

Ctrl

EDITOR’s ’ N K
The Revolution Continues

A s I write this, COMDEX is a two-week-old memory. I’ve had a chance to sit down and sift through
the mountain of press releases, media kits, catalogs, and business cards that I brought back with me,
and I’ve got to admit that I’m a little disturbed. Between networks, multiuser systems, and OS/2, the

emphasis was almost entirely on (relatively) big computers and central control of programs and data. In this
world, if you’re not locked into a large project team at a multinational hardware or software manufacturer,
you have no business mucking around inside the box. As a matter of fact, if you’re trying to do anything
at all outside the “mainstream” of modern corporate computing, it’s obviously because you’re a sinister
sociopath, lurking in the shadows until you can crash our national defense system. As 1 walked the aisles of
the Las Vegas Convention Center, I wondered if the “Microcomputer Revolution” had taken 12 years to bring
us back to minicomputers and a white-coated DP priesthood.

When I left the main hall of the show, and visited the smaller companies in the hotels, I finally saw evidence
that the microcomputer revolution still flourishes. A number of companies showed me products that make
putting your computer in touch with the real world easier and more effective than ever before. There were
single-board computers and controllers in a few booths, and tools for hardware and software engineers and
designers in a few more. Looking at the components, adapters, and tools made me realize that there is a lot
of very high-quality work going on in the smaller companies within our industry. There seems to be something
about a small company that leads engineers to concentrate on practical, cost-effective, real-world solutions
to problems. It made me feel good when I found that these working problem-solvers are often Circuit Cellar
INK readers. I finally decided that much of the truly revolutionary work going on today is happening in small
companies, just like it did in the beginning. I like that, and I’m glad that Circuit Cellar INK is able to play
a part in the ongoing computer revolution.

Give Us an Earful

The response to our first reader survey was so helpful (Steve talks about the results of the survey in his
column on the last page of this issue) that we decided to make it easier for you to tell us what you think of
the magazine. Starting with this issue, there are three numbers printed at the end of each article. Please take
a moment to decide which number matches your feelings about the article, go to the Reader Service Card in
the back of the magazine, and circle the number. When you’re through, tear out the card (it’s postage paid)
and drop it in the mail. The response we get to articles will have a direct impact on the type of articles we
have in future issues. I’ll say thanks in advance for helping us keep Circuit Cellar INK on the right track.

Beyond giving the editors feedback from you, the Reader Service Card that begins in this issue does two
things: First, it makes it easier for you to get information on those products that interest you. Second, it gives
our advertisers positive feedback on the investment they’ve made. Our readers are the reason we work so hard
to make this magazine; our advertisers are the reason we can afford to make this magazine.

We’re all looking forward to the new year. We’re going to be growing and improving, but never losing
sight of our mission to serve the people who design and build computer applications. From where I sit, it
looks like a fun year ahead.

Curtis Franklin, Jr.
Editor-in-Chief

e

EDITORIAL
DIRECTOR/
FOUNDER

Steve Ciarcia

PUBLISHER
Daniel Rodrigues

ASSOCIATE
PUBLISHER
John Hayes

EDITOR-in-CHIEF
Curtis Franklin, Jr.

TECHNICAL
EDITORS

Ken Davidson
Jeff Bachiochi
Edward Nisley

CONTRIBUTING
EDITOR

Thomas Cantrell

CONSULTING
EDlTOR

Har v Weiner

CIRCULATION
COORDINATOR

Rose Mansella

CIRCULATION
CONSULTANT

Gregory Spitzfaden

PRODUCTION
MANAGER

Tricia Dziedzinski

BUSINESS
MANAGER

Jeannette Walters

STAFF
RESEARCHERS

Northeast
Eric A Ibert

William Curlew
Richard Sawyer

Robert Stek
Midwest

John Elson
Tim McDorlough

West Coast
Frank Kuechmann

Mark Voorhees

Cincui
Cdl

CM

AR I N K 8
FEATURES

c l
8 LmageWise/PC - - The Digitizing Continues - - Part 2

The Hard ware
by Ed Nisley

In the second of three parts, Ed Nisley
shows the hardware details of this ISA
bus gray scale digitizer, and contrasts
the design with that of the original serial
ImageWise. The starting point is the
fundamental design decisions for an
IBM/PC I/O bus board.

cl22 Build a Remote Analog Data Logger -- Part 2
The Soft ware
by R. W. Meister

In the final installment of the article, we explain the
C language software for the Motorola 6809 controller.
Bob Meister uses descriptions and examples to cover
program logic flow, interrupt handling, and coding for
specific routines.

1 DEPARTMENTS
L

Editor’s ink
The Revolution Continues
by Curtis Franklin, Jr.

Reader’s Ink -- Letters to the Editor

Visible Ink -- Letters to the CCINK Research Staff

Ink Spot -- Guest Editorial
A Call for Dedication
by Eera Shapiro

From the Bench
AC Power Line Transmission
Conducted by Jeff Bach&hi

I

5

20

34

42

2 ClRCUlT CELLAR /Nk

THE COMPUTER APPLICATIONS JOURNAL

cl36 The Home Satellite Weather Center -- Part 7
Finishing the Firmware for the 68000 Peripheral
Processor
by Mark Voorhees

As the 68000-based Peripheral Processsor moves closer
to completion, Mark Voorhees wraps up the controlling
firmware for the system. This installment shows how to
integrate Weather Facsimile (WEFAX) reception and
interface the Heathkit ID-4001 and ID-5001 weather in-
struments to the Peripheral Processor.

045 Writing A Real-Time Operating System -- Part 1
A Multitasking Event Scheduler for the HO64180
by Jack Ganssle

In the first of two parts, Jack Ganssle explains
the concepts behind a real-time operating
system (RTOS) and shows how an RTOS differs
from a general-purpose operating system. He
then moves into the beginning of the actual code
with the scheduling algorithm and central Task
Control Block.

Advertiser’s Index 48

Firmware Furnace
Real Numbers
Number Crunching for the 8751
by Ed Nisley 52

ConnecTime -- Excerpts from the Circuit Cellar BBS
Conducted by Ken Davidson 59

Steve’s Own Ink
First INK Reader Survey
by Steve Ciarcia 64

Cover Illustration by Robert Tinney

Circuit Cellar BBS - 24
Hrs.300/1200/2400bp8,8
bits, no parity, 1 stop bit,
203-871-1988

The schematics pro-
vided in Circuit Cellar
INK are drawn using
Schema from Omation
Inc. All programs and
schematics in Circuit Cel-
lar INK have been care-
fully reviewed to ensure
that their performance is
in accordance with the
specifications described,
and programs are posted
on the Circuit Cellar BBS
for electronic transfer by
subscribers.

Circuit Cellar INK
makes no warranties and
assumes no responsibility
or liability of any kind for
errors in these programs
or schematics or for the
consequences of any such
errors. Furthermore, be-
cause of the possible vari-
ation in the quality and
condition of materials and
workmanship of reader-
assembled projects, Cir-
cuit Cellar INK disclaims
any responsibility for the
safe and proper function
ofreader-assembledproj-
ects based upon or from
plans, descriptions, or in-
formation published in
Circuit Cellar INK.

CIRCUIT CELLAR INK
(ISSN 0896-8985) is pub-
lished bimonthly by Cir-
cuit Cellar Incorporated,
4 Park Street, Suite 20,
Vernon, CT 06066 (203-
875-2751). Second-class
postage paid at Vernon,
CT and additional offices.
One year (6 issues) char-
ter subscription rate
U.S.A. and possessions
$14.95, Canada $17.95,
all othercountries $26.95.
All subscription orders
payable in U.S. funds
only, via international
postal money order or
check drawn on U.S.
bank. Direct subscription
orders to Circuit Cellar
INK, Subscriptions, I2
Depot Sq., Peterborough,
NH 03458-9909 or call

L
203) 875-2199
OSTMASTER: Please

send address changes to
Circuit Cellar INK, Cir-
culation Dept., 12 Depot
Square, Peterborough,
NH 03458-9909.

Entire contents
copyright 1988 by Circuit
Cellar Incorporated. All
rights reserved. Repro-
duction of this publica-
tion in whole or in part
without written consent
from Circuit Cellar Inc. is
prohibited.

Junuury/Febnmy 1989 3

CM

RE A DE R’S ’ N K Letters to the Editor

I’d Like to See . . . the issues so far. I am glad that you are publishing
technical articles of all types, not just strictly computer

For future editions, please consider a digital music articles.
mixer for the IBM PC/AT (including a MIDI inter- I hope that we’ll see some articles written by Apple
face), or a video-recorder data-backup device, or a][enthusiasts. I’d like to see more information on the
video camera-to-IBM disk device. GIF graphics format mentioned in Circuit Cellar INK

#3. I’m disappointed at the lack of Apple][software
John Lee for the ImageWise digitizer. Perhaps GIF will be the
Chicago, IL answer.

[For a video camera-to-disk device, I think that the
ImageWise/PC, which continues in this issue, will be
hard to beat. I haven’t seen a project for any sort of
data backup device here, but I would certainly be happy
to look at a proposal from one of the Circuit Cellar INK
readers. Finally, we’re planning an issue on “Appli-
cations in the Arts” for later this year. If anyone has
done work with MIDI, graphics, or other artistic
applications, drop me a line to see about article
possibilities. Ed. /

I received issue #5 this week and thoroughly
enjoyed it. I especially enjoyed the article on “lo-
MHz/8-bit Digitizing Board for the IBM PC.” I would
like to see more articles on video design including
articles on frame grabbers, text overlay, and simple
image processing. Thanks again for an enjoyable pub-
lication.

Steve Horacek
Boulder. CO

[Gee, it looks like we started ImageWise/PC just in
time! We’re working on bringing more video projects
to Circuit Cellar INK, so hang in there. I think that
Circuit Cellar INK in 1989 will have some articles that
are right up your (video) alley. Ed.]

Rolf Taylor
North Salem, NY

[OK Apple fans, here’s your chance. If you’ve written
ImageWise software for the Apple /I, or if you’re
building applications around this venerable platform,
let me know. Circuit Cellar INK tries to present
applications based on many different computing plat-
forms, and is dedicated to no particular architecture or
operating system. Ed.]

I have worked with computers for 20 years, have
progressed from computer operator to programmer to
systems analyst to computer scientist, and have been
delighted with being able to make any computer
“sing” for me. I never had any interest in electronics
until I saw Steve Ciarcia’s “Why Microcontrollers” in
the August 1988 issue of BYTE. That did it for me.
I have now gone hog-wild, researching the University
of Houston technical library and every other source I
can get my hands on which will expand my under-
standing and knowledge as pertains to all forms of ICs
and peripherals. I have also undertaken several
concurrent 803 1 -controlled projects which I thought
UP.

Will you be addressing any aspect of ASICs and
PLDs in future issues, or should I just go ahead and
study other sources to satisfy my interest in that area?

Allen R. Summers
Thanks for the great magazine. I am pleased with Pasadena, TX

Januury/Februaty 1 9 8 9 5

[We certainly do have projects which use ASICs and
PALS, as well as tutorials on how to design with them,
in the works. One of the problems in this area is trying
to offer projects that don’t require a $30,000 develop-
ment system, and we’re working in that direction. Stay
tuned. Ed.]

I have enjoyed all the articles in Circuit Cellar
INK. I am very interested in video processing, and in
converting from one standard to another. I also like
electromechanical projects, and have built such things
as solenoid- and servo-operated gearboxes for R/C
models.

Keep up the X-10 projects. I have 14 modules
around my house operating lights, fans, TVs, and so
on from a programmable timer, a maxi controller, and
two mini controllers. I have a separate system for my
ham shack made up of recovered units and their
controls purchased at a ham fair for $4.

Adrian M. Zeffert
East Northport, NY

Create Professional Ouality Circuit Diagrams with

Symbols are in bdh PICT
fcl-mat fcv Macor.iw,
Mac&aft or c4k CAD/

All Mats

An Important Theme

The nicest thing about Circuit Cellar INK is that
I feel good reading it. It doesn’t make me feel guilty
about having forgotten the propagation theory back in
‘63, but still does give me the information about new
and fun projects I want to dream about (even if I can’t
afford to build all of them). I am glad that you provide
the necessary background (such as the stepper motor
article) without patronizing. It reminds me of the days
on the roof tuning our cubical quad, with the
transmatch my father and I built from scratch (coils,
chassis, and even the six-inch-long variable capacitor
-- plates and all) feeling sure we knew all there was
to know on antennae.

More important, though, is the theme I think I
sense here. A willingness to share, the courage to do
it yourself in a snotty-pants peer society that thinks
itself so high and mighty, riding on big expensive
systems, but can any of the members of the society
even begin to calculate what brings the signal across
three inches of PCB into the DRAM? HA! In Circuit
Cellar INK I see, once again, a hope for the generation
my kids will have to be members of.

My only regret now is that I won’t be able to access
the Circuit Cellar BBS. Are there any plans to get a
Tymnet link? How about opening a conference on
CompuServe? If you do get Tymnet, Telenet, or a
CompuServe conference, please let us international
readers know!

Steve Chandler
Israel

[First, thanks for the kind words. One of the
principle motivations behind a publication like Circuit
Cellar INK is the feeling that you can help people
improve their engineering and design skills; that you
can help them be better doers, not just better shoppers.

We are constantly looking at ways to make the
Circuit Cellar BBS accessible to more people, and we’ve
talked about doing all the things you mention. The
biggest limit right now is human resources. There’s one
overworked engineer/editor who already spends sev-
eral hours a day just keeping up with the current Circuit
Cellar BBS. If we expand the system’s scope, it will
take at least one full-time person to direct traffic.
We’re still looking and talking, though, and you can be
sure that any changes will appear in the pages of Circuit
Cellar INK before they show up on the board. Ed.]

Corrections
lssue#5, SepVOct ‘88 - lo-MHZ/~-M Digitizin bard for the IBM PC

R? Pin 8 is unused.
Pa e 30 -- U3 pin 4 should go to -5V through w8. Pm 7 should go lo t5V through

Issue #8, NovIk ‘88 - ImageWise/PC - The Digitizing Continues
Pa
for!J

es 38 8 41- Swap photos 1 and 3, leaving the captions in place. The caption
hoto 3 should refer bade to Photo 1.

Circle No. 124 on Reader Service Card

6 ClRCUlT CfLL4R INK

ImageWise/PC --
The Digitizing Continues
by Ed Nisley

P erhaps the fundamental
truth of engineering is

a that you can’t have eve-
rything. There are always conflict-
ing requirements: speed, power,
board space, design time, parts use,
and complexity must all be bal-
anced against each other.
Throughout this article I will dis-
cuss the tradeoffs we made in the
ImageWise/PC design so you can
see why it works the way it does.

Because most of you are famil-
iar with the original ImageWise
design presented in the May and
June ‘87 Ciarcia’s Circuit Cellar
articles in BYTE, I’ll concentrate
on what’s new and different about
the ImageWise/PC hardware. The
starting point is the fundamental
design decisions for an IBM PC
I/O bus board.

Where’s the Buffer?

The heart of the ImageWise/PC
circuitry is 64K bytes of static
RAM, enough to hold one digital
image. The video ADC (Analog-
to-Digital Converter) translates
each scan line of the incoming
video signal into 256 separate pels
(picture elements), so the buffer
can hold up to 256 such lines,
although one scan line is reserved
for internal use. NTSC video has
about 244 scan lines, which is the
standard I will use throughout this
article. PAL and SECAM video
have about 280 scan lines, but only
255 can be held in the buffer. The

additional 25 lines nor-
mally fall within the
monitor’s overscan re-
gion, so aren’t visible
anyway.

T h e v i d e o A D C
produces eight bits of
data for each pel, re-
solving the image into
256 shades of gray. The
video DAC translates
this data back into an
analog voltage resulting
in a good reproduction
of the original scene.

In order for the
ImageWise/PC t o b e
useful, the IBM PC must
also have access to the
buffer memory, The
most obvious method is
to assign 64K bytes of
the PC address space to
the ImageWise/PC video
buffer. The memory
maps in Figure 1 show
why this simply won’t
work: while there are
some 64K slots free in a
bare-bones PC, a mod-
erately well-equipped AT doesn’t
have any available memory ad-
dresses!

The AT’s memory map does
have some “holes” that are unused,
so the ImageWise/PC buffer could
be mapped into a hole in sections.
For example, there may be 32K
available in segment COO0 hex next
to the Disk BIOS ROMs. We
decided that the added complexity

of the mapping hardware out-
weighed the advantages of direct
access, particularly since the
buffer’s starting address would still
have to be picked to match the pe-
culiarities of each system.

We finally made a tradeoff that
avoids memory mapping entirely!
The video data can be moved
through a single I/O port using
I/O instructions instead of memory

8 C/RCU/T CELLAR INK

Part 2
The Hardware

F000 : 0 0 0 0

E000: 0 0 0 0

D000: 0 0 0 0

c000 : 0 0 0 0

B000 : 0 0 0 0

A000 : 0000

9 0 0 0 : 0 0 0 0

8000 : 0000

7000 : 0000

6000 : 0000

5000 : 0000

4000 : 0000

3000 : 0000

2000 : 0000

1000:0000

0000 : 0000
IL

IBtl P C
tlONOCHROtlE

NO DHfssRpDL*~I SK

,
IBM AT

EGA DISPLAY
HF1RD D I S K

LIP1 EtlS RAW

transfers. A counter on
the ImageWise/PC board
g e n e r a t e s R A M a d -
dresses so the PC pro-
gram can simply read or
write bytes from the
port.

I/O instructions are
slower than memory
transfers but the differ-
ence is relatively small.
The key point is that
even though the transfer
takes somewhat longer,
the ImageWise/PC board
can be used in a “full-
up” PC or AT with no
problems.

The ImageWise/PC can combine
analog and digitized images as
either digital over analog, or
analog over digi tal image
screens.

Access Control

The ImageWise/PC board uses
an Intel 8031 microcontroller to
handle many logic functions that
would ordinarily require a lot of
“glue” chips. While we could use
an ASIC (Application-Specific In-
tegrated Circuit) chip to merge
these functions into a custom de-
sign, the microcontroller offers far
more flexibility to handle require-

Figure 1 --
A memory map for
t h e P C / X T a n d
PC/AT shows why
using M I/O port
was chosen for the
ImageWise/PC as
an alternative to
memory mapping.

ments that crop up after the board
is designed and manufactured.

Because the 8031 can also read
and write the video buffer, there
are six ways to get data into or out
of that RAM! Ideally we would like
to allow simultaneous read/write
access by the ADC, DAC, PC, and
8031. That way the software
doesn’t have to take conflicts into
account. But there are some thorny
problems along the way . . .

Each scan line on the screen
presents 256 bytes of data in about
5 1 microseconds, or one byte every
200 nanoseconds. The ADC will
produce one byte and the DAC will
consume one byte at that rate
throughout the visible part of the
image, although the ADC is active
only when acquiring an image.
Neither access can be delayed in the
least because there is no way to
“pause” the analog video signal.
Therefore the ADC and DAC must
have uninterrupted access to the
Image RAM.

When the ADC or DAC are
accessing the buffer, all other uses
must be squeezed in between suc-
cessive samples. Dividing the

Jcrnuary/FebnJuw 1989 9

c

lgure L -- m m r’c mu connector and power supply f tltermg. tireat emphasn was placed on power
supply noise elimination because of the analog circuitry on the board.

available time equally allows only
100 per access and allowing time
for register and buffer delays
means that the Image RAM must
cycle in about 75 ns. While using
a 64K buffer of 75-ns RAM is
possible, the cost of the buffer and
the additional circuitry gets out of
hand quite rapidly.

We decided the best solution
was also the simplest: allow only
one device to access the Image
RAM at any one time. The ADC
and DAC have unrestricted use
during active video, and the PC and
8031 must disable the video en-
tirely or squeeze accesses into the
blanking intervals to prevent colli-
sions.

Now that you understand why
t h e ImageWise/PC u s e s I/O-
mapped accesses, it’s time to get
into the details. Figures 2 through
8 show the ImageWise/PC logic.
Each schematic concentrates on the

logic for a particular section of the ’
design.

PC Interface Logic

From the PC’s point of view, all
access to the ImageWise/PC cir-
cuitry occurs through seven I/O
ports. Two jumpers on the Image-
Wise/PC board set the base address
for these ports, which is normally
110 hex. Figure 9 shows the default
port assignments.

Figure 3 shows the port decod-
ing logic and the registers that
transfer data between the PC and
the 8031 firmware. Although the
board uses seven I/O addresses, it
occupies 16 bus addresses because
the decodes are not complete. For The ports fall into three classes:
example, address bit 3 does not hardware control, RAM access, and
enter into the decoding logic so the firmware interface. Because I
board will respond to accesses at started out by describing the rea-
110 or 118 hex with the same soning behind Image RAM ac-
action. cesses, I’ll begin with the RAM

10 ClRCUlT CELLAR INK

Figure 3 -- IBM PC bus interface circuitry. The board can be jumper-selectively addressed at one
of 16 base port addresses.

The entire ImageWise/PC board
fits into a single full-length 8-
bit ISA (PC-Bus) slot.

control circuitry.
All image data is transferred

through the VRAM port. Each
access uses the current value of the
PC Address Counter (U27 and
U28), which is loaded by writes at
ports ADDRHI and ADDRLO.
Each VRAM access increments the
address counter, so reading the full
buffer requires a single address
followed by 244 x 256 reads.

The port at CTLSTAT con-
tains all of the hardware control
and status bits, which are itemized
in Figure 10. Writes to this port set
the controls, while port reads re-
turn the current status bits. I will
describe the reset functions in more
detail when I explain the Program
RAM.

Firmware Interface

The INDEX and DATAREG
ports provide a communication link

between the PC program and the
firmware running on the 8031
processor. The board has great
flexibility because nearly all of the
board’s functions can be adjusted
on the fly. I will describe the
firmware in more detail in the next
article, but the hardware merits
separate discussion.

__
.

There are several dozen vari-
ables controlling everything from
the duration of horizontal sync
pulses to the overall video signal
level. These variables are grouped
into the firmware registers shown
in Figure 11.

Rather than provide a sepa-
rate I/O address for each register,
the ImageWise/PC firmware uses
the INDEX port to specify which
register will appear at the DA-
TAREG port. Changing the con-
tents of a firmware register re-
quires writing the new value to
DATAREG and writing the regis-

Januury/Febnmy 1989 1 1

Figure 5 -- Video RAM addressing section plus master clock generation. Synchronous counters are
used to simplify the task of addressing memory.

though, these accesses do not incre- the latch.
ment the PC Address Counter.
After reading or writing the PRAM Analog Video Input
port, the program must access

The digitized image can be
stored in a PCX file to be
used with various paint and

~ desktop publishing pro-
1 grams.

boards.
Once the starting address is

loaded into ADDRHI and AD-
DRLO, reads and writes to the
PRAM port access the Program
RAM. Unlike VRAM accesses,

VRAM to step to the next address.
RAM storage does introduce

one complication, though: the
ImageWise/PC cannot begin opera-
tion until the Program RAM con-
tains a valid program. The solution
to this is to provide a reset function
controlled by an I/O port as shown
in Figure 3 instead of using the
I/O bus RESET signal.

