/August 1988

Table 1 - Four-wire full-step sequence

F u l l - - - W i n d i n g - - -
S t e p G r a y G o l d

1 + o f f
2 o f f +
3 o f f
4 o f f

wires until you know which one
are connected to which coils. Th
resistances will also give you som
idea of the supply voltage that th
motor was designed to use. All o
the windings will have resistance
that are the same to within a fel
percent, but don’t expect an exac
match.

more economical overall to have
For example, a four-lead moto

To get started with a “strange”
complex motors with simplified

has two independent windings, s
motor, you need some guidelines to

electronics.
you’ll find two equal resistances. 1

The motor drive circuitry for
figure out the supply voltage, the six-lead motor has two pairs o
type of windings, and so forth. In windings, and the lead that’s corn

the Sonar Scanner will work di- many cases the supplier will be able mon to a pair will have equa
rectly with either four-, five-, or to give you some hints, but it’s always resistances to the other two wire!
six-wire motors by changing only a good idea to check it out on your
driver connections and the soft- own.

If you start by measuring the wind

ware. The most common motors
ings of a pair in series, the remain

If you look closely at a 6-wire
have four or six wires, so those are

ing resistance will be half of tha
stepper motor you’ll see that it is and it’ll be obvious which wire i

the names I’ve used in the descrip- divided into two halves, with three which.
tions. You can convert an eight- leads going to each part. Compare
wire motor to a six-wire one by

It’s helpful to make a table tha
that with Figure 7d and it’s easy to

connecting two of the leads to-
shows the values for all wire pair:

decide which leads are which.
gether as shown in Figure 7d. A

Table 5 gives the typical resistance
The next step is to measure the measured for a 6-wire motor. Yol

five-wire motor is just a six-wire electrical resistance between pairs of should measure the resistance botl

;@

6 5
a N

(0 maP

b *SN/ C S tJ

Figure 6 - Four-wire motor half-step sequence.

one with the two common leads
connected together.

Table 2 - Four-wire half-step sequence

You can buy stepper motors H a l f
directly from vendors with catalogs

- - - W i n d i n g - - -

listing the exact specifications, but S t e p G r a y G o l d

for experimental applications it’s 1 + o f f

simpler to get them from a surplus
2 + +

dealer and check them out to see if
3 o f f +

they do what you want. The prices
4 +

are around $5-$10 in low quanti-
5 o f f

ties, and most of the motors you’ll
6

find in surplus outlets will have
7 o f f

four windings.
8 +

ways for each pair to make sure that
the motor doesn’t have diodes inte-
grated into the windings -- rare,
but possible.

Some motors will have a safety
ground connected to the case. Usu-
ally this lead is green with a yellow
stripe and is not electrically con-
nected to any of the windings. It
ensures that the case can’t become
hazardous if it’s shorted to a supply
voltage, even when the motor is
removed from the chassis.

The next step is to identify the
winding groups if they weren’t ob-
vious from the motor’s construc-
tion. Table 5 shows two sets of
three wires that don’t connect to
each other, so it’s reasonable to
assume that they are two separate
groups.

Now you can identify the con-

nections in each group. Each group
in Table 5 has two resistance values:
65 and 130 ohms. The fact that the
yellow wire has a 65-ohm resistance
to the black and white wires, while
the black-to-white resistance is 130
ohms tells you that the yellow wire is
the common lead for the two wind-
ings. Use Figure 7 as a guide to the
possible wiring connections, but
expect the unexpected!

Finally, you can make a guess at
the operating voltage. Typical mo-
tors will draw 100 to 400 mA (mil-
liamperes) per winding. The motor
in Table 5 has a winding resistance of
65 ohms, so the operating voltage
should be around 13 volts (65 ohms
times 200 mA). A more reasonable
voltage would be 12 volts because
that’s more common. Try supplies of
5, 12, and 15 volts to see what

currents they produce.
The power delivered to the load

is proportional to the product of the
supply voltage and total winding
current, so a motor designed to run
on a lower voltage will draw a
higher current than a similar higher
voltage motor. If you measure very
low resistances, you can assume
that the intended voltage is around
5 volts. (Note: Very powerful
industrial steppers have resistances
down around 1 ohm, so if you find
a motor in that range you’ve got a
different set of problems!)

A simple way to verify your
guess is to connect half the wind-
ings to the supply voltage for a
while and see if the motor over-
heats; if so, use a lower voltage. If
not, try to turn the shaft by hand;
if you can, use a higher voltage. By

Figure 7 - Stepper Motor Winding Types

July/August 1988
-

Table 3 - Six-wire full-step sequences

See Figure 7d for wire numbers. Wires 2 and 5
are connected to the motor supply voltage.
Wires 1, 3, 4, and 6 areconnected to ground
as shown.

Single winding active for reduced power
consumption

Full --- Wire numbers ---
Step 1 3 4 6

1 gnd off off off
2 off off gnd off
3 off gnd off off
4 off off off gnd

Two windings active for increased torque

Full --- Wire numbers ---
Step 1 3 4 6

1 gnd off gnd off
2 off gnd gnd off
3 off gnd off gnd
4 gnd off off gnd

Table 4 - Six-wire half-step sequence

Half --- Wire numbers ---
Step 1 3 4 6

1 gnd off off off
2 gnd off gnd off
3 off off gnd off
4 off gnd gnd off
5 off gnd off off
6 off gnd off gnd
7 off off off gnd
8 gnd off off gnd

th’
thl
to

e way, I define“overheating'* by
e rule ofthumbthatifit'stoo hot
put your thumb on it, it’s too hot!

re:
tr2
th
an
ca
UP
us
hi;
su
ne

Measure the steady-state cur-
nt through the windings and pick
msistors that can handle two or
ree times that current. For ex-
lple, a 2N2907 t rans is tor can
rry up to 600 mA and the 2N2222
I to 800 mA. Of course, when
ing any power transistors in
gh-current applications, make
re that the transistor base con-
ctions don’t draw excessive cur-

rent from the TTL logic chips con-
trolling them. 2N2907s and 2N2222s
are relatively high-gain devices re-
quiring low base currents.

There are also other considera-
tions that enter into transistor selec-
tions but for small motors with low
currents you can ignore most of them.
One detail you shouldn’t ignore,
however, is protecting the transistors
from transient voltages. That’s what
diodes Dl through D4 are doing in
the Sonar Scanner.

Because the motor windings are

inductors, the current flowing
through them cannot be turned off
instantly. If the switch transistor is
not protected by a diode the current
can force a high voltage at the
collector, perhaps causing a failure.
The diode conducts whenever the
collector voltage exceeds the sup-
ply voltage, dumping the current
into the supply where it can recir-
culate back into the winding with-
out doing any damage.

Stepping in Sequence

Now that you know which
wires go to which windings and
roughly what the right voltage may
be, it’s time to make the motor go
around.

Schematic 2a shows the cir-
cuitry required for a two-winding
motor. Because the two pairs of
transistors for each winding look
somewhat like the letter “H” the
configuration is sometimes called
an “H bridge.” In normal use only
one transistor on each side will be
turned on: QAl and QD2 to pass
current left-to-right, then QA2
and QDl for the other direction.

Turning on both QA 1 and QA2
(or any of the three similar pairs)
will short the power supply to
ground through the transistors.
You should make certain that your
software cannot make this happen!

Schematic 2b shows the driver
circuitry for a four-winding motor.
The common leads are connected to
the supply voltage and the other
leads of each pair are switched to
ground using QAl through QDl.
Unlike the two-winding motor,
turning on two transistors at once
will have no ill effect other than
doubling the current drawn from
the power supply.

Because drive current flows in
both directions through a two-
winding motor, this type is also
known as a “bipolar” stepper.
Because a complete circuit requires
twice as many transistors, resistors,

and so forth, it’s more expensive
than that for a “unipolar” four Table 5 - Six-wire motor resistance table

winding motor.
The Sonar Scanner hardware

C o l u m n a n d r o w h e a d i n g s i d e n t i f y w i r e s :

includes a pair of H bridges that can
Bl = b l a c k , w i n d i n g 1

drive a bipolar motor, but the four
Yl = y e l l o w , w i n d i n g 1

lower transistors can also drive
Wl = w h i t e , w i n d i n g 1

unipolar motors. The software uses
B 2 = b l a c k , w i n d i n g 2

an input bit from the motor con-
Y 2 = y e l l o w , w i n d i n g 2

nection socket to determine which
W 2 = w h i t e , w i n d i n g 2

type of motor is connected and
select the appropriate values to

r e s i s t a n c e v a l u e s a r e i n o h m s

send to the output port. Assuming
that you’ve not told any lies to the

From To: Bl Yl Wl B2 Y2 W2

software, either motor will work
Bl 6 5 130 nc nc nc
Yl 65 - 65 nc nc nc

correctly. Wl 130 65 - nc nc nc
Contrary to what you might

think, the consequences of inter-
B2 nc nc nc - 6 5 1 3 0

changing two or more motor leads
Y2 nc nc nc 65 - 65
w2 nc nc nc 130 65 -

aren’t tragic. The motor will sim-
ply not rotate uniformly: it will jerk

t-v +V

'it:Q:;i

1
2

3
tv

4

6 5. tv

0
- QAl

; :--“I

- QEIl QCl cl01

b

Schematic 2 - Motor connections for (a) four-wire and (b) six-wire stepper motors.

5 ,
.!.. I,, $1 .: \::

, ;.

Listing 2 - Step Control Code
(---____________________~~~~~~~_________________________
(Motor definitions

CONST

motors : mtype = (
(phaseseq : ($18,$3C,$24,$A5,$81,%3,$42,$5A):
phaselim : 8;
holding : TRUE:
title : 'Bipolar 4 wire half step'),
(phaseseq : ($18,$24,$81,$42,0,0,0,0) i
phaselim : 4;
holding : TRUE:
title : 'Bipolar 4 wire full step'),
(phaseseq : ($~8,$~2,$~4,$~1,~,~,0,~) i
phaselim : 4;
holding : TRUE:
title : 'Unipolar 6 wire full step'),
(phaseseq : ($08,$0a,$02,$06,$04,$05,$01,S09);
phaselim : 8;
holding : TRUE:
title : 'Unipolar 6 wire half step'),
(phaseseq : ~$0a,$06,$05,$09,0,0,0,0~;
phaselim : 4;
holding : TRUE:
title : 'Unipolar 6 wire full step dual')
):

(-_______________________-------------------------------)
{ Core of motor step routine I
("mID" selects the appropriate motor definition
{ "phase" selects a value from the f*phaseseq** array 1

CASE dir OF
cw : BEGIN (turn clockwise)

IF phase < motors[mID].phaselim
THEN phase := phase + 1
ELSE phase := 1;
Port[mport] := motors[mID].phaseseq[phase];

END;
ccw : BEGIN (turn counterclockwise)

IF phase > 1
THEN phase := phase - 1
ELSE phase := motors[mID].phaselim;

Port[mport] := motors[mID].phaseseq[phase];
END:

ELSE ; (nothing if stationary)
END:

first one way, then the other, as the make it run.
rotor tries to align itself with the
stator’s magnetic fields. You sim-
ply interchange pairs of wires until
the motor rotates correctly!

To simplify this process Ed
wrote a control program called
SEQUENCE.PAS that produces the
correct sequences for several types
of motors. When experimenting
with an unknown motor, simply
hitch it up to the Sonar Scanner’s
driver transistors (after figuring
out how many windings it has, of
course) and run SEQUENCE.
Eventually the program will hit on
the right combination of leads to

It’s a good idea to keep a written
record of the lead combinations
you’ve tried. Because most motors
will have several leads of the same
color, you might want to attach a
numbered label to each lead so you
can keep things straight. Always
interchange leads within a winding,
not between windings.

Listing 2 shows the motor defini-
tion constants used by SEQUENCE.
The phase sequence array (phaseseq)
determines which transistors are
turned on for each motor step. The
phase limit value (phaselim) indicates
the number of valid entries in phase-

seq. The boolean variable “hold-
ing” controls decides if the transis-
tors are left on after the step is
completed, or turned off to reduce
power dissipation. Finally, the title
string is used to describe the par-
ticular motor so you know what the
output is supposed to be doing.

For example, the second type is
the familiar 4 wire bipolar motor
described in detail above. If you
match the values in phaseseq ($18,
$24, $81, $42) with Schematic 1
you’ll find that the outputs are
being turned on in exactly the order
needed to make it rotate clockwise.

Incidentally, SEQUENCE in-
cludes the ability to vary the step
rate. On an ~-MHZ AT it can
produce up to 1000 steps per sec-
ond, well beyond the ability of
some small motors. A “ramp”
function was added to slowly in-
crease the speed to make sure the
motors didn’t get confused by
sudden changes.

The Sonar Scanner program’s
motor definitions include addi-
tional information that describes
the basic motor step size in degrees,
as well as the number of motor steps
in a single sonar scan. The program
can format the screen display to
match the capabilities of the motor
without further assistance.

Typical stepper motors have
step sizes of 18O, 7S”, and 150. The
stepper motor I used on the sonar
scanner is an Airpax #82227 which
has 18O per step. The Sonar Scan-
ner software drives the 18O motor
with two half-steps for each scan to
smooth the scan motion. If you
attach a 7.50 motor, it will respond
with two single steps per scan.

i

Photo 2 shows the Sonar Scan-
ner program in action on a mono-
chrome monitor (it displays in color
on a CGA). The 1 So step size gives
20 scans per revolution. The tick
marks indicate 5-foot intervals.

In order to position the screen
displays correctly the Scanner soft-
ware needs to know which way the
ultrasonic transducer is pointing.
Because stepper motors have no
position feedback, we added an op-
tical sensor to tell the software
when the transducer was located at
180°. Photo 3 shows the sensor as
well as the metal tab attached to the
ultrasonic transducer. The output
of the sensor is returned to the PC
through an input bit in the printer
port.

The Scanner software always
initializes the transducer’s position
by rotating it counterclockwise
until the sensor reports that the tab
has been seen. To make sure that
the alignment is as close as possible,
the software uses the smallest step
rize that the motor is capable of
:xecuting. After the transducer is
aligned, the software may use a
larger step size to give about 20
step/scans per revolution.

Photo 2 - Sonar Scanner program on a monochrome monitor (displays in color on a CGA).

While I used an optoelectric
sensor, you could also use a reed
switch with a magnet attached to
the rotation ultrasonic sensor. The
basic idea is just to have one
position during the rotation gener-
ate a signal.

There are no mechanical stops
to prevent the software from twist-
ing the wires attached to the
transducer into a tight knot. This
is an example of “fail-dangerous”
design: if the software runs amok,
the hardware can be damaged. In
a serious application you would
want to add hardware or software
to prohibit such occurrences.

Photo3 - Sensor and metal tab attached to the
ultrasonic transducer.

tors.

In addition, since the Sonar
Scanner uses a standard printer
port, it’s possible that you might
inadvertently print a listing di-
rectly to the scanner. Bizarre things
can occur; if you’re using a bipolar
motor, some of the characters will
surely turn on both of the transis-
tors on one side of the H-bridge
circuits. If you don’t catch it soon
enough it may burn out the transis-

Unfortunately, the PC BIOS
contributes to this problem and there
wasn’t much that Ed could do to fix
it. During the power-on initializa-
tions and tests, true-blue IBM PCs
(and, presumably, most clones) check
the printer ports by writing $AA to
the data ports and reading it back.
This value turns on four of the
transistors in exactly the wrong way
for bipolar motors.

It turns out, however, that the
Micromint UPS1 1 power supply that
I was using goes into current limiting
when it’s overloaded. No damage was
done because the transistors can

handle the current until the power
supply shuts down. This problem
could be fixed by some additional
hardware, but I don’t think it was
worth complicating this relatively
simple design. The solution is to
use some intelligence and to not
plug in the Sonar Scanner box until
t h e p r o g r a m i s started; the
program’s first function is to write
$00 to the output port to shut off all
the transistors. Of course, if you
are building this sonar scanner as a
“real” project, you might want to
take this situation into account and
perhaps add hardware current
limiting on the drivers.

Listing 3 presents the function
key assignments for the Scanner
program. You can change the
maximum range displayed on the
screen, restrict the scan to a small
arc, and fine-tune the speed of
sound value. Internally, all of the
echo times are stored in an array
that could be saved on disk or
analyzed by another program to
“see” what’s in the room.

