

EDITOR’s ’ N K
Working Smarter, Not Fader

I t’s time we admitted to a character flaw common among engineers. Now, I’m not talking about the kind of problem
that leads to major stories in the newspapers and evening newscasts. No, this problem is insidious, working its way
into the applications we design and the products we design. What is this terrible problem, this scourge of the

honorable profession of engineering?
Horsepower Lust.
Yes, whether you’re an automotive engineer trying to shoehorn a V-12 into an econobox, a mechanical engineer still

searching for the fulcrum and lever to move the earth, or a civil engineer reflecting on a dam for the Strait of Gibraltar,
there’s a general search for more and more power to use in bigger and bigger projects. Computer engineers are as much
afflicted as any. I’ve never met an application designer who wasn’t looking for more MIPS, MOPS, FLOPS, or other unit
of power. The problem from all of these manifestations of Horsepower Lust, is that the afflicted tend to try to substitute
raw horsepower for intelligent design.

The computer and controller industry has been particularly offensive in this respect, largely through the heroic
efforts of microprocessor and microcontroller designers. If you want to do something that simply soaks up too many
clock cycles to be reasonable, just wait six months for a faster processor. Hardware speed improvements have stayed
ahead of applications needs for the last 15 years or so, letting application designers and programmers “shoot for the
moon” and get away with it. Now, for better or for worse, we’re running out of silicon’s ability to give us more
horsepower. (OK, I know about GaAs and optical computers and other new technologies, but they only postpone the
problem.) It looks like we’re all going to be forced to (gasp!) look for new ways to solve problems, search for new ways
to save cycles, and find new applications for old control and computing solutions. That’s where CIRCXJIT CELLAR INK
comes in.

In this issue on Intelligent Applications, we look at intelligence from a couple of different prospectives. The first
is the quest to make an electronic analog of the human brain. Neural networks hold much promise for grand design
in the future, but they’re also useful for problem-solving today. We show you two different approaches to neural
networks,and hope that you will experiment with what you see. The second intelligence perspective is that of offloading
processing to outboard devices. I think it makes sense: If the applications are getting too complex for a single central
processor, start feeding the processor predigested information. It works for baby birds, why not for data acquisition
systems? In short, what we’re talking about is substituting designintelligence for raw horsepower. It’s a trade that can
get you some surprising performance wins, and let you bring in cost-effective solutions when others are offering gold-
plated bells and whistles. (Of course, if you can combine lots of horsepower with an intelligent design, then you’re way
ahead of the game, aren’t you?)

Odds and Ends

You’ve probably noticed that there’s been an interruption in the Home Satellite Weather Center series. We’re not
abandoning those who have been following the series: Mark has just taken some extra time to get everything in order
for the conclusion of the project. The Weather Center should be back soon, getting wound up for a big finish.

In the next issue, CIRCUIT CELLAR INK will focus on controlling one of the most complex environments around: The
Home. The center of the theme will be built around networking. In addition, there will be articles on control of and by
telephone, as well as a fascinating project for receiving television broadcasts from the Soviet Union. Think of it as a
technical response to the oromise of Glasnost.

Curtis Franklin, Jr.
Editor-in-Chief

June/July 1989 1

FOUNDER/
EDITORIAL DIRECTOR
Steve Ciarcia

PUBLISHER
Daniel Rodrigues

EDITOR-in-CHIEF
Curtis Franklin, Jr,

ASSOCIATE
PUBLISHER
John Hayes

ENGINEERING STAFF
Ken Davidson
Jeff Bachiochi
Edward Nisley

CONTRIBUTING
EDITOR
Thomas Cantrell
Jack Ganssle

CONSULTING
EDITORS
Mark Dahmke
Larry Loeb

CIRCULATION
COORDINATOR
Rose Manse/la

CIRCULATION
CONSULTANT
Gregory Spitzfaden

ART DIRECTOR
Tricia Dziedzinski

PRODUCTION
ASSITANT
Lisa Hebert

BUSINESS
MANAGER
Jeannette Walters

STAFF RESEARCHERS
Northeast

Eric Albert
William Cur/e w
Richard Sawyer
Robert Stek

Midwest
Jon Eison
Tim McDonough

West Coast
Frank Kuechmann
Mark Voorhees

Cover Illustration
by Robert Tinney

A I N K 8

The X- 10 lR543 Infrared
Control your lights with your trainable IR remote
by Ken Davidson

Infrared remote control is becoming more important as a
gateway in to building control sys terns. Having that
gateway and knowing how to control it can give you a
leg up in thb burgeoning control area.

A Neural Network Approach to Artificial Intelligence
Using a Neural Network for dealing with Real- World Data
by Christopher Ciarcia

Neural Networks are a promising technology in the
push for more capable computers. The theoreti-
cal foundations of neural nets are important tools
for building real-world applications. Shape
recognition and discriminating machine vision are
examples of applications possible today.

Editor’s INK
Working Smarter, Not Faster 1
by Curtis Franklin, Jr.

Reader’s INK-Letters to the Editor 5

Visible INK-Leffers to the INK Research Staff a

From the Bench

Silicon Update

The Invisible Net
by Jeff Bachiochi

44

The Waferscale Integration PAClOOO
Microcontroller, RISC, or PLD?
by Tom Cantrell

50

2 CIRCUT CELLAR INK

THE COMPUTER APPLICATIONS JOURNAL

The ADALINE Learning Neuron
A One-Node Net for Computer Learning
by Scott Farley

Most neural network research involves large
budgets and even larger mainframe comput-
ers. But artificial neurons can be harnessed for
useful work on a modest desk-top computer,
Handling ‘fuuy” data is not (I problem limited
to the luborutory: a simple neuron on u
common microcomputer can bring irregular
data into useable focus.

An Intelligent SCSI ata Acquisition System
for the Apple Macintosh
PCXI 1 -Building the Hardware
by John Eng

The SCSI Bus offers important performance benefits
compared to standard 175-232 links. Properly imple-
menting the protocol requires an intelligent peripheral,
but the intelligence and performance cun bring
impressive application results. The first of two parts looks
at the hardware for an intelligent 12-bit A/D converter.
An Apple Macintosh is the host computer for this
application of distributed intelligence.

Software by Design
Computing CRCs in Parallel
by Jack Ganssle

55

Firmware Furnace
From Fixed Point to Floating Point and Back Again

Writhing Reals by Ed Nisley
60

Advertiser’s Index

(ISSN 08968985) is pub-
lished bimonthly by Circuit
Cellar Incorporated.4Park
Street,Suite X).Vernon, CT
0 6 0 6 6 (2031 875275 1.
Secondlclass postage
paid at Vernon, CT and
additional offices. One-
year (6 issues) subscription
rate U.S.A.andpossessions
$14.95,CanadaS17.95,all
other countries $26.95. All
subscription orders pay-
able in U.S. funds only, via
international postal
money order or check
drawn on U.S. bank. Di-
rect subscription orders to
Circuit Cellar INK. Subscrip-
tions, P.O. Box 2099. Mb-
hopac, NY 10541 or call
(203) 875-2 199.

65 POSTMASTER: Please

Updde: Build an 87xx Programming Adapter
by Jeff Bachiochi

69

ConnecTime-fXcx?rptS from the Circuit Cellar BBS
Conducted by Ken Davidson

74

Steve’s Own INK
The Good Old Ways 80
by Steve Ciarcia

Circuit Cellar BBS-24
Hrs. 300/1200/2400 bps,
8bits. no parity, 1 stop bit,
(203) 871-1988.

The schematics pro-
vided in Circuit Cellar INK
are drawn using Schema
from Omation Inc. All pro-
grams and schematics in
Circuit Cellar INK have
been carefully reviewed
to ensure that their per-
formance is in accor-
dance with the specifica-
tions described, and pro-
grams are posted on the
Circuit Cellar BBS for elec-
tronic transfer by subscrib-
ers.

Circuit Cellar INK
makes no warranties and
assumes no responsibility
or liability of any kind for
errors in these programs or
schematics or for the con-
sequences of any such
errors. Furthermore, be-
cause of the possible vari-
ation in the quality and
condition of materials and
workmanship of reader-
assembled projects, Cir-
cuit Cellar INK disclaims
any responsiblity for the
safe and proper function
of reader-assembled proj-
ects based upon or from
plans, descriptions, or in-
formation published in
Circuit Cellar INK.

CIRCUIT CELLAR INK

send address chanaes to
Circuit Cellar INK, Circula-
tion Deat.. P.O. Box 2099.
Mahopbcl NY 10541.

Entire contents copy-
right 1989 by Circuit Cellar
Incorporated. All rightsre-
served. Reproduction of
this publication in whole
or in part without written
consent from Circuit Cel-
lar Inc. is prohibited.

June/July 1989 3

cm

READER’S ’ N K Letters to the Editor

I have just finished reading the January/February
issue of G~curr CELLAR INK . It reminded me why, after
quitting the computer business several times, I am still so
attracted to silicon. Cr~curr CELLAR INK has rekindled that
wide-eyed feeling of awe and power I felt after construct-
ing my first 2-bit adder in college.

After seeing a letter from Dr. Huong of Computer Age
Ltd. in one of last year’s issues, I went to see him; some-
thing I hadn’t done in five years! Dr. Huong showed me a
voice card he built and I purchased it as a companion to the
ImageWise transmitter I own. Now my IBM PC can see,
hear, and talk. Dr. Huong was talking about some of the
data compression techniques used by Toshiba in the voice
chip he uses. I wondered if similar techniques could be
used on a .PIC file. After some preliminary investigation
it seems that 64- or 256-color files can always be com-
pressed from 63K to about 8K! The conversion process is
not yet perfect but under certain circumstances could be
useful. I can send you a copy of the compress and uncom-
press program I am developing if you would like a first-
hand look. I would welcome the opportunity to do an
article for CIRCUIT CELLAR INK readers. High-resolution
pictures could move over ISDN line at one frame per
second or faster.

With more sound and images being digitized, and the
quality of the renditions improving, I am starting to worry
about the opportunity this presents for distortions of the
truth. I can’t help but wonder when the first news clips
could be generated entirely from bits. How do other
CIRCXJIT CELLAR INK readers feel about the technologies that
are being developed?

Finally, have you considered doing case-study reports
on interesting hardware/software systems? These
wouldn’t be reviews, they would be done by someone who
used an interesting system to solve interesting problems.
As an example, those new neural network programs--can
they be used to keep track of all the facts I forget as the years
pass?

Steve Carter
Miss., Ontario

If you’re using a new technique to solve a problem, you bet
we’d like to hear from you, Many of our articles are written by
working engineers or designers who write in to describe their
latest project. If you would like an Author‘s Guide, send your
request to:

Circuit Cellar INK
Author’s Guide

4 Park St.
Vernon, CT 06066

The efhical considerations of engineering are many and
varied. If anyone else has an answer (or maybe just an opinion)
on the subjecf, let us know.

When you mention “case study,” you come vey close to a
detailed review. We haven’t had any reviews so far (fhe “April
Fool” arficle notwithstanding), and we’re not sure that we need
to. Affer all, there are many other magazines fhat focus on
reviews. It boils down to this: if we feel that we can offer CIRCUIT
CELLAR INK readers information fhat they need and can’t get
anywhere else, we’ll do if. Until fhen, we’ll stick with the
technical information and leave the reviews to others. E&for.

In Circuit Cellar BBS On Disk Issue 5 you indicated
that you would like suggestions for topics and content.
Here are mine.. .

Reviews-None of any kind.
My preference is for construction project articles or

hardware/software combined application information. I
feel that the software source for projects should be made
available so that we can modify it for our own uses.

Iamnot interested inany IBM PC-related applications
except (perhaps) for development purposes. I would
rather see dedicated stand-alone microprocessor applica-
tions.

Please try to maintain the continuity of articles by
keeping them together and not continuing the last part on
back pages. It would also be nice if all advertising could be

June/Ju/y 1 9 8 9 5

put between articles or on the back pages, not put in the
middle of articles.

Deslar Kyn Patten
Hayward, CA

Thanks for the input: we really do depend on readers to let
us now how we’re doing. We started the IRS at the end of each
article to make talking to us easier. Fill out the post-paid card,
drop it in the mail, and you’ve told us what you did and didn’t
likeabout theissue. Ofcourse,wesM like theletters wegetfrom
readers; we just know how busy most of you are.

We ty for a balance of articles in C IRCUIT CELLAR INK.
You’ll see hardware, software, stand-alone, and host-based ar-
ticles in OUY pages. We hope that each one will have something
eng’neers can use, even if they don’t do development for the par-
ticular system used in the article.

Running the beginningand end of anarticlein twodiffeerent
parts of fhe magazine is known in the publishing industry as
“jumping.” CIRCUIT CELLAR INK has not used jumps, and there
aren’t any in our future plans. As for advertising, we feel that
CIRCUT CELLAR INK Advertisers providea service to OUT readers.
Having a mix of advertising and editorial material in OUY pga

makes for a better magazine for everyone. Editor.