The output of Ul IA is con-
nected to the 803 1 Reset line so that
the processor is disabled whenever
the flip-flop is cleared. A bus
RESET signal clears the flip-flop,
ensuring that the 8031 is halted
when you turn on the power. Bits
6 and 7 in the CTLSTAT port
control the state of the latch; bit 6
sets or clears it, while a O-to-l
transition on bit 7 clocks bit 6 into

The analog video input cir-
cuitry shown in Figure 7 has sev-
eral improvements over the stand-
alone ImageWise design, although
you’re certain to recognize the
similarities.

The circuitry must clamp the
incoming sync tips to ground level
so that the video signal levels are at
a known voltage. The new design
has better temperature compensa-
tion and clamps the tips closer to
ground level.

The older design used a simple
RC filter to eliminate the subcar-
rier from color signals. Although
we intended that board for use with
monochrome cameras, I have to
admit we should have done better.
The new chroma trap was suggested
by a caller on our BBS; it works just

igure 6 -- Video RAM and data buffers. One 256 x 244 picture fits nicely in the 64K of RAM pro-
vided on the board.

fine and we’re glad to adopt it.
Incidentally, the value of the in-
ductor (Ll) is different in the PAL
and SECAM boards because the
chroma signals use different fre-
quencies.

The ImageWise/PC uses the
CA3318 8-bit flash ADC (U47) to
capture video signals. This IC is the
“big brother” of the CA3306 used
in the stand-alone serial ImageWise
transmitter, but the circuitry re-
quired to drive it is significantly
different.

Flash ADCs require one analog
comparator for each voltage level,
so the CA331 8 has 256 compara-
tors. The CA3306 needed only 64,
so you can imagine the increased
chip complexity! Each comparator
decides whether the input signal
exceeds a reference voltage set by
a resistive divider driven from the
Vref+ and Vref- inputs. A logic
network encodes those 256 binary

signals into just eight output bits.
The increased number of resis-

tors in the reference divider re-
quires a higher voltage to provide
sufficient reference current. Un-
fortunately, that means the analog
signal must be higher as well, so we
added an LF356 op amp (U46) to
provide about 5 volts of video to the
CA33 18 input.

The reference voltages define
the analog signal levels that will be
converted into the 00 and FF (hex)
digital codes. We used two outputs
of the AD7226 quad DAC (U41) to
set these voltages so you can match
different camera levels without
removing the PC’s cover. The
AD7226 doesn’t have enough out-
put drive capability to handle the
CA3318 reference inputs, so 44
and Q5 buffer the voltages.

An LM3 11 (U45) compares the
video signal against a fixed refer-
ence to produce a digital signal

whenever a sync pulse occurs. As
in the older design, the 8031 deter-
mines the pulse duration to find
vertical syncs. Several people have
asked where we hid the sync detec-
tion circuitry; there simply isn’t
any!

Analog Overlays

Although the ImageWise/PC
uses the same TML 1852 video DAC
(U40) to convert the digital values
into analog waveforms, the sur-
rounding circuitry as shown in Fig-
ure 8 is completely different! Be-
cause the same board has both the
input and output video signals,
adding some circuitry to overlay
the two was both irresistible and
fairly simple.

Although the term “overlay”
implies that one image is placed
atop the other, the actual hardware
is a pair of switches (U42) with

14 ClRCUlT CELLAR /NK

Figure 7 -- Video input circuitry. White and black reference level inputs to the ADC are program-
mable via the DAC found in Figure 8.

their outputs connected together.
One switch is connected to the live
analog video input, while the other
is connected to the stored digital
image. Each switch can transmit or
block its video input; only one
switch can be turned on at any time.

The analog switches are con-
trolled by a second LM311 (U43)
which compares a video signal
against a reference voltage supplied
by an output of the AD7226 quad
DAC. Whenever the video exceeds
the reference, the switches send the
stored digital image to the output
buffer. Conversely, when the
video drops below the reference,
you’ll see the analog input.

We used the other two analog
switches in U42 to select the over-
lay comparator’s video signal input.
This provides the flexibility to
compare the level of either video
signal; there are useful applications
for both. Further, because the

where from black to white.

overlay reference is set by a DAC,
the switching level can be set any-

Of course, the TML1852 video
DAC output also goes to a separate
jack so you can monitor the digital
image directly even while an over-
lay is in effect. By setting the
overlay level to a very low value
you can see the entire live and
digital images on two monitors at
the same time, which simplifies
camera focusing a lot!

The fourth AD7226 DAC out-
put controls the amplitude of the
TML1852 DAC, so you can adjust
the output brightness directly. This
is particularly useful because the
signal level depends on the number
of terminations on the DAC output.
You can also fine-tune the level to
match the analog input level so
overlaid images are comparably
bright.

Creating overlays requires that
the output sync pulses occur at the

Genlock Sync

same time as the input pulses so that
the two images are stable with re-
spect to each other. TV production
studios have a single sync genera-
tor that produces master timings
for the entire installation; all of the
video gear is “genlocked” to this
single generator. The ImageWise/
PC has a somewhat more relaxed
definition of genlocking that is
sufficient for our overlays.

Because both the input signal
and the ImageWise/PC use crystal
oscillators for their basic timing
you might think that they are stable
enough to get away with no locking
at all. Even cheap oscillators have
frequencies accurate to about 100
parts per million, which ought to be
close enough. Unfortunately,
that’s just not so.

16 CIRCUK CELLAR INK

lgure 8 -- Video output circuitry and level DAC. Note the solid-state switch used to provide over-
lay capabilities for the output.

The basic line timing is 63.5
microseconds, so an error of 100
parts per million is 6.35 ns. After
one frame of 525 lines the accumu-
lated error is 3.33 ps, which means
that the scan lines would be dis-
placed about 5%. After one second,
the error is nearly 100 us, or one-
and-a-half lines! Obviously we
have to do much, much better than
100 ppm to have stable sync.

True genlocking requires an
analog phase-locked loop that
tunes the internal clock frequency
to exactly match the external sync
input. The design of this PLL is
extremely critical for color TV
signals because it must precisely
match the phase of both color
subcarriers. Because the subcarrier
phase determines the colors you see
on the screen, any error is immedi-
ately and painfully obvious.

The ImageWise/PC sync tim-
ings are created by an Intel 82C54

Programmable Interval Timer
(U21) dividing a IO-MHz clock by
the appropriate values to produce
regular horizontal sync pulse inter-
vals and widths, as well as horizon-
tal blanking durations. U33A cre-
ates the IO-MHz clock from the 20-
MHz output of XTL2, a crystal
oscillator.

The IO-MHz signal is further
divided by U33B to get the basic 5-
MHz pel clock used by the Image
RAM circuitry. The hardware
resets U33B at the start of each scan
line, because otherwise the phase
would flip on successive lines and
cause obvious jitter. Think about
it. . . the lines are 63.5 microsec-
onds long and 5 MHz is 0.2 micro-
seconds.

The 20-MHz oscillator is free-
running and isn’t synchronized to
anything at all. When the Image-
Wise/PC is not genlocked, the lo-
MHz divider is also free-running,

because there is no reason to reset
it. The ~-MHZ divider is reset on
every scan line and all is right with
the world.

When genlocking is in effect,
U22 switches several signals that
control the dividers and 82C54.
The external sync signal now deter-
mines the horizontal line time, so
82C54-2 Timer 0 is programmed to
create a short pulse immediately
after the start of the external sync.
The IO-MHz and ~-MHZ dividers
are both reset by pulses from U48
so that their phases have a known
relationship to the input sync.
Finally, the 8031 is interrupted by
external sync instead of the 82C54
output so that it can track the
external video.

Resetting the IO-MHz divider
has an interesting side effect be-
cause it is the 82C54 PIT clock
input. When the clock stops, all
timings are suspended! The firm-

Jammy/February 1989 ‘I :;*

INDEX 110 index register and register write flag
DATAREG 111 data I/O register
ADDRLO 112 address register low byte
ADDRHI 113 address register high byte
VRAM 114 video RAM data I/O
PRAM 115 program RAM data I/O
CTL_STAT 116 control output/status input

Addresses are in hex.
Default jumper settings are assumed.

-. _.
Figure 9 -- All access to the ImageWise/PC takes place through
seven I/O ports. The default is for port I10 to be the beginning
port for the ImageWise/PC.

g&
0
1
2
3
4
5
6
7

Writing
unused
unused
unused
unused
unused
unused
+Enable 8031
+Strobe Enable Latch

Reading
+Index Loaded
Operation Complete
unused
unused
+Field 1
+Genlocked
-Sync Pulse Active
+Vertical Retrace

Figure 10 -- All of the hardware control and status bits for the
ImageWise/PC are routed through the CTL_STAT port at de fault
address 116.

Registers 00 through OF contain control and status bits, set
overall operating conditions, and handle other miscellany.

00 Program control bits
01 Program status bits (read only)
02 Setup bits
03-07 reserved
08 ADC white level
09 ADC black level
OA Overlay switching level
OB Digital video Output level
oc Genlock retry limit
OD reserved
OE Firmware version (major and minor hexits)
OF Firmware version (two's complement of Reg OE)

Registers 10 through 1F control internal sync generation.

10-11 Horizontal line period
12-13 Horizontal sync duration
14-15 Horizontal blanking duration
16-17 Equalizing pulse duration
18-19 Vertical sync duration
1A Number of active video lines
1B Number of equalizing syncs
1c Number of vertical syncs
1D Number of syncs during vertical blanking
1E reserved
1F reseNed

Registers 20 through 2F control external sync generation,
which is used during genlock operation.

20-21 Horizontal sync delay
22-23 Horizontal sync duration
24-25 Horizontal blanking duration
26-27 Equalizing pulse duration
28-29 Vertical sync duration
2A Number of active video lines
28 Number of equalizing syncs
2c Number of vertical syncs
2D Number of syncs during vertical blanking
2E-2F Camera horizontal blanking

igure 11 - - Variables stored in the firmware registers control most
of the attributes of the ImageWise/PC. Quantifies occupying two
registers (16-bit values) are stored with the least-signi jicant byte
in the lowest-numbered register. Time intervals are in units of 100
microseconds.

ia CIRCUIT CELLAR INK

ware compensates for the typical
value of the reset pulse, so the
resulting timings are still accurate.

Unlike a true analog PLL de-
sign, the ImageWise/PC genlock
circuitry can only adjust the inter-
nal timings in units of 50 ns (half
of the IO-MHz period). This is
l/4 of a pixel width and is gener-
ally not noticeable, but under some
circumstances you may see a slight
“crawl” on sharp vertical edges.
Most of the cameras and monitors
we’ve tested work just fine, so you
probably will not encounter it.

And hlore to Come

Al though we have gone
through the hardware design, some
parts of the ImageWise/PC can be
understood only if you see how the
firmware controls the gates. In the
next article I will describe the
firmware required to make the
board work, as well as some inter-
esting PC utility software

*@I

201 Very Useful
202 Moderately Useful
203 Not Useful

The following is available from:
CCI

4~&y8 plt&m
CA

For information and &ders
Tel: (203) 87&27$1
FAX: (203) 872-2204

Item 1: ImageWiselPC PC board experimentor’s kit
Comes with4-Iayer PC bard, andassorted key corn.
ponents including 27C266 EPROM, TML1862 D/A,
AD7226 D/A, CA331 8 A/D, RCA jacks, ferrite beads,
user’s manual, and ImageWiseIPC utilites on IBM PC
format diskette.

Order MC-EXP*...*.......*............. s399.oa

flem 2: ZIP image pfccessing software for Image.
WisebJC from Hogware.

Or&r IWPC-ZIP”$79&
A procurement list for all ImageWiseIPC bard mm.
ponents is posted on the Circuit Cellar BBS. Full kitz
are not currently available. ImageWiMC is avail
abte assembled and tested.
All payments should be made in U.S. dollars by chedc
money order, MasterCard or Visa. Shi
dling: surface delivery add $6.60 for U.1

ping and ban.
. Call for Can.

ada and air freight delivery elsewhere.

You have until May 1, 1989 to enter!

of applications designers the readers of Circuit Cellar INK are. To find the answer, we’re sponsoring the first Circuit
Cellar Design Contest. This is your chance to win the acclaim of your colleagues, the admiration of Circuit Cellar INK
readers everywhere, and some pretty nifty prizes.

We’ve tried to make this a simple contest. The emphasis is on embedded control applications, and you can
use any commercially available controller chip (8052,8096,6811,8742, etc.) in your design. Our team of judges will
be looking for utility, creativity, professionalism, and elegance in the designs. Within these easy guidelines, the choices
are yours: make it prosaic or outlandish, simple or complex, the choice is yours!

Prizes! Of course there are prizes! Fist prize is $500, Second prize is $200, and Third prize is $100. In addition, we’ll
award as many Honorable Mention prizes ($50 and a l-year subscription to Circuit Cellar INK) as are deserved. On top
of all these prizes, winning entries may be the subject of fulI Circuit Cellar INK articles.

The winners will be announced in the July/August 1989 issue of Circuit Cellar INK. To enter, you must have
an official entry form. To receive an official entry form, send a SASE to:

Circuit Cellar INK
Design Contest
P.O. Box 772

Vernon, CT 06066

Build Steve Ciarcia’s HAL=4
EEG Biofeedback Brainwave Analyzer

Ever wanted to build a brainwave analyzer; one that wasn’t a toy; one with
capability? Circuit Cellar is proud to introduce Steve Ciarcia’s new Hemispheric Activation Level
detector (HAL, for short).

- WARNING:

The HAL-4 kit is a complete battery-operated 4channel electroencephalograph (EEG) which
measures a mere 6” x 7’. HAL is sensitive enough to even distinguish different conscious states-
between concentrated mental activity and pleasant daydreaming. HAL gathers all relevent alpha,
beta, and theta brainwave signals within the range of 4-20 Hz and presents it in a serial digitized format
that can be easily recorded or analyzed.

HAL’s operation is straightforward. HAL samples four channels of analog brainwave data 64
times per second and transmits this digitized data serially to a PC at 4800 bps. There, using a Fast
Fourier Transform to determine frequency, amplitude, and phase components, the results are

graphically displayed in real time for each side of the brain.
l Stand-alone-not bus dependent
l PC demo display software included
l W-232 serial output
’ Safe battery operation”
’ Complete software source code available

HAL-4-KIT !$;l?%f;

lheC4faitCeilrHenlapherk~mLweldUecwkpesentedaan To order please call CC/: (203) 875-2751 Circuit Cellar Inc.
m$leet-hg exanpb of lhe dc+n ledlnicples used in acqhing t&-wave
8lgW. lh!! Hemisphalc Auh-alm Letd ds(edor is nc(a medkaly gpwed

TELEX: 64333 1 4 Park St.‘- Suite 12
~m,nomedcPlcWI~rrmdeforhb~cs,andHdDuldndbeuaedlor
medkddhglckprposa Futhmae.tw,&usedHNre~~ieshafthe

FAX: (203) 872-2204 Vernon, CT 06066

Circle No. 107 on Reader Service Card Junuary/Febrmty 1989 1 9

P -4

Ctrl

VISIBLE ’ N K Answers; Clear andsimple

Letters to the INK Researdi Staff

Field Data Collection

I suppose this is just one of the tons of letters you
receive each day, so 1’11 be brief. The subject of my
questions concerns field data collectors, known also as
portable data terminals. Before replying, I want you
to know that your answers to the following questions
will be highly appreciated.

What is the state of the art in field data collectors?
What are their virtues and drawbacks? Are they
expensive? What are the costs for a given storage
capacity and quality? Are costs expected to go down
significantly in the near future?

I’m interested in this matter because I am finishing
the design of a field data collecting system. Its main
(not all) features are:

Collector:

- Size: 110 x 70 x 23 mm (4.33 x 2.75 x 0.9 in.) (about
the size of a cassette box, but thicker)

- Weight: 10 oz.
- Storage: 48 Kb
- One- hand operation
- Waterproof, dustproof, shockproof
- Protected against electromagnetic and radio fre-

quency interference
- Operating temperature: -25 to 160°F
- Altitude: up to 25,000 feet
- Price: Approx US$300
- Ability to scan recorded data, to delete last entries,

to label bad data, etc.

Interface:

- Size: 110 x 70 x 35 mm (4.33 x 2.75 x 1.37 in.)
- Weight: 25 oz.
- Data format: ASCII
- Data Transfer: Serial RS-232

- Data Rates: 300, 1200, 4800, 9600 bps
- Collector not needed to transmit data
- Price: Approx US$300

Do you think there’s any chance for a system like
this to be sold reasonably in the market?

I’ll be very grateful for your help in all these
points, and any other that you might consider impor-
tant.

Roberto Garcia S.
Chile, South America

There are several subdivisions of the data collector
market, each specialized for a particular type of data.
We’ll go over what we know on the subject so you can
decide if your devices fit.

The simplest data collection devices are intended
for manual data entry at a location where a standard
PC isn’t practical. These are typically a keyboard of
some sort, a display (usually an LCD with one to four
lines and 16 to 80 characters), and an a-bit micropro-
cessor driving some battery-backed RAM. Usually
there is a serial link used for uploading the collected
data. This sounds like the type of device you are
describing.

Next in line are collectors that have analog and
digital inputs for direct connection to measuring
devices. The controller will have some programming
capability, generally a dialect of BASIC, to allow
device setup and calibration. These are more expen-
sive because they need precision analog circuitry and
a more capable computer (perhaps with 16 bits or a
faster clock).

Finally, there are complete data acquisition and
control systems that can collect, analyze, and transmit
data in real time. These are more like “real” computer
systems and are usually installed in a fixed location.

They’re hardened against environmental stress and there is nothing that will offer complete protection for
may come in rack-mount versions for industrial equipment (including the outlet box itself) from a
applications. direct or nearby lightning strike.

Although there is some market for the “remote
terminal” type of data collector, these devices are being
squeezed by the low end of the laptop computer market.
For about U.9700 you can now purchase a Toshiba 1000
laptop: a PC clone with a 25x80 LCD display, full
keyboard, 720K floppy drive, serial and parallel ports,
and 640K of RAM.

If frequent lightning strikes in your vicinity pose
a problem, the best remedy is probably an array of fast-
acting lightning arrestor equipment installed where the
power line enters your building. Such protection is
expensive and therefore reasonable only in unusual
circumstances.

Now, admittedly, the Toshiba is much larger and
heavier than your collector and it’s not hardened against
the full range of environmental hazards. On the other
hand, it’s only about US$lOO more than your device and
is far more capable. In fact, what some folks do is write
a dedicated program that handles full-screen data
entry and editing and saves the result on diskette. The
user doesn’t even know that the computer can do
anything else! For most applications, the Toshiba
makes a lot of sense.

We assume that, in your desire to protect a modem,
you want surge suppression on the phone lines rather
than, say, on an RS-232 hook-up. With all the different
technical specifications for telephone systems in vari-
ous parts of the world, it’s difficult to give an exact
MOV circuit. However, we can provide a diagram
showing a common method for phone line protection
here in the U.S.

In short, it’s quite likely that your collector has
value for the market niche that needs small size, light
weight, and relatively limited data entry capabilities.
However, you will have to convince yourself that it can
compete against the devices already on the market that
are attempting to fill that niche, as well as survive
against more capable units like laptops that will always
have a significant cost advantage because of their
volume production.

As the diagram below shows, there are commonly
two phone wires, one with red insulation and one with
green insulation. One MOV is installed across these
wires: another MOV is installed between each wire and
earth ground. Since the peak ring voltages sometimes
approach those of the AC line, I30-VRMS MOVs are
used. With suitable adjustments to allow for conditions
in your country, this type of circuit offers good
protection at reasonable cost.

RED WIRE

You must make a very careful market survey before
proceeding. We can’t help you with that because you
need to collect specific information on all the devices
currently available, decide what features the “next
generation” will have, and how your device will be
positioned against them.

GREEN WIRE

Keeping Lightning off the Lines

I have just completed a power strip built into an
Apple][power supply enclosure with an EM1 filter
and three MOVs. The question is, can I be fully
assured that, in case I forget to turn this thing off and
it gets hit by lightning, the EM1 line filter will get the
kick since it is wired closest to the line cord?

204 Very Useful
205 Moderately Useful
206 Not Useful

Next, what kind of similar protection can I use for
modems? I believe there are commercial gadgets for
this, but what about a DIY version?

In Visible Ink, the Circuit Cellar Research
Staff answers microcomputing questions from the
readership. The representative questions are pub-
lished each month as space permits. Send your
inquiries to:

James Lek
Singapore

INK Research Staff
c/o Circuit Cellar INK

Box 772
Vernon, CT 06066

The power strip you describe should, if properly
constructed, function well in normal use. However,

All letters and photos become the property of
CCINK and cannot be returned.

e
Build a Remote
Analog Data Logger
by R.W. Meister

I n the first part of this
article (Circuit Cellar INK
#6), I described the hard-

ware for a remote data logging
system. In this final portion of the
article, I’ll talk about the software
that controls the hardware, why I
wrote it the way I did, and how it
works.

Why C?

Although C is considered a
high-level, third-generation lan-
guage, it can reference specific ad-
dresses in memory and communi-
cate with hardware at a level that
approaches assembly language. I
could have written this program in
assembly language, which would
have provided us faster execution
time (in an environment that relies
on delays inherent in the hard-
ware), but no one else would have
been able to maintain the program.
In addition, assembly language
would have restricted the program
to one kind of processor. Anyone
with a different CPU would have to
know both M6809 assembly lan-
guage and their own CPU’s assem-
bly language, making translation
difficult if not impossible. By
using a high-level language, I have
attempted to remove the CPU
dependency from the program.
The limited amount of assembly
language is fairly easy to imple-
ment on other processors and may
not even be required in some
implementations. Of course, my
own familiarity and preference, as

well as the “challenge” of the
project, had something to do with
the choice.

The software was a major part
of this project. Parts of the lOOO+
lines of heavily commented C code
are being reproduced so you can
refer to the program while reading
this text.

[Editor’s Note: Complete
software for this article is available
for downloading from the Circuit
Cellar BBS or on Software On Disk
#7. For downloading and ordering
information, see page 62.1

Most C programs, when com-
piled, rely on rather extensive li-
braries of support subroutines,
many of which are large, to handle
transcendental functions such as
sine, cosine, and square root, and
the usually necessary input and
output operations to terminals and
storage devices. Even a simple
program that prints “hello” can
produce an executable file as large
as IOKB! This program was de-
signed to be fully self-contained
(i.e., not require any external li-
brary subroutines) and makes only
minimal use of assembly language
routines. It is very modular, with
only one routine spanning more
than one page of code in the listing.
Because of the lack of support
subroutines from libraries, termi-
nal input and output routines had to
be written for the A/D program.
There are no storage devices to deal
with, and limited formatted output.

Part 2
The Software

Hardware-Specific Programming

I wrote two interrupt service
routines to do very small amounts
of work in the shortest time pos-
sible, essentially setting flags, stor-
ing characters, or counting events.
One handles the real-time clock,
the other handles characters com-
ing in from the device connected to
the serial interface. The M6809
CPU handles interrupts by saving
all of its registers on a stack. It then
transfers program control to the
interrupt service routine which,
when finished, returns control to
the interrupted program using an
instruction that restores all of the
saved registers. These service
routines had to be written in assem-
bly language to properly interface
to the M6809. These routines then
call the C subroutines directly.
There was also an anomaly in the C
compiler that was used on the
M6809 development system: it used
subroutines to perform multiplica-
tion and division when required by
the running program. Some other
systems use in-line code or even
single CPU instructions for these
operations. These routines were
disassembled and rewritten in as-
sembly language as part of the
source program, again to preclude
the necessity of needing any sup-
port library functions. A small
initialization routine was also writ-
ten in assembly language to set the
hardware stack pointer, enable
interrupts, and call the main C
function.

