THE COMPUTER APPLICATIONS JOURNAL

Computing in Real-Time

h”vw'm *

Ct

EDITOR’s INK
The Revolution Continues

A s | write this, COMDEX is a two-week-old memory. I've had a chance to sit down and sift through

the mountain of press releases, media kits, catalogs, and business cards that | brought back with me,

and I've got to admit that I'm a little disturbed. Between networks, multiuser systems, and OS/2, the
emphasis was amost entirdly on (relatively) big computers and central control of programs and data. In this
world, if you're not locked into a large project team at a multinational hardware or software manufacturer,
you have no business mucking around inside the box. As a matter of fact, if you're trying to do anything
at al outside the “mainstream” of modern corporate computing, it's obviously because you're a sinister
sociopath, lurking in the shadows until you can crash our national defense system. As 1 waked the aides of
the Las Vegas Convention Center, | wondered if the “Microcomputer Revolution” had taken 12 years to bring
us back to minicomputers and a white-coated DP priesthood.

When | left the main hall of the show, and visited the smaller companies in the hotels, | finally saw evidence
that the microcomputer revolution still flourishes. A number of companies showed me products that make
putting your computer in touch with the real world easier and more effective than ever before. There were
single-board computers and controllers in a few booths, and tools for hardware and software engineers and
designers in a few more. Looking at the components, adapters, and tools made me redlize that there is a lot
of very high-quality work going on in the smaller companies within our industry. There seems to be something
about a smal company that leads engineers to concentrate on practical, cost-effective, real-world solutions
to problems. It made me fed good when | found that these working problem-solvers are often Circuit Cellar
INK readers. | finally decided that much of the truly revolutionary work going on today is happening in small
companies, just like it did in the beginning. | like that, and I'm glad that Circuit Cellar INK is able to play
a part in the ongoing computer revolution.

Give Us an Earful

The response to our first reader survey was so helpful (Steve talks about the results of the survey in his
column on the last page of this issue) that we decided to make it easier for you to tell us what you think of
the magazine. Starting with this issue, there are three numbers printed at the end of each article. Please take
a moment to decide which number matches your feelings about the article, go to the Reader Service Card in
the back of the magazine, and circle the number. When you're through, tear out the card (it's postage paid)
and drop it in the mail. The response we get to articles will have a direct impact on the type of articles we
have in future issues. I'll say thanks in advance for helping us keep Circuit Cellar INK on the right track.

Beyond giving the editors feedback from you, the Reader Service Card that begins in this issue does two
things: First, it makes it easier for you to get information on those products that interest you. Second, it gives
our advertisers positive feedback on the investment they’ve made. Our readers are the reason we work so hard
to make this magazine; our advertisers are the reason we can afford to make this magazine.

We're all looking forward to the new year. We're going to be growing and improving, but never losing
sight of our mission to serve the people who design and build computer applications. From where | sit, it
looks like a fun year ahead.

Curtis Franklin, Jr.
Editor-in-Chief

January/February 1989 i

EDITORIAL
DIRECTOR/
FOUNDER
Steve Ciarcia

PUBLISHER
Daniel Rodrigues

ASSOCIATE
PUBLISHER
John Hayes

EDITOR-in-CHIEF
Curtis Franklin, Jr.

TECHNICAL
EDITORS
Ken Davidson
Jeff Bachiochi
Edward Nisley

CONTRIBUTING
EDITOR
Thomas Cantrell

CONSULTING
EDITOR
Har v Weiner

CIRCULATION
COORDINATOR
Rose Mansella

CIRCULATION
CONSULTANT

Gregory Spitzfaden

PRODUCTION
MANAGER
Tricia Dziedzinski

BUSINESS
MANAGER
Jeannette Walters

STAFF
RESEARCHERS

Northeast
Eric A lbert
William Curlew
Richard Sawyer
Robert Stek
Midwest
John Elson
Tim McDonough
West Coast
Frank Kuechmann
Mark Voorhees

Cincul
Cellar!

N

Ctrl

K

FEATURES

ImageWise/PC - - The Digitizing Continues -- Part 2
¢ | The Hard ware
by Ed Nisley

In the second of three parts, Ed Nidey
shows the hardware details of this 1SA
bus gray scale digitizer, and contrasts
the design with that of the origina seria
ImageWise. The starting point is the
fundamental design decisions for an
IBM/PC 1/O bus board.

Build a Remote Analog Data Logger -- Part 2
The Soft ware

‘"1“.‘»‘..

e
REREN)
L1

e |)

by R. W. Meister

In the final installment of the article, we explain the 10
C language software for the Matorola 6809 controller.
Bob Meister uses descriptions and examples to cover
program logic flow, interrupt handling, and coding for
specific routines.

Seconds v/o
Input

1 Second
passed

Run Thru
Scheduled
Readings

Cancel Line,
Reactivate
Scanaing

1

Conaza
Entr;
Comple

ad

{od

Parse Command

LDEPARTMENTS

Editor's ink
The Revolution Continues

by Curtis Franklin, Jr.

Reader’'s Ink -- Letters to the Editor

Visible Ink -- Letters to the CCINK Research Saff

Ink Spot -- Guest Editorial
A Cdl for Dedication

by Egra Shapiro

From the Bench
AC Power Line Transmission
Conducted by Jeff Bachiochi

2 CIRCUIT CELLAR INK

20

34

42

THE COMPUTER APPLICATIONS JOURNAL

The Home Satellite Weather Center -- Part 7
Finishing the Firmware for the 68000 Peripheral
Processor

by Mark Voorhees

As the 68000-based Peripheral Processsor moves closer
to completion, Mark Voorhees wraps up the controlling
firmware for the system. This installment shows how to
integrate Weather Facsimile (WEFAX) reception and
interface the Heathkit ID-4001 and ID-5001 weather in-

struments to the Peripheral Processor.

Writing A Real-Time Operating System -- Part 1
A Multitasking Event Scheduler for the HO64180

by Jack Ganssle

COMPLETION

HAITING

CANCEL WAIT COUNT

(ACTIVE

«

| Control Block.
SUSPENDEI

In the first of two parts, Jack Gansse explains
the concepts behind a real-time operating
system (RTOS) and shows how an RTOS differs
from a general-purpose operating system. He
then moves into the beginning of the actual code
with the scheduling algorithm and central Task

Advertiser's Index

48

Firmware Furnace
Real Numbers
Number Crunching for the 8751

52

by Ed Nisley

ConnecTime -- Excerpts from the Circuit Cellar BBS
Conducted by Ken Davidson

Steve's Own Ink
First INK Reader Survey

59

64

by Steve Ciarcia

Cover lllustration by Robert Tinney

Circuit Cellar BBS - 24
Hrs. 300/1200/2400 bps, 8
bits, no parity, 1 stop bit,
203-871-1988

The schematics pro-
vided in Circuit Cellar
INK are drawn using
Schema from Omation
Inc. All programs and
schematics in Circuit Cel-
lar INK have been care-
fully reviewed to ensure
that their performance is
in accordance with the
specifications described,
and programs are posted
on the Circuit Cellar BBS
for electronic transfer by
subscribers.

Circuit Cellar INK
makes no warranties and
assumes no responsibility
or liability of any kind for
errors in these programs
or schematics or for the
consequences of any such
errors. Furthermore, be-
cause of the possible vari-
ation in the quality and
condition of materials and
workmanship of reader-
assembled projects, Cir-
cuit Cellar INK disclaims
any responsibility for the
safe and proper function
of reader-assembled proj-
ects based upon or from
plans, descriptions, or in-
formation published in
Circuit Cellar INK.

CIRCUIT CELLAR INK
(ISSN 0896-8985) is pub-
lished bimonthly by Cir-
cuit Cellar Incorporated,
4 Park Street, Suite 20,
Vernon, CT 06066 (203-
875-2751). Second-class
postage paid at Vernon,
CT and additional offices.
One year (6 issues) char-
ter subscription rate
U.S.A. and possessions
$14.95, Canada $17.95,
all othercountries $26.95.
All subscription orders
payable in U.S. funds
only, via international
postal money order or
check drawn on U.S.
bank. Direct subscription
orders to Circuit Cellar
INK, Subscriptions, 12
Depot Sq., Peterborough,
NH 03458-9909 or call
203) 875-2199
OSTMASTER: Please
send address changes to
Circuit Cellar INK, Cir-
culation Dept., 12 Depot
Square, Peterborough,
NH 03458-9909.

Entire contents
copyright 1988 by Circuit
Cellar Incorporated. All
rights reserved. Repro-
duction of this publica-
tion in whole or in part
without written consent
from Circuit Cellar Inc. is
prohibited.

January/February 1989 3

CM

READERS! N

K L etters to the Editor

I'd Like to See ...

For future editions, please consider a digital music
mixer for the IBM PC/AT (including a MIDI inter-
face), or a video-recorder data-backup device, or a
video camera-to-IBM disk device.

John Lee
Chicago, IL

[For a video camera-to-disk device, | think that the
ImageWise/PC, which continues in this issue, will be
hard to beat. | haven't seen a project for any sort of
data backup device here, but | would certainly be happy
to look at a proposal from one of the Circuit Cellar INK
readers. Finally, we're planning an issue on “ Appli-
cations in the Arts’ for later this year. If anyone has
done work with MIDI, graphics, or other artistic
applications, drop me a line to see about article
possibilities. Ed.]

| received issue #5 this week and thoroughly
enjoyed it. | especialy enjoyed the article on *10-
MHz/8-bit Digitizing Board for the IBM PC.” | would
like to see more articles on video design including
articles on frame grabbers, text overlay, and simple
image processing. Thanks again for an enjoyable pub-
lication.

Steve Horacek
Boulder. CO

[Gee, it looks like we started ImageWise,/PC just in
time! We're working on bringing more video projects
to Circuit Cellar INK, so hang in there. | think that
Circuit Cellar INK in 1989 will have some articles that
are right up your (video) alley. Ed.]

Thanks for the great magazine. | am pleased with

the issues so far. | am glad that you are publishing
technical articles of all types, not just strictly computer
articles.

| hope that we'll see some articles written by Apple
Il enthusiasts. I'd like to see more information on the
GIF graphics format mentioned in Circuit Cellar INK
#3. I'm disappointed at the lack of Apple][software
for the ImageWise digitizer. Perhaps GIF will be the
answer.

Rolf Taylor
North Salem, NY

[OK Apple fans, here's your chance. If you've written
ImageWise software for the Apple /[, or if you're
building applications around this venerable platform,
let me know. Circuit Cellar INK tries to present
applications based on many different computing plat-
forms, and is dedicated to no particular architecture or
operating system. Ed.]

| have worked with computers for 20 years, have
progressed from computer operator to programmer to
systems analyst to computer scientist, and have been
delighted with being able to make any computer
“sing” for me. | never had any interest in electronics
until | saw Steve Ciarcia's “Why Microcontrollers’ in
the August 1988 issue of BYTE. That did it for me.
| have now gone hog-wild, researching the University
of Houston technical library and every other source |
can get my hands on which will expand my under-
standing and knowledge as pertains to all forms of ICs
and peripherals. | have also undertaken several
concurrent 803 1 -controlled projects which | thought
up.

Will you be addressing any aspect of ASICs and
PLDs in future issues, or should | just go ahead and
study other sources to satisfy my interest in that area?

Allen R. Summers
Pasadena, TX

January/February 1989 5

[We certainly do have projects which use 4SICs and
PALs, as well as tutorials on how to design with them,
in the works. One of the problems in this area is trying
to offer projects that don't require a $30,000 develop-
ment system, and we're working in that direction. Stay
tuned. Ed.]

| have enjoyed all the articles in Circuit Cellar
INK. | am very interested in video processing, and in
converting from one standard to another. | aso like
electromechanical projects, and have built such things
as solenoid- and servo-operated gearboxes for R/C
models.

Keep up the X-10 projects. | have 14 modules
around my house operating lights, fans, TVs, and so
on from a programmable timer, a maxi controller, and
two mini controllers. | have a separate system for my
ham shack made up of recovered units and their
controls purchased at a ham fair for $4.

Adrian M. Zeffert
East Northport, NY

Create Professional @uality Circuit Diagrams with

MacSchematic
[Macschematic & a brary | from
G0

of over 800 Electrical and

Electronics symbols for

professional qualiy circu Thinklng
diagrams on the Mac. '

Symbols are in both PICT
format for MacDraw,

DOraw programs and in

MacDratt, or other CAD/
e ® g T
MacOraw 11 libraries.
Illﬁt_:homqﬂc symbols @
are object orianted for @ A \}7 @

supesior printer, piotter

By B A
Sl
b X
i
e

Thinking Tools
2411-M Linden Ave
Baltimore, MD 21217

MacSchematic: $80 ——
All Macs Demo + Manual: $10 or Visa/MC Ordor
plus 85 shippinghandiing Call (301)-383-6490

Circle No. 124 on Reader Service Card

6 CIRCUIT CELLAR INK

—-——‘

An Important Theme

The nicest thing about Circuit Cellar INK is that
| fee good reading it. It doesn't make me fed guilty
about having forgotten the propagation theory back in
‘63, but still does give me the information about new
and fun projects | want to dream about (even if | can’t
afford to build al of them). | am glad that you provide
the necessary background (such as the stepper motor
article) without patronizing. It reminds me of the days
on the roof tuning our cubical quad, with the
transmatch my father and | built from scratch (coils,
chassis, and even the six-inch-long variable capacitor
-- plates and al) feeling sure we knew all there was
to know on antennae.

More important, though, is the theme | think |
sense here. A willingness to share, the courage to do
it yoursdf in a snotty-pants peer society that thinks
itself so high and mighty, riding on big expensive
systems, but can any of the members of the society
even begin to caculate what brings the signal across
three inches of PCB into the DRAM? HA! In Circuit
Cellar INK | see, once again, a hope for the generation
my kids will have to be members of.

My only regret now is that | won’'t be able to access
the Circuit Cellar BBS. Are there any plans to get a
Tymnet link? How about opening a conference on
CompuServe? If you do get Tymnet, Telenet, or a
CompuServe conference, please let us international
readers know!

Steve Chandler
| srael

_ [First, thanks for the kind words. One of the
principle motivations behind a publication like Circuit
Cellar INK is the feeling that you can help people
improve their engineering and design skills; that you
can help them be better doers, not just better shoppers.

~ We are constantly looking at ways to make the
Circuit Cellar BBS accessible to more people, and we've
talked about doing all the things you mention. The
biggest limit right now is human resources. There’s one
overworked engineer/editor who already spends sev-
eral hours a day just keeping up with the current Circuit
Cellar BBS. If we expand the system’s scope, it will
take at least one full-time person to direct traffic.
We're still looking and talking, though, and you can be
sure that any changes will appear in the pages of Circuit
Cellar INK before they show up on the board. Ed.]

Corrections
Issue#5, Sept/Oct '88 - 10-MHz/8-bit Digitizin% bard for the IBM PC

e 30 -- U3 pin 4 should go to -5V through R8. Pm 7 should go lo +5Y through
R7. Pin 8 is unused.
Issue #6, Nov/Dec ‘88 ~ ImageWise/PC ~ The Digitizing Continues]
PagF;es 38841~ Swa? photos 1and 3, leaving the captions in place. The caption
for Photo 3 should refer back to Photo 1.

|mageWise/PC --
The Digitizing Continues

by Ed Nidey

erhaps the fundamental
P truth of engineering is
that you can't have eve-
rything. There are always conflict-
ing requirements: speed, power,
board space, design time, parts use,
and complexity must all be bal-
anced against each other.
Throughout this article 1 will dis-
cuss the tradeoffs we made in the
ImageWise/PC design so you can
see why it works the way it does.
Because most of you are famil-
iar with the original ImageWise
design presented in the May and
June ‘87 Ciarcia's Circuit Cellar
articles in BYTE, I'll concentrate
on what's new and different about
the ImageWise/PC hardware. The
starting point is the fundamental
design decisions for an IBM PC
[/O bus board.

Where's the Buffer?

The heart of the ImageWise/PC
circuitry is 64K bytes of static
RAM, enough to hold one digital
image. The video ADC (Anadog-
to-Digital Converter) translates
each scan line of the incoming
video signal into 256 separate pels
(picture elements), so the buffer
can hold up to 256 such lines,
although one scan line is reserved
for internal use. NTSC video has
about 244 scan lines, which is the
standard | will use throughout this
article. PAL and SECAM video
have about 280 scan lines, but only
255 can be held in the buffer. The

8 CIRCUIT CELLAR INK

additional 25 lines nor-
mally fall within the
monitor’s overscan re-
gion, so aren’t visible
anyway.

The video ADC
produces eight bits of
data for each pel, re-
solving the image into
256 shades of gray. The
video DAC translates
this data back into an
analog voltage resulting
in a good reproduction
of the original scene.

In order for the
ImageWise/PC to be
useful, the IBM PC must
also have access to the
buffer memory, The
most obvious method is
to assign 64K bytes of
the PC address space to
the ImageWise/PC video
buffer. The memory
maps in Figure 1 show
why this simply won't
work: while there are
some 64K dlots free in a
bare-bones PC, a mod-
erately well-equipped AT doesn't
have any available memory ad-
dresses!

The AT’s memory map does
have some “holes’ that are unused,
so the ImageWise/PC buffer could
be mapped into a hole in sections.
For example, there may be 32K
available in segment CO00 hex next
to the Disk BIOS ROMs. We
decided that the added complexity

of the mapping hardware out-
weighed the advantages of direct

access, particularly since the
buffer's starting address would still
have to be picked to match the pe-
culiarities of each system.

We finally made a tradeoff that
avoids memory mapping entirely!
The video data can be moved
through a single 1/0 port using
[/O instructions instead of memory

The Hardware

Part 2

The ImageWise/PC can combine
analog and digitized images as
either digital over analog, or

analog over

screens.

digital

image

F@@@: 0000 ROM BIOS ROM BIOCS
E@@@: 0000 RESERVED RESERVED
DBOG: 0000 FREE EMS RAM
C@@G: 0000 FREE DISK BIOS
BOGB: 0000 MDA BUFFER EGA BUFFER
A000 : 0000 FREE EGA BUFFER Figure 1 -
9000: 0000 RAN RAMN A memory map for
8000 : 0000 RAM RAN the PC/XT and
7000 : 0000 RAM RAN PC/AT shows why
© 0000 RAM RAM using an 1/0 port
, RAM RAM was chosen for the
+ 0000 ImageWise/PC as
+ 0000 RAMN RAM an alternative to
: 0000 RAH RAM memory mapping.
: 0000 RAM RAM
: 0000 RAM RAM
0000) RAM Il RAM |
IBM PC IBM AT
MONOCHROME EGA_ DISPLAY
DISPLAY HARD DISK
NO HARD DISK LIMEMS RAW

transfers. A counter on
the ImageWise/PC board
generates RAM ad-
dresses so the PC pro-
gram can simply read or
write bytes from the
port.

I/O instructions are
slower than memory
transfers but the differ-
ence is relatively small.
The key point is that
even though the transfer
takes somewhat longer,
the ImageWise/PC board
can be used in a *“full-
up” PC or AT with no
problems.

Access Control

The ImageWise/PC board uses
an Intel 8031 microcontroller to
handle many logic functions that
would ordinarily require a lot of
“glue” chips. While we could use
an ASIC (Application-Specific In-
tegrated Circuit) chip to merge
these functions into a custom de-
sign, the microcontroller offers far
more flexibility to handle require-

ments that crop up after the board
is designed and manufactured.

Because the 8031 can aso read
and write the video buffer, there
are six ways to get data into or out
of that RAM! Idedlly we would like
to allow simultaneous read/write
access by the ADC, DAC, PC, and
8031. That way the software
doesn't have to take conflicts into
account. But there are some thorny
problems aong the way ...

Each scan line on the screen
presents 256 bytes of data in about
5 1 microseconds, or one byte every
200 nanoseconds. The ADC will
produce one byte and the DAC will
consume one byte at that rate
throughout the visible part of the
image, although the ADC is active
only when acquiring an image.
Neither access can be delayed in the
least because there is no way to
“pause” the analog video signal.
Therefore the ADC and DAC must
have uninterrupted access to the
Image RAM.

When the ADC or DAC are
accessing the buffer, al other uses
must be sgueezed in between suc-
cessive samples. Dividing the

January/February 1989 9

[ORN

10un
[RESET
pL _
18M PC_BUS LoLo
Blicun N
RESET sD7
o co6
U e —
—tras SD! pes
e ——
—pra2 S0
120 sp2 £
—Jous sp1 [—PCDI
Biojens’ e
READYN [24¢ aen
—{smEms
—isremRn salol—
Toun sa1sf—
10RN sAL7[—
—loackan satel—
DrRo3 sa1sp—
DACK 1N SAt4—
oraL satsl—
sziter shizl— Eoho-2
ch(a1 (A28
RQ? satel—
—{1ras £eas
—1tras £ea
—1raa 3A? Pghﬁ
| Al
IRaz - ses £
—Jrc sa4 fea
BALE sa. oA
R
CETINN oL Taa]_peap
12
SOLDER TOMP ONENT
SIDE SIDE F8l
= 1208
| S—

10UF
TANT

{ SPARES
) +5

g S—
’J_cz

10UF
TANT

Lo

+] 1eUF
TANT

-12uA

Led
+] 10UF
TANT

Figure 2 -- ATH PC bus connector and power supply filtering. Great emphasis was placed on power
supply noise elimination because of the analog circuitry on the board.

available time equally allows only
100 per access and allowing time
for register and buffer delays
means that the Image RAM must
cycle in about 75 ns. While using
a 64K buffer of 75-ns RAM is
possible, the cost of the buffer and
the additional circuitry gets out of
hand quite rapidly.

We decided the best solution
was also the simplest: alow only
one device to access the Image
RAM at any one time. The ADC
and DAC have unrestricted use
during active video, and the PC and
8031 must disable the video en-
tirely or sgueeze accesses into the
blanking intervals to prevent colli-
sions.

Now that you understand why
the ImageWise/PC uses I1/0-
mapped accesses, it's time to get
into the details. Figures 2 through
8 show the ImageWise/PC logic.
Each schematic concentrates on the

10 CIRCUIT CELLAR INK

logic for a particular section of the
design.

PC Interface Logic

From the PC’s point of view, all
access to the ImageWise/PC cCir-
cuitry occurs through seven /O
ports. Two jumpers on the Image-
Wise/PC board set the base address
for these ports, which is normally
110 hex. Figure 9 shows the default
port assignments.

Figure 3 shows the port decod-
ing logic and the registers that
transfer data between the PC and
the 8031 firmware. Although the
board uses seven 1/0 addresses, it
occupies 16 bus addresses because
the decodes are not complete. For
example, address bit 3 does not
enter into the decoding logic so the
board will respond to accesses at

The ports fdl into three classes:
hardware control, RAM access, and
firmware interface. Because |
started out by describing the rea-

110 or 118 hex with the same soning behind Image RAM ac-

action.

cesses, I'll begin with the RAM

PCAR-S

vz
2 JP1 . 7415138 JP2 .- 's it
H PCA8 4 g;a M R2 4 74ls74
: y12 5 RESET8031%
PC ADDRESS | peas ! T = 10K 74Ls04 2ip
DECODE :Pcm J : 1 sle e RESET8031
u12
PCAE 3 N YiZcos oL
m PCAS. 2 Mty N\ A
74L5253 ZLY) L vobls
e 2
3
L v
1L her
1 ace Yiisizs
= +s5-Hic3 2 A
ez avT— —So1 vopl-
1 5 ° WRPRAMPCN
S SO RURAMPON
1l iy WRADRH 1 PCS
i pcaz 3 vabis WRADRLOPCY
1626 PCAL 2 My OPRAMPC:
0 Tl PcAe 1 " 5 DURAMPCN
.5 DATAO-7
u4 r~
7405138 us ADO-7
10Wy 6 2 74L5374 s
AEN o0, vebe DATA? 18 19 AD?
LORY B 0 DATAS 17|50 16 ADG
_1 1 ATAS 14 S ADS.
peoe-7 1K vbi2 ATA4 13 2 ADA
3 pcaz 3l M ATAZ 81 aD3
e o e e
PcO? s 11 DATA? n vo [-oatas 312 2 o
PCD6 8]0, g1z DATAE
PCDS il 6| L3_DATAS Y K oE|pe
D4 3 14 DaTA4 R e
il 5 g4l 13 DATAS i REG
PCO: L] 1 ATA:
PCD 3 17 DATA 5 vie
PCDN 2107 gyl L8 DATA 745374 74L$374
DATA? 18 sap? 4 18 9 _DATA?
626 EN >— —Aoatee 17150 6 roe A 1750 & DATAS
Ht OATAS 14 505 4 14 5 _DATAS
° ATA4 13 o 2 AD; 13 2 OATA4
RDPCOREGY ATA3_ 8 o0 a0 : o g: :;
e o7 ATA2_ 7 |o0 A o
7405244 745374 aTAL 4120 AD. 150 DATAL
s P Atz 4 18 [0 19 DATAG _31p | AD! 3l 1 DATAC
OPCMPLT 1 atAc A 171, 16
1 g: ATAS 14 g corLs INDEX LGK OE CK OF EL?E°
pISVID a2 pATAs A 13000 goll2 REG h A t ooar
£1ELDL a4 1va| L2 DATA S0 aal
GENLOCK a3 1va| 14 OATA 7 sl
SYNCPULSN 411n2 1yol 16 DATA 4 205
8 DATA 3 2
LERTSYHC L vt 10 1o é %asu 1DXLOADN
1620 CK_oE 12[PRl o
1t sTaTus 1 Ti controL
> RreG 1 REG 1l g8
= cL
= 1T
3
WRV]DDREGN T
RDIOXREGN

Figure 3 -- IBM PC bus interface circuitry. The board can be jumper-selectively addressed at one

of 16 base port addresses.

The entire ImageWise/PC board
fits into a single full-length 8-
bit ISA (PC-Bus) dot.

control circuitry.

All image data is transferred
through the VRAM port. Each
access uses the current value of the
PC Address Counter (U27 and
U28), which is loaded by writes at
ports ADDRHI and ADDRLO.
Each VRAM access increments the
address counter, so reading the full
buffer requires a single address
followed by 244 x 256 reads.

The port aa CTL_ STAT con-
tains al of the hardware control
and status bits, which are itemized
in Figure 10. Writes to this port set
the controls, while port reads re-
turn the current status bits. 1 will
describe the reset functions in more
detail when | explain the Program
RAM.
Firmware Interface

The INDEX and DATAREG
ports provide a communication link

between the PC program and the
firmware running on the 8031
processor. The board has great
flexibility because nearly dl of the
board’'s functions can be adjusted
on the fly. | will describe the
firmware in more detail in the next
article, but the hardware merits
separate discussion.

There are several dozen vari-
ables controlling everything from
the duration of horizontal sync
pulses to the overall video signa
level. These variables are grouped
into the firmware registers shown
in Figure 11.