CCINK’s 1st Year Re rids
Our fast rise in circulation has resulted in avirtual sePlout of the first year of INK.
So as not to disappoint any of our readers, we are offering a B&W offset reprint
of CCINK’s first year (issues 1-6). Available for $20.00 in the U.S. and $24.00
to Canada and Europe (shipping and handling included).
Send check or money order to: p\o*

Circuit Cellar INK - 1st Year Reprint
P.O. Box 772 - Vernon, CT 06066

B to ,2‘HeeKS

Visa or MasterCard accepted, call (x)3) 8752199
to’c ~e\iyely

AVAILABLE BACK ISSUES
Issues #l-4 are sold wt
Issue #%-Remote Video Surveillance
l ROVER: Remotely Operated Video-based Electronic Reconnaissance *
Home Satellite Weather Center: Focus on the MC68000 Peripheral Controller
- lOMHti-bit Digitizing Board for the IBM PC l Precision Pulses: Carrier
Current Transmission Timing
Issue #6-Data Acquisition
l ROVER: The Software l Home Satellite Weather Center Adding Serial and
Parallel Ports to the Peripheral Controller l Building a Remote Analog Data
Logger l ImageWise/fJC-The Digitizing Continues l DDT-51 Revealed
Issue #7-Computing III Real Time
* ImageWise/PC: The Hardware l Build a Remote Analog Data Logger l Home
Satellite Weather Center: Finishing the Firmware for the Peripheral Processor
- Writing a Real Time Operating System
Issue #&Creatlve Computrng
* Switching Power Supplies l Writing a Real Time Operating System: Memory
Management and Applications for the HD64160 l ImageWise/PCThe Digitiz-
ing Continues * HfX47160-A New E-bit Microcontroller l The True Secrets of
Working with LCDs - Creating a Network-based Embedded Controller

Send $4.00 per issue (indudes S&H) in chedc or money order to : Circuit
Cellar INK, P.O. BOX 772, Vernon, CT 06066. Visa And MasterCard
accepted, call (203) 675.2199.

EXPRESS CIRCUITS

MANUFACTURERS OF PROTOTYPE PRINTED CIRCUITS FROM YOUR CAD DESIGNS

TURN AROUND TIMES AVAILABLE FROM 24 HRS - 2 WEEKS

Special Support For:

l TANGO.PCB

l TANGO SERIES II

l PROTEL AUTOTRAX

l smARTWORK

l FULL TIME MODEM

l GERBER PHOTO PLOTTING

l CAMERA REDUCTIONS

l HiWIRE-Plus

l EE DESIGNER I

l EE DESIGNER III

l OTHER PACKAGES ARE

NOW BEING ADDED

Express

Circuits
Quotes:

l-800-426-5396
314 Cothren St., P.0. Box 58 Phone: (919) 667-2100

Wilkesboro, NC 28697 Fax: (919) 667-0487

Circle No. 122 on Reader Service Card

6 CIRCUIT CELLAR INK

Ctrl

V[SlBLE I N K L e t t e r s to theINK Research Staff

Answers; Clear and Simple

A Little Misdirection

We are users of an Epson Equity III+ microcomputer.
We run under MS-DOS 3.20 and do most of our program-
ming with RM-COBOL 1.5D. We have two Epson printers
attached to our system via parallel ports.

The interface between major and minor screens of our
menu-driven program consists of CALLS to subprograms.
The main program is called by typing the name of a batch
file from the DOS prompt. The problem is this: We need to
address either of the two printers from within the subpro-
grams depending on what type of report we need to print.
Our compiler doesn’t provide a facility to do this, and we
can’t use the MODE command since the choice isn’t made
at the DOS prompt level. We have resorted to the follow-
ing unsatisfactory method of printing:

fa.bat
echo off
mainprog
MODE lptl:=lpt2
LISTING
MODE lptZ':=lptl
LISTING

(mainprog is the main COBOL program that dis-
plays the main screen, CALLS the subprograms, and
creates the LISTING.BAT file. LISTING.BAT con-
tains the invocation of the printing program.)

This is unsatisfactory because the system hangs on the
first MODE command. Please help us find a simple way to
make this work.

Ramon Gonzales Barroeta
Caracas, Venezuela

This is a fairly common problem of swaw’ng printer ports.
The simplest programming to do the swap uses BASIC. This
program simply swaps the contents of the memory locations in
DOS where the two parallel ports are referenced. If you run it
once, it sends LPTZ output to LPT2. Run it again and every-
thing is back to normal. If you compile this with QuickBASIC,

you should be able to call if from within another compiled
program.

DEF SEG = &H40
TEMPl = PEEK (8) : TEMP2 = PEEK (9)
POKE 8, PEEK (10) : POKE 9, PEEK (11)
POKE 10, TEMPl : POKE 11, TEMP2
SYSTEM

The only problem with this is that if compiles into a rela-
tively large .EXEfile. Ifyo~ want compact, though, you’ll have
to dig out your assembler and do your own research!

Just Give Me Time

I was one of the early buyers of the SB180 single-board
computer(“Ciarcia’sCircuitCellar,”Sept/Oct 1985BYTE).
I’ve since added a number of upgrades, including the
COMM180 SCSI board with XBIOS and ST225N.

The only thing my system lacks is a permanent clock.
The easiest way to add one is through a SmartWatch under
the boot ROM. The problem is, the SCSI board uses a lot
of real estate for a modem chip which I don’t need, and the
board leaves insufficient space over the boot ROM for me
to install the SmartWatch. Just to complicate matters, I
built the system into a very small case. I only have room
for one expansion board.

My way out was to buy some SCSI chips and build my
own board. I used the 53C80 since heat was a problem in
the small case. I read a number of relevant articles and
used the circuit shown. I needed the lowest chip count to
reduce both the board size and the number of connections.
It almost worked!

Running with XBIOS the machine hangs in the boot
process, but with the SB180 3.1 BIOS I get a more useful
“phase error” message. I can’t decipher it, however, since
I have no hardware debugging tools except for a logic
probe and DVM. I have traced to be sure that the con-
structed hardware is identical to the schematic. Can you
spot some problem with my circuit?

I’d be grateful for any help. This is a trivial design, but
when you build without proper debugging tools you have

8 ClRCUlT CELlA R INK

Figure 1 --The SCSlportion of the COMM 180 uses the NCR5380 to interface to the SCSI bus.

no way of telling if the fault is in concept or execution-an
original design that is known to work is very comforting.

C.W. Rose
San Diego, CA

P.S. The 220/330-ohm resistors on the SCSI bus con-
sume an awful lot of power. Can they be increased to 440/
660 or even 2200/3300?

You are correct that a Smart Wafch is the best way to add a
real-fimeclocktoanSB180system. Thepreferred way to provide
clearance is to extend the SCSI board above the main board with
an extension connector, but that obviously won’t work if clear-
ance is too tight.

Your schematic looks fine. There isn’t a lof involved in
connecting the 53C80 to the SB180 XBUS. It might simplify
thingsfor you to know that neither interrupts nor DMAareused
in current software, so you can get away with leaving off the
connections to EOP\, DRQ, READY,and lRQ\ on the53C80.
(EOP\ should be pulled up; just connecf it to DACK\.)

The phase error you’re receiving generally points to a
problem with the processor talking to fhe SCSI chip, so it’s not
terribly helpful by itself. A number of very useful tests could be
performed with an oscilloscopeand theSB180’s monitor, but we
won’t go into solutions involving equipment you don’f have.

10 CIRCUIT CELLAR INK

We’ll just suggest checking your wiring against the schemafic
onemore timeand makingsure that you’veproperlyin~erprefed
the pin numbering on the XBUS connector itself.

As for the terminating resistors, fhe ANSI SCSI spec
specifically calls for 330-ohm pull-up and 220-ohm pull-down
termination on the bus. If you want your interface to agree with
thespec, you’ll have to leave them as is. Only if you have a short
run of cable and if you don’t mind possible noise or echoes on the
line and if you don’t care whether your bus matches the spec
should you play with the values of the resistors.

IRS
201 Very Useful
202 Moderately Useful
203 Not Useful

In Visible INK, the Circuit Cellar Research Staff answers microcomputing
questions from the readership. The representative questions are pub-
lished each month as space permits. Send your inquiries to:

INK Research Staff
c/o Circuit Cellar INK

Box 772
Vernon, CT 06066

All letters and photos become the property of CCINK and cannot be
returned.

The X-10 lR543 Infrared
Gateway/Controller
Confrol your lighfs wifh your fruinuble IR remofe

by Ken Davidson

ow does the television

commercial go? WIy wife

left me, so I bought an ex-

pensive television set, and

it came with a remote. Then

my dog died, so I bought a

VCR, and it came with a re-

mote. Then I was trans-

ferred to Alaska, and it came

with two remotes.. .”

Well, you get the picture. It seems
every device even closely related to
consumer electronics comes with a
hand-held infrared remote control
these days. And once you start putting
together your entertainment center,
you end up with a pile of incompat-
ible, but necessary, remotes.

To combat the problem, a host of
trainable controllers have been intro-
duced to themarket. Indeed,Stevedid
a Circuit Cellar article for the March
‘87 issue of BYTE which described his
design of just such a trainable remote.

So now we can control the TV,
VCR, cable box, CD player, and so on
with a single IR remote. What about
thelightsorotherappliances wemight
iavepluggedintox-lOmodules? How
:an we remotely control those without
Ising the hard-wired consoles?

When BSR first introduced their
System X-10, there was a hand-held
ultrasonicremoteavailableforit. Back
in the late seventies, those TVs that
had remotes usually used ultrasonic,
so the choice was appropriate.

When System X-10 was taken over
by X-10 (USA) Inc., the ultrasonic
remote/base pair was discontinued
and replaced by an RF system, the
RC5000. The RT504 hand-held re-
motecan send out signals to theRR501
base unit to turn modules on or off
and can dim or brighten lights. While
you have all the advantages of RF
(youcanusetheremotefromvirtually
anywhere within your house), you
still can’t point the hand-held RF unit
at your trainable IR remote and expect
the IR unit to learn the signals. Add
one more box to the remote pile.

A Solution Appears

Thelatest addition to X-lo’s prod-
uct line goes a long way toward recti-
fying the situation. The IRS43 is an
infrared-to-X-10 gateway/controller
which will receive X-10 commands
from a hand-held IR remote control,
tack on house code information, and
broadcast them over the power line.

The schematic for the IR543 is
shown in Figure 1. The box contains
the usual requirements for an X-10
transmitter: power supply, zero-cross-
ing detector, free-running 120-kHz

June/July 1989 11

t

oscillator, and output drive cir-
cuitry. (For details about how the
X-10 system works, see “Power-
Line-Based Computer Control”
inissue#3ofCIRcurrCELLARlNK.)

The key element in the IR543,
though, is the custom 78542C con-
troller chip. The 78542C takes
care of all the unit’s operating
details such as scanning a key-
board, translating a keycode into
an X-10 bit sequence, tacking on
housecode information, and
sending the code onto the power
line by watching the zero-cross-
ing input and gating the 12O-kHz. _signal onto the power line using the trasonic control unit didn’t mean the Hand-held Dilemma
correct timing. In addition, the chip
has a surreptitious “serial” pin for ac-

end of the 78542C, however. The chip
hasbeenusedfor yearsas thebasisfor So now we have a box that will

cepting serial input.
This serial input pin has been

the SC503 maxi controller and, until receive IR commands and retransmit

quietly overlooked for years. It turns
recently, the MC260 mini controller. them onto the power line. How do the

out that the 78542C was used in the
(The MC260 has eight small push but-
tonsand twolargebuttons. Thenewer

IR commands get to the box, though?

original BSR ultrasonic unit. The ul- MC460 mini controller has six rocker
Unlike the RF remote/base pair, X-10

trasonic front end’s output was sent
doesn’t make a low-cost, hand-held

switches and uses a different control- transmitter that is dedicated to the
to the chip’s serial input so the signal
could be rebroadcast over the power

ler chip.) The serial input pin has

line. The end of production of the ul-
simply been tied to ground in these

IR543. The IR543 was originally de-

controllers for all these years.
signed for a company who built the
commands into their own “universal”

encased IR receiver section.

It logically follows that the
overlooked capability of the
78542C would one day be tapped
again. With the addition of an IR
front end in place of the old ultra-
sonic front end, we can extend
the system’s functionality with a
remote control. The IR front end
of the IR543, which is encased in
a metal can for added noise im-
munity, is responsible for receiv-
ing the IR from the hand-held
remote and translating it into a
seriesof bits for the 78542C’s serial
input.

Figure 1 --The schematic for the lR543 is virtually identical to that of the MC260 mini controller.

12 ClRCUlT CEL!AR INK

Figure P-The basic circuit used for generating X- 10 IR codes consists mostly of un EPROM,
a few counters, and a master clock.

SIP1 I0k
. . .

a)

Keyboardb)

t

-XMIT

T\

:igure 3-a) A set of DIP switches plus a ‘transmit’ switch are all that are necessary for
1 one-time-use circuit. b) A keyboard may be added for everyday use of the circuit.

IR remote (the URC-5000 “ONE FOR
ALL” from MTC/USA). If you’re al-
ready in the market for an all-in-one
remote, buying the URC-5000 for use
with the IR543 may be a good alterna-
tive. However, if you already own a
trainable remote, or don’t want to
spend the $100 for one, there must be
a better way to generate the proper IR
signals for use with the IR543.