For example, you could add
software to compare two successive
scans and decide if something in
the room has moved. The program

a

w
ra

ne
m
pe
In
be
WI

e t

ro

I IBM PC Funtion-Kev Temolate
Listing 3 - Sonar Scanner Program Function Keya

Fl -

<

Default
I

I
Cimiah Chit hibr

I I
F2 beeps and boops on/off off
F3 set speed of sound 1100 ft/sec
F4 erase traces, refresh display
F5 decrease max range (40/20/8 feet) 20 ft
F6 increase max range (8/20/40 feet)
F7 set CCW scan limit 180 degrees
F8 set CW scan limit
F9 -
FlO start/stop scanning

To exit from the program, tap the ESC key.

Sonar Scanner connector wirinq

The computer connection is a standard Centronics parallel
port as used by the IBM PC. The cable has different pin
numbers on each end for some signals, due to the "standard"
IBM PC cable:

New

PC Scanner Signal
end end function
1 1 +Init to ultrasonic board
2 2 +A1 (NPN transistors to ground)
3 3 +Bl
4 4 fC1
5 5
6 6
7 7
8 8
9 9
10 10
13 13
15 32
16 31

+Dl
+A2 (PNP transistors to +V)
fB2
+c2
+D2
-Echo from ultrasonic board (inverted)
+motor select
+limit switch (+ on detect)
+blanking inhibit to ultrasonic board

Pins 16,17, and 19-30 at the sonar connector are ground.
Pins 18-25 at the PC connector are ground.
Not all printer cables connect all the ground pins together.

Run/
Halt

Sonar Scanner

buld then change the maximum
nge and restrict the scans to a few
:grees on either side of the “tar-
!t” to get more data on it at a faster
te.

A mobile robot using the scan-
:r would have to correct the align-
ent of the stored scans to com-
msate for its own movement.
lagine that the robot turned 90”
:tween two scans: unless the data
as adjusted, it would appear that
rerything had moved around the
lbot.

Of course, all this is a simple
atter of software that I prefer to
ave f o r others . . .

r - _ ,

1 The following is available from:
I i

i For informat ion and orders : ’ ‘- ” + :

I
I I’ :_’

- TIOl ultrasonic ranging sensor - Contains ranging sensor board,
one 50 kHz Poloroid ultrasonic transducer, and a copy of the 1984 Circuit, Cellar article on I

l building a handheld ranging unit. I
I order 6 I,! z i . ‘ * l
l Additional ultrasonic transducers

?
I

order 1 : .‘I I. ^ j . 1
I

l ‘-- Mention that this TIOlA is being purchased to build I
I this sonar sensor project and CCI will include a free (while supplies last) I

I Airpax P/N 82227 stepper motor. One motor per TIOI ordered. I
- UPS1 irTeyr supply - +5 volts at O.QA, -5V at O.lAand +12V at 0.3A I

. .i , .i, : ,j I
I All payments should be made in U.S. dollars by check, money order, Mastercard or Visa. I
l Shipping and handling: surface delivery (U.S. and Canada only): add $5 for U.S., $8 for

Canada, or $14 for Europe
5
U.S. air mail). Three-day air freight delivery: add $7 for U.S.

I

I (tnd-day Federal), add $1 for Canada (DHL), $22 for Europe (DHL), or $30 (DHL) for I
I Asia and elsewhere in the world. I
L - J

Dear INK, Dear INK,

I have a Tandy 1000 SX and use several IBM
compatibles. My problem is with sound. I have Let’s
Ci Utah COBOL, Microsoft Macro Assembler and CO-
BOL, and BASIC. I primarily use the COBOLs. I can
find everything you would want to know about
everything except sound. With the exception of the
BASIC which has sound commands, I can’t seem to find
anything on the subject. I can find lots of books and
articles on color, but nothing about sound.

I know there has to be something on the subject as
almost every program I get anymore has both color and
sound incorporated.

I would appreciate any information you could give
on where to get information on how to get sound into
my COBOL programs. If I need to access the assembler
to do this, that would be fine. I bought the assembler
with sound in mind, but as with all of Microsoft’s
manuals, it was no help unless you already knew the
answer you were looking for.

I am faced with a problem that may be common to
many of your readers. I am using a PC at home in more
and more situations. My application is primarily word
processing, however I expect to move into desktop
publishing applications. I hope to be able to eventually
capture screen images from television and print them
to the page.

My problem is with selecting a monitor. I would like
to find a terminal which not only adapts to EGA, CGA,
and the other multitude of standards which seem to
abound, but also to find one which allows the use of
images I have saved to video disc and video tape. Rather
than purchasing a monitor which is inherently limited,
is it possible to select one which has sufficient
resolution for word processing and desktop publishing
in both color and black and white, but that also would
double as a television/VCR screen both for computer
applications and in other situations?

B. Millar-Hanna, Alberta, Canada
D. McLean-Cheyenne, WY

Dear Brian.
Dear Daniel,

IBM PCs have a primitive sound generator that can
handle one tone: software sets the frequency, turns it on,
then turns it off. There’s no volume control. You can
do some remarkable tricks, but it takes a lot of
programming to make it happen.

One book we’ve used for a while is Bluebook of
Assembly Language Routines for the IBM PC and XT
by Christopher Morgan (Waite Group, ISBN 0-452-
25497-3). It’s fairly old, but has a wealth of routines and
tips for all those gritty little assembly routines. There’s
a 30-page dissertation on sound, as well as another 30
on basic graphics and colors. The remaining 200 pages
cover math, strings, I/O, and so forth with a lot of
sample programs and examples.

-- INK

A monitor that is compatible with CGA, EGA, VGA,
PGA, and several other higher resolution display cards
is not hard to find. Any of the several multifrequency
monitors like the NEC MultiSync, the Sony Multiscan,
or the Magnavox Professional will accept analog input
and do an excellent job of displaying color pictures at
normal TV scan frequencies. The problem is that most
of these monitors require separate red, green, and blue
signals as input, while most home video equipment send
out only a composite video signal. There are, however,
at least three monitors available that accept composite
video as well as digital and analog RGB signals. These
are the Mitsubishi Diamondscan AUA41371A, the
Thompson Ultrascan 4375M, and the Taxan Multivision
770 Plus. These monitors are all capable of displaying
graphics with resolution of at least 640x480 pixels. The
Thompson and Mitsubishi are good for 800x560. These

I

monitors might have some advantage over a good-
quality television for displaying VCR and TV pictures,
but remember that, to a very large extent, the picture
quality is limited by the bandwidth restrictions on the
standard NTSC composite signal. The 30-MHz video
bandwidth of these monitors is mostly wasted on a
composite signal with a bandwidth of about 3 MHz on
a good day.

-- INK

Dear INK,

I am an amateur electronics/robotics enthusiast in
great need of help. My problem is that my projects
seem to be limited by the wall of nonautomation (no
computer brain to monitor and control). I have gone
to countless libraries in search of a book that can help
me interface my projects to an 8080/8085based
microcomputer, with no luck. This book has to teach
me how to build a microcomputer based on the 8080/
8085 CPU, program, and interface it with the real
world. The computer I need to know how to build needs
no special programming language, except assembly lan-
guage. I would like to create my own system monitor.

My question to you is, do you know of any books
in print that can help me achieve this task, and could
you send me a list?

J.Stratman-Westland, MI

Dear Joe,

Several of the books in the Blacksburg Continuing
Education Series, published by Howard Sams, cover
8085 hardware and software. 8085A Cookbook by
Titus, Larsen, and Titus (ISBN O-672-21697-3) is a
good place to begin, followed by the two books on 8085
so jtware design. The cookbook covers design o fan 8085
computer in all important particulars, and may be
exactly what you need.

These books may be available in some libraries, but
the most certain way to obtain them is through a book
store or electronics supplier that carries books. They can
also be obtained directly from the publisher, Howard W.
Sams (4300 W 62nd Street, Indianapolis, IN 462681.
Ordering in formation and current prices can be obtained
from the publisher.

-- INK

Dear INK,

I am currently trvine, to design a proportional
controller based on Signetics TDA-1023 chip. This
controller is to accept an input signal of O-100 Hz at
100 ms P.W. from a flow sensor to control proportion-
ally an AC motor at 120 VAC 6.6 amps. I prefer to stay
away from CPU-based systems which is why I incor-
porated a TDA- 1023 TRIAC controller. Any help you
can offer in my project would be appreciated.

Keith J. Donadio-Frostproof, FL

Dear Keith,

Microprocessor-based control systems possess great
versatility, but in simpler systems, are neither necessary
nor cost-effective. Your system seems simple enough
that a dumb controller is more than adequate. While your
pupose is sound, I’m not sure that the TDA-1023 is the
most appropriate integrated circuit to use in your design.
The TDA-1023 contains an internal comparator and
pulse-generating circuitry. It is normally con figured
using external variable resistances such as thermistors
to determine the ON-OFF state. The October 1987 issue
of Modern Electronics features construction of a
darkroom temperature controller using the TDA- 1023
with a thermistor as the temperature-sensitive element.
I know of no practical means of triggering it using
pulses from an outside source. Applications data from
Signetics illustrate possible modes of operation for the
circuit.

Since you already have a source of pulses, a simple
TRIAC triggering circuit such as an MOC301 I (zero-
crossing detector built-in) would seem more appropri-
ate. You might also find buffering necessary using a
7406 or 7407 package, and/or perhaps a one-shot (e.g.
74LS123) to get precise control over the triggering
process. With a pulse width of 100 us, considerable
stretching is likely to be required for reliable triggering
if the zero-crossing trigger circuit is used. Sample
circuits for the TRIAC trigger can be found in
applications data available from manufacturers such as
Motorola.

--INK

I;_--‘, .-IY., .vrn_l_X-~ II.,-...._..“._ “^_. ,~_ _ ..--.. -.m.s-.._ -...> .-

1 In Visible Ink, the Circuit Cellar Research i
1 Staff answers microcomputing questions from the
f readership. The representative questions are pub- :
0

I

lished each month as space permits. Send your ‘i
inquiries to: l”_k l<1;,,::4: :> .‘i_% : :’ I ,y*_;:.- ;

8 * (* : : p, r jY&. Hi.:; ‘“‘J, i’+*~l~~~. 1 v.‘ch All
i letters and photos become the property of CCINK
E;: dan cannot be returned.
:~..“~~*--4~z”X%_-%--‘, __I_._Y-_~~.z%.._____R_.~,C ._Y.*,<__ .._*^<IX/ ilXr-*4

029
b-9 L I

Circuit Cellar Ink

The Home Satellite Part 4
Weather Center
by Mark Voorhees

Dial-Up Databases and a
68000 Perzbheml Processor

s we all tire of summer, with
the associated lawn mowing, aller-
gies, and assorted summer ills,
hopefully some of you have had
time to download the first group of
IBM PC software modules for our
Home Weather Center system. If
you’ve also had time to subscribe to
one of the weather databases (and
experiment with its use), you
probably are already reaping some
benefits from your efforts in in-
creased knowledge of storm activ-
ity in your area, or just knowing
when it’s going to be nice at the
beach.

This time around, we are going
to cover several topics ranging
from more advanced use of the
phone access software modules to
the first descriptions of the periph-
eral processor system.

In the last issue, we discussed
the relative merits of some com-
mercially available weather data-
base services, focusing on the
products they provide to help you
gain further knowledge about the
weather phenomena occurring
around you. At that time, we also
covered the first PC software
modules (these modules are avail-
able on the Circuit Cellar BBS or by
mail from me).

The modules included in the
first batch were the main configu-
ration and menu program
(WEATHER.EXE), the hardcopy

module (PRINT.OVL), and the four
weather service communications
modules (CAD.OVL, CSS.OVL,
CNOAA.OVL, and CWB.OVL).

Each of the communications
modules contains the ability to use
what I’ve called an “auto-access”
file. The program always performs
the sign-on and sign-off functions
automatically (even for a manual
session); the “auto-access” mode al-
lows you to create a script-type file
for often-used commands. For in-
stance, if you normally want to get
radar data for the U.S., the computer
forecast for the next 24 hours for
your region, and your state’s current
temperatures, you could create a file
to handle those requests automati-
cally. At the end of the file, the
program signs off (or, if you have
selected an “auto/manual” session,
returns control to the keyboard).

cess, delete, or edit files for that
service, thus minimizing the po-
tential ‘for corrupting files for
another service. Each module can
address up to 255 auto-access files
(each file up to 100 lines long), and
a hard disk is highly recommended!

Using short examples, I’ll show
you how an auto-access file might
look for each service:

Accu-Data:
RADU * 1
MOSP @AZ

Using the auto-access files can be
tricky unless you are familiar with
your service’s command syntax.
Whether you are a novice user or an
“old pro,” it is always best to manu-
ally perform the commands to be sure
that you get what you want before
committing them to an auto-access
file. Certain service-generated er-
rors are almost impossible to trap
effectively, and if you find yourself
“hung” within the auto-access modes
due to an error, your only solution
may be to reboot the machine.

The first line calls for unaltered
radar data (RADU) for all U.S. re-
porting stations (*) for the last hour
(1). The second line requests plain-
language computer forecast data
(MOSP) for Arizona (@AZ). This
command mode is called the “Ad-
vanced User Option” by Accu-
Weather, and their manual de-
scribes the possible commands
fully. Although you can use the
menu command mode with auto-
access files, it is generally easier for
this and other services to use di-
rect-access-type commands.

CompuServe:
SD CKL, LZK, SAC, LIC
PBI, TBW, MM0
<2 spaces>

Each communications module
contains a complete auto-access file
editor, so creating, editing, or delet-
ing a file is easy. The editor for a
given service module will only ac-

The first line is, again, specify-
ing radar report (SD) data, this time
from four specific stations: CKL
(Centerville, AL), LZK (Little
Rock, AK), SAC (Sacramento,
CA), and LIC (Limon, CO). The

second line continues the station
requests for SD information for PBI
(West Palm Beach, FL), TBW
(Tampa, FL), and MM0 (Mar-
seilles, IL). The third line, consist-
ing of two spaces, causes Compu-
Serve to return to the command
mode and wait for another data-
type request or the OFF command.

In the case of CompuServe, the
sign-on sequence of our communi-
cations program navigates to the
AWX- 1 page before activating the
auto-access file (in auto and auto/
manual modes) or releasing com-
mand to the keyboard (in manual
mode). Thus, the auto-access file
need only address the actual
weather commands. The first line
must specify the data type (in this
case, SD), followed by the report-
ing stations required. The follow-
ing lines may specify the station
names within the requested data
type, and may number as many as
necessary. When you desire to
change data types or end the auto-
access file, you must execute the
line containing two spaces to tell
CompuServe to return to command
mode within AWX- 1.

Weatherbank:
NWS 2,PHX
RADAR/D

The first line of our file re-
quests the National Weather Service
forecast for Phoenix, AZ (code
PHX); the second line requests the
raw radar data file for the U.S.
radar reporting stations.

The Weatherbank communica-
tions program has a slightly differ-
ent operational feature in manual
mode. While the auto-access func-
tion handles the sign-on routine
just as it does with the other
modules, the manual mode requires
that you press a key at the command
prompt to complete the sign-on
process. Weatherbank allows the
use of help files without charge
before the sign-on process, so, you

can browse these help screens before
signing on. Note that the capture file
for the session (explained later) will
capture the screens you look at prior
to sign-on in this module only.

NOAA:
1
7

Since the NOAA system only
operates in a menu mode, you must
enter the selection number for the
desired report. In the first line, we
are requesting the Climate Rankings
for selected regions of the U.S.; the
second line requests a listing of the
“help” file. It is not necessary to
include the “0” selection for sign-off
in your file since it is taken care of
automatically by the module.

I want to take a moment at this
point to advise you of some problems
I’ve noted recently while using the
NOAA system. I’ve had several
instances of poor line connections or
apparent modem failures which
cause either their system or my PC to
lock up. In contacting NOAA, I’ve
learned that an upgrade of the system
(apparently both hardware and soft-
ware) is “in the works,” and prob-
lems can be expected until that is
completed. I was also advised that
NOAA plans to start charging for
connect time for this service, al-
though rates and transition dates have
not been set. If and when changes are
made to this service, 1’11 advise you of
them in one of these articles. If
changes are required in the NOAA
communications module, a new ver-
sion will be released at that time also.