22 ClRCUll CELLAR INK

There are several interrupt
inputs on the M6809. One, called
the Non-Maskable Interrupt
(NMI), is always recognized by the
CPU and can never be ignored or
masked. The others are maskable,
meaning that the CPU can suspend
their action under program control
for some amount of time. The

A/D box uses NM1 for the clock
and the Interrupt Request (IRQ)
line for characters from the ACIA.

The nonmaskable interrupt is
generated by the 601-Hz signal
from the data rate circuit. This
event calls a C function that decre-
ments a “tick” counter. When it
reaches 0, it is reset to 601, and a

Iime C lock
Run Ihro
S c h e d u l e d

Figure 1 -- The flowchart for the data logging software shows that
the program exists as a large loop that waits for data, and calls
one of several subroutines when necessary. Modular programming
and polling techniques mean that there are few situations when data
is lost because of conflicts over CPU time.

Circle No. 11.

New! Modular
Programming System
FROM MODULAR CIRCUIT TECHNOLOGY
This integrated system is Ideal for developers--
it easily expands as your needs grow! All the
modules use a common host adaptor card so you
need just one slot to program EPROMS, PROMS,
PALS and more!

Host Adaptor Card $29.95
. A universal interface for all the programming

modules
. User-selectable programmable addresses

orevents addressme conflicts

Universal Module $499.99
. Programs EPROMS, EEPROMS, PALS,

bi-polar PROMS, 8748 & 8751 series devices.
- Programs lhV8 & 2OV8 GALS (gallium arsenide)

from LATTICE, NS, SGS
l Tests ‘ITL, CMOS, Dynamic & Stabc RAMS
l Load disk. save disk. e&t. blank check. moeram.

auto read ‘master, verify and compare ’ ”
m Textool socket accents ?’ to .6” wide It’s from

840 pins
MCT-MU’

EPROM Module $119.95
- Programs 24-32 pin EPROMS, CMOS EPROMS

and EEPROMS from 16K to 1024K
. HEX to OBJ converter
l Auto, blank check/program/verify
. VPI’ selectable 5, 12.5, 12 75, 13.21 & 25 volts
l Normal, inUigent, mteractlve. and quick pulse

programming algorithm
MCT-MEI’
MCT-MEP-4 I-EPROM Programmer
MCT-MEP-8 R-EPROM Programmer
MCT-MW-lb IbEPROM Programmer

4169.95
$259.95
$199.95

PAL Module $24 9.95
. Programs MMI, NS, TI 20 & TI 24 pin devices
. Blank check, program, auto, read master, verify

and security fuse blow
MCT-MPL
PAL Programming development software
MC6MPL-SOFT s99.95

5 on Reader Service Card Dealers Circle No. 116

Junuafy/Februuty 1 9 8 9 2 3

t h e

Logic Analyzer Card
for the IBM PC/XT/AT

May be Your Answer

State of the art design bring:
fou high-end performance at
ow-end price

32 channels 2K deep

25 MHz state analysis
50 MHz timing analysis

e Variable Threshold
Input Pods

8 Single Slot Design

b Multi-level triggering

b Selective Data Capture

Software Perforniance
Analysis

6 Disassemblers for
popular 8/16 bit
microprocessors

Q Test Development
Language supports ATE
applications

Friendly User Interface

F r o m $13’35

Sa t i s f ac t i on Gua ran t eed
or your money back

BNNQTEC
DESB@N INC.

14640 Firestone Blvd., Ste. C
La Mirada, CA 90638

Tel: 714-521-5454

“seconds” counter is incremented.
The CPU then returns to the part of
the program that was being exe-
cuted when it was interrupted.
Later on, the program recognizes
that the “seconds” have changed,
and adjusts the real-time clock. In
a similar manner, characters re-
ceived by the ACIA generate an
interrupt that calls a C function.
This function resets some pointers
if the input buffer is empty, deals
with Ctrl-S (XOFF) and Ctrl-Q
(XON) by setting or clearing a flag,
and then stores the character in the
input buffer. The M6809 logic
disables (masks) any further inter-
rupts from the ACIA while the
interrupt service routine is execut-
ing. When it finishes, the CPU will
acknowledge and deal with any
other interrupts that have occurred
while it was busy. In actuality, the
4800-bps maximum data rate gives
the interrupt service routines all the
time they need to correctly process
interrupts.

Into the klain Loop

The main part of the program is
a big loop that checks to see if: one
second has passed and the real-time
clock needs adjusting; the user has
typed enough characters for one
command; it is time to output a
reading; or a character can be sent
out to the terminal. The attempted
outputting of characters every so
often is known as “polling.” It
depends on the fact that the pro-
gram is looping over and over
again, and judiciously placed at-
tempts at outputting data will allow
the CPU to do something useful
(i.e., output to the terminal) while
waiting for user input or the com-
pletion of an A/D conversion. The
entire software design is based on
small functions that spend very
little time working and put their
results into an output buffer whose
characters are periodically sent to
the terminal.

As in all good programs, we

first initialize the hardware and
storage areas. The PIA needs to be
set up for various input and output
lines. We then tell the ACIA how
many data and stop bits to utilize,
and set up flags and buffer pointers
as appropriate. A sign-on message
is loaded into the output buffer,
part of it is output in a loop, then
we enter the main program where
the rest of the sign-on message is
output as part of the regular polling
operation. At this point the pro-
gram loops, processing the real-
time clock, accumulating user
command input, taking readings
and outputting them (if any have
been scheduled), and attempting to
output characters to the terminal if
any remain in the output buffer.
While this is happening, the CPU is
being interrupted at a 601-Hz rate
(the real-time clock) and the user
may be typing characters on a
keyboard that cause interrupts so
the characters can be stored and
interpreted as a command.

The flowchart in Figure 1
shows the various operations that
are handled in the main routine.
Most of the time, the program is
looking for something to do. When
you complete entry of a command,
the program performs the appro-
priate action according to the
command letter and values associ-
ated with it. Each command rou-
tine uses very little processor time,
and feeds all program-generated
output into one periodically polled
output buffer. In this way, time-
critical events can still occur with a
high probability of being detected
and handled. For example, the “R”
command reads the specified chan-
nel by: selecting channel 0 (to get
the temperature sensor reference
voltage), reading the voltage, se-
lecting the specified channel, read-
ing its voltage, then selecting the
original channel again (because the
scheduler expects the correct chan-
nel to be ready). Now that a valid
reading has been obtained, the
channel’s formatting information

t

sets up temperature conversion,
decimal point locat ion, time-
stamping .parameters, and places
the value in the output buffer. This
reading will be sent to the terminal
along with any other buffered out-
put when normal polling takes
place.

The MAIN program also keeps
track of the time spent between
typed characters. When you are in
the middle of entering a command,
the program simply places the
characters into an input buffer and
doesn’t act upon the line until it has
been terminated with a Return. If
you begin entering a command and
delay more than 10 seconds be-
tween any two characters, the
program cancels the line and re-
verts to its normal polled operation.
This time-out feature deals with
occasional line noise when using
the A/D box with a modem.

The SCHED routine is com-

plex, dealing with the event tables
that govern which channels will be
read, how many seconds elapse
between readings, upper and lower
limits, and channel formatting
data. The MAIN program has
already stored this information in
several tables that contain all of
these parameters along with which
channels will be processed. If a
desired active channel is in one of
these tables, then a fresh A/D
sample is taken, the next channel is
selected, and the value is formatted
according to temperature conver-
sion. The elapsed timer is decre-
mented by 1 each time the sched-
uler is called, and if it gets to 0, the
channel’s value is output. If either
an upper or lower limit is set, and
the current value exceeds either
limit, then the channel’s value is
output. By selecting the next chan-
nel immediately after reading the
desired one, the A/D converter has

adequate time to sample its input
before a new value is requested by
the program, especially due to the
extra reading that is necessary
when the input voltage changes
polarity. With 16 different inputs,
the box has no idea of the voltage
level it will have to convert as it
scans from channel to channel.

The scheduler is governed by
two very important data structures.
One is an array of 16 channel
parameters that contains lower and
upper limits, time interval, time
remaining, current value, and some
individual bits that are set by the
channel-specific commands in the
MAIN program (listed in Table 2).
All of the information that the
scheduler requires to process a
given channel is kept in this array.
Upper and lower limits are checked
only if they have been specified.
The time remaining is counted
down each second and reset to the

Powerful, Low-Cost Data Acquisition
and Control with Commodore C64 & Cl28

l/O Board
with ROM cartridge socket

Model al $119.

Original Ultimate Interface
Universally applicable dual 6522 versatile interface adapter board.

Model 64lF22 $169. Additional $149.
18Channel, 8-bit analog-to-digital conversion module.

Requires model 64lF22. Model 64lFIADC0816 $69.
Interface boards include extensive documentation and program
disk. Manuals available separately for examination. Call or write
for detailed brochure.

Resources for Serious Programmers.
l Symbol Master Multi-Pass Symbolic Disassembler. C64 & C128. $49.95
l PTD6510 super-powerful Symbolic Debugger. C64. $49.95
l MAE64 6502/65CO2 Macro Editor/Assembler. $29.95
l C64Source Code Book. Kernal and Basic ROMs. $29.95

SCHNEDLER SYSTEMS
Dept. C, 25 Eastwood Road, P.O. Box 5964

Asheville, North Carolina 28813 Telephone: (704) 274-4646

Circle No. 122 on Reader Service Card

GIVES A NEW DIMENSION TO PERSONAL COMPUTING The amazmg Voice Master Key
System adds voice recognmon to just about any program or appbcatlon. You can voice com-
mand up to 256 keyboard macros. Requires under 64K. Instant response time and high
recogmbon accuracy Works wllh CAD, desktop pubkshing. word processor, spread sheet,
games, even other TSR programs! Voice Master Kay can also be called from within a program
for addmg voice recognibon to custom applications. A genuine productivity enhancer. Easy
and fun to use-the manual has you up and running in under an hour A price/performance

breakthrough equal to other
systems costing $$$ more!.

ALL HARDWARE INCLUDED
Consists of a short plug m board
that fits in any available slot. Exter-
nal ports Include mlcrophone and
lme level inputs. High gain flat
response headset microphone in-
cluded. High quality throughout.

ONLY $129.95 COMPLETE

ORDER HOTLINE: (503) 342-1271 Monday-Friday, 8 AM to 5 PM Pacific Time

Add $5 for shippmg and handlmg on all orders. Add an additional $3 for 2nd day delivery. All
goods shipped UPS. Master Card and VISA, money order, cashiers check or personal
checks accepted (allow a 3 week shlppmg delay when paying by personal check). Foreign
inqumes contact Covox for C&F price quotes. Specify computer type when ordering. 30 DAV
MONEY BACK GUARANTEE IF NOT COMPLETELV SATISFIED. ONE YEAR WARRANTY ON
HARDWARE.

Call or write for FREE Droduct catalog.

P

time interval when it gets to 0.
Another array or list is generated
by the INILIST subroutine every
time a command is processed. This
list contains the channel number of
every channel that is currently
active as defined by certain bits in
the individual channel’s parameter
array. Once each second, the
scheduler processes only those
channels whose numbers are in this
short list rather than all channels.
This eliminates the delay waiting
for the A/D conversion to finish on
channels that have nothing con-
nected to their inputs. Channel 0 is
always entered in the list as the first
and last channel for temperature
conversion.

Another important routine,
GETAD, actually reads and forms
the value from the A/D chip. This
routine is the only one that must
actually spend time waiting for
something. While it’s waiting,
however, it attempts to send char-
acters out to the terminal. When the
A/D chip has completed sampling
the selected channel, its EOC (End
Of Conversion) signal is detected
and GETAD starts accepting digits.
The first digit becomes the thou-
sands digit. The hundreds digit is
next, then the tens digit, and finally
the units digit. Other status infor-
mation accompanies the thousands
digit and is dealt with after a value
has been accumulated. If the sign
bit is one, then the value is negated.
If the value is zero and this is the
first of two possible readings for
this particular channel, then the
process repeats to obtain a valid
reading due to the change in polar-
ity anomaly discussed earlier. If
the overrange bit is one, a value of
9999 is returned. The digits are
presented to the program at ap-
proximately 5000 per second, but
even if the program misses one,
they continuously repeat for the
entire time between sampling. In
actuality, the program operates fast
enough to never miss a digit.

One of the first routines writ-

main0
(

register struct CHAN * c;
register int i; /* general integer */
int foo; /* dummy variable */

/* initiali se hardware and software once only */
inimem(1); /* all variables */
inilist() ; /* channel list */
inithw(); /* PIA and ACIA */
foo = (ocount / 2) + 1;
while (ocount >= foo)

outco; /* force half of string out */
while (gchar() != -1)

: /* empty input buffer */

loop: /* main processing loop */

/* handle real-time logging clock */
if (seconds >= 60) (

seconds -= 60; /* in case someone takes a long time */
if (++minutes >= 60) (

minutes = 0;
if (++hours >= 24)

hours = 0;
)

/* output characters in buffer */
outco; /* output something if possible l /

/* handle keyboard characters in buffer */
if (icount) /* characters in input buffer? */

gline(); /* deal with them */

/* handle timeout to resume scheduler */
if (onesec > TIMEOUT) (/* waited long enough? */

schar('^'); /* output ctrl-U */
schar('U'); /* "hU" means line ignored */
schar(CR); /* output cr or cr/lf */
lpos = lbuf; /* reset pointer */
onesec = inhibit = 0; /* resume */

)

/* handle scheduler */
if (onesec AND !inhibit) /* clock requesting service? */

sched(); /* do appropriate things */

/* handle completed command line */
if (eol) (/* end of input line? */

parse0; /* break it up */
if (!(error)) (/* parsed successfully */

c = (struct CHAN *) &ad[chnum];

switch (cmdltr) (/* see what to do */
case ‘A’: /* set clock at value */

i = cmdval / 100;
cmdval = cmdval - (i * 100);
if (i >= 24 OR cmdval >= 60)

goto erred: /* invalid time value */
else (

hours = i; /* set clock */
minutes = cmdval;
seconds = 0:

1
break:

case 'C': /* crlf handling */
crlf = cmdval:
break;

case 'D': /* decimal point */
c->mode &= (-1-3);
c->mode I= (cmdval & 3);
break:

Listing 1 -- (continued on page 27)

case 'E': /* echo handling */
echo = cmdval;
break;

c a s e ‘I’: /* interval time */
if (cmdval) /* value to use */

c-Xmode I- IBIT:
else /* no value, turn mode off */

c->mode &= (-l-IBIT):
c-z&left = c->intrvl = cmdval;
break;

case ‘L': /* low limit */
c->mode I= LBIT;
c->lolim = cmdval;
break:

c a s e '0': /* once-only mode */
c->mode &= (-l-OBITS);
if (cmdval)

c->mode }= OBIT;
break:

case 'P': /* parity handling */
parity = cmdval & 3:
break:

c a s e 'RI: /* read a/d */
i = select(O): /* select zero */
getad () ; /* bogus reading */
getado; /* channel zero value */
chOva1 = advalue;
select(chnum); /* select new */
;zEJi[;: /* bogus reading */

select(j);
/* true value */
/* select previous */

if (i = (c->mode & TBITS))
dotemp(i); /* convert for temperature */

log = (c->mode & WBIT):
dot = (c->mode & DOTS):
outad(chnum,advalue); /* show value */
break;

case 'S': /* status */
c = (struct CBAN *) &ad[O];
sumdig = 1: /* flag for active channels */
for (i = 0; i < NUWCBAN; ++i) (

if (c->mode h SBITS) (
dostat(c,i);
sumdig = 0; /* got one */

)
++c: /* next */

)
if (sumdig) (/* anything? */

schar('N');
schar('o'):
schar('n');
schar('e*);
schar(CR);

1
break:

case 'T': /* temp mode */
c->mode &= (-l-TBITS);
cmdval &= 3:
if (cmdval & 1) /* centigrade l /

c->mode I= CBIT;
if (cmdval L 2) /* fahrenheit */

c-zmode I= FBIT;
break; /* both on means kelvin */

case 'U': /* upper limit */
c->mode I= UBIT;
c->hilim = cmdval;
break:

Listing 1 -- (continued on page 28)

THE INTERCHANGE”
Bi-diitional DataMigration Facility
for IBM PS/2, AT, PC, PORTABLE
and Compatiblee

Featuree:
*Parallel port to parallel port.
*Economical method of file tranefer.
*Bi-Directional file transfer easily
achieved.

*Support8 all PS/2 systems
(Models SO, 60, 60, and 80).

“Supportr IBM PC, XT, AT, Portable
and 100% compatibles.

*Supports 3 I / 2 inch and 5 If 4 inch disk
transfers.

*Supporte hard disk transfers.
‘Supports RAMdisk file transfers.
*The SMT 3 Year Warranty.
ONLY $39.95

FastTrap’”
The pointing device of the future ie
here!

*Two and three
axis pointing capability.

*High resolution
trackball for X and Y axir input.

*High resolution fingerwheel for Z axis
input.

*Use with IBM”PC’r, XT’s, AT’s and
compatiblea.

*Three input buttons.
*Full hardware emulation of Microsoft @
Moure.

*Standard RS-232 serial interface.
*Includes graphics drivers and menu
generator.

*Easy installation.
*l year warranty.
*Made in U.S.A.

ONLY $149.00

LTS/C Corp.
167 North Limestone Street
Lexington, Kentucky 40507
Tel: (606) 233-4166

Orders (800) 872-7279
Data (606)252-8968 [3/12/2400 8-N-l)
VISA, Mastercard, Discover Card,
TeleCheck

Circle No. 117 on Reader Service Card

s-

ten was PARSE, the user command
parser. This routine separates the
typed input line into its various
parts and validates each compo-
nent. PARSE deals directly with
the user’s input and is very strin-
gent and demanding on exactly
what it will let squeeze through.
The rest of the software expects
good data, so this routine has to
ensure that valid commands pass
and invalid commands don’t.

A command is formed from
numbers and letters. You enter a
string of optional digits specifying
the channel number from 0 to 15,
followed by a letter, which can be
upper or lower case specifying the
actual command to be performed,
then another sequence of optional
digits which may be preceded by a
hyphen to indicate a negative
value, and terminated with the
Return key. For example, 3 15, 10
L 1500, 10 U -1674,8 D 3. Blanks
may be inserted for readability but
they will be ignored. Since 16-bit
integers are used for variables
within the program, the values
must be between 0 and 65535. In
the computer’s numbering system,
65535 is equal to -1, 65534 equals
-2, and so on. To make the box
more human compatible, a negative
number is accepted and converted
to its equivalent 16-bit value. This
value is used by some commands
where a value is significant; it is
ignored by other commands. Any
characters other than numbers,
letters, and hyphens are eventually
stripped from the input data. When
you terminate the line by pressing
Return, the command is broken
down into its three components. If
any of the numeric parts are miss-
ing, they will default to a value of
zero. Any input line that does not
meet the above format criteria is
ignored and an error indication
consisting of a zero value for chan-
nel 99 is output to the terminal as
99 0000. If the value presented
exceeds the usable range of the
particular function, then undeter-

28 ClRCU/r CELLAR INK

case 'W': /* whether to log or not */
c->mode &= (-l-WBIT);
if (cmdval)

c->mode I= WBIT;
break:

case 'X': /* miscellaneous functions */
if (cmdval == -1)

inimem(0); /* reset all channels */
else if (cmdval == -2) (

c = (struct CHAN *) &ad[O];
for (i = 0; i < NUMCHAN; ++i) (

c->tleft = 1; /* synchronize */
++c: /* next */

)
1
break:

case 'Z': /* zero mode, time, limits */
c->tleft = c->intrvl = c-=-mode = 0;
c->lolim = c->hilim = c->curval = 0;
break:

) /* end switch */
inilisto; /* update channel list */

)
else (

erred:
log = dot = 0; /* output as 0000 */
outad(99,O); /* channel 99 is error */

\
inhibit = eol = 0; /* accept another line */

)
got0 loop: /* loop until power turned off */

) /* end main0 */

Listing 1 -- (continued from page 27)

getad (1
(

/*

register char * p: /*
register int bed;
int status: ;:
int zflag:
int tot: ;:

p = (char *) PIA; /*
zflag = 1:

again:
tot = -1:
bed = p[2]; ;:
while (!(p[3] & 0x80))

outco: /*

get a/d reading */

--> port */
BCD digit */
negative, overange */
zero reading flag */
timeout counter */

setup pointer */

set timeout delay */
dummy read clears flag */
(/* MSB = end of conversion */
output something while waiting */

if (-- tot == 0) (
advalue = 8888; /* timed out waiting for ready */
return: /* that's all, folks */

)
)

while (!((status = ~123) & 0x80))
: /* wait for thousands digit f/

advalue = (status & 0x08) ? 0 : 10: /* (0 or 1) * 10 */

while (!((bcd = p[2]) & 0x40))
: /* wait for hundreds digit */

advalue += (bed & OxF); /* merge it in */
advalue *= 10;

while (!((bcd = p[2]) & 0x20))
/* wait for tens digit */

advaiue += (bed & OxF): /* merge it in */
advalue *= 10;

Listing 2 - (continued on page 29)

i

while (!((bcd = ~(21) & 0x10)). /* wait for ones digit */
advaiue += (bed & OxF): /* merge it in */

if ((status h 0x09) == 1) /* overrange? l /
advalue = 9999; /* set error value f/

if (!advalue AND zflag) (/* if first reading zero */
zflag = 0; /* set for final reading f/
got0 again; /* and do it again */

)

if (!(status & 0x04)) /* negative polarity? */
advalue = -advalue; /* invert value */

) /* end getad() */

Listing 2 -- (continued from page 28) A Subroutine for Every Job

parse (1I
I

/* parse command line */

register char * p: /* -> line buffer */
register char * q: /* -> line buffer */
int sign; /* value sign */

p = q = lbuf: /* prepare to verify */
while (*p) (

if (*p == '-1 OR (*p >= '0' AND *p <= '9') OR
(*p >= 'A' AND *p <= '2'))
*q++ = *p: /* only allow these characters */

++p;
)
iq = ‘\0l; /* null-terminate */

p = lbuf; /* setup pointer */
cmdval = chnum = error = 0; /* init variables */

while (*p >= '0' AND *p <= '9') /* channel number is first */
chnum = chnum * 10 + (*p++ - '0');

if (chnum >= RUMCRAR) /* invalid channel number? */
error = 1; /* seems to be */

if (*P) /* then command letter */
cmdltr = *p++; /* was there a command? */

else
error = 1; /* apparently not */

'sign = 0: /* presume positive value */
if (*p == 8-t) /* minus sign? */

sign = *p++; /* remember it */

while (*p >= '0' AND *p <= '9') /* then command value */
cmdval = cmdval * 10 + (*p++ - '0');

if (sign) /* negative number? */
cmdval = -cmdval; /* negate result */

/* end parse0 */

Listing 3

mined results may occur. a reading would be taken every 30
A typical command would be seconds. To stop the Interval mode

3120 which says to set channel 3 to operation, a value of 0 is given, as
Interval mode and take a reading in 310 or 31 since a missing number
every 20 seconds. If the command defaults to zero.
was entered as 130 then channel 0 While you are entering a com-
would be set to Interval mode and mand, the characters are placed

into an intermediate buffer where
rubout or backspace character ed-
iting can be applied. When Return
is detected, the intermediate buffer
is cleaned up and passed to the
command parser which separates
the components. Lower-case char-
acters are converted to upper case
and nonprintable characters are
eliminated. The contents of this
buffer are further cleaned up by
the command parser when a com-
plete line has been entered.