Even though X-10 tells me they
may make such a low-cost, dedicated
remote in the future, there is a definite
gap that needs filling. Since X-10 was
able to give me complete specs on the
IRcodes being used, I decided to build
my own IR command generator. And
since it would only be used to train my
trainable remote anyway, it could be
quick,and dirty.

The Better Alternative

It is possible to interface a simple
IR LED driver circuit to an output bit
on a personal computer, then drive
the LED with some software to train
the trainable remote, but it was more
fun to build a dedicated, hardware-
only board to generate the IR com-
mand strings. Using a hardware-only
solution also opened the door to the
addition of a real keyboard so those
who don’t have a trainable remote
and don’t want to spend the money on
one can build a usable dedicated
remote for use with the IR543. Figure
2 shows the basic circuit for generat-
ing the IR commands. Figure 3a has
the additional circuits necessary to
build a one-time-use-only circuit for
use with trainable remotes, and Fig-
ure 3b shows what is necessary to add
a keyboard to the circuit.

Figure 4 shows a sample com-
mand string expected by the IR543.
“One” bits are represented by a 4-ms
burst of 40-kHz signal, followed by 4
ms of silence. “Zero” bits are repre-
sented by a 1.2-ms burst of 40 kHz,
followed by 6.8 ms of silence. In both
cases, one bit time is 8 ms long.

The command string consists of a
“one” bit, followed by five command
bits, the complements of the five
command bits, then an “end code,”
which is a 12-ms burst of 40 kHz fol-
lowed by 4 ms of silence.

June/July 1989 13

As far as timings go, a complete
command string consists of an 8-ms
start bit, ten 8-ms data bits, and a 16-
ms end code, for a total length of 104
ms. Suppose we divide this string
into discrete time segments, where
each segment is described with a “1”
to represent the presence of 40 kHz, or
a “0” to represent its absence. We
need to generate envelopes for the 40-
kHz bursts of 1.2,4,6.8,12, and 16 ms,
so the largest subdivision we can use
is 0.2 ms. The complete command
stringcan then bedescribed asa series
of 520 bits, eachbit representing a 200-
microsecond slice of time.

Theoretically, we could assemble
a table of all 22 commands (16 module
numbersand six truecommands) with
the bits packed into &bit bytes that
would end up being 1430 bytes large.
If this command table is going into
EPROM, though, why throw away
most of the EPROM and make the ex-
ternal circuitry more complex by
trying to pack things together? If we
encode just one bit per byte, we still
only take up 11K of a 16K 27128
EPROM.

For the sake of simplicity, let’s
round the 520 bits down to 512 bits.
The missing eight bits represent 1.6
ms, so the delay between bursts will
only be 2.4 ms instead of the 4 ms
called for in the spec, however the
spec also says the minimum delay
between bursts can be as short as 2.5
ms, so we’re pretty close. It turns out
2.4 ms works just fine. Now all we
have to do is clock 512 bits out of the
EPROM, one bit every 200 its.

Two 74LS163 synchronouscount-
ers (U2 and U3) plus half of a 74LS74
(U4a) provide us with the 9-bit ad-
dress necessary to access the 512 bits.
The outputs of synchronous counters
change simultaneously, so we don’t
have to worry about glitches coming
from the EPROM data line caused by
rippling address lines. The output of
the EPROM is fed into a 74LSO0 (U&Z)
which gates the 40-kHz signal coming
from the master oscillator. The output
of the LSOO is inverted and drives a
highcurrentFET(Q1). ThisFETdrives
the IR LEDs (Dl and D2) plus a visible
LED (D3) so we know something is
being sent.

Heathkif Powerful Kit
Laptop and
Desktop
Computers

A leader in quality electronics for the
technically sophisticated customer.

When you need kit or assembled
electronic products for work, home or
hobby, you can be sure Heathkit products
are designed to perform reliably and
effectivelv...vear after vear.

See whaiwe have to offer. To get your
FREE Heathkit Catalog, fill out and mail
the coupon below or call toll-free today!

I-800~44-HEATH(l-800-444-3284)
r------------
; YES!~~~~~~~~~~~~~CO~Y i 0 Dynamic

Home Entertainment

I
Send To: Heath Company, Dept. 026-774 Products

I
Benton Harbor, Michigan 49022 I

I

1 Address

Circle No. 127 on Reader service Card

14 ClRCUlT CELLAR INK

The master clock for the counters
is derived from an 80-kHz oscillator
made up of an LM555 (U8) and a few
discretes. The80kHzisdivided down
by another synchronous counter (U5)
to generate the 40-kHz IR signal (+2)
and a 5-kHz signal (+16) whose period
is 200 ps. Almost any counter can be
used (synchronous or asynchronous),
but why not keep the parts list simple
and use the same kind all around?

To start the transmission of the
command string, we use a push but-
ton which is debounced with a pair of
NAND gates (U6a and b). When the
button is pushed, U4b is cleared, the
Q\ output goes high and enables the
low-order counter, and code trans-
mission begins. When U3 overflows
(the count has reached some multiple
of 16), it enables U2 for one clock cycle
so the high-order counter increments
once. When U2 overflows (the count
has reached 256), the overflow output
clocks U4a, causing the Q output to go
high so the second 256 bits of the com-
mand can be accessed. Also note that
the Q\ output of U4a goes low at the
same time.

When counters U2 and U3 reach
256 for the second time, the overflow
output of U2 clocks U4a again, caus-
ing the Q output to go back to zero and
Q\ to go to one. If the push button is
still being held down, U4b will con-
tinue to be held clear and a second
transmissionofthecodebegins. Trans-
missions continue until the button is
released. Once the button is released,
the rising edge of U4a Q\ generates a
clock signal for U4b, which clocks a
one bit into the flip-flop. This action
causes the Q\ output to go low, dis-
ables the counters, and stops the trans-
mission process. To restart things, the
button must be pushed again.

To select which command is sent,
a set of DIP switches is connected to
the five high-order address lines of
the EPROM. Just set a code from 0 to
21 on the switches, press the “send”
button, and the selected code is sent
out. Obviously, setting DIP switches
and pressing a button would be pretty
inconvenient for everyday use, but
remember, all we want to do is train
the trainable remote. After that we
can throw the circuit away.

Dl D2 D4 D8 I314 D1 D2 D4 D8 IX6 End Code

p.ue 4- commana srfM-t.us Conslsf Of a leading Start bit, the command coae, me compiemenr or me commana coae. ana an en<
code.

For those who do want to use the
circuit every day, a keyboard circuit
can be added so that any standard 16-
or20-keymatrixkeyboardcanbeused
to select which code to send and to
start code transmission. The National
Semiconductor MM74C922 is a 16-
key encoder chip that scans a 4x4 ar-
ray of SPST push buttons and outputs
a 4-bit scan code and a “data avail-
able” strobe.

Ideally, since there is a total of 22
commands, a 22-key keyboard would
be used with an encoder that presents
a 5-bit code. Since the best we can do
with the ‘922 is 16 keys, I decided to
use a 12-key keyboard with an extra
switch to select between modules l-8
and modules 9-16.

Figure 3b shows the keyboard
interface circuit. The ‘922 contains all
the necessary pull-up resistors and
debounce logic, so implementing it in
a circuit requires just two capacitors:
one for the master scanning oscillator
and one for the debounce circuitry.

When a key is pressed, the ‘922
latches the corresponding keycode
into its data output latches and the
“data available” (DA) output high.
DA is held high for as long as the
button is held down.

Lookingbackattheoriginaltrans-
mitter circuit, all that must be done to
use the ‘922 in the circuit is to connect
the data outputs to the upper EPROM
address lines and an inverted version
of DA to the CLEAR input of U4b.
When a button is pressed, the correct
X-10 code is selected by the data lines
and it will continue to be sent as long
as the button is held down.

16 ClRCUlT CELLAR INK

Command Dl D2 D4 D8 D16
1 0 1 1 0 0
2 1 1 1 0 0
3 0 0 1 0 0
4 1 0 1 0 0
5 0 0 0 1 0
6 1 0 0 1 0
7 0 1 0 1 0
8 1 1 0 1 0
9 0 1 1 1 0
10 1 1 1 1 0
11 0 0 1 1 0
12 1 0 1 1 0
13 0 0 0 0 0
14 1 0 0 0 0
15 0 1 0 0 0
16 1 1 0 0 0
AllUnits Off 0 0 0 0 1
All Lights On 0 0 0 1 1
on 0 0 1 0 1
off 0 0 1 1 1
Dim 0 1 0 0 1
Bright 0 1 0 1 1

Figure S-The command codes sent via IR
are identical to those sent over the power
line.

The EPROM

Now that we have the circuit, we
need to put something in the EPROM.
I wrote a quick program in Turbo
Pascal to generate an Intel hex file that
can be sent directly to an EPROM
programmer. The basic 5-bit codes for
each command are placed in an array.
The program then generates a legal
command from the base bit sequence,
inserting the proper start code, com-
plemented bits, and end code. Then it
breaks the command sequence up into
its 512 component bits, and finally
writes them out to a file. The extra 5K

at the end of the EPROM is filled with
zeros so we don’t flood the room with
IR should the switches be set to an
illegal command code. [Editor’s Note:
Software for this article is available for
downloadingfrom fhe Circuit Cellar BBS
and on Circuif Cellar INK Software On
Disk #9. For information on download-
ing and disk orders, see page 78.1

The beauty of using an EPROM in
this application is that the keyboard
or DIP switches may be mapped to
any corresponding X-10 codes simply
by remapping the EPROM.

Parts cost for the quick-and-dirty
version of the circuit should be under
$20 (add about $10 for the keyboard
version) and the circuit can probably
be built in an evening or two. Con-
struction techniques are very noncri ti-
cal; the highest frequency we’rework-
ing with here is 80 kHz, so noise isn’t
much of an issue (we’ll save the 16-
MHz 68020s for another day). +

Special thanks fo Dave Ryefor his confri-
bufions to this article.

Diagrams and schematics pertaining to
the JR543 are reprinted by permission of
X-10 (USA) Inc.

Ken Davidson is the managing editor and
a member of the CIRCUIT CELLAR INK engi-
neeringsfaff. He holds a B.S. in computer
engineering and an MS. in computer
science from Rensselaer Polytechnic In-
sfifufe.

IRS
204 Very Useful
205 Moderately Useful
206 Not Useful

18 C/RCU/T CELLAR INK

A Neural Network
Approach to
Artificial Intelligence
Using a Neural Nefwork for dealing wifh
Red- World Dafa

by Christopher Ciarcia

IWhen you think about modern digital computers, you see

/ fast, dedicated machines that tear through their programmed al-

i gorithms at terrific speeds. What you don’t see are flexible, adapt-

able devices that can quickly react to changing circumstances. Un-

fortunately, the complex demands of many modern applications

cry out for flexible solutions rather than mechanical brute force.

What we’re really looking for, when you get right down to it, is a

brain just like ours that can be harnessed to a particular task. Since

brains working away in bubbling chemical stews are still the stuff

of horror films, however, what can we do to solve advanced

application problems?
I We can create neural networks of our own! We can emulate

our own self-learning, interactive awareness, by creating an arti-

ficial neural network (ANN) that reproduces the major compo-

nents of our own central nervous system. To provide the best pos-

sible emulation, our ANN should include sections that corre-

spond to the cerebral hemisphere, which handles sensor process-

ing, abstract thought, and gross motor control; the diencephalon,

I--
Illustration by Lisa Ann

t

June/July 1989 19

which is composed of the thalamus
forinformationexchangebetweenthe
cerebralcortexand therestof thebrain,
and the hypothalamus for regulation
of autonomic and endocrine systems;
the cerebellum for fine motor control;
the brainstem, which acts as an inter-
face for the spinal cord and input for
hearing, balance, and taste; and the
spinal cord, which is the biological
analog of a computer bus connecting
to our peripheral nervous system.

We know that our human brain
works, so why not create a computer
neural network that mimics our own
brain’s vast web of interconnected
neuronic structure? All we need to do
is study how our brain’s estimated 10
billion neurons and its lOI intercon-
nections are configured and repro-
duce that structure on our home PC.
Simple, isn’t it? Just map the brain’s
complexity onto your computer.

For better or for worse, even if
your computer is a Cray X/MI’ you
won’t be able to fully duplicate the
complexity of a human brain. What
you can do, however, is gain some
insight into the “thinking” process
while modeling a system that is ca-
pable of some real work.

By simulating the basic features
of our brain’s individual processing
units VU), “neurons” with their asso-
ciated decisionand leamingrules,and
structuring “neuron nets” with inter-
connectionsthatemulatethe”leamed-
stored experience” of the brain’s syn-
apses, we can construct an Artificial
Neural Network which is “a dynami-
cal system with the topology of a di-
rected graph that can carry out infor-
mationprocessingbymeansofitsstate
response to continuous or initial input
(thedecision and learningrules), with
thenodesbeingcalledprocessingunits
(neurons) and the directed links or
information channels where memory
resides being called interconnects
(synapses).” 111

Using a computer architecture
similar to our brain, we can develop a
system that is highly parallel, highly
integrated, noise tolerant, has grace-
fuldegradation,containssimpleproc-
essing units, is memory intensive,
associative in nature, and taught, not
programmed.