Rather than provide a sepa-
rate 1/0O address for each regigter,
the ImageWise/PC firmware uses
the INDEX port to specify which
register will appear at the DA-
TAREG port. Changing the con-
tents of a firmware register re-
quires writing the new value to
DATAREG and writing the regis-

January/February 1989 11

ape-7
~<
PC_ADDR REG @-15 ~ fe-i3
\ u13 us vl
740s244 7405373 27856 /62256
ms it oz o] Ll e
A » Al3
PCAREGI3 13 203 2¥315 a5 o514 |70 79sas] eeron|*L*S A1Z_ 2|, EPROM/RAn w17
poaREGiz 11 20% 2X25a) AD4 13]e0 FXY) R a1e AL 23l 7415245
PeaREGIL e ot dvizAIl a03 g o0 Y) 3 Al 21015 oolL2_ap? 08 palll DATA7
NPoAREGL0 "6 1ih3 14 a1 apz_71.0 A2 A3 24 ADE; 7 B7l 12 DATAG
Npoarees —a|103 1V, pOL_4 130 a1 P4 A8 25 o¢fiz aos o S5 oaTes
| FearEce 2 18 A ADE 3 e i LYED,) IS AD4 gel 14 OATA4
1AL 17]] N 10 1 32x o —3jnr paje oo es ssid-poTes
16_26 EN of ak| T o As_ 5 o AD2 4 3|16 DATAZ
L L % 3 K as |0y or ADL 3 ool L7 DATAL
5 i s e Do, 2Ja; oi18_DATRO
i \%&2 wz hee En
745244 ,, Y23 a8 AL
PCAREG? 17[" T az +5—3{7als21 [Ne__Lolag L
[\pcarece 35 902 2Y4s—ne 2 3 oEn
NPcarecs 131702 27 AS 2 v2n AT5 26]0en s
NECAREGT 11101 2vif2 a4 74 308 WEN v24
INECAREGS 81,0y jyal 12 A 4 3 74Lses
\EcAREG2 ¢ s [valia a 2 2
INEcAREGL 41103 Y316 p
\Ecrreco 2 |1ne Y215
16 26
A
RESET8031\ 5
RESET8031
ROPRAMPCN |
I 1
16z
oMz, —
DETECTZY
21
uis 17 82C54
fest ey ! I 18
s 2.7 D6 cLke|
15 7 _Al4 I ADS 3 16
xTALL P2. DS GATEZf
ol26 a1z AD4 4 17
27PF XTL1 P2, 04 ouTe
ce S 12ttHZ p2.4| 25 A12] AD3 5
18 luraLz p2.3-24 AL H vis 202 6b2 ik is
L 27pF M p2.2123-A10 74(s138 o a0t carertl
EAUP P2. 12 6 7_BBXX ol pe our:
TR 61 v7]
N 2.0 4lo2n vepe BOXX 22 N
RST 5. 10 ABXX KD cikel
32 AD7 625 v 23 ¥
Po. 75— AD7 4 11 XX R GATEe|
svhes L 33 ADE ¥ AL 20 1
INTo Po.6(23. ADE, 12 98x 1 oute
134 N1y ro.534 A0S 3 T35 sexx fe_ Lo
IDXLOADY ey 35 AD4] ¢ vzbid 21
To Po.4 2 14 88X
1Sy, Po.3l 36 A0 N LTI
Po.2p3L _ AD2 " Yo =
Po. 1]-38 AD. GENLOCK
acovio 2o .o o032 AD u2e ROPCDREGY SYNCDET
ENBOULY 1ol e 74(s138 RD [DXREGN BLNKDURS
0isvio I3 i4ebd RoiLZ 1 a— Y DURAM SYNCPULSN
VERTSYNE £ B 4ic2n vepo. BOXX CLRUACTRN
OPCHPLT 3o pseN N N T YO WRUIDDREGN
GENLOCK 2lpi s aLEP| 20 yapLLABRX WRLULDAGN
D1GHASK 2]prd TxplLL Yaplz 98XX WRURAMN
FIELD} eils Rxo L8 3l JaPissexx VURADRHIN
2lg o opLeeexx WRADRLON
" vol 15 80XX

Figure 4 -~ Main system controller, including

grammable interval timer.

ter number to INDEX. Similarly,
reading the current value is accom-
plished by writing the register
number to INDEX and reading
DATAREG.

There are actually two DA-
TAREG registers. U8 holds the
value written by the PC program
and U10 latches the corresponding
value from the 8031 firmware,
Each is readable by the other proc-
essor.

The 8031 monitors the output
of Ul1B to discover when the PC
writes an INDEX value. The U11B
flip-flop is cleared when the 8031
writes a value into U10, which is
ordinarily the last step in the
firmware’s response to the INDEX
value.

The firmware presets the val-
ues of all the registers after a
hardware reset so the PC doesn’t
have to load anything unless the

defaults are not correct.

12

CIRCUIT CELLAR INK

Program RAM

There is one port I have not
mentioned yet: PRAM. This port
gives access to the Program RAM
holding the 8031 firmware pro-
gram. In ordinary use, the PC will
not have to read or write anything
from this port because most Image-
Wise/PC boards store their pro-
grams in EPROM.,

Close scrutiny of Figure 4,
though, shows that the circuitry
can handle static RAM chips or
EPROMs, with either 8K - or 32K -
byte capacity. Bus buffer Ul7
allows the PC to read and write the
Program RAM much as it does the
Image RAM. U17 is omitted from
boards using an EPROM because
there is no need to access the
EPROM.

Because the 8031 must be reset
during program loading, the Image
RAM will be inactive. Rather than

the 8031 processor, control program storage, and pro-

include a separate Program RAM
address counter, the PC Address
Counter also provides the address
for the Image RAM through mult;-
plexers U13 and Ul4. These chips
are omitted from EPROM-only

patae-7

HRURN
ROURYN

ses

RDURAMPCN 3
RDYRAMN

13426
URURAMPCN s 741521
WRYRAMN B % 3

PC_ADDR REG @-15

vAe-13

v27 v29 -
74815867 74L5244

A7t LS PCAREG?
PCAREG6
CAREGS
Y] CAREG4
PCAREG3
PCAREG2
CAREG L

N

2
e
5
AN

e
EEREELEE
>

>[>[>

S

WRADRLOPCN 9
WRADRLON. 10

o]a

2 _PCAREG®

u23
8 24 %4s21 R3
10 8 270
15

ENBYID

[F3
74,5590

CLRDIUZN

use
74ALS867 7415244 (==K
DATA? 1 AREGLS 1?7 > VALS, 2 vaz A
ATAG PCAREG14 15 2v A14 A vas A
ATAS AREG. 13 2v VAL uAS
ATAS PCAREG 111501 2¢ AL 10 UA4
ATA3 AREG. A4 1 2 val 14 s
ATAZ PCAREGL a3 1y3ld VAL 13 UA:
ATAL CAREGS Jy2pl6 uA 1 un
ATAG PCAREGS At 1yl 18 um 11 5 UA
uzs, 1 =7 7Esbi2
L NT RCOpt2 16 26
LRADRHIPCN 12 7“'“131 5,926 = 230 Y
WRADRHIN 13 To 74L5821 R4 1: « B a2
T Tz 74,5590
[13] c8 - 5
+5 |2
IwePr Yilsoa RO | wis
pisVID al o vAL4
] aFfS vAlL3
CLRUACTRN) VAlZ
[4, vALL
3 2 vale
) ReK 1 VA
1o, 15 | ung
BLNKDURN
1oMHZN
TOHH:
700N
FITREN
ERBUACTRS
y33
+ Y3254 & Yals7a 740574
XTL2 2 5 12 9
20rH2 i e
8 56 AL 518
out
oL cL
; |
CLRDIVIN

Figure 5 -- Video RAM addressing section plus master clock generation. Synchronous counters are
used to simplify the task of addressing memory.

The digitized image can be
stored in a PCX fileto be
used with various paint and
desktop publishing pro-
grams.

boards.

Once the starting address is
loaded into ADDRHI and AD-
DRLO, reads and writes to the
PRAM port access the Program
RAM. Unlike VRAM accesses,

though, these accesses do not incre-
ment the PC Address Counter.
After reading or writing the PRAM
port, the program must access
VRAM to step to the next address.

RAM storage does introduce
one complication, though: the
ImageWise/PC cannot begin opera-
tion until the Progran RAM con-
tains a valid program. The solution
to this is to provide a reset function
controlled by an 1/O port as shown
in Figure 3 instead of using the
/O bus RESET signal.

The output of Ul IA is con-
nected to the 803 1 Reset line so that
the processor is disabled whenever
the flip-flop is cleared. A bus
RESET signa clears the flip-flop,
ensuring that the 8031 is halted
when you turn on the power. Bits
6 and 7 in the CTL_STAT port
control the state of the latch; bit 6
sets or clears it, while a O-to-
transition on bit 7 clocks bit 6 into

the latch.
Analog Video Input

The analog video input cir-
cuitry shown in Figure 7 has sev-
era improvements over the stand-
alone ImageWise design, although
you're certain to recognize the
similarities.

The circuitry must clamp the
incoming sync tips to ground level
so that the video signal levels are at
a known voltage. The new design
has better temperature compensa-
tion and clamps the tips closer to
ground level.

The older design used a simple
RC filter to eliminate the subcar-
rier from color signals. Although
we intended that board for use with
monochrome cameras, | have to
admit we should have done better.
The new chroma trap was suggested
by a caller on our BBS; it works just

January/February 1989 13

oATRO-7

upe-7

u3s
£2256

huni4 14

u3s
745245

>
iin

lcle e
e
>
N

7 B?

12

10

223333

~

ofo

DS VO?

RDURAMPCN

03

y24
5 fALses
WRURAMPCN 10, G

ape-7

238

use 2
745245 WEN

=iA7 87|
‘r¢ Beris

ROURAMN

IRURAMN 13,

WRURN

vaLs

\vAg Q)
filse e
4
OE\
IINE 2% cEN
N

u3?
2405153

QONS N,

1
ﬁ[‘_:‘ 2c2 2v[2
ey

ROVRN

DISVID

ﬁ__ACB

+5—211C1

~

ez

10

ACGUID

162G

Lk

Figure 6 -- Video RAM and data buffers. One 256 x 244 picture fits nicely in the 64K of RAM pro-

vided on the board.

fine and we're glad to adopt it.
Incidentally, the value of the in-
ductor (I.1) is different in the PAL
and SECAM boards because the
chroma signals use different fre-
guencies.

The ImageWise/PC uses the
CA3318 8-hit flash ADC (U47) to
capture video signas. This IC is the
“big brother” of the CA3306 used
in the stand-alone serial ImageWise
transmitter, but the circuitry re-
quired to drive it is significantly
different.

Flash ADCs require one anaog
comparator for each voltage level,
so the CA331 8 has 256 compara-
tors. The CA3306 needed only 64,
SO you can imagine the increased
chip complexity! Each comparator
decides whether the input signal
exceeds a reference voltage set by
a resigive divider driven from the
Vref+ and Vref- inputs. A logic
network encodes those 256 binary

14 CIRCUIT CELLAR INK

signals into just eight output bits.

The increased number of resis-
tors in the reference divider re-
quires a higher voltage to provide
sufficient reference current. Un-
fortunately, that means the analog
signd must be higher as well, so we
added an LF356 op amp (U46) to
provide about 5 volts of video to the
CA33 18 input.

The reference voltages define
the analog signal levels that will be
converted into the 00 and FF (hex)
digital codes. We used two outputs
of the AD7226 quad DAC (U41) to
set these voltages so you can match
different camera levels without
removing the PC’s cover. The
AD7226 doesn't have enough out-
put drive capability to handle the
CA3318 reference inputs, so Q4
and Q5 buffer the voltages.

An LM3 11 (U45) compares the
video signal against a fixed refer-
ence to produce a digital signal

whenever a sync pulse occurs. As
in the older design, the 8031 deter-
mines the pulse duration to find
vertical syncs. Severa people have
asked where we hid the sync detec-
tion circuitry; there simply isn't
any!

Analog Overlays

Although the ImageWise/PC
uses the same TML 1852 video DAC
(U40) to convert the digital values
into analog waveforms, the sur-
rounding circuitry as shown in Fig-
ure 8 is completely different! Be-
cause the same board has both the
input and output video signals,
adding some circuitry to overlay
the two was both irresistible and
fairly simple.

Although the term “overlay”
implies that one image is placed
atop the other, the actual hardware
is a pair of switches (U42) with

g1
RCA JACK
VIDEQ
N

a3
284401

J2

RCA JACK
VIDEO
Loop

NPT
P? TeRm

SYNC CLAMP

+5uA-
+5UR.
u4as R22
z s LM311 10K

il

SYNC DETEC

47PF T 47PF ER1S
1K
~sua
02 L s
20UH
s INPUT BUFFER

R20
1K

R21
3%

CHROMA TRAP

+12VA
2N4401
c16

4. UF
TANT

172K R26 *
2

TGl

+12VUA

T

R28
10K
+5:

L33

47PF

u4sg
716 zausz2t
Z

29

Tk oz

22PF

1 u4s
S |4 745221
7z

R.

Yo7
b6

R/C CE
2 13

+5—2p o
1 aL4

S DETECT2™

f1z
CL
3

BLKLYL
2N4401

1r2WgR27 + L C17
82

4.7UF
TANT

!

200MS

RESET8031

ACOUID

Lo

AGNO _ ySS
17 |1
18 J
1UF | c19
STV

c2e
< 1UF

Figure 7 -- Video input circuitry. White and black reference level inputs to the ADC are program-
mable via the DAC found in Figure 8.

their outputs connected together.
One switch is connected to the live
analog video input, while the other
is connected to the stored digital
image. Each switch can transmit or
block its video input; only one
switch can be turned on a any time.

The analog switches are con-
trolled by a second LM311 (U43)
which compares a video signal
againgt a reference voltage supplied
by an output of the AD7226 quad
DAC. Whenever the video exceeds
the reference, the switches send the
stored digital image to the output
buffer. Conversely, when the
video drops below the reference,
you'll seethe analog input.

We used the other two analog
switches in U42 to sdlect the over-
lay comparator’s video signa input.
This provides the flexibility to
compare the level of either video
sgnd; there are useful applications
for both. Further, because the

16 CIRCUIT CELLAR INK

overlay referenceis set by aDAC,
the switching level can be set any-
where from black to white.

Of course, the TML1852 video
DAC output also goes to a separate
jack so you can monitor the digita
image directly even while an over-
lay is in effect. By setting the
overlay level to a very low vaue
you can see the entire live and
digital images on two monitors at
the same time, which simplifies
camerafocusing alot!

The fourth AD7226 DAC out-
put controls the amplitude of the
TML1852 DAC, s0 you can adjust
the output brightness directly. This
is particularly useful because the
sgnd level depends on the number
of terminations on the DAC outpuit.
You can dso finetune the leve to
match the analog input level so
overlaid images are comparably
bright.

Genlock Sync

Creating overlays requires that
the output sync pulses occur at the
same time as the input pulses so that
the two images are stable with re-
spect to each other. TV production
studios have a single sync genera-
tor that produces master timings
for the entire ingtallation; al of the
video gear is “genlocked” to this
single generator. The ImageWise/
PC has a somewhat more relaxed
definition of genlocking that is
sufficient for our overlays.

Because both the input signal
and the ImageWise/PC use crystal
oscillators for their basic timing
you might think that they are stable
enough to get away with no locking
a al. Even cheap oscillators have
frequencies accurate to about 100
parts per million, which ought to be
close enough. Unfortunately,
that’ s just not so.

VIDEQ

ANALOG UIDEQ

DIGITAL_UIDEO

J3

RCA_JACK

VIDEO
ouT

HHTLYL

o3 o]
Vi c9
U 03 praspE——ft—ssun
2 LoLuF RE
2.2
17 A
+1.2y)
+
- g | L Ctor b
ENBUACTR 3 Jarank 12k +1208
SYNCPULSN aJEvne TANT ez
200N5 18 Jo) ock 06202 13
ENBUID Lides Uce
e £
uss f ‘,/:/.__ e
> INL>
»—;02 T o 526
IN2 D
10k .,/:/._, s3i-
MAS) > g
15 safis
u12 2P / s+
74Ls04 b o
Al 1208 v IDEO 1IN 1a
UL LEVEL Pas |
AD7226 |18 S a
Ap? . P oli2 +
ADE
~12um
e 2 QUERLAY LEVEL 2
ADA L
AD 3
A
ap 2 +120A
L %,
AL 16 oReF|4
AY i7
Po ol cit z1
WRLULDACS 15)= INa737 U4
6 w }::T 7.5 2415153
oo, pono
4 uss 9
2 202 2
~5UA:

Llekkls

[

te3

Re
A +5UA —E ez 17}
+ Lc
R1 :

aLKLUL

ENBOULY.

SuR U43]
z!\‘la\Lnsu 1K Lce
rd 1
16 26

+1ciz .
T a.70F 2 1 =
TANT 2Ro
v ik A

+5UA-y

R1t
10K

£85
VIDEO BEAD
Term |9]"F® é
R13
75

J4

RCA_JACK

OUERLAY
out

FB6

Figure 8 -- Video output circuitry and

lay capabilities for the output.

The basic line timing is 63.5
microseconds, so an error of 100
parts per million is 6.35 ns. After
one frame of 525 lines the accumu-
lated error is 3.33 ps, which means
that the scan lines would be dis-
placed about 5%. After one second,
the error is nearly 100 ps, or one-
and-a-half lines! Obviously we
have to do much, much better than
100 ppm to have stable sync.

True genlocking requires an
analog phase-locked loop that
tunes the internal clock frequency
to exactly match the external sync
input. The design of this PLL is
extremely critical for color TV
signals because it must precisely
match the phase of both color
subcarriers. Because the subcarrier
phase determines the colors you see
on the screen, any error is immedi-
ately and painfully obvious.

The ImageWise/PC sync tim-
ings are created by an Intel 82C54

Programmable Interval Timer
(U21) dividing a 10-MHz clock by
the appropriate values to produce
regular horizontal sync pulse inter-
vas and widths, as well as horizon-
tal blanking durations. U33A cre-
ates the IO-MHz clock from the 20-
MHz output of XTL2, a crystal
oscillator.

The 10-MHz signal is further
divided by U33B to get the basic 5-
MHz pe clock used by the Image
RAM circuitry. The hardware
resets U33B at the start of each scan
line, because otherwise the phase
would flip on successive lines and
cause obvious jitter. Think about
it. .. the lines are 63.5 microsec-
onds long and 5 MHz is 0.2 micro-
seconds.

The 20-MHz oscillator is free-
running and isn't synchronized to
anything at al. When the Image-
Wise/PC is not genlocked, the 10-
MHz divider is aso free-running,

level DAC. Note the solid-state switch used to provide over-

because there is no reason to reset
it. The 5-MHz divider is reset on
every scan line and al is right with
the world.

When genlocking is in effect,
U22 switches several signals that
control the dividers and 82C54.
The external sync signa now deter-
mines the horizontal line time, so
82C54-2 Timer 0 is programmed to
create a short pulse immediately
after the start of the externa sync.
The 10-MHz and 5-MHz dividers
are both reset by pulses from U48
so0 that their phases have a known
relationship to the input sync.
Finaly, the 8031 is interrupted by
external sync instead of the 82C54
output so that it can track the
external video.

Resetting the 10-MHz divider
has an interesting side effect be-
cause it is the 82C54 PIT clock
input. When the clock stops, all
timings are suspended! The firm-

January/February 1989 v

| NDEX 110 index register and register wite flag
DATAREG 111 data 1/ 0O register

ADDRLOQ 112 address register |ow byte

ADDRHI 113 address register high byte

VRAM 114 video RAM data I/0O

PRAM 115 program RAM data |/ 0O

CTL_STAT 116 control output/status input

Addresses are in hex
Default junper settings are assuned

Figure 9 -- All access to the ImageWise/PC takes place through
seven /O ports. The default is for port 110 to be the beginning
port for the ImageWise/PC.

Bit Witing Readi ng

0 unused +Index Loaded

1 unused Operation Conplete
2 unused unused

3 unused unused

4 unused +Field 1

5 unused +Genl ocked

6 +Enable 8031 -Sync Pul se Active
7 +Strobe Enable Latch +Vertical Retrace

Figure 10 -- All of the hardware control and status bits for the
ImageWise/PC arerouted through the CTL_STAT port at de fault
address 116.

Registers 00 through OF contain control and status bits, set

overall operating conditions, and handle other niscellany.
00 Program control bits
01 Program status bits (read only)
02 Setup bhits
03-07 reserved
08 ADC white |eve
09 ADC bl ack |eve
OA Overlay switching |eve
OB Digital video Qutput |eve
oc CGenlock retry limt
oD reserved
CE Firmvare version (major and minor hexits)
OF Firmvare version (tw's conplenent of Reg 0OE)

Regi sters 10 through 1¥ control internal sync generation

10-11 Hori zontal Iine period

12-13 Hori zontal sync duration
14-15 Hori zontal bl anking duration
16- 17 Equal i zi ng pul se duration
18- 19 Vertical sync duration

1A Number of active video |ines
1B Nunber of equalizing syncs
1c Nunber of vertical syncs

1D Nunber of syncs during vertical blanking
1E reserved

1F reserved

Regi sters 20 through 2F control external sync generation
which is used during genlock operation

20-21 Hori zontal sync del ay

22-23 Hori zontal sync duration

24-25 Hori zontal bl anking duration

26- 27 Equal i zi ng pul se duration

28-29 Vertical sync duration

2A Number of active video |ines

2B Nunber of equalizing syncs

2c Nunber of vertical syncs

2D Number of syncs during vertical blanking
2E-2F Canera horizontal bl anking

M

ware compensates for the typical
value of the reset pulse, so the
resulting timings are still accurate.
Unlike a true analog PLL de
sign, the ImageWise/PC genlock
circuitry can only adjust the inter-
na timings in units of 50 ns (half
of the 10-MHz period). This is
1/4 of a pixel width and is gener-
aly not noticeable, but under some
circumstances you may see a dight
“crawl” on sharp vertical edges.
Most of the cameras and monitors
we've tested work just fine, so you
probably will not encounter it.

And More to Come

Although we have gone
through the hardware design, some
parts of the ImageWise/PC can be
understood only if you see how the
firmware controls the gates. In the
next article I will describe the
firmware required to make the
board work, as well as some inter-
esting PC utility software.

IRS

201 Very Useful
202 Moderately Useful
203 Not Useful

Figure 11 - - Variables stored in the firmware registers control most
of the attributes of the ImageWise/PC. Quantifies occupying two
registers (16-bit values) are stored with the least-signi jicant byte
in the lowest-numbered register. Time intervals are in units of 100
microseconds.

18 CIRCUIT CELLAR INK

The following is available from:

CCl
4 Park Street, Suite 20
Vernon..fJ, 06066

For information and ordsrs.
el: (203) 8752751

FAX: (203) 872-2204

Jtem 1: ImageWise/PC PC hoard experimenter's kit
‘Comes with4-ayer PC bard, andassorted key ¢com-
ponents including 276256 EPROM, TML1852 D/A,
AD7226 DIA, CA331 8 A/, RCA jacks, ferite heads,
user's manual, and imageWise/PC utilites on IBM PC
format diskette.

Order WPC-EXP.... .*.%. .. s $399.00

ltem 2. ZIP image processing software for Image-
WisePC from Hogware.
Or&r WPC-ZIP SO

A procurement list for altimageWise/PC bard com-
ponents is posted on the Circut Cellar BBS. Full kits
are not currently available. imageWise/PC is avail-
able assembled and tested.

Al payments should be made in U.S. dollars by chack,
money order, MasterCard or Visa. Shlgplng and han-

dling: surface delivegl add $6.60 for U.S. Call for Gan-
.ada and air freight delivery elsewhere.

IT'S NOT TOO LATE

You have until May 1, 1989 to enter!

We want to find out just what kind
of applications designers the readers of Circuit Cellar INK are. Tofind the answer, we' re sponsoring the first Circuit
Celar Design Contest. This is your chance to win the acclaim of your colleagues, the admiration of Circuit Cellar INK
readers everywhere, and some pretty nifty prizes.

We've tried to make this a simple contest. The emphasisis on embedded control applications, and you can
use any commercialy available controller chip (8052, 8096, 6811, 8742, etc.) in your design. Our team of judges will
be looking for utility, creativity, professonalism, and elegance in the designs. Within these easy guidelines, the choices
are yours: make it prosaic or outlandish, simple or complex, the choiceisyours!

Prizes! Of course there are prizes! First prize is $500, Second prize is $200, and Third prize is $100. In addition, we'll
award as many Honorable Mention prizes ($50 and a I-year subscription to Circuit Cellar INK) as are deserved. On top
of all these prizes, winning entries may be the subject of full Circuit Cellar INK articles.

The winners will be announced in the July/August 1989 issue of Circuit Cellar INK. To enter, you must have
an officia entry form. To receive an official entry form, send a SASE to:

Circuit Cellar INK
Design Contest
P.O.Box 772
Vernon, CT 06066

Build Steve Ciarcia’s HA L:4

EEG Biofeedback Brainwave Analyzer

Ever wanted to build a brainwave analyzer; one that wasn't a toy; one with graphice display
capability? Circuit Cellar is proud to introduce Steve Ciarcia's new Hemispheric Activation Level
detector (HAL, for short).

The HAL-4 kit is a complete battery-operated 4-channel electroencephalograph (EEG) which
measures a mere 6" x 7. HAL is sensitive enough to even distinguish different conscious states—
between concentrated mental activity and pleasant daydreaming. HAL gathers all relevent alpha,
heta, and theta brainwave signals within the range of 4-20 Hz and presents it in a serial digitized format
that can be easily recorded or analyzed.

HAL's operation is straightforward. HAL samples four channels of analog brainwave data 64
times per second and transmits this digitized data serially to a PC at 4800 bps. There, using a Fast
Fourier Transform to determine frequency, amplitude, and phase components, the results are

graphically displayed in real time for each side of the brain.

. Stand-alone-not bus dependent

. PC demo display software included

. R§-232 serial output

*Safe battery operation”

* Complete software source code available

HAL-4-KIT ,
(plus S&H)

~ WARNING: To order please call CCI: (203) 875-2751 Circuit Cellar Inc.

The Circult Cellar Hemispheric Actvation Level deteckr is presented as an

engheerng example of ihe desin techriquee Used in acking bra-wave TELEX: 64333 1 4 Park St.- Suite 12

signals. This Hemispheric Activation Level detector is not a medically approved
et oot .ot e eghe FAX: (203) 872-2204 Vemon, CT 06066

elecrrical power and communications Isolafon described in its n not be
icumventad. HAL s designod 1o b baery cperated oy o SPECIAL: Mention this ad when placing your order and recsive a set of HAL disposable electrod FREE

Circle No. 107 on Reader Service Card January/February 1989 19

Ctrl

VISIBLE 'NK

Answers; Clear and Simple

L etters to the INK Research Staff

Field Data Collection

| suppose this is just one of the tons of letters you
receive each day, so I'll be brief. The subject of my
guestions concerns field data collectors, known also as
portable data terminals. Before replying, | want you
to know that your answers to the following questions
will be highly appreciated.