The subroutines can be di-
vided into classifications such as
once-only, input or output format-
ting, interrupt, and general. De-
scriptions of each subroutine may
be found in Table 1. A few of the
key routines are included in this
article. If you have downloaded the
entire program, you can follow all
of the descriptions in detail.

The rest of the source file
contains necessary equates and ad-
dresses required for a ROM pro-
gram to interface to the M6809
architecture. These values are
stored at hex addresses FFF6
through FFFF as vectors.

A Comprehensive Command Set

The A/D box has a simple,
concise command entry format as
described above. Since there are
only 26 letters available for com-
mands, I attempted to make as
many as possible memorable by
using the first letter of the com-
mand word as the actual command.
The commands can be split into
three groups: communication para-
meters, initial setup, and channel-
specific commands. The channel-
specific commands manage data in
the channel parameter array which
eventually governs the scheduler’s
operation. The complete list of
commands is shown in Table 2.

If you build your own data
logger from the information in this

Junuury/Febfuary 1989 2 9

3ROE GE
RESIGN RO B O T F O F

THEORIGINATION Of
IXFICTING GRRPHIc

E NGINEERING
FI MRNUQL PRINTED
CIRCUIT Cf7O/CGM

SYSTEM

7SIC SIB.00 POSTPQID:
C6f7 3 COLORS 12 LFlYERS
6’4 BY 64 I N C H WORKSPRCE
FlNY GRID TO 0.001 INCH
RUNS ON FINY PC COMPFlTIBLE
15 LINE WIDTHS
DOT MFlTRIX OUTPUT
200KB W~U;M~~TION ON

16 WORK RREFIS GFIVEF)BLE
STITCH BETWEEN LAYERS
ZOOM RND PF)N TO F)NY SCALE

ZA’FINCEO 86100.00 POSTPFIID:
FlBOVE FERTURES
EW RESOLUTION 15 COLORS
LFIRGER JOBS
MOUSE
F)DVQNCED E D I T I N G
PRINTED MQNURL

1

sched()

Circle No. 110 on Reader Service Card

30 ClRCUlT CELLAR INK

register struct
register char *
int chanel;
int tb;
char * debug:

/* one-second reading processing */

CHAN *
chptr:

;:
/*

C; /* --> a/d parameters */
/* channel pointer */

current channel */
temp bits */
DEBUGGER */

debug = (char *) PIA;
debug[l] = 0x3~2: /* set DEBUGGER */

chptr = chlist; /* -> channel list */

while (chptr[l] >= 0) (/* stop when hit -1 terminator */
if (ocount >= FULLBUFF) /* room in buffer? */

break: /* can't do anything else if not */

chanel = *chptr; /* current channel */
c = (struct CHAW *) &ad[chanel];
getado: /* take a reading */
select(chptr[l]); /* select next channel */

if (chptr == chlist) (/* temp cal? */
chOva1 = advalue; /* save it */
goto skipit; /* done with it */

)

if (tb = (c->mode & TBITS)) /* temp? */
dotemp(tb); /* adjust temp */

c->curval = advalue: /* remember new value */

dot = (c->mode & DOTS): /* set dot position */
log = (c->mode & WBIT); /* set logging option */

if (c->mode & IBIT) (/* interval mode on? */
if (--c->tleft == 0) (/* time to take reading? */

c->tleft = c->intrvl; /* reset time left */
outad(chanel,advalue); /* output value */
goto skipit;

)
I
if (c->mode & ULBITS) (/* limit check? */

if (((c->mode & UBIT) AND advalue > c->hilim) OR
((c->mode & LBIT) AND advalue < c->lolim)) (
if (((c->mode & OBIT) == 0) OR

((c->mode & OBITS) == OBIT))
outad(chanel,advalue);

c->mode I= OLBIT; /* out of limits now */
)
else (

c->mode &= (-l-OLBIT); /* not out of limits */
)

1
skipit:

++chptr; /* on to next channel in list */
)
onesec = 0; /* we did one pass */
select(O): /* reselect first channel */

debug[l] = 0x34; /* clear DEBUGGER */
) /* end sched() */

Listing 4

article, I would expect the parts to
cost between $50 and $100.

Acknowledgements

I wish to thank and acknowl-
edge the assistance of Leo Taylor.
He did all of the hardware design

and is the current user and owner
of the prototype A/D box at his
home. I designed and wrote most
of the software, with much help
from Leo regarding communica-
tion with the ACIA and P1A.m

IRS
207 Very Useful
208 Moderately Useful
209 Not Useful

MAIN, shown in Listing 1, is one big loop that processes the user’s requests. All
routines except interrupt service routines are called from MAIN or from routines that
were called by MAIN.

ASCDIG performs some of the operations for converting a binary value into
printable ASCII digits. It uses repetitive subtraction rather than division. This is one
of the output formatting functions.

DOCHAN outputs the channel number by calling ASCDIG. As with all output
routines, the information is stored in the output buffer.

DOSTAT is called by the status command for each channel to be displayed. It
checks the various bits and values saved in the channel parameter area and outputs a
translation of their meaning.

DOTEMP handles theconversion of a channel’s value according to any temperature
format desired. The channel 0 reading (approximately -1.8 volts) is subtracted from the
current channel’s value in this routine which results in a Kelvin temperature in tenths
of a Kelvin. Appropriate formulas convert this to a Celsius or Fahrenheit temperature.
This new value is then stored as the current channel’s value so limits can be compared
in the scheduler.

DOVALoutputs the channel’s value by calling ASCDIG withvarious powers of 10.
It also places the decimal point where appropriate. As with DOCHAN, the results are
put in the object buffer.

GCHAR removes any characters from the input buffer. The input buffer is filled
when the user enters characters which cause interrupts from the ACIA and subsequent
processing.

GETAD, shown in Listing 2, reads the A/D converter and formats the raw data into
an integer value. The routine takes two readings if the first is eero. It also checks for
overrange and polarity.

GLINE builds a line of input from characters typed by the user. It detects end-of-
line characters (CR and LF), handles rubout and backspace, and echoes printable
characters.

INILIST makes a list of requested A/D channels according to various bits set by the
user’s commands. This list tells the scheduler which channels to process, and is updated
after each command processed in MAIN.

INIMEM initialiees all memory locations used by the program. It also sets up the
copyright notice that is seen when the A/D box is first turned on. This is a once-only
routine.

INITHW initializes the PIA and ACIA when the A/D box is turned on. This is also
a once-only routine.

OUTAD calls DOCHAN and DOVAL to output a reading from the A/D box. It also
appends the real-time clock’s time if desired.

OUTC outputs characters if the ACIA is ready to accept another character and the
user hasn’t typed Ctrl-S to suspend output.

OUTLINE stores a null-terminated line of information in the output buffer. If there
is insufficient room in the buffer, it loops while attempting to send characters to the
ACIA. This is one place where readings can be dropped while waiting for room in the
output buffer.

PARSE, shown in Listing 3, copies characters from the input buffer to the
intermediate buffer, passing only numbers, letters, and hyphens. It then separates this
line of input into its various components and verifies the channel number.

PBIT adds a parity bit to an output character according to your specifications. It
actually counts the bits that are on in the character. While a table lookup might have
been faster, this was more fun to write.

SCHAR stores characters (with parity added) into the output buffer and terminates
each line with CR and an optional LF.

SCHED, shown in Listing 4, handles the one-second reading of all specified
channels. It reads the channel and adjusts the result according to the channel 0 value
and temperature conversion specified, checks to see if the channel should be output at
this time interval, checks to see if it is above or below either of the two limits, and sets
up other parameters as required for formatting the value. The main controlling logic for
automatic operation is in this routine.

SELECT converts the channel number to the appropriate bit configuration
necessary to select one of the two data multiplexers as well as the channel on that
multiplexer. It also saves the original channel number for times when it must be restored.

CINTR is an interrupt service routine that counts clock pulses. When 601 have
occurred, it resets the pulse counter and increments a one-second counter that gets
checked in the MAIN routine.

IINTR is an interrupt service routine that gathers characters from the ACIA. It
strips the parity bit, deals with Ctrl-S by setting a flag that will prevent further
characters from being output, and stores all other characters in the input buffer. These
characters are processed by GCHAR.

RESTART is the assembly language routine which initialiees the CPU and then calls
MAIN, which never returns.

CCMULT and CCDIV are assembly language routines that respectively multiply
and divide two Is-bit integer values using shift and rotate instructions. This method
ensures completion in a finite time regardless of the magnitude of the values being
calculated.

IRQ is the actual code that the CPU executes when it processes a maskable interrupt
from the ACIA. This assembly language routine only calls the IINTR routine.

NM1 is the actual code that the CPU executes when it processes a nonmaskable
interrupt from the 601-HE clock. This assembly language routine only calls CINTR.

able 1 - - The data logging software is very modular, with each
subroutine performing a specific function.

* INTROL-C Cross-Compilers
l INTROL-Mcxdula-2 Cross-Compilers
’ INTROL-Macro CrossAssemblers
Provide cost and time efficiency in
development and debugging of em-
bedded microprocessor systems

All compiler systems include:
Compiler l Cross-assembler l Support
utilities l Runtime library, including
multi-tasking executive l Linker l One
year maintenance l User’s manual, etc.

TARGETS SUPPORTED:
6301/03 l 6801/03 l 6804 l 6805 l 6309
.6SHCll. 68ooo/08/10/12 l 32ooo/
32~a~~a2~6ao20~03o/aai/a5i

AVAlLABLE FOR FOLLOWING HOSTS
VAX & MicroVm Apollo; SUN; Hewtett-
PackardGould PowerNode; Macintosh;
IBM-PC. XT, AT and compatibles

INTROL CROSSDMLOPMEM SYSTEMS
are proven, accepted. and till save
you time, money, effort with your devel-
opment. All INTROL products are
backed bvfull technical suopcrt. CALL
or WRE for facts Now:

647 W. Virginia St., Milwaukee, WI 53204
41412762937 FAX: 414/27&7026

Quality Software Since 1979

Crcle No. 114 on Reader Service Card

Communication Parameters Commands

C - (Default) output a linefeed as well as a Carriage return at the end of each line. C is enabled by any noneero value and disabled
by a tero. The channel number, if given, is ignored.

E - (Default) Echo the input characters back to the terminal. Enabled by any noncero value, disabled by a sero value. The channel
number, if given, is ignored.

P - set Parity according to the value given. Default is sero parity (i.e., the parity bit is always set to 0). A value of 1 sets the parity
bit to 1. A value of 2 sets the parity to even. A value of 3 sets the parity to odd parity. The channel number, if given, is ignored. The
parity of all input characters is ignored by the A/D box.

Initial Setup Commands

A - set internal time-stamping clock time to the value given as hours and minutes. Time in entered in 24-hour format with 1 or 2 digits
for hours, and 2 digits for minutes. The channel number, if given, is ignored. The time clock defaults to 0 hours and 0 minutes when
the box is turned on.

S - show Status of all channels. Both the channel number and value, if given, are ignored. All active channels’ parameters are displayed
as:

cc I = iiii L = 1111 U = uuuu t 0 W

where “cc” is the channel number from 00 to 15; “I = iiii” indicates the interval time in seconds; “L = 1111” indicates the low limit; “U
= uuuu” indicates the high limit, both values displayed according to the decimal point selection; “t” will be either C, F, or K depending
on the temperature conversion in effect; “0” indicates that once-only mode is specified; and “W” means that time stamping is to be
displayed. The “0” can come out as “00” if the once-only mode is in effect and the reading is currently out of range and has been
displayed its one time. Only the currently active parameters will appear on the status line.

X - special functions. The channel number, if given, is ignored. If the value is 65535 or -1, then ALL channels’ parameters are reset
to their power--up conditions. If the value is 65534 or -2, then ALL channels’ interval timers are synchronieed so they will all occur
at the same time if they all have the same interval specified.

Channel-Specific Commands

D - set Decimal point after lst, 2nd, or 3rd digit according to the value given. Normally, readings are output as a number of millivolts,
but you can display it as volts by setting Dl on the particular channel. If you have installed a 1O:l divider network on any channel,
setting D2 will display up to k19.99 volts. Setting DO will remove the decimal point entirely.

I - set Interval time between readings in seconds. This will automatically set up the specified channel for periodic readings by the
scheduler. If the value given is 0, then interval mode is turned off. For example, entering 3110 schedules channel 3 to take a reading
every 10 seconds. The interval mode, if enabled, will produce output regardless of any upper or lower limits.

L - set the Lower limit to the specified value. A reading that is lower than this will be displayed, one that in not will not be displayed.
The “0” command can alter this behavior. The value may be entered with a decimal point (which will be ignored) if desired.

0 - display reading Once-only when it exceeds either the lower or upper limit. This avoids the voluminous amount of output that would
be generated when a channel’s reading is out of limit. When the sampled voltage goes back within the limit range, the channel is reset
such that it will be displayed when it again exceeds either limit. Any value, if given, is ignored.

R - Read the specified channel once immediately. Any value given is ignored. The output is formatted according to the “D”, “T”,
and “W” commands in effect at the time for that channel. The channel parameters are NOT modified by this command. The particular
channel may be read several times by the program before a valid reading is obtained.

T - set Temperature conversion mode. A value of 0 specifies normal voltage readings. A value of 1 converts it to temperature in degrees
Celsius. A value of 2 converts it to temperature in degrees Fahrenheit. A value of 3 converts it to temperature in Kelvin. This command
only performs the appropriate conversion math for the output value. Setting the decimal point after the 3rd digit (with D3) is appropriate
when displaying temperatures.

U - set the Upper limit to the specified value. A reading that is higher than this will be displayed, one that is not will not be displayed.
The “0” command can alter this behavior. The value may be entered with a decimal point (which will be ignored) if desired.

W - enable time stamping or logging. The current time as set with the “A” command is appended to the reading displayed. If the
time has never been set, then the current time is the number of hours and minutes since the box was turned on or last reset. Any value,
if given, is ignored.

2 - reset all parameters for the specified channel. This clears any interval times, lower and upper limits, once-only mode, decimal point,
and temperature conversion to their power-up values. Any value, if given, is ignored.

Table 2 - - The complete command set for the data logger gives you control over most of the important
I/O. processing, and conversion features of the system.

Ctrl
Guest
Editorial

A Call for ’ N K SPOT
Dedication by Ezra Shapiro

M any years ago, I worked for the Forest Service in Oregon. It was a physical, dirty job, slogging overland
into the wilderness to survey for logging roads. Our clothing reflected the realities of this life; we
wore work boots, blue jeans, wool shirts, and hard hats. We chuckled at the weekend hikers who

wandered up and down the trails clad in hundreds of dollars’ worth of bright rip-stop clothing. We knew that
branches, thorns, and rocks could easily shred their flimsy garments; you wouldn’t catch us spending our money
on clothing we knew would be destroyed.

We called these people “equipment kings,” and I’ve noticed the phenomenon repeated in dozens of settings.
Nowhere is it more common than in the computer business. We all know pencil-pushers who purchase killer
‘386 systems to write simple memos, the latest version of dBASE to organize Rolodex data, and humongous
hard disks to schedule appointments with SideKick. Pretty funny, huh? Not really.

A growing percentage of computer users have reached the point where they know their needs and prefer
efficient computer solutions to overkill. They’re frustrated with an industry that demands conspicuous
consumption. Ever watch the face of a user who’s just been told what switching to OS/2 will cost? It’s not
a pretty sight.

I believe these people represent a small but expanding market for new approaches to computing. I receive
amazed stares when I explain that although I use a state-of-the-art Macintosh system for desktop publishing,
the rest of my work is done on a collection of oddball machines: two laptops and a Canon Cat, none of which
runs MS-DOS or UNIX or OS/2. After a couple of dumbfounded questions, my listeners realize that I’m not
crazy, and more than a few of them get very excited as they comprehend that they need not be trapped into
what their dealers are pushing.

All three of my systems are text-processing environments with telecommunications capability, calculating
or spreadsheet functionality, and some form of card-filing or database management. The CPUs are different,
but all share a common trait: software in ROM. The Canon Cat boasts a flexible word processor created entirely
in Forth. The NEC PC-8500 is a laptop with CP/M and WordStar in ROM. And my Cambridge 288 has a
ZSO-based operating system that offers “lazy concurrency,” an implementation of context-switching that
allows me to open multiple programs by using RAMdisk to simulate RAM. With a couple of cables, a null
modem, and a gender changer or two, all the machines talk to each other quite nicely.

Any of these is quite satisfactory for my work as a freelance writer. They are dedicated machines, though
they bear little resemblance to the Wang and Lanier word processors of yesteryear. However, like their
cumbersome predecessors, my dedicated machines will never be obsolete, because they’re good at what they
do. They aren’t “development platforms,” they’re workhorses. Many consumers are moving down this path
as well, though they’re largely unaware of what they’re doing. The sales rep who equips a laptop with Word
Perfect Executive and nothing else, the internal publishing department that buys a Macintosh for PageMaker,
the programmer who chooses a language package because of the integrated editor and debugger--all of them
are building self-contained environments.

With today’s PROM and PAL technology, these environments could easily be encapsulated into dedicated
computers optimized for specific functions. It’s a short step to dedicated database engines, portable tools for
business executives, powerful analytical devices built around the spreadsheet paradigm, and more. While I
don’t see dedicated machines taking the market away from general-purpose computers, there are obvious niches
begging to be filled.

So, you wanna make some money ? All it takes is a good concept and a little dedication.

Ezra Sharpiro is a free-lance writer and publications designer based in southern California.

34 ClRCUlT CELLAR INK

The Home Satellite
Weather Center Part 7

by Mark Voorhees Finishing the Firmware for the
68000 Peripheral Processor

I n the last few months,
I’ve covered a lot of
ground, and we’re still a

ways from the completion of the
Home Weather Center. This time
I’ll cover the remainder of the
68000 Peripheral Processor firm-
ware and provide an overview of an
interface for the Heath ID-4001
Weather Computer (for those plan-
ning to use that unit as their instru-
ment package).

In the last issue, I discussed
concepts for most of the operating
firmware for our Peripheral Proc-
essor (PP). I’ll continue the discus-
sion now with the routines involved
in WEFAX processing. Some of
this may not be clear now since I
haven’t presented the WEFAX
hardware yet. I’ll refer back to this
discussion and review the high-
lights when we build that part of
the project.

B’EFAX Routines

A s e x p l a i n e d l a s t t i m e ,
WEFAX signals are given highest
priority because we can’t control
their transmission. Several factors
come into consideration when
planning for the processing of
WEFAX:

-The original picture consists
of 800 pixels (picture elements)
horizontally and 800 lines verti-
cally.
-The original picture is essentially
monochrome analog video at 4 Hz.

-Special signals are sent
to indicate start-of-
f r a m e a n d end-of-
frame; a l-Hz “Sync
Pulse” can also be de-
coded from the signal.

You need to do some
advance work to handle
memory assignments for
the WEFAX data. The
size specifications of
WEFAX pictures deter-
mine our processing
approach.

If you sample the
signal based on the actual
specification, you need
approximately 800 x 800, or
640,000, memory locations for
storage of the image. If you
sampled all 640,000 points to a
resolution of 8 bits (256 levels), you
would need 640,000 bytes, or
320,000 words, of DRAM memory.
At that rate you could only access
the two most recent images for dis-
play.

Purists would be satisfied with
this level of performance, and, as
the Weather Data Processing Sys-
tem software expands, it may make
use of this configuration. For now,
however, it is a bit beyond the
software’s ability to display on a
PC’s graphics card. Let’s look to
save some space while maximizing
display quality.

You can really only display a
640- x 200-line, 16-color image on
a graphics card at this point, so

make 640 samples/line the sample
rate (you’ll see that the hardware
will appreciate this as well). Also,
only four bits are needed to provide
16 levels of gray. Memory usage
has been dramatically reduced
since 640 samples times 800 lines
equals 5 12,000 memory locations,
and with each holding four bits, we

36 C/KU/7 CELLAR INK

need 256,000 bytes or 128,000
words of memory.

Allowing for memory used for
instrument data, one megabyte of
DRAM can hold six WEFAX im-
ages, with eight more in the second
(optional) megabyte.

I’ll use this configuration as the
basic example for the firmware,
although I’ll allow for different
configurations in the Weather Data
Processing System software, with
the sampling information made
part of the configuration block.

You need to sense the frame
start information, the “line sync”
signal, the timing of the samples,
and the termination, or ending,
signal.

The hardware will be providing

f a status byte with the start, sync,
and end signal sensing information

developed in hardware, so
that part will be relatively
easy. The start signal will
begin the sampling process,
starting the memory save at
a defined division; the sync

signal will define a line start ad-
dress; and the end signal will end
the process.

I’ll use Timer A of the 6890 1 on
the CPU card to generate interrupts
for sample starts. This is a crystal-
clocked timer set for the sample
rate at configuration time. The
interrupt is enabled only after a
frame start signal is received, and
the timer is reset at each sync pulse.
Thus, our samples should be as
uniform as possible (some signal
tracking is taking place in the
hardware to help with stability of
frequency).

There are two steps to pro-
gramming the timer for the proper
sample rate: the selection of a
prescaler, and the count data.

The sample time will be de-
fined as line rate divided by the
number of samples per line. Insert-
ing numbers, we have 250 ms per
line divided by 640 samples per
line, giving one sample every
390.625 microseconds.

Now, since the clock frequency
is 2.4576 MHz (a period of 407 ns),
the timer is set to interrupt every
960 clock pulses (nominal).

(For the “math wizards” among
us: working backwards from our
“convenient figure,” you’ll notice
that the actual sample count ends
up to be 639+ samples per line.
Since the line length, of necessity,
includes the sync pulse, which is
unusable video, we’ll accept this
condition. In reality, the missing
sample won’t even be noticed.)

The timer provides for prescal-
ing values of (divide by) 4, 10, 16,
50, 64, 100, and 200, as well as an
S-bit count data byte, so it will
easily meet our needs.

A count of 960 is convenient in
another way. Since it is an even
multiple of eight, several different
prescaler and data byte combina-
tions can toggle the interrupt.
Looking ahead to future needs,
when you might sample either 320
or 1280 times per line, you will
have the most control by using the
divide-by- 16 prescaler. The data
word then becomes 3C hex for
current needs, 1E hex for the 320
samples per line possibility, and 78
hex for the 1280 samples per line
possibility; all are within the 8-bit
data byte limitation.

Once the PP receives the inter-
rupt, the service routine will have
to perform only a few tasks. First,
immediately sample the WEFAX
signal (to maintain the most even
sample rate, this must be done first
whether we need the sample or
not). Next, check to see if the sync-
pulse or end-of-frame flags have
been set by hardware. If so, save
the most recently processed sample
and perform routines to advance to
the next line (or reset for the next
frame) before returning to the
interrupted routine. If the flags are
not set, save that recent sample we
mentioned, prepare addressing for
the next memory location, and re-
turn from the interrupt.

You’ll see in a future install-
ment that the processing hardware
provides 8-bit digitized samples.
Once again, this gives latitude for
future enhancements. For now, I’ll
use the four most-significant bits
for the 4-bit (16-level) sample.