20 C/RCU/T CELLAR INK

Don’t Call it a Computer “transfer function/decision rule”
which determines how input infor-

The ANN is distinguishable from mation and interconnection weights
theordinarydigitalcomputerbecause are used to calculate an output value,
of its radical departure from standard and its “learning rule” which defines
internal organization. Most of today’s how interconnection weights are ad-
computer designs call for a separation justed while educating the network.
of a computer’s memory and its proc-
essor, with a communications link in A System of Modified Inputs
between. While this arrangement +

provides for tight control, it has speed A typical processing unit WJ)
limitationsduetobusaddressinterac- operationisshowninFigure2. Within
tions. Theneural-netapproachavoids the PU, inputs are modified by the

~____ ~~~_l__~___.._----__-..-- -_ ____- -----_~~ -. - ~. .~
,__~ ,-I_-L-P
Educated Interconnects

se
88

.

--_
Gre 1 -Each node at a given level of t%~~~~~-kan connect, with VatYirIg
levels of ‘weight,’ to each of the nodes at the next /eve/ of the network. This system
emulates the synaptic connections of a biological brain.

this bottleneck by mimicking the
brain’s own structure by storing expe-
rience and memory in the nodal proc-
essor’s interconnects. Table 1 shows
how the two architectures differ.[21

The ANN is not built like a “nor-
mal” computer. Instead, its memory
lies within the path between two ele-
ments. It is not stored separate from
the “CPU,” but is considered an in-
trinsic part of the information proc-
essing. This “informational” connec-
tivity between elements also has arbi-
trary dimensionality. Any linkage
configuration is allowed. And most of
all, patterns and response rules are

generated internally by correlating
inputs and outputs, so the system is
not programmed, but taught.

The essential components defin-
ing the Artificial Neural Network are
its “architecture” which controls the
flow of information within the net, its

interconnection weights. Given a
positive input, a positive interconnect
weight will be excitatory, a negative
interconnect weightwillbeinhibitory,
and a zero-valued interconnect weight
interrupts the current link. This fil-
tered input is then used by the transfer
function to calculate an output value.
Then both the input and output infor-
mation areused by thelearningrule to
“teach” or adapt the weights. These
modified weights then alter the proc-
essing element’s future operation by
filtering the input data in a new way.

The Transfer Function

The typical transfer function is
composed of two parts: an input
operator,fO, that combines the inputs
and interconnection weights to form a
single value ready for discriminatory
action; and a discrimination function

How to get more
from your

IMAGEWISE

ZIP Utility Pack
New! $39
CONVERT gray scale images for use
with other programs. Choose among
these popular file formats: PIW-PIF-
PCX-ASC-WKS-TIF

ANALYZE images for quality control and
research. Load image data into l-2-3,
etc. and analyze according to your
specific needs. Generate histograms,
descriptive statistics, and pixel count at
each gray level.

CREATE images with your spreadsheet
- use data, calculations, or equations to
generate images for use in ZIP and view
x-y-z interactions. Be creative and make
shading patterns, frames, or surreal
landscapes.

EDIT images and individual pixels with
any VGA paint program. Turn the palette
into 64 shades of gray for realistic
viewing.

DISPLAY custom slide shows of video
images, rotate, and create mirror images
for transfer applications.

ZIP Image Processing
Improved! ZIP $79
Controls the serial ImageWise
Transmitter and Receiver. Holds 3
pictures for image processing and
combining images. Sophisticated image
processing functions for enhancing
images and creating special effects.
Advanced display techniques for
EGA/VGA. Saves in PIW-MAGPCX-TIF
file formats. Supports dot matrix, inkjet,
color, and laser printers. Now shipping
version 2.7, updates available to
registered owners.

New! ZIP8 $79
Controls the n e w ImageWise/PC.
Reads/writes PIF-PCX-TIF gray scale
files. 258 gray levels. Autocalibration
feature adjusts IW/PC for the best
picture using available light. Contains all
ZIP features.

HOGWARE COMPANY
470 BELLEVIEW

ST LOUIS MO 83119

To order ZIP products call:
(314) 962-7833

Circle No. 128 on Reader Service Card

Digital Computer

mcess digital data in
Lary form

Neural Networks

recess
R

analog signals that
uctuate continuously

make yes/no decisions
based on
mathematical or
logical functions

make weighted decisions
based on
fuzzy, incomplete, and
contradictory data

idly structured sequence
rations with predictable

independently formulated
methods of data processing

definitive answers, given
enough time

approximate answers to
highly complex problems..- I 1

sort large data bases for
exact matches

sort large data bases for close
matches

specific data storage associative data storage

lable 1 -While a neural network may successfully be modeled on a digital computer,
there are important fundamental differences between the methods the two systems use
to solve problems.

Figure 2-The Learning Rule modifies the interconnection Weight of a Processing Unit (PLO.
which in turn modifies the Input to the PU. The Transfer Function modifies the learning rule
and determines whether the output of the PU will be excitatory, inhibitory. or disrupted.

Transfer Function/Decision Rule

f(X,W) = s D(s) = Y
Inputs l Weights+Non-Linear function-*Output

discriminator

Figure 3- Ihe Transfer Function/Decision Rule has two basic parts. The input operator
prepares data for discriminatory action. The Discrimination Function determines the
range of the processing unit’s output.

that governs the output range of the
PU. Figure 3 shows the basic form of

ments? Can learning and decision
making take place within real-time

theTransfer Function/Decision Rule. constraints?
But how do we choose the appro- 3. Should the transfer function be

priate transfer function for our spe- invertible, monotonic, or continuous?
cific net? What must we consider for 4. What are the natureof our inter-
an efficient design?

Well, we must first specify what
connecting weights? Will they be
binary, continuous, or discrete?

our neural net is designed to do. Will
it make decisions or emulate some

5. And finally, what type of out-
put do we want?

functional system? And then we must As you can see, there is a lot of
decide on the following details: flexibility and several degrees of free-

1. Are we emulating a biological dom allowed in our choice. There
system? Is it necessary to reproduce
the neuron firing rate curve?

have been many designs created since
the early 1950s when the first work-

2. What are the speed require- able ideas were forwarded by Widrow

22 ClRCUlT CELLAR INK

Type Input Operator Dlscrlmlnator commentt
--.

Simple Linear S=cW1Xi+B none. Y=S pure linear function used
I

for associatiie recall

Weighted Sum S=xW&i+e Y=D(S) commonly used; some
I

cases ~0: Borto and
Sutton (1981) add noise
to s.

Ceedback S = aYold + PCWiXi Ynew=R(S) gives persistance to
I

output state.

Sigma Pi s = CW@&
I

Y=D(S) One input can gate

another or act as CI
gain control.

rhermodynamic S = (CWfi + e}T-1 P(Y=l MS) p is the probability that
I

p(y=o)=l-S(S) a specific state is
realized. T is a temperature
thh;;s$ematically

(Note: @is the Transferfunction Threshold. aandpare Feedback Weighting Comtants. In all cases,
these are set according to the individual circumstances of the network.)

Advantages: l Has o linear zone
l Can Imitate functions
l Easy to implement

Disadvantages: l Not invertible

Figure 4--There are several possibilities when choosing a transfer function and discrimina-
tor. Each of the choices has advantages and disadvantages that make them suitable
for particular classes of problems.

New! Modular
Programming System
FROM MODULAR CIRCUIT TECHNOLOGY
This integrated system is ideal for developers--
it easily expands as your needs grow! All the
modules use a common host adaptor card so you
need just one slot to program EPROMS, PROMS,
PALS and more!

Host Adaptor Card $29.95
* A universal Interface for all the programming

modules
. User-selectable programmable addresses

prevents addressing conflicts

l Includes a high quality molded cable
MCT-MAC

__\,~b”* -**,.. , .A-- ‘

Universal Module $499.99
l Programs EPROMS, EEPROMS, PALS,

bl-polar PROMS, 874X & 8751 series devices.
l Programs lhV8 & 20VB GALS (gallium arsemde)

from LATTICE, NS, SC5
* Tests TTL, CMOS, Dynamic & Static RAMS
l Load disk, save disk, edit, blank check, program,

nut<, read master, venfy and compare
- Textool socket accepts Y to I” wide 1C’s from

R-40 pms
MCT-MUP

EPROM Module $119.95
* Programs 24-32 pin EPROMS, CMOS EPROMS

and EEPROMS from 16K to 1024K
. HEX to OS] converter
l Auto, blank check/program/v&fy
l VPP selectable5,12.5, 12.75, 13,Zl & 25 volts
l Normal, intelligent, mteractive, and qmck pulse

programming algorithm
MCT-MEP
MCT-ME&4 4-EPROM Programmer $169.95
MCT-MEP-8 S-EPROM Programmer $259.95
MCT-MEP-16 l&EPROM Programmer $499.95

PAL Module $249.95
l I’ropms MMI, NS, TI 20 & Tl 24 pin devices
l Blank check, program, auto, read master, verify

and security fuse blow

MCT-MI’L
PAL Programming development software
MC’KMPL-SOFT $99.95

uealers Circle NO . I lb

hne/Ju/y 1989 23

1 pzJ Weight Modification

Figure S-The Learning Rule correlates the input and output values of the processing ur
by adlusting each elemenf’s interconnection weight.
simulating a biological learning process in silicon.

The Learning Rule is the key i

and Rosenblatt et al. We can’t discuss
all of them here, but we can provide a
summary of themoreprominent types
of transfer functions and their associ-
ated discriminators as compiled by
Shepanskif31. Abreakdown isshown
in Figure 4.

The learning Rule

The learning rules’s function is to
correlate the input and output values
of the processing unit by adjusting
each element’s interconnection
weights as shown in Figure 5. It imi-
tates the evolutionary process of load-

ing information into our net, with the
ability of our net to “survive” meas-
ured by how well it can learn its ap-
pointed task or function. This sur-
vivability depends heavily on match-
ing our design need to the application.
Do we have a purely dynamic sys-
tem? Will the learning phase rely on
local or global information? Is con-
vergence speed important? Each
decision will have profound effects on
the shape of the final network.

Again, there are many types of
learning rules currently in use. We
will present here the three most widely
used.131

Types of Learning Rules

I. Hebb’s rule (1949)

dW jk = nYjXk

where: Y = DlCW jkXkI
k

Here, weight modification occurs
only if both input and output are
nonzero; so the weight only decreases.

II. Windrow-Hoff rule (19601

dW jk = nfdj - Yj)Xk

where: d is the desired output and

Y = NCW jkXkI
k

Here, weight modification occurs
only if X is nonzero and the actual
output does not match the desired
output. The weight adjustment can be
positive or negative with Y tending to
converge to d.

The 2500 A.D. 8051 C Compiler offers an alternative to Assembly Language solutions. Quicker
program development. Simpler program testing. Easier pmgram maintenance.
l FU.llKernighan&Ritchi,eC
l Alldatatypes,iIlcludingFlOat&DOUbk!

l Function pmtotyping ANSI extensions

*Reentrant Libraries
l FulI math library, inchrding Trig functions

l Internal,ExtemalarMixedDataModes
l Interrqthandlersupport

‘SpecialFu.nctirmF@istersupport
l Bank switched memoiy support

l In-line Assembly Language
l InterixJbitfieldsqport

l Li&ill@reflectactualhillU?daddresses
l Linked Assembly language
l Generates ROMahle uxle

The 8051 C Compiler package includes the 2500 A.D. 8051 Macro Assembler, Linker, Librarian,
Standard Library and Math Library and is priced at $500.00 for MSDOS systems.

‘l’bonlercall’TbllFree:

1 800 84318144 2socMrnREIKIn -: 1719 3958683 109 Bmokdabz Avenue
Fax: 1 i[19 3958206 P.O. Box 480
,lkkX: 752659lA.D Buena Vista, CO 812ll

TheRightSofhmreforTheRightMicrodl’heRightPlire
Circle No. 101 on Reader Service Card

III. Generalized Delta Rule (Rumel-
hart et.al., 1986) (backward error
propagation)

This is a generalized version of
the Widrow-Hoff rule. The difference
between the desired output and ac-
tual output of a PU is used to correct
the interconnection weights. This
differential (“delta”) for an output
layer is calculated by:

6k = Yk (I- Y k)(d k - yk)

where:

yk = s~~wkjxj + 6kl

j
Index j refers to the PU closer to

the input layer while index k refers to
the PU closer to the output layer.

For interior layers the difference
between the actual output of the PUS
and their optimal output is propa-
gated backward through the network:

Sj = Xj (I-Xj> CSkW kj

k
The interconnection weights for

all layers are corrected using:

dWkj =n&Yj

An Application: Pattern
Recognition

Now that we’re experts on how to
develop our own “PC-resident Expert
System,” let’s apply some of the infor-
mation to a specific example: a self-
learning pattern recognition system.

WhatwewanttocreateisanANN
that will learn different images or
object patterns. From that experience,
we want our “educated computer” to
have the ability to “remember” and
“identiw those images or objects
accurately. In addition, it must also
recognize the object if we change its
orientation (e.g., tilt or rotate it).