What is the state of the art in field data collectors?
What are their virtues and drawbacks? Are they
expensive? What are the costs for a given storage
capacity and quality? Are costs expected to go down
significantly in the near future?

I'm interested in this matter because | am finishing
the design of a field data collecting system. Its main
(not all) features are:

Collector:

- Size: 110 x 70 x 23 mm (4.33 x 2.75 x 0.9 in.) (about
the size of a cassette box, but thicker)

- Weight: 10 oz

- Storage: 48 Kb

- One- hand operation

- Waterproof, dustproof, shockproof

- Protected against electromagnetic and radio fre-
guency interference

- Operating temperature: -25 to 160°F

- Altitude: up to 25,000 feet

- Price: Approx US$300

- Ability to scan recorded data, to delete last entries,
to label bad data, etc.

Interface;

- Size: 110 x 70 x 35 mm (4.33 x 2.75 x 1.37 in.)
- Weight: 25 oz

- Data format: ASCII

- Data Transfer: Serial RS-232

20 CIRCUIT CELLAR INK

- Data Rates: 300, 1200, 4800, 9600 bps
- Collector not needed to transmit data
- Prices Approx US$300

Do you think there's any chance for a system like
this to be sold reasonably in the market?

I'll be very grateful for your help in al these
points, and any other that you might consider impor-
tant.

Roberto Garcia S.
Chile, South America

There are several subdivisions of the data collector
market, each specialized for a particular type of data.
We'll go over what we know on the subject so you can
decide if your devices fit.

The simplest data collection devices are intended
for manual data entry at a location where a standard
PC isn't practical. These are typically a keyboard of
some sort, a display (usually an LCD with one to four
lines and 16 to 80 characters), and an &8-bit micropro-
cessor driving some battery-backed RAM. Usually
there is a serial link used for uploading the collected
data. This sounds like the type of device you are
describing.

Next in line are collectors that have analog and
digital inputs for direct connection to measuring
devices. The controller will have some programming
capability, generally a dialect of BASIC, to allow
device setup and calibration. These are more expen-
sive because they need precision analog circuitry and
a more capable computer (perhaps with 16 bits or a
faster clock).

Finally, there are complete data acquisition and
control systems that can collect, analyze, and transmit
data in real time. These are more like “real” computer
systems and are usually installed in a fixed location.

- 1

They’re hardened against environmental stress and
may come in rack-mount versions for industrial
applications.

Although there is some market for the “remote
terminal” type of data collector, these devices are being
squeezed by the low end of the laptop computer market.
For about US$700 you can now purchase a Toshiba 1000
laptop: a PC clone with a 25x80 LCD display, full
keyboard, 720K floppy drive, serial and parallel ports,
and 640K of RAM.

Now, admittedly, the Toshiba is much larger and
heavier than your collector and it’s not hardened against
the full range of environmental hazards. On the other
hand, it's only about US$100 more than your device and
is far more capable. In fact, what some folks do is write
a dedicated program that handles full-screen data
entry and editing and saves the result on diskette. The
user doesn’t even know that the computer can do
anything else! For most applications, the Toshiba
makes a lot of sense.

In short, it’s quite likely that your collector has
value for the market niche that needs small size, light
weight, and relatively limited data entry capabilities.
However, you will have to convince yourself that it can
compete against the devices already on the market that
are attempting to fill that niche, as well as survive
against more capable units like laptops that will always
have a significant cost advantage because of their
volume production.

You must make a very careful market survey before
proceeding. We can’t help you with that because you
need to collect specific information on all the devices
currently available, decide what features the “next
generation” will have, and how your device will be
positioned against them.

Keeping Lightning off the Lines

| have just completed a power strip built into an
Apple][power supply enclosure with an EM1 filter
and three MOVs. The question is, can | be fully
assured that, in case | forget to turn this thing off and
it gets hit by lightning, the EM1 line filter will get the
kick since it is wired closest to the line cord?

Next, what kind of similar protection can | use for
modems? | believe there are commercia gadgets for
this, but what about a DIY version?

James Lek
Singapore

The powver strip you describe should, if properly
constructed, function well in normal use. However,

there is nothing that will offer complete protection for
equipment (including the outlet box itself) from a
direct or nearby lightning strike.

If frequent lightning strikes in your vicinity pose
a problem, the best remedy is probably an array of fast-
acting lightning arrestor equipment installed where the
power line enters your building. Such protection is
expensive and therefore reasonable only in unusual
circumstances.

We assume that, in your desire to protect a modem,
you want surge suppression on the phone lines rather
than, say, on an RS-232 hook-up. With all the different
technical specifications for telephone systems in vari-
ous parts of the world, it’s difficult to give an exact
MOV circuit. However, we can provide a diagram
showing a common method for phone line protection
here in the U.S.

As the diagram below shows, there are commonly
two phone wires, one with red insulation and one with
green insulation. One MOV is installed across these
wires: another MOV is installed between each wire and
earth ground. Since the peak ring voltages sometimes
approach those of the AC line, 130-VRMS MOV's are
used. With suitable adjustments to allow for conditions
in your country, this type of circuit offers good
protection at reasonable cost.

RED WIRE
UARISTOR UARISTOR
GREEN WIRE

VARISTOR

204 very Useful
205 Moderately Useful
206 Not Useful

In Visible Ink, the Circuit Cellar Research
Staff answers microcomputing questions from the
readership. The representative questions are pub-
lished each month as space permits. Send your
inquiries to:

INK Research Staff
c/o Circuit Cellar INK
Box 772
Vernon, CT 06066

All letters and photos become the property of
CCINK and cannot be returned.

January/February 1989 21

Build a Remote
Analog Data L ogger

by RW. Meister

article (Circuit Cellar INK

#6), | described the hard-
ware for a remote data logging
system. In this final portion of the
article, I'll talk about the software
that controls the hardware, why |
wrote it the way | did, and how it
works.

| n the first pat of this

Why C?

Although C is considered a
high-level, third-generation lan-
guage, it can reference specific ad-
dresses in memory and communi-
cate with hardware at a level that
approaches assembly language. |
could have written this program in
assembly language, which would
have provided us faster execution
time (in an environment that relies
on delays inherent in the hard-
ware), but no one else would have
been able to maintain the program.
In addition, assembly language
would have restricted the program
to one kind of processor. Anyone
with a different CPU would have to
know both M6809 assembly lan-
guage and their own CPU’'s assem-
bly language, making translation
difficult if not impossible. By
using a high-level language, | have
attempted to remove the CPU
dependency from the program.
The limited amount of assembly
language is fairly easy to imple-
ment on other processors and may
not even be required in some
implementations. Of course, my
own familiarity and preference, as

22 CIRCUIT CELLAR INK

well as the “challenge” of the
project, had something to do with
the choice.

The software was a mgjor part
of this project. Parts of the 1000+
lines of heavily commented C code
are being reproduced so you can
refer to the program while reading
this text.

[Editor’s Note: Complete
software for this article is available
for downloading from the Circuit
Cellar BBS or on Software On Disk
#7. For downloading and ordering
information, see page 62.]

Most C programs, when com-
piled, rely on rather extensive li-
braries of support subroutines,
many of which are large, to handle
transcendental functions such as
sing, cosine, and square root, and
the usually necessary input and
output operations to terminals and
storage devices. Even a simple
program that prints “hello” can
produce an executable file as large
as IOKB! This program was de-
signed to be fully self-contained
(i.e.,, not require any external li-
brary subroutines) and makes only
minima use of assembly language
routines. It is very modular, with
only one routine spanning more
than one page of code in the listing.
Because of the lack of support
subroutines from libraries, termi-
nal input and output routines had to
be written for the A/D program.
There are no storage devices to ded
with, and limited formatted output.

4__—--“

Part 2
The Software

Hardware-Specific Programming

| wrote two interrupt service
routines to do very small amounts
of work in the shortest time pos-
sible, essentialy setting flags, stor-
ing characters, or counting events.
One handles the rea-time clock,
the other handles characters com-
ing in from the device connected to
the serial interface. The M6809
CPU handles interrupts by saving
al of its registers on a stack. It then
transfers program control to the
interrupt service routine which,
when finished, returns control to
the interrupted program using an
instruction that restores all of the
saved registers. These service
routines had to be written in assem-
bly language to properly interface
to the M6809. These routines then
call the C subroutines directly.
There was adso an anomaly in the C
compiler that was used on the
M6809 development system: it used
subroutines to perform multiplica
tion and divison when required by
the running program. Some other
systems use in-line code or even
single CPU instructions for these
operations. These routines were
disassembled and rewritten in as-
sembly language as part of the
source program, again to preclude
the necessity of needing any sup-
port library functions. A small
initialization routine was aso writ-
ten in assembly language to set the
hardware stack pointer, enable
interrupts, and call the main C
function.

There are several interrupt
inputs on the M6809. One, called
the Non-Maskable Interrupt
(NMI), is aways recognized by the
CPU and can never be ignored or
masked. The others are maskable,
meaning that the CPU can suspend
their action under program control
for some amount of time. The

A/D box uses NMI for the clock
and the Interrupt Request (IRQ)
line for characters from the ACIA.

The nonmaskable interrupt is
generated by the 601-Hz signal
from the data rate circuit. This
event calls a C function that decre-
ments a “tick” counter. When it
reaches O, it is reset to 601, and a

Initialize
Hardvare &
Software
Qutput 10 Yes Cancel Line,
Sign-on Seconds w/o Reactivate
Message Input Scanning
Yes Update Real Run Thra
60 Seconds Time Clock Scheduled
Readings
No
Output a Command
Character Entry Parse Command
Completed
Character Yes Process/Store Cutput
from keyboard Character *99_0Oo00O™
Execute
Command

Figure 1 -- The flowchart for the data logging software shows that
the program exists as a large loop that waits for data, and calls
one of several subroutines when necessary. Modular programming
and poalling techniques mean that there are few situations when data
is lost because of conflicts over CPU time.

Circle No. 11.5 on Reader Service Card

:E:JDR Microdevices

* 30 day money back guarantee
e 1 year warranty on all products
e Toll-free technical support

New! Modular
Programming System

FROM MODULAR CIRCUIT TECHNOLOGY

This integrated system is ideal for developers--

it easily expands as your needs grow! All the
modules use a common host adaptor card so you
need just one slot to program EPROMS, PROMS,
PALS and more!

Host Adaptor Card $29.95

* A universal interface for all the programming
modules

. User-selectable programmable addresses
prevents addressing conflicts

» Includes a high quality molded cable

MCT-MAC

e

s s S5

i 9

Universal Module $499.99

. Programs EPROMS, EEPROMS, PALS,
bi-polar PROMS, 8748 & 8751 series devices.

* Programs 16V8 & 20V8 GALS (gallium arsenide)
from LATTICE, NS, SGS

« Tests TTL, CMOS, Dynamic & Static RAMS

« Load disk. save disk. edit. blank check. program,
auto read ‘master, verify and compare

» Textool socket accents 3" to .6" wide IC's from
840 pins

MCT-MUP

EPROM Module $119.95

e Programs 24-32 pin EPROMS, CMOS EPROMS
and EEPROMS from 16K to 1024K

. HEX to OB] converter

« Auto, blank check/program/verify

. VPP selectable 5, 12.5, 12 75, 13.21 & 25 volts

« Normal, intelligent, interactive, and quick pulse
programming algorithm

MCT-MEP

MCT-MEP-4 |-EPROM Programmer

MCT-MEP-8 R-EPROM Programmer

MCT-MEP-1616-EPROM Programmer

4169.95
$259.95
$199.95

PAL Module $24 9.95

¢ Programs MMI, NS, TI 20 & TI 24 pin devices

. Blank check, program, auto, read master, verify
and security fuse blow

MCT-MPL

PAL Programming development software

MC6MPL-SOFT $99.95

Order toll free 800-538-5000

22

JDR MICRODEVICES, 110 KNOWLES DRIVE, LOS GATOS,
CA 95030. LOCAL: (408) 866-6200 FAX (408) 378-8927
RETAIL STORE: 1256 S. BASCOM AVE., SAN JOSE, CA
HOURS: MON.-FRI. 9-7, SAT. 9-5, SUN. 12-4 (408) 947-8881

ferms: Minimum order $10.00. For shipping and handling include §3.50
or ground and $4.50 air. Orders over 1 Ib and foreign orders may require
:dditional shipping charges—please contact the sales department for the
imount. CA residents must include applicable sales 1ax. Prices are subject
10 change withoul notice. We are not responsible tor Typographical errors.
Ne reserve the right to limil quantities and to substitute manufacturer.

All merchandise subject to prior sales. A full copy of our terms is available
1pon request. ltems pictured may only be representative.

COPYRIGHT 1989 JDR MICRODEVICES

January/February 1989 2 3

Dealers Circle No. 116

Need A
Sophisticated Logic
Analyzer But Canno:

Afford One ?

the ID320

Logic Analyzer Card
for the IBM PC/XT/AT
May be Your Answer

State of the art design brings
rou high-end performance at
ow-end price

Foeatures:

¢ 32 channels 2K deep

25 MHz state analysis
50 MHz timing analysis

e Variable Threshold
Input Pods

Single Slot Design
Multi-level triggering
Selective Data Capture

Software Perforniance
Analysis

Disassemblers for
popular 8/16 bit
Microprocessors

e & & ¢

e Test Development
Language supports ATE
applications

Friendly User Interface

L

From $;3QS

Satisfaction Guaranteed
or your money back
I INNOTEC
DESIGN INC.

14640 Firestone Blvd., Ste. C
La Mirada, CA 90638
Tel: 714-521-5454

Circle No

113 on Reader Service Card

24 CIRCUIT CELLAR INK

“seconds’ counter isincremented.
The CPU then returns to the part of
the program that was being exe-
cuted when it was interrupted.
Later on, the program recognizes
that the “seconds’ have changed,
and adjusts the rea-time clock. In
a similar manner, characters re-
ceived by the ACIA generate an
interrupt that calls a C function.
This function resets some pointers
if the input buffer is empty, deds
with Ctrl-S (XOFF) and Citrl-Q
(XON) by setting or clearing a flag,
and then stores the character in the
input buffer. The M6809 logic
disables (masks) any further inter-
rupts from the ACIA while the
interrupt service routine is execut-
ing. When it finishes, the CPU wiill
acknowledge and deal with any
other interrupts that have occurred
while it was busy. In actuality, the
4800-bps maximum data rate gives
the interrupt service routines al the
time they need to correctly process
interrupts.

Into the Main Loop

The main part of the program is
a big loop that checks to see if: one
second has passed and the real-time
clock needs adjusting; the user has
typed enough characters for one
command; it is time to output a
reading; or a character can be sent
out to the terminal. The attempted
outputting of characters every so
often is known as “polling.” It
depends on the fact that the pro-
gram is looping over and over
again, and judiciously placed at-
tempts at outputting data will alow
the CPU to do something useful
(i.e., output to the terminal) while
waiting for user input or the com-
pletion of an A/D conversion. The
entire software design is based on
small functions that spend very
little time working and put their
results into an output buffer whose
characters are periodically sent to
the terminal.

As in all good programs, we

first initialize the hardware and
storage areas. The PIA needs to be
set up for various input and output
lines. We then tel the ACIA how
many data and stop bits to utilize,
and set up flags and buffer pointers
as appropriate. A sign-on message
is loaded into the output buffer,
part of it is output in a loop, then
we enter the main program where
the rest of the sign-on message is
output as part of the regular polling
operation. At this point the pro-
gram loops, processing the real-
time clock, accumulating user
command input, taking readings
and outputting them (if any have
been scheduled), and attempting to
output characters to the terminal if
any remain in the output buffer.
While this is happening, the CPU is
being interrupted at a 601-Hz rate
(the real-time clock) and the user
may be typing characters on a
keyboard that cause interrupts so
the characters can be stored and
interpreted as a command.

The flowchart in Figure 1
shows the various operations that
are handled in the main routine.
Most of the time, the program is
looking for something to do. When
you complete entry of a command,
the program performs the appro-
priate action according to the
command letter and values associ-
ated with it. Each command rou-
tine uses very little processor time,
and feeds all program-generated
output into one periodicaly polled
output buffer. In this way, time-
critical events can ill occur with a
high probability of being detected
and handled. For example, the “R”
command reads the specified chan-
ng by: selecting channd 0 (to get
the temperature sensor reference
voltage), reading the voltage, se-
lecting the specified channel, read-
ing its voltage, then selecting the
origina channel again (because the
scheduler expects the correct chan-
ne to be ready). Now that a valid
reading has been obtained, the
channel’s formatting information

sets up temperature conversion,
decimal point location, time-
stamping parameters, and places
the value in the output buffer. This
reading will be sent to the termina
along with any other buffered out-
put when normal polling takes
place.

The MAIN program also keeps
track of the time spent between
typed characters. When you are in
the middle of entering a command,
the program simply places the
characters into an input buffer and
doesn’'t act upon the line until it has
been terminated with a Return. If
you begin entering a command and
delay more than 10 seconds be-
tween any two characters, the
program cancels the line and re-
verts to its normal polled operation.
This time-out feature deals with
occasional line noise when using
the A/D box with a modem.

The SCHED routine is com-

plex, dealing with the event tables
that govern which channels will be
read, how many seconds elapse
between readings, upper and lower
limits, and channel formatting
data The MAIN program has
already stored this information in
several tables that contain all of
these parameters along with which
channels will be processed. If a
desired active channel is in one of
these tables, then a fresh A/D
sample is taken, the next channdl is
selected, and the value is formatted
according to temperature conver-
sion. The elapsed timer is decre-
mented by 1 each time the sched-
uler is called, and if it gets to O, the
channd’s value is output. If ether
an upper or lower limit is set, and
the current value exceeds either
limit, then the channel’s value is
output. By selecting the next chan-
nel immediately after reading the
desired one, the A/D converter has

adequate time to sample its input
before a new value is requested by
the program, especialy due to the
extra reading that is necessary
when the input voltage changes
polarity. With 16 different inputs,
the box has no idea of the voltage
level it will have to convert as it
scans from channel to channel.
The scheduler is governed by
two very important data structures.
One is an array of 16 channel
parameters that contains lower and
upper limits, time interval, time
remaining, current value, and some
individual bits that are set by the
channel-specific commands in the
MAIN program (listed in Table 2).
All of the information that the
scheduler requires to process a
given channd is kept in this array.
Upper and lower limits are checked
only if they have been specified.
The time remaining is counted
down each second and reset to the

Powerful, Low-Cost Data Acquisition
and Control with Commodore C64 & CI28

VOICE MASTER KEY-

VOICE RECOGNITION SYSTEM |
FOR IBM, PC, XT, AT AND COMPATIBLES

80-line Simplified Digital /O Board
with ROM cartridge socket
Model SS100 Plus $129. Additional $119.

E ‘

Original Ultimate Interface
Universally applicable dual 6522 versatile interface adapter board.
Model 64IF22 $169. Additional $149.
16-Channel, 8-bit analog-to-digital conversion module.
Requires model 641F22. Model 64IF/ADC0816 $69.

Interface boards include extensive documentation and program
disk. Manuals available separately for examination. Call or write
for detailed brochure.

Resour ces for Serious Programmers.

« Symbol Master Multi-Pass Symbolic Disassembler. C64 & C128. $49.95
« PTDB510 super-powerful Symbolic Debugger. C64. $49.95

« MAE64 6502/65C02 Macro Editor/Assembler. $29.95

« C64 Source Code Book. Kernal and Basic ROMs. $29.95

SCHNEDLER SYSTEMS

Dept. C, 25 Eastwood Road, P.O. Box 5964
Ashevile, North Carolina 28813 Telephone: (704) 274-4646

Circe No. 122 on Reader Service Card

GIVES A NEW DIMENSION TO PERSONAL COMPUTING The amazing Voice Master Key
System adds voice recognition to just about any program or application. You can voice com-
mand up to 256 keyboard macros. Requires under 64K. Instant response time and high
recognition accuracy Works with CAD, desktop publishing, word processor, spread sheet,
games, even other TSR programs! Voice Master Kay can also be called from within a program
for addmg voice recognition to custom applicatiens. A genuine productivity enhancer. Easy
and fun to use-the manual has you up and running in under an hour A price/performance
breakthrough equal to other
systems costing 3 more!.

ALL HARDWARE INCLUDED
Consists of a short plug in board
that fits in any available slot. Exter-
nal ports include microphone and
line level inputs. High gain flat
response headset microphone in-
cluded. High quality throughout.

ONLY $129.95 COMPLETE

ORDER HOTLINE: (503) 342-1271 Monday-Friday, 8 AM to 5 PM Pacific Time

Add $5 for shippmg and handling on all orders. Add an additional $3 for 2nd day delivery. All
goods shipped UPS. Master Card and VISA, money order, cashiers check or personal
checks accepted (allow a 3 week shipping delay when paying by personal check). Foreign
inquiries contact Covox for C&F price quotes. Specify computer type when ordering. 30 DAY
MONEY BACK GUARANTEE IF NOT COMPLETELV SATISFIED. ONE YEAR WARRANTY ON

HARDWARE.

Call or write for FREE product catalog.

*
OCOVOX INC.
675-D Conger Street, Eugene, OR 97402

Telex 706017 (AV ALARM UD)

TEL: 503-342-1271 FAX: 503-342-1283

Circle No. 109 on Recdger Senice 2o

January/February 1989 25

time interval when it gets to O.
Another array or list is generated
by the INILIST subroutine every
time a command is processed. This
list contains the channel number of
every channel that is currently
active as defined by certain bits in
the individual channd’s parameter
array. Once each second, the
scheduler processes only those
channels whose numbers are in this
short list rather than al channels.
This eliminates the delay waiting
for the A/D conversion to finish on
channels that have nothing con-
nected to their inputs. Channd O is
aways entered in the list as the first
and last channel for temperature
conversion.

Another important routine,
GETAD, actudly reads and forms
the value from the A/D chip. This
routine is the only one that must
actually spend time waiting for
something. While it's waiting,
however, it attempts to send char-
acters out to the terminal. When the
A/D chip has completed sampling
the selected channel, its EOC (End
Of Conversion) signal is detected
and GETAD dtarts accepting digits.
The first digit becomes the thou-
sands digit. The hundreds digit is
next, then the tens digit, and finaly
the units digit. Other status infor-
mation accompanies the thousands
digit and is dedlt with after a value
has been accumulated. If the sign
bit is one, then the value is negated.
If the value is zero and this is the
first of two possible readings for
this particular channel, then the
process repeats to obtain a valid
reading due to the change in polar-
ity anomaly discussed earlier. If
the overrange bit is one, a value of
9999 is returned. The digits are
presented to the program at ap-
proximately 5000 per second, but
even if the program misses one,
they continuously repeat for the
entire time between sampling. In
actuality, the program operates fast
enough to never miss a digit.

One of the first routines writ-

26 CIRCUIT CELLAR INK

main()

{
regi ster struct CHAN * ¢;
register int i; /* general integer #*/
int foo; /* dummy variable */

/* initialize hardware and software once only #*/

inimem(1); /* all variables */
inilist() ; /* channel [list */
inithw(); /* PIA and ACI A */

foo = (ocount / 2) + 1;
while (ocount >= fo00)

outc(): /* force half of string out #*/
whil e (gehar() ! = -1)

: /* enpty input buffer =*/

| oop: /* main processing |oop */

/* handl e real-time |ogging clock =*/
if (seconds >= 60) {
seconds -= 60; /* in case soneone takes a long time */
if (++minutes >= 60) {
mnutes = 0;
if (++hours >= 24)
hours = 0;

/* output characters in buffer =%/
outc(); /* output sonething if possible ® /

/* handl e keyboard characters in buffer =%/
if (icount) /* characters in input buffer? =*/
gline(); /* deal with them */

/* handle tineout to resume schedul er #*/

if (onesec > TIMEQUT) {/* waited |ong enough? */
schar(’~’): /* output ctrl-u */
schar(’U’); /* "~u" neans |line ignored */

schar (CR) ; /* output cr or cr/1f *x/
I pos = |buf; /* reset pointer */
onesec = inhibit = 0; /% resune */

)

/* handl e schedul er #*/
if (onesec AND !inhibit)
sched() ;

/* clock requesting service? */
/* do appropriate things */

/* handl e conpleted command |ine */
if (eol) { /* end of input line? */
parse(); /* break it up %/
if (!(error)) {/* parsed successfully #/
c = (struct CHAN *) &ad[chnum]j;

switch (cndltr) ¢ /* see what to do */
case ‘A /* set clock at value #*/
i = cmdval y 100;
cmdval = cndval - (i * 100);
if (i > 24 OR cndval >= 60)
goto erred: /* invalid tine value */

el se ¢
hours = i /* set clock */
m nutes = cndval ;
seconds = O:
br eak
case ‘C’: /* crlf handling */
crlf = cndval :
br eak;
case ’D’:

/* decinmal point */
c->mode &= (-1-3);

c~->mode |= (crmdval & 3);
break:

Listing 1 -- (continued on page 27)

case ‘E’: /%* echo handling */
echo = cndval ;
br eak;

case ’I’: /* interval time */
if (crmdval) /* value to use #*/
c->mode |= IBIT;
el se /* no value, turn node off */
c->mode &= (-1-IBIT);
c->tleft = c->intrvl = cndval;
break;

case ‘L‘’: /*low limt */
c->mode |= LBIT;
c->lolim = cndval ;
br eak:

case ‘0’: /* once-only npde #*/
c->mode &= (-1-0BITS);

if (cmdval)
c->mode |= OBIT;
break:

case ’'P’: /% parity handling */
parity = cndval & 3:
break:

case ’R’: /* read a/d */
i = select(O: /* select zero */
getad (); /* bogus reading */
getad(); /* channel zero value %/
choval = advalue;
sel ect(chnum); /* sel ect new */
getad() ; /* bogus reading */
getad(); /* true value */
select(j); /* select previous */
if (i = (c->mode & TBITS))
dotemp(i); /* convert for tenperature #*/
log = (c->mode & WBIT):
dot = (c->mode & DOTS):
outad (chnum, advalue) ; /* show val ue */
break;

case ’8’: /% status */
¢ = (struct CHAN *) &ad[0];
sumdig = 1: /* flag for active channels */
for (i = 0; 1 < NUMCHAN; ++i) (
if (c->mode& SBITS) (
dostat(c,i);
sumdig = 0; /* got one */
}

++C3 /* next %/
}
if (sumdig) { /* anyt hing? */
schar{(’N’);
schar{(’o’):
schar(’'n’);

schar(’e’);
schar (CR) ;

}
break:

case ’T’: /* tenp node */

c->mode &= (-|-TBITS);

cndval &= 3:

if (cmdval & 1) /* centigrade ® /
c~>mode |[= CBI T,

if (crdval & 2) /% fahrenheit */
c->mode |= FBI T,

break; /* both on nmeans kelvin #*/

case 'U’: J* upper limt */
c~>mode |= UBIT;
c->hilim = cndval ;
break:

Listing 1 -- (continued on page 28)

THE INTERCHANGE”

Bi-diitional DataMigration Facility
for IBM PS/2, AT, PC, PORTABLE
and Compatibles

e -
ST G o

Utilities Diskeqgo |

Features:

*Parallel port to parallel port.
*Economical method of file tranefer.
*Bi-Directional file transfer easily
achieved.
*Support8 all PS/2 systems
(Models SO, 50, 60, and 80).
*Supports IBM PC, XT, AT, Portable
and 100% compatibles.
*Supports 31/ 2 inch and 5 If 4 inch disk
transfers.
*Supports hard disk transfers.
‘Supports RAMdisk file transfers.
*The SMT 3 Year Warranty.
ONLY $39.95

FastTrap™

The pointing device of the future is
here!