The WEFAX service routine
builds the 16-bit-wide memory
word in “scratchpad” static RAM
using bit rotations to place the
“nibble” in its proper position.
(Note that the PC’s processing pro-
gram will take this data after it’s
downloaded and disassemble it for

January/February 1989 3 7

use in the graphics card).
There is one other “housekeep-

ing” byte to manipulate during
setup of the system. The WEFAX
processor can get its demodulated
audio from one of two sources: the
integral receiver, which 1’11 present
in a future article, or an external
source. The software switches
from one unit to the other by writ-
ing the “housekeeping” byte, and
monitors for the presence of an
audio carrier by reading the byte.

The only other area to be con-
cerned with is the WEFAX receiver
control, and this will be essentially
a set-and-forget situation. The in-
tegral receiver receives on 137.5
MHz and 137.62 MHz, switched by
the control byte. An AGC-volt-
age-monitoring circuit will signal
the system via a status byte and
interrupt if RF signal is lost. The
RF loss will cause any WEFAX pic-
ture in progress to be discarded (it

OS8421 ; BOARD SELECT
PROGRWMING

HEADER

H201
1 2

H202

(ONE JUMPER IN PLhCE
O N EhCH MENORY BOhRD)

IF USlNG ONLY ONE MEMORY
BO.‘,RD. SOLDER h JUMPER
BETWEEN CNlA-14 b CNIB-2.

D,?T,? RATE HEADER

H301
I 2

300m

Figure 1 -- Jumpers for DRAM
Memory Board, and Port Card
jumper for default ID-5001
data rate.

wouldn’t be complete), and inhibit
any further processing until signal
is restored.

That pretty much covers the
principles of the firmware package.
From time to time I may find it
necessary to expand on the discus-
sion in certain areas, and I’ll also
provide you with enhancement in-
formation as it becomes available.

[Editor’s Note: Software and
EPROM listings for this article are
available from the Circuit Cellar
BBS or on Software on Disk #7. For
downloading and ordering infor-
mation, see page 62. In addition,
assembly listings for this article are
available from the author for $6.00.
See the sidebar accompanying this
article for more information. /

Peripheral Processor Startup a n d
Initial Testing

Rather than require a compli-

TO ID-4001

Figure 2 -- The Heath ID-4001 interface. (Note: This circuit could be used directly with a computer’s
parallel port.)

38 C//?CU/T CELLAR INK

5

cated procedure for initial testing,
I’ve built most of the functions into
the firmware. Before booting the
unit, however, remember to check
the voltages and polarities on all IC
sockets before installing the ICs,
check the voltage on the MAX232
before installing the 68000, and
install all jumpers (see Figure 1)
before fully testing the unit. You
should first see a title display,
followed by the test sequence dis-
plays described in the last issue,
followed by the “NO CONFIGU-
RATION” message. If everything
is well at this point, you’ve cleared
the major hurdle and the basic
hardware is functioning.

I’ll devote much of the next
installment to the PC Host software
needed to configure the PP and
download and process its instru-
ment data.

Instrument Interfacing

As mentioned in the past, I’ve
initially provided the PP with the
ability to handle data from the
Heath ID-400 1 and ID-500 1
Weather Computers. The ID-5001
requires only the presence of a

serial port and the necessary firm-
ware routines; the ID-4001 is a bit
more complicated.

When Heath introduced the ID-
4001, they provided a parallel port
for moving the system’s data to the
outside world. Their intention was
to interface the Weather Computer
to another computer for more
complete record keeping. How-
ever, my instincts say that the port
probably was intended by the de-
signer to be used as a remote display
driver, and it would be very easy to
use for this purpose. Using the port
for complex computer interfacing
is another story.

The computer port output data
consists of the seven-segment rep-
resentation of each of the ID-
4001’s front-panel display digits;
the four digit-select lines deter-
mine which digit’s data is on the
output lines.

[Editor’s note: See “The
Home Satellite Weather Center,
Part 6” in Circuit Cellar INK #6 for
more detail on the data from the
Heathkit Weather Centers.]

So far, so good. You also need

to monitor the four-bit (one-of-
sixteen) wind direction data lines
and use the strobes to validate the
data.

You could let the PP take in all
of this information and sort it as
necessary, but it would be a massive
waste of processor time to do so.
Remember, you need to make sure
that the precise and least control-
lable input (the WEFAX data) has
the priority on processing time.
You can’t let the PP also be a slave
to the ID-4001, catching nonse-
quential information “on the fly.”
In such a scenario, the PP would be
responsible for capturing the data,
converting it to ASCII, validating it
(for instance, if a temperature
changed from 99 degrees to 100 de-
grees during a sample, you might
end up with either 199 degrees, or
00 degrees), and storing it in the
proper order.

That much housekeeping
would be more easily performed by
a small hardware interface, so I’ve
designed the device shown in Fig-
ure 2. The unit serves a number of
purposes:

- It converts the seven-segment

TO PERIPHERhL P R O C E S S O R

) J
CONTROL BUS

Figure 2 (continued) -- Cable assemblies for connection to rain gauge and humidity instrument. ‘Remove
decoder/driver/latch IC for each digit and plug in the corresponding DIP plug. Install the IC in
the ribbon’s socket.

1989 39

* _...a

data to ASCII.
- It stores the numerical data in a
simple on-board SRAM for later
transfer to the PP.

- It buffers the wind direction data
for access by the PP.

- It provides for data conversion of
the separate Digital Rain Gauge
and the separate Humidity Indica-
tor.

There’s no real “black magic”
in this project; a cable connects the
ID-40013 parallel port to the inter-
face, where (in the write mode) the
seven-segment data is used with
the strobe lines to address the
ASCII-conversion EPROM. The
data lines from the EPROM be-
come the data lines to the SRAM,
which is addressed by the digit-
select lines. The data from the
other instruments, if used, is
strobed in on alternate digit-select

passes from the ID-4001 (A4 as-
serted disables the incoming data
lines from the ID-4001, and polls
the data latches involved with the
extra instrument[s]).

The digital rain gauge and the
humidity indicator were never in-
tended to be interfaced to any-
thing, so you’ll have to be a little
more clever with them. They do
produce accessible data: the dis-
plays are driven by seven-segment
drivers, so we have the same con-
vertible data format as we have
from the ID-4001. I take advantage
of the segment drivers by using a
custom-made ribbon cable consist-
ing of two DIP plugs and a DIP
socket. Remove the segment driver
IC, plug the instrument end of the
cable into the now-vacated socket,
plug the IC into the cable’s socket,
and you have the data available at
the interface end. I’ve designed the
interface to minimize the load on
the segment driver, which is really

only “monitored” anyway.
The read sequence is controlled

by the PP’s parallel port. The
parallel port asserts its strobe line,
causing the SRAM to be deselected
from write mode on completion of
the current digit-select cycle (digit
select = 0, A4 negated). The
parallel port then receives the ac-
knowledgement through the input
strobe line and begins a sequence of
placing an address on the port out-
put lines and reading the port input
lines for the data until all addresses
are read. The port output strobe is
negated, and the write sequence
resumes.

We’ll provide power to this in-
terface from the PP. The only other
connections besides those to the
parallel port would be to the ID-
4001 and the other instruments via
short lengths of ribbon cable.

That wraps things up for this
issue. Next time, 1’11 discuss the PC
Host software for communications

/ DeveloDment Tools
Pse”doSamLJss-assemblers $50.00
PseudoMax Cross-simulators $100.00

PseudoSid Cross-disassemblers $100.00
PseudoPack Developer’s Package $200.00($50.00 Savings)

POWERFUL
Pseudocode is pleased to announce the release of an extensive line o
professional cross-development tools. Toots that speed development o
microprocessor based products. Fast, sophisticated macro assemblers tc
generate your program code. Versatile simulators that allow testing ant
debugging of the program even before the hardware exists. Easy to USC
disassemblers to help recover lost source programs.

AFFORDABLE
Until now, powerful tools like these have been priced from 5 to 10 time!
Pseudo&de’s price. Putting these time saving tools out of reach of all bu
large corporate engineering departments.

BROAD RANGE OF SUPPORT
0 PseudoCode currently has products for the following microprocessor

families (with more in development):

Intel 8048 RCA 1802.05 Intel 8051 Intel 8098
Motorola 8800 Motorola 8801 Motorola 6611 Motorola 68c?i
Hitachi 6301 Motorola 8808 WDC 65co2
Rockwsll EYJoz Intel 8080,@5

MOSTechnolog 69X
Ioo Hitachi HD84180

Motorola 68ooo.6 Motorola 88010
Zllog Z&J, NSC

a To place an order call one of our dealers:

Programmer’s Connection USA (800) 336-l 166 INTL (216) 494-3781

KORE Inc. (616) 791-9333
PseudoCode

P.O. Box 1423
Newport News, VA 23601-0423

(804) 595-3703

Circle No. 121 on Reader Sewice Corr!

lBCC52 BASIC-52 COMPUTER/CONTROLLER I
The BCC52 Computer/Controller is Mi-
cromint’s hottest selling standalone single-
board microcomputer. Its cost-effectivearchi-
tecture needs only a power supply and termi-
nal to become a complete develo

i?
em or

end-use system, programmable in ASIC or
machine langua e. The BCC52 uses Mi-
cromint’s new 5&52-BASK: CMOS micro-
processor which contains a ROM-resident 8K

bK F
te floatin oint BASIC-52 interpreter.

T e BCCS contains sockets for up to 48K
bytes of RAM/EPFfOM, an ‘intelligent” 27W
126 EPRCMaprogrammer, 3 parallel ports, a
senal termm port mth auto baud rate selec-
tion. a serial pnnter port, and it is bus compat-
ible with the full line of BCGbus expansion
boards. The BCC52 bridges the gap between
expensiveprogrammablecontrollersandhard-
to-justify price-sensitive control applications.
BASIC-52’s full floatin -point BASIC is fast and efficient enough for the most
complicated tasks, wht e Its cost-effective design allows it to be considered for9.
many new areas of implementation. It can be used both for development and
end-use a lications..
Since the I?A.%-52 is bus oriented, it supports the following Micromint expan-
sion boards in any of Micromint’s card cages with optional power supplies:

KC33 3port lb &p&an board KC16 Dud tineI swld IK) board
BCC400 .S-Chati opbisdatd ID expaticn bwd
F!CC4OR Bchanel r&y cuput bard