How do we do this? Let’s start by
choosing a net structure, a transfer
function, and then a learning rule.

Choosing the Net Structure

To specify the net structure we
must determine the nature of the in-

1.1 1,2 1,3 16,15 16.16

-Input/

Figure 6- Jhe neural network of the sample problem operates on a simple 16 x 16 pixel
matrix. Desptte the simplicity of the input, the network has 275 processing units and over
4.100 interconnects, This illustrates why large neural networks are still the province oflarge
universities and research laboratories which have access to supercomputers.

put. Since large images require large
inputs, and thereby large array space
and processing time, we will confine

image size: 16x16
number of inputs: 256
input values: O-255

1 v

our example to 16x16 image arrays, The actual number of layers of
based on a 0 to 255 gray-level scheme. PUS and PUS per layer is determined
Each pixel gray value is the initial by the sensitivity and speed of learn-
input into a net processing unit. There ing that we want within our net. I
are 256 initial inputs. have found that a single-output PU is

Photo 1 -Our sample used several images to test the network. To examine network
sensitivity, we expanded the images to 256 x 256 pixels. By using a Polar Fourier Transform
on the input picture, an image is produced which is consistent regardless of the
orientation of the original. This removes a major variable in Image recognition.

June/July 1989 25

insufficient for our problem. Instead,
we will use three PUS in our final layer
and 16 in our middle layer.

number of layers: 3
units in layer 1: 256
units in layer 2: 16
units in layer 3: 3

We will also allow for maximum
interconnectivity between each layer.
So the output of each PU on a layer is
an input to each PU to the layer above.

of interconnects for PUS on layer 2: 256
of interconnects for PUS on layer 3: 16
total # of interconnects: 4163 within the net

As you can see, the total number
of interconnects becomes very large
very quickly. The number of intercon-
nects required by a large network is
one of the main factors that prevents
us from modeling the complexity of
even a simple biological brain.

Choosing theTransfer Functionand
the Learning Rule

Our application requires sufficient
sensitivity to differentiate images. But
we want it truly “smart,” so it must
have the ability to make “soft” or fuzzy
decisions. At the same time, it must
have the ability to learn efficiently.
T h a t i s , i t m u s t h a v e t h e a b i l i t y t o
adjust its interconnection weights in a
backward error propagation manner.
This will allow the desired output and
the actual output of the “leamed-
experienced” net to converge to a
preset value. For that reason, our
example uses:

Transfer Function
input operator: weighted sum

IS = zX(L,i)W(L,i,j) 1

discriminator: Sigmoid

[S[S] Y = (l+e-+]

Learning; Rule
Generalized Delta Rule

Because of the Sigmoid discrimi-
nator function, our net is extremely
sensitive to the range of the input
values on the first layer. The image
input was therefore renormalized

26 ClRCUlT CELLAR INK

STARTxRead Net
Library

1 Net Now
net layer number: L
input from layer L, unit i: X(L,i)
output from layer L, unit j: Y(L,j)
interconn. weight from i to j: W(L,i,j)

input operator: f()
result of input operator: S

discriminators
generic: D[]
binary threshold: B[]
linear ramp: R[J
sigmoid: S[]
hyperbolic tangent: tanh[]

desired output for final layer: YLmax
output error for final layer: E(Lmax,j)
constants: LR,MG,n
weight correction: dW(L,i,j)

Figure FThe program flows in a relatively straightforward manner. Termination can occur
either after display of acceptance data or as an abmafive to new image input.

(using ANORM) to range from 0 to ANORM, you can crudely adjust the
0.010. Remember, if the initial input X net’s ability to learn and later dis-
is too large, Y converges to 1 extremely criminate. You will also see marked
quickly. If X is too small, Y converges changes in the time-rate of conver-
to 0.50 slowly. So, if you try various gence of the net towards its ‘learned”
values for the normalization constant state.

The Pattern Recognition Code

Our example contains three basic
components. First is a library utility
that keeps trackof the different learned
net values. Then there is a recognition
utility that runs an input image
through a specific learned net and
decides if it recognizes it or must learn
it as a new image. Finally, there is the
learning mode. Here the new image is
iteratively cycled through the net,
applying the transfer function and
learning rule for each cycle until the
net converges to a specified “learning
sensitivity.” This sensitivity is meas-
ured by the difference between the
actual output and desired output for
each of the PUS in the top layer. An ac-
ceptable learning sensitivity is a dif-
ference of lO-‘O for each output.

In order to study network sensi-
tivity, our example was expanded to
handle 256- x 256-pixel images. Sev-
eral different images were then cre-
ated to test the net’s ability to learn
and recognize small variations. Some
examples of these images are shown
in Photo 1.

I tried several different types of
tests. I created several different im-
ages with the same weight density of
pixels in order to test for true image
differentiation. The net had good
sensitivity for both the 16x16 and
256x256 images. I then rotated vari-
ous images to see if the net would still
recognize them when using the zero-
degree learned orientation. And it
could, but it was highly resolution de-
pendent. When using 16x16 images,
of little or no specific detailed struc-
ture, I could still recognize the aircraft
versus the helicopter no matter its ori-
entation (using fairly broad acceptance
settings). With 256x256 images there
was much more detail learned by the
net, requiring initial processing of the
input image data.

What was desired was a rotation-
ally invariant image that the net could
learn. This was achieved by taking a
polar transform of the initial image,
mirroring the transform to form an
nxn image, and creating a power spec-
trum image of its two-dimensional
FFT. This is called a polar Fourier
transform (PFD

To demonstrate how this works,
consider Figure 7. The polar trans-
form is readily created. Starting from
the center of the image, extend a ra-
dius vector out one pixel and rotate
about the image 360 degrees. At each
increment, store that value down the
first column of the polar transform
array. Then, increment the radius
vector out another pixel in length and
cycle around again. Continue this
until the radius vector reaches theedge
of the image. This results in a 16x8
polar transform of the 16x16 image,
and a 256x128 for the 256x256. Now
mirror the polar transform to create a
16x16 array. Notice that bot.h polar
transforms shown in Figure 4 are the
same, even though they are rotated by
45 degrees. This rotation only shifted
the polar transform in a wrap-around
style. In the Fourier domain this is
only a phase shift and does not affect
the power spectrum 141. So, our polar
Fourier transform is the same no
matter the orientation. We can feed it
to the net for learning. Then, if we
process each of our “new” images simi-
larly, it will recognize a rotated ver-
sion of itself.

Now, all of this works perfectly
well on paper, but don’t be fooled.
Theoretically these power spectra are
invariant under rotation, but we must
still consider the image digitization
process. A straight line at zero-degree
orientation becomes a jagged line at
45 degrees. This extra “degradation”
of the edge detail can slightly modify
the PFT and add to the uncertainty of
the recognition. But then, isn’t that
why we want to use a neural net
approach? The ability to work with
data that’s “the same, only different”
is the fundamental benefit of working
with neural nets. Where other com-
puterized methods use precise tem-
plates of objects to recognize them,
neural nets can learn those character-
istics that distinguish a class of objects
and apply them to the general case.

The Learning Continues

Well, have fun running the neural
networks on your computer. There
are lots of different applications to
which you can apply this code. lEdi-

tor’s Note: The code for this article is
available for downloading from the Cir-
cuit Cellar BBS, or on Circuit Cellar INK
Soffware On Disk #9. For downloading
and ordering information, see page 78.1
The initial inputs need not be image
pixel values. They could be the signa-
ture of a scope trace or some charac-
teristic of a system you wish to sort.
Or you could build an intelligent se-
curity monitor. Teach it to recognize
a certain area; then sample an image
of that area periodically and run it
through the net. If there is a change,
the net will notice. Your imagination
is your only limit. Because, unlike
conventional computers, neural nets
can learn from their experiences and
make those “soft-fuzzy” decisions
which we humans are so famous for.
+

Acknowledgements

The author would like to extend special
thanks to TX Seminars, and especially
John J. Rosafi, John Shepanski, Michael
If. Myers, and Robert M. Kuczewski, for
the excellent qualify of their classes on
“Artificial Neural Systems” that he re-
cently attended in Anaheim, California.
Many of the ideas and concepts presented
there educated his infernal “neural nef-
works,” making this work possible.

References
1. R. Hecht-Nielsen,Hecht-Nielsen
Neurocomputer Corporation.
2. Business Week, June 2,1986.
3. J.J. Rosati, J. Shepanski, M.H.
Myers, and R.M. Kuczewski, “Arti-
ficial Neural Systems Seminar,”
presented by TTC Seminars, May
1988, in Anaheim CA.
4. E.O. Brigham, ‘The Fast Fourier
Transform,” Prentice-Hall, Inc.,
Englewood Cliff s,New Jersey, 1974.

Chris Ciarcia has a Ph.D. in experimental
nuclear physics and is currently working
asasfa~physicisfafanafionallab. Hehas
extensive experience in computer model-
ing of experimental systems, image proc-
essing, and artificial intelligence.

IRS
207 Very Useful
208 Moderately Useful
209 Not Useful

~une/~u/y 1989 2 7

The ADALINE Learning Neuron
A One-Node Net for Computer learning
by Scott Farley

rtificial intelligence hasbeen
quietly diffusing into the world of real
applications for 30 years now. The
diffusion process is speeding up, so
that artificial intelligence techniques
are having significant effects in qual-
itycontrol,explorationforoilandmin-
erals, the familiar computer chess
games, medical diagnosis, and under-
standing of natural language by com-
puters. Artificial intelligence is our
here and now, ,

networks has grown as research has
progressed. The problem is that even
a small neural network can have thou-
sands of processing nodes (neurons)
and tens of thousands of interconnec-
tions. The memory and processing
requirements have prevented many
private engineers from looking seri-
ously at neural networks for solutions
to current problems.

Fortunately, artificial neurons do

Several years ago, I had an over-
sized hobby which masqueraded as a
mobile robot. It was a good scratch-
built learning platform for both hard-
ware and software. It was designed to
wander through an environment tak-
ing sonar range information and pass-
ingit toa hostcomputer. Theidea was
to make the robot as simple as pos-

sible and---I
and is becoming
a large part of

Data Bytes Change Value

our future. The
s t u m b l i n g
block, for those
working with
microcompu-
ters, has been
that evensimple
artificial intelli- V V
gence tech-
niques require
serious comput- Time Interval Between
ing horsepower Transmissions is Variable
and megabyte-
sized blocks of
available mem-

o’y*

Figure 1 --The data pointer for transmissions needs to be locked on the first header byfe.
Since there is no sDecific time interval between transmissions, successful reception of the

The horse-
power /mem-

header bytes is c~uclal for successful data reception.

ory stumbling block has been particu- not have to be connected into exten-
larly large in the case of one of the sivenetworks tobeuseful. Individual
more promising “new” techniques. neurons can solve many smaller prob-
When they were first conceived in the lems, and working with single neu-
195Os, Perceptrons (artificial neurons) rons is a useful step towards under-
were dismissed by the leading experts standing larger neural networks. I
in artificial intelligence. In the last five used a simple artificial neuron to solve
years, networks of artificial neurons aproblemdealingwithindistinctdata.
have been reexamined as tools for The solution shows that you don’t
working with data incompatible with rally need a Cray to start working on
traditional digital computers. Excite- the leading edge of technology! APC-
ment over the possibilities of neural compatible with BASIC will work.

handle guid-
ance issues in
the host com-
puter. This
scheme re-
quired commu-
nication links
between the
two main proc-
essors, and
radio seemed
the obvious
choice.

I n f o r m a -
tion transfer
was to be asyn-
chronous, so
each end of the
link had to read
a streamof data

which would arrive without warning.
The timing between data streams
varied due to the unpredictable na-
ture of the computers’ tasks, but an
unchanging 4-byte header was used
at the front of each transmission.
Software matching of the four bytes
would allow us to set a data position
pointer which could be used to iden-
tify the location of the individual data
bytes. Figure 1 shows a simple repre-
sentation of the data stream.

28 ClRCUlT CELLAR INK

Gap
Synapse

Between Axon & Dendrite

Figure 2-liie pulse rate of the axon reflects the activation level of the neuron. Any
indivicriral neuron can be trained to pass. attenuate, or block inputs as received from
other cells. The activity of the neuron depends on its past history of training.

There was one serious hitch in
this flawless scheme: The DC drive
motors produced enough radio fre-
quency interference to corrupt some
of the data coming to the robot. The
corruption was not consistent enough
to allow a simple mechanistic fil tering
solution, and it was severe enough to
require a working solution. After all,
a robot you can’t control is entirely too
much like a child.

The first solution that came to
mind was multiple transmission of
data, requiring two or three in succes-
sion be the same before we act on
them. This should work on the data
bytes if we have the data pointer syn-
chronized. But it would not work on
the header bytes, since they synchro-
nize the pointer, and not vice versa.