*Two and three
axis pointing capability.

*High resolution

trackball for X and Y axis input.

*High resolution fingerwheel for Z axis
input.

*Use with IBM®PC’s, XT’s, AT’s and
compatiblea.

*Three input buttons.

*Full hardware emulation of Microsoft ®
Moure.

*Standard RS-232 serial interface.

*Includes graphics drivers and menu
generator.

*Easy installation.

*1 year warranty.

*Made in U.S.A.

ONLY $149.00

LTS/C Corp.

167 North Limestone Street
Lexington, Kentucky 40507
Tel: (606) 233-4166

Orders (800) 872-7279

Data (606)252-8968(3/12/2400 8-N-I)
VISA, Mastercard, Discover Card,
TeleCheck

Circle No. 117 on Reader Service Card

January/February 1989 27

ten was PARSE, the user command
parser. This routine separates the
typed input line into its various
parts and validates each compo-
nent. PARSE deals directly with
the user's input and is very strin-
gent and demanding on exactly
what it will let squeeze through.
The rest of the software expects
good data, so this routine has to
ensure that valid commands pass
and invaid commands don't.

A command is formed from
numbers and letters. You enter a
string of optiona digits specifying
the channel number from 0 to 15,
followed by a letter, which can be
upper or lower case specifying the
actual command to be performed,
then another sequence of optional
digits which may be preceded by a
hyphen to indicate a negative
value, and terminated with the
Return key. For example, 3 15, 10
L 1500, 10 U -1674, 8 D 3. Blanks
may be inserted for readability but
they will be ignored. Since 16-bit
integers are used for variables
within the program, the values
must be between 0 and 65535. In
the computer’'s numbering system,
65535 is equal to -1, 65534 equals
-2, and so on. To make the box
more human compatible, a negative
number is accepted and converted
to its equivalent 16-bit value. This
value is used by some commands
where a value is dgnificant; it is
ignored by other commands. Any
characters other than numbers,
letters, and hyphens are eventually
stripped from the input data. When
you terminate the line by pressing
Return, the command is broken
down into its three components. If
any of the numeric parts are miss-
ing, they will default to a value of
zero. Any input line that does not
meet the above format criteria is
ignored and an error indication
consisting of a zero value for chan-
nel 99 is output to the termina as
99 0000. If the value presented
exceeds the usable range of the
particular function, then undeter-

28 CIRCUIT CELLAR INK

case 'W’': /% whet her to log or not */
c->mode &= (-1-VBIT);
if (crval)
c->mode {= VBI T,
break:

case *x’: s+ nmiscellaneous functions %/
if (cndval == -1
ininem(0); /*reset all channels #/
el se |f (cmdval == -2)
= (struct CHAN *) &ad[0}:
for(|-0|<NU N++|)(
c->tleft = 1; /* synchroni ze */
++C; /% next =/
}

}
break:

case ’z’: /% zero node, tine, limts #/
c~>tleft = c->intrvl = c->mode = 0;
¢->lolim = c¢->hilim = c~>curval = 0;
br eak:

) /% end switch #/

inilist(); /% update channel list %/

}
el se {
erred:
log = dot = 0; /* output as 0000 #/
outad(99,0); /* channel 99 is error #/
Y
inhibit = eol =0; /% accept another line #/
}
got0 | oop: /* loop until power turned off =/

y/* end main() */

Listing 1 -- (continued from page 27)

getad/() /* get al/d reading #/
{

register char * p; /* -> port #/
register int bed; /% BcD digit %/

int status: /* negative, overange */
int zflag: 7% zero readi ng flag »/
int toc: /* tinmeout counter #/
= (char *) PIA; /* setup pointer #/
lag =
agai n:
toe = -1 /* set tineout delay #/
bed = p[2]: /* dummy read clears flag »/
while (!(pf3] &« 0x80)) ¢ /* MBB = end of conver5| on */
otfltc(). g output sonething while waiting #/
| («~toc ==
advalue = giB 8, s+ tinmed out waiting for ready s/
return: /% that's all, folks %/

}
}

WmIe ('((status = p2]) & 0x80))
/* wait for thousands digit s/

advalue = (status & 0x08) ? 0 : 10: yx (0 or 1) * 10 #/

whi | e ('((bcd = p[2}) & 0x40))
wait for hundreds digit =/
advalue += (bed & OXF), J* Merge it in %,

advalue *= 10;

while (!((bcd = p[2}) & 0x20))
/¥ wait for tens digit */

advalue += (bed & OxF); /% nmerge it in #/
advalue *= 10;

Listing 2 - (continued on page 29)

while (!((bcd

if ((status & 0x09) == 1)
if (ladvalue AND zfl ag) ({
zflag = O;
got0 agai n;
)

if (!(status & 0x04))
advalue = -adval ue;
}/* end getad() */

/* set for final
/* and do it again */

= p(2]) & 0x10))
3 * wait for ones digit #*/
advalue += (bcd & OxF); /* nerge it in #*/

/* overrange? ® /

advalue = 9999; /* set error value %/

/* if first reading zero */
reading */

/* negative polarity? */
/* invert value #*/

Listing 2 -- (continued from page 28)

if (chnum >= NUMCHAN)

while (*p >= 0’ AND *p

cnmdval = cnuval
if (sign
(cn%v)al = -cmdval ;

/* end parse() */

Listing 3

mined results may occur.

A typical command would be
3120 which says to set channd 3 to
Interval mode and take a reading
every 20 seconds. If the command
was entered as 130 then channel O
would be set to Interval mode and

parse()
{
register char * p:
regi ster char * q:
int sign,
p =0 = |buf
while (*p) {
if (*p == =’ OR (*p >=
(*p >= 'A" AND *p <= ’2
*qt+t+ = *p; /%
++p;
}
hg o= '\0'; /*
p = Ibuf; /*
cmdval = chnum = error =

while (*p >= 70’ AND *p <= “9’) /* channel
chnum = chnum * 10 + (*p++ - ’0’);

/* invalid channel
seens to be */

error = 1; /*
if (*p) /*
cmdl tr = *p++; /%
el se
error = 1, /*
‘sign = 0; /*
if (ap = 7~7) /* mnus si
Sl gn = *p++; /*

/* parse command |ine */

/* => line buffer #/
/* => line buffer #/

/* val ue sign */

/* prepare to verify %/

70’ AND #*p <= f9/) OR

rear

))
only allow these characters #/

null -termnate */

setup pointer #*/
0; /* init variables #*/

nunber is first #/

nunber? */

then command letter */
was there a command? #*/

apparently not */

presune positive val ue #/

gn? */

remenber it %/

<= +g9’) s+ then conmand val ue */
* 10 + (*p++ = 70');

/* negative number? #/
/% negate result %/

a reading would be taken every 30
seconds. To stop the Interval mode
operation, a value of O is given, as
in 310 or 31 since a missing number
defaults to zero.

While you are entering a com-
mand, the characters are placed

into an intermediate buffer where
rubout or backspace character ed-
iting can be applied. When Return
is detected, the intermediate buffer
is cleaned up and passed to the
command parser which separates
the components. Lower-case char-
acters are converted to upper case
and nonprintable characters are
eliminated. The contents of this
buffer are further cleaned up by
the command parser when a com-
plete line has been entered.

A Subroutine for Every Job

The subroutines can be di-
vided into classifications such as
once-only, input or output format-
ting, interrupt, and general. De-
scriptions of each subroutine may
be found in Table 1. A few of the
key routines are included in this
article. If you have downloaded the
entire program, you can follow all
of the descriptions in detail.

The rest of the source file
contains necessary equates and ad-
dresses required for a ROM pro-
gram to interface to the M6809
architecture. These values are
stored at hex addresses FFF6
through FFFF as vectors.

A Comprehensive Command Set

The A/D box has a simple,
concise command entry format as
described above. Since there are
only 26 letters available for com-
mands, | attempted to make as
many as possible memorable by
using the first letter of the com-
mand word as the actua command.
The commands can be split into
three groups. communication para-
meters, initial setup, and channel-
specific commands. The channel-
specific commands manage data in
the channd parameter array which
eventually governs the scheduler's
operation. The complete list of
commands is shown in Table 2.

If you build your own data
logger from the information in this

January/February 1989 29

IR

DESIGN RoBOT FOF

FHEDRIGINF\TIDN of

E.XQCTING GRQF’HIE
E NeINEERING

FE GE

AMANUAL PRINTED
CIRCUIT CARD-/CAM
SYSTEM

SESASH

Hu & TEe
B j
‘ E L i1]]
|MULTI-LEVEL SYMBOL CONCEPT.
MEMORY LAYOUT ABOVE IS A
SYMBOL MADE FROM TWO CHIP
SYMBOLS WITH ADDED BUS WIRE!

CHIP SYMBOLS RARE MADE FROM
MULTIPLE PAD SYMBOLS.

BRASIC #10.20 POSTPAID:
CGA 3 COLORS 12 LAYERS
B4 BY 64 INCH WORKSPACE
ANY GRID TO 0.001 INCH
RUNS ON ANY PC COMPATIBLE
15 LINE WIDTHS
DOT MATRIX OUTPUT
200KB DOCUMENTRTION ON

TWO DISKS
16 WORK AREAS BAVEABLE
STITCH BETWEEN LAYERS
ZOOM AND PAN TO ANY SCALE

JVANCED 86100.00 POSTPAID:

ABOVE FERTURES

EGA RESOLUTION 15 COLORS
LARGER JOBS

MOUSE

ADVANCED EDITING
PRINTED MANUARL

if (ocount >= FULLBUFF)

chOval = advalue;
goto skipit;
}

goto skipit;
}

)
if (c->mode & ULBITS) (

whil e (chptr[1] >= 0) {(/* stop when hit

c->tleft = c~>intrvil:
outad(chanel,advalue};

sched () /* one-second reading processing */
register struct CHAN * c; /* => ald paranmeters */
regi ster char * chptr: /% channel pointer %/
int chanel; /* current channel =*/
int tb; /* tenp bits %/
char * debug: /* DEBUGGER */
debug = (char *) PIA;
debug{1] = 0x3C; /* set DEBUGGER */
chptr = chlist; /* «> channel list #/

-1 termnator */
/* roomin buffer? #/

break: /% can't do anything else if not */
chanel = *chptr; /* current channel #/
Cc = (struct CHAN *) &ad{chanel];
getad () ; /* take a reading %/
sel ect (chptr[I]); /* sel ect next channel =/
if (chptr == chlist) {/* tenp cal? %/

/* save it *x/

/% done with it */

if (tb = (c->mode & TBITS)) /* tenp? #*/
dotenp(tb); /% adjust tenp */
c->curval = advalue; /* renenber new val ue */

dot = (c~>mode & DOTS): /* set dot position %/
log = (c->mode & WBIT); /* set |ogging option */
if (c->mode & IBIT)(/* interval nobde on? */
if (-—c->tleft == 0) (/% tine to take reading? =*/

/* reset tine left %/
/* output val ue */

/* limt check? */

if (((c->mode & UBI T) AND advalue > c->hilim) OR
{(c->mode & LBIT) AND advalue < c->lolim))¢
if (({c->mode & OBIT) == 0) OR

EXP _ _
WE CAN MAKE

PHOTOPLOTS FOR YOU FROM PROGRAM OUTPUT .

vIisA 0O MC O PAYMENT. ENCLOSED OO
ZIP

CHARGE NUMBER

BOX 296 BATAVIA, IL. 62510

SEND BASIC O ADVANCED O INFORMATION OO

%

=
EET

TELEPHONE ORDERS EVENINGS (312) 879-2949

ENVIRONMENTAL OPTICS CORP.
THIS ADD WAS COMPOSED WITH DROEGE AND

P.O.

PLOTED ON OUR PHOTOPLOTTER .

Circle No. 110 on Reader Service Card

30 CIRCUIT CELLAR INK

((c->mode &§ OBITS) == BIT))
out ad(chanel , adval ue);
c->mode |= OLBIT; /% out of linits now */
}
el se { .
c->mode &= (-1-OLBIT); /* not out of limts »/
}
}
skipit: . .
++chptr; /* on to next channel in list */
}
onesec = O0; /* we did one pass */
select(O): /* reselect first channel =*/

debug(1}] = 0x34; /*
y/* end sched() */

Listing 4

article, 1 would expect the parts to
cost between $50 and $100.
Acknowledgements

| wish to thank and acknowl-
edge the assistance of Leo Taylor.
He did al of the hardware design

cl ear

DEBUGGER */

and is the current user and owner
of the prototype A/D box at his
home. | designed and wrote most
of the software, with much help
from Leo regarding communica-
tion with the ACIA and PIA.

IRS

207 Very Useful
208 Moderately Useful
209 Not Useful

MAIN, shown in Listing 1, is one big loop that processes the user’s requests. All
routines except interrupt service routines are called from MAIN or from routines that
were called by MAIN.

ASCDIG performs some of the operations for converting a binary value into
printable ASCII digits. It uses repetitive subtraction rather than division. This is one
of the output formatting functions.

DOCHAN outputs the channel number by calling ASCDIG. As with all output
routines, the information is stored in the output buffer.

DOSTAT is called by the status command for each channel to be displayed. It
checks the various bits and values saved in the channel parameter area and outputs a
translation of their meaning.

DOTEMP handles theconversion of a channel’s value according to any temperature
format desired. The channel 0 reading (approximately -1.8 volts) is subtracted from the
current channel’s value in this routine which results in a Kelvin temperature in tenths
of a Kelvin. Appropriate formulas convert this to a Celsius or Fahrenheit temperature.
This new value is then stored as the current channel’s value so limits can be compared
in the scheduler.

DOVAL outputs the channel’s value by calling ASCDIG withvarious powers of 10.
It also places the decimal point where appropriate. As with DOCHAN, the results are
put in the object buffer.

GCHAR removes any characters from the input buffer. The input buffer is filled
when the user enters characters which cause interrupts from the ACIA and subsequent
processing.

GETAD, shown in Listing 2, reads the A/D converter and formats the raw data into
an integer value. The routine takes two readings if the first is eero. It also checks for
overrange and polarity.

GLINE builds a line of input from characters typed by the user. It detects end-of-
line characters (CR and LF), handles rubout and backspace, and echoes printable
characters.

INILIST makes a list of requested A/D channels according to various bits set by the
user’s commands. This list tells the scheduler which channels to process, and is updated
after each command processed in MAIN.

INIMEM initialiees all memory locations used by the program. It also sets up the
copyright notice that is seen when the A/D box is first turned on. This is a once-only
routine.

INITHW initializes the PIA and ACIA when the A/D box is turned on. This is also
a once-only routine.

OUTAD calls DOCHAN and DOVAL to output a reading from the A/D box. It also
appends the real-time clock’s time if desired.

OUTC outputs characters if the ACIA is ready to accept another character and the
user hasn’t typed Ctrl-S to suspend output.

OUTLINE stores a null-terminated line of information in the output buffer. If there
is insufficient room in the buffer, it loops while attempting to send characters to the
ACIA. This is one place where readings can be dropped while waiting for room in the
output buffer.

PARSE, shown in Listing 3, copies characters from the input buffer to the
intermediate buffer, passing only numbers, letters, and hyphens. It then separates this
line of input into its various components and verifies the channel number.

PBIT adds a parity bit to an output character according to your specifications. It
actually counts the bits that are on in the character. While a table lookup might have
been faster, this was more fun to write.

SCHAR stores characters (with parity added) into the output buffer and terminates
each line with CR and an optional LF.

SCHED, shown in Listing 4, handles the one-second reading of all specified
channels. It reads the channel and adjusts the result according to the channel 0 value
and temperature conversion specified, checks to see if the channel should be output at
this time interval, checks to see if it is above or below either of the two limits, and sets
up other parameters as required for formatting the value. The main controlling logic for
automatic operation is in this routine.

SELECT converts the channel number to the appropriate bit configuration
necessary to select one of the two data multiplexers as well as the channel on that
multiplexer. It also saves the original channel number for times when it must be restored.

CINTR is an interrupt service routine that counts clock pulses. When 601 have
occurred, it resets the pulse counter and increments a one-second counter that gets
checked in the MAIN routine.

IINTR is an interrupt service routine that gathers characters from the ACIA. It
strips the parity bit, deals with Ctrl-S by setting a flag that will prevent further
characters from being output, and stores all other characters in the input buffer. These
characters are processed by GCHAR.

RESTART is the assembly language routine which initialiees the CPU and then calls
MAIN, which never returns.

CCMULT and CCDIV are assembly language routines that respectively multiply
and divide two 16-bit integer values using shift and rotate instructions. This method
ensures completion in a finite time regardless of the magnitude of the values being
calculated.

IRQ is the actual code that the CPU executes when it processes a maskable interrupt
from the ACIA. This assembly language routine only calls the IINTR routine.

NMI is the actual code that the CPU executes when it processes a nonmaskable
interrupt from the 601-He clock. This assembly language routine only calls CINTR.

INTROL

CROSS
DEVELOPMENT
SYSTEMS

*INTROL-C Cross-Compilers

. INTROL-Modula-2 Cross-Compilers
* INTROL-Macro Cross-Assemblers
Provide cost and time efficiency in
development and debugging of em-
bedded microprocessor systems

All compiler systems include:
Compiler . Cross-assembler . Support
utilities . Runtime library, including
multi-tasking executive . Linker . One
year maintenance. User's manual, etc.

TARGETS SUPPORTED:

6301/03 . 6801/03 . 4804 . 6805 . 6309
» 68HC11 « 68000/08/10/12 . 32000/
32/81/82 » 68020/030/881/851

AVAILABLE FOR FOLLOWING HOSTS
VAX & MicroVAX; Apollo; SUN; Hewlett-
Packard; Gould PoweNode; Macintosh;
[BM-PC, XT, AT and compatibles

INTROL CROSS-DEVELOPMENT SYSTEMS
are proven, accepted. and will save
you time, money, effort with your devel-
opment. All INTROL products are
backed by full technical support. CALL
or WRE for facts NOW:

I NTROL
CORPORATION

647 W. Virginia St., Milwaukee, Wi 53204
414/276-2037 FAX: 414/276-7026
Quality Software Since 1979

able1 -- The data logging software is very modular, with each

. " e . Circle No. 114 Reader Service Card
subroutine performing a specific function. 0 2% on Feader semice ~at

January/February 1989 31

s

Communication Parameters Commands

C - (Default) output a linefeed as well as a Carriage return at the end of each line. C is enabled by any noneero value and disabled
by a tero. The channel number, if given, is ignored.

E - (Default) Echo the input characters back to the terminal. Enabled by any nongero value, disabled by a zero value. The channel
number, if given, is ignored.

P - set Parity according to the value given. Default is gero parity (i.e., the parity bit is always set to 0). A value of 1 sets the parity
bit to 1. A value of 2 sets the parity to even. A value of 3 sets the parity to odd parity. The channel number, if given, is ignored. The
parity of all input characters is ignored by the A/D box.

Initial Setup Commands

A - set internal time-stamping clock time to the value given as hours and minutes. Time in entered in 24-hour format with 1 or 2 digits
for hours, and 2 digits for minutes. The channel number, if given, is ignored. The time clock defaults to 0 hours and 0 minutes when
the box is turned on.

S - show Status of all channels. Both the channel number and value, if given, are ignored. All active channels’ parameters are displayed
as:

ccl=iiiiL=1111 U =uuuu t O W

= uuuu” indicates the high limit, both values displayed according to the decimal point selection; *t>* will be either C, F, or K depending
on the temperature conversion in effect; *“O" indicates that once-only mode is specified; and ‘“W’ means that time stamping is to be
displayed. The Q" can come out as ‘OO if the once-only mode is in effect and the reading is currently out of range and has been

displayed its one time. Only the currently active parameters will appear on the status line.

X - special functions. The channel number, if given, is ignored. If the value is 65535 or -1, then ALL channels’ parameters are reset
to their power--up conditions. If the value is 65534 or -2, then ALL channels’ interval timers are synchronized so they will alt occur
at the same time if they all have the same interval specified.

Channel-Specific Commands

D - set Decimal point after Ist, 2nd, or 3rd digit according to the value given. Normally, readings are output as a number of millivolts,
but you can display it as volts by setting D1 on the particular channel. If you have installed a 10:1 divider network on any channel,
setting D2 will display up to +19.99 volts. Setting DO will remove the decimal point entirely.

| - set Interval time between readings in seconds. This will automatically set up the specified channel for periodic readings by the
scheduler. If the value given is 0, then interval mode is turned off. For example, entering 3110 schedules channel 3 to take a reading
every 10 seconds. The interval mode, if enabled, will produce output regardless of any upper or lower limits.

L - set the Lower limit to the specified value. A reading that is lower than this will be displayed, one that in not will not be displayed.
The **Q’' command can alter this behavior. The value may be entered with a decimal point (which will be ignored) if desired.

0 - display reading Once-only when it exceeds either the lower or upper limit. This avoids the voluminous amount of output that would
be generated when a channel’s reading is out of limit. When the sampled voltage goes back within the limit range, the channel is reset
such that it will be displayed when it again exceeds either limit. Any value, if given, is ignored.

R - Read the specified channel once immediately. Any value given is ignored. The output is formatted according to the D", “T”,
and “W” commands in effect at the time for that channel. The channel parameters are NOT modified by this command. The particular
channel may be read several times by the program before a valid reading is obtained.

T - set Temperature conversion mode. A value of O specifies normal voltage readings. A value of 1 converts it to temperature in degrees
Celsius. A value of 2 converts it to temperature in degrees Fahrenheit. A value of 3 converts it to temperature in Kelvin. This command
only performs the appropriate conversion math for the output value. Setting the decimal point after the 3rd digit (with D3) is appropriate
when displaying temperatures.

U - set the Upper limit to the specified value. A reading that is higher than this will be displayed, one that is not will not be displayed.
The **O’* command can alter this behavior. The value may be entered with a decimal point (which will be ignored) if desired.

W - enable time stamping or logging. The current time as set with the “A” command is appended to the reading displayed. If the
time has never been set, then the current time is the number of hours and minutes since the box was turned on or last reset. Any value,
if given, is ignored.

Z - reset all parameters for the specified channel. This clears any interval times, lower and upper limits, once-only mode, decimal point,
and temperature conversion to their power-up values. Any value, if given, is ignored.

Table 2 - - The complete command set for the data logger gives you control over most of the important
I/0. processing, and conversion features of the system.

3

4

£

CIRCUIT CELLAR INK

Guest
e Editorial

A Call for INK SPOT
Dedication . c. s

into the wilderness to survey for logging roads. Our clothing reflected the redlities of this life, we

wore work boots, blue jeans, wool shirts, and hard hats. We chuckled a the weekend hikers who
wandered up and down the trails clad in hundreds of dollars worth of bright rip-stop clothing. We knew that
branches, thorns, and rocks could easily shred their flimsy garments; you wouldn’t catch us spending our money
on clothing we knew would be destroyed.

We called these people “equipment kings,” and I’ve noticed the phenomenon repeated in dozens of settings.
Nowhere is it more common than in the computer business. We all know pencil-pushers who purchase killer
‘386 systems to write simple memos, the latest version of dBASE to organize Rolodex data, and humongous
hard disks to schedule appointments with SideKick. Pretty funny, huh? Not really.

A growing percentage of computer users have reached the point where they know their needs and prefer
efficient computer solutions to overkill. They're frustrated with an industry that demands conspicuous
consumption. Ever watch the face of a user who's just been told what switching to OS/2 will cost? It's not
a pretty sight.

| believe these people represent a small but expanding market for new approaches to computing. | receive
amazed stares when | explain that although | use a state-of-the-art Macintosh system for desktop publishing,
the rest of my work is done on a collection of oddball machines. two laptops and a Canon Cat, none of which
runs MS-DOS or UNIX or 0S/2. After a couple of dumbfounded questions, my listeners redlize that I'm not
crazy, and more than a few of them get very excited as they comprehend that they need not be trapped into
what their dedlers are pushing.

All three of my systems are text-processing environments with telecommunications capability, calculating
or spreadsheet functionality, and some form of card-filing or database management. The CPUs are different,
but all share a common trait: software in ROM. The Canon Cat boasts a flexible word processor created entirely
in Forth. The NEC PC-8500 is a laptop with CP/M and WordStar in ROM. And my Cambridge Z88 has a
Z80-based operating system that offers “lazy concurrency,” an implementation of context-switching that
allows me to open multiple programs by using RAMdisk to simulate RAM. With a couple of cables, a null
modem, and a gender changer or two, al the machines tak to each other quite nicely.

Any of these is quite satisfactory for my work as a freelance writer. They are dedicated machines, though
they bear little resemblance to the Wang and Lanier word processors of yesteryear. However, like their
cumbersome predecessors, my dedicated machines will never be obsolete, because they're good at what they
do. They aren’'t “development platforms,” they’re workhorses. Many consumers are moving down this path
as well, though they're largely unaware of what they’re doing. The sales rep who equips a laptop with Word
Perfect Executive and nothing €lse, the internal publishing department that buys a Macintosh for PageMaker,
the programmer who chooses a language package because of the integrated editor and debugger--all of them
are building self-contained environments.

With today’s PROM and PAL technology, these environments could easily be encapsulated into dedicated
computers optimized for specific functions. It's a short step to dedicated database engines, portable tools for
business executives, powerful analytical devices built around the spreadsheet paradigm, and more. While |
don't see dedicated machines taking the market away from general-purpose computers, there are obvious niches
begging to be filled.

So, you wanna make some money? All it takes is a good concept and a little dedication.

M any years ago, | worked for the Forest Service in Oregon. It was a physical, dirty job, slogging overland

Ezra Sharpiro is a free-lance writer and publications designer based in southern California.

34 CIRCUIT CELLAR INK

The Home Satellite

Weather Center

Finishing the Firmware for the
68000 Peripheral Processor

by Mark Voorhees

I've covered a lot of

ground, and we're sill a
ways from the completion of the
Home Weather Center. This time
I'll cover the remainder of the
68000 Peripheral Processor firm-
ware and provide an overview of an
interface for the Heath 1D-4001
Weather Computer (for those plan-
ning to use that unit as their instru-
ment package).