KC55 RototVping bxud
KC45 Steppsr M&x b a d

BCCS2 BASIC -52 Controller board
~~~C~~~~S~.~  ‘52 PAK'  Starter System

Incb~:BCC52  ROMA6B UTIL. 0201.  MBO6.  UPS10 ? -800-635-5355

BC6.52 BFZM ICQ Qtlan:iiy P r i e s Tel: (203)  671-6170

%XS!S: Lower  mer all-CMOS  VerSion

No*:  The  ECCY asties ii atiitie h 1rdus8ia1 Tempetabxe  page. k~ly 1
tested. Prices  Mat  at S294.W  sinale  atv. Cdl la OEM uicim.

i



and processing of the instrument
data, cover any corrections needed
on our past articles, and prepare to
move into the area of WEFAX
reception and processing.

210 Very Useful
2 11 Moderately Useful
212 Not Useful

I am making kits available
for each portion of the Home
Weather Center system. Each
kit, unless otherwise noted,
consists of a PC board and all
devices and parts (except SRAM
or DRAM devices) to construct
the standard design. Pricing for
the kits is as follows (all include
shipping charges):

68000 Main Processor
Board..** . . . . . . . . . . . * . . . . . . . . . $319.00

Front-Panel Board . . . . . . . . $88.00

1 Meg x 16 Memory Board
..,..*.............................$189.00

Power Supply (quantities lim-
ited) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $40.00

za$)inet ( q u a n t i t i e s  lim-
. . . . . ..*...................... $ 4 4 . 0 0

I will be making individual
components available for those
with “well-stocked” parts cabi-
nets. Send me a stamped, self-
addressed business-size enve-
lope for a complete listing, with
prices.

Mail orders:

Mark Voorhees
P.O. Box 27476
Phoenix, AZ 85061-7476

Include check or money
order if ordering kits. I regret
that, at this time, I am unable to
accept credit cards.

Allow 4 to 6 weeks for
shipment since most of this
material will ship UPS.

OLOGY RESOURCE

kSue #I - Inside the Box Still Counts  -SOLD OUT
Issue #2 - Techies- SOLD  our
ISSue #3 - Control Magic - SOLD OUT
Issue #4- Stepper Motors-SciDOUT
ISSUe #5 - Remote Video &mei//ance  - GOING FAST
l ROVER: Remotely Operated Video-based Electronic Reconnaissance (Part 1)
l The Home Satellite Weather Center: Focus on the MC68000  Peripheral Controler  (Part 5)
l IO-MHz&bit Digitizing Board for the IBM PC
l Precision Pulses: Carrier Current Transmission Timing

Issue ##6 - Data Acquisition
l ROVER: (Part 2) The Software
l The Home Satellite Weather Center: Adding Serial and Parallel Ports to the Peripheral

Controller (Part 6)
l Build a Remote Analog Data Logger ( Part 1)
l ImageWise/PC  - The Digitizing Continues (Part 1)
l DDT-51 Revealed

Send $4.00 per issue (includes shipping & handling) in check or money
order to: Circuit Cellar INK, P.O. Box 772, Vernon, CT 06066. Visa and
MasterCard  accepted, call (203) 8752199

CCINK’s 1st Year Reprints
Because so many of you save every issue of CCINK as a resource, our
fast rise in circulation has resulted in a virtual sellout of the first year of
INK. So as not to disappoint new subscribers as well as satisfy the
demands of current readers, we are offering a B&W offset reprint of
CCINK’sfirst  year (Issues l-6). Available in February 1989, for$20.00
in the U.S. and $24.00 to Canada and Europe (shipping & handling
included).

Send check or money order to:
Circuit Cellar INK
1st Year Reprlnt

P.O. Box 772
Vernon, CT 06066

Visa and Mastercard will be accepted, call (203) 875-2199.

Jar-wry/February  1989 4 1



FROM THE BENCH
AC Power Line Transmission
Conducted by Jeff Bachiochi

n-he

1
power line network of copper and alumi-

num in this country delivers life-giving sus-
tenance to all our inanimate appliances. How-

ever, it seems the only time we are conscious of this
fact is when we pay the utility bill and examine the
relationship between the rising kilowatt-hour demand
and the amount due. Whether we consider our appli-
ances as necessities is not the issue here. What can be
clearly seen is the medium already in place which
connects any number of points together (as long as
there is an AC outlet within reach).

There are at least four problems when dealing with
using the AC power line for data transmission: power
line impedance, attenuation, impulse noise, and con-
tinuous interference, each playing havoc with at-
tempts to use the power line network for anything
other than an electrical lifeline.

Line impedance varies continuously, depending

turns on or off, by either automatic (e.g., refrigera-
tor) or manual (e.g., hair dryer) control, the impedance
is affected. Line impedance can range from below 1
ohm to above 50 ohms.

A 125-kHz  signal will be attenuated about 7 dB
(l/5 of its original power) for each 50 meters of cable.
An additional 40 dB of attenuation (1 /I 0000 of initial
strength) will occur between phases of the power line.
Any floors (in a factory or commercial complex) or
houses (in a residential area) on the same side of a
distribution transformer may receive the signal
(though heavily attenuated by distance). Heavy losses
through transformers designed for optimum coupling
at 60 Hz reduce the carrier frequency to undetectable
levels.

Line transients and glitches caused by changing
loads can sometimes reach a few thousand volts. This
very-short-duration impulse noise passes easily

on the equipment on the line. Every time an appliance through any 60-Hz filtering.

Figure 1 -- Stock diagram of the National LM1893 with surrounding support circuitry.

42 C//?CUlT  CELlAR INK



Figure 2 - - The Signetics NES050 needs a minimum of external components to support power-line-
based communication.

Continuous wave (CW) interference is caused by
equipment generating a signal at some periodic fre-
quency on the line. For example, high-intensity
discharge (HID) lamps often use electronic ballasts
which operate at high frequencies and can generate
spectral harmonics. CW interference within the range
of the selected carrier frequency will affect both the
reception of the data and the quality of the data
received.

The most important consideration for Power Line
Modem (PLM) design is the carrier frequency. Close
inspection of the AC line environment is required to
reveal any CW interference, and a carrier frequency
must be chosen in the range of least interference. The
characteristics of driver chips limit you to a frequency
somewhere between 50 and 300 kHz. (X- 10 devices,
which permit remote power on/off control of lights
and appliances through the power line, use a carrier
frequency of 120 kHz.)

National LM1893

National’s BI-LINE LM1893, shown in Figure 1,
is packaged in an 18-pin IC (the LM2893, a 20-pin
version, has separate carrier in and out).

Transmission is started by selecting the TX mode
and sending TTL serial data into pin 17. The data
generates switched control current (MOD) to drive the

current-controlled oscillator (ICO) which modulates
to +2Oh  of the carrier frequency. A sine shaper
removes most of the unwanted harmonic content of the
signal, which would cause unwanted RF overtones.
Automatic level control (ALC) shunts excessive drive
current away from the output amplifier to keep the
signal from clipping due to line impedance changes
which would cause unwanted RFI. Finally, the carrier
is placed on the AC line through a coupling trans-
former. The LM1893’s  output drive current can be
boosted by using a single external transistor.

When the RX mode is selected, the LM1893 be-
comes a receiver. Signals passed through the coupling
transformer are input to the CARRIER I/O pin. A
balanced Norton-input amplifier (LIMITER) removes
the DC offsets, attenuates the line frequency, acts as
a band-pass filter, and limits the drive signal to the
PLL phase detector. The differential demodulated
output contains AC and DC data, noise, system DC
offsets, and a 2x carrier frequency component. A
three-stage RC low-pass filter removes most of the
carrier components while the OFFSET CANCEL
compensates for offsets by adjusting a series correc-
tion voltage. Data and impulse noise from the
comparator drive the impulse noise filter integrator
capacitor. All of the impulse noise less than the
integrator time constant is removed and the data is
passed to the DATA OUT pin.

Januury/Febrtmy  1 9 8 9  4 3



Signetics NE5050

The Signetics NE5050,  shown in Figure 2, is
packaged in a 20-pin chip.

The Signetics NE5050 does not have a TX/RX
mode. It will receive its own transmissions, which can
be a useful diagnostic tool. FSK modulation requires
two NE5050s per node, while ASK modulation
(amplitude shift-keying) needs but one. The example
circuit shown in Figure 2 uses ASK modulation. TTL
data into the TX IN pin gates the carrier frequency
oscillator through the line-drive amplifier, and the
carrier is placed on the AC line through a coupling
transformer. The NE5050 can use an optional external
complementary transistor pair for increased current
capability.

The receiver of the NE5050 is always active.
Signals passed through the coupling transformer are
input to the RX IN pin. A balanced Norton-input
amplifier removes the DC offsets, attenuates the line
frequency, acts as a band-pass filter, and limits the
differential drive to the external interstage band-pass
filter. This external circuit can be as simple as a
passive RCL network or as elaborate as an active filter
arrangement using ceramic filters. The externally
filtered signal reenters the NE5050 at pins 4 and 5. A
Gilbert detector compares the in-phase signals, and
outputs a demodulated fully rectified signal across a
differential capacitive load. The AM rejector tracks
the DC value of the signal, adjusting a series voltage
to that of the detector capacitor. The comparator
supplies a constant current to the impulse capacitor,
charging and discharging it at a constant slope. The
narrow impulse noise will not last long enough to fully
charge or discharge the capacitor. Two volts of
hysteresis ensures that the impulse noise will not affect
the SR flip-flop. Only data will toggle the open-
collector output, RX OUT, at pin 11.

With both the LM1893 and the NE5050, tradeoffs
must be made between data rate and noise immunity.
Data rates greater than or equal to 4800 bps may not
be acceptable in harsh environments, so slower rates
may have to be used.

A Delicate Balance

Due to the relationship between CW interference
and carrier frequency, and also between impulse noise
and maximum data rate, component values should be
selected for an individual environment and will not be
discussed here. Each manufacturer fully covers com-
ponent selection and typical application examples in
their respective data books.

A word on protocol. Any node can access the line
to transmit signals at any time. This can cause data

collision, and can result in loss or corruption of data,
so some intelligence is necessary to prevent two
transmitters from colliding. Refer to articles on
Ethernet, XMODEM, and other protocols for more
information, Since data bit errors are related to noise
immunity, the number of bit errors will go up as the
data rate goes up; error checking is an absolute
necessity at higher data rates. Most telecommunica-
tion packages can send files with some type of error
checking or error correcting protocol, but the commu-
nication channel itself doesn’t have any error check-
ing, so data sent without a protocol is susceptible to
line noise.

Whether or not PLM communication is practical
for you will depend on a number of factors. How much
information is to be sent? How fast? What is the line
environment? Do costs compare favorably to alterna-
tive systems?

n

References

Linear Data Manual Volume 1: Communications
Signetics Corporation
811 East Arques Ave.
P.O. Box 3409
Sunnyvale, CA 94088-3409
(408) 99 I-2000

Linear Databook  3
National Semiconductor Corporation
2900 Semiconductor Dr.
P.O. Box 58090
Santa Clara, CA 95052-8090
(408) 721-5000

I WARNING: ELECTRICAL SHOCK HAZARD!
In addition to su

FAs little as 100 m
ing 110 VAC, the power line is a near-infinite source of wrrent.

IS sufficient to kill a human being. Exercise extreme caution when
using either device described here. Any capacitors wired on the per line side of
the arcuit can retain a charge even after power has been removed from the circuit

Innovations iIre these hetp  to make today’s technology more cost
effective, reliable, and easier to use.
chips,  and circuits with others.

Please share your favorite ideas,

We will pay $25 for any From the Bench accepted for publication.
All submissions should be typed, double-spaced, and include neatly
drawn schematics or Schema configuration, library, and page files.

Include a stamped, self-addressed envelope large enough to hold
everything if you wish the materials that have not been accepted to be
returned.

Submit to:
From the Bench

c/o Circuit Cellar INK
P.O. Box 772

Vernon, CT rl6fI66

I

I
213 Vety Useful
214 Moderately Useful
215 Not Useful

4 4 CIRCUIT CELLAR INK

t



Writing a Real-Time
Operating Systemm

by Jack Ganssle

Part 1
A Multitasking Event

Scheduler for the HD64180

M ention the phrase “Real-
Time Operating System” at
a software convention and

you’ll evoke as many different re-
actions as there are programmers.
VAX programmers may think of
VMS, PDP-11 sysops will begin
discoursing on RSX-1 lM, but
many microprocessor designers
will respond with a blank stare.
The Real-Time Operating System
(RTOS), though long the backbone
of mainframe and mini systems, is
only now coming into its own as a
component of embedded systems.

An RTOS is quite different
from MS-DOS, the most recogniz-
able of operating systems. True,
MS-DOS does provide a file struc-
ture and device controllers (which
invariably seem to be bypassed in
most real applications), so it does
qualify as an OS. However, MS-
DOS can handle only a single pro-
gram at any time; it is incapable of
multitasking.

Another class of RTOS has
evolved specifically to support
embedded systems (those that don’t
rely on disks, such as a race car
controller or a microwave oven).
The “Embedded Real-Time Oper-
ating System” provides multi-
tasking resources for ROM-based
applications. It differs from a
mainframe operating system in that
it offers no disk support or file
structure.

Why use an RTOS?

Most embedded applications

process numerous asynchronous
external events. For example, a
microwave oven controller must
scan the keypad, control the mag-
netron, generate a countdown
timer display, and handle the vari-
ous door switches and other safety
devices. While each activity is
simple, overall coordination is not.

An inexperienced programmer
might try to write the microwave’s
code in a sequential manner -- read
the keypad, perform the requested
function, reread the keypad, and so
on. What initially looked simple
soon turns into a nightmarish mix
of spaghetti code where all routines
are inexorably intertwined. Sup-
pose the door is opened while the
oven is on? Have the magnetron
routine check the door switch. Did
the galloping gourmet hit the
“Cancel” button? Add a keyboard
scan routine to the magnetron code.
If the CPU is tied up with the mag-
netron, how do we count down and
display time? Add yet more code
to the magnetron subroutine.

This apparently simple appli-
cation becomes very complicated,
violating The First Fundamental
Rule of Programming: it’s OK for
a program to be complex, but no
individual subroutine may be. If a
subroutine seems to be getting out
of hand, step back, think hard, and
take another approach.

In this case only a Real-Time
Operating System will clean up the
code (you just knew that was com-
ing!). Each logically independent
activity becomes a “task.” Every

task runs asynchronously, compet-
ing for CPU time. Like Quantum
Mechanics, there is no way to de-
termine exactly when each task will
run, and there is even less need to.

In the case of the microwave
oven, an RTOS serves as the
software’s backbone. A magnetron
handler is one simple task. A
keypad driver is another. Other
tasks handle the switches, timer,
display, and so on. The RTOS
controls the overall sequencing of
each of the tasks. For example, the
RTOS can run the display driver
once every 200 milliseconds -- fast
enough to cause no noticeable de-
lay, yet slow enough to not burden
the processor unnecessarily. The
magnetron routine can run once a
second, the typical timing resolu-
tion offered to the cook. The
keypad task should run rather fre-
quently so it can debounce the but-
tons properly.

This makes the sequencing al-
most trivial. The door switch task
will issue a command to the oper-
ating system to cancel the magne-
tron task if the door is opened --
regardless of whether microwaves
are being generated. Similarly, the
keypad task will cancel the same
activity if the “abort” button is
pressed. Since the system is (hope-
fully) designed in a fail-safe man-
ner, the magnetron task will only
have to pulse a one-shot line to the
control circuits. It no longer has to
make decisions.

All real-time controllers face
similar multitasking requirements.

4



In recent years several vendors
have introduced commercial Real-
Time Operating Systems to satisfy
this growing need. Intel’s iRMX is
certainly the best known. Avocet’s
AVRXSl is designed for 805 I-
series single-chip computers. Al-
though the commercial products
are all excellent, they have taken
the fun out of multitasking! To me,
the RTOS is the most interesting
part of the software.

The BCCl80 is the ideal plat-
form for an RTOS. Its processor
includes the timer needed to se-
quence tasking. The built-in mem-
ory manager lets it support huge
programs. A tremendous amount
of memory (for an 8-bit system) is
included on the board.

The whole premise of a multi-
tasking operating system is that
computer time is a valuable re-
source to be hoarded and allocated
wisely. This precludes code that
polls devices, waiting for an event
to occur. Rather, devices use
interrupts to signal their readiness
to accept or return data. The
burden of letting software know
that the device is ready is thus
shifted to the hardware, where it
belongs.

Further, at times any individ-
ual task may need to go idle. Rather
than execute a null loop, the task
should signal the RTOS its need to
suspend execution for a specific
time. To the RTOS, this bonus
CPU time is a bonanza that can be
allocated to other tasks.

These requirements define the
central nucleus of the RTOS. To
provide proper task execution, the
RTOS must:

-- Switch execution time be-
tween tasks, so every task gets its
fair share of time. This is called
time slicing.

- -  P rov ide  a  mechan i sm
whereby tasks can go into an idle
state for specified periods, without
wasting CPU time. In the RTOS to
be described, WAITing  and sched-
uling are the methods used.

-- Allow tasks to alter their
execution order when some impor-
tant event occurs. This involves a
particular task altering its “prior-
ity” level.

With these requirements in
mind we’re now ready to examine
a real RTOS.

The BCC180 RTOS

The BCC180’s  Real-Time Op-
erating System implements all of
the previously described functions.
The operating system itself consists
of two major segments: the context
switcher, which is responsible for
starting, stopping, and sequencing
tasks; and the task control code,
which is used to initiate various
task operations.

The RTOS itself resides in low
memory as a separate section of
code. The context switcher cannot
be accessed by the user’s code; it is
invoked only on an interrupt from
the timer. A number of subroutines
can be called by application pro-
grams to request task servicing.

BCCl80  R T O S  u s e s the
HD64180’s  timer 0 to sequence all
task activities. It is programmed by
the initialization routine to gener-
ate an interrupt every 10 millisec-
onds. Every time this interrupt
occurs, the currently executing task
is suspended and the context
switcher invoked.

This regular source of inter-
rupts forms the heartbeat of the
operating system. It’s the mecha-
nism by which the CPU can be
shared between many activities.
The whole philosophy is to allocate
CPU time to tasks in IO-ms chunks.

Task States

Any task can be in one of five
states:

DORMANT -- the task has no
need for CPU time.

READY -- the task will require
the CPU when its “reschedule
time” (defined later) has elapsed. It

is not immediately a contender for
execution time.

ACTIVE -- the task is execut-
ing. Obviously, only one task can
be active at any time.

WAITING -- the task has re-
quested a delay. After the delay
time is up the task again becomes
available for execution.

SUSPENDED -- all conditions
are satisfied for the task to run, and
the task was at one time running. It
was “suspended” by an interrupt
from the timer tic. The task is
anxiously awaiting CPU time from
the context switcher.

Figure 1 is RTOS’s  state dia-
gram. The circles represent each
possible task state. The arrows
show the event causing a transition
between states. Since many tasks
are competing for time, Figure 1 is
somewhat of a simplification of
reality; in effect this should be a
three-dimensional drawing, with
“depth” added for each task. Since
only one task can be active at any
time, there will be only one AC-
TIVE circle for the entire picture;
ACTIVE serves as the hub around
which all task sequencing flows.

Tasks are initially defined us-
ing the OS DEFINE subroutine.
OS-DEFINE  makes an entry in the
task control block (TCB) for the
task, so the RTOS knows about it.
Tasks are initially DORMANT.
The context switcher is aware of
DORMANT tasks, but ignores
them until an ACTIVE task com-
mands a DORMANT one to go to
the READY state. This can only
happen as a result of the ACTIVE
task issuing a call to the operating
system’s OS-RUN  subroutine.
When a task enters the READY
state it is not immediately eligible
for execution (i.e., it is not allowed
to go directly to ACTIVE). RUN
is called with a reschedule interval
for the task. This task may not start
until the number of tics specified in
the RSI parameter elapse.

Many operating systems don’t
completely exploit the possibilities

46 CIRCUIT  CELlA  R INK





MORE GOOD CODE...
FAST!

Softaid’s In-Circuit Emulators givl
fou all the power and speed you
iced to develop microprocesso
Dased products in realtime
ncreasing  your productivity ant
saving  you time and money.

Emulators available for:
j4180, 280,  Zi 80 ,  808818086
30188/80186, 8085, v4olv50

Priced from $595 to $2995

FULL SCREEN
DEBUGGING!

Mth the optional source levc
debugger,  you get a real time, fu
screen debugging environmen
Nith pop-up windows and symbolil
Ssplays.  Your source code ant
comments  a re  d isp layed in  i
Nindow  that is automatically linker
:o the debugging session. Thi!
nakes embedded
debugging FAST and EASY!

systen

TIMELY TECHNICAL
SUPPORT!

Iur technica l  s ta f f  is  ready tc
answer your questions. Give us 2
:all  to discuss your microprocessol
development needs!

;omplete information is alsc
available on our BBS from 5 p.m. tc
9 a.m. EST -- 301-964-8456.

8930 ROUTE 108
COLUMBIA, MD 21045

(301) 964-8455
(800) 433-8812

8 ClRCUlT  CELL4 R INK

completely out of contention for
computer time. Since a task doesn’t
truly die by running to completion
(it will be reincarnated after the
RSI elapses), another mechanism is
needed to completely remove it
from the execution stream. The
OS-CANCEL subroutine tells the
RTOS a specified task is to lose its
rescheduling privileges (by driving
the task to DORMANT).

OS-CANCEL doesn’t abort
the task; rather, it signals the oper-
ating system that the task should be
allowed to complete and then never
be reincarnated.

Once canceled, a task can be
restarted by calling OS-RUN
again. When OS-RUN is called,
the entire rescheduling path will
recommence.

The Scheduling Algorithm

The previous description shows
the transitions between task states,
but exactly how does the context
switcher decide which of the many
competing tasks to elevate to AC-
TIVE and start running? After all,
when a tic is received and the
context switcher invoked, dozens
of tasks could be suspended,
WAITING (with the wait count
elapsed), and READY (also with
RSI up).

If more than one task is eligible
for execution, the context switcher
must pick one to run in such a
manner as to satisfy two conditions:

1) Every task must get a fair
chance to run.

2) Certain crucial tasks are
more eligible than others, and must
be given more opportunity to exe-
cute.

To ensure that every task gets
the same chance to run, the RTOS
maintains a pointer (TCBPTR) to
the last task it executed. When a tic
invokes the context switcher, it
attempts to run the next sequential
task. If that task is not eligible for

<Circle No. 123 on Reader Service Card

:IRCUIT CELLAR INK’S -
ADVERTISER’S INDEX

Reader
Service
Number

101 AISI Research
102 Alpha Products

. Assoc. Camp  Consult.
103 AVOCET

* Best  Associates
104 Binary Technologies
105 Cabbage Cases
. Chrysalis Micro.

106 Circuit Cellar
107 Circuit Cellar
l Collins Associates

106 Cottage Resources
109 Covox, Inc.

. David Baker Assoc.
110 Environmental Optics
111 Galacticomm
112 Hogware
113 lnno~ec  Design
114 lntrol  Corp.

115/l  16 JDR Microsyslems
117 LTS/C Corp.
118 Micromint, Inc.
119 Micromint,  Inc.
120 Micromint, Inc.
121 Pseudo&de
122 Schnedler Systems
123 SoftAid,  Inc.
124 Thinking Tools
125 Timeline, Inc.

1, Tinney
126 x-10

N?k
Gl
7
63
c2
63
58
33
63
35
19
63
33
25
63
30

35
24
31
23
27
40
61
c3
40
25
46
6
4

33
15

IRS
INK Rating Service

How useful is this article?

At the end of each article and
some features there are three 3-
digit numbers by which you can
rate the article or feature.

Please take the time to let us, at
Circuit Cellar INK, know how you
feel our material rate5 with you.
Just circle the numbers on the at-
tached card.

e



execution, then the operating sys-
tem continues searching for one to
run. In other words, it tries to run
the one that has not been ACTIVE
for the longest amount of time.
This is called Round Robin sched-
uling, and is the basis for all
operating systems.

The Round Robin scheduling
algorithm always guarantees that
every task gets an equal chance to
run, but suppose the application
program defines a task so important
that when it is ready to go ACTIVE
it absolutely must gain control of
the processor? For example, if a
task were keeps track of time, it
MUST execute every so many tics,
or the clock will get behind.

BCC180 RTOS provides a way
to associate a priority with each
task. The higher the priority, the
more important the task is. Priori-
ties can range from 1 to 63, which
are relative, unitless numbers.
When a task is defined with the
OS-DEFINE routine, an initial
priority is assigned to it. Later, the
task can, at any time, alter its
priority level by issuing a call to
OS_PRIORITY. Generally, all
tasks should be assigned a midlevel
(say, 32) priority, so others can
raise their level above the mean,
and some can lower theirs.

Why would you want a task to
have low priority? In a real-time
system, data acquisition is usually
the most important activity since
the data is available for a limited
amount of time. Many tasks may be
needed to gather data, analyze it,
and then actuate a controller (per-
haps for a closed-loop system).
Often a display is also needed. The
display task might run at an ex-
tremely low priority. The real meat
of the application will be unaf-
fected. The display activity may
get suspended for long periods, but
these delays may not be noticeable
to the operator. Suppose a 200-ms
update ralte occasionally becomes
250 ms? No one will notice.

BCCl 80 RTOS also lets tasks

Byte 0
1

2

8

10

12

Task state
1 if a cancel was requested for this task.
When the task exits, -if this byte is set the task
becomes ineliqible  for further reschedulino.
Task's bank. This is the BBR value for the-task.
Required to support memory management (described
later)
Task's priority. Legal values are 1 to 63.
Task's reschedule interval. Given when the task
is first requested for execution.
Task's reschedule count. This is set to the RSI
every time the task exits, so the context switcher
can begin counting down again.
Wait count. If the task is WAITING, this count
is decremented to 0, at which time it again
becomes eligible for execution.
Task's Start Address. This is the task's entry
point. When a READY task is elevated to ACTIVE. it
starts at this address.
Task's stack pointer. The current value of the SP
is saved for all tasks so the context switcher can
Completely restore the task‘s state.

Table 1 - - The Task Control Block (TCB) is the central data struc-
ture for the operating system. All scheduling information and han-
dling of requests must go through the TCB.

dynamically raise and lower their
priorities through calls to
OS_PRIORITY. Obviously, a
high-priority task is a dangerous
beast, since it can easily hog all of
the processor’s time. Careful de-
sign of the application is essential
so that CPU time becomes available
to all tasks. It is much better to
design a task to go to a high priority
when it really needs to, and then to
return to a normal level, than to
keep it elevated at all times.

The priority scheme, then, al-
ters the round robin algorithm.
Instead of just starting the next
eligible task, the context switcher
actually first examines the current
priority level of all tasks that are
READY (with their RSI up),
WAITING (with the wait count
elapsed), and SUSPENDED. It
starts the highest-priority task it
finds that satisfies these conditions.

If several tasks are found that
are eligible and that have equally
high priority, the context switcher
resumes the round robin concept.
It alternates execution between the
high-priority tasks until they all
become ineligible. The next prior-
ity level is then executed. Obvi-
ously, this algorithm defaults to
simple round robin if all tasks are
at equal priority.

Remember: high-priority tasks

can completely monopolize the