When we tried to dynamically
work with individual bit errors in the
header bytes, we discovered that the
bit position of the error greatly affects
the value of the resulting number. Bit
position 0 adds or subtracts 1, while
bit position 7 adds or subtracts 128.
After working with this scheme for a
while, we decided that the overhead
was just too high. Similarly, calculat-
ing CRCs for all of the data would
have been fine in theory, but would
have soaked up entirely too much of
the computing power available on the
robot. What we really needed was a
flexible, low-overhead way of dealing

with erratically changing data and
decidingwhattheoriginaldatalooked
like.

I decided that a neural technique
would bean ideal solution, but Ididn’t
need the power or complexity of a
full-blown neural network. A single
neuron can certainly test for exact
matches of binary input bytes. It has a
numericaloutput whichrepresents the

Figure 3-There are simllarites between an
arttficial neuron and a simple AND gate
with inverters. The differenceslie In the neu-
ron’s random starting state versus the
constant state of the AND gate; the adap-
tive (changing) nature of the neuron; and
the output of the two devices. An AND
gateproducesasimplebinaryoutput~ile
the neuron produces an output that re-
flects the degree of similarity between the
trained input and the presented Input.

INROL-C Cross-Compilen
INT!?OL-Mcdula-2 Cross-Compilers
INTROL-Macro Cross-timblen

Provide cost and time efficiency in
development and debugging of em-
bedded microprocessor systems

All compiler systems include
Compiler l Crossussembler l Support
utilities l Runtime library, including
multi-tasking executive l tinker l One
year maintenance l Users manual, etc.

TARGETS SUPPORTED:
6301/03 l 6801/03.6804.6805.6809
l 68HCll l 6StKK1~08/10/12.32ooo/
32jaila2 l 6ao2o~o3o~aa1fa51

AVAlllABLE FOR FOLLOWlNG HOSTS
VAX & MicroVm Apollo; SUN; Hewlett-
Packard; Gould PowerNode; Macintosh;
IBM-PC, XT, AT and compatibles

INTROLCROSSDMLOPMENTSYSTEMS
are proven. accepted, and will save
you time, money, effort with your dwel-
opment. All INTROL products are
backed by full technical support. CALL
01 WRlTE for facts NOW:

647 W. Virginia St., Mihwkee, WI53204
41412762937 FAX: 414/27&7026

Quality Software Since 1979

Circle No. 130 on Reader Service Card

June/July 1989 2 9

In1m;;z;;r ,,:::::..:::::::::::::::::::::i: .. ;..::::::::::::::::::::::::

; In2

B

.:.:.:+: . . .: _. :?s>:::;:>;:>~:f$$+ ,... ‘.
. ,........._ .,

! In3

D

C
: :.:.:.> :.:.;. 5’: .:.:, :;:;:;:;:: ,,::::.’_” ..’.:::::::::::::::::::::::.

Input Averaging

I
j r

il

Back Propagation

Figure 4-lhe mumpliers of the neuron begin cd a random value between - I and + 1. They are modified by the back-propagation
process to bring the actual output closer to the desired output.

pattern on which it was originally
trained. Simply insist that the output
number for the bytebeing tested match
the trained output number. For single-
bit errors, you allow a percentage dif-
ference between the two output
numbers. For multibit errors, you
allow a larger percentage difference.
The process is the same regardless of
the bit position in which the error
occurs.

What is a Neuron?

Real neurons exist only as part of
a biological nervous system. We
choose to copy their actions in hard-
ware or software because they can
accomplish things not normally con-
sidered possible with digital computer
systems. In particular, they lend them-
selves to pattern matching and paral-
lel processing.

An individual neuron cell has
several inputs (Dendrites) and one
output (Axon). It is interconnected
withmanyotherneuronsand uses the
frequency of electrical pulses to have
itsoutput influence inputs for several
other neurons. The cell has the ability
to have inputs from other neurons
increase or decrease its output fre-
quency, or have no effect. This is
based on its past history and shows
that it is “trained” to respond in a
particular manner as shown in Figure
2. These neurons are the basis of all of

30 C/KU/T CELlA R INK

our nervous system and thinking func-
tions.

Understanding Neurons

You can think of a neuron as a
biological simulation of a digital AND
gate. If we take a multi-input AND
gate and “train” it by adding inverters
in the input lines and the output line
as shown in Figure 3, we can have a
particular input pattern producea par-
ticularoutput state. Thisisequivalent
to providing digital inputs and a de-
sired digital output state to a neuron
and having it train itself to those con-
ditions. While the neuron/AND gate
can help you understand the neuron,
there are significant differences be-
tween the neuron and an AND gate,
as we shall see shortly.

Any continuous process which
occurs over a period of time in the real
world can be simulated (represented)
by measuring its value at different
points in time. This is usually done by
measuring at regular intervals, such
as once per second. The parameter
which is measured can be analog or
digital. An analog example would be
measuring a voltage which changes,
but is somewhere between 0 and 5
volts. A digital example might be the
opening or closing of a switch.

The program I wrote to solve the
data problem simulates an analog
system by breaking the analog values

into numbers between +1 and -1. It
also simulates the passage of time by
taking a set of numbers and modify-
ing them a little bit every time the
program loop is run through. In this
way, successive loops of this part of
the program can cause numbers to
change in specific directions at spe-
cific rates.

The way these changes are
handled is really quite simple. The
value of a variable is equal to its old
value plus some modifier value. The
modifier value is calculated from the
group of old values with which we
enter the calculation pass. In this pro-
gram, some of the old values are
modified in each pass, and others do
not change.

Understanding the ADALINE
Neuron

One early artificial intelligence
concept (in thelate 1950s) was the idea
of duplicating the way a neuron works
using electronics. This single neuron
was first doneby Bernard Windrow of
Stanford University. He called it the
Adaptive Linear Neuron, which to-
day is shortened to ADA-LI-NE, or
ADALINE.

You will find three substantial
differences between it and the AND
gate. TheANDgatewill,fromthefirst
operation to the last, give uniform
output from uniform input; with

ADALINE, the output for any given
input pattern initially depends on
random factors. The AND gate is
“hard wired” to give a specific output
from a known input; given a desired
output and a likely input, the ADAL-
INE changes its initial random factors
to “train” itself to output the desired
state. Finally, where the AND gate is
a binary device, outputting either a
“f” or a “0” depending on the input,
the ADALlNE has a number as part of
the output which represents the de-
gree of match between the pattern it
was trained on and the pattern pre-
sented to it for analysis.

Figure 4 shows the various func-
tions the ADALINE uses to perform
its processes. The two major divisions
are initial learning on a particular pat-
tern, and comparison of other pat-
terns to determine how closely they
match the original.

Adaline Learning

You initialize the learning proc-
ess by presenting the desired input
pattern (digital ones and zeros in this
case), the desired output state (one or
zero), and randomly generated multi-
pliers which control how much effect
each input bit will have on the output
state. The output state is represented
by a number which can range con-
tinuously between +l and -1. This
process is called Forward Activation
and is the first of three steps in the
learning process.

The second step consists of deter-
mining whether the value of the out-
put state number is close enough to
the desired output state to stop the
processandsayleamingiscompleted.
If the learning is complete, the system
can proceed to ADALINE pattern
comparison. If the output is still not
sufficiently close to the desired result,
the process proceeds to step 3.

Back Propagation is the name of
the third step. It is started by compar-
ing thedifferencebetween the desired
outputstateandtheactualoutputstate
from step 1. The error value (differ-
ence) is used to modify the randomly
generated multipliers from step 1 so
that they are changed in a way which
will reduce the error value. The
amount of change is purposely kept
small to prevent oscillation about the
correct values when the output is
nearly correct. The initial random
values will become trained values as
this iteration looping proceeds.

Adaline Pattern Comparison

Now that the neuron has left the
training iteration loop and the initial
random values have been converted
to trained values, theoutput state value
is now close enough to the desired
state for the ADALINE to recognize
the pattern it was originally trained
on and produce the output state it was
trained to have.

When you present the trained
ADALlNE a bit pattern for it to re-
spond to, it goes through the Forward
Propagationprocessdescribedasstep
1 under ADALINE learning. Since the
training process is completed, it does
not attempt to train itself to the new
pattemoralterthevaluesofthemulti-
pliers. The output state will be correct
(match what it was trained to) only for
the bit pattern it was trained on. For
most other bit patterns, the output
value, which can range continuously
between +1 and -1, will be far enough
from the desired output that they
cannot be digitized and have to be
represented as indeterminate. For the
exact inverse of the bit pattern the
ADALINE was trained on, the value
of the output value will be the same,
with the opposite sign. The digital
output state will be the opposite also.

Randomly
Selected Initial

Human Input Computer Input Weight Multiplier Weighted Input
TRUE 1 0.25 0.25
FALSE -1 -0.36 0.36
TRUE 1 0.04 n.no

Table 1 - rhe forward activation process assigns random values to the muitipliers which
are used to process the input,
weighted input.

The output value from this process is the average of the

Call for
Manuscripts

CIRCUIT CELLAR INK is looking
for quality manuscripts on
software for embedded
control, software applica-
t ions, advanced algo-
rithms, software method-
ology, and tutorials on tools
and techniques for devel-
oping software.

These manuscripts will be
considered for publication
in C IRCUIT C ELLAR INK, T H E

COMPUTER APPLICATIONS JOUR
NAL, and in a planned se-
ries of books to be pub-
lished by CIRCUIT CELLAR INK.

CIRCUIT CELLAR INK offers
writers and engineers a
technically sophisticated
audience and professional
editorial guidance.

The C IRCUIT CELLAR INK Au-
thor’s Guide is available for
downloading from the Cir-
cuit Cellar BBS. Prospec-
tive authors may send mail
to ‘Curt Franklin’ on the
Circuit Cellar BBS, or send
proposals for manuscripts
and requests for Author’s
Guides to:

Curtis Franklin, Jr.
Editor in Chief

C IRCUIT CELLAR INK
4 Park Street

Vernon, CT 06066

June/July 7989 31

Desired Weighted Input
output Input Error

1 0.25 = 0.75
1 - 0.36 = 0.64
1 - 0.04 = 0.96

Table 2-lhe input error is the difference between the trained output and the output
resulting from the provided input.

This output value can be used to
rate the closeness of match between

state are represented in the computer
program as +l or -1. Other internal

the bit pattern the ADALINE was
trained on and another bit pattern pre-

processes require an analog represen-

sented to it in this mode. This is the
tation, so we will restrict them to any

area where it transcends comparison
value between +1 and -1. The output

to the AND gate.
state number and random multipliers
are two of these.

Simulating the ADALINE
The iteration includes running the

number system through several loops.
Each loop can be envisioned as a frame

Real neurons change their activa- in movie film with small but definite
tion level over a period of time. Your
ADALINE will also change over time

changes with each succeeding frame.

as its random values become trained
This program will usually quit after

values through the iteration process.
six to ten loops. At that point the

These internal change processes are
output value has changed considera-

analog in nature, so we will represent
bly,ashavetheinitiallyrandommulti-

them by a range of numbers from +l
pliers.

This detailed look at the numbers
(TRUE) to -1 (FALSE). This means
that input patterns and the output

from the computer program will pro-
vide you with a detailed understand-

ing of the ADALINE. The software
for this article is written in GWBASIC,
and will run on any PC-compatible
computer. A companion text file with
instructions for running the program
is also provided. [Editor’s Note: Soft-
warefrom thisarticleisavailablefordown-
loading from the Circuit Cellar BBS and
on Circuit Cellar INK Software On Disk
#9. For information on downloading and
disk orders, see page 78.1.

Inputs are three input bits, ran-
dom multiplier values, and the de-
sired output.

ADALINE’s Numbers

The steps for training our ADAL-
INE include:

1) Forward activation
2) Test. If close enough, Exit
3) Back propagate to make small

adjustment. Loop to 1.

Forward Activation

You start the process by inputting
the desired input pattern and the
output you want it to represent. The

Science, Engineering & Graphics Tools for
Microsoft C, Turbo C and Turbo Pascal

Science and Engineering Tools are a collection of
general purpose procedures and functions which
solve the most common data analysis and graphics
problems encountered in science and engineering
applications. All procedures and functions are
supplied on disk in the source code of the target
language. The procedures and functions are
compatible so the graphics functions can directly
display the output of a regression, curvefit, etc. All
of the routines can be used royalty free in
compiled form. A 150 page manual describes the
form, function, and parameters of each procedure
and function. The Science and Engineering Tools
are available for Turbo Pascal 4.0, 5.0, Turbo C 1.5,
2.0 and Microsoft C 5.x for IBM compatibles.
Ordering Information
Modell Version Price
IPC-TP-016 IBM Turbo Pascal $79.95
IPC-TC-006 IBM Turbo C $79.95
IPC-MC-006 IBM Microsoft C $79.95
‘rice includes shipping within North America. Elsewhere add $18.00 for
shipping. Mastercard. Visa, Company PO’s, and personal checks
wxpted. MASS. resiients add 5% sales tax

:EATURES
100% Royalty Free
lurbo Pascal 4.0,5.0 Turbo C Rev. 1.5,2.0 or
Microsoft C Rev. 5.x compilers

ZRT Graphics Adapter Support - the graphics
libraries use the graphics routines supplied with the
respective compiler. (CGA, EGA, Hercules, VGA)

Hardcopy support _ Epson MX, FX and LQ printers,
HP plotters, HP Laserjet and Thinkjet printers,
Toshiba 24 pin printers and other devices

Science/Engineering charting routines - Linear,
semi-log, and log graphs. Auto-scaling of axes,
line, scatter, pie, and bar charts. Charting
Graphics Now Includes Contour Plotting.