The above modules have many
functions in common and all are
“menu driven,*’ requiring little, if
any, explanation. Note that a pri-
mary feature of all of the comm
modules is the creation of a capture
file for each session, consisting of all
the data following the sign-on func-
tion (except for Weatherbank, as
noted above) and the completion of
the sign-off routine. The file is

named using the following format:

MMDDHHNN.SS

Where:
MM is the month (leading zero
ignored)

DD is the day (leading zero
ignored)

HH is the hour in 24-hour
format (leading zero ignored)

NN is the minute (leading zero
not ignored)
SS is the service:
AD = Accu-Data
CS = CompuServe
WB = Weatherbank
NO = NOAA

All time and date references are
to the time the session is started. It’s
obvious that you must make sure
your PC’s clock and calendar are set
(or use a clock/calendar accessory
to do this for you) to make effective
use of this built-in session refer-
ence. This filename format makes
it very difficult to accidentally
overwrite a session file.

The session files will be useful
to other modules in the future, but,
for now, they allow you to get a
hardcopy printout of the session
using the hardcopy option from
WEATHER’s main menu. The
printer function supports any
DOS-driven printer; Epson-com-
patible command codes are used for
any internal feature selection (none
of which are used for the standard
hardcopy text output).

Again, the hardcopy module is
menu driven and straightforward
in operation. You have the ability
to select the file from a list of all
session files for that service on the
disk. You can then print or delete
the selected file.

The printout itself will show a
header listing the service, the file-
name printed, and the date of the
printout. Continuous-form-format
printing is used, with a form-feed
issued at the end of the file.

L

s

Ju ly ; August i 988

As noted previously, these capabilities. assembly to my tower with 1.25” U-
modules will be subject to revision Overall, this is probably one of bolts. I should note here it is im-
to increase features or repair flaws. the better instruments that Heath has perative that the gauge not be
The executable programs will al- produced. The kit is definitely not mounted under a tree limb or other
ways be available from the Circuit for the novice; the tight layout and overhang that could cause the read-
Cellar BBS. close trace spacing is similar to that ings to be in error.

Should you experience any found on boards in some of their The humidity sensors (which
problem with a module, please computer kits. Precision soldering is are not the same as the sensors used
report it to me either by Email on a must since a trace short could easily in the earlier Heath Relative
the Circuit Cellar BBS, Compu- occur with the use of too much solder. Humidity Unit) were easy to con-
Serve (70566,777), or by regular The main unit functions as an struct. The outdoor sensor (along
mail at the address shown in the indoor/outdoor thermometer, ba- with the outdoor temperature sen-
sidebar. While I’ve tested these rometer, and wind direction and sor) can be mounted under the
routines extensively, errors can speed indicator (with a pole-mount- eaves of your house, but I recom-
occur, so I appreciate any feedback able anemometer and direction mend that you mount them instead
that the users can provide. vane). Current time and date are in a suitable instrument shelter to

maintained, with memory to show minimize errors in readings. Shel-
Radar Display ‘tloduie the day’s high and low temperatures, ters are available from several

barometric pressures, and high wind suppliers, one of which is:
Our new software overlay for speed. All functions are protected by

this issue is the radar data display a battery back-up power supply, so Wind and Weather
module, which will create a map memory can be maintained in case of P.O. Box 2320-WW
using the raw station data acquired power failure. The display is a Mendocino, CA 95460
from your weather database serv- professional-looking back-lit LCD
ice. panel, and commands are entered They will provide a free cata-

The use of radar data requests from a front-panel keypad. The log on request.
in the above auto-access-file ex- entire unit is housed in a metal case The RS-232 port should be
amples was not accidental. This (with partial wood-grain trim). The acquired if you plan to use the ID-
module searches the selected ses- user may set alarm functions for an 5001 with our peripheral processor
sion capture file for the raw data audible or visual (or both) alert of since we will support its protocols
reference: abnormal conditions; some of these as well as those of the earlier (and

alerts depend on the presence of the less sophisticated) ID-4001
RADU on Accu-Data relative humidity accessory. weather computer.
SD on CompuServe There are three accessories avail- I recommend that you acquire
RADAR/U on Weatherbank able: a rain gauge, an indoor/outdoor all of the desired accessories at the

relative humidity sensor set, and an time you purchase the main unit to
It then creates a data table from RS-232 communications port. allow you to calibrate everything

the received data and plots the in- The rain gauge is a self-dumping, (and, in the case of the RS-232
formation from the table over a calibrated unit with some generic- port, install the extra parts on the
U.S. map which is grid-calibrated style mounting hardware. The gauge main board) at the same time.
for the stations’ locations. The base is the same unit provided with the My only complaint with the
map is in the GIF format, and maps earlier, separate rain gauge display. unit is the procedures used to
with the data plots can be saved for Since I had that unit as well, I had calibrate some of the sensors. I’ve
future use (saving is also in the GIF already solved the mounting prob- never been a fan of “cut-and-try”
format). The module is menu lem. My approach was to use a l-foot methods, and the procedures used
driven and self-explanatory. length of 1” galvanized pipe with a for the barometer, temperature,

pipe flange screwed onto one end. I and humidity adjustments seem to,
hlinirtrvIevr of Ihe Heath 11)-5001 drilled the pipe flange for three at least in part, fit that mold. It is
$h eathrr <-ompurer machine screws spaced at 120-degree important for proper operation that

increments, and then used the pro- you follow the calibration proce-
Having finally found time to vided mounting straps to attach the dures precisely, and redo them

complete the ID-5001 and install it gauge to the flange. Then, using two several times to allow for fine
(where do the hours go?), I’m now 2-foot lengths of 1” square steel tuning. (I actually allowed the unit
able to give you an idea of its tubing, I mounted the pipe/gauge to “burn in” for several days to

Circuit Cellar Ink I

stabilize the components before
recalibration. I also repeated the
procedures three days in a row,
and, even at that, I’m not satisfied
that the system is tightly cali-
brated.) I plan to investigate the
possibility of scope (or other in-
strument) calibration procedures to
make alignment more precise. If I
can produce such procedures, I’ll
provide them in a future article.

The preceding problem aside,
this unit appears to be an excellent
buy for the features provided and
in comparison to other commer-
cially available instruments of
similar precision.

As I said before, summer is on
the wane, so I suspect we’re all
ready for a hardware project. Let’s
get started with our peripheral
processor unit.

Our Home Weather Center
system is designed to provide the
following:

- Monitoring of either the
Heath ID-4001 or Heath ID-5001
weather instruments, sampling and
holding their data at a preselected
sample rate (e.g., every 5 minutes).
When an IBM PC is used to access
the peripheral processor, the data is
downloaded for processing in a da-
tabase within the PC’s software.

- Digitizing and recording of
WEFAX satellite information in
memory for later download and
display by the PC’s graphics card.
Based on the normal configuration,
the basic unit will store the most
recent four WEFAX images in
memory.

- Control of an integral
WEFAX receiver.

- Additional peripheral sup-
port (disk? modem? direct graph-

ics?) to be determined by user inter-
est.

The unit will operate 24 hours a
day, with an optional battery back-
up to maintain memory in the case of
power failure. The intention of the
peripheral processor is to handle the
full-time data housekeeping needed
for full-time operational system
without dedicating a PC to these
chores. The PC’s graphics support,
communications, and data storage
and processing, are used to minimize
the cost of the system.

In designing the peripheral proc-
essor and its accessories, Figure 1, I
tried to consider any possible prob-
lem areas. For instance, we know
that a WEFAX image takes about 200
seconds to be received. Our system
must control the sample rate, trigger
an A/D converter, take the digital
value from the converter, and place
it in memory. Given that we sample
an image 800 times in each line of
FAX data (800 pixels x 800 lines is
the specified WEFAX resolution),
samples are approximately 312 mi-
croseconds apart. Allowing 100 us for
an A/D conversion, our processor has
200 us to handle its part of the
routine. It’s obvious that the above

would not be difficult unless you
consider that the system overhead
must also include the worst-case
scenario of the processor handling
console I/O, instrument sampling,
and WEFAX sampling at the same
time. Our system needs a clock
speed of about 9 MHz to be effi-
cient.

The FAX image will need to
be stored. If we store four 4-bit
pixel levels in a 16-bit memory
location, we’ll need to have 160K
of RAM for this purpose. To store
four images, 640K will be needed.
The requirements of storing instru-
ment data can be met by about
300K of memory since the instru-
ments are sampled every 5 minutes
and data is downloaded at least
every three days. Hence, we need
a processor capable of addressing
more than 1 megabyte of memory
and operating on 16-bit numbers.

My choice for the processor
was a Motorola MC68000 micro-
processor running at 10 MHz. It
fulfills the requirements stated
above and keeps the price down as
well. The possibility of disk system
requirements, an internal graphics
card, and other accessories also
figured in my choice since I wanted

WEFAX

RECEIVER

6 8 0 0 0 MFIIN

DOWN-CONUERTED
WEFhX R F

PROCESSOR CARD

PARALLEL PfiRALLEL DATh F R O M
DATA PORT INSTRUMENTS

COMMUNICATION
TO HOST PC -

SERIFIL

DF1Tr3 PORT
SERIAL DhTA F R O M

INSTRUMENTS

Figure 1 - Peripheral Processor and its accessories

.Julv!Aunust 1988 ‘3

6 8 0 0 0 6 8 9 0 1
CPU HFP

CENTRAL MULT 1
PROCESSING FUNCTION

UNIT PERIPHERhL
1 I I J

I I

1 f-lAX232 1

1 SE,“,“,‘,“‘,,,, 1

SYSTEM BUS

EXTERNAL
CONNECTIONS

‘igure 2 - Evolution of the peripheral processor unit.

a microprocessor which had a large
device support base.

With that selection made, the
peripheral processor unit began its
evolution to the final design, which
is shown in the block diagram of
Figure 2. The CPU card contains
the processor, clock, and processor
memory, as well as a multifunction
peripheral used primarily as the
console communications port
(communications with the PC).
This card also controls the front
panel display and monitors front
panel switches.

The data memory consists of a
l-Meg x 16-bit RAM array with
control. An optional card expands
data memory to 2 Meg x 16 bits.

The parallel and/or serial ports
are provided to connect instrumen-
tation to the peripheral processor
system. Additional ports can be in-
stalled if needed.

The WEFAX demodulator and
A/D converter comprise another
bus device, as does the planned
integral VHF receiver for the
downconverted WEFAX signal
(more about this when we talk
about the WEFAX unit in a future
article).

All of the devices will be con-
nected to a common ribbon cable
bus and will conform to the dimen-
sions necessary for stack-type

mounting in your cabinet. (I’ll dis-
cuss my recommendations for a
power supply and cabinet in the next
installment.)

I‘he (‘P1L’ c’ard

The CPU card schematic is
shown in Figure 3. I’ve attempted to
minimize board density and cost by
using Programmable Array Logic
(PAL) devices when they were most
practical -- especially in the device
selection logic, where their use re-
places several ICs.

(For those of you who may think
these custom devices carry a large
price tag, don’t worry. I’ll provide
the devices preprogrammed at a rea-
sonable price [about $3.50 each]. If
you have access to a programmer, the
CUPL PAL compiler files will be
available on the Circuit Cellar BBS.
The individual parts, as well as com-
plete kits, will be offered in the next
issue.)

Briefly, UlOl is our MC68000
processor, which is the “brains” of
our unit. It is clocked by a IO-MHz
clock generator (which also supplies
a phase-2 clock for use by bus
devices). The operating system is
contained in two 27256 EPROMs
(U103 and U104), appearing to the
bus as a 32K x 16-bit array. The
processor also has a 32K x 16-bit

static RAM array (U105 and U106)
for on-board stack and configura-
tion table use.

U102 is the multifunction IC
(MC68901),. which handles inter-
rupt priorrtization and communi-
cations with the console unit (your
PC). U108 creates the necessary
150-ms reset pulse width; U107
operates as a “watchdog” circuit,
causing a reset if the processor
should halt for some reason.

CNl A/ 1 B is the bus connection
to the other cards in the unit and
provides all of the needed signals to
and from the processor, as well as
reset and selection information.
Some of the bus lines have been left
open, reserved for data between
other cards in the unit.

We’ll hold the discussion of
other details until the next install-
ment, when I’ll provide the sche-
matic for the memory card, discuss
the firmware, and provide ordering
information for the parts and kits.

Until then, remember to drop
me a line if you have input as to
other possible accessories for this
unit. I’ve already received com-
ments requesting some form of
mass storage, an integral video
display card, and a frame buffer
f o r h i g h - r e s o l u t i o n EGA-to-
NTSC translation. What are your
ideas?

Software for Circuit Cellar INK
project6 ir available on the Circuit Cellar
BBS and can be downloaded free of
charge. If you would prefer more pemonal
service and would. like to receive the
WDPS software on disk, I will eend it to
you for $6.00 ($5.00 copying/disk fee,
$1.00 P&H). Source code will be handled
in a manner similar to “eharewsre,” in
that you will send a registration fee of
$36.00. This payment will cover rource
for all modulw in the syrtem and all
updatea orfixes. Software will be releacled
in module groups. You will receive the
;t;;ipriate disk shortly after it ir pub-

to order software or eource code on
disk, send check or money order to:

Mark Voorheee
P.O. Box 27476
Phoenix, AZ 86061-7476

Allow 30 dayr for shipment.

\
u112
PflL16R4

<flS
<LDS
<UDS

\fi16
\fIl7
<h18 18 RRMHSEL
\A19

\OBMSEL 2
_,2 ,02 13 ROMLSEL

, , ,O, 12 ROMHSEL

ctc O E

VI09
MhX232

1
\CLK :
\flS

+ cl+
u114 CI-

u107 PALl6L8
74HC4020

Ulll
74LS05 u+

IACK,

CLK

RSW

LAS

0713 iFC2

Q6b ,FCl
Ulll
74L.505

05' \FC0
045

OBMSELj

032 U l l l

dII1IR Q0p
18-CP

74LS05
+5 Ul08 13

4 LM555 5% R104
R

r
10K UI02

2 TR DIS 7
68901

CLK 15

CLK 35 CLK,

C l 0 4

XTLl
XTL2

17
16 28 INT6,
15 27 INTS,
14 26 INT4,
13 25 INT3,
12 24 INT2,
I~ 23 INTl,

I0 22 I NT0,

r.