CPU! Be sure that they exit, wait,
or get canceled fairly often so other
tasks get a shot at running.

The Task Control Block

Programs have been accurately
defined as algorithms plus data
structures. The algorithms have
been described. These all revolve
around one data structure, the Task
Control Block (TCB). All schedul-
ing information is kept in the TCB;
all requests for service are made
through it.

The TCB consists of one 16-
byte entry for each task. Only 14
bytes are used, leaving two for
future expansion. Its format is
shown in Table 1. The TCBPTR
pointer is always kept pointing to
the currently ACTIVE task. It is
used to implement the round robin
algorithm.

The first TCB entry is assigned
to “task 0,” the main routine that
must exist just to spawn other tasks.
Task 0 is never explicitly created;
the RTOS forces it to exist when a
call to the operating system’s ini-
tialize routine is executed.

The last TCB entry is the task’s
current stack pointer. Every task
MUST use its own, distinct stack.
If one stack were shared between

January/February I989  4 9



many tasks, after several tics the
stack would become a horrible
jumble with no way to accurately
pair values and tasks.

When a tic interrupts a task, the
context switcher pushes the entire
state of the machine (all registers
and flags) onto the current stack
(i.e., that which belongs to the task
just interrupted). The stack pointer
is then saved in the TCB. When
another task is started, that task’s
stack pointer is recovered from its
saved position in the TCB, and
used. POPS in the exact reverse
order balance the stack and recover
the task’s register set. In this way
every task’s registers, flags, and
stack are preserved, guaranteeing
the integrity of the task’s operation.
In effect, the task never knows it
was interrupted.

This has an important implica-
tion: each task MUST define an
initial stack pointer via
OS-DEFINE. Further, the stacks
must be in logically distinct areas.

The Code

With the RTOS completely de-
scribed, the code becomes almost
trivial. This is usually the case with
software. After the programmer
completely understands a problem
and has the algorithms in mind,
coding becomes almost a boring,
low-IQ task (pardon the pun). And
so it should be. Most software
disasters are attributable to insuffi-
cient understanding of the prob-
lem, and not enough planning of its
implementation.

Like Gaul, the code is divided
into three sections. The RTOS
proper resides in file OS.MAC. A
number of macros designed to
make the application code more
readable are in OSMACRO.MAC.
Finally, the user’s application is in
one or more files. The example
application is called OSAPP.MAC.

[Editor’s Note: Complete code
for this article is available from the

context-switch:
push
push
push
push
push
push
exx
push
push
push
eXX

;:sh
ex
in0
in0
Id
Id

Cs: Id
add
Id
Id
call
Call
call
Id
Id
Id
ld
Id
Id
sp

Id'
Id
Call
push
ei
reti

css1: cp
jr
call
ex
POP
=X
exx
POP
POP
POP
exx

hl
de
bc
elf
ix
iy

; push all registers

hl
de
bc

af,af'
af
af,af'
tcr ; read tcr to clear interrupt
tmdrO1 ; also must read tmdr to clear intr
ix,(tcbptr) ; pt to current task's tcb entry
(ix+t_state),suspend:  suspend the task
h1,O
hl,sp ; hl=stack  pointer for this task
(ix+t_sp),l . save sp low in tcb
(ix+t_sp+l),h  i save sp high in tcb
dec_cnts ; decrement tcb counts
inc_rrgtr
find_tsk

: increment the round robin pointer
: find a task to execute

(tcbptr),ix ; reset tcbptr
l,(ix+t_sp) ; get low sp
h,(ix+t_sp+l) : get high sp
sp,hl
a,(ix+t_state)

; set the task‘s sp
; ix pts to task to run; get state

(ix+t_state),active; set task will now be active
ready ; possible states: ready, suspended,waitinq
nz,cssl ; j if not ready
l,(ix+t_start) ; get low start address
h, (ix+t_start+l): get high start address
remap ; set proper bank
hl ; push start address

; start task
suspend : suspended?
nz,cswl ; j if not; must be waiting
remap ; set bank for this task
af,af' : restore registers
af
af,af'

bc
de
hl

POP iy
POP ix
POP
POP E
POP
POP Zf
ei
reti

csw1: call remap
ei
reti

resume suspended task
remap to resume task that was waiting

restart task

Llsrlng  1

Circuit Cellar BBS or on Circuit
Cellar INK Software On Disk #7.
For ordering and downloading in-
formation, see page 62.1

A short initialization routine,
OS_INIT, must be called before
the application issues any other
RTOS calls. OS_INIT sets up the
TCB so that all subsequent calls to
other routines will find the TCB in
a known, safe state. This involves
setting all tasks to a default

“NONE,” or nonexistent, state ex-
cept for task 0. Task 0 is defined
automatically as the application
code that spawns off other tasks.
OS_INIT also programs the
processor’s timer 0 to interrupt
every 10 ms.

CONTEXTSWITCH, shown
in Listing 1, is the heart of the op-
erating system. It can never be
directly invoked by a user program;
rather, the timer automatically
starts this code on each interrupt.

50 ClRCUi7 CELLAR  INK

f



:
; Include file for BCClSO RTOS.
;
; This file should be INCLUDEd in all RTOS applications.
: It contains the macros that ease access to the RTOS itself.
:

external os_define,os  run,os_exit,os_cancel
external os_wait,os_i;iit,osgriority

:
; This routine must be called before any other RTOS
; call is made.
;
; rt_init (no arguments)
:
rt_init macro

call os_init
endm

; rt_define - Make a task known to the operating system
:
: rt_define  must be called before any other commands are issued
; for the task.
;
: rt_define start,stack,bbr,priority,number

start = start address
; stack = top of stack for this task

bbr = task's bank
priority= task's initial priority

; number = task number (1 to NUMTSK-1)

rt_define macro start,stack,bbr,priority,number
Id hl,start : set start address
Id de,stack : set top of stack
Id bc,orioritv*256+bbr: set orioritv  and bank
Id a,number  _ ; task number -
call OS-define
endm

: rt_run - Put a task in the READY state.

; rt_run number,rsi
number = task number
rsi = reschedule interval

rt_run macro number,rsi
Id de,rsi ; set reschedule interval
Id a,number ; set task number
call OS._?Xtl
endm

; rt_exit - Exit the current task

; rt_exit (no arquments)

&-exit macro
call os_exit
endm

; rt_priority  - Set the current task's priority

; rtqriority priority
; priority= task's new priority (1 to 63)

rt_priority  macro priority
Id b,priority
call os_priority
endm

; rt_cancel - Cancel a task
:
; rt_cancel number

number = task number (0 to NUMTSK-1)
;
rt_cancel macro number

Id a,number : set task number
call OS-cancel
endm

: rt_wait - Put the current task into a WAITING state

; rt_wait count
: count = number of tics to wait (1 to 32767)

rt wait macro count-
Id de,count ; set count
call os_wait
endm

CONTEXT_SWITCH has two
functions: decrement the RSI and
wait counts of each task requiring
such service, and find a task to
execute.

As previously described, all
registers and the stack pointer are
saved for the task just suspended.
That task is driven to the SUS-
PENDED state. Subroutine
DEC_CNTS  decrements the RSI
and WAIT interval of every task in
the TCB. The counts “bottom out”
at zero; DEC_CNTS  will not dec-
rement a count below zero.

INC_RR  PTER increments
the round robin pointer (TCBPTR).
It makes sure the pointer will be
aimed at a task that is available for
servicing, not one that has no need
for CPU time.

FIND TSK searches the entire
TCB, star&g  at TCBPTR, for the
highest-priority task to execute. It
will select only tasks that qualify
for execution time. If all tasks are
the same priority, the task selected
will be the one at TCBPTR, thus
implementing the round robin
scheduling algorithm.

READY tasks begin at the start
address given in the TCB. WAIT-
ING tasks resume from the call to
OS-W AIT. SUSPENDED tasks
resume from the point of suspen-
sion, with all registers restored.

Each of the RTOS service re-
quest routines was referenced in
the description of task states. List-
ing 2 shows the macros and their
calling parameters.

Well, that pretty much takes
care of the task structure of the
operating system. In the next issue,
I’ll cover the memory management
aspects of multitasking, and pres-
ent a sample application.

!I

IRS

216 Very Useful
217 Moderately Useful
218 Not Useful

Listing 2

January/February J 989 5 1



FIRMWARE FURNACE
Real Numbers
Number Crunching for the 8751
by Ed Nisley

S omehow the Intel 8051
never comes up when the
conversation turns to nu-

meric processors. An 8051 is hard
to beat when you need fast execu-
tion and bit twiddling I/O, but you
can’t mistake it for an 80387.

Despite the fact that the 8051
ALU is only eight bits wide (it does
have one 16-bit instruction!), it’s
still possible to handle “real” num-
bers. The trick is to pick a numeric
format that takes advantage of the
8051’s strengths and sidesteps its
weaknesses.

The October through Decem-
ber 1988 Ciarcia’s Circuit Cellar
articles in BYTE Magazine de-
scribed the Mandelbrot Engine
Supercomputer, which is an array
of Intel 8751s programmed to
evaluate the Mandelbrot Set calcu-
lations. The array is controlled by
an IBM AT clone that presents the
results on an EGA display.

Because the Mandelbrot Set
calculations require real numbers
with exquisite precision, the 8051
architecture isn’t one that springs
immediately to mind. But we used
it anyway, because an array of 875 1
microcontrollers is much easier and
cheaper to build than anything else.
As Steve puts it, “the calculations
are just a simple matter of software
regardless of what kind of proces-
sor they’re running on.”

Where’s the Point?

Although the Mandelbrot Set
calculations require high precision,
they do not need much dynamic

range. Those two features are often
confused, but the difference is es-
sential to making the Mandelbrot
Engine work out correctly.

All numeric values in a com-
puter are represented by a limited
number of bits. Each bit can have
two states, so an n-bit representa-
tion can have only 2” distinct val-
ues. An 8-bit number can have 256
values, a 16-bit number can have
65536 values, and so on. The key
point is that once you know how
many bits are used to represent a set
of values, you know how many
distinct numbers there can be.

Consider an 8-bit analog-to-
digital converter: regardless of the
analog input voltage range, the
digital output will have only 256
distinct values. The result can be
stored in a single byte without
losing any precision.

If the analog voltage range is 0
to 255 volts, successive digital val-
ues are one volt apart. The value 0 1
hex is one volt, 02 hex is two volts,
10 hex is 16 volts, and so on to FF
hex at 255 volts. The scale factor
between input and output is 1 volt/
count.

A more reasonable voltage
range might be 0 to 25.5 volts. Now
01 hex is 0.1 volt, 02 hex is 0.2 volt,
and FF hex is 25.5 volts. The scale
factor now is 0.1 volt/count. Simi-
larly, if the input voltage range is
0 to 2.55 volts the scale factor is
0.01 V/count, or 10 mV/count.

In each case there are still only
256 distinct values spread across
the input range, with an obvious
tradeoff between dynamic voltage

range and precision. To get a range
of 255 volts you must accept l.O-
volt steps between values, and if
you want O.Ol-volt precision you
must be content with a 2.55-volt
range.

Suppose you adjusted the ADC
for analog inputs between 0 and
15.9375 volts. That rather odd
range gives you 256 steps at 62.5
mV/step, or l/16 volt per count.
Figure 1 shows the binary values
for each input voltage. The digital
value 10 hex now corresponds to 1
volt, 20 hex is 2 volts, and so on.

Imagine that there is a “binary
point” after the first four bits. Any
bits to the left of the point repre-
sent integers, while the bits to the
right are fractions. The bit values
increase by a factor of two to the
left and decrease by a factor of two
to the right. Once you know where
the binary point is located, it’s easy
to read off the numeric value.

The numbers shown in Figure
1 are examples of “fixed-point”
values, because the binary point is
located in a fixed position in each
value. A floating-point number,
the kind you get when you declare
a C “float” variable, has an addi-
tional group of bits to specify
where the binary point occurs in
the main number.

The tradeoff between fixed-
and floating-point representations
is simple. For a given number of
bits, fixed point will have better
precision because it uses all the bits
to represent the value. On the other
hand, floating point will have
greater dynamic range because it

52 ClRCU/‘r  CELLAR INK



Full-scale range = 0 to 15.9375 volts
Each step = 62.5 mV

Input l3inary Hex

15.9375 1111 1111 FF
15.8750 1111 1110 FE

8:&25 1000 0001 81
8.0000 1000 0000 80
7.9375 0111 1111 7F

2:oooo 0010 0000 20
1.0625 0001 0001 11
1.0000 0001 0000 10
0.5000 0000 1000 08
0.1875 0000 0011 03
0.1250 0000 0010 02
0.0625 0000 0001 01
0.0000 0000 0000 00

-_
Figure 1 -- Eight-bit values from the ADC are shown scaled to an
input range of OV to 15.9375V by using a step of 62.5 mV.

uses some bits to “shift” the loca-
tion of the binary point. The rep-
resentation you pick depends on
what’s more important: precision or
range. The distinction between
these systems was discussed in
Ciarcia’s Circuit Cellar in the
November 1988 issue of BYTE, so
1’11  concentrate on fixed-point
values in this article.

Bits Below Zero

What happens when you adjust
the ADC to handle voltages below
zero as well as above? Let’s keep
the same 62.5-mV scale factor as
before, but twiddle the offset pot so
that the input range is -8.0000 to
+7.9375 volts. In real life, the
digital values you get depend on
which ADC chip you’re using, but
here we can explore some alterna-
tives with no trouble at all.

There are several ways to rep-
resent negative numbers. Perhaps
the simplest is called “signed mag-
nitude” because there is a separate
sign bit to indicate whether the
magnitude is above or below zero.
Figure 2 shows how the voltages
would be coded in this system.

A peculiarity of signed-magni-
tude numbers is that there are two
digital codes with a value of zero:
“plus zero” (00 hex) and “minus

zero” (80 hex). The usual conven-
tion converts a minus zero into a
plus zero whenever it occurs, but it
is easy to fumble a comparison and
report that zero is not equal to zero.

Another problem arises when
comparing values. The voltage for
code 02 is greater than the voltage
for code 01, but the 82 voltage is
less than that for 81. A simple
numeric comparison won’t suffice
for signed-magnitude numbers.

It would be nice if 00 hex meant
0.0000 volts and increasing digital
values always represented increas-
ing analog voltages. One way to
achieve this is to keep the same hex
values for 0.0000 through 7.9375
volts and use the codes for +8.0000
through 15.9375 volts for -8.0000
through -0.0625 volts. Figure 3
diagrams this approach.

If you’re familiar with the 8051
(or nearly any other micro, for that
matter) the sequence of digital val-
ues shown in Figure 3 should be
easily recognizable. They are noth-
ing but the integers between -128
and +127  represented in the ordi-
nary two’s complement notation
used in the 8051’s ALU.

In fact, the 8051’s ordinary
arithmetic operations will give the
correct result for the corresponding
analog values. This isn’t magic,
because we’ve picked the numeric
representation to match up with
what the 8051 does naturally. We
simply don’t tell it that it is ma-
nipulating “real numbers” and it
doesn’t know the difference.

Comparing Figures 2 and 3 will
show you that the “minus zero”

Input voltage range
0.0000 to +15.9375

Voltage step size
62.5 mV

-8.0000 to +7.9375

62.5 mV

+15.9375
+15.8750
+15.8125

. . .
+8.0625
+8.0000
+7.9375
+7.8750

.
+o: i250
+0.0625
0.0000

FF
FE
FD

81

7E

02
01
00

+7.9375
+7.8750

+o:i250
+0.0625
+o.oooo
-0.0000
-0.0625
-0.1250

-7:8;50
-7.9375

Note that there are two ways to represent zero volts.

7F
7E

02
01
00
80
81
82

FE
FF

Figure 2 - - Signed-magnrtude  representation uses a separate bit to
indicate whether a given value is above or below zero.

January/February  1989 5 3



code produced by the signed-mag-
nitude notation has turned into the
negative code for -8.0000 volts.
The only effect is that there is one
negative value that can’t turn into
a positive value by negation.

Naturally enough, there are a
variety of other numeric formats
around. In fact, you will find that
some ADC chips use offset binary,
straight binary, and other schemes
too odd to mention. Make sure you
read the data sheet before you leap
to dangerous conclusions!

Home on the Range

As you should expect, though,
you won’t get something for noth-
ing. Those eight bits can represent
any voltage between -8.000 and
+7.9375,  but with a step between
values of 0.0625 volts. In order to
get better resolution we must re-
duce the overall range of numbers
or increase the number of bits in
each number. Conversely, to get a
larger range we need either poorer
resolution (bigger voltage steps
between values) or more bits.

Remember that floating-point
numbers don’t sidestep this issue.
They simply trade off resolution
for dynamic range at a given
number of bits. If you need a very
large dynamic range and can toler-
ate a moderate resolution reduc-
tion, floating point may be the way
to go. 1’11  stick to fixed-point
numbers here because we need the
precision.

Let’s suppose that the range is
OK, but we need better resolution.
Replacing the ADC with one that
can produce a 16-bit result gives a
step size 256 times smaller than
before. The scale factor shrinks to
about 244 pV/count.

Figure 4 shows the correspond-
ing analog and digital values. Be-
cause there are now 64K (actually
65536) numbers, the positive range
goes from 0.000000 to +7.999756
volts. The negative voltages still
start at -8.000000 because of the

Input voltage range
0.0000 to +15.9375

Voltage step size
62.5 mV

-8.0000 to +7.9375

62.5 mV

+15.9375 FF
+15.8750 FE
+15.8125 FD

+8:&25 81
+8.0000 80
+7.9375 7F c +7.9375 7F
+7.8750 7E +7.8750 7E

+o:  ii50 02
+0.0625 01
0.0000 00

Increasing digital values

analog voltages.

-7
-7
-8

correspond

Figure 3 -- The two’s complement scheme for negative values allows
0.0 voltage to be represented as 00 hex. Note that after the rep-
resentation for +7.9375  volts, the hex count “wraps around”such  that
-8.0000 is next in line.

extra negative value.
Although actual analog-to-

digital converters can’t supply
more than about 20 bits, we can
continue adding more bits to our
digital representation with no
trouble at all. Figure 5 shows the
numeric format used in the Man-

delbrot Engine. There are 64 bits,
with 60 devoted to the fractional
part. The overall range is -8.0 to a
trifle under +8.0, with ascale factor
of 8.7x10-lg.  These real numbers
don’t have units of volts anymore
because the Mandelbrot Engine
works in the domain of pure

Full-scale range = -8.0000 to +7.9375
Each step = 244 PV

Input Hex

+7.999756 7FFF
+7.999512 7FFE

.
+0:000488
+0.000244
0.000000

-0.000244
-0.000488

0002
0001
0000
FFFF
FFFE

-7X9512 8002
-7.999756 8001
-8.000000 8000

Figure 4 -- Using l&bit  representation instead of d-bit in a two’s
complement scheme lets us have 256 times as many steps within the
same input range.



t eight bytes = 64 bits -pi

siiiffff ffffffff ffffffff ffffffff . . . ffffffff ffffffff

I!2

i
. fraction 60 bits
. integer 3 bits
. sign 1 bit

range -8.000... to +7.999...
precision 18 to 19 decimal digits

Figure 5 -- The fixed-point representation used in the Mandelbrot
Engine uses 64-bit  munbers.  of which 40 bits are the fractional
portion. Negative nwnbers  are represented in two’s complement no-
tation.

mathematics.
But representing a number is

one thing. Performing mathemati-
cal operations on these monsters is
another -- remember that the 8051
ALU is only eight bits wide!

Extended Arithmetic

The key to extended-precision
arithmetic is that the 8051 can’t tell
the difference between fixed-point
numbers and rather long integers.
The 8051’s program status word
(PSW) includes a carry flag that
signals when the sum or difference
of two bytes requires more than
eight bits. The ALU can also
multiply two unsigned bytes to get
a 16-bit result. Those two opera-
tions are all it takes to handle the
Mandelbrot Engine calculations.

The simplest operation is addi-
tion. For example, consider adding
a pair of two-byte numbers: OOFS
+ OlOE. You’d do this by writing
them one above the other

OOF8
OlOE

and adding columns from the right.
If the sum of any column exceeds
F hex you would write the last digit
of the sum and carry 1 to the next
column. The result of all this is
0206 hex.

The 8051 ALU adds two col-
umns (one byte) at a time, but the

process is the same. First it adds
F8 + OE to get 06 and a carry
(because the result exceeds FF
hex), then it adds 00 + 01 plus the
carry to get 02 hex. There is no
carry from that addition, so the
process is done and the result fits
within two bytes,

The extension to eight-byte
numbers is shown in Listing 1. The
two index registers RO and RI
point to the most-significant byte
of the two numbers to be added and
the result replaces the number
pointed to by RO. The constant
NUMLEN is the number of bytes
in each number, which is simply 8.

All extended-precision num-
bers are stored with the most-sig-
nificant byte in the lowest-num-
bered address, which is the oppo-
site of the order the IBM PC uses.
I picked this order because it makes
the values much easier to read
during debugging. A simple con-
version routine in the IBM AT
swaps the order before sending data
to the array.

Because the addition proceeds
from the low-order bytes upward,
the first step is to adjust the point-
ers from the high bytes to the low
ones. The 805 1 can only add num-
bers to the accumulator, so the con-
tents of the pointer registers must
be moved into ACC, added, and
then moved back.

The 805 1 doesn’t have the com-

plex instructions you’ll find in the
80x86 family, so the loop is six in-
structions long. Again, the first
step is to fetch the current byte
from the location pointed to by RO
into ACC. The ADDC instruction
adds the byte pointed to by RI plus
any carry from the previous addi-
tion. The result is overlaid on the
source byte at RO by the second
MOV instruction.

The remaining steps adjust the
pointers to the next bytes (remem-
ber that higher bytes are at lower
addresses) and loop for the eight
counts in the B register.

You might wonder what hap-
pens for negative numbers. The
answer is simple: it works just fine.
It’s worth stepping through a few
examples on your own by hand just
to make sure you understand what’s
going on. You can try adding some
of the values in Figure 4 to see if
the right answer pops out--I cer-
tainly had to do just that!

There is one slight problem,
though. What happens when two
numbers add up to more than
+7.9999? For example, adding +4.0
and +4.0 will give +8.0, which ex-
ceeds the allowable maximum by
one count. The answer for this is
simple, too: the value wraps around
to the maximum negative number!
The addition of the high-order two
bytes looks like this:

4000
4000
8000

But the hex value 8000 (and the
six bytes not shown here) repre-
sents -8.0, which is certainly not
the right answer.

Because of the nature of the
Mandelbrot Set calculations any
number larger than 4.0 (either
positive or negative) signals the end
of the process. The routines that
call long-add make ‘sure that the
input values won’t generate an
overflow, so long-add doesn’t
have to worry about error check-



;--__--“---_

; Add two long integers
* RO points to the high byte of the target
; Rl points to the high byte of the source
: Mashes A and B
; Return6 RO and RI unchanged

long_add PROC
PUBLIC long-add

MOV A,RO : point to end of target
ADD A,#NtJULEN-1
MOV ROSA

MDV A,Rl : point to end of source, too
ADD A, UBJBLEN-1
HOV Rl,A

MOV B,#NUMLBN : number of bytes to combine
CLFl C i set up for loop

L?lOOP BW $
MOV A,@RO ; pick up target
ADDC A,@Rl ; tack on buffer
HOV @RO,A : drop into target

DEC RO : tick pointers
DEC Rl

DJWZ B,L?loop : repeat for all bytes

RET

long-add ENDPROC

Listing 1 -- Extended-Precision Addition

are 32 bits in the result and we
expected it to fit into 16 bits. For
an integer multiplication you sim-
ply ignore the high-order two
bytes, but that’s not quite the an-
swer we want here.

You first encountered this issue
in elementary school when you hit
(the dreaded) decimal fractions.
You solved it by rote: “count up the
decimal places in the multiplier and
multiplicand, then shift the point
over the same number in the prod-
uct.” Well, at least that’s what I
learned.

A similar rule applies to fixed-
point numbers. Because both 16-
bit numbers have 12 bits after the
binary point, we count off 24 bits
from the right end of the product
and insert a point. The next four
bits to the left are the integer part
of the result. The four high-order
(leftmost) bits are discarded. Fig-
ure 6(b) shows this process.

The multiplication routine can

ing.
Subtraction proceeds along

similar lines and I’ll leave it as an 6a -- 16-bit multiplication using byte multiplies

exercise for the reader. Hint: the
8051 instruction SBC (subtract with 00 F8

carry) may be helpful. You might
01 OE
_---_

also want to figure out how to take
the absolute value and two’s com-
plement of a number; in a pinch,

F8 x OE = OD 90
=00 x OE 00 00

F8 x 01 = 00 F8
00 x 01 = 00. 00

-----------
you can subtract by complementing
and adding.

00 01 05 90

Long Multiplication
6b -- Aligning the binary point

Each step of the Mandelbrot Set
calculation requires four eight-
byte multiplications. At first
glance you might think that the
process is just as simple as addition
because the ALU can multiply two
&bit bytes. That’s not how it
works out . . .

Let’s start with the same 16-bit

0.0 F8 <- 12 bits after point
0.1 OE <- 12 bits after point
-^___
OD 90

00 00
00 F8

00 00
-----------
00.01 05 90 <- 24 bits after point

*u. <- 16 bits of result

<- the final result

numbers: OOFS x OlOE.  Figure 6(a)
shows the intermediate steps re- Figure 6 - - The first figure shows a problem inherent in multiplying
quired to do this by hand. The I&bit  fixed-point numbers: the result is a 32-bit number. The
product is 0001 0590 and the first second figure shows the “fix” for this problem that was used in the
problem should be obvious: there Mandlebrot Engine.

56 C/RCU/7  CELLAR INK



extract some information from the
“excess” bits. For example, the 16-
bit product can be rounded based
on the contents of the low-order 12
bits. The high-order four bits can
indicate whether the product is too
big, and, if so, the code can substi-
tute the maximum possible 16-bit
number.

There is yet another complica-
tion that isn’t obvious from this
simple example. Each and every
byte multiplication generates a 16-
bit product that must be added into
the partial product at the correct
spot, but those additions can cause
a carry that must be propagated all
the way to the most-significant bit.
Embedded in each multiplication is
a carry loop as well.

Finally, unlike addition and
subtraction, the multiplication in-
struction works only for positive
(and zero!) values. The Mandelbrot
Engine code determines the sign of
the product from the signs of the
incoming values, then takes their
absolute values. The multiplication
takes place in a temporary 128bit
buffer and the result is rounded,
shifted, clamped, and re-signed in
place.

The source code for long_mult
is so, well, long that Steve and Curt
turned pale when I suggested print-
ing it. We compromised: it’s avail-
able on the Circuit Cellar BBS in
the DRIVER.ARC package along
with the source code for the IBM
AT control program. The remain-
der of the 805 1 code isn’t available
because of licensing agreements,
but you’re sure to see interesting
snippets of it in upcoming columns.

The 8051 has so few useful
registers that adding the overhead
for all the multiplication and carry
propagation loops didn’t make any
sense. The alternative is simple:
write the code as a straight-line
routine without loops. But
straight-line source is awkwardly
bulky, so I used the preprocessor
facilities of AVMAC to build
“compile time” loops to generate

the code. finished. There are two nested
Listing 2 shows the core of the loops, one to handle the remaining

multiplication code. It takes effect multiplier bytes and the other to
after the partial product for the handle all the multiplicand bytes on
low-order multiplicand byte is every pass. The %IF statements

The 16-byte  product buffer is defined by these macros:

;------_----
: 16-byte  buffer for extended-precision multiplies
; Higher-order bytes are at lower addresss

i--- 40H

%FOR N = NUMLEN-1 TO 0 BY -1
mpy&N DS 1

%ENDFOR

%FOR N = NW&EN-l  TO 0 BY -1
prod&N DS 1

%ENDFOR

Only the core of the multiply routine is shown below.
RO points to the multiplicand.
The multiplier is located in the buffer at mpy0 through mpy7
and is replaced by the partial products.

;--------_-_
; Rub remaining multiplier bytes across multiplicand

%FOR J = 1 TO NUNLEN- : multiplier index

HOV DPL,mpy&J :
MOV rnPY&J,XO

set up multiplier byte
: and clear for results

JB compute,m&J&top :
JMP

check for cancel f&g
restart i *.. exit if off

m&J&top EQU S

%FOR I = 0 TO NUMLEN-1 : multiplicand index

m&J&&I EQU S

MOV
DEC
MOV
MUL

ADD
MOV

MOV
ADDC
MOV

A,B :
A,prod&J-&I-l

combine high byte

prod&J-&I-l,A

%IF
%FOR

&I LT NUMLEN-1 . no carry past multialier  hvto
N = 2 TO NUNLEN-& ; ._. but all I-, F---- -1--

..__ _>mainrng  bytes
JNC noc&J&&I

z&
A
A,prod&J-&I-&N

nov prod&J-&I-hN,A

%ENDFOR
%ENDIF

lOCKi&&

laveprod

A,@RO i next multiplicand byte
RO
B,DPL : multiplier byte
AB

A,prod&J-&I
prod&J-&I,A

i can&tine low byte

EQU S

%ENDFoR : multiplicand loop