In the last issue, | discussed
concepts for most of the operating
firmware for our Peripheral Proc-
essor (PP). I'll continue the discus-
sion now with the routines involved
in WEFAX processing. Some of
this may not be clear now since |
haven't presented the WEFAX
hardware yet. I'll refer back to this
discussion and review the high-
lights when we build that part of
the project.

| n the last few months,

WEFAX Routines

As explained last time,
WEFAX dgnas are given highest
priority because we can't control
their transmission. Several factors
come into consideration when
planning for the processing of
WEFAX:

-The original picture consists
of 800 pixels (picture elements)
horizontally and 800 lines verti-
caly.

-The origina picture is essentialy
monochrome analog video at 4 Hz.

36 CIRCUT CELLARINK

-Speciad signals are sent
to indicate start-of-
frame and end-of-
frame; a |I-Hz “Sync
Pulse” can also be de-
coded from the signal.

You need to do some
advance work to handle
memory assignments for
the WEFAX data. The
size specifications of
WEFAX pictures deter-
mine our processing
approach.

If you sample the
signal based on the actual
specification, you need
approximately 800 x 800, or
640,000, memory locations for
storage of the image. If you
sampled all 640,000 points to a
resolution of 8 bits (256 levels), you
would need 640,000 bytes, or
320,000 words, of DRAM memory.
At that rate you could only access
the two most recent images for dis-
play. . .
Purists would be satisfied with
this level of performance, and, as
the Weather Data Processing Sys
tem software expands, it may make
use of this configuration. For now,
however, it is a bit beyond the
software’'s ability to display on a
PC's graphics card. Let's look to
save some space while maximizing
display quality.

You can redly only display a
640- x 200-line, 16-color image on
a graphics card at this point, so

Part 7/

make 640 sampleg/line the sample
rate (you'll see that the hardware
will appreciate this as well). Also,
only four bits are needed to provide
16 levels of gray. Memory usage
has been dramatically reduced
since 640 samples times 800 lines
equals 5 12,000 memory locations,
and with each holding four bits, we

need 256,000 bytes or 128,000
words of memory.

Allowing for memory used for
instrument data, one megabyte of
DRAM can hold sx WEFAX im-
ages, with eight more in the second
(optional) megabyte.

I'll use this configuration as the
basic example for the firmware,
although 1I'll allow for different
configurations in the Weather Data
Processing System software, with
the sampling information made
part of the configuration block.

You need to sense the frame
start information, the “line sync”
signal, the timing of the samples,
and the termination, or ending,
signal.

The hardware will be providing

[a status byte with the start, sync,

and end signal sensing information
developed in hardware, so
that part will be relatively
easy. The sart signal will
begin the sampling process,
starting the memory save at
a defined division; the sync

iimmsane
|

signal will define a line start ad-
dress; and the end signal will end
the process.

I'll use Timer A of the 6890 1on
the CPU card to generate interrupts
for sample starts. This is a crystal-
clocked timer set for the sample
rate at configuration time. The
interrupt is enabled only after a
frame start signa is recelved, and
the timer is reset at each sync pulse.
Thus, our samples should be as
uniform as possible (some signal
tracking is taking place in the
hardware to help with stability of
frequency).

There are two steps to pro-
gramming the timer for the proper
sample rate: the selection of a
prescaler, and the count data.

The sample time will be de-
fined as line rate divided by the
number of samples per line. Insert-
ing numbers, we have 250 ms per
line divided by 640 samples per
line, giving one sample every
390.625 microseconds.

Now, since the clock frequency
is 2.4576 MHz (a period of 407 ns),
the timer is set to interrupt every
960 clock pulses (nominal).

(For the “math wizards’ among
us. working backwards from our
“convenient figure,” you'll notice
that the actual sample count ends
up to be 639+ samples per line.
Since the line length, of necessity,
includes the sync pulse, which is
unusable video, we'll accept this
condition. In redlity, the missing
sample won't even be noticed.)

The timer provides for prescal-
ing values of (divide by) 4, 10, 16,
50, 64, 100, and 200, as well as an
S-bit count data byte, so it will
easily meet our needs.

A count of 960 is convenient in
another way. Since it is an even
multiple of eight, several different
prescaler and data byte combina-
tions can toggle the interrupt.
Looking ahead to future needs,
when you might sample either 320
or 1280 times per line, you will
have the most control by using the
divide-by- 16 prescaler. The data
word then becomes 3C hex for
current needs, 1E hex for the 320
samples per line possibility, and 78
hex for the 1280 samples per line
possibility; al are within the 8-bit
data byte limitation.

Once the PP receives the inter-
rupt, the service routine will have
to perform only a few tasks. Firgt,
immediately sample the WEFAX
signa (to maintain the most even
sample rate, this must be done first
whether we need the sample or
not). Next, check to see if the sync-
pulse or end-of-frame flags have
been st by hardware. If so, save
the most recently processed sample
and perform routines to advance to
the next line (or reset for the next
frame) before returning to the
interrupted routine. If the flags are
not set, save that recent sample we
mentioned, prepare addressing for
the next memory location, and re-
turn from the interrupt.

You'll see in a future install-
ment that the processing hardware
provides 8-bit digitized samples.
Once again, this gives latitude for
future enhancements. For now, I'll
use the four most-significant bits
for the 4-hit (16-level) sample.

The WEFAX service routine
builds the 16-bit-wide memory
word in “scratchpad” static RAM
using bit rotations to place the
“nibble” in its proper position.
(Note that the PC's processing pro-
gram will take this data after it's
downloaded and disassemble it for

January/February 1989 37

use in the graphics card). wouldn’t be complete), and inhibit
There is one other “housekeep- , any further processing until signa
ing” byte to manipulate during | sroeseeming' A T is restored.
setup of the system. The WEFAX eSOy =y That pretty much covers the
processor can get its demodulated (ONE JUMPER IN PLACE principles of the firmware package.
audio from one of two sources. the ON EACH MEMORY BOARD) From time to time | may find it
integral receiver, which I'll present IF USING ONLY ONE MEMORY necessary to expand on the discus-
in a future article, or an external BoWEEn oninoidsona-2. | sion in certain areas, and I'll also
source. The software switches provide you with enhancement in-
from one unit to the other by writ- DATA RATE HEADER formation as it becomes available.
ing the “housekeeping” byte, and 2o [Editor’'s Note: Software and
monitors for the presence of an P 300ee] EPROM listings for this article are
audio carrier by reading the byte. P 12000 available from the Circuit Cellar
The only other area to be con- D asoole of JUMPER BBS or on Software on Disk #7. For
cerned with is the WEFAX receiver 192000 o < For 5600 Brs downloading and ordering infor-
control, and this will be essentialy ; .. mation, see page 62. In addition,
a set-and-forget situation. The in- ; el assembly listings for this article are
tegral receiver receives on 137.5 available from the author for $6.00.
MHz and 137.62 MHz, switched by See the sidebar accompanying this

the control byte. An AGC-volt- Figure 1 -- Jumpers for DRAM article for more information.]

age-monitoring circuit will signal Memory Board, and Port Card
the system via a status byte and jumper for défault ID-5001 Peripheral Processor Startup and

interrupt if RF signal is lost. The ‘4ysia rate Initial Testing
RF loss will cause any WEFAX pic-
ture in progress to be discarded (it Rather than require a compli-
ons Hissu, onz
SEGP
— oND—Lias vel 23 SECF 3
24— |14 SEGE)
23— vl 15 SEGC A =
22} ¥3| 16 SEGC A =)
21 [a0s ¥2| 17 SEGB A 1
20— 2101 y1|LBSEGAA 13
18— Gl G2 onnﬁ
L L 3 42 FoRse
L e ve 21l 12
L5 |—=g - T
14|4HB 7415541 23) 4 F
13| _4HA _9las yelliSEGP 25| =l e
T . y7l 2 SEGG A 27| 2 8.
2 el13 SEGE] 2] -2 Je
{ 4 5|14 SEGEA oNp-34 Y
A 415 SEGD 33| 13|
e v3His SEoL 23 onp-L5]
M ol L7 SEGB 31| 47
g =t T vi[tRsEGA/ 39 | b
f 10 61 62 TO HUMID 23]
il T %38 25!
> [z 2%
s n 29
L 7418125 GNO-3Y
TO ID-4001 ua 2p3 =
o - 1 23
P 2 l%Lsaz 23
3¢,4¢ 36% LZDs_ ﬁ
435
gZLSlZS GNDﬁ
nPe T0_RAIN G
. INSTRUHM
u?
74,5125
vi4 2 & s
paLses 10 Y33z [ogdLs32
3 25kt 4 6 10 8
__2'3 10 ZODL Yilsos S
1C.2¢C 13! m L l
us
L YiLsizs A LA52
12 11 5
FS1
ggLSlZS
2N 3 DST.
j GS
1 _ v,
U4
YiLsizs S vaLs7e CONTROL BUS
glESQA = = s A K 8
3 > 4 4 *5 N CQ
e .

Figure 2 -- The Heath ID-4001 interface. (Note: This circuit could be used directly with a computer’s
parallel port.)

38 CIRCUIT CELLAR INK

cated procedure for initial testing,
I’ve built most of the functions into
the firmware. Before booting the
unit, however, remember to check
the voltages and polarities on dl IC
sockets before installing the ICs,
check the voltage on the MAX232
before installing the 68000, and
install all jumpers (see Figure 1)
before fully testing the unit. You
should first see a title display,
followed by the test sequence dis-
plays described in the last issue,
followed by the “NO CONFIGU-
RATION” message. If everything
is well a this point, you've cleared
the major hurdle and the basic
hardware is functioning.

I’ll devote much of the next
installment to the PC Host software
needed to configure the PP and
download and process its instru-
ment data.

Instrument Interfacing

As mentioned in the past, I've
initially provided the PP with the
ability to handle data from the
Heath 1D-400 ! and ID-500 I
Weather Computers. The 1D-5001
requires only the presence of a

seria port and the necessary firm-
ware routines; the ID-4001 is a hit
more complicated.

When Heath introduced the ID-
4001, they provided a paralld port
for moving the system’s data to the
outside world. Their intention was
to interface the Weather Computer
to another computer for more
complete record keeping. How-
ever, my ingtincts say that the port
probably was intended by the de-
signer to be used as a remote display
driver, and it would be very easy to
use for this purpose. Using the port
for complex computer interfacing
is another story.

The computer port output data
consists of the seven-segment rep-
resentation of each of the ID-
4001's front-panel display digits;
the four digit-select lines deter-
mine which digit's data is on the
output lines.

[Editor’s note: See “ The
Home Satellite Weather Center,
Part 6" in Circuit Celar INK #6 for
more detail on the data from the
Heathkit Weather Centers.]

So far, so good. You aso need

to monitor the four-bit (one-of-
sixteen) wind direction data lines
and use the strobes to validate the
data.

You could let the PP take in all
of this information and sort it as
necessary, but it would be a massive
waste of processor time to do so.
Remember, you need to make sure
that the precise and least control-
lable input (the WEFAX data) has
the priority on processing time.
You can't let the PP aso be a dave
to the ID-4001, catching nonse-
guential information “on the fly.”
In such a scenario, the PP would be
responsible for capturing the data,
converting it to ASCII, validating it
(for instance, if a temperature
changed from 99 degrees to 100 de-
grees during a sample, you might
end up with either 199 degrees, or
00 degrees), and storing it in the
proper order.

That much housekeeping
would be more easily performed by
a small hardware interface, so I've
designed the device shown in Fig-
ure 2. The unit serves a number of
purposes:

- It converts the seven-segment

o1

cNs
HORZ
+UNREG [

1N4Go4

D4
1N4004
= D2

UNREGULATED DC OR -unres 12
AC FROM WALL TRANSFORMER

9-16 VOLTS inaoed

ST 2
onoi2inte 106
N

Gn2Lias
GND——A?

uig
LM7805

(7%
03 220UF 35V
IN40o4

2

u16
2405541

oy

oo
3

olololola
RS20

e

Nt

TO PERIPHERAL PROCESSOR

](:2 Les Lo Les Lee Loz o
YT

T -1UF T UF T Oa0r TLA0E T T oave T<?UF
+

ICONTROL BUS

IDC IC SOCKETS IDC DIP CONNECTORS
- O T

nnnnnnn
oN2

xxxxxxxxxxxxxxxx
ccc

Figure 2 (continued) -- Cable assemblies for connection to rain gauge and humidity instrument. "Remove

decoder/driver/latch IC for each digit and plug in the corresponding DIP plug.

the ribbon’s socket.

Install the IC in

January/February 1989 39

data to ASCII.

- It stores the numerical data in a
simple on-board SRAM for later
transfer to the PP.

- It buffers the wind direction data
for access by the PP.

- It provides for data conversion of
the separate Digital Rain Gauge
and the separate Humidity Indica
tor.

There's no real “black magic”
in this project; a cable connects the
ID-40013 paralld port to the inter-
face, where (in the write mode) the
seven-segment data is used with
the strobe lines to address the
ASCIll-conversion EPROM. The
data lines from the EPROM be-
come the data lines to the SRAM,
which is addressed by the digit-
select lines. The data from the
other instruments, if used, is
strobed in on dternate digit-select

passes from the I1D-4001 (A4 as
serted disables the incoming data
lines from the ID-4001, and polls
the data latches involved with the
extra instrument{s]).

The digital rain gauge and the
humidity indicator were never in-
tended to be interfaced to any-
thing, so you'll have to be a little
more clever with them. They do
produce accessible data: the dis
plays are driven by seven-segment
drivers, so we have the same con-
vertible data format as we have
from the 1D-4001. | take advantage
of the segment drivers by using a
custom-made ribbon cable consist-
ing of two DIP plugs and a DIP
socket. Remove the segment driver
IC, plug the instrument end of the
cable into the now-vacated socket,
plug the IC into the cable’'s socket,
and you have the data available at
the interface end. I've designed the
interface to minimize the load on
the segment driver, which is redly

only “monitored” anyway.

The read sequence is controlled
by the PP’s parallel port. The
paralel port asserts its strobe line,
causing the SRAM to be deselected
from write mode on completion of
the current digit-sdect cycle (digit
select = 0, A4 negated). The
parallel port then receives the ac-
knowledgement through the input
strobe line and begins a sequence of
placing an address on the port out-
put lines and reading the port input
lines for the data until al addresses
are read. The port output strobe is
negated, and the write sequence
resumes.

WE'll provide power to this in-
terface from the PP. The only other
connections besides those to the
parallel port would be to the ID-
4001 and the other instruments via
short lengths of ribbon cable.

That wraps things up for this
issue. Next time, 1'11 discuss the PC
Host software for communications

BCC52 BASIC-52 COMPUTER/CONTROLLER j

Development Tools

PseudoSam Cross-assemblers $50.00
PseudoMax Cross-simulators $100.00
PseudoSid Cross-disassemblers $100.00
PseudoPack Developer’s Package $200.00(350.00 Savings)

POWERFUL

PseudoCode is pleased to announce the release of an extensive line o
professional cross-development tools. Toots that speed development o
microprocessor based products. Fast, sophisticated macro assemblers tc
generate your program code. Versatile smulators that allow testing anc
debugging of the program even before the hardware exists. Easy to use
disassemblers to help recover lost source programs.

AFFORDABLE
Until now, powerful tools like these have been priced from 5 to 10 time!
Pseudo&de's price. Putting these time saving tools out of reach of al bu
large corporate engineering departments.

BROAD RANGE OF SUPPORT

e PseudoCode currently has products for the following microprocessor
families (with more in development):

Intel 8048

RCA 1802,05 Intel 8051 Intel 8086
Motorola 6800 Motorola 6801 Motorola 6811 Motorola 8805
Hitachi 6301 Motorola 8809 MOS Technology 8502 WDC 65C02
Rockwell 85C02 Intel 8080,85 Zilog 280, NSC Hitachi HD&4180

Motorola 68000,8 Motorola 88010
® To place an order call one of our dealers:

Programmer’s USA (800} 336-1 166 INTL (216) 494-3781
KORE Inc. (616) 791-9333

Connection

PseudoCode
P.O. Box 1423
Newport News, VA 23601-0423
(804) 595-3703

Circle No. 121 on Reader Service Card

40 CIRCUIT CELLAR INK

The BCC52 Computer/Controller is Mi-
cromint's hottest selling standalone single-
board microcomputer. Its cost-effective archi-
tecture needs only a power supply and termi-
nal to become a complete development or
end-use system, programmable in BASIC or
machine langiage. ~Ine BUC52 uses Mi-
cromint's new 80C52-BASIC CMOS micro-
processor which contains a ROM-resident 8K
b{;e floating-oint BASIC-52 interpreter.
Tre BCC5 Zontains sockets for up to 48K
bytes of RAM/EPROM, an ‘intelligent” 2764/
126 EPROM afxogrammer, 3 parallel ports, a A
serial terminal port with auto baud rate selec- |
tion. a serial pnnter port, and it is bus compat-
ible with the full line of BCC-bus expansion
boards. The BCC52 bridges the gap between
expensive programmable controllers and hard-
to-justify price-sensitive control applications.
BASIC-52's full ﬂoating?-point BASIC is fast and efficient enough for the most
complicated tasks, whileits cost-effective design allows it to be considered for
many new areas of implementation. It can be used hoth for development and
end-use applications.
Since the BASIC-52 is bus oriented, it supports the following Micromint expan-
sion boards in any of Micromint's card cages with optional power supplies:
8CC22 Smart leminal board BCC53 Memory and 6-port 110 exp. board
ADPS00 User vocabulary, digitized speech board BCC13 8-Channel 8-bit A/D converter
BCC25 LCD display board BCC30 16-Channdl 12-bit A/D converter
BCC33 3-port O expansion board BCC18 Dual channel serial 1/0 board
BCC40D 8-Channel opboisolated ID expansion board BCCSS Prototyping board
BCC40R 8-Channel relay output board BCCA45 Stepper Motor bad
BCCA2 BASIC -52 Controller board ~ $18%.00
BCC-5Y8T.5 '52 PAK" Starter System $449.00
Includes:BCCS2, ROM ASB UTIL., CCO1, MB0S,,, UPS10
BCLCS20EM100 Quaniity pries $149.00
BCCHC Lower power all-CMOS version $133.00
Note: The BCCS2 series is avaitable h Industriat Temg Ra\ge,bly'
tested. Prices start at $294.00 sinale qlv. Cdl la OEM pricing,

Micromint, InC. —4 pork Street, Vemon, CT 06066

To Order Cail
1-800-435-3355

Tel: (203)871-6170
FAX: (203) 872-2204
TELEX: 643331

Chcle Ne Vi8S o Readar Service Card

and processing of the instrument
data, cover any corrections needed
on our past articles, and prepare to
move into the area of WEFAX

reception and processing. !]
IRS

210 Very Useful
2 11 Moderately Useful
212 Not Useful

| am making kits available
for each portion of the Home
Weather Center system. Each
kit, unless otherwise noted,
consists of a PC board and all
devices and parts (except SRAM
or DRAM devices) to construct
the standard design. Pricing for
the kits is as follows (al include
shipping charges):

68000 Main Pr ocessor
Boardue........... vrereenens $319.00

Front-Panel Board........ $88.00

1 Meg x 16 Memory Board
cerreeerrstessennrsssaeasaaneseses $189.00

Power Supply (quantltles lim-
it

R R R R RS AR RS T Y .

Cabinet (quantities lim-
ited)eeeee . X e $44.00

| will be making individual
components available for those
with “well-stocked” parts cabi-
nets. Send me a stamped, self-
addressed business-size enve-
lope for a complete listing, with
prices.

Mail orders;

Mark Voorhees
P.O. Box 27476
Phoenix, AZ 85061-7476

Include check or money
order if ordering kits. | regret
that, at thistime, | am unable to
accept credit cards.

Allow 4 to 6 weeks for
shipment since most of this
material will ship UPS.

BACK ISSUES

Ci‘{c(l{‘e\\AR

Circui
C,FhAR

THE TECHNOLOGY RESOURCE
OF THE '90s

Issue #1- Inside the Box Still Counts - 50LD OUT
Issue #2 - Techies- SoLD OUT

Issue #3 — Control Magic - SOLD OUT

Issue #4— Stepper Motors - SOLD OUT

Issue #5 — Remote Video Surveillance- GOING FAST

. ROVER: Remotely Operated Video-based Electronic Reconnaissance {Part 1)

. The Home Satellite Weather Center: Focus on the MC68000 Peripheral Controfler (Part 5)
. I0-MHz&bit Digitizing Board for the IBM PC

. Precision Pulses: Carrier Current Transmission Timing

Issue #6 - Data Acquisition

. ROVER: (Part 2) The Software

. The Home Satellite Weather Center: Adding Serial and Parallel Ports to the Peripheral
Controller (Part 6)

. Build a Remote Analog Data Logger { Part 1)

. ImageWise/PC ~ The Digitizing Continues (Part 1)

. DDT-51 Revealed

Send $4.00 per issue (includes shipping & handling) in check or money
order to: Circuit Cellar INK, P.O. Box 772, Vernon, CT 06066. Visa and
MasterCard accepted, call (203) 8752199

CCINK's 1st Year Reprints e ——
Because so many of you save every issue of CCINK as a resource, our
fast rise in circulation has resulted in a virtual sellout of the first year of
INK. So as not to disappoint new subscribers as well as satisfy the
demands of current readers, we are offering a B&W offset reprint of
CCINK'sfirst year (Issues I-6). Available in February 1989, for$20.00
in the U.S. and $24.00 to Canada and Europe (shipping & handling
included).

Send check or money order to:
Circuit Cellar INK
1st Year Reprint
P.O. Box 772
Vernon, CT 06066

Visa and Mastercard will be accepted, call (203) 875-2199.

STATEMENT REQUIRED BY THE ACT OF AUGUST 12,1970:SECTION 3685,TITLE 39, UNITED STATES CODE SHOWING THE OWNERSHIP
AGEMENT AND CIRCULATION OF CtRCUIT CELLAR IR ngutlshedummwyau Parksueet lernon, CT 06066. Annual subscriplion priceis $14,95.
ThonamesamdaddvessesomoPuNm , Editorial Drector, and Editor-in-Chief are: Publisher, Daniel J. RoJr ues 4 ParkSL Vernon, CT Editorial
Dwoctor, Steven Ciarcia, 4 Park St, Vernon.CT 06066, Editor-in-Chief, Curis Frankiin, 4 Park St, Vernon, ¢ he ownex is: CnrouuCeIlar Inc Vernon,
CTOSOS&TMnanesandaddres olstocmold s holds mpucmtormoreotlhetotal amoun(o!stockare Staven Ciarcia, 4 Park St., Vi 06066,
The umber of copies of each issue dunng ho ecoding 12 months are; A} Total number of copi gimed (et ress Tunjit, 460 B) Paid
Clculaion I)Sales through dealers and camevs s¥oat vendors and counter sales: 3,291 (2)Mall subscrpions 5,852 C)Total paid dirculation: 9, 153)Free
distibution by madl, carrier of other means; complimentary, and othe free c 266 E)Total Distributed: 9,603 F)Copies not distibued: 1)Off
left over, unaccounted, spoiled after ni ! 617 Z)Flemms from News Agents: 1 zgou 11,400 actual number of copiss of he sngb issue pubhsh
neaesnoflng dateae #5 A coges gmtod (ne(press fun) 22,0008 Paid Circulation:(1)Sales through dealers and carriers, stoe(
vendors and counter is.bsmpoons Total nd droulation: 17,513 DjFres distribution by mall, carfier or other means: sam)
comphmontal‘l 1 ,800E)Total notdlsnbuled 1)Officeuss, leftover, naccounted, lod after pring 980
2)Retums for News Agents 70 Totd 22,0001 eomly lhanhe subm made by me above are carrect and complete: Daniel . Rodrigues - Put jisher

January/February 1989 4]

FROM THE BENCH

AC Power Line Transmission

Conducted by Jeff Bachiochi

num in this country delivers life-giving sus-

tenance to al our inanimate appliances. How-
ever, it seems the only time we are conscious of this
fact is when we pay the utility bill and examine the
relationship between the rising kilowatt-hour demand
and the amount due. Whether we consider our appli-
ances as necessities is not the issue here. What can be
clearly seen is the medium already in place which
connects any number of points together (as long as
there is an AC outlet within reach).

There are at least four problems when dealing with
using the AC power line for data transmission: power
line impedance, attenuation, impulse noise, and con-
tinuous interference, each playing havoc with at-
tempts to use the power line network for anything
other than an electrical lifeline.

Line impedance varies continuously, depending
on the equipment on the line. Every time an appliance

The power line network of copper and alumi-

turns on or off, by ether automatic (eg., refrigera
tor) or manua (e.g., hair dryer) control, the impedance
is affected. Line impedance can range from below 1
ohm to above 50 ohms.

A 125-kHz signal will be attenuated about 7 dB
(1/5 of its original power) for each 50 meters of cable.
An additional 40 dB of attenuation (1 /1 0000 of initial
strength) will occur between phases of the power line.
Any floors (in a factory or commercial complex) or
houses (in a residentia area) on the same side of a
distribution transformer may receive the signal
(though heavily attenuated by distance). Heavy losses
through transformers designed for optimum coupling
a 60 Hz reduce the carrier frequency to undetectable
levels.

Line transients and glitches caused by changing
loads can sometimes reach a few thousand volts. This
very-short-duration impulse noise passes easily
through any 60-Hz filtering.

RO CONTROLLER
T TX/RX RX
Y DATA SELECT pATA
n cn \ i OPTIONAL =
L T T
wor [\ CuiME i SRA Fermd o
GND] h "é_fco 1lcs = 3 -
NEUTRAL — l ? I E 18 |17 s
L
.:RT +
10 i
. SINE TX/RX
1Rz
% . % or ALe SHAPER nood SELECT fr e
OPEN FOR 11 H 0z |
1 1 BOOST ' I +—y g !
: : 5.6u \Iﬁ ;
; o8 ' . .
e : N % OPTIONAL
L L2 < ouTPUT - =
i SRB N . PLL -
H s AnP sU
| - PHASE DETECTOR
| gro L RC IMPULSE 12 ©
1s LIMITER o SRSET NOTSE 1t
H 2 hdd —1 FILTER FILTER
.......................... v
OPTIONAL]—1

14 16
=g cL

3 4 6 13
A cF grF L Lt

Figure 1 -- Sfock diagram of the National LM1893 with surrounding support circuitry.

42 CIRCUIT CELLAR INK

OPT1ONAL.

+Y

, I

21

DaTA

¥ CORIVE
e
CLINE o,

~

CTUNE
HOT

GND _;]

NEUTRAL

SRORIVE
s

I
IE 20 |is

INPUT
AMPLIFIER

LINE DRIVE
AMPLIFIER

OSCILLATOR] FLIP-FLOP

AR

DETECTOR REJECTION

COMP.

$BPF

4 6 7 8 9 10
LBPF
< CDETI cAM | CIMP

3R2
BPF L —j{—

ey o g W0
C%PF

Lo
I8
I

Figure2 - - The Signetics NE5050 needs a minimum of external components to support power-line-

based communication.