I IN4148 DI02
I

lN4148
E ” E ,

:LK2
:LK

TTLOSC
OSCI
20 MHZ

c \ DATA BUS
I 5 h-6 I

I / -

A D D R E S S B U S
FROfl P A G E 1 1 DATA BUS I I II . \ 1 >

>1 C O N T R O L B U S 1
I

CNlA
HDR60

CN4
HDR3

I CN3 I

+lCllY lCll1 lC112 ICI13 _,_C114 1Cll5 1C116 lC117 1CllS
+12 47 UF .l UF . I UF . I U F . I UF .I UF .l UF .l UF . I UF

+ Cl20
47 UF

GND
CN2

CN5
HDR20

CNl8

! I C O N T R O L B U S

DBYS

Jai\, ‘.4ugust ! 988

q+

Ctrl
~~~~~~~

BIGGER is not ’ N K

neccessarily better by Ezra Shapiro

r I-7

he computer industry is finally being trapped by its own marketing strategy, and the result is more grief
ahead, both for the consumer and the industry itself. We’re being buried in a landslide of over-powered,
redundant products that will make the jump into the next generation of computing incredibly difficult to
accomplish, at least psychologically if not physically. The syndrome is most obvious in the software arena, but
there are going to be repercussions in the hardware market as well.

The problem is that the mass market has been convinced that computing power can best be measured by
cost, size, and newness rather than efficiency, elegance, and suitability. Buyers stampede to their dealers the
second any major company announces an upgrade to an existing product. Why? Because they believe that if
they fail to move up, they’ll be missing out on “powerful new features.” Sometimes those features are desperately
overdue, but often as not, the motivation for buying has less to do with need than with the desire to stay at
the forefront of the technological revolution.

The manufacturers chuckle all the way to the bank. Fiscal projections based on exponential growth need
artificial mechanisms to continually pump up revenues. Upgrades are a perfect way to inject new buying
enthusiasm into markets already saturated. This is simply a rule of economics.

As an example, look at the marketing ramifications of OS/2 and the Micro Channel Architecture: IBM will
sell new boxes, board vendors will sell new cards, and software companies will rewrite existing programs.
Lemmings in the marketplace will cheerfully purchase the lot, with no immediate benefit, merely because they’ve
been told to do so. It may be years before OS/2 results in meaningful advances, if ever, but boy, does it produce
revenue in the meantime!

Consequences? First, manufacturers in this highly competitive business now feel intense marketing pres-
sure as well as technological pressure, and a lot of products are released before they’re fully debugged. A couple
of software firms have gone so far as to sell programs to consumer “beta testers,” thereby disclaiming respon-
sibility for errors while still generating appreciable cash flow.

Second, the rush to market encourages sloppy design. The solution for many companies is to throw engi-
neers or programmers at a project with more concern for schedule than quality. Production models of computer
systems are sold with ROMs that change weekly; you’ve got to know the exact date of manufacture to deter-
mine software compatibility. Boards are shipped with jumpers of wires soldered to the underside to correct
flaws in the layout. On the software side, you get memory-hungry, crash-prone applications written by hordes
of semiliterate C programmers.

Third (and this is the point that’s really scary), we’re seeing a phenomenon in software design that can best
be called “creeping integration.” In an effort to expand their markets, developers take perfectly good appli-
cations and graft on features from other disciplines. Word processors sprout spreadsheet functions, spreadsheets
become desktop publishing engines, databases add telecommunications capabilities, and so on. These overlap-
ping hybrids are invariably huge and less robust than their forebears. They use unique data structures and
effectively short circuit operating system design.

In the coming era of multitasking, multiprocessing, networked hardware, these hulking monstrosities rep-
resent an approach exactly opposite from what is needed. RAM and CPU time will become even more pre-
cious than they are today, and overlapping functions will be an expensive annoyance. The goal should be trim,
fast, efficient software that’s talented in data exchange and sharing. After years of convincing consumers that
bigger is better, how will the industry reverse itself to promote downscaled programs? Will today’s leaders
collapse, to be replaced by firms that understand good design? Or will the enigma be ignored, forcing hardware
vendors, operating systems engineers, and computer users into costly, inefficient workarounds?

The answer, of course, lies in another basic principle of economics. If we, as consumers, vote against
unnecessary bigness with our checkbooks, by consciously buying only those tools that are right for the tasks at
hand, we ‘ght be able to stem the tide. If that happens, the next generation will mean easier computing for
everyone.

Ezra Shapiro writes about computers for Byte, MacWeek, and MacUser.



C()NNECTlME  I’ .:. “-. .I ‘.; .:

THE CIRCUIT CELLAR BBS
300,’ 1200/2400 bps

24 hours/7 days a week
(203) 87 I- 1988 -- 4 incoming lines

Vernon, Connecticut

Sysop: Ken Davidson

In the October, November, and December 1988 issues
of BYTE magazine, Steve will be presenting a Circuit
Cellar project called a “Mandelbrot Engine.” (I might
add that these will be the last Ciarcia’s Circuit
Cellar construction articles ever to appear in
BYTE.) There has been lengthy discussion about the
engine on the Circuit Cellar BBS lately, so I’m starting
this month’s column with that discussion.

For those unfamiliar with the Mandelbrot set, or
have heard all the uproar and wondered what the
commotion was all about, its popularity probably started
with an article written by AK. Dewdney for the
“Computer Recreations” column in the August, 1985
issue of Scientific American. In it, Dewdney describes
a set of numbers which, when passed through a
deceptively simple equation repeatedly and plotted,
create marvelous pictures containing spirals, whorls,
and “black holes.” When a small portion near the edge
of the set is magnified, just as much beauty and detail
emerges as the new picture is calculated. Limits to how
far one can zoom in on the set are created only by the
precision of the computer calculating the picture. The
picture above is a black-and-white representation of the
entire set and its surroundings, but it doesn’t really do
the set justice. Only on a full-color, high-resolution
screen can you appreciate the elegance.

Based on what is known as “fractal geometry,” the
set is named after Benoit B. Mandelbrot of IBM’s
Thomas J. Watson Research Center. Mandelbrot’s
research in geometry led to the development of fractal
geometry, or “the mathematical study of forms having
a fractional dimension.”

“Chaos theory” is also related to fractals and the
Mandelbrot set, and a discussion about chaos is what led
into the Mandelbrot discussion. The chaos thread would
fill another whole column, but is still on-line for those
interested. Anyone interested in finding out more about
chaos theory, fractals, and the Mandelbrot set should
look into the book entitled Chaos: Making a New Science
by James Gleick, published by Viking Penguin Inc., as
well as the Scientific American article cited above and,
of course, Steve’s upcoming BYTE articles.

Msg#: 3149 *GENERAL*
From: BEN TREMBLAY
To: ALL USERS
Subj: CHAOS

Scientific American’s “Computer Recreations” section is a supe-
rior source, but the thin edge of the wedge for me is Art Matrix. From
Homer Smith’s place you can not only connect with like-minded folks
but source FORTRAN code and paradigmatic video. Happy frac-
tailing!

Msg#:  S168 *GENERAL*
From: HOMER SMITH
To: ALL USERS
Subj: CHAOS

Hello people, this is Homer Wilson Smith of Art Matrix. Art
Matrix is a legal Partnership of myself and Jane Elizabeth Staller, both
of Ithaca, NY and Cornell University. We work with John Hamal
Hubbard and the Cornell National Supercomputer Facility exploring
chaos, fractals, and other dynamical systems. I do all of the supercom-
puter programming for Dr. Hubbard and in the past three years have
produced a number of interesting products for the beginner (and not
so beginner) whois interested in chaos. Weintend that chaos be taught
in the 9th through 12th grades within a few years and are trying
desperately to get thin material into the hands of anyone who can help
with this goal either on a small level or on a planetary level.

Cur main products in present time are:

1.) A postcard set in color of 36 different images from varioue equations.
2.) A slide set of 140 slide8  from the work we have done.
3.) A do-minute video (noon to be 120 minutes) containing moms into

the Mandelbrot set set to music.
4.) We also sell floppy disks with the FORTRAN code for each iterated

equation we have studied and the coordinate sets for the slide nets.

The video is $26 for the first copy and $10 for each additional.
Don’t let the price fool you; this cost us over 100 hours of supercom-
puter time to create. The slide set is $30 and the postcard set is $10 for
two packs. The floppies are $15 for one and $20 for both.

Art Matrix in a cooperative arrangement between the Cornell
National Supercomputer Facility, IBM, and the National Science
Foundation. We fully intend to make chaos known to the world and
if you would like to help or just get more information please call (607)
277-0969 24 hours a day or write Art Matrix, PO Box 880, Ithaca, NY,
14851-0880. Thank you.



Msg#: 3171 *GENERAL*
From: STEVE CIARCIA
To: HOMER SMITH
Subj: MULTIPROCESSOR MANDELBROT ENGINE

Well, speak of the devil1  I’ve been looking for you guys. Let me
explain what I’ve got going (I will be posting much more on this design
in the next few days). I’mdoing  a project for BYTE on multiprocessing
in the fall. Since this is usually the kind of article where everybody talks
about it but nobody can demonstrate it, Ed Nisley and I are actually
building an array processor as the project. Each processor is a single-
chip microcontroller containing the Mandelbrot calculation. There are
1 to 8 processors on a board and 1 to 8 boards in the system (actually
we believe you can go to 32 boards). An IBM PC/AT assigns
coordinates to the array depending upon how many processors are
available. The results are transferred back from the array to the PC
and plotted on an EGA display (eventually it will be VGA).

Now for the good news. Five processors (each running 12 MHz)
collectively run at the same speed as an AT (about 3.5 processors at
16 MHz). Our demonstration unit has 64 processors and runs about
13 times faster than an AT. If we use a CMOS processor that runs at
16 MHz, we can make it 17 times faster. Finally, if we go to 256
processors we are talking about 68 times the speed of an AT in a box
the size of an AT!

At those speeds we can finally deal with fractals without having
to wait days or using supercomputers.

I’ll be posting more on this Mandelbrot engine in the next few
days. My prototype uses 8751 processors that can cost about $40 each.
If we perceive enough interest by you and others on this BBS, however,
we would consider masking an 8OC52 CMOS 16-MHz chip (minimum
order 2000 chips) and making PC boards to create your own l-to-n-
sized array. We estimate that a complete 8-processor unit would be
less that $200 (kit) if we mask the chip. The 64-chip  prototype
probably cost about $6000 by comparison.

I am very interested in your video tape and slides for use in my
article. I will call you to discuss it.
-- Steve

Msg#:  3190 *GENERAL*
From: KEVIN SCHNEIDER
To: STEVE CIARCIA
Subj: REPLY TO MSG#  3171 (MFG)

The thought of building an array processor which can be attached
to the IBM PC is very exciting. Especially at the prices you speak of.
It seems that your project may be limited to handling fractals at the
moment. While this is fine (for now) I hope that you will discuss at least
casually how one might begin to consider programming the array
processor for other applications. My personal interest lies with me-
chanical engineering applications (finite  element analysis). I think a
project like this could be quite instructive.
Best wishes,
--Kevin

Mzg#: 3184 *GENERAL*
From: RICHARD ANDREWS
To: STEVE CIARCIA
Subj: REPLY TO MSG#  3171 (MFG)

Soundz like a great project. I, for one, would be very interested
in an array processor with an eye towards image processing. Perhaps
you could use the ImageWise board set together with the array
processor, although it would be nice if the I/O was something other
than RS-232.

Any idea when this is likely to be published?

Meg#:3201  *GENERAL*
From: STEVE CIARCIA
To: RICHARD ANDREWS
Subj: REPLY TO MSG#  3184 (MFG)

The articles will be in October, November, and December 1988
issues BYTE. However, we may have something about it in INK as well.
As I said, unless you implement the multichip version of each controller
element, this is not reprogrammable. It is designed for Mandelbrot and
fractals. Also, a bit of a correction. Since neighboring processors don’t
“talk” to each other, I think this is better referred to as a star
configuration rather than a true array processor. You have to see this
thing to believe how fast it cranks!
-- Steve

Msg#:  3179 *GENERAL*
From: STEVE CIARCIA
To: ALL
Subj: MULTIPROCESSOR MANDELBROT ENGINE

The following is excerpted from some recent correspondence
elsewhere and I’d like your opinion:

Since I don’t have room for long humorous intros in BYTE these
days, the real story about why this Mandelbrot generator is being built
may never come out unless I say something. You see, I have this
entertainment room where I go to sit and relax: listen to music, etc. I
have a 6.5-foot Kloss 2000 projection monitor and it has a RGBI (as
well as composite) video input. It was designed for computers.

Eversince Igot the damn thing1 have thought about puttingsome
computer-generated pattern on it (I’ve got a few other ideas in mind)
while I listen to good music. Fractals have always interested me, so why
not? You know the rest.

Well, as we started looking at the architecture of our multiproces-
sor project we came to some realizations. While I’ll probably discuss
all the variations of multiple processor connections, the specific
Mandelbrot generator I am demonstrating is a branched tree with a
single parent with all the rest offspring.

This is a very inefficient multiprocessing approach for general
tasks but very efficient for THIS specific use. Since fractal calculations
take so long and we are only communicating a few bytes of information
each time, there is no need to implement another multiprocessor
architecture whose major benefit is faster internal communication
(and a LOT more complexity). In our Mandelbrot Engine all
subprocessors talk to a single master processor, an IBM PC/AT.

The PC first scans the Multiprocessor Fractal Generator (MFG)
to determine how many subprocessors there are (1, 5, 16, 255, etc.).
Depending upon how many processors are available, the PC divides up
the coordinate spectrum and sends each subprocessor a set of coordi-
nates tocompute on. Every subprocessor contains thesame computing
program and all grind away in parallel. I guess we could call it an array
processor of sorts.

In any case, as it is running, the AT polls the individual subproces-
sors and accumulates the data.
(Continued next message)

Mzg#:  3180 *GENERAL*
From: STEVE CIARCIA
To: ALL
Subj: MFG (C O N T)

Each subproceseoris acomplete microcomputer: processor, RAM,
EPROM, serial, and parallel I/O. Because I want to finish this project
some time this year, I have chosen to use single-chip microcomputers
to implement the subprocessors and a more expanded computer for the
parent. Anyone wishing to use this system for other applications might

a



I 32 Circuit Cellar Ink

consider just expanding each subprocessor block to be a more gener-
alized computer with more memory. The basic polling software and
parent-to-PC communications software would still be of considerable
value.

When we started, we felt that 16 processors would do fine but, you
know how hardware people are .

Looking at the communication speeds required between the
parent and the subprocessors, the parent apparently has plenty of time
to deal with more than 16 children. In fact, we think its limit may be
256!

So, instead of 16 processors, the Circuit Cellar MFG prototype will
be implemented with 64 processors! And, we’ll try for 64 MIPS! (Let’s
call these LMIPS for “little” MIPS. The 8751 processor does indeed
execute 1 instruction per microsecond but I’d hardly compare it to a
‘386. But then it is more fun saying 64 MIPS!) :-)

The way it is designed the speed is dependent upon the number
of processors (as it should be in a multiprocessor syztem). All
subprocessors are connected on a serial party line to the parent host
proceszor.  If there is only one subprocessor then the speed will be 1s
(one snail). If there are four subprocessors then it will generate fractals
at 4s.

We estimate that five subprocessors (@ 12 MHz) are roughly
equivalent (if you don’t mind comparing apples to bananas) to an 8-
MHz 80286.

’ So, after we analyzed the 8751 a little, we decided it made the most
cost-effective multiprocessor and it would be achievable at a reason-
ablecost (Ifigure this64-processorprototype  boxwillcost about $6000
with labor) for a one-of-a-kind prototype. Of course, now we are
discussing masking a low-cost CMOS version for production.

You can use anywhere from one subprocessor to 256; they are