3-D Plotting - translation, scaling, rotation, and
perspective routines

Statistics - mean, mode, standard deviation,
standard error, etc.

Multiple Regression - With summary statistics
Curve Fitting - Polynomial and cubic splines
Simultaneous Equations - real and complex
Fourier Analysis - Forward and inverse FFT,

Rectangular, Parzen, Hanning, Welch, Hamming,
and Exact Blackman Windows, 2-Dimensional FFT
and Power Spectrum

Matrix Math - Real and complex
Complex Number Arithmetic
Eigen values and vectors
Integration - Simpson’s method
Differential Equation - Runge-Kutta-Fehlberg
Linear Programming - Simplex method
Root Solving - Bisection, Newton and Brent

methods
Files Transfers - Lotus l-2-3
Data Smoothing
Special Functions - Gamma, Beta, Bessel, error,

hyperbolic trig, orthagonal polynomials
RS-232 Support - the Turbo Pascal version includes

an interrupt driven RS-232 driver

m

1191 Chestnut St., Unit 2-5, Newton, MA 02164 USA
Tel. (617)965-5660 FAX (617)965-7117

32 C/RCU/T CELLAR INK
Circle No. 145 on Reader Service Card

programaddsrandomvaluesbetween
0 and 1 to be used as multipliers. It
also assigns 1 to TRUE and -1 to
FALSE. The forward activation proc-
ess is shown in Table 1.

The arithmetic mean of the
Weighted inputs is 0.22. This average
is the neuron’s output and is an ana-
log value between -1 and +l. Note
that the desired output is TRUE, so
this output is positive. Had you asked
for a FALSE output, the signs on the
weights would be changed so that the
weighted inputs and average would
be negative. It’s a simple thing so far.

Putting it to An Initial Test

TheoutputneedstobelforTRUE,
and instead the neuron has 0.22. You
are now at the second step where you
test. As you go through successive
loops in the process, the initial weights
which were randomly selected will be
adjusted to larger and larger values.
This means that the output will also
become larger and approach 1. It will
never quite get there, so the test needs

weights a small amount in the right
direction. First you will need to calcu-
late the input errors, which are posi-
tive for a TRUE desired output and
negative for a FALSE desired output.
The initial error values are shown in
Table 2.

Our next step is applying the
“Delta Rule” which determines the
amount of change we will make to the
weight value. The adjustment size is:

A = Step Siie x Input Error x Weighted Input
Input2

Al= 0.50 x 0.75 x 0.25
1x1 = 0.09

AZ=
0.50 x 0.64 x HKl6) I -o,,2

1X1

A3=
0.50 x 0.96 x 0.04

1x1 = 0.02

We can now adjust the weight
multipliers:

W, = 0.25 + 0.09 = 0.34
W, = -0.36 + (-0.12) = -0.48
w, = 0.04 + 0.02 = 0.06

Input 1 Input 2 Input 3 Actual Output Digital Output
TRUE FALSE TRUE 0.85 TRUE
FALSE TRUE FALSE -0.85 FALSE
TRUE TRUE TRUE 0.19 indeterminate
FALSE FALSE FALSE -0.19 indeterminate
TRUE FALSE FALSE 0.45 indeterminate
FALSE FALSE TRUE 0.20 indeterminate

Table J-ADALINE returns a TRUE value if the input produces output within acceptable
limits of the trained output. In this case, the program accepts output within 20% of the
desired output.

to determine if it is within 20% of the
desired value. The test is whether or
not the actual output is greater than
0.80 (80% of 1). It is not, so you con-
tinue on to the third step. Note that if
the output is greater than 0.80 it is
TRUE,ifitisless than-O).80itisFALSE,
and if it is in between it is indetermi-
nate. This is how we digitize the
“analog” output.

Back Propagation-The learning
Process.

Now for the magic: The neuron is
finally going to learn something. Back
propagation will adjust each of the

The next move is to loop back to
the forward activation part,using these
new weight multiplier values, and cal-
culate the next neuron output value.

ADALINE’s Loops

Running the actual program with
these values results in nine iterations.
The output values are:

Iteration # Wl W2 W3 Output Values
1 0.25 -0.36 0.04 0.22
2 0.34 -0.48 0.06 0.29
3 0.46 -0.60 0.09 0.38
4 0.58 -0.72 0.13 0.48
5 0.70 -0.82 0.18 -0.57
6 0.81 -0.89 0.26 -0.65
7 0.88 -0.94 0.35 -0.73
8 0.94 -0.97 0.47 -0.79
9 0.97 -0.98 0.59 -0.85

With the output greater than 0.80,
the network is now trained with the
weight values currently in place.

ADALINE Pattern Comparison

You can now use the trained neuron in
Forward Activation mode to see the
effect of various input patterns. If you
go to the program and run it with
some input patterns, the result might
be as those shown in Table 3.

You can see that inverse input
patterns produce inverse outputs; the
pattern it was trained on (the first) still
produces the same output; and that
the last two show something about
the weight system that is quite inter-

Desired Output

input 1 x
Weight 1

input 2 x
Weight 2

Input 3 x
Weight 3

Figure 5-The error for each input is the dfference between the actual output and the
trained output. The error for each input is processed separately.

June/July 1989 33

esting. The difference between 0.97
for Wl and 0.59 for W3 means that the
first and third inputs do not have the
same effect on the trained neuron.
Changing input 1 from TRUE to
FALSE changes the actual output from
0.85 to 0.45, while changing input 3
from TRUE to FALSE changes the
actual output from 0.85 to 0.20. The
other inputs are not changed from the
first line for this comparison.

You now have a basic understand-
ing of the ADALINE, but you’ll need
to look more closely at several items,
such as the delta rule, and why it is
structured as it is.

ADALINE’s Feedback System

The error for each input is derived
from subtracting the value of the indi-
vidual input times its weight from the
desired output value. Figure 4 shows
it graphically.

Your weight values are adjusted
more if the error is large to speed the

Figure ~--AS the iteration process proceeds, the value of the multiplier increases as it
moves toward the bottom of the curve. The optimum multiplier is the miflimUm value

training process. When they are near which provides an output acceptably close to the trained output. Large-value muffipli-

the optimum value, the error is small. ers tend to oscillate around the trained value while never coming within acceptable

They are then adjusted in small incre-
,imits

’

Put a complete 68000 computer into your PC
An exciting 68000 development platform that gets your
software out!

l Actually runs a 68006-no simulations required to test
your code.

l Real-time embedded multitasking applications can be
developed using VRTX32 and RTscope.

l Familiar tools (editor, cross-assembler) can be used on
the PC to write and document programs.

l Downloading to the system is fast: on-board monitor
provides direct communication with the PC through
the I/O channel.

PLUS you can develop multiprocessing techniques and
programs by installing two or more boards in the PC.

Features of the MISTER-8
l Low cost: operates in any PC, AT, or clone. l Two or more
boards can be installed to do multiprocessing. l Communicate
using the PC’s serial port and your favorite modem program
- or directly through the FIFO. l 128K ROM in three appli-
cation sockets; 64K SRAM.

MISTER-8 with monitor EPROM , , . . . $495

I
U IMmo

M*C”~ti RE%XlKES @ 717-523-0777 or

60 SOUTH EIGHTH STREET, LEWISBURG, PA 17837 717-524-7390 (recorder)

STOCKS. .
.OPTIONS .
. FUTURES

Turn your PC into a

MARKET QUOTATION MONITOR
New book covers complete information on financial news
and market quotes for your PC from satellite and FM radio.
Topics include:

- Data Encryption
- Password Methods
- Receiver Unit Design

Covers quotation processing and data broadcasting from
the trading floor to the desktop, $19 plus $2 S/H (includes
demo diskette).

Send for FREE catalog of
- DATA RECEIVER KITS
- QUOTE DISPLAY SOFTWARE
- DESCRAMBLING UTILITIES

CALL - (303) 223-2120 (anflime)

DATArx
111 E. Drake Rd., Suite 7041

Fort Collins, CO 80525

Circle No. 118 on Reader Service Card

Pattern Resulting Percent Decimal and set the data pointer. The pointer
Trained on Output Value Difference can then be used to correctly pick out
11111111 0.84 0 each data byte so it can be compared

to the last two transmissions. If all
Error Test
Patterns

three transmissions matchon this byte,

11111110 0.66 22 254
we will believe its value. The end

01111111 0.60 29 127
result? A mobile robot which is prop-

01111110 0.42 50 126 erly radio-linked to its host computer

Table 4-A triairun ofADALINEmightproduce the resultsshown here.
using low-horsepower computing

Youcan setthelimits
of UccePtance so that any or all of the examties shown register as an acceptable input.

engines and state-of-the-art software
techniques. All in all, it’s a low-cost

ments to prevent the weight value
fromovershootingtheoptimumvalue.

You can visualize the learning
process as a bowl, with the weight
value changing rapidly as it comes
down the side of it, then changing
more slowly as it moves across the
almost flat bottom of the bowl, as
shown in Figure 6. Thus, the Delta
Rule controls the amount of change in
the weights for each iteration. It is:

W new=
Wald +inaement size+ weightedinput

weighted input 2

The increment size is a control on
the size of each step, which affects the
number of iterations needed to train
your neuron. A value of 0.50 is used
by this program. If it is made much
smaller, it would take much more time
for the neuron to train. If it is very
large, training will be very rapid.
However, the value found in the ana-
log neuron simulations will oscillate
back and forth around its real value
andnot settleonit. Thisisparticularly
true in multiple-neuron systems.

The weighted input is simply the
input value times its respective weight
value.

How ADALINE Solves the Problem

You now understand how ADAL-
INE can be used to compare each
individual header byte to the value it
is expecting. ADALINE will report
exact matches in cases where the out-
put values for the two bytes match
perfectly. In cases where they don’t
match, ADALINE will indicate how
many bits are corrupted. By running
the program, you can present bit pat-
terns to ADALINE and see how much
variation there is going to be for one-

and two-bit errors. The result of a trial

Thisinformationfromrunningthe
run is shown in Table 4.

neuron can be used to devise a pro-
gram which will try a strategy of ac-
cepting one bad bit in the 4-byte header
coming from the radio receiver. We
can accept it at any byte position by
requiring that three of the four bytes
have 0% error, and that the remaining
byte not have more than a 35% error
whencompared withitsproper value.
The bit position will not significantly
affect the deviation we accept.

This ability to locate the header in
spite of a few dropped bits allows us

way toget a grip on slippery data. +

Scott Farley owns Tempus Consulting,
832 Brown Thrush, Wichita, KS 67212,
316-722-3068. He has 20 years experi-
ence in appliance design, working bo th the
electronicand mechanical sides. Areas in
which he consults include product defini-
tion and development, product liability,
code and standards, computer systems
and programming, electronic and electri-
cal hardware, instrumentation, and data
acquisition.

IRS

to locate the start 6f the data stream

210 Very Useful
2 11 Moderately Useful
2 12 Not Useful

TM

The DA/M
A Low Cost Data Acquisition System

l 8-A/D Channels, O-Digital I/O Channels, l-Counter/Timer.
l Runs on 12 to 24 VDC.
l 15 Systems or 255 points per RS232iIZS485 Communications

Port.
l Connect to Sensors that output 0-4.59V, 0-5V, 0-1OV or 4-20Ma

or add optional onboard amplifiers for lower signal levels,

DA/M 100-O DA/M System $200.00
DA/M 100-l RS232-RS485 Converter Cable $20.00
DA/M 100-2 ROM/RAM Piggy Back Card $50.00
DA/A4 100-3 RS232-RS485 Converter Unit $100.00
DA/M 100-5 Screw Terminal Prototype Card $100.00
DA/M 100-7 Isolator/Relay Card $160.00
DA/M 100-8 Opto-22 Interface Card $140.00
DA/M 100-9 RAM/ROM/Real Time Clock Card $180.00

LIIC;I~) IYU. I IY ori waaer wemce Lara

June/July 1989

An Intelligent SCSI Data Acquisition
System for the Apple Macintosh

by John Eng

n the good
01’ days of per-
sonal comput-
ing, there were legen-
dary machines like the
Apple II+-designed
from off-the-shelf com-
ponents, it had an archi-
tecture so open that you
could get inside the
computerwithoutusing
tools. As a result, nu-
merous plug-in periph-
erals became widely
available for the Apple
II bus, and building
plug-in boards from scratch was the
solution to many specific problems.

For the approximate price of an
early Apple II+, today’s designer can
purchase a Macintosh Plus or, for a
little more, a Macintosh SE. The
Macintosh Plus has no slots for plug-
in peripherals; the SE has one slot.
Neither machine can be opened with-
out special tools. Certainly, both
machines support some pretty pow-
erful software applications, but what
is a hardware designer to do?