Continuous wave (CW) interference is caused by
equipment generating a signal a some periodic fre-
guency on the line. For example, high-intensity
discharge (HID) lamps often use electronic ballasts
which operate at high frequencies and can generate
spectral harmonics. CW interference within the range
of the sdlected carrier frequency will affect both the
reception of the data and the quality of the data
received.

The most important consideration for Power Line
Modem (PLM) design is the carrier frequency. Close
inspection of the AC line environment is required to
reveal any CW interference, and a carrier frequency
must be chosen in the range of least interference. The
characteristics of driver chips limit you to a frequency
somewhere between 50 and 300 kHz. (X- 10 devices,
which permit remote power on/off control of lights
and appliances through the power line, use a carrier
frequency of 120 kHz.)

National LM1893

Nationa’s BI-LINE LM1893, shown in Figure 1,
is packaged in an 18-pin IC (the LM2893, a 20-pin
version, has separate carrier in and out).

Transmission is started by selecting the TX mode
and sending TTL serial data into pin 17. The data
generates switched control current (MOD) to drive the

current-controlled oscillator (ICO) which modulates
to +2% of the carrier frequency. A sine shaper
removes most of the unwanted harmonic content of the
signal, which would cause unwanted RF overtones.
Automatic level control (ALC) shunts excessive drive
current away from the output amplifier to keep the
signa from clipping due to line impedance changes
which would cause unwanted RFI. Finadly, the carrier
is placed on the AC line through a coupling trans-
former. The LM1893’s output drive current can be
boosted by using a single external transistor.

When the RX mode is sdlected, the LM1893 be-
comes a receiver. Signals passed through the coupling
transformer are input to the CARRIER 1/O pin. A
balanced Norton-input amplifier (LIMITER) removes
the DC offsets, attenuates the line frequency, acts as
a band-pass filter, and limits the drive signal to the
PLL phase detector. The differential demodulated
output contains AC and DC data, noise, system DC
offsets, and a 2x carrier frequency component. A
three-stage RC low-pass filter removes most of the
carrier components while the OFFSET CANCEL
compensates for offsets by adjusting a series correc-
tion voltage. Data and impulse noise from the
comparator drive the impulse noise filter integrator
capacitor. All of the impulse noise less than the
integrator time constant is removed and the data is
passed to the DATA OUT pin.

January/February 1989 43

%

Signetics NE5050

The Signetics NE5050, shown in Figure 2, is
packaged in a 20-pin chip.

The Signetics NE5050 does not have a TX/RX
mode. It will receive its own transmissions, which can
be a useful diagnostic tool. FSK modulation requires
two NES050s per node, while ASK modulation
(amplitude shift-keying) needs but one. The example
circuit shown in Figure 2 uses ASK modulation. TTL
data into the TX IN pin gates the carrier frequency
oscillator through the line-drive amplifier, and the
carrier is placed on the AC line through a coupling
transformer. The NE5050 can use an optional external
complementary transistor pair for increased current
capability.

The receiver of the NE5050 is always active.
Signals passed through the coupling transformer are
input to the RX IN pin. A balanced Norton-input
amplifier removes the DC offsets, attenuates the line
frequency, acts as a band-pass filter, and limits the
differential drive to the externa interstage band-pass
filter. This external circuit can be as simple as a
passive RCL network or as elaborate as an active filter
arrangement using ceramic filters. The externally
filtered signal reenters the NE5050 at pins 4 and 5. A
Gilbert detector compares the in-phase signals, and
outputs a demodulated fully rectified signa across a
differential capacitive load. The AM rejector tracks
the DC vaue of the signal, adjusting a series voltage
to that of the detector capacitor. The comparator
supplies a constant current to the impulse capacitor,
charging and discharging it a a constant dope. The
narrow impulse noise will not last long enough to fully
charge or discharge the capacitor. Two volts of
hysteresis ensures that the impulse noise will not affect
the SR flip-flop. Only data will toggle the open-
collector output, RX OUT, a pin 11

With both the LM 1893 and the NE5050, tradeoffs
must be made between data rate and noise immunity.
Data rates greater than or equa to 4800 bps may not
be acceptable in harsh environments, so dower rates
may have to be used.

A Dedlicate Baance

Due to the reationship between CW interference
and carrier frequency, and aso between impulse noise
and maximum data rate, component values should be
selected for an individua environment and will not be
discussed here. Each manufacturer fully covers com-
ponent selection and typical application examples in
their respective data books.

A word on protocol. Any node can access the line
to transmit signals at any time. This can cause data

44 CIRCUIT CELLAR INK

collision, and can result in loss or corruption of data,
so some intelligence is necessary to prevent two
transmitters from colliding. Refer to articles on
Ethernet, XMODEM, and other protocols for more
information, Since data bit errors are related to noise
immunity, the number of hit errors will go up as the
data rate goes up; error checking is an absolute
necessity at higher data rates. Most telecommunica-
tion packages can send files with some type of error
checking or error correcting protocol, but the commu-
nication channd itself doesn't have any error check-
ing, so data sent without a protocol is susceptible to
line noise.

Whether or not PLM communication is practica
for you will depend on a number of factors. How much
information is to be sent? How fast? What is the line
environment? Do costs compare favorably to alterna
tive systems? !]

References

Linear Data Manual Volume 1. Communications
Signetics Corporation

811 East Arques Ave.

P.0O. Box 3409

Sunnyvale, CA 94088-3409

(408) 99 1-2000

Linear Databook 3

National Semiconductor Corporation
2900 Semiconductor Dr.

P.O. Box 58090

Santa Clara, CA 95052-8090

(408) 721-5000

WARNING: ELECTRICAL SHOCK HAZARD!

In addition to supplying 110 VAC, the power line is a near-infinite source of wirent,
As little as 100 mAissufficient to kill a human being. Exercise extreme caution when
using either device described here. Any capacitors wired on the per line side of
the arcuit can retain a charge even after power has been removed from the circuit

Innovations fike these help to make today’s technology more cost
effective, reliable, and easier to use. Please share your favorite ideas,
chips, and circuits with others.

We will pay $25 for any From the Bench accepted for publication.
All submissions should be typed, double-spaced, and include neatly
drawn schematics or Schema configuration, library, and page files.

Include astamped, self-addressed envelope large enough to hold
everything if you wish the materials that have not been accepted to be
returned.

Submit to:

From the Bench
clo Clreult Cellar INK
P.0. Box 772
Vernon, CT 06066

213 Very Useful
214 Moderately Useful
215 Not Useful

Writing a Real-Time
Operating System

by Jack Ganssle

ention the phrase *“Real-

Time Operating System” at
a software convention and
you'll evoke as many different re-
actions as there are programmers.
VAX programmers may think of
VMS, PDP-11 sysops will begin
discoursing on RSX-1 1M, but
many microprocessor designers
will respond with a blank stare.
The Real-Time Operating System
(RTOS), though long the backbone
of mainframe and mini systems, is
only now coming into its own as a
component of embedded systems.

An RTOS is quite different
from MS-DOS, the most recogniz-
able of operating systems. True,
MS-DOS does provide a file struc-
ture and device controllers (which
invariably seem to be bypassed in
most real applications), so it does
qgualify as an OS. However, MS-
DOS can handle only a single pro-
gram at any time; it is incapable of
multitasking.

Another class of RTOS has
evolved specifically to support
embedded systems (those that don't
rely on disks, such as a race car
controller or a microwave oven).
The “Embedded Real-Time Oper-
ating System” provides multi-
tasking resources for ROM-based
applications. It differs from a
mainframe operating system in that
it offers no disk support or file
structure.

Why use an RTOS?

Most embedded applications

4_———*

Part 1

A Multitasking Event
Scheduler for the HD64180

process numerous asynchronous
external events. For example, a
microwave oven controller must
scan the keypad, control the mag-
netron, generate a countdown
timer display, and handle the vari-
ous door switches and other safety
devices. While each activity is
simple, overall coordination is not.

An inexperienced programmer
might try to write the microwave's
code in a sequential manner -- read
the keypad, perform the requested
function, reread the keypad, and so
on. What initially looked simple
soon turns into a nightmarish mix
of spaghetti code where all routines
are inexorably intertwined. Sup-
pose the door is opened while the
oven is on? Have the magnetron
routine check the door switch. Did
the galloping gourmet hit the
“Cancel” button? Add a keyboard
scan routine to the magnetron code.
If the CPU is tied up with the mag-
netron, how do we count down and
display time? Add yet more code
to the magnetron subroutine.

This apparently simple appli-
cation becomes very complicated,
violating The First Fundamental
Rule of Programming: it's OK for
a program to be complex, but no
individual subroutine may be. If a
subroutine seems to be getting out
of hand, step back, think hard, and
take another approach.

In this case only a Red-Time
Operating System will clean up the
code (you just knew that was com-
ing!). Each logically independent
activity becomes a “task.” Every

task runs asynchronously, compet-
ing for CPU time. Like Quantum
Mechanics, there is no way to de-
termine exactly when each task will
run, and there is even less need to.

In the case of the microwave
oven, an RTOS serves as the
software’s backbone. A magnetron
handler is one simple task. A
keypad driver is another. Other
tasks handle the switches, timer,
display, and so on. The RTOS
controls the overall sequencing of
each of the tasks. For example, the
RTOS can run the display driver
once every 200 milliseconds -- fast
enough to cause no noticesble de-
lay, yet dow enough to not burden
the processor unnecessarily. The
magnetron routine can run once a
second, the typical timing resolu-
tion offered to the cook. The
keypad task should run rather fre-
quently so it can debounce the but-
tons properly.

This makes the sequencing a-
most trivial. The door switch task
will issue a command to the oper-
ating system to cancel the magne-
tron task if the door is opened --
regardless of whether microwaves
are being generated. Similarly, the
keypad task will cancel the same
activity if the “abort” button is
pressed. Since the system is (hope-
fully) designed in a fail-safe man-
ner, the magnetron task will only
have to pulse a one-shot line to the
control circuits. It no longer has to
make decisions.

All real-time controllers face
similar multitasking requirements.

Jaonuary/February 1989 45

In recent years several vendors
have introduced commercial Real-
Time Operating Systems to satisfy
this growing need. Inte’s iRMX is
certainly the best known. Avocet's
AVRXS5! is designed for 805 I-
series single-chip computers. Al-
though the commercial products
are al excellent, they have taken
the fun out of multitasking! To me,
the RTOS is the most interesting
pat of the software.

The BCC180 is the ideal plat-
form for an RTOS. Its processor
includes the timer needed to se-
guence tasking. The built-in mem-
ory manager lets it support huge
programs. A tremendous amount
of memory (for an 8-bit system) is
included on the board.

The whole premise of a multi-
tasking operating system is that
computer time is a valuable re-
source to be hoarded and allocated
wisely. This precludes code that
polls devices, waiting for an event
to occur. Rather, devices use
interrupts to signal their readiness
to accept or return data. The
burden of letting software know
that the device is ready is thus
shifted to the hardware, where it
belongs.

Further, at times any individ-
ual task may need to go idle. Rather
than execute a null loop, the task
should signal the RTOS its need to
suspend execution for a specific
time. To the RTOS, this bonus
CPU time is a bonanza that can be
alocated to other tasks.

These requirements define the
central nucleus of the RTOS. To
provide proper task execution, the
RTOS must:

-- Switch execution time be-
tween tasks, so every task gets its
fair share of time. This is called
time dlicing.

-- Provide a mechanism
whereby tasks can go into an idle
state for specified periods, without
wasting CPU time. In the RTOS to
be described, WAITing and sched-
uling are the methods used.

46 CIRCUIT CELLAR INK

-- Allow tasks to alter their
execution order when some impor-
tant event occurs. This involves a
particular task altering its “prior-
ity” level.

With these requirements in
mind we're now ready to examine
a rea RTOS.

The BCC180 RTOS

The BCC180’s Real-Time Op-
erating System implements all of
the previously described functions.
The operating system itself consists
of two magor segments. the context
switcher, which is responsible for
starting, stopping, and sequencing
tasks; and the task control code,
which is used to initiate various
task operations.

The RTOS itself resides in low
memory as a separate section of
code. The context switcher cannot
be accessed by the user’'s codg; it is
invoked only on an interrupt from
the timer. A number of subroutines
can be caled by application pro-
grams to regquest task servicing.

BCC180 RTOS uses the
HD64180’s timer 0 to sequence all
task activities. It is programmed by
the initialization routine to gener-
ae an interrupt every 10 millisec-
onds. Every time this interrupt
occurs, the currently executing task
is suspended and the context
switcher invoked.

This regular source of inter-
rupts forms the heartbeat of the
operating system. It's the mecha-
nism by which the CPU can be
shared between many activities.
The whole philosophy is to allocate
CPU time to tasks in 10-ms chunks.

Task States

Any task can be in one of five
states.

DORMANT -- the task has no
need for CPU time.

READY -- the task will require
the CPU when its “reschedule
time” (defined later) has elapsed. It

is not immediately a contender for
execution time.

ACTIVE -- the task is execut-
ing. Obviously, only one task can
be active a any time.

WAITING -- the task has re-
guested a delay. After the delay
time is up the task again becomes
available for execution.

SUSPENDED -- al conditions
are satisfied for the task to run, and
the task was a one time running. It
was “suspended” by an interrupt
from the timer tic. The task is
anxioudy awaiting CPU time from
the context switcher.

Figure 1 is RTOS’s state dia-
gram. The circles represent each
possible task state. The arrows
show the event causing a transition
between states. Since many tasks
are competing for time, Figure 1 is
somewhat of a simplification of
reality; in effect this should be a
three-dimensional drawing, with
“depth” added for each task. Since
only one task can be active a any
time, there will be only one AC-
TIVE circle for the entire picture;
ACTIVE serves as the hub around
which al task sequencing flows.

Tasks are initidly defined us
ing the OS _DEFINE subroutine.
OS_DEFINE makes an entry in the
task control block (TCB) for the
task, so the RTOS knows about it.
Tasks are initially DORMANT.
The context switcher is aware of
DORMANT tasks, but ignores
them until an ACTIVE task com-
mands a DORMANT one to go to
the READY state. This can only
happen as a result of the ACTIVE
task issuing a cal to the operating
system’s OS_RUN subroutine.
When a task enters the READY
gtate it is not immediately eligible
for execution (i.e., it is not alowed
to go directly to ACTIVE). RUN
is called with a reschedule interval
for the task. This task may not start
until the number of tics specified in
the RSl parameter elapse.

Many operating systems don't
completely exploit the possihilities

CDORNHNT

HHITING)

RUN compI_CEP'TNICOENL wart |WAIT COUNT uP
(ACTIVE)_\
TIC
-
J, Rsi upl l EXI Ny
LREHDY) TIME SUSPENDE@
AUAILABLE

of multitasking. They allow tasks
to be created, executed, and reex-
ecuted at any time. However, the
tasks often can be restarted only
“manually”; some other task must
issue a call to the RTOS to restart
a completed task. In many cases,
however, it makes more sense to
allow the operating system to auto-
matically restart completed tasks at
regular intervals. This makes it
possible to implement a real-time
clock outside of the OS proper. An
example is an LCD driver that must
update a display, say, once every
200 ms. The task that updates the
display can do its work very
quickly and exit; the RTOS will
restart it every 200 ms.

The BCC180 RTOS supports
automatic task restart through a
concept called ‘‘rescheduling.”
Whenever a task is started, a “Re-
schedule Interval,” or RSI, is speci-
fied. While the task is executing,
the RSI is ignored. Once the task
runs to completion, however, the
RTOS counts down time until the
RSI elapses, and then restarts the
task. The best analogy is to rein-
carnation, except the task is always
reborn as software, and not as a
higher animal.

When a READY task’s RSI is
up, the task is finally eligible for
execution. Subject to demands
made by other competing tasks, the
operating system will raise the task
to ACTIVE and start executing it as

time permits.

Very short tasks may complete
before another tic comes (10 ms --
many thousands of instructions). If
this happens, the task is placed
back into the READY state, where
it remains until its reschedule in-
terval once again elapses. This
process repeats forever, unless the
application program commands a
change via the CANCEL or WAIT-
ING calls.

Many tasks will take more than
one tic’s worth of time to complete.
Indeed, some may run forever (if
they include an infinite loop --
perfectly legal and valid in a multi-
tasking system). What is the RTOS
to do? Remember that the raison
d’étre for a real-time operating
system is to wisely allocate limited
processor resources to many com-
peting tasks. Although each task
may want 100% of the processor’s
time, it simply won’t get it.

The RTOS has only one option:
put the ACTIVE task in a SUS-
PENDED state and give another a
chance to run. SUSPENDED
means exactly what it implies. The
task needs more computer time, but
has been put on hold. The context
switcher must very carefully pre-
serve the complete state of the task,
including all of its registers, stack,
flags, etc., so the task can be
resumed without ever being aware
it had been interrupted.

A READY task makes no de-

Figure 1 -- The state diagram for
our real-time operating system

clearly shows it's operational

states and the transitions from

one state to another.

mands for CPU time (it is waiting
for the RSI to elapse), a DOR-
MANT task practically doesn’t
exist, and, as we'll see, a WAITING
task is also in limbo. Only those
SUSPENDED are engaged in a
desperate competition for proces-
sor time. You can see them in the
distance -- a long line of war-
weary suspended tasks, their stack
pointers askew, tense with antici-
pation, each waiting to be called to
the front . . .

Sometimes a task must go idle
until an external event occurs. One
approach is to EXIT, going back to
the READY state until the RSI goes
by. The task will be completely
restarted when it goes ACTIVE. It
will run “from the top,” which may
not be desirable. We need a way to
place the task in suspended anima-
tion for a time. Obviously a null
loop will do just this, but at the
expense of wasting CPU time.

The WAITING state is pro-
vided to allow a task to delay for a
fixed time, and to restart from the
point where the delay was initiated.
The application program initiates a
WAIT by issuing a call to
OS_WAIT, requesting the AC-
TIVE task be placed in a WAITING
state for a specified number of tics.
The context switcher will not give
the task access to the CPU until the
wait count elapses. -

Finally, any task can return to
the DORMANT state, taking it

January/February 1989 47

MORE GOOD CODE...
FAST!

Softaid’s In-Circuit Emulators givi
you all the power and speed vyor
1eed to develop microprocesso
oased products in realtime
ncreasing your productivity ant
saving you time and money.

Emulators available for:

64180, Z80,2Z1 80, 808818086
80188/80186, 8085, V40/V50

Priced from $595 to $2995

FULL SCREEN
DEBUGGING!

With the optional source leve
debugger, you get a real time, fu
screen debugging environmen
with pop-up windows and symboli
displays. Your source code arx
comments are displayed in ;
~vindow that is automatically linket
‘0 the debugging session. Thi:
nakes embedded systen
Jebugging FAST and EASY!

!iiuiiﬂii—

|
i

TIMELY TECHNICAL
SUPPORT!
Jur technical staff is ready tc
inswer your questions. Give us ¢
:all to discuss your microprocesso
development needs!

Jomplete information is alsc
available on our BBS from 5 p.m. t
8 am. EST -- 301-964-8456.

SOFIAID, Inc.

8930 ROUTE 108
COLUMBIA, MD 21045
(301) 964-8455
(800) 433-8812

8 CIRCUIT CELLAR INK

a

completely out of contention for
computer time. Since a task doesn't
truly die by running to completion
(it will be reincarnated after the
RSl eapses), another mechanism is
needed to completely remove it
from the execution stream. The
OS-CANCEL subroutine tells the
RTOS a specified task is to lose its
rescheduling privileges (by driving
the task to DORMANT).

OS-CANCEL doesn’'t abort
the task; rather, it signals the oper-
ating system that the task should be
alowed to complete and then never
be reincarnated.

Once canceled, a task can be
restarted by calling OS_RUN
again. When OS_RUN is called,
the entire rescheduling path will
recommence.

The Scheduling Algorithm

The previous description shows
the transitions between task dtates,
but exactly how does the context
switcher decide which of the many
competing tasks to elevate to AC-
TIVE and start running? After all,
when a tic is received and the
context switcher invoked, dozens
of tasks could be suspended,
WAITING (with the wait count
elapsed), and READY (also with
RSl up).

If more than one task is digible
for execution, the context switcher
must pick one to run in such a
manner as to satisfy two conditions:

1) Every task must get a fair
chance to run.

2) Certain crucia tasks are
more eligible than others, and must
be given more opportunity to exe-
cute.

To ensure that every task gets
the same chance to run, the RTOS
maintains a pointer (TCBPTR) to
the last task it executed. When atic
invokes the context switcher, it
attempts to run the next sequentia
task. If that task is not eligible for

<Circle No. 123 on Reader Service Card

CIRCUIT CELLAR INK'S sty
ADVERTISER’S INDEX

Reader
Service Page
Number Number
101 AlS| Research C4
102 Alpha Products 7
' Assoc. Comp Consult. 63
103 AVOCET c2
. Best Associates 63
104 Binary Technologies 58
105 Cabbage Cases 33
. Chrysalis Micro. 63
106 Circuit Cellar 35
107 Circuit Cellar 19
. Collins Associates 63
106 Cottage Resources 33
109 Covox, Inc. 25

David Baker Assoc. 63
110 Environmental Optics 30

i Galacticomm Outsert
112 Hogware 35
113 Innotec Design 24
114 Introl Corp. 3
115116 JDR Microsystems 23
117 LTS/C Corp. 27
118 Micromint, Inc. 40
119 Micromint, Inc. 61
120 Micromint, Inc. C3
121 PseudoCode 40
122 Schnedler Systems 25
123 SoftAid, Inc. 46
124 Thinking Tools 6
125 Timeline, Inc. 4
. Tinney 33
126 x-10 15

INK Rating Service
 How useful is this article?

. At the end of each article and
:some features there are three 3-
(digit numbers by which you can
1 rate the article or feature.

Please take the time to let us, at
Circuit Cellar INK, know how you
feel our material rates with you.
Just circle the numbers on the at-
tached card.

execution, then the operating sys-
tem continues searching for one to
run. In other words, it tries to run
the one that has not been ACTIVE
for the longest amount of time.
This is caled Round Robin sched-
uling, and is the basis for all
operating systems.

The Round Robin scheduling
algorithm aways guarantees that
every task gets an equal chance to
run, but suppose the application
program defines a task so important
that when it is ready to go ACTIVE
it absolutely must gain control of
the processor? For example, if a
task were keeps track of time, it
MUST execute every so many tics,
or the clock will get behind.

BCC180 RTOS provides a way
to associate a priority with each
task. The higher the priority, the
more important the task is. Priori-
ties can range from 1 to 63, which
are relative, unitless numbers.
When a task is defined with the
OS-DEFINE routine, an initial
priority is assigned to it. Later, the
task can, at any time, alter its
priority level by issuing a call to
OS PRIORITY. Generally, all
tasks should be assigned a midlevel
(say, 32) priority, so others can
raise their level above the mean,
and some can lower theirs.

Why would you want a task to
have low priority? In a real-time
system, data acquisition is usualy
the most important activity since
the data is available for a limited
amount of time. Many tasks may be
needed to gather data, analyze it,
and then actuate a controller (per-
haps for a closed-loop system).
Often a display is also needed. The
display task might run at an ex-
tremely low priority. The rea meat
of the application will be unaf-
fected. The display activity may
get suspended for long periods, but
these delays may not be noticeable
to the operator. Suppose a 200-ms
update rate occasionally becomes
250 ms? No one will notice.

BCC180 RTOS aso lets tasks

Task state

1 if a cancel was requested for this task.

When the task exits, if this byte is set the task
becones ineligible for further reschedulina.

2 Task's bank. This is the BBR val ue for the-task.
Required to support nenory nanagenent (described
later)

Byte 0
1

3 Task's priority. Legal values are 1 to 63.

4 Task's reschedule interval. Gven when the task
is first requested for execution.

6 Task's reschedule count. This is set to the RS

every tine the task exits, so the context sw tcher
can begin counting down again.

8 Wit count. If the task is WAITING this count
is decrenented to 0, at which tine it again
becomes eligible for execution.

10 Task's Start Address. This is the task's entry
point. Wien a READY task is elevated to ACTIVE. it
starts at this address.

12 Task's stack pointer. The current value of the sp

is saved for all tasks so the context switcher can

Conpl etely restore the task's state.

Table 1 -~ The Task Control Block (TCB) is the central data struc-
ture for the operating system. All scheduling information and han-
dling of requests must go through the TCB.

dynamically raise and lower their
priorities through «cdls to
OS PRIORITY. Obviously, a
high-priority task is a dangerous
beast, since it can easily hog al of
the processor’'s time. Careful de-
sign of the application is essential
so that CPU time becomes available
to all tasks. It is much better to
design atask to go to a high priority
when it realy needs to, and then to
return to a normal level, than to
keep it elevated at al times.

The priority scheme, then, al-
ters the round robin algorithm.
Instead of just starting the next
eligible task, the context switcher
actually first examines the current
priority level of al tasks that are
READY (with their RSI up),
WAITING (with the wait count
elapsed), and SUSPENDED. It
starts the highest-priority task it
finds that satisfies these conditions.

If severa tasks are found that
are eligible and that have equally
high priority, the context switcher
resumes the round robin concept.
It alternates execution between the
high-priority tasks until they all
become indligible. The next prior-
ity level is then executed. Obvi-
ously, this algorithm defaults to
simple round robin if al tasks are
a equa priority.

Remember: high-priority tasks

can completely monopolize the
CPU! Be sure that they exit, wait,
or get canceled fairly often so other
tasks get a shot at running.

The Task Control Block

Programs have been accurately
defined as algorithms plus data
structures. The algorithms have
been described. These all revolve
around one data structure, the Task
Control Block (TCB). All schedul-
ing information is kept in the TCB;
all requests for service are made
through it.

The TCB consists of one 16-
byte entry for each task. Only 14
bytes are used, leaving two for
future expansion. Its format is
shown in Table 1. The TCBPTR
pointer is always kept pointing to
the currently ACTIVE task. It is
used to implement the round robin
algorithm.

The first TCB entry is assigned
to “task 0,” the main routine that
must exist just to spawn other tasks.
Task 0 is never explicitly created;
the RTOS forces it to exist when a
cal to the operating system’'s ini-
tialize routine is executed.

The last TCB entry is the task’s
current stack pointer. Every task
MUST use its own, distinct stack.
If one stack were shared between

I . 49

many tasks, after severa tics the
stack would become a horrible
jumble with no way to accurately
pair values and tasks.

When a tic interrupts a task, the
context switcher pushes the entire
state of the machine (all registers
and flags) onto the current stack
(i.e., that which belongs to the task
just interrupted). The stack pointer
is then saved in the TCB. When
another task is started, that task’s
stack pointer is recovered from its
saved position in the TCB, and
used. POPs in the exact reverse
order balance the stack and recover
the task’s register set. In this way
every task’s registers, flags, and
stack are preserved, guaranteeing
the integrity of the task’s operation.
In effect, the task never knows it
was interrupted.