daisy-chained. In my prototype, we are putting eight processors on a
card and eight cards. The schematics will be presented showing 8-
processor increments. So, yes, by design you can use increments of 8
(or 7, or 3, or . . .)

Msg#: 3181 *GENERAL*
From: STEVE CIARCIA
To: ALL
Subj: MFG (CONT)

To anticipate a few of your questions, let me say the following:
This Mandelbrot Engine array is designed specifically to solve fractal/
chaos problems and has a few other tricks. However, it is not a general
array processor (only the 8751 version can be reprogrammed for other
things) and it is not a substitute for a PC or a mini VAX. The article
is not about just this Mandelbrot array processor but rather multi-
processing in general. Most of the discussion about the fractal
computations or the Mandelbrot program in general should take place
on this BBS.

Msg#:  3182 *GENERAL*
From: STEVE CIARCIA
To: ALL
Subj: MFG (CONT)

(Note: provided that you like my concept of array proceszing  but
want some programmability, that is easily remedied. The two
preceding articles are for an 8051 development system. When you look
at my array processor, merely replace the one 8751 chip with an 8031-
based 4-chip computer with RAM and EPROM. Still relatively small,
such a configuration would be programmable. With only about four
chips you could have an 8031 and 32K each of EPROM and RAM. I
would have considered making this modular CPU approach myself but
it is relatively expensive unless you have some application in mind.
Givenmy specific application, 8751s were a quick, albeit still not cheap,

solution to demonstrating array processing. Remember, the project
isn’t to build a replacement for the Cray X-MP.)

The PC software starts by plotting the standard Mandelbrot set
and, like most other fractal generators, allows you to specify the
number of iterations and the coordinates to “zero” in on specific
sections of the zcene  for “closer” looks. Of course, at the speed of the
MFG, we don’t have to wait long. Presently the display is 16-color
EGA. There may be an upgrade (only to the PC software, no changes
to the chip) to 256-color VGA later.

So tell me what you think. Just don’t ask me if it will run Lotus
faster. :-)
--Steve

Msg#:  3215 *GENERAL*
From: BEN TREMBLAY
To: STEVE CIARCIA
Subj: R EPLY TO MSG#  3202 (MANDELBROT  ENGI NE)

Elegant. Tell me, though, how many digits precision? As Homer
said, not so much of a worry for end results but I find  it frustrating not
being able to zero right down on the point I want.

Msg#:  3231 *GENERAL*
From: STEVE CIARCIA
To: BEN TREMBLAY
Subj: R EPLY TO MSG#  3213 (MANDELBR~T ENGINE)

I’d rather Ed Nialey answer that question. He’s around here some
place.
-- Steve

Msg#:  3239 *GENERAL*
From: BEN TREMBLAY
To: STEVE CIARCIA
Subj: REPLY TO MSG# 3231 (MANDELBROT ENGINE)

Sounds good. When I ran two NEC 6001As  together (ancient 16K
ZIO-based orphans) I found that, unless the two coordinates had very
similar “sizes,” there had to be wait states introduced -- and that with
maximum iterations of only 100. My question is this: with maximum
iterations of something larger, and X number of processors, how would
you manage’ldata  ready” without always having to wait forthe “worst
case” coordinate to pop up? Could the AT handle housekeeping with
an asynchronous “catch as catch can” system?

Mag#: 3249 *GENERAL*
From: STEVE CIARCIA
To: BEN TREMBLAY
Subj: R EPLY TO MSG#  3239 (MANDELBR~T  ENGINE)

In the present 8751 version, the AT does have to wait for the worst
coordinate. Fortunately, since there is usually a string of these 100 or
so iteration points usually in a row, by the time the AT has waited for
the first point, the following points have finished and no further waiting
is required. Or, at least it’s something close to that.
-- Steve

Msg#:  S271 *GENERAL*
From: DAVE MILLER
To: STEVE CIARCIA
Subj: REPLY TO MSG#  3249 (MANDELBR~T ENGINE)

Steve, will the code or algorithm be available? I would like to try
this with an 18-MHz 8796 microprocessor.



July/August 1988

Msg#: 3272 *GENERAL*
From: STEVE CIARCIA
To: DAVE MILLER
S u b j :  R E P L Y  T O  MSG# 3271 (M A N D E L B R O T  E N G I N E)

An elaborate explanation of the processor code will be provided
and executable code will be available here for download, but no source.
The complete source and executable code for the PC’s communication
and display will be provided, however.
-- Steve

Msg#: 3243 *GENERAL*
From: ROBERT WELKER
To: STEVE CIARCIA
Subj: MULTIPROCESSING ENGINE

Your multiprocessor Mandelbrot engine sounds pretty darned
interesting.

Observation one: there are probably enough people exploring the
Mandelbrot set to justify a dedicated processor design. On the other
hand, this would be a great project to do very open-ended; that is, once
we eager experimenters build the main guts of our 8-, 64-, 128-, 256-
level array processor we could get a lot of exciting and informative
mileage out of it by reprogramming and adapting it slightly for other
tasks. There are probably a half-doeen interesting projects you could
initiate that your multiprocessor would be the heart of. Our hardware
investment could be spread out over many more projects.

Observation two: you may even wish to use this project as the
focus for an entire book. One of the things I’ve always wanted to see
available (but seldom find) is a comprehensive text associated with
electronic projects. When I say comprehensive I don’t mean start from
scratch with basic electrical theory, but rather a text which explains
thephysical phenomenawe areexploringindepth, hand-in-hand with
an explanation of how the electrical tools we use relate to it.

For instance, I could fix a temperature controller long before
grasping that it worked as an analog computer modeling the behavior
of the load. Not understanding the controller’s place in the “big
picture” wasn’t a problem on the troubleshooting end (a bad cap is a
bad cap), but process control was a mysterious subject.

(Note that observation two is a general comment on technical
texts in general. I haven’t read any of your books yet, and have only
recently sent in for a CCINK subscription).

In all, it sounds like a great project -- worth it even to look at the
results in green!
-- Bob

Msg#: 3251 *GENERAL*
From: STEVE CIARCIA
To: ROBERT WELKER
Subj: REPLY TO MSG# 3243 (MULTIPROCESSING ENGINE)

When you run a Mandelbrot set on a PC you might as well take
a weekend vacation (unless it has a coprocessor). At least with our
Mandelbrot engine it runs fast enough (a 64-processor unit plots the
Mandelbrot set in 3 minutes) to actually see it plotting and not go to
sleep.
-- Steve

Msg#: 3280 *GENERAL*
From: ED NISLEY
To: ALL USERS
Subj: MFG DETAILS

This thing is designed to do Mandelbrot calculations. It’s not a
general-purpose array processor. The calculations don’t need any

communication between the processors, so that’s what we’ve got. A
“real” array processor should have some communication, but there’s
no good way to pull it off.

The internal math is fixed point, with 60 fractional bits. That
gives a dynamic range of -8.0 to +7.999, which is ideally suited to
Mandelbrot calculations, but not much else. The routines support
addition, complementing,multiplying, squaring, but not division. The
multiply routine is a 300-line macro that expands into about 3K ofcode
- - it’s written without run-time loops! There are some interesting side
effects, because some of the routines check for overflow and clamp the
numbers to 3.9999 . . .

With 60 fractional bits you can eoom in pretty much to your
heart’s content . . . we lose precision at about l.OE-12; you’ll lose
interest first. The iteration counts can range up to 64K- 1, which ought
to be enough for any picture you can get in your sights. With 8-byte
reals there isn’t enough RAM to hold all the values for Julia calcula-
tions . . . unless we go to an 8052-style processor.

The results stream out of the array in daisy-chain order, which
means the AT has to wait for the slowest processor. The big advantage
of this method is that the communications channel doesn’t have to
carry addressing information, so the data rate isn’t a limiting factor for
any practical image. We could have the AT poll the processors, but
then the effective serial data rate would be under l/3 the actual rate,
which isn’t a good idea either. We could have any processor that’s not
ready send a eero count, but then the AT has to maintain a map of
which points are filled in, which are pending, and so forth . . . this puts
the AT smack into the critical path, which was exactly the reason we
wanted an array processor in the first place!

Now, the good news:
This thing is a killer. Steve said that it takes about 3 minutes to

compute the overall image with 64 processors. What he didn’t say is
that much of that is spent drawing the dots on the screen -- the
Mandelbrot engine is waiting on the AT!

The initial image is the whole Mandelbrot set, centered on
(-0.405,O)  with a real axis siee of 3.59 and aspect ratio of about 1.33.
The image has 19.7% black points (44154 pels)  with an average 6.6
iterations/point and computes in 2.8 minutes. If overhead in trans-
mission and dot drawing weren’t a factor, it would take 1.9 minutes.

A better measure is to run the same scene with an iteration count
of 128. It takes 6.2 minutes to display 37667 Mset points (16.8%), with
an average of 15.0 iterations/point. The communications and display
overhead accounts for about 1.8 minutes of that time.

A LONG computation with this thing set to 1024 iterations is
maybe 45 minutes . . .

I don’t have comparative times, but it greatly outruns my 8-MHs
AT/lo-MHE  80287 running the official IBM MSET program. Bench-
marking this thing is a problem because we don’t have an apples-to-
apples comparison with a ‘286 running the same code.

Ballpark performance: each iteration takes 5 to 7 ms per processor
(including ALL overhead). Divide by the number of processors to get
the average time per iteration for the whole array. For 64 processors
it’s about 94 us, including the data transmission and dot drawingtimes.
Your mileage may vary, but that’s a good starting point.

Multiply by the number of points on the screen (224,000 for an
EGA) and multiply THAT by the average number of iterations per
point (which depends on the scene). Divide by 60,000 to get seconds
and send us a check!

From the esoterica of fractals, we now turn our
attention to something a bit more mundane, but certainly
no less important. Left-handed people often have a
difficult time living in this predominantly right-handed
world, even down to which mouse buttons to use while



running a CAD or drawing program. The following
offers some suggestions for one such dilemma:

Meg#: 2810 *GENERAL*
From: RICHARD ANDREWS
To: ALL
Subj: LEFT-HAND MICE

Mice are really handy little gadgets but are somewhat difficult to
use if you are left handed. It would be great if there was a utility that
woutd  allow you to swap the two buttons (or outer two) on the mouse
so that the primary switch will be located under the index finger.
Anybody out there know of anything?

Msg#:  2839 *GENERAL*
From: JEFF BACHIOCHI
To: RICHARD ANDREWS
Subj: REPLY TO MSG# 2810 (LEFT-HAND MICE)

Ever consider opening that little bugger up and swapping the
wires from the outer buttons? The mouse would be somewhat
personalieed, but the righties would then know what lefties have to go
through in this right-handed world!
--Jeff
P.6. I’m right handed!

Msg#: 2845 *GENERAL*
From: RICHARD ANDREWS
To: JEFF BACHIOCHI
Subj: R EP L Y TO MSG#  2839 (L E F T-H A N D  M I C E)

I’ve thought about doing that but the mouse would have to be
used by those poor souls that had the misfortune of being born right
handed. I would prefer to have a driver that I could load when I want
to use the system. Thanks for the suggestion.
--Rich

Meg#: 2848 *GENERAL*
From: JOHN COOK
To: RICHARD ANDREWS
Subj: REPLY TO MSG#  2810 (LEFT-HAND MICE)

If you had the time and the patience to actually disassemble the
mouse driver and if you knew the codes for the switches (I’m sure you
could get the info if you asked but I haven’t tried), you could then
switch the codes in the program and reassemble it under a new name.
Then, instead of loading the normal mouse driver, load your lefty
driver.
--John

Msg#:  2992 *GENERAL*
From: RICHARD ANDREWS
To: JOHN COOK
Subj: REPLY TO MSG# 2848 (LEFT-HAND MICE)

I thought of doing that but I’m lasy and hoped that someone else
had already done the work.
--Rich

Msg#:  2857 *GENERAL*
From: PETE CHOMAK
To: RICHARD ANDREWS
Subj: REP LY TO MSG#  2810 (LE F T - HAND M I C E)

Why not install a small slide switch in the back of the mouse to
swap the buttons around?
--Pete

Msg#:  2993 *GENERAL*
From: RICHARD ANDREWS
To: PETE CHOMAK
Subj: REPLY TO MSG# 2857 (LEFT-HAND MICE)

It’s not my mouse,  but rather one that is shared among several
people. I use it just often enough to for the buttons to be inconvenient.
Thanks.

Noise pollution is a big problem for those living in
urban areas or close to major roadways. Active “sound
deadening” devices offer the potential of canceling the
offending noise altogether, resulting in a quieter envi-
ronment. The following discussion centers around such
sound deadening devices:

Msg#:  3901 *PROJECTS*
From: GREG CROASDILL
To: STEVE CIARCIA
Subj: FUTURE PROJECT??

This is my first time on your board. I have called up looking for
information on some sort of sound “deadener.” I imagine that such a
device could be made simply by reading in a sound, determining its
average waveform, and then generating a sound that is 90 degrees off
from that average. Do you have any projects planned for this sort of
device? I just bought a house close to the freeway and would like to
kill some of the truck rumble. Thanks for any info you can give.
--Greg

Msg#:  3938 *PROJECTS*
From: STEVE CIARCIA
To: GREG CROASDILL
Subj: REPLY TO MSG# 3901 (FUTURE PROJECT??)

Actually, I’ve been reading a lot about that topic lately and do
have some interest in the subject. I can’t say that there will be a specific
project on sound deadening, but it may be a natural fall-out from some
elaborate high-performace A/D project. Stick around. :-)
-- Steve

Msg#:  3940 *PROJECTS*
From: BOB PADDOCK
To: GREG CKOASDILL
Subj: REPLY TO MSG#  3901 (FUTURE PROJECT??)

Would a sound deadener have to project its SO-degree phase-
shifted signal backwards in time (so that the two O’and QO'waves  arrive
together) to get silence? The last apartment I lived in had a front door
that would resonate every time an 18-wheel truck would go by (very
annoying in the middleof  the night). It might be anothersourceof noise
-- sonic-induced ground tremors -- that causes the house itself to
make noise.

Msg#:  3943 *PROJECTS*
From: ALEXANDER SCHNEIDER
To: BOB PADDOCK
Subj: REPLY TO MSG#  3940 (FUTURE PROJECT??)

You would simply need to generate the phase-shifted signal
(actually 180 degrees, I believe) as close as possible to the source of the
original noise.
-- Alex

L



Msg#:  3976 *PROJECTS*
From: GREG CROASDILL
To: ALEXANDER SCHNEIDER
Subj: REPLY TO MSG#  3943 (FUTURE PROJECT??)

Right. 180 degrees. I don’t know what I was thinking (90 would
just make more noise). Since the source of the noise is the other side
of a 7’ cement wall, I know where I’ll put the speaker. Maybe I can get
the DOT to pay for this . . . Thanks.
--Greg

Msg#: 3985 *PROJECTS*
From: JEFF JENSEN
To: GREG CROASDILL
Subj: REPLY TO MSG#  3976 (F U T U R E  P R O J E C T? ? )

About two weeks ago, National Public Radio ran a feature during
“All Things Considered” about noise pollution and attempts at active
noise cancellation. They spoke to some East-coast company about
their efforts at reducing noise in a room or enclosed space, as well as
reducing exhaust noise on vehicles. They also spoke with a company
developing aviation headphones with active noise cancellation built
into them.

In theory, you sample the sound and reproduce the noise 180
degrees out of phase at the point of the listener. In actuality, since the
noise source and the cancellation source are not at the same place,
phasing will change depending upon where the listener stands. Other
problems like amplitude differences at the listener’s location, attenu-
ation of some frequencies, and the speed of sound also get in the way.
The net of all the stories is, it sounds (pun not intended) simple tocancel
sound, but in practice, the process is tricky.

In the noisy room, they were able to cancel sound only in a
localieed  area (between a pair of speakers). The demo car had no
muffler, and at a constant speed and load, was dramatically quieter
than no muffler. It lost it when the car revved up or changed load, until
the noise characteristics stabilized (volume, frequency components,
and speed of the exhaust gasses through the tube.) It appeared that
the approach this company took was a feedback loop, where the noise
is sampled close to the source, a transducer creates the cancellation
waves, and another microphone positioned near the listener monitors
the results. Then the results are used to tweak (filter) amplitude,
frequency attenuation, and phasing characteristics of the sampled
noise to further improve the cancellation signal. Hence the problems
keeping up with noise that changes characteristics.

The aircraft headphones seemed to be less sophisticated, possi-
bly because the design limits didn’t require dynamic changes to the
sampled noise signal. The headphones either had a second pair of