%IF &J NE NUMLEN-1
MOV A,RO

; special reset for lest byte

ADD A,#NUHLEN
: point to last byte

nov RO,A
%ELsE
INC RO
%ENDIF

; point to first byte

%BNDFOR : multiplier loop,

EQU $

Listing 2 -- Extended-Precision MuItiplication

January/Febwaty  1989 5 7



control the length of the carry
propagation chain.

The bottom line of all this is
that an eight-byte multiplication is
a very expensive process. After a
good deal of tinkering and fiddling
with the code, the Mandelbrot
Engine can compute one iteration
of the formula in about 5 millisec-
onds.

While 5 milliseconds per itera-
tion sounds painfully slow, re-
member that the point of the
project was to demonstrate that a
large number of these simple proc-
essors can be faster than any single
processor, no matter how fast. For
example, 64 processors can drop
the average time to 78 ps per
iteration; and 256 processors can
push it under 20 ps. Communica-
tion and overhead will prevent the
array from reaching those ideal
values, but the principle is still

valid: there is strength in numbers!

Fixing Your Points

Although the ready availability
of math coprocessors  makes float-
ing point the natural choice for
many PC projects, the case isn’t
closed. You may find that floating
point isn’t the ideal solution for
your code, particularly if you don’t
have enough bits . . . and nobody
ever does. For projects needing
lots of precision over a small dy-
namic range, try some fixed-point
math.

Future Directions

This column marks Firmware
Furnace’s first anniversary! In the
past year we’ve explored some 805 1
code, checked out the IBM PC
timer, fiddled with buttons and

joysticks, and gotten better ac-
quainted with the DDT-51 devel-
opment system.

Here’s the 64K-byte  question:
what would you like to see for the
next year or so? I’ve heard cogent
arguments for less PC coverage,
more PC coverage, less 8051 code,
a full-blown DDT-51 project,
high-level-language projects
(huh?), and so forth and so on.

If you’ve got strong feelings
one way or another drop a letter,
post a Circuit Cellar BBS message,
or flash an EasyPlex  on Compu-
Serve (74065,1363). There are
about 25,000 of you reading INK
nowadays, so I should get a flood of
suggestions! el

IRS
219 Very Useful
220 Moderately Useful
221 Not Useful

S I B E C - I I
The ideal solution for embedded control

applications and stand-alone development.

l lntel 8052AH BASlC CPU
l Serial printer output and 5, 8 bit I/O ports
l 5 in.2 prototyping area
l Memory: 8K RAM, 16K EPROM, expandable to 48K
l Program in BASIC, assembly or a combination of both
l PROM progammer; Z/F socket for 2764 or 27 128 EPROM
l Interrupt handling capability
l Built to exacting standardi and warranteed
l $228.00 including documentation (quantity I!

inquire  about our PDK51.  The 80518052 product
development kit for the IBM-PC/XT/AT. Includes
the SIBEC-II, power supplies, cross-assembler, and
much more. $595.

Call n o w !  6 0 3 - 4 6 9 - 3 2 3 2

q Binary Technology, Inc.
MainStreet*  RO.  Box67* Meriden,  NH03770

@!B=

WRITE FOR INK!
Writing technical articles may not make you rich and famous

but it might be just the incentive to finish that 1 OO-MIPS computer
you started last summer. Or, if your expertise is software, per-
haps it’s time you presented your talents to the world.

Unlike most narrowly specialized publications, Circuit Cellar
INK’s charter is to cover a wide variety of hardware and software
technology and ideas.

Send your project outline to:
Curtis  Franklin, Jr.
Circuit Cellar INK

P.O.  Box 772
Vernon, CT 06066

or contact him on the Circuit Cellar BBX at (203) 871-1988.

Circuit Cellar Books
Circuit Cellar INK author often refer to previous Circuit Cellar articie.s.  These past
articles are available in book fon from Cinxit Cellar Inc., 4 Park St, Suite 12,
Vernon, CT 06066. Ciarcia’s circuit Cellar Vol. I covers artides  in BYTE from
September 1977 through November 1976. Vol. II covers December 1976 through
June 1960. Vol. III  covers  July 1960 through December 1961. Vol. IV awels
January1962fhroughJune1963.  Vol.Vcove1~July1963throughDecember1984
Vol. VI covers  Januaty  1966 through June 1966.

Circle  No :C4 on Reader Service Cord



CONNECTIME Excerpts from the Circuit Cellar BBS

THE CIRCUIT CELLAR BBS
300/1200/2400  bps

24 hours/7 days a week
(203) 87 1 - 1988 -- 4 incoming lines

Vernon, Connecticut

Well, we’ve had some exciting times around here
recently. Version 2.1 of TBBS has arrived, and with
it a host of changes to make the SYSOP’S  (read “my”)
life easier and to make your stay on-line an easier and
more efficient one.

Most obvious to those who write a lot of messages
is the ability to use either ASCII or a binary error-
checking protocol to upload message text which was
prepared off-line. Now you can spend time off-line
without the clock ticking to prepare a thought-out
message, then upload it without the hassle of tricky
delay insertions or checking for noise-induced errors.
Leading spaces on lines are left in place. Formerly,
any leading spaces were removed, making a once-
nicely formatted message come out as garbage. Fi-
nally, message “threading” has been improved to make
groups of related messages easier to follow.

Those who do a lot of file transfers will also notice
some improvements. More protocols have been made
available. In addition to the old standby ASCII,
XMODEM, and YMODEM (XMODEM/IK), we now
have YMODEM Batch (True YMODEM), SEAlink,
KERMIT, and SuperKERMIT (sliding windows). For
the novice, more extensive help is available which
describes each of the available protocols in detail. If
you see an interesting-looking ARC file, the system
will show you a list of files it contains. If you’re only
interested in files uploaded since your last call, you can
request a list of “new” files. TBBS 2.1 also introduces
a new concept in file organization which I’ll be
implementing in the weeks to come.

There are many more changes and additions in
version 2.1)  some major, like those I’ve listed, and some
minor, but far too many to list here. I’ll be slowly
making changes to the CCBBS to implement some of
the new features and modifying the way existing
commands work. There is even a provision for full-
color screen-oriented menus with graphics characters
for systems that support such features. Stay tuned. The
best is yet to come.

One method for doing home (or factory) control is
distributed intelligence. Processors located around the

The message base of the Circuit Cellar BBS is now
available on disk. See page 62 for details.

premises take care of local details, communicating
general status and other requests to a central host via
some form of network. The following is a discussion
of one person’s attempt at a control network.

Msg#:  8452 from JEFF JENSEN

Mark, in your home control work, have you developed any home
LAN communication protocols? I have been rolling the requirements
of a two-way LAN around and wondered if you have implemented
anything special in your systems that might be important. I have
several design considerations that may or may not be important in
this environment, and I’m finding  that a fuller protocol with routing,
addressing, error detection, control, and data packeting gets to be
quite a lot of overhead for slower networks.

Msg#: 8484 from MARK LAMPKIN

Jeff, the way the system started wan  as a simple protocol. As the
system wan  implemented, the protocol developed a thyroid condition
and started growing out of proportion to the actual needs of the
system. Now it ir at a simple but powerful (and useful) level. The
actual system  ia more of a token-paas ring network. To keep fibering
(my term for wiring, but with fiber optics) to a minimum, the network
is a closed, unidirectional ring. Each controller is listening to its
upstream neighbor. If its address matches the second byte in the
packet, it responds  to the third byte (the control word) and creates
a packet of ita own. The basic command structure is:

Byte 1 -- STX
Byte 2 -- Addreaa
Byte 3 -- Command
Byte 4 -- Packet Length
Byte 5 -- Data
B y t e  S+N --  Data
Byte 5+N+l -- ETX

So far the communication error rate has been Lero  80 there is no
checksum. If the error rate starts to creep up, simply add some
checking. The whole network just keeps passing the message until it
is processed and a response has been taken. Controller #1 always
starts the token.

Msg#: 8604 from RON WILSON

Your protocol looks a lot like HDLC. Motorola (and others)
make a chip that does exactly what you described.

Msg#: 8690 from MARK LAMPKIN

Ron, it is quite similar, eh? However, those chips are harder to
come by, and not an cheap aa me and a little software.

January/February  1 9 8 9  59

Y



Msg#:  8517 from JEFF JENSEN Mrg#:  8614 from MARK LAMPKIN

Your protocol looks much like what I have come up with, except
I had also included originator address and a preamble. I’ve spent too
much time looking at LAN protocols. Does your net use a single micro
type or have you got a bunch of micro families represented? I also
wondered what data rate you are running at, which would affect the
error rate and impact of message or packet nice.

One of my interests would be to allow all three types of home
functions on the same wire -- monitoring (security and status),
control, and peer-to-peer communications. It seems that to keep the
coat ofthesystemdown, atransaction-oriented approach (small,self-
contained message packets) would be better than massive message
and bulk transfer.

Msg#:  8593 from MARK LAMPKIN

Jeff, so far on my network I have three 8OC86s,  two 18020, six
6870CP3e, two 68705R3s, one 280, four 68098, and two 680x0s.  Kind
of the Heins  57 approach. In a home system, security is not of the
greatest concern (to me), and taking into account the security system
I have implemented, the loop turn-around time is from S-400
milliseconds on the average. I’m presently running 38.4 kbps, but
have considered going up to 76.8k. The reason for this is a project I’m
considering. I’ll need a little more dedicated task time in a new node;
not so much time can be spent loop processing.

Msg#: 8469 from KEN HOWELL

This is something that always fouls me up in home LANs  -- in
your scheme, how does acontrollerother than #l “grab”aslot  tosend
its own signal without interrogation from controller #l?

Msg#:  8689 from MARK LAMPKIN

Ken, the interesting part of this type of system is, as with
anything, if it is implemented correctly, it’s crash-proof. The way to
make it crash-proof is to examine the network topoIogy. It’s a ring,
and each controller receives the message. If the address doesn’t
match, the node relays the message to its downstream neighbor.
When a controller wants to send a broadcast to another controller,
it waits for an incoming message, buffers the received message, inserts
its own outgoing message, and finally completes its task by relaying
the buffered message it last received. Quite simple yet eloquent. I
wish I could take claim for the concept.

For network start-up, controller #l comes on-line and delays
the calculated maximum loop delay. If no message has been received
within that time frame, it sends a token message to itself containing
dummy data under its own address. This checks loop integrity on the
first pass, and after the first pass the same message is continued to be
sent to enable the other stations to achieve a time slot to get on the
network.

So are the basics of my LAN. Any diagnostic errors are displayed
on the host. It just so happens that, in my command structure, a
command byte of “OOH” is a broadcast of the data contained in the
packet. This packet then is considered as a network display, meaning
that if a node has display capability (i.e., something readable or
decipherable by the imperfect human sensory capabilities), the
packet data is displayed. This is then a broadcast to all the operating
nodes to pinpoint the failed module. Simple, eh?

Msg#: 8600 from KEN HOWELL

Ken, the Motorola protocol of which you speak is in the 6801
family of products (i.e., 6801, 6803, 68701, etc.). I’m using the 6805
family of products -- no built-in UART. I’m doing the UART and
protocol all in software. The 6805 family of processors is my favorite
to work with. Straightforward memory map, true bit manipulation,
and anythingfrom 32 I/O pins toon-board  A/D or phase-locked loop.
Really a neat chip.

Msg#:  8622 from KEN HOWELL

I picked up a few of themwhen  Jameco was having asale on them.
I’ve also got a number of the Motorola application notes on the family.
I’m in the process of building a programmer for my Amiga for these
little guys, and look forward to when I can make one sing. I am
uploading today the 6870x assembler. I assume that you have
something already.

By the way, regarding your horneLAN,  what happens if one node
goes down? Does this break the ring, and thereby ruin the integrity
of the LAN?

Msg#:  8630 from MARK LAMPKIN

Ken, presently the LAN goes down from the culprit node on. I
am moving into a new home in about two weeks and I get to start from
scratch. My present LAN is all fiber optic, so internal to each system
is a watchdog timer which in most cases takes care of the bad-node
problem. When and if one goes terminal (pun? -- not much of one),
all the operational nodes display the fault. Then comes human inter-
vention. In 47 months of operation, I’ve had only two terminal
terminals -- an acceptable number for me.

Msg#:  8649 from KEN HOWELL

Well, that’s not a bad history. I’ve seen LANe  that are in a ring
configuration, but the nodes are only “‘listening” to the ring and do
not represent a break in the ring. This approach won’t crash the way
your LAN would, but I think the interfacing details become stickier.

Msg#:  8676 from MARK LAMPKIN

Ken, interfacing to a LAN with the type of architecture you are
describing is best done as a token-pass-type mastery. This is the way
some well-known (in the auto industry) highways work. The
problems encountered are software overhead, crashing, and, to a large
extent, noise. The most efficient comm systems will have very strict
rules and efficient message packets -- a small sacrifice for a reliable
system. Generation #2 of my system will become fail-safe.

Msg#:  8687 from KEN HOWELL

How can you have a fail-safe system where the integrity of the
LAN depends on perfect operation of each node?

Msg#:  8734 from MARK LAMPKIN

Ken, my new system is going to be transformer-coupled to the
network. The same mode of operation will still be in place, but an
addition of a node timeout will signal to the downstream tap that the
upstream is dead.

Well, that certainly explains things! The Motorola 6870x series
implements a built-in protocol, where the bus can actually “sleep” Msg#:  8668 from JIM NELSON
until activated by messages. I don’t think it is as robust as the
protocol you describe. Are you familiar with CEBus,  the Consumer Electronics Bus?

60 C/RCU/7 CELlA/?  INK



It’s anEIAetandardfor  communications amongconaumerelectronics The bane of any complex, well-stocked home en-
products and home appliances being worked out even as we sleep. tertainment center is how to cross-connect all the

equipment. Should the output of VCR I go to VCR 2,
Msg#:  8673  from h4ARK LAMPKIN the local television, or the video distribution system?

The following thread concerns some of the design
issues related to a switch box designed to solve such
problems.

Jim, I have been with companies that used many different
standards and tried to develop standards. I was on the Honeywell
MAP committee and othem. The whole development of this system
was an idea of my own to develop a working system without the many,
many layem  of sophistication that a group consensus operation will
develop. KISS (Keep It Simple, Stupid) is a much more powerful tool
than all the error-checking code and redundancy can buy.

MS&: 8514 from VINNY RUSSELL0

Msg#: 8731 from JEFF JENSEN

Do any of the nodes perform diagnostics or have a hardware
watchdog timerto reset them? One approach to aself-diagnosing ring
would be for the timeouts on each node to cause a packet to forward
to a designated node and have it log everyone that responds. The
terminal terminal would be the first missing node, or the first node in
the loop to log a message.

One question I meant to ask earlier: does one node act as ring
master and issue a token? In that case, if the token dies, then does
the ring master time out first and send a new token?

Msg#: 8757 from MARK LAMPKIN

Jeff, the only master on my present ring is but a temporary thing.
It is needed to start the first message on the ring. After that it is the
domino effect, unless the master never initiates the first  command.
This is to be solved on my new network in three to four weeks.

Steve, I have run into a problem that you may be able to solve,
and while we’re at it start a whole new project. The problem is I want
a home computer system with information distributed to any TV set
in the house.

I see no problem with taking an IBM PC CGA output and
modulating it to RF. The PC will have software running any kind of
data I desire. Right now it is connected to my weather station and
X- 10 control device (from Heathkit). In my house I have six RF video
feeds. I would like to switch from the following RF sources: 1) raw
unscrambled cable (this is all the channels but HBO), 2) HBO
(unscrambled using cable box), 3) VCR RF output (channel 8), 4)
computer RF output. The goal of this system is to walk up to any TV
in the house and select one of the inputs.

One system I’ve found is an RF/video distribution system from
a company called Channel Plus and consists of “Universal Video
Channel Plus Multiplexers.”  The system allows you to assign specific
UHF channels to RF/video sources. However, the cost for the units
is: 1 RF channel, $189.00; 2 RF channels, $309.00; and 3 RF channels,
$489.00.

I read your article in the February 1986 BYTE about the Audio/
Video Multiplexer. However, this will not work with the RF outputs
from cable TV, cable TV box, VCR, laser disc RF outputs, and

Micromint now makes affordable Video Digitizing even
better with ImageWise/PCTM

The company that made video digitizing affordable now makes affordable digitizing even better with
IrnageWise/FC~  . Bring your reports, graphics, security system, or video application up to the new
standard in cost-effective gray scale video digitizing with the new ImageWise/F’P  .

l Digit& any NTSC, PAL, or SECAM video source4
* Up to 256x255  resolution with  256 level gray scale!
l True frame grabber - digitizes  in 1 /&I second1
l Digltlzes  30 frames per second1
l Composite video output1
l Can d&lay  dlgltlzed  pictures on EGA or VGAI
* Advanced overlay and @It screen capabllltiesl
l Dlgltlzed  Images compatible  ~4th  paint and desktop publlshlng

pfogramsl
l Modify,  enhance. display. and prlnt Images using sophlstlcated

ZIP Software Included with  every ImageWlse/PCI

ImageWise/PCTM
an affordable

$795.00
Order by: TEL: (203) 87 l-6 170

FAX: (203) 872-2204
TELEX: 64333 1

MICROMINT, INC. - 4 Park St., Vernon, CT 06066

Clrdle No. 119 on Reader Service Card
Junuary/Febnmy 1989 6 1



computer RF. I’m wondering if you could design a computer-
controlled RFswitcher that will handle perhaps an 8-input/a-output
system?

Msg#: Q45t  from STEVE CIARCIA

I don’t plan on building an RF switch because I already have one.
An a-by-8 RF/audio/video (actually, I don’t think it switches eight
RF channels) mux called the Component Coordinator. It sells for
about $795 and used to be frequently advertised in all the video and
stereo mags. That’s the best I can suggest unless you want to spend
a lot of money on coax relays.

Msg#: 9484 from JIM NELSON

My name’s emblaeoned on the PCBs in your Component Coor-
dinator, Steve. I was the chief electronic engineer on that project at
Video Interface Products. There were only two electronic design
engineers including me, but that’s just an indication of how hard we
worked. It’s a mix of high and low tech, especially in the mechanical
department, where the technology ranges from photochemical ma-
chining to cracy glue.

It switches three input RF channels (8, 9, 10) by six output RF
channels (l-6) and seven input video and stereo audio channels by
eight output channels. RF input channels 9 and 10 use Omron RF
relays (flat to about 700 MHs);  diode switches are used on the other
RF input column and to switch the RF-modulated baseband audio/
video source into RF outputs 1 and 6.

By the way, as a Component Coordinator buyer, you’re in the
company of Ford Aerospace (who bought forty) and Burt Reynolds
(who bought one). We sold several thousand of those, but Video
Interface folded last year.

Suddenly I don’t feel like such an unknown quantity around here.

Msg#:  9510 from STEVE CIARCIA

Well, I’ll be. My Component Coordinator (I agree that it is amix
of sophistication and kludge) fits neatly into my Nakamichi A/V
system. While I designed my own A/V mux,  the CC was packaged
more appropriately for my needs at the time. I don’t use any of the
RF switches and only switch audio and direct video.

I remember talking to the people at Video Interface Products and
they weren’t very nice. They approached sales as if they were doing
me a favor selling it to me. Good thing it worked. I sure wouldn’t have
wanted to deal with those turkeys for service. What were the details
of their demise? Finally, since you were the designer, perhaps you
might have a schematic that I could have (or one that I can copy and
return to you) just in case this thing ever bites the big one. With all
the lightning problems I’ve had, I’ve been lucky so far.

P.S., How do you sell several thousand and go out of business?

Msg#: 9551 from JIM NELSON

It’s interesting, and typical, that you don’t use the RF section
at all. The first version of the CC (named the FromTo)  was a 10 x
8RF-only  switch. Although it won a design engineering award at the
1983 June CES (for a photo, see Radio 0 Electronics, Sept. 1983, p
50);the  RF-only switcher neverreached production; the package and
the name were changed.

The RF matrix in the model you have was the most expensive
subset of the CC’s production cost. If you’ve opened it up, you
probably noticed that the RF outputs are connected to six discrete
PCBs. Each of those output channel PCBs contains a photochemi-
tally machined RF shield and a pair of equally pricey Omron G4Y RF
(104-dB  isolation @ 250 MHc) relays.

Most people bought it for the audio/video matrix. It was a price/
performance steal. The unit was designed to fit the whim of Video
Interface’s owner; no amount of reasoning could convince him to
introduce an A/V only machine or a simpler machine because it
violated his “inner image” of the market. Only toward the end of
V.I.P.% corporate life did they begin creatively exploiting its poten-

tial by doing things like selling it with BNC jacks -- and cranking up
the price.

Less than ten units sold out of the entire production of about
2000 units were returned for repair. That’s why you’ve never had
problems, In fact, I guess I am why you’ve never had problems with
that unit. <big grin>

Msg#:  9560 from STEVE CIARCIA

Thanks, Jim. I’d love to hear more. BTW, I did open it and it
did seem to have a lot of trash in it. My only complaint is that the
matrixLED display is much too dim, but I didn’t want to try goosing
it because it looked like a pretty small transformer (don’t need any
fires in the entertainment room).

Msg#:  9590 from JIM NELSON

That signal transformer ran cool as arefrigerated wombat, Steve.
It had lots of headroom. In the Component Coordinator, CMOS chips
outnumber the others on the boards 28 to 27, so the system as a whole
runs pretty cool, too. Of course, it may just run cool because we were
able to force most of the energy to be dissipated as EMI.  :-)

The LEDs  are arranged in a time-division-multiplexed 8 x 16
matrix. Each LED is pulsed at 40 mA with a duty cycle variable from
about 4% through 12%. I used UDN2983 Darlington packs driven by
a l/8 decoder to source current to the eight scanned columns of 16
LEDs.  We matched LED brightness by using DS8859 latched
programmable constant-current sinks tied to the cathodes of the 16-
bit addressed LEDs  in each column. There is nothing that can be
easily done to increase the brightness of the display; there are no
resistors to change.

Regards, Jim

The Circuit Cellar BBS runs on a IO-MHz Mi-
cromint OEM-286 IBM PC/AT-compatible computer
using the multiline version of The Bread Board System
(TBBS 2.1M) and currently has four modems con-
nected. We invite you to call and exchange ideas with
other Circuit Cellar readers. It is available 24 hours
a day and can be reached at (203) 871- 1988. Set your
modem for 8 data bits, I stop bit, and either 300, 1200,
or 2400 bps.

IRS
222 Very Useful
223 Moderately Useful
224 Not Useful

SOFTWARE and BBS AVAILABLE on DISK
Software on Disk
Software for the artides  in this issue of Circuit Cellar INK may be downloaded free
of charge from the Circuit Cellar BBS. For those unable to download files, they are
also available on one 989K,  5.25” EM-PCformat  disk for onfy  $12.

Circuit  Cellar BBS on Disk
Every month, hundreds of information-filled messages are posted on the circuit
Cellar BBS by  peopfe  from all walks of life. For those who can’t log on as often as
they’d like, tie text of the puMic  message arw is available on disk in two-month
installments. Each installment comes on three SCM, 5.25” IBM PGfwmat  disks
and costs ‘ust $15. The installment for this issue of INK (January/Febru
mcludes al I prbkc  messages posted during November and December, 1Yfl8.

1989)

To order either Software on Disk or Circuit Cellar BBS  on Disk, send check or
money order to:

Clrcult Cellar INK
Boftwa;J~~;~  Dkk

VW&l,  CT 06066

or use your MasterCard  or Visa and call  (298)  8752199. Be sure to specify the
issue number of each disk you order.



Ctrl

STEVE’S OWN ’ N K

First INK Reader Survey.\.. -7 J

I-”ii3fT he first survey of Circuit Cellar INK subscribers is finished, and I thought I’d use this column to tell
you about yourselves and about what you told us to put into the magazine. We sent out 2000 4-page

;’ questionnaires and so far we’ve gotten over 500 of them back. That’s a tremendous return for a survey,
and it tells us that you have an interest in Circuit Cellar INK that goes way beyond the average reader/magazine
relationship.

The short description of a Circuit Cellar INK reader runs like this: You’re a successful, experienced
professional who enjoys the satisfaction of problem solving both at work and at home. Now, let me flesh the
description out a little bit. First, I’m going to talk about men, since about 99% of you are male. Next, just
about half of you say that you are involved in engineering, even though about half of you engineers have job
titles that place you squarely in the management camp. Over half of you say that you’ve been involved with
computers for over 10 years, and 93% have been in the game for more than 5 years. Whether your length
of experience includes college I don’t know, but I do know that over two-thirds of you have at least a bachelor’s
degree. All that experience and education seem to be paying off, too, since over two-thirds of Circuit Cellar
INK readers have incomes that make them eligible for the Yuppie Hall of Fame.

Now on to the important stuff. It didn’t surprise us to find that 97% of Circuit Cellar INK readers own
a computer. It was a little surprising to see that only 1 out of every 5 of you stopped at a single computer.
Nearly two-thirds of you have an IBM XT or AT, while close to half of you say that you own a single-board
computer. Other computers mentioned run the gamut from old Ohio Scientific 6502 machines through S-100
boat anchors to the latest Macintosh 11s and 80386-based  computers.

While I see Circuit Cellar INK readers as hardware designers par excellence, 90% of you admit to writing
software as well. It’s nice to see that you aren’t afraid to tackle both sides of a project. When you get down
to programming, assembler, BASIC, FORTRAN, and C (in order of popularity) are the tools you choose.
Speaking of projects, I was impressed to see that 77% of Circuit Cellar INK readers design and build applications
for personal use. In addition, over two-thirds of you say that you’re planning to build an electronics kit in
the next twelve months. With all this designing and building, it looks like there’ll be a whole lotta solderin’
going on.

In addition to telling us about yourselves, the survey let you tell us what you think about Circuit Cellar
INK. The most important thing we saw (and the most gratifying) is that you think we’re doing a good job.
In comment after comment, you told us that you want a very technical, practical, solution-oriented magazine
with an emphasis on applications. Circuit Cellar INK readers like the humorous introductions to some of the
articles (OK, my articles) in the magazine, but want to make sure that the technical content stays solid. You
most certainly don’t want “Circuit Cellar INK Looks at 135 AT Clones” articles (don’t worry) and you would
like to see tutorials covering practical aspects of computer application design and construction. You want more
embedded control and microcontroller applications, and could do without glowing descriptions of technology
that no one can afford.

The survey helped us get a better picture of who you are, and gave us some clear directions on making
Circuit Cellar INK the magazine for serious designers and builders. All in all, the magazine you say you want
is exactly the one that we’re planning to continue. To everyone who responded to the survey, thanks.

64 c//?culT CmAR  INK
Steve Ciarcia