This has an important implica-
tion: each task MUST define an
initial stack pointer via
OS-DEFINE. Further, the stacks
must be in logically distinct areas.

The Code

With the RTOS completely de-
scribed, the code becomes almost
trivial. This is usualy the case with
software. After the programmer
completely understands a problem
and has the algorithms in mind,
coding becomes almost a boring,
low-1Q task (pardon the pun). And
so it should be. Most software
disasters are attributable to insuffi-
cient understanding of the prob-
lem, and not enough planning of its
implementation.

Like Gaul, the code is divided
into three sections. The RTOS
proper resides in file OS.MAC. A
number of macros designed to
make the application code more
readable arein OSMACRO.MAC.
Finally, the user’ s applicationisin
one or more files. The example
application is caled OSAPP.MAC.

[Editor’s Note: Complete code
for this article is available from the

50 CIRCUIT CELLAR INK

context-swtch

Lisung 1

Circuit Cellar BBS or on Circuit
Céllar INK Software On Disk #7.
For ordering and downloading in-
formation, see page 62.]

A short initialization routine,
OS_INIT, must be called before
the application issues any other
RTOS calls. OS_INIT sets up the
TCB s0 that al subsequent calls to
other routines will find the TCB in
a known, safe state. This involves
setting all tasks to a default

push hl ; push all registers
push de
push bc
push af
push i X
push iy
exx
push hl
push de
push bc
exx
ex af, af”’
push af
ex af,af’
in0 ter ; read ter to clear interrupt
in0 tmdrol ; also nust read tmdr to clear intr
ld ix, (tcbptr) ; pt to current task's tch entry
ld (ix+t_state) ,suspend; suspend the task
cse id hl,o
add hl,sp ; hl=stack pointer for this task
1d (ix+t_sp),1 , save sp lowin tch
14 (ix+t_sp+1),h ; save Sp high in tchb
call dec_cnts ; decrenent tcb counts
call inc_rr_ptr ; increment the round robin pointer
call find_tsk ; find a task to execute
14 (tcbptr) , ix ; reset tchptr
1d 1, (ix+t_sp) ; get low sp
14 h, (ix+t_sp+l) i get high sp
ld sp,hl i set the task’s sp
14 a, (ix+t_state) ; ix pts to task to run; get state
14 (ix+t_state),active; set task will now be active
cp ready ; possible states: ready, suspended,waiting
jr nz,cssl ;j if not ready
1d 1, (ix+t_start) ; get low start address
1d h, (ix+t_start+1); get high start address
call r emap ; set proper bank
push hi ; push start address
e
reti ; start task
cssl: cp suspend i suspended?
ir nz,cswl ;J If not; nust be waiting
cal | renap ; set bank for this task
ex af, af’ ; restore registers
pop af
ex af, af’
exx
pop bc
pop de
pop hl
exx
pop iy
pop I X
pop af
pop bec
pop de
pop hl
e
reti resume suspended task
cswil: call remap remap to resune task that was waiting
e
reti restart task

“NONE,” or nonexistent, state ex-
cept for task 0. Task O is defined
automatically as the application
code that spawns off other tasks.
OS_INIT also programs the
processor’'s timer O to interrupt
every 10 ms.
CONTEXTSWITCH, shown
in Listing 1, isthe heart of the op-
erating system. It can never be
directly invoked by a user program;
rather, the timer automatically
starts this code on each interrupt.

I ncl ude

This fi

ext er nal
ext er nal

v

file for BcCci1so RTCS.

le should be INCLUDEd in all RTOS applications.

It contains the macros that ease access to the RTOS itself.

os_define,os_run,os_exit,os_cancel
os_wait,os_init,os_priority

; This routine nust be called before any other RTOS

;cocall is

:
; rt_init

nmade.

(no argunents)

i
rt_init nacro
cal | os_init
endm

rt_define -~ Make a task known to the operating system

rt_define nust be called before any other commands are issued

for the task.
rt_define start,stack,bbr,priority,number
start = start address
i stack = top of stack for this task
bbr = task's bank
priority= task's initial opriority
H number = task nunber (1 to NUMISK-1)
rt_define nacro start,stack,bbr,priority,number
ia hl,start ; set start address
1d de,stack ; set top of stack
1d bc,priority*256+bbr: set priority and bank
14 a,numpber ; task nunber
call os_define
endm
s rt_run - Put a task in the READY state.

; rt_run number,rsi
nunber = task nunber
rsi = reschedul e interval

rt_run nacro

number, rsi

14 de,rsi ; set reschedule interval
1d a, number ; set task nunber
call os_xun
endm
i rt_exit =~ Exit the current task
; rt_exit (no arguments)
rt_exit nmacro
cal l os_exit
endm

; rt_priority - Set the current task's priority

i ortgriority opriority

;

priority= task's new priority (1 to 63)

rt_priority macro priority
1d b,priority
call os_priority
endm
; rt_cancel =~ Cancel a task
; rt_cancel nunber
number = task number (0 to NUMTSK-1}
rt_cancel macro nunber
1 a, numbery ; set task nunber
cal l os_cancel
endm
; rt_wait - Put the current task into a WAITING state
; rt_wait count
: count = nunber of tics to wait (1 to 32767)
rt_wait nmacro count
1d de, count ; set count
cal l os_wait

Listing 2

CONTEXT_SWITCH has two
functions: decrement the RSI and
wait counts of each task requiring
such service, and find a task to
execute.

As previously described, all
registers and the stack pointer are
saved for the task just suspended.
That task is driven to the SUS-
PENDED state. Subroutine
DEC_CNTS decrements the RSI
and WAIT interval of every task in
the TCB. The counts “bottom out”
at zero; DEC__CNTS will not dec-
rement a count below zero.

INC_RR_PTER increments
the round robin pointer (TCBPTR).
It makes sure the pointer will be
amed at a task that is available for
servicing, not one that has no need
for CPU time.

FIND TSK searches the entire
TCB, starting at TCBPTR, for the
highest-priority task to execute. It
will select only tasks that qualify
for execution time. If al tasks are
the same priority, the task selected
will be the one a TCBPTR, thus
implementing the round robin
scheduling algorithm.

READY tasks begin at the start
address given in the TCB. WAIT-
ING tasks resume from the call to
OS _WAIT. SUSPENDED tasks
resume from the point of suspen-
son, with all registers restored.

Each of the RTOS service re-
quest routines was referenced in
the description of task states. List-
ing 2 shows the macros and their
calling parameters.

Well, that pretty much takes
care of the task structure of the
operating system. In the next issue,
I'll cover the memory management
aspects of multitasking, and pres-

ent a sample applicaticE

IRS

216 Very Ussful
217 Moderately Useful
218 Not Useful

January/February J 989 51

FIRMWARE FURNACE

Real Numbers
Number Crunching for the 8751

by Ed Nisley

omehow the Intel 8051

never comes up when the
conversation turns to nu-
meric processors. An 8051 is hard
to beat when you need fast execu-
tion and bit twiddling /O, but you
can't mistake it for an 80387.

Despite the fact that the 8051
ALU is only eight bits wide (it does
have one 16-bit instruction!), it's
still possible to handle “rea” num-
bers. The trick is to pick a numeric
format that takes advantage of the
8051's strengths and sidesteps its
weaknesses.

The October through Decem-
ber 1988 Ciarcia's Circuit Cellar
articles in BYTE Magazine de-
scribed the Mandelbrot Engine
Supercomputer, which is an array
of Intel 8751s programmed to
evaluate the Mandelbrot Set calcu-
lations. The array is controlled by
an IBM AT clone that presents the
results on an EGA display.

Because the Mandelbrot Set
calculations require real numbers
with exquisite precision, the 8051
architecture isn't one that springs
immediately to mind. But we used
it anyway, because an array of 875 1
microcontrollers is much easier and
cheaper to build than anything else.
As Steve puts it, “the calculations
are just a smple matter of software
regardless of what kind of proces-
sor they're running on.”

Where's the Point?
Although the Mandelbrot Set

caculations require high precision,
they do not need much dynamic

52 CIRCUT CELLARINK

range. Those two features are often
confused, but the difference is es
sential to making the Mandelbrot
Engine work out correctly.

All numeric vaues in a com-
puter are represented by a limited
number of bits. Each bit can have
two states, so an n-bit representa-
tion can have only 2n distinct val-
ues. An 8-bit number can have 256
values, a 16-bit number can have
65536 values, and so on. The key
point is that once you know how
many bits are used to represent a set
of values, you know how many
distinct numbers there can be.

Consider an 8-bit analog-to-
digital converter: regardiess of the
analog input voltage range, the
digital output will have only 256
distinct values. The result can be
stored in a single byte without
losing any precision.

If the anadlog voltage range is O
to 255 volts, successive digital val-
ues are one volt apart. Thevalue 0 1
hex is one volt, 02 hex is two volts,
10 hex is 16 volts, and so on to FF
hex a 255 volts. The scale factor
between input and output is 1 volt/
count.

A more reasonable voltage
range might be O to 25.5 volts. Now
01 hex is 0.1 volt, 02 hex is 0.2 volt,
and FF hex is 25.5 volts. The scale
factor now is 0.1 volt/count. Simi-
larly, if the input voltage range is
0 to 2.55 volts the scale factor is
0.01 V/count, or 10 mV/count.

In each case there are ill only
256 distinct values spread across
the input range, with an obvious
tradeoff between dynamic voltage

range and precision. To get a range
of 255 volts you must accept 1.0-
volt steps between values, and if
you want O.Ol-volt precision you
must be content with a 2.55-volt
range.

Suppose you adjusted the ADC
for analog inputs between 0 and
15.9375 volts. That rather odd
range gives you 256 steps at 62.5
mV/step, or 1/16 volt per count.
Figure 1 shows the binary values
for each input voltage. The digita
value 10 hex now corresponds to 1
volt, 20 hex is 2 volts, and so on.

Imagine that there is a “binary
point” after the first four bits. Any
bits to the left of the point repre-
sent integers, while the bits to the
right are fractions. The hit values
increase by a factor of two to the
left and decrease by a factor of two
to the right. Once you know where
the binary point is located, it's easy
to read off the numeric value

The numbers shown in Figure
1 are examples of “fixed-point”
values, because the binary point is
located in a fixed position in each
value. A floating-point number,
the kind you get when you declare
a C “float” variable, has an addi-
tional group of bits to specify
where the binary point occurs in
the main number.

The tradeoff between fixed-
and floating-point representations
is smple. For a given number of
bits, fixed point will have better
precision because it uses al the hits
to represent the value. On the other
hand, floating point will have
greater dynamic range because it

Each step = 62.5 mv

I nput Binary
15. 9375 1111 1111
15. 8750 1111 1110

8.0625 1000 0001
8. 0000 1000 0000
7.9375 0111 1111
2.0000 0010 0000
1. 0625 0001 0001
1. 0000 0001 0000
0. 5000 0000 1000
0.1875 0000 0011
0.1250 0000 0010
0. 0625 0000 0001
0. 0000 0000 0000

Full-scale range = 0 to 15.9375 volts

Figure 1 -- Eight-bit values from the ADC are shown scaled to an
input range of OV to 15.9375V by using a step of 62.5 my.

uses some hits to “shift” the loca
tion of the binary point. The rep-
resentation you pick depends on
what’s more important: precision or
range. The distinction between
these systems was discussed in
Ciarcia's Circuit Cellar in the
November 1988 issue of BYTE, so
I'll concentrate on fixed-point
values in this article,

Bits Below Zero

What happens when you adjust
the ADC to handle voltages below
zero as well as above? Let's keep
the same 62.5-mV scale factor as
before, but twiddle the offset pot so
that the input range is -8.0000 to
+7.9375 volts. In real life, the
digital values you get depend on
which ADC chip you're using, but
here we can explore some dterna
tives with no trouble at all.

There are several ways to rep-
resent negative numbers. Perhaps
the simplest is caled “signed mag-
nitude’” because there is a separate
sign bit to indicate whether the
magnitude is above or beow zero.
Figure 2 shows how the voltages
would be coded in this system.

A peculiarity of signed-magni-
tude numbers is that there are two
digital codes with a value of zero:
“plus zero” (00 hex) and “minus

zero” (80 hex). The usua conven-
tion converts a minus zero into a
plus zero whenever it occurs, but it
is easy to fumble a comparison and
report that zero is not equa to zero.
Another problem arises when
comparing vaues. The voltage for
code 02 is greater than the voltage
for code 01, but the 82 voltage is
less than that for 81. A simple
numeric comparison won't suffice
for signed-magnitude numbers.

It would be nice if 00 hex meant
0.0000 volts and increasing digital
values adways represented increas-
ing analog voltages. One way to
achieve this is to keep the same hex
values for 0.0000 through 7.9375
volts and use the codes for +8.0000
through 15.9375 volts for -8.0000
through -0.0625 volts. Figure 3
diagrams this approach.

If you're familiar with the 8051
(or nearly any other micro, for that
matter) the sequence of digital va-
ues shown in Figure 3 should be
easily recognizable. They are noth-
ing but the integers between -128
and +127 represented in the ordi-
nary two’'s complement notation
used in the 8051's ALU.

In fact, the 8051's ordinary
arithmetic operations will give the
correct result for the corresponding
analog values. This isn't magic,
because we've picked the numeric
representation to match up with
what the 8051 does naturally. We
simply don't tell it that it is ma
nipulating “real numbers’ and it
doesn’t know the difference.

Comparing Figures 2 and 3 will
show you that the “minus zero”

I nput vol tage range
0.0000 to +15.9375
Vol t age step size
62.5 mv

+15.9375 FF -
+15.8750 FE
+15.8125 FD
+8.0625 81 | |
+8.0000 gso
+7.9375 7F -
+7.8750 7E
+0. 1250 02
+0.0625 01 |
0. 0000 00

Note that there are two ways to represent zero volts.

-8.0000 to +7.9375
62.5 mv
- 4+7.937% 7F
+7.8750 7E
+0.1250 02
+0.0625 01
L +0.0000 00
-0. 0000 80
i -0. 0625 81
-0. 1250 82
-7.8750 FE
L -7.9375 FF

Figure 2 - - Signed-magnitude representation uses a separate bit to
indicate whether a given value is above or below zero.

January/February 1989 5 3

-

code produced by the signed-mag-
nitude notation has turned into the
negative code for -8.0000 volts.
The only effect is that there is one
negative value that can't turn into
a positive value by negation.

Naturally enough, there are a
variety of other numeric formats
around. In fact, you will find that
some ADC chips use offset binary,
straight binary, and other schemes
too odd to mention. Make sure you
read the data sheet before you leap
to dangerous conclusions!

Home on the Range

As you should expect, though,
you won't get something for noth-
ing. Those eight bits can represent
any voltage between -8.000 and
+7.9375, but with a step between
values of 0.0625 volts. In order to
get better resolution we must re-
duce the overdl range of numbers
or increase the number of bits in
each number. Conversely, to get a
larger range we need either poorer
resolution (bigger voltage steps
between values) or more hits.

Remember that floating-point
numbers don’'t sidestep this issue.
They simply trade off resolution
for dynamic range at a given
number of bits. If you need a very
large dynamic range and can toler-
ate a moderate resolution reduc-
tion, floating point may be the way
to go. TI'll stick to fixed-point
numbers here because we need the
precision.

Let's suppose that the range is
OK, but we need better resolution.
Replacing the ADC with one that
can produce a 16-bit result gives a
step size 256 times smaller than
before. The scale factor shrinks to
about 244 pV /count.

Figure 4 shows the correspond-
ing analog and digital values. Be-
cause there are now 64K (actually
65536) numbers, the positive range
goes from 0.000000 to +7.999756
volts. The negative voltages still
start at -8.000000 because of the

54 CIRCUIT CELLAR INK

I nput vol t age
0.0000 to +15.9375

Vol tage step size

range

Increasing digital
anal og voltages.

-8.0000 to +7.9375

5 mv 62.5 mV
+15.9375 FF -
+15.8750 FE
+15.8125 FD
+8.0625 81
+8.0000 8o
+7.9375 7F - +7.9375 7F
+7.8750 7E (+7.8750 7E
+0.1250 02 +0.1250 02
+0.0625 01 +0.0625 01
0. 0000 00 L 0.0000 00
- -0.0625 FF
-0.1250 FE
-7.8750 82
-7.9375 81
L .8.0000 80

val ues correspond to increasing

Figure 3 -- Thetwo's complement scheme for negative values allows
0.0 voltage to be represented as 00 hex. Note that after the rep-
resentation for +7.9375 volts, the hex count “wraps around” such that

-8.0000 is next in line.

extra negative value.

Although actual analog-to-
digital converters can’'t supply
more than about 20 bits, we can
continue adding more bits to our
digital representation with no
trouble at al. Figure 5 shows the
numeric format used in the Man-

delbrot Engine. There are 64 hits,
with 60 devoted to the fractional
part. The overal range is -8.0 to a
trifle under +8.0, with ascale factor
of 8.7x10-19, These real numbers
don't have units of volts anymore
because the Mandelbrot Engine
works in the domain of pure

Ful | -scale range = -8.0000

Each step = 244 uv
I nput He x

+7.999756 7FFF

+7.999512 7FFE
+0.000488 0002

+0.000244 0001

0. 000000 0000

-0. 000244 FFFF

-0. 000488 FFFE
-7.999512 8002

-7.999756 8001

- 8. 000000 8000

to +7.9375

Figure 4 -- Using 16-bit representation instead of d-bit in a two’s
complement scheme lets us have 256 times as many steps within the

same input range.

} eight bytes = 64 bits {
siiiffff ffffffff fEeeffff ffffffff fEFEeeff fEfFffff
T *
- fraction 60 bhits
. i nteger 3 bhits
: sign 1 bit
range -8.000... t0 +7.999...
preci si on 18 to 19 decimal digits

Figure § -- The fixed-point representation used in the Mandelbrot
Engine uses 64-bit numbers, of which 60 bits are the fractional
portion. Negative mumbers are represented in two’'s complement no-

tation.

mathematics.

But representing a number is
one thing. Performing mathemati-
ca operations on these mongters is
another -- remember that the 8051
ALU isonly eight bits wide!

Extended Arithmetic

The key to extended-precision
arithmetic is that the 8051 can't tell
the difference between fixed-point
numbers and rather long integers.
The 8051's program status word
(PSW) includes a carry flag that
sgnas when the sum or difference
of two bytes requires more than
eight bits. The ALU can dso
multiply two unsigned bytes to get
a 16-bit result. Those two opera-
tions are al it takes to handle the
Mandelbrot Engine calculations.

The smplest operation is addi-
tion. For example, consder adding
a pair of two-byte numbers. 00F8
+ 010E. You'd do this by writing
them one above the other

00F8
010E

and adding columns from the right.
If the sum of any column exceeds
F hex you would write the last digit
of the sum and carry 1 to the next
column. The result of al this is
0206 hex.

The 8051 ALU adds two col-
umns (one byte) at atime, but the

process is the same. First it adds
F8 + OE to get 06 and a carry
(because the result exceeds FF
hex), then it adds 00 + 01 plusthe
carry to get 02 hex. There is no
carry from that addition, so the
process is done and the result fits
within two bytes,

The extension to eight-byte
numbers is shown in Ligting 1. The
two index registers RO and RI1
point to the most-significant byte
of the two numbers to be added and
the result replaces the number
pointed to by RO. The constant
NUMLEN is the number of bytes
in each number, which is smply 8.

All extended-precision num-
bers are stored with the most-sig-
nificant byte in the lowest-num-
bered address, which is the oppo-
site of the order the IBM PC uses.
| picked this order because it makes
the values much easier to read
during debugging. A simple con-
version routine in the IBM AT
swaps the order before sending data
to the array.

Because the addition proceeds
from the low-order bytes upward,
the first step is to adjust the point-
ers from the high bytes to the low
ones. The 805 1 can only add num-
bers to the accumulator, so the con-
tents of the pointer registers must
be moved into ACC, added, and
then moved back.

The 805 1 doesn't have the com-

—4

plex instructions you'll find in the
80x86 family, so the loop is six in-
structions long. Again, the first
step is to fetch the current byte
from the location pointed to by RO
into ACC. The ADDC instruction
adds the byte pointed to by RI plus
any carry from the previous addi-
tion. The result is overlaid on the
source byte at RO by the second
MOV instruction.

The remaining steps adjust the
pointers to the next bytes (remem-
ber that higher bytes are at lower
addresses) and loop for the eight
counts in the B register.

You might wonder what hap-
pens for negative numbers. The
answer is smple: it works just fine.
It's worth stepping through a few
examples on your own by hand just
to make sure you understand what's
going on. You can try adding some
of the values in Figure 4 to see if
the right answer pops out--I cer-
tainly had to do just that!

There is one dlight problem,
though. What happens when two
numbers add up to more than
+7.9999? For example, adding +4.0
and +4.0 will give +8.0, which ex-
ceeds the alowable maximum by
one count. The answer for thisis
smple, too: the value wraps around
to the maximum negative number!
The addition of the high-order two
byteslooks like this:

4000
4000
8000

But the hex vaue 8000 (and the
six bytes not shown here) repre-
sents -8.0, which is certainly not
the right answer.

Because of the nature of the
Mandelbrot Set calculations any
number larger than 4.0 (either
positive or negative) signals the end
of the process. The routines that
call long-add make "sure that the
input values won't generate an
overflow, so long-add doesn’t
have to worry about error check-

January/February 1989 55

e e e e

: Add two long integers

: Mashes A an
; Return6 RO and ®ri unchanged

long add PROC
PUBLIC | ong-add

MoV A RO
ADD A, #NUMLEN-1
MOV RO, A
MOV A,R1
ADD A, $NUMLEN-1
MoV RI,A
MOV B, iNUMLEN
CLR C
L?loop EQU $
MoV A; 8RO
ADDC &, 6R1
MOV @RrRoO A
DEC RO
DEC R1

DINZ B,L?1oop
RET

long-add ENDPROC

Listing 1 -- Extended-Precision Addition

ing.
Subtraction proceeds along
similar lines and I'll leave it as an
exercise for the reader. Hint: the
8051 instruction SBC (subtract with
carry) may be helpful. You might
also want to figure out how to take
the absolute value and two's com-
plement of a number; in a pinch,
you can subtract by complementing
and adding.

Long Multiplication

Each step of the Mandelbrot Set
calculation requires four eight-
byte multiplications. At first
glance you might think that the
process is just as simple as addition
because the ALU can multiply two
8-bit bytes. That’s not how it
works out ...

Let's start with the same 16-bit
numbers. 00F8 x 010E. Figure 6(a)
shows the intermediate steps re-
guired to do this by hand. The
product is 0001 0590 and the first
problem should be obvious: there

56 CIRCUIT CELLAR INK

are 32 bits in the result and we
expected it to fit into 16 hits. For

;RO points to the high byte of the target an integer multiplication you sim-
3 R1 points tod tEtw high byte of the source

ply ignore the high-order two

bytes, but that's not quite the an-
swer we want here.

You first encountered this issue

_ in eementary school when you hit

: point to end of target (the dreaded) decimal fractions.

You solved it by rote: “count up the

: point to end of source, too decima places in the multiplier and

multiplicand, then shift the point

over the same number in the prod-

nunber of bytes to combine uct.” Wadl. at least that's what |
setup for | oop ’ !

~

learned.
; pick up target _ A similar rule applies to fixed-
,:tdack Qntbu{ e point numbers. Because both 16-
i drop into targe bit numbers have 12 bits after the
: tick pointers binary point, we count off 24 bits
from the right end of the product
: repeat for all bytes and insert a point. The next four

bits to the left are the integer part
of the result. The four high-order
(leftmost) bits are discarded. Fig-
ure 6(b) shows this process.

The multiplication routine can

6a -- 16-bit nultiplication using byte multiplies
00 F8
01 CE
F8 x CE = oD 90
00 x CE = 00 00
F8 x 01 = 00 F8
00 x 01 = 00 00
00 01 05 90

0.0 F8 <- 12 bits after point
0.1 CE <- 12 bits after point

D 90
00 00
00 F8
00 00
00.01 05 90 <- 24 bits after point
[<- 16 bits of result
0.0 10 <- the final result

Figure 6 - - Thefirst figure shows a problem inherent in multiplying

16-bit fixed-point numbers: the result is a 32-bit number. The

second figure shows the “fix” for this problem that was used in the
Mandlebrot Engine.

extract some information from the
“excess’ hits. For example, the 16-
bit product can be rounded based
on the contents of the low-order 12
bits. The high-order four bits can
indicate whether the product is too
big, and, if so, the code can substi-
tute the maximum possible 16-bit
number.

Thereisyet another complica-
tion that isn't obvious from this
simple example. Each and every
byte multiplication generates a16-
bit product that must be added into
the partial product at the correct
spot, but those additions can cause
acarry that must be propagated all
the way to the most-significant bit.
Embedded in each multiplication is
acarry loop as well.

Finally, unlike addition and
subtraction, the multiplication in-
struction works only for positive
(and zero!) values. The Mandelbrot
Engine code determines the sign of
the product from the signs of the
incoming values, then takes their
absolute values. The multiplication
takes place in a temporary 128-bit
buffer and the result is rounded,
shifted, clamped, and re-signed in
place.

The source code for long _mult
is so, well, long that Steve and Curt
turned pale when | suggested print-
ing it. We compromised: it's avall-
able on the Circuit Cellar BBS in
the DRIVER.ARC package along
with the source code for the IBM
AT control program. The remain-
der of the 8051 code isn't available
because of licensing agreements,
but you're sure to see interesting
snippets of it in upcoming columns.

The 8051 has so few useful
registers that adding the overhead
for all the multiplication and carry
propagation loops didn't make any
sense. The alternative is smple:
write the code as a straight-line
routine without loops. But
straight-line source is awkwardly
bulky, so | used the preprocessor
facilities of AVMAC to build
“compile time” loops to generate

the code.

Listing 2 shows the core of the
multiplication code. It takes effect
after the partial product for the

finished. There are two nested
loops, one to handle the remaining
multiplier bytes and the other to
handle al the multiplicand bytes on

low-order multiplicand byte is every pass. The %IF statements

;=== 40H

%$FOR N = NUMLEN-1 TO O
mpy&N 1

$ENDFOR

$FOR N = NUMLEN-1 TO O
pr od&N DS 1

$ENDFOR

RO points to the multiplicand.

haveprod

EQU

$FOR J = 1 TO NUMLEN-1
MOV DPL, mpy&J
MoV mpy&J, #0
JB compute,m&J&top
JMWP restart
m&.J &t op EQU S
$FOR I = 0 TO NUMLEN-1
m&J&&T EQU S
MOV A, @GRO
DEC RO
MoV B, DPL
MUL AB
ADD A,prod&J-&l
MoV prod&JI-&I,A
MoV A,B
ADDC A,prod&J-&I~-1
MOV prod&J- & -1, A
%1IF & LT NUMLEN-1
$FOR N = 2 TO NUMLEN~&I
JNC noc&J&&T
CLR A
ADDC A, prod&J-&I~&N
MOV prod&J-&I~&N,A
$ENDFOR
SENDIF
Noc&I&&I EQU $
$ENDFOR
%IF &3 NE NUMLEN-1
Mov A, RO
ADD A, #NUMLEN
MoV RO, A
YELSE
I NC RO
SENDIF
$ENDFOR

The 16-byte product buffer is defined by these nacrds

; 16-byte buffer for extended-precision nultiplies
; Higher-order bytes are at |ower addresss

BY -1

BY -1

Only the core of the nultiply routine is shown bel ow.