transducers or a method of mixing the noise-counteracting signal with
the headphone signals. Phasing could be addressed in the placement
of the sampling microphones, and frequency response and amplitude
could be hard-wired into the circuit. Although the listener could move
in relationship to the noise, the sampling microphone, the canceling
transducer, and the listener stay in the same relationship.

This brings up memories of Maxwell Smart and the “Cone of
Silence.” What’s that, Chief7
--Jeff

The Circuit Cellar BBS runs on a IO-MHz Mi-
cromint OEM-284 IBM PC/AT-compatible computer
using the multiline version of The Bread Board System
(TBBS  2.OM) and currently has four modems connected.
We invite you to call and exchange ideas with other
Circuit Cellar readers. It is available 24 hours a day and
can be reached at (203) 871-1988. Set your modem for
3 data bits, I stop bit, and either 300, 1200, or 2400 bps.

BUILD
STEVE CIARCIA’S

ImageWise  functions as a standalone
digitizer or a complete tele-imaging and
capture system.

video
video

ImageWise’s  serially bit mapped digitized pic-
tures are universally compatible with any computer
or modem. It is ideally suited for CAD/CAM,
Desktop Publishing, Tele-Imaging, and Security.

. ‘. “-:  x.4  .I y:(‘i,.-.  $ i<..,-“:;

NOT bus dependent
Captures an image in 1/60th  second
Accepts any Bf W or color NTSC video
Resolution of transmitted image is 256x244~64  gray scale
Resolution selectable: High - Medium - Low
Video Input: 75 Ohm, 1V peak-to-peak

’ Video Output: 75 Ohm, NTSC, 1.5V peak-to-peak
‘Serial Input/Output: RS-232 8-bit, one stop bit, ;ro parity -
300 bps to 57.6K  bps selectable data rate - Xon/Xoff Hand-
shaking - switch selectable data compression (on/off)
Modem compatible: functions as a video or a remote serveil-
lance camera
Video processing PC/MS-DOS picture upload/download and
conversion utilities to popular Paint k Desktop Publishing
programs

Optional PC Utilites Disk converts ImageWise files for use
with popular Paint & Desktop programs.

unretouched photos
j,_l-a__l_.* .-WI*  _____rC^118--~--*-*ll.~*-.

r,;! .‘r];ti  ..;n:: >;i .%‘-:~~,!,;,!

Please call CC1 for information
To order call

; hi:) :<;.z__,I-,:  i

Telex: 64333.1’
i. ii &.,Z! c :, \ 1 :$ i’ ; <I;

4 Park St., Suite 12 - Vernon, CT 06066



Circuit Cellar Neighborhood
Strategic Defense Initiative
Building the Bottle Launcher and Gantry by Ed Nisley

ontrary to what some people a chamfer on the top that reduces the stumbled across it after trying a lot
t the Bottle Rocket is a real BANG when the bottle clears the end
gadge; that actually works. After of the rod.

of things that didn’t work.
An internal 7/ 16”- 14 The seal is compressed between

all, the Circuit Cellar wouldn’t have thread screws onto a hollow bolt the nylon guide rod and a steel
it any other way! For those of you passing through the expanding seal. washer driven by a pair of brass
who are thinking of building a The rod stock came with three cams. The 0.250” thick cams were
CCBM system, here are the turned to 0.375” dia from
construction details for the brass rod stock, with eccen-
expanding seal launcher. tric holes drilled to provide

You’ll need a lathe and about 0.050” lift in a 90-
milling machine to make degree turn. They’re brazed
most of the parts and some onto an iron wire handle
brazing or silver soldering to bent to fit around the wood
fit them together. Fortu- cube, with a launch string
nately, none of the dimen- passing through a hole in
sions are particularly criti- the can lid and plywood.
cal! You can use almost any The steel block holding
materials that come to hand, the cams is also drilled and
although I’d suggest alumi- tapped to hold the 7/16”- 14
num and brass if you’re bolt passing through the
planning an extensive series Tq 4-40 for can sports middle. The cams are
of water launches. spaced 0.950” on centers,

The basic structure is a which puts about half of
driveway sealer can, each one under the washer
mounted upside down. The supporting the seal. A pair
lid has a circle of 3/4” ply- of 1 -inch-long 4-40 screws
wood bolted underneath to tapped into the block sup-
give it SOme  rigidity  and Bot t l e  Rocket  Launcher  Assembly port the cams.
provide an anchor for three The central 7/ 16”- 14 bolt has
3/V-16  bolts that serve as feet. notches milled across it, so I didn’t an axial 0.250” hole drilled through
Centered atop that is a 3.5” wood have to drill any holes to get the air its length to allow air into the
cube cut from a 4x4 post, which I from the internal thread to the bottle. bottle. The head has a l/8”-NPT
ran through the milling machine to The expanding seal is made brass fitting brazed to it, which
make the top and bottom surfaces from a l/2”  thick silicone rubber screws into a tapped hole in the
plane and parallel. The launcher shock mount, hand cut to about lower nylon block. The block
proper mounts on the wood block 0.875” dia and sanded down to 0.855” simply connects the bolt to the air
and has three main parts: the guide on the lathe. The ID is a tight fit on supply through a standard l/4”-
rod, the expanding seal, and a nylon the body diameter of the 7/16”-14  NPT hose barb adapter screwed
block base. bolt, which has the threads turned into its side. There are two l/4”-

The guide rod was turned to off behind the seal. The material is 20 clearance holes to bolt the block
about 0.845” dia from a length of critical to the success of the whole securely to the wood cube on the
nylon rod. It’s 5 inches long, with launcher, but I’ll admit that I simply base. The gantry is mounted on the



driveway sealer can, with a 3/4”
plywood circle as a stiffener.

The gantry is made from three
aluminum bookshelf brackets,
mounted to top and bottom plates
cut from 0.100” aluminum sheet
with 4.5” diameter circles cut to
clear the bottles. The fittings
holding it all together were ma-
chined from 1” nylon plate. Z

Release Lever Up

Release Lever Down

Circuit Cellar Inc. kits are a proven vehicle for accomplishing a very
special goal. With well designed circuits, pretested key components,
documentation, and a knowledgeable support team you can have the thrill
of making something you built yourself actually work! This is a CCI
project! Call (203) 875-2751 to order your kit or for information.

- Serial Digital Imaging System
The Circuit Cellar ImageWise  Serial Digi-

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ‘,

Both Units purchased together
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ImageWise  Transmitter Exp.
kit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

/ ImageWise  Receiver Exp.
kit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . “: .a’

unretouched photos Both Units purchased together
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Case & power supply for either unit
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 SC,.  .! ‘< r $f’; . t ~
The Serial EPROM Programmer provides

_. a fast and efficient way of programming,

complete kit.. ............................. r s J
Serial EPROM Programmer

Exp. kit.. TY‘....................................... !::
Power Supply.. .............................. . I . . .__ _

The IC Tester has the ability to identify
unmarked ICs as well as designate specific
pin failures of hundreds of 74~x00 logic
chips.

” IC Tester Experimenters kit
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( j

3 IC Tester complete kit

I
*, ‘:, ii,. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Complete kit with enclosure
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ; ..1\:

. . . . . . . . . . . . . . . . . . . . . :

F{($_ i”;.i - Multi-Tasking Cornouter



FIRMWARE FURNACE._.
Using the ZBM PC Joystick Port
by Ed Nisley

he IBM PC started out with
16K bytes of RAM, a cassette tape
recorder, and a joystick port. In the
ensuing seven years the RAM grew
to 16 megabytes and the cassette
port vanished into history, but the
joystick port remains a mystery to
most programmers.

Enough is enough! It is now
time to reveal the One True Way to
read the joystick port and explain
why the methods you may have
seen elsewhere are, well, less than
adequate for Real Firmware.

From the preceding Firmware
Furnace columns you may have
gotten the impression that all firm-
ware is burned into EPROMs next
to 8031 processors, but early on in
the first column I staked a claim to
my code that snuggles right up next
:o the hardware, regardless of the
)rocessor.  The fact that this col-
lmn will use IBM PCs and a
shudder!) high level language
ihould come as only a mild surprise.

The first step in any firmware
jroject  is understanding the hard-
vare, so I will start with an expla-
tation of the IBM PC’s joystick
bort,  which is called the Game
Zontrol Adapter in  Off ic ia l
.BMese.

Game Control Adapter schematic
diagram. There are four main areas:

functions involve only five ICs, so

address decoding, four switch inputs,
there isn’t too much complexity

four joystick inputs, and the buffer
hidden on the board.

The Game Adapter has two
on the PC’s data bus. Those four different types of inputs: switches

Figure 1 shows the entire  IBM Figure 1 - IBM Game Control Adapter

1



‘; .,

and resistances. The four switches when pressed. Because those pins are this formula:
are normally-open connections to pulled up by 1K resistors, the proc-
ground, usually simple pushbut- essor will read a “0” bit only when a pulse width T = 24.2 + (O.Oll*R) microsec-

tons. The four resistances are button is pressed and a “1” bit at all ends
generally potentiometers attached other times. The 51 pF capacitors
to a pair of two-axis joysticks. provide a small amount of noise fil- where R is in ohms. The normal
With a little bit of trickery you can tering, probably to ensure that the range for R is zero to 1OOK  ohms,
replace the switches and potenti- board passes FCC testing. so T varies between 24.2 and 1124
ometers with other circuits, but I’ll As you might expect from the us. Component tolerances may
save that for a later column. name, the -FIRE line triggers some- cause some differences, but the or-

The switch inputs are “real thing on the NE558 chip. It turns out ders of magnitude are certainly
time” connections to the processor; that the NE558 is actually four timers correct.
there’s no matrix scanning to inter- similar to the venerable NE555 on a The fact that the pulse width is
fere with the timings. The resis- single IC. The -FIRE line starts all directly proportional to the resis-
tances, on the other hand, control four timers whenever the processor tance is particularly important to
pulse widths that must be measured
by the program. The precision and
accuracy of that measurement are
what this column is all about.

s The Game Adapter responds to
only one I/O address, hex 201. In
assembly language terms, an OUT
to that address starts the timers and
an IN returns the status of the
timers and the switches. That’s the
entire program interface, so you
can see why the hardware is so
simple.

The pair of 74LS138  demulti-
plexers and the 74LS32  gates pro-
vide the address decoding. The
‘LS138s  produce an output when-

Figure 2 - NE558 Timing

ever the processor executes an IN or executes an OUT to 201 h. the software. If the joystick poten-
OUT instruction to address 201h. Notice that the ‘LS244 buffer is a tiometers produce a resistance pro-
The ‘LS32 gates further refine the one-way connection: the PC cannot portional to the joystick angle (as
address decoding so that an OUT wri te  any data  in to  the  Game nearly all of them do), the pulse
instruction produces a pulse  On the Adapter.  An OUT pulses the -FIRE width is a direct indication of the
-FIRE line and an IN instruction line, which triggers the NE558 timers angle. There’s no need to go
pulses -ENAB. without affecting anything else. This through complex calculations to

The -ENAB line activates the is truly an example of a “read only” linearize the output!
74LS244  buffer which drives the board! Because a single IN instruction
PC’s data bus. Because the Game Figure 2 shows what happens returns the values for all four
Adapter’s -ENAB line is active when the -FIRE line triggers the four joystick axes (and the switches) at
only during IN instructions from timers in the NE558. The output once, the program must read the
port 20 1 h, the ‘LS244 provides iso- lines go to a “1” state immediately port repeatedly until all four joys-
lation between the Game Adapter after the trigger pulse and return to tick timer bits are zero. The time
and the bus whenever the Processor zero after a time delay set by the at which each bit changed from a
isn’t reading the board. resistance and capacitance. Because “1” to a “0” is proportional to the

Data bus bits D7 through D4 all four timers use 0.01 uF capacitors joystick angle, so the program must
come from the four switches con- the pulse widths are controlled by the identify the first “0” and record the
netted to pins 2, 7, 10, and 14 on resistances connected to pins 3,6, 11, corresponding time. It’s also a good
the Game Adapter socket. The and 13. idea to have a deadman time so that
switches are normally open, con- According to the IBM Technical the program doesn’t hang up in a
netting the pins to ground only Reference the pulse width is given by loop if one of the bits is stuck on.



I ,:;

t1
“

t1
is
is
Y’

:

A
la
C
el

is
gt

Listing 1 - Propam  Loop Method

/* The wrong way to read the joystick port... */

,*________-____-____---_______-________________________  ;;
/* Program loop version of joystick port read routine

#define MAXLOOPS  1000

int ReadJoyStick(int JoyPort,unsigned int *pAxes)  (

unsigned int loops:
int portval;

/* loop counter */

int lastport;
/* current port value */

int delta:
/* previous port value l /
/* changed axis bits */

/*--- set up for loop */

loops = 1;
outp(JoyPort,O);
portval = inp(JoyPort);
lastport  = portval;

/* trigger the hardware */

/*--- run loop until all axes done or max loops run out */
I

do (
portval = OxOf &_inp(JoyPort):
delta = portval lastport;

/* get current bits */
/* any changes? */

if (delta & 0x01) /* set current time
*(pAxes+O) = loops:

if (delta & 0x02)
*(pAxes+l) = loops;

if (delta & 0x04)
*(pAxes+2)  = loops:

if (delta & 0x08)
*(pAxes+3)  = loops:

lastport  = portval; /* remember axis bits

) while ((loops++ <: MAXLOOPS)  &&
(lastport != 0x00));

return (OxOf  & (Winp(JoyPort)>24)); /* figure out

*/

*/

switches */

Listing 1 shows a C function
lat reads the joystick port in the
traditional” way. I used C rather
Ian assembler so that the method
a little more obvious. The code
written in Microsoft C 5.1, but
DU should have little trouble
orting it to your favorite flavor of

Although I described the Game
.dapter’s operation with assembly
nguage  IN and OUT instructions,
also provides direct port I/O op-

rations. The statement

outp(JoyPort,O);

sues the OUT instruction to trig-
:r the NE558 timer, with a zero

data byte that the board ignores. The
statement

stores the current value of the loop
counter in the output array. Be-
cause each pass through the loop
takes the same amount of time the
loop counter value is a direct meas-
ure of the elapsed time from the
moment of triggering.

The code in Listing 1 is a sub-
routine that must be combined with
the driver program in Listing 3 to
produce a complete program. The
resulting program is called
JOYSL0W.C  (JOYSLOW.EXE as
the executable file).

Although the l o g i c  i n
JOYSLOW is correct, it is un-
workably slow. Using Microsoft C
5.1 with all optimizations turned
on, the maximum value for any axis
is about 25 counts when run on an
~-MHZ AT. Knowing that the
joysticks time out in about 1 .l ms
you can compute that each itera-
tion through the measuring loop
takes 44 microseconds. For soft-
ware this is OK, but it’s not nearly
good enough for firmware!

You have probably seen ver-
sions of Listing 1 written in assem-
bly language, perhaps with the note
that this optimizes the speed of the
code. While that’s true, it does not
remove the fundamental problem
inherent in a program timing loop:
the effect of the processor clock
speed.

portval = inp(JoyPort);
‘-it, ,_.

executes an IN that sets the variable
“portval” to the current state of the
Game Adapter lines. In both cases
JoyPort  contains the port address.

When an axis changes, the code

The code computes the changes
from the previous port value by
exclusive-ORing  the two values to
produce a “1” bit whenever two cor-
responding bits change. The “if”
statements examine each of the four
timer bit positions for those “1” bits.
Because more than one axis can time
out at the same moment all four ifs
must be executed every time through
the loop.

The IBM PC family includes
processors ranging from the origi-

Fortunately, the PC provides

nal 4.77-MHz  8088 to the latest
25-MHz  80386 screamers, covering
more than an order of magnitude in
performance. The code in Listing
1 will return values that vary from
about 5 to over 50 depending on
which PC you use, despite the fact
that the joystick is at the same
angle. Obviously, any program
using this code must decide just
what a particular value means be-
fore using it.



hardware to solve that problem, in
the form of an Intel 8253 Program-
mable Interval Timer. This should
sound familiar if you were paying
attention to the Bottle Rocket ar-
ticle in the March/April issue of
INK because we used it to time the
rocket launches. The Firmware
Furnace column in the last issue
described how the ImageWise uses

an 8254, which is an improved ver-
sion of the 8253, to generate preci-