The nultiplier is located in the buffer at mpyo through mpy7
and is replaced by the partial products

; Rub remaining multiplier bytes across nultiplicand

; nultiplier index

; set up nultiplier byte
: and clear for results

: check for cancel flag
i .s. exit if off

; multiplicand index

: next multiplicand byte
s multiplier byte

; combine | ow byte

3 conbine high byte

. No carry past multinlisrbyte
. but all rremaining bytes

: multiplicand |oop

: special reset for lest
¢ point to last byte

byte

; point to first byte

;multiplier |oop,

Listing 2 -- Extended-Precision Multiplication

January/February 1989 57

control the length of the carry
propagation chain.

The bottom line of al this is
that an eight-byte multiplication is
a very expensive process. After a
good deal of tinkering and fiddling
with the code, the Mandelbrot
Engine can compute one iteration
of the formula in about 5 millisec-
onds.

While 5 milliseconds per itera-
tion sounds painfully slow, re-
member that the point of the
project was to demonstrate that a
large number of these simple proc-
essors can be faster than any single
processor, no matter how fast. For
example, 64 processors can drop
the average time to 78 ps per
iteration; and 256 processors can
push it under 20 ps. Communica
tion and overhead will prevent the
array from reaching those ideal
values, but the principle is still

valid: there is strength in numbers!
Fixing Your Points

Although the ready availability
of math coprocessors makes float-
ing point the natural choice for
many PC projects, the case isn't
closed. You may find that floating
point isn't the ideal solution for
your code, particularly if you don’t
have enough bits ... and nobody
ever does. For projects needing
lots of precision over a small dy-
namic range, try some fixed-point
math.

Future Directions

This column marks Firmware
Furnace's first anniversary! In the
past year we've explored some 805 1
code, checked out the IBM PC
timer, fiddled with buttons and

joysticks, and gotten better ac-
guainted with the DDT-51 devel-
opment system.

Here's the 64K -byte question:
what would you like to see for the
next year or so? |I've heard cogent
arguments for less PC coverage,
more PC coverage, less 8051 code,
a full-blown DDT-51 project,
high-level-language projects
(huh?), and so forth and so on.

If you've got strong feelings
one way or another drop a letter,
post a Circuit Cellar BBS message,
or flash an EasyPlex on Compu-
Serve (74065,1363). There are
about 25,000 of you reading INK
nowadays, so | should get a flood of

suggestions!
IRS

219 Very Useful
220 Moderately Useful
221 Not Useful

Intel 8052AH BASIC CPU

5in.2 prototyping area

Interrupt handling capability

SIBEC-

The ideal solution for embedded control
applications and stand-alone development.

Serial printer output and 5, 8 bit /O ports

Memory: 8K RAM, 16K EPROM, expandable to 48K
Program in BASIC, assembly or a combination of both
PROM progammer; ZIF socket for 2764 or 27 128 EPROM

WRITE FOR INK!

Writing technical articles may not make you rich and famous
hut it might be just the incentive to finish that 1 OO-MIPS computer
you started last summer. Or, if your expertise is software, per-
haps it's time you presented your talents to the world.

Unlike most narrowly specialized publications, Circuit Cellar
INK’s charter is to cover a wide variety of hardware and software
technology and ideas.

Send your project outline to:

Curtis Franklin, Jr.
Circuit Cellar INK
P.0.Box 772
Vernon, CT 06066

or contact him on the Circuit Cellar BBX at (203) 871-1988.

Built to exacting standards and warranteed

$228.00 including documentation (quantity 7}

Circuit Cellar Books

Circuit Cellar INK author often refer to previous Circuit Cellar articles. These past
articles are available in book fon from Cireuit Cellar Inc., 4 Park St, Suite 12,
Vernon, CT 06066. Ciarcia’s circuit Cellar Vol. | covers articles in BYTE from
September 1977 through November 1976. Vol. Il covers December 1976 through
June 1960. Vol. Il covers July 1960 through December 1961. Vol. IV covers
January 1982 through June 1983. Vol. V covers July 1983 through December 1984
Vol. VI covers January 1966 through June 1966.

Inguire about our PDK5¥. The 80518052 product
development kit for the IBM-PC/XT/AT. Includes
the SIBEC-Il, power supplies, cross-assembler, and
much more. $595.

Call now! 603-469-3232
Binary Technology, Inc.

Main Street ¢ P.O. Box 67 Meriden, NH03770 @ ﬁ]

Circie No 104 on Reader Service Cord

58 CIRCUIT CELLAR INK

CO N N ECTl |\/| E Excerpts from the Circuit Cellar BBS

THE CIRCUIT CELLAR BBS
300/1200,/2400 bps
24 hours/7 days a week
(203) 871- 1988 -- 4 incoming lines
Vernon, Connecticut

Well, we’ve had some exciting times around here
recently. Version 2.1 of TBBS has arrived, and with
it a host of changes to make the sysop’s (read “my”)
life easier and to make your stay on-line an easier and
more efficient one.

Most obvious to those who write a lot of messages
is the ability to use either ASCII or a binary error-
checking protocol to upload message text which was
prepared off-line. Now you can spend time off-line
without the clock ticking to prepare a thought-out
message, then upload it without the hassle of tricky
delay insertions or checking for noise-induced errors.
Leading spaces on lines are left in place. Formerly,
any leading spaces were removed, making a once-
nicely formatted message come out as garbage. Fi-
nally, message “threading” has been improved to make
groups of related messages easier to follow.

Those who do a lot of file transfers will also notice
some improvements. More protocols have been made
available. In addition to the old standby ASCII,
XMODEM, and YMODEM (XMODEM /1K), we now
have YMODEM Batch (True YMODEM), SEAlink,
KERMIT, and SuperKERMIT (sliding windows). For
the novice, more extensive help is available which
describes each of the available protocols in detail. If
you see an interesting-looking ARC file, the system
will show you a list of files it contains. If you're only
interested in files uploaded since your last call, you can
request a list of “new” files. TBBS 2.1 also introduces
a new concept in file organization which I'll be
implementing in the weeks to come.

There are many more changes and additions in
version 2.1, some major, like those I've listed, and some
minor, but far too many to list here. I'll be slowly
making changes to the CCBBS to implement some of
the new features and modifying the way existing
commands work. There is even a provision for full-
color screen-oriented menus with graphics characters
for systems that support such features. Stay tuned. The
best is yet to come.

One method for doing home (or factory) control is
distributed intelligence. Processors located around the

The message base of the Circuit Cellar BBS is now
available on disk. See page 62 for details.

premises take care of local details, communicating
general status and other requests to a central host via
some form of network. The following is a discussion
of one person’s attempt at a control network.

Msg#: 8452 from JEFF JENSEN

Mark, in your home control work, have you developed any home
LAN communication protocols? | have been rolling the requirements
of a two-way LAN around and wondered if you have implemented
anything special in your systems that might be important. | have
several design considerations that may or may not be important in
this environment, and I’'m finding that a fuller protocol with routing,
addressing, error detection, control, and data packeting gets to be
quite a lot of overhead for slower networks.

Masg#: 8484 from MARK LAMPKIN

Jeff, the way the system started was as a simple protocol. As the
system was implemented, the protocol developed a thyroid condition
and started growing out of proportion to the actual needs of the
system. Now it is at a simple but powerful (and useful) level. The
actual system is more of a token-pass ring network. To keep fibering
(my term for wiring, but with fiber optics) to a minimum, the network
is a closed, unidirectional ring. Each controller is listening to its
upstream neighbor. If its address matches the second byte in the
packet, it responds to the third byte (the control word) and creates
a packet of its own. The basic command structure is:

Byte 1 -- STX

Byte 2 -- Addreaa

Byte 3 -- Command
Byte 4 -- Packet Length
Byte 5 -- Data

Byte 5+N -- Data
Byte 5+N+1 -- ETX

So far the communication error rate has been gero so there is no
checksum. If the error rate starts to creep up, simply add some
checking. The whole network just keeps passing the message until it
is processed and a response has been taken. Controller #1 always
starts the token.

Msg#: 8604 from RON WILSON

Your protocol looks a lot like HDLC. Motorola (and others)

make a chip that does exactly what you described.
Magd#: 8690 from MARK LAMPKIN
Ron, it is quite similar, en? However, those chips are harder to

come by, and not as cheap as me and a little software.

January/February 1989 59

Msg#: 8517 from JEFF JENSEN

Your protocol looks much like what | have come up with, except
I had also included originator address and a preamble. I've spent too
much time looking at LAN protocols. Does your net use asingle micro
type or have you got a bunch of micro families represented? | also
wondered what data rate you are running at, which would affect the
error rate and impact of message or packet size.

One of my interests would be to allow all three types of home
functions on the same wire -- monitoring (security and status),
control, and peer-to-peer communications. It seems that to keep the
coat ofthesystemdown, atransaction-oriented approach {emall, self-
contained message packets) would be better than massive message
and bulk transfer.

Msag#: 8593 from MARK LAMPKIN

Jeff, so far on my network | have three 80C85s, two 18028, Six
68705P3s, two 68705R3s, one 280, four 6809s, and two 680x0s. Kind
of the Heinz 57 approach. In a home system, security is not of the
greatest concern (to me), and taking into account the security system
I have implemented, the loop turn-around time is from S-400
milliseconds on the average. I'm presently running 38.4 kbps, but
have considered going up to 76.8k. The reason for this is a project I'm
considering. I'll need a little more dedicated task time in @ new node;
not so much time can be spent loop processing.

Mesg#: 8469 from KEN HOWELL

This is something that always fouls me up in home LANs -- in
your scheme, how does acontrollerother than #1 ‘‘grab’ aslot tosend
its own signal without interrogation from controller #17

Msg#: 8689 from MARK LAMPKIN

Ken, the interesting part of this type of system is, as with
anything, if it is implemented correctly, it's crash-proof. The way to
make it crash-proof is to examine the network topology. It's a ring,
and each controller receives the message. If the address doesn't
match, the node relays the message to its downstream neighbor.
When a controller wants to send a broadcast to another controller,
it waits for an incoming message, buffers the received message, inserts
its own outgoing message, and finally completes its task by relaying
the buffered message it last received. Quite simple yet eloquent. |
wish | could take claim for the concept.

For network start-up, controller #1 comes on-line and delays
the calculated maximum loop delay. If no message has been received
within that time frame, it sends a token message to itself containing
dummy data under its own address. This checks loop integrity on the
first pass, and after the first pass the same message is continued to be
sent to enable the other stations to achieve a time slot to get on the
network.

So are the basics of my LAN. Any diagnostic errors are displayed
on the host. It just so happens that, in my command structure, a
command byte of “OOH” is a broadcast of the data contained in the
packet. This packet then is considered as a network display, meaning
that if a node has display capability (i.e., something readable or
decipherable by the imperfect human sensory capabilities), the
packet data is displayed. This is then a broadcast to all the operating
nodes to pinpoint the failed module. Simple, eh?

Msg3#: 8600 from KEN HOWELL

Well, that certainly explains things! The Motorola 6870x series
implements a built-in protocol, where the bus can actually “sleep”
until activated by messages. | don't think it is as robust as the
protocol you describe.

60 CIRCUIT CELLAR INK

Msg#: 8614 from MARK LAMPKIN

Ken, the Motorola protocol of which you speak is in the 6801
family of products (i.e., 6801, 6803, 68701, etc.). I'm using the 6805
family of products -- no built-in UART. I'm doing the UART and
protocol all in software. The 6805 family of processors is my favorite
to work with. Straightforward memory map, true bit manipulation,
and anythingfrom 321/0 pins toon-board A/D or phase-locked loop.
Really a neat chip.

Msg#: 8622 from KEN HOWELL

| picked up a few of themwhen Jameco was having asale on them.
I've also got a number of the Motorola application notes on the family.
I'm in the process of building a programmer for my Amiga for these
little guys, and look forward to when | can make one sing. | am
uploading today the 6870x assembler. | assume that you have
something already.

By the way, regarding your homeLAN, what happens if one node
goes down? Does this break the ring, and thereby ruin the integrity
of the LAN?

Msg#: 8630 from MARK LAMPKIN

Ken, presently the LAN goes down from the culprit node on. |
am moving into a new home in about two weeks and | get to start from
scratch. My present LAN is all fiber optic, so internal to each system
is a watchdog timer which in most cases takes care of the bad-node
problem. When and if one goes terminal (pun? -- not much of one),
all the operational nodes display the fault. Then comes human inter-
vention. In 47 months of operation, I've had only two terminal
terminals -- an acceptable number for me.

Msg#: 8649 from KEN HOWELL

Well, that's not a bad history. I've seen LANs that are in a ring
configuration, but the nodes are only “listening” to the ring and do
not represent a break in the ring. This approach won't crash the way
your LAN would, but I think the interfacing details become stickier.

Msg#: 8676 from MARK LAMPKIN

Ken, interfacing to a LAN with the type of architecture you are
describing is best done as a token-pass-type mastery. This is the way
some well-known (in the auto industry) highways work. The
problems encountered are software overhead, crashing, and, to a large
extent, noise. The most efficient comm systems will have very strict
rules and efficient message packets -- a small sacrifice for a reliable
system. Generation #2 of my system will become fail-safe.

Masg#: 8687 from KEN HOWELL

How can you have a fail-safe system where the integrity of the
LAN depends on perfect operation of each node?
Msg#: 8734 from MARK LAMPKIN

Ken, my new system is going to be transformer-coupled to the
network. The same mode of operation will still be in place, but an

addition of a node timeout will signal to the downstream tap that the
upstream is dead.

Msg#: 8668 from JIM NELSON

Are you familiar with CEBus, the Consumer Electronics Bus?

It's an EIA standard for communications amongconaumerelectronics
products and home appliances being worked out even as we sleep.

Msg#: 8673 from MARK LAMPKIN

Jim, | have been with companies that used many different
standards and tried to develop standards. | was on the Honeywell
MAP committee and othem. The whole development of this system
was an idea of my own to develop a working system without the many,
many layers of sophistication that a group consensus operation will
develop. KISS (Keep It Simple, Stupid) is a much more powerful tool
than all the error-checking code and redundancy can buy.

Msg#: 8731 from JEFF JENSEN

Do any of the nodes perform diagnostics or have a hardware
watchdog timerto reset them? One approach to aself-diagnosing ring
would be for the timeouts on each node to cause a packet to forward
to a designated node and have it log everyone that responds. The
terminal terminal would be the first missing node, or the first node in
the loop to log a message.

One question | meant to ask earlier: does one node act as ring
master and issue a token? In that case, if the token dies, then does
the ring master time out first and send a new token?

Msg#: 8757 from MARK LAMPKIN

Jeff, the only master on my present ring is but a temporary thing.
It is needed to start the first message on the ring. After that it is the
domino effect, unless the master never initiates the first command.
This is to be solved on my new network in three to four weeks.

The bane of any complex, well-stocked home en-
tertainment center is how to cross-connect all the
equipment. Should the output of VCR I go to VCR 2,
the local television, or the video distribution system?
The following thread concerns some of the design
issues related to a switch box designed to solve such
problems.

Mag#: 8514 from VINNY RUSSELLO

Steve, | have run into a problem that you may be able to solve,
and while we're at it start a whole new project. The problem is | want
a home computer system with information distributed to any TV set
in the house.

I see no problem with taking an IBM PC CGA output and
modulating it to RF. The PC will have software running any kind of
data | desire. Right now it is connected to my weather station and
X- 10 control device (from Heathkit). In my house | have six RF video
feeds. | would like to switch from the following RF sources: 1) raw
unscrambled cable (this is all the channels but HBO), 2) HBO
(unscrambled using cable box), 3) VCR RF output (channel 3), 4)
computer RF output. The goal of this system is to walk up to any TV
in the house and select one of the inputs.

One system I've found is an RF/video distribution system from
a company called Channel Plus and consists of “Universal Video
Channel Plus Multiplexers.” The system allows you to assign specific
UHF channels to RF/video sources. However, the cost for the units
is: 1 RF channel, $189.00; 2 RF channels, $309.00; and 3 RF channels,
$489.00.

| read your article in the February 1986 BYTE about the Audio/
Video Multiplexer. However, this will not work with the RF outputs
from cable TV, cable TV box, VCR, laser disc RF outputs, and

Micromint now makes affordable Video Digitizing even
better with ImageWise/PC™

' l l oy
1

PR -

i

H P

L

The company that made video digitizing affordable now makes affordable digitizing even better with

ImageWise/PC™ .

Bring your reports, graphics, security system, or video application up to the new

standard in cost-effective gray scale video digitizing with the new ImageWise/PC™ .

. Diglize any NTSC, PAL, or SECAM video sourcel

* Up to 256x255 resolution with 256 level gray scale!
. True frame grabber - digitizes in 1/60 second!

. Digitizes 30 frames per second!

. Composite video output!

. Can display digitized pictures on EGA or VGAI

* Advanced overlay and split screen capabllities!

. Digitized Images compatible with paint and desktop publishing

programsl

. Modify, enhance. display. and print Images using sophisticated

ZIP Software Included with every imageWise/PC!

ImageWise/PC™

an affordable

$795.00

Order by: TEL: (203) 87 1-6 170
FAX: (203) 872-2204
TELEX: 64333 1

MICROMINT, INC. - 4 Park St., Vernon, CT 06066

Circle No. 119 on Reader Service Card

January/February 1989 61

computer RF. I'm wondering if you could design a computer-
controlled RF switcher that will handle perhaps an 8-input/8-output
system?

Msg#:9451 from STEVE CIARCIA

I don’t plan on building an RF switch because | already have one.
An 8-by-8 RF/audio/video (actually, I don't think it switches eight
RF channels) mux called the Component Coordinator. It sells for
about $795 and used to be frequently advertised in all the video and
stereo mags. That's the best | can suggest unless you want to spend
a lot of money on coax relays.

Msg#: 9484 from JIM NELSON

My name’s emblaeoned on the PCBs in your Component Coor-
dinator, Steve. | was the chief electronic engineer on that project at
Video Interface Products. There were only two electronic design
engineers including me, but that's just an indication of how hard we
worked. It's a mix of high and low tech, especially in the mechanical
department, where the technology ranges from photochemical ma-
chining to cragy glue.

It switches three input RF channels (8, 9, 10) by six output RF
channels (I-6) and seven input video and stereo audio channels by
eight output channels. RF input channels 9 and 10 use Omron RF
relays (flat to about 700 MHz); diode switches are used on the other
RF input column and to switch the RF-modulated baseband audio/
video source into RF outputs 1 and 6.

By the way, as a Component Coordinator buyer, you're in the
company of Ford Aerospace (who bought forty) and Burt Reynolds
(who bought one). We sold several thousand of those, but Video
Interface folded last year.

Suddenly | don't feel like such an unknown quantity around here.

Msg#: 9510 from STEVE CIARCIA

Well, I'll be. My Component Coordinator (I agree that it is amix
of sophistication and kludge) fits neatly into my Nakamichi A/V
system. While | designed my own A/V mux, the CC was packaged
more appropriately for my needs at the time. | don’t use any of the
RF switches and only switch audio and direct video.

I remember talking to the people at Video Interface Products and
they weren'’t very nice. They approached sales as if they were doing
me a favor selling it to me. Good thing it worked. I sure wouldn't have
wanted to deal with those turkeys for service. What were the details
of their demise? Finally, since you were the designer, perhaps you
might have a schematic that | could have (or one that | can copy and
return to you) just in case this thing ever bites the big one. With all
the lightning problems I've had, I've been lucky so far.

P.S., How do you sell several thousand and go out of business?

Msg#: 9551 from JIM NELSON

It's interesting, and typical, that you don’t use the RF section
at all. The first version of the CC (named the FromTo) was a 10 x
8 RF-only switch. Although it won a design engineering award at the
1983 June CES (for a photo, see Radio & Electronics, Sept. 1983, p
50),the RF-only switcher neverreached production; the package and
the name were changed.

The RF matrix in the model you have was the most expensive
subset of the CC's production cost. If you've opened it up, you
probably noticed that the RF outputs are connected to six discrete
PCBs. Each of those output channel PCBs contains a photochemi-
cally machined RF shield and a pair of equally priccy Omron G4Y RF
(104-dB isolation @ 250 MHz) relays.

Most people bought it for the audio/video matrix. It was a price/
performance steal. The unit was designed to fit the whim of Video
Interface’s owner; no amount of reasoning could convince him to
introduce an A/V only machine or a simpler machine because it
violated his “inner image” of the market. Only toward the end of
V.I.P.’s corporate life did they begin creatively exploiting its poten-

62 CIRCUIT CELLAR INK

tial by doing things like selling it with BNC jacks -- and cranking up
the price.

Less than ten units sold out of the entire production of about
2000 units were returned for repair. That's why you've never had
problems, In fact, | guess | am why you've never had problems with
that unit. <big grin>

Mzeg#: 9560 from STEVE CIARCIA

Thanks, Jim. I'd love to hear more. BTW, | did open it and it
did seem to have a lot of trash in it. My only complaint is that the
matrix LED display is much too dim, but | didn't want to try goosing
it because it looked like a pretty small transformer (don't need any
fires in the entertainment room).

Msg##: 9590 from JIM NELSON

That signal transformer ran cool as arefrigerated wombat, Steve.
It had lots of headroom. In the Component Coordinator, CMOS chips
outnumber the others on the boards 28 to 27, so the system as a whole
runs pretty cool, too. Of course, it may just run cool because we were
able to force most of the energy to be dissipated as EMI. :-)

The LEDs are arranged in a time-division-multiplexed 8 x 16
matrix. Each LED is pulsed at 40 mA with a duty cycle variable from
about 4% through 12%. | used UDN2983 Darlington packs driven by
a1/8 decoder to source current to the eight scanned columns of 16
LEDs. We matched LED brightness by using DS8859 latched
programmable constant-current sinks tied to the cathodes of the 16-
bit addressed LEDs in each column. There is nothing that can be
easily done to increase the brightness of the display; there are no
resistors to change.

Regards, Jim

The Circuit Cellar BBS runs on a 10-MHz Mi-
cromint OEM-286 IBM PC/AT-compatible computer
using the multiline version of The Bread Board System
(TBBS 2.IM) and currentI?/ has four modems con-
nected. We invite you to call and exchange ideas with
other Circuit Cellar readers. It is available 24 hours
a day and can be reached at (203) 871- 1988. Set your
modem for 8 data bits, | stop bit, and either 300, 1200,
or 2400 bps.

222 Very Useful
223 Moderately Useful
224 Not Useful

SOFTWARE and BBS AVAILABLE on DISK

Software on Disk o

Software for the articles in this issue of Circuit Cellar INK may be downloaded free
of charge from the Circuit Cellar BBS, For those unable to download files, they are
also available on one 360K, 5.25” IBM-PC-format disk for only $12.

Circult Cellar BBS on Disk

Every month, hundreds of information-filled messages are posted on the circuit
Cellar BBS by peopls from all walks of life. For those who can't log on as often as
they'd like, tie text of the public message areas is available on disk in two-month
installments. Each installment comes on three 360K, 5.25" IBM PC-format disks
and costs Just $15. The installment for this issue of INK(January/February 1989)
includes all public messages posted during November and December,a;zse.

To order either Software on Disk or Circuit Cellar BBS on Disk, send check or

money order to:
Clreuit Cellar INK
Software {or BBS) on DKk
P.0 Box
Yernon, CT 06066

or use your MasterCard or Visa and call (203) 8752199. Be sure to specify the
issue number of each disk you order.

Ctrl

STEVE'S OWN INK

~ First INK Reader Survey

he first survey of Circuit Cellar INK subscribers is finished, and | thought I'd use this column to tell
you about yourselves and about what you told us to put into the magazine. We sent out 2000 4-page
questionnaires and so far we've gotten over 500 of them back. That's a tremendous return for a survey,
and it tells us that you have an interest in Circuit Cellar INK that goes way beyond the average reader/magazine
relationship.

The short description of a Circuit Cellar INK reader runs like this: You're a successful, experienced
professional who enjoys the satisfaction of problem solving both at work and at home. Now, let me flesh the
description out a little bit. First, I'm going to talk about men, since about 99% of you are male. Next, just
about half of you say that you are involved in engineering, even though about haf of you engineers have job
titles that place you squarely in the management camp. Over half of you say that you've been involved with
computers for over 10 years, and 93% have been in the game for more than 5 years. Whether your length
of experience includes college | don’t know, but | do know that over two-thirds of you have at least a bachelor’'s
degree. All that experience and education seem to be paying off, too, since over two-thirds of Circuit Cellar
INK readers have incomes that make them eligible for the Yuppie Hal of Fame.

Now on to the important stuff. It didn't surprise us to find that 97% of Circuit Cellar INK readers own
a computer. It was a little surprising to see that only 1 out of every 5 of you stopped at a single computer.
Nearly two-thirds of you have an IBM XT or AT, while close to haf of you say that you own a single-board
computer. Other computers mentioned run the gamut from old Ohio Scientific 6502 machines through S-100
boat anchors to the latest Macintosh 11s and 80386-based computers.

While | see Circuit Cellar INK readers as hardware designers par excellence, 90% of you admit to writing
software as well. It's nice to see that you aren’t afraid to tackle both sides of a project. When you get down
to programming, assembler, BASIC, FORTRAN, and C (in order of popularity) are the tools you choose.
Spesking of projects, | was impressed to see that 77% of Circuit Cellar INK readers design and build applications
for persona use. In addition, over two-thirds of you say that you're planning to build an eectronics kit in
the next twelve months. With all this designing and building, it looks like there'll be a whole lotta solderin’
going on.

In addition to telling us about yourselves, the survey let you tell us what you think about Circuit Cellar
INK. The most important thing we saw (and the most gratifying) is that you think we're doing a good job.
In comment after comment, you told us that you want a very technical, practical, solution-oriented magazine
with an emphasis on applications. Circuit Cellar INK readers like the humorous introductions to some of the
articles (OK, my articles) in the magazine, but want to make sure that the technical content stays solid. You
most certainly don't want “Circuit Cellar INK Looks at 135 AT Clones’ articles (don’t worry) and you would
like to see tutorials covering practical aspects of computer application design and construction. You want more
embedded control and microcontroller applications, and could do without glowing descriptions of technology
that no one can afford.

The survey helped us get a better picture of who you are, and gave us some clear directions on making
Circuit Cellar INK the magazine for serious designers and builders. All in al, the magazine you say you want
is exactly the one that we're planning to continue. To everyone who responded to the survey, thanks.

7

¢

Steve Ciarcia
64 CIRCUIT CELLAR INK