sion pulses. You may want to refer
to those articles for more program-
ming hints.

The PC’s 8253 contains three
separate timers, each driven by a
clock derived from a 14.3-MHz  os-
cillator. Unlike the CPU clock, this
oscillator is the same on all PCs, so

SPEAKER BUFFER

ADDRESS BU

Figure 3 - IBM PC 8253 Timer Circuitry

each timer “tick” measures the
same amount of time on any PC.
The 14.3-MHz  signal is divided by
12 (first by six, then by two) to
produce a 1.1 ~-MHZ signal with a
period of 838 ns. The timers can
measure up to 54.9 ms by
counting 64K ticks before wrap-
ping back to zero.

Timer 0 is dedicated to the
BIOS real-time clock; although we
used it in the Bottle Rocket project,
it is best not to fiddle with “mis-
sion-critical” hardware without a
very good reason. Timer 1 provides
the RAM refresh timing in PCs and
is missing in PS/2 systems, so it is
not a good choice either. Timer 2
normally controls the frequency of
the tone fed to the PC’s speaker
(and the long-gone cassette port!),
so there’s no problem using it for a
different purpose.

Figure 3 shows the circuitry
involved in this discussion. Many
connections are not shown because
they’re not relevant here; you can
refer to the schematic in the IBM
Technical Reference Manual for
more details.

The BIOS sets Timer 2 to Mode
3, which produces a square wave
output. The input clock frequency
is divided by the value loaded into
the timer, once for the high half of
the wave and again for the low half.
The speaker control circuitry pro-
vides a bit to enable the speaker and
another to turn Timer 2 on and off;
these bits are located in an Intel
8255 Programmable Peripheral In-
terface chip.

The corresponding IBM AT
circuitry is similar, but replaces the
8255 with discrete ICs and uses an
8254 in place of the 8253. A quick
look in the Tech Ref will show you
that there are no differences visible
to the code in this column, so the
programs work unchanged on PCs
or ATs.

Measuring time intervals in-
stead of producing square waves
requires changing Timer 2 to Mode



Listing 2 - HardwareTimerMethod
PAGE 79,132

:
; Joystick port read routine
: Samples joystick port, returns timeout value for all axes
: Uses 8253 Timer 2 counter for CPU speed-independent timing
:
; C declaration:
: extern int ReadJoyStick(int  JoyPort,unsigned int near *pAxes);
i
; return value is binary equivalent of switches in bits 0:3
: 0 = open
: 1 = pressed
; JoyPort contains the joystick port address
; pAxes points to an array of FOUR unsigned integers to hold the

results must be FAR pointer to get-correct segment
address results are counts of 838 ns input clock

; IBM Game Adapter timing is 24.2 us + (0.011 us)*resistance
: joystick resistance can range from 0 to about lOOK,
; so timing is between 24.2 us and 1.12 ms
;
; This code requires Microsoft MASM 5.0 or 5.1

._____________-__,
; Hocus pocus to start up the assembler

DOSSEG
.MODEL MEDIUM

-CODE

._----__-_----___I
; Constants

timeout EQU 11900 ; 10 ms of counts at 838 ns/count

18255B EQU 0061H : 8255 port B address

I8253C EQU 0043H : 8253 command register
18253T2 EQU 0042H : 8253 Timer 2 register

timer2 EQU 10000000b ; bits 7-6 = timer number

latchcmd EQU OOOOOOOOb  ; bits 7-6 = timer #
mode2cmd EQU OOllOlOOb ; 76=timer,  54=r/w, 31=mode O=bin

P%bits RECORD pbbz:6,spkrdata:l,spkrgate:l  ; I8255 port %
.----------------,
; Stack layout

args STRUC
DIsave DW 0 ; saved DI
SIsave DW 0 ; saved SI
BPsave DW 0 ; saved BP
IPret DW 0 ; return address, offset
CSret DW 0 ; . . . segment
JoyPort DW 0 : port address
pAxes DW 0 : address of result array
args ENDS

.-_____---_______,
; Output record structure
: This is an array of four integers at pArgs

results STRUC
Xl DW 0
Yl DW 0
x2 DW 0
Y2 DW 0
results ENDS

PAGE
(continued on page 43)

2, which is normally used to gen-
erate an output pulse after counting
a specific number of input clock
periods. The value read back from
Timer 2 during counting indicates
the number of periods since the
timer started. In this application
the output signal isn’t needed, so
the code simply disables the

’ speaker circuitry using one of the
bits in the 8255.

It is never safe to assume any
particular setup for hardware that
is not under your program’s direct
control, so Timer 2 must be set up
every time it is needed. Consider
what happens if a resident program
should pop up and produce a
“beep” when the joystick routine is
using the same timer to measure the
joystick. Obviously something bad
is going to happen, but it’s hard to
tell which program will come out
the worse for wear.

Because the longest joystick
pulse is only about one millisecond
long, the routine in Listing 2 takes
the simple precaution of disabling
all processor interrupts just before
it sets up Timer 2. The interrupts
are enabled after the measurements
are complete. A watchdog counter
(held in SI) ensures that the code
will terminate even if there is no
response from the Game Adapter,
so there is no risk of locking up the
PC.

The timers begin counting
from the preset value and count
downward toward zero. By loading
FFFFh  and complementing the
value read from the timer it is easy
enough to make them appear to
count upward. The resulting value
is a direct measure of the number
of 838-ns counts since the timer
started running.

The inner logic of Listing 2 is
similar to that in Listing 1, with the
difference that the value stored in
the output array is the timer value
instead of the loop count. The tests
are much faster in assembly lan-
guage, but the source code required



is much bulkier.
The driver routine in Listing 3

will also handle the assembly code
from Listing 2. You must compile,
assemble, and link the modules to-
gether; MAKEFILE.MAK in the
downloadable files contains the
commands I used to handle the
process.

Figure 4 presents the results of
running JOYFAST.EXE on three
different processors. The maxi-
mum value is over 1000 counts in
all cases, which is significantly
better than the paltry 25 produced
by the C-language loop. More
important, the value is essentially
independent of processor clock
speed.

The “Increment” column in
Figure 4 shows successive values
starting at the minimum count,
produced by teasing the joystick in
small steps. The PC’s step size is
about 20 counts, while the two ATs
step by four or five counts. Con-
verting these counts into seconds
gives the time for one pass through
the assembly language loop based
on the processor speed: a PC takes
16.8 us versus an AT’s 3.5 us.

For comparison, recall that the
C language code takes about 44
microseconds on an AT. Although
the code is not quite identical, the
performance improves by about a
factor of ten in assembler language.
That explains why nearly all firm-
ware is written in assembler: it’s
not easy, but it’s essential!

The loop time determines the
number of different counts that can
occur. For example, the PC makes
only about 64 loops before all the
axis timers finish (1250 counts
divided by 20 counts/loop), while
the AT will have about 300 loops
(1200/4). The effect of this is

(Listing 2 - continued from page 42)
.________________,
: Force I/O recovery time on ATs

punt MACRO
LOCAL Ll
JMP SHORT Ll : flush prefetch queue

Ll LABEL NEAR
ENDM

PAGE
.________-___----
; The Main Event

_ReadJoyStick  PROC FAR
PUBLIC _ReadJoyStick

PUSH BP ; save bystanders
PUSH SI
PUSH DI

MOV BP,SP ; set up frame pointer

;_________--_-___
; Initializations

;--- get pointer to results and clear them to zero

MOV DI,[BP].pAxes
MOV [DI].Xl,O
MOV [DI].Yl,O
MOV [DI].X2,0
MOV [DI].Y2,0

;--- get output port address

MOV DX,[BP].joyport

.--_ set up timeout counter

MOV SI,O
;-----_____
; Set up Timer 2
; Sets Mode 2 for 64K counts, one per 838 ns input clock
; Sets FFFF reload value
; Clears "speaker enable '* bit to prevent embarrassing noises
; Does not start timer, leaves "gate speaker" bit low
; Interrupts are OFF until the final axis times out in about a

millisecond
; . . . or the timeout limit hits in about 10 ms

CL1 : interrupts are OFF

IN AL, 18255B ; get existing port B bits
punt (continued on page 44)

Clock Speed & Joystick Count count
Processor Position Value Increments

4.77 MHz IBM PC minimum 65 65 84 104
center 750
maximum 1250

8 MHz IBM AT minimum 38 38 42 47
center 610
maximum 1200

10 MHz CCAT minimum 38 38 42 47
center 8 0 0
maximum 1400

Figure 4 - JOYFAST.EXE performance tests



I .; !

r
(Lirting 2 - continuedfrompage IS)

AND AL,NOT MASK spkrgate ; turn off timer gate
AND AL,NOT MASK spkrdata ; turn off speaker
OUT 18255B,AL
punt

MOV AL,modeZcmd+timerZ
OUT 18253C,AL
punt

MOV AL,OFFH : set reload value to FFFF
OUT 18253T2,AL
punt
OUT 18253T2,AL
punt

;________--______
; Start the joystick hardware and Timer

MOV CL,OFH ; axis timeout mask

IN AL,I8255B ; get existing port B bits
punt
OR AL,MASK spkrgate ; turn on timer gate
OUT I8255B,AL ; set bits out again
punt

OUT DX,AL : trigger the joystick timers
punt

; Run the timing loop until all axes time out or we give up
; Axis bits are "1' until timed out

looper LABEL NEAR

IN AL,DX ; get bits
NOT AL ; flip so 0 = run, 1 = timeout
TEST AL,CL ; any new axis timeouts?
JNZ gotone ; any 1 --> yes!

;--- decide if it's time to check for a timeout yet
: we do this by entering axis set loop with no axes selected

INC SI
CMP SI,O
JNZ looper ; nope

;--- got an axis timeout, grab Timer2

gotone LABEL NEAR

MOV BX,AX i save the new axis timeout bits

MOV AL,latchcmd  OR timer2 : latch current value
OUT 18253C,AL
punt

IN AL,I8253T2 ; get LSB
punt
MOV AH,AL
IN AL,I8253T2 ; get MSB

XCHG AH,AL ; swap 'em around
NOT AX : flip bits to count upward

:--- save value in output array for each newly changed axis
: several axes can change at once, so we've got to check 'em all
: if we're here for a time check, nothing gets stored

MOV BH,BL : save raw axis bits again
AND BL,CL ; isolate new bits

(continued on page45)

simple: a given joystick position
will return the same value on any
processor, but faster processors will
be able to distinguish smaller posi-
tion changes.

The values shown in Figure 4
used the same joysticks on each
machine, so the different maxi-
mum counts show the component
tolerances in the three Game
Adapter boards. The IBM PC and
the IBM AT have boards with
precision capacitors, so their values
agree to within about 4%. The
board in the CCAT uses ordinary
ceramic capacitors and the results
differ from the other two boards by
about 12%.

This type of code has applica-
tion beyond the simple matter of
reading joystick ports. Any pro-
gram can measure brief time inter-
vals accurately using the PC’s tim-
ing facilities, with results inde-
pendent of the processor clock
speed.

Of course, these programs will
not be burned into an EPROM, but
I call the code firmware because it’s
so closely tied to the hardware.
After all, you can’t write the code
without poring over the schematic!

All of the programs in this col-
umn will work on your PC if you’ve
got a joystick port. You’ll need
M i c r o s o f t  C  5.0/5.1 or QuickC
l.OO/l.Ol for  the  C code and
M A S M  5.0/5.1 to assemble the
source code if you decide to make
any changes. I used the Medium
model for the C and assembler
routines because QuickC depends
on it, but you can change it to suit
your needs. Both the source and
executable files are available for
downloading from the Circuit
Celiar BBS; see the masthead for
phone numbers and modem set-
tings. ._



THE INTERCHANGE’”
Bi-directional DataMigration  Facility
for IBM PS/2,  AT, PC, PORTABLE
and Compatibles

Features:
*Parallel port to parallel port.
*Economical method of file transfer.
*Bi-Directional  file transfer easily
achieved.

*Supports all PS/2 eyetems
(Models 30, SO, 60, and 80).

*Supports IBM PC, XT, AT, Portable
and 100% compatibles.

*Supports 3 l/2 inch and 5 l/4 inch disk
transfers.

*Supports hard disk transfers.
*Supports RAMdisk file transfers.
*The SMT 3 Year Warranty.
ONLY $39.95

FastTrap’”
The pointing device of the future  ia
here!

*Two and three
axis pointing capability.

*High resolution
trackball for X and Y axis input.

*High resolution fingerwheel for 2 axis
input.

‘Use with IBM@PC’s,  XT’s, AT’s and
compatibles.

*Three input buttons.
*Full hardware emulation of Microsoft @
Mouse.

*Standard RS-232 serial interface.
*Includes graphics drivers and menu
generator.

*Easy installation.
‘1 year warranty.
*Made in U.S.A.

ONLY $149.00

LTS/C Corp.
167 North Limestone Street
Lexington, Kentucky 40507Tel: (606) 233_4156

Orders (800) 872-7279
Data (606)252-8968  [3/12/2400  8-N-11
VISA, Mastercard, Discover Card,
TeleCheck

I

(Listing 2 continued from page 44)

TEST BL,OlH
JZ not1
MOV [DI].Xl,AX

not1 LABEL NEAR

TEST
JZ
MOV

not2 LABEL
TEST
JZ
MOV

not3 LABEL

BL,OZH
not2
[DI]+Yl,AX
NEAR
BL,04H
not3
[DI]+XZ,AX
NEAR

TEST BL,OIH
JZ not4
MOV [DI]+YZ,AX

not4 LABEL NEAR

;--- update  axis  mask:  i f  a l l  done,  bai l  out
: i f  some axes  le f t ,  dec ide  i f  current  t ime exceeds  l imit

NOT BH ; timed out axis = 0 a g a i n
AND BH,OFH ; remove unused bits
MOV CL,BH : reset m a s k
JZ goback ; i f  z e r o , all axes are done

CMP AX,timeout ; decide if timed out yet
JA goback

JMP SHORT looper ; and keep on checking

.-_-------_______
: Sample buttons and set return value
; The input value is "1" when buttons are not pressed, so we flip
it over

: Interrupts are OK at this point because the critical timing's
over

goback LABEL NEAR

ST1

IN AL,DX
NOT AL
MOV AH,8

MOV CL,4
SHR AX,CL

: align in low bits

.-------_--_---_-
: Termination cleanup

POP
POP
POP

RET

DI
SI
BP

: restore bystanders

_ReadJoyStick  ENDP

.-----------_____,
; hocus pocus to turn off the assembler

END



Circuit Cellar Ink

#isting 3 - Driver Code for Joystick Routines

Yinclude <conio.h>
#include <stdlib.h>
Iinclude cstdio.h>

ldefine JOYPORT 0x201 /* joystick address */
Ydefine MAXAXIS 3 /* last axis to use */

insigned int Axes[MAXAXIS+l];
int Buttons:

/* joystick counts */
/* buttons = 0:3 */

,*----~--~---~---~--------------_--__--_--__--__--_--__--_  *,
I* This preprocessor if statement controls how the program */
I* reads the port: */
I* */
/* use 1 with the assembly code version and link with */
I* Listing 2 */
I* use 0 with the C program loop version and include

Listing 1
*/I* */

#if 1
?xtern int ReadJoyStick(int JoyPort,unsigned int near *pAxes);
Yelse

int ReadJoyStick(int JoyPort,unsigned int near *pAxes);
Yendif

,u~-~-~-~---~~--~~---~----_--_------~-_-_----------_------  *,

I* The Main Loop */

int main(void) {

int axis:

while (!kbhit()) (

Buttons = ReadJoyStick(JOYPORT,Axes);

printf("Axis  values: @I);
for (axis=O; axis<=MAXAXIS;  axis++) (

printf("%5u  ",Axes[axis]);
1
printf("Buttons:  %l.lX",Buttons);

printf("\r");
)

return(O):

WRITE FOR INK!

Writing technical articles may not make you rich and famous but
it might be just the incentive to finish that lOO-MIPS  computer you
started last summer. Or, if your expertise is software, perhaps it’s
time you presented your talents to the world.

Unlike most narrowly specialized publications, Circuit Cellar
INK’s charter is to cover a wide variety of hardware and software
technology and ideas.
Send your project outline to:

Edi torial Director
Circuit Cellar INK

P.O. Box 772
Vernon, CT 06066

or contact the Circuit Cellar BBS at (203) 871-1988.

Introducing ZIP, software
for ImageWise  control,
image processing, and
outstanding display of
video images on EGA/VGA

KINGTUT  displayed at 640 x 480 on EEGA

Superior EGA/VGA displays
3 levels of zoom
Color/gray level displays
64 level ordered dithers
Minimum error techniques
Halftones and duotones

Process single + multiple images
Math and logic functions
Matrix convolution
Histo  equalization/linearization
Square aspect ratio
Pixellation, and more

Supports ImageWise  digitizer
Transmitter and receiver
Use 1 or 2 serial ports
Process 3 Images at a time
Combine images

Saves Images for desktop publishing
Saves in PCX and MAC file formats

ZIP price: $79 plus $2 s/h
M&O”‘,  rs&,ents  add 5.8%. check/VISA/MC

HOGWARE  COMPANY
470 BELLEVIEW

ST LOUIS MO 63119

(314) 962-7833
** call for information l *



6



* ?

Stepping Out
A Robot Arm that Demonstrates Microprocessor Ontrol
of Stepper Motors

by Tim McDonough & Dennis Grim

‘. ontrolling a process,
it be an automated factory or a
simple robot, can be broken down
into two very broad steps: getting
input from one or more sources,
and making something
happen in response to
that input. Since the
best education
source is
always
experience,
we decided
to build a
simple robotic
arm as a learn
vehicle which would allow
us to experiment directly with

1

these concepts.
This project can be broken into

three sections, based on the tech-
nology used in each. The first is the
arm itself, a simple two-axis alu-
minum affair that uses unipolar
stepper motors for motion. The
second is the controller electronics
for the arm. In our case, we used a
BCC52 BASIC controller, but our
techniques should transfer easily to
any controller you want to use. Fi-
nally, there’s the software that
makes it all work together. The
BCC52 gave us a choice of pro-
gramming in BASIC or 8052 assem-
bler, and we found that each lan-
guage has its advantages.

The final configuration, Photo
1, is a robotic system that’s abso-
lutely useless for building Buicks or
fabricating circuit boards, but is
perfectly tailored for letting you
directly experience microproces-
sor-based control.

/ 7:

The computer-controlled arm
used for this project is approximately
7.5 inches tall and has an arm length
of about 10.5 inches. You operate the
arm via a small control pod with a
joystick to control the two major axes
of arm movement and a rocker switch
to control the opening and closing of
the fingers. The fingers on the hand
are two common microswitches.
They give the arm a crude sense of
touch by providing feedback to the
controlling software whenever the
hand has gripped something.

Three stepper motors power the
arm. The first is used to operate the
mechanical fingers, Photo 2. An-
other is used to raise and lower the
arm through an arc of about 45
degrees, Photo 3. The third motor

Photo 1

allows the entire arm
mechanism to rotate a
full 360 degrees, Photo
3. By now it should be

1 apparent that, other
than the feedback from
the microswitch fin-
gers, control of the arm

is really just control of stepper mo-
tors. Before we go any farther, you
should know some stepper motor
fundamentals.

A stepper motor is a particular
type of motor ideally suited for
microprocessor control. It converts
pulses of electrical current into dis-
crete rotational movements. There
are two varieties of stepper motors:
bipolar and unipolar. A bipolar
motor uses a two-coil construction
and requires that the driving cir-
cuitry be able to reverse the direc-
tion of current flow in the wind-
ings. A unipolar motor has a re-
quired to drive either type of motor
is essentially the same. Within the
two basic types of stepper motors,
a broad variety of torque ratings
and step graduations are available.
The type of motor chosen for a par-
ticular application will depend pri-
marily on the amount of torque re-
quired for the application and the
number of “steps” in which the



motor completes one revolution.

Photo 2 - Microswitches serve aa fingers with
“tactile” input

I I

Photo3 - Stepper motors raise, lower and
rotate the arm in precise increments

The Brains of the Operation

The mechanical arm and con-
trol pod both operate under the
watchful eye of a Micromint
BCC52 computer and a BCC-bus-
compatible interface board, Photo
4. The combination can interface
up to four stepper motors to the bus
and sense the condition of the
control pod switches. The BCC52
uses an Intel 8052AH-BASIC  mi-
croprocessor and was originally
presented in the August 1985 issue
of BYTE magazine.

The stepper motor interface
circuitry is a fairly simple affair.
The interface was constructed on a

BCC55 prototyping card (Figure 1)
which contains all of the address
decoding and buffering required to
interface additional circuitry to the
BCC bus. The stepper motor inter-
face circuit diagram (Figure 2) shows
only those portions of the circuitry
which were added to the BCC55
board.

An 8255AC-5  Programmable
Peripheral Interface is the core of the
stepper motor/control pod interface
card. The 8255 contains three 8-bit
ports which we configured as two 8-
bit output ports and one 8-bit input
port. Ports A and B of the 8255 are
connected to a pair of Sprague
ULN2803As. The ULN2803 is a
Darlington transistor package which
is used to beef up the output of the
8255 to allow it to drive the stepper
motors. Take note that in this par-
ticular application the 12-volt supply
required by the ULN2803s  is taken
from the bus. When using larger
stepper motors you may need to
provide an alternate source of 12
VDC to avoid overloading the power
supply or burning the traces on the
motherboard.

I I

Photo 4 - The stepper motor driver circuitry
shown in Figure 2 is mounted on
a BCC55 Proto Board.

The stepper motor interface is
strapped for a base address of
EOOOH by positioning the jumper
on JP2 of the BCC55. Pin 8 of 522
is tied to the chip-select pin of the
8255 PPI and pins 8 and 9 of the
8255 are tied to the buffered ad-
dress lines A0 and Al. The result
places the I/O ports and control
port of the 8255 at addresses E800H
through E803H.

The schematic diagram of the
control pod is shown in Figure 2.
The control pod switches are con-
nected to port C of the 8255, which
is used as an 8-bit input port. The
common side of each switch is tied
to ground and the switched side is
connected to one of six inputs. The
remaining two input lines are used
for the microswitches on the fin-
gers. SIP1 contains 4.7K pull-up
resistors so that in the absence of
any switch closures all input pins
are held high.

We connected each of the out-
put pins on ports A and B of the
8255 to the TTL/CMOS-compat-
ible base of a Darlington transistor
driver in one of the ULN2803A
transistor arrays. These arrays can
supply as much as 500 mA of
output current with the appropriate
power supply and wiring.

One end of each stepper motor
winding is connected to an output
pin of a Darlington package. The
common ends of the windings are
connected to the 12-VDC supply.
Anytime a particular output tran-
sistor is turned on by the output of
the 8255, the switch provides a path
to ground and the coil is energized.

The Software Dilemma

The MCS BASIC-52 available
on the BCC52 is a powerful proc-
ess-control programming lan-
guage. Unfortunately, stepper
motors can be pretty demanding
when it comes to the optimum step
rate to achieve smooth motion and
maximum torque. We first tried



July/August 1988

KC-BUS
“ 4

52 74L5373

BUFFERED RDDRESS  RB-7

+1*7-&z BUFFERED ADDRESS R8-15

3
I@ “FD CHlP SELECTS

GND + c3
-l*ne  “FD

gure  1 - BCC55-bus interface circuitry (Reprinted courtesy of Micromint, Inc.)

sing BASIC-52 as the control majority of the 8052’s internal motors) and input on port C (the
nguage. We wrote the BASIC-52 memory. By restricting the current control pod). The remainder of the
:rsion to test the arm in its early software to locations and registers program is a loop which tests the
ages of development, but found which are not used by BASIC, we control pod switches, sets up the
lat it was too slow to work well gave ourselves room for future ex- phase data to be output, and steps
ith our stepper motors. Perhaps a pansion of the arm system software. the motors.
lmpiled BASIC would be fast Next, registers RO through R2, Before the arm can move it has
tough to avoid delving into the which will be used as pointers into to know what the operator wants it
nards of the processor but on our the motor phase table (end of Listing to do. The first thing the main
CC52 system assembly code was 2), are initialized. Their initial values program loop does is read the data
le only way to go. are relatively unimportant as long as byte from port C of the controller

Listing 1 is the assembly lan- they point to some valid table offset, board’s 8255 and store it in internal
lage program that controls the either 0, 1, 2, or 3. Once the register memory location 20H. This mem-
‘m. The first thing the software bank has been selected and the table ory location was chosen for two
)es is to initialize the 8052 and set pointers have been initialized, the reasons. First, it is one of the few
) the 8255 on the arm’s control address of the 8255 control register is locations unused by BASIC-52
)ard. The Program Status Word loaded into the 8052 data pointer (remember, we’re planning for the
‘SW) is initialized to select regis- (DPTR). The value 89H is trans- future), and it is one of several bit-
r bank 3 on the 8052. Bank 3 was ferred into the accumulator and addressable locations on the 8052.
rosen due to the availability of the written to the control register to set The procedure for getting in-
[r-board  BASIC. BASIC-52 uses up the 8255 on the interface board for put from the operator and passing
:gister  banks 1 and 2 as well as the output on ports A and B (the stepper it to the individual stepper is essen-



. I . 1 .>,.:I <)I(\

tially the same for each motor, so switch was closed. In this case the phase table. Next the offset into
only the tests for motor A will be program jumps ahead to LBL3 (the the table for motor A is added and
explained. First, the phase pointer next motor) and the phase pointer re- the actual table value is copied
is transferred from register 0 to the mains unchanged. from the table and stored in a
accumulator. If bit 0 is a “1” then If the motor A phase pointer was scratch register, R3. Next, we get
the switch on the pod was not changed in either direction, the new the motor B offset (the base address
closed and the program jumps value in the accumulator is ANDed in DPTR is unchanged) and copy
ahead to LBLZ to test bit 1. If bit with the number 3. Since we only use the table value for motor B into the
0 was a “0” then the corresponding the lower four bits of information to accumulator. The high and low
pod switch was closed, so the phase operate the stepper motor, the value nibbles of the accumulator are then
pointer is incremented (the motor of the phase pointer will always be a SWAPped. The data for motor B is
needs to be turned clockwise) and valid number by performing this op- now in the high nibble and once we
the program jumps immediately to eration. Regardless of which way the perform a logical OR with motor
LBL2. The program doesn’t have pointer moves, this logical AND will A’s data (which is tucked away in
to check bit 1 if bit O’s switch is ensure that things keep running R3),  we can then save the entire
closed since the physical construc- smoothly. byte containing both motor A’s and
tion of the joystick prevents oppos- Once all of the control pod bits motor B’s data back in R3. Motor
ing switches from being closed at are tested and the phase pointers are C requires less code since our robot
the same time. updated, it’s time to actually move arm uses only three motors and

If bit 1 is a “0” when tested then the motors. Before the writing be- motor C is the only one connected
the table pointer is decremented gins, however, the data which will be to port B. Its offset is retrieved
(the motor needs to be turned written to the output ports needs a bit from register R3 and we copy the
counter- clockwise). The only of preparation. First, DPTR is proper data value from the table
other possibility is that neither loaded with the base address of the and place it in R4, another scratch

RESET

TO CONTROL POD

Figure 2 - Schematic of the circuits added to the BCC55 to complete the Stepper motor/control pod interface.



Julv/Aueust 1988

Listing1 -Mechanical Arm Control Software I
;***t************************************************************  1
:
: Mechanical Arm Control Software
:
: Version 1.4 by Dennis Grim and Tim McDonough
:
;***t******************************************~****************~
:

ORG 6000H LOC 4000H : Assemble for 6000 Hex and save
: at 4000 Hex

:
: Equates
:

PORT-A  EQU OE800H ; 8255 Port A
PORT-B  EQU OE801H ; 8255 Port B
PORT-C  EQU OE802H ; 8255 Port C
CONTROL EQU OE803H ; a255 Control Port
PAUSE EQU 16 : Value for delay loop

:
; Initialization I
:

MOV Psw, #i8~ : Set 8052 to register bank 3
MOV RO,#O :
MOV Rl,#l .
MOV R2,#2 I
MOV DPTR,#CONTROL ; Load DPTR with 8255 control

: register address
MOV A.#89H ; Load control value into

MOVX @DPTR,A
- accumulator
J Write the value to the control
; register

;
, Read the switch positions on the control pod.
io0P: MOV DPTR , #PORT-C ; Load DPTR with address of 8255- . Port C

MOVX A,@DPTR i Read in the data byte
nov 20H,A ; Move the value to a bit-

; addressable location
;
; Test
;

MOV

JB
INC
SJMP

0, LBLl
A
LBL2

LBLl:  JB
DEC

LBL2: ANL

1, LBL3

$.Y3
MOV RO,A

Motor A Bits

A,RO ; Load the motor A phase pointer
; from reg. 0
; Jump to LBLl if bit 0 is set
- Increment the motor phase pointer
i Opposite switch can't be closed
: so skip over
; Jump to LBL3 if bit 1 is set
; Decrement the motor phase pointer
; AND the accumulator with 3 to
; mask LSB
; Store the updated pointer in
; register 0

:
: Test Motor B Bits I.
iBL3 : MOV

JB
INC
SJMP

LBL4: JB
DEC

LBL5:  ANL

MOV

A,Rl

3,LBL4
A
LBL5

2,LBL6

:,t3

Rl,A

; Load the motor B phase pointer
; from reg. 1
- Jump to LBM if bit 3 is set
I Increment the phase Pointer
; Opposite switch can't be closed. so skip over
i Jump to LBL6 if bit 2 is set
; Decrement the motor phase pointer
; AND the accumulator with 3 to
: mask LSB
: Store the updated pointer in
; register 1

,
: Test Motor C Bits I

; Load the motor C phase pointer
; from reg. 2 - -
; Jump to LBL7 if bit 5 is set
- Inckement  the phase pointer
i Opposite switch can't be closed. so skip over
i Jump to LBL9 if bit 4 is set
; Decrement the phase pointer

(continued on page 64)

register.
Now, we can finally move the

motors. The address for port A of
the 8255 is placed in DPTR and the
data byte for motors A and B is
loaded into the accumulator. The
accumulator data is transferred to
external memory (the 8255) and
voila! Motors A and B move if the
pod controls have instructed them
to do so. Motor C is moved in the
same manner by changing the
address in DPTR and outputting
the data ehich was saved in regis-
ter R4.

BASIC-52 was too slow for
our purposes and 8052 assembly
language turns out to be too fast. If
our program jumps back to the top
of the loop now, the motors will
stand dead still and literally scream
for mercy (actually it’s more of a
high-pitched w h i n e  b u t  t h a t
doesn’t sound as dramatic). A short
delay provides an overall step rate
of about 80 steps per second which
corresponds to  t he  max imum
torque the Airpax K82201s used in
the arm are capable of in this
configuration.

The program delays by simply
burning up a little CPU time. First
the value 13 (decimal) is loaded into
R3. Next, the value in R4 is
decremented and tested for 0. Once
it reaches 0, R3 is decremented and
again tested. Eventually R3 will be
zero and the program will jump
back to the top of the loop to test
the pod switches again. The two
lines of the delay code cause regis-
ter R4 to be counted down from 254
to 0 almost 16 times. The “almost”
comes into play the very first time
when the value in R4 is unknown
and, for our purposes, unimpor-
tant.

So, what does the little me-
chanical arm do? Well if you’re
expecting it to clean the house,
wash the car, or take out the trash
you’re going to be disappointed. As
we indicated in the beginning, this
whole thing was an experiment to



I 54 Circuit Cellar Ink

(Listing lcontinued from page 53)

LBLO: A N L A,#3 ; AND the accumulator with 3 to
: mask LSB

MOV R2,A ; Store the updated pointer in
: register 2

:
; Prepare the data to be output to the stepper motors

iBL9): MOV DPTR,#TBL ; Load DPTR with the table address
MOV A,RO ; Load act. with motor A offset. into table
MOVC A,@A+DPTR i Put the value from the table

- into the act.
MOV R3,A i Save the value in a scratch

: register
:

MOV A,Rl ; Load act. with motor B offset
- into table

MOVC A,@A+DPTR i Put the value from the table
- into the act.

SWAP A i Move the B value to the high
- nibble of act.

ORL A,R3 i OR the motor A nibble with the. B nibble
MOV R3,A i Save the byte in a scratch

: register
:

MOV A,R2 ; Load act. with motor C offset. into table
MOVC A,@A+DPTR i Put the value from the table

: into the act.
MOV R4,A ; Save the value in a scratch

: register
;
: Move the motors one step
:

MOV DPTR,#PORT_A * Set DPTR to port A of the 8255
MOV A,R3 i Load phase data for motors A & B

- into act.
MOVX @DPTR,A i Output to port A

:
MOV DPTR,#PORT_B ; Set DPTR to port B of the 8255
MOV A,R4 : Load phase data for motor C into

MOVX @DPTR,A i O%E;t to port B
:
; Delay to provide optimum step rate
:

MOV R3,#PAUSE ; Load scratch register with the
* pause 'tralue

DLY: DJNZ R4,DLY i Decrement and jump to DLY if not
; zero

DJNZ R3,DLY
i

AJMP LOOP ; Go check the switches again

;BL: DB 05H,09H,OAH,06H  ; Motor phase table.
: Winding

: ABCD Value
0101 05H

: 1001 09H
: 1010 OAH
: 0110 06I-I

test out some ideas. A few styro- weight items can provide hours of
foam blocks, a couple of chess distraction from whatever you were
pieces, or any other small, light supposed to be doing. q

I
--____

Editor's Note: Steve Ciarciaoften refers to previous Circuit Cellar art.icles.These  past
articles are available in book form  from Circuit Cellar Inc., 4 Park St., Suite 12, Vernon,
CT 06066 203) 875-2751.

~1

lb.Ciarcia’s lrcuit Cellar Volume I covers articles in BYTE from September 1977 through
November 1978. Volume II covem  December 1978 through June 1980. Volume III covers
July 1980 through December 1981. Volume IV covers January 1982 through June 1983.

/
Volume V covers July 1983 through December 1984. Volume VI covers January 1985
through June 1986.

I .___- I

Resources for Robot Arm
Materials

Materials for constructing a project
such as this are often hard to come by if
you don’t know where to look. While
there are nodoubt many companies who
supply similar components, the me-
chanical items such as the aluminum
sheet  stock, gears, bearinga, and stain-
less-steelshaft material can be obtained
in small quantities from the following
vendors:

Small Parts, Inc.
6891 N.E. Third Ave.
P.O. Box 381736
Miami, FL 33238-1736
(305) 751-0856

Stock Drive Products
2101 Jericho Turnpike
New Hyde Park, NY 11040
(516) 328-0200

Winfred  M. Berg, Inc.
499 Ocean Ave.
East Rockaway, NY 11518
(516) 599-5010

The following books and publica-
tions were useful in researching the
mechanical design of the mechanical
arm:

Airpax  Stepper Motor Handbook
Publication No. MR-116-R4
Airpax Corporation
Cheshire Diviaion
Cheshire Industrial Park
Cheshire, CT 06410

Handbook of Industrial Robotics
Edited by Shimon  Y. Nof
John Wiley & Sons, 1986
ISBN O-471-89684-5

Fundamentals of Robot
Technology
D.J. Todd Halsted  Press/
John Wiley L Sons, 1986
ISBN O-470-20301-3

Robotics, An Introduction
D. McCloy and M. Harris
Halsted Press/
John Wiley & Sons, 1986
ISBN 0-470-20325-O