My favorite Apple II project was a
plug-in board that performed &bit
analog-to-digital (ADC) and digital-
to-analog (DAC) conversions. With
this peripheral, my Apple II could
perform simple digital audio signal
processing, storage,and reproduction.
Given this experience with data ac-
quisition on the Apple II, I thought it
would be an interesting project to give
my Macintosh Plus comparable abili-
ties.

A number of data acquisition
products for the Macintosh have re-
cently become available. One of the
most popular is the MacRecorder,
manufactured by Farallon Comput-
ing (Berkeley, CA). The MacRecorder
is an audio digitizer that transmits
sampled sound data through one of
the Macintosh’s serial I/O ports. The
maximum speed of the serial ports
limits such devices to a digital resolu-
tion of 8 bits and a maximum sam-
pling rate of 22 kHz. As demonstrated
in the next section, these specifica-
tions result in a sound quality some-
what less than that of an inexpensive
home stereo system. TheMacRecorder
is also an input-only device, using the
Macintosh’s built-in &bit audio DAC
to output digitized sound samples.

While devices like the MacRecor-
der offer an economical way to give
the Macintosh decent digitization
capability, I wanted to designa device
with a greater digital resolution and a

Part 1

og the Ha*dwwe

faster sampling rate
The result is the
DAQ3000, an intelligent
12-bit data acquisition
peripheral for the
Macintosh Plus. The
DAQ3000 is a stand-
alone, microprocessor-
based subsystem that is
capable of a 2%kHz con-
tinuous sampling rate
and communicates dig-
itized data over a SCSI
bus. With modifica-
tions, the DAQ3000
system can support 16-
bit resolution while
sampling at 28 kHz.

In this article, I will first explain
my basic design goals and how they
were implemented in the design.
Then, after a more detailed descrip-
tion of the hardware, I will consider
some future directions for the
DAQ3000. Part 2 of this article will
cover software design for both the
DAQ3000 and the Macintosh host.

Because my old Apple II data ac-
quisition peripheral was used almost
exclusively for audio signal process-
ing, I wanted to optimize my new
Macintosh project specifically for
audio signals. I also wanted my new
project to have genuine audio fidelity,
similar to that of an inexpensive ste-
reo tape deck, which may have a fre-
quency response of up to 12-14 kHz
and a signal-to-noise ratio (SNR) of
60-70 dB. These two specifications
parallel the two main characteristics

36 ClRCUlT CELLAR INK

of any digital data acquisition system:
conversion speed and digital resolu-
tion. According to the Nyquist sam-
pling theorem, accurate digitization
of a 12-14-kHz signal requires a sam-
pling rate of twice that frequency, or
24-28 kHz. This sampling rate corre-
sponds to an ADC conversion time of
no more than 35-40 I_LS. With regard to
the required SNR, we should choose
an ADC with at least 12 bits of digital
resolution, giving an output voltage
resolution of approximately 1 part in
4096 and a corresponding SNR of 72
dB (SNR = 1010g,,[V2s,gna,/V2n~~l dB).
By comparison, an &bit ADC would
only provide a SNR of 48 dB.

Twelve-bit data conversion cre-
ates rather strict requirements on the
acceptable system error or noise. For
example, to achieve the resolution of 1
part in 4096 for a typical 12-bit ADC
voltage range of 10 V (*5 VI, the total
system error and noise should not be
greater than 1.2 mV. A sample-and-

hold(SAH)deviceiscertainlyrequired
herebecauseevenwithaperfectaudio
system, a potentially important source
of error originates from any signifi-
cant change in the input signal during
the ADC’s conversion period. In the
worstcaseof the 12_bitexampleabove,
the audio input signal to the ADC
should not vary more than 1.2 mV
over the entire conversion period of
35-40 p.s. This requirement would
severely limit the signal frequencies
accurately measurable by the ADC
without a SAH.

TheDAQ3OOO’sanalogcircuitsare
based on three Harris devices. The
HI-574A is a 12-bit ADC with a maxi-
mum conversion time of 25 us, giving
a maximum possible sampling rate of
40 kI-Iz. The HI-5680V is a 1Zbit DAC
with a maximum settling time of 1.5
p.s. The HA-5320 is a SAH chip with a

+5

6502 fi

OSCILLATOR

Phase

maximum voltage droop of 0.5 ~~V/JIS
in the hold mode. Over the 25-us
conversion time of the 574A ADC, the
maximum total voltage droop of the
5320 SAH is 12.5 uV, which is well
within the 1.2-mV requirement.

With the exception of hard disk
drives, most currently available
Macintosh peripherals communicate
data through one of the Macintosh’s
two RS-422 serial ports. These serial
ports allow a maximum 8-bit transfer
rate of about 22 kHz, which is much
slower than the 56kHz transfer rate
needed by the DAQ3000 (28-kHz
sampling rate x 2 bytes per 1Zbit
sample). To accomplish the high-
speed data transfer, the DAQ3OOOcom-
municates instead through the SCSI
bus port available on the Macintosh
Plus and later models.

SCSI stands for Small Computer
System Interface, a standard parallel
interface for high-speed intelligent
peripherals such as hard disks and

; powe,. 1 UCC 1 GND ;

: LIISSS 1 8 1 I j
i . . I

60
Al
f92
A3
A4
A5
R6
A7

I WCI R/W\. /

74LS138
Y7 7 SEL7\ ($3800) ROl’l, I

A Y6 9 SEL6\ ($3000) ,_
6 Yso10 SEL5\ (EZ8@0)SCSX, ,

Y4311 SEL4\ ($2000) D A C ,

T y3 f$ sEhz\ (01800) ADC,/
t51000) I/O_/

/
/

A8
F19

610
R/B

2 out
A l l
A12
F113

lure 1 --The main processor section of the DAQm includes a 65U2A microprocessor and chip selects that break up the 64K address
lace into eight sections.

June/July 1989 37

THE INTERCHANGE”
Bi-directional DataMigration Facility
for IBM PS/2, AT, PC, PORTABLE
and Compatiblea

*Parallel port to parallel port.
*Economical method of file transfer.
*Bi-Directional file transfer easily
achieved.

*Supports all PS/2 systems
(Models 30, 50, 60, and 80).

*Supports IBM PC, XT, AT, Portable
and 100% compatibles.

*Supports 3 I/2 inch and 5 l/4 inch disk
tranefem.

‘Supports hard disk transfers.
*Supports RAMdisk file transfers.
*The SMT 3 Year Warranty.
ONLY $39.95

FastTrap’”
The pointing device of the future is
here!

*Two and three
axis pointing capability.

*High resolution
trackball for X and Y axis input.

*High resolution fmgerwheel for Z axis
input.

*Use with IBM@PC’s, XT’r, AT’r and
compatibles.

*Three input buttons.
*Full hardware emulation of Microsoft @
Mouse.

*Standard RS-232 serial interface.
*Include6 graphics drivers and menu
generator.

*Easy installation.
*l year warranty.
*Made in U.S.A.

ONLY $149.00

LTS/C Corp.
167 North Limestone Street
Lexington, Kentucky 40507
Tel: (606) 233-4156

Orders (800) 872-7279
Data (606)252-8968 [S/12/2400 8-N-11
VISA, Mastercard, Discover Card,
TeleCheck

Circle No. 132 on Reader Service Card

38 C/RCU/T c~uv? INK

streaming tape drives. The SCSI stan-
dard was developed by the American
National Standards Institute (ANSI)
and includes standard protocols al-
lowing asynchronous data transfers
atgreater than 1 Mbyte/s over adaisy-
chained bus. The DAQ3000 uses the
NCR 5380 SCSI controller, the same
SCSI chip used in the Macintosh.

On With the Design

UseofSCSIprotocolsrequiresthat
the DAQ3000 be “intelligent.” As a
result, the DAQ3000 was designed as
a stand-alone microcomputer subsys-
tem. At the system’s center is a 6502A
microprocessor, running at 2 MHz,
surrounded by bus drivers and ad-
dress decoding logic (Figure 1). A
74LS245 bidirectionally buffers the
data lines; the 6502’s address and bus
control lines are buffered by 74LS244s.

The 6502’s address space is divided
into eight 2K-byte areas, six of which
are used by the system: RAM, System
I/O, ADC, DAC, SCSI, and ROM.
Because the most-significant two
address bits of the 6502 are not used,
the eight 2K-byte areas repeat them-
selves four times in the 64K-byte total
address space of the 6502. This partial
address decoding scheme was chosen
to minimize the chip count. Address
decoding is done by a 74LS138, which
generates a selection signal (SELn\)
corresponding to each address area.

The RAM and ROM (Figure 2),
and System I/O (Figure 3) sections are
each designed around one major chip.
The 6116P-2 2K-byte static RAM must
be configured as address area 0 be-
cause the first 512 bytes of the 6502’s
address space must be present for the
zero-page addressing mode and the
system stack. The 2816A-25 2K-byte

TA BUS

DPFSS BUS

Figure 2-The 2K bytes of static RAM provide plenty of temporary storage and 2K bytes
of EPROM make program development easier.

C. _ . ,^^^. . . ,. _ . ,. .

tigure J-A om2 I perlpnerallnrerrace aaapterproviaes me necessary Dlrs To cfrwe eight
LEDs and to check the status of the analog-to-digital converter.

Connect each of
t h e POWC~ supplv
~lno t o ground
t h r o u g h one 0.luF
ceramic and one
4.7~1F t a n t a l u m
CaPacitor

4 A0 10’J IN I3

<AOC STbTK) 28. STS 2 0 U I N 14 N.C.

OGNO AGND ’
115

AUDIO FREQUENCY INPUT
Lins Level - i0.316U

O f f s e t FldJust
10k

- -12

Frgure &The ADC section includes a 12-bir ADC and a sample-and-hold amplifier.

EEPROM (electrically erasable) must
be configured as address area 7 be-
cause the power-on reset vector is
located in the last bytes of the 6502’s
address space. The 2816 EEPROM is
pin-compatible with the more com-
mon 2716 EPROM, but the 350-ns
access time of commonly available
2716s is too slow for the DAQ3000
timingrequirements. The SystemI/O
section uses the 68B21 peripheral in-
terface adapter (PIA), which contains
two 8-bit parallel I/O ports. One port
is used to drive eight indicator LEDs,
and the upper bit of the other port
allows the microprocessor to monitor
the status signal of the ADC section.

The ADC section (Figure 4) con-
sists of two main chips: a SAH ampli-
fier and the ADC itself. When there is

a logic 1 at its S/H input, the SAH
amplifier holds an instantaneous
sample of the incoming signal for the
ADC to digitize. Here, the SAH is con-

figured as a noninverting amplifier to
convert line-level (ti.316 V) audio
signals into the+5-V rangeof the ADC.

The conversion process begins
when the microprocessor performs a
write operation to the ADC’s address
space, causing both SEL3\ and R/W\
to go low. The HI-574A responds
with a logic 1 on its STS output and
begins the conversion based on the
SAH’s output (now held). A combi-
nation of NOR (74LSO2) and OR
(74LS321 gates ensures that the SAH
receives a hold signal from the mo-
ment SEL3\ and R/W\ go low until
STS returns to logic 0 at the end of the
conversion. The microprocessor can
detect the end of conversion by check-
ing the HI-574A’s ST3 signal through
port A, bit 7 of the 68B21 PIA. When
the conversion is finished, the micro-
processor reads the 12-bit result as
two consecutive bytes in the ADC sec-
tion’s address space.

RS-232C
INTERFACE AND
MONITORING
EQUIPMENT
CATALOG

Order drecr from marfacwer TODAY and SAW

WRITE or CALL for YOUR FREE B&B
ELECTRONICS CATALOG TODAY!
Pages and pages of photographs and illustrated,
descriptive text for B&B’s complete line of RS-232
converters, W-422 converters, current loop con-
verters, adapters, break-out boxes, data switches,
data splitters, short haul modems, surge pmteo-
ton, and much, much more. Most products meet
FCC1 55.

Your RS232 needs for quality, service and corn-
petitive prices will be more than met by B&B ELEC
TRONICS. Manufacturer to you; no middleman!

Money-~~guarantee!Same-dayshipment!One-
year warranfy on products! Tschnical sum is
readily avai/ab/e.

Tsms: Hsa, MO. cash orders pspaid. P.O.’ s tan qua&d rated
lims accspsd. IL res’dsnb add 6 1/4X s&s tax.

0 RUSH MY NEW FREE CATALOG

Name
Company
Street
City s ta te ‘ z ip _

a&a elertrunirsMAN”FACT”RING COMPANY
4032E Baker Road l P.O. 1040

Ottawa. IL 61350

Phone: 8 15-434-0846

cle No. 105 on Reader Service Card

June/July 1989 39

d

The TTL logic of
the DAC section
shown in Figure 5 is a
little more compli-
cated, but its opera-
tion is simpler. To
send a 12-bit value,
the upper and lower
bytes are written into
consecutive memory
locations. The three
74LS374 latches form
a double-buffering
scheme that ensures
thefirstmicroproces-
sor write operation
does not affect the
previously latched
12-bit value. All 12 bits to the DAC
chip change simultaneously and are
latched after the second byte is writ-
ten by the microprocessor. Latching
control signals for the three 74LS374
1atchesaregeneratedbythreeORgates
(74LS32) and an inverter (74LSO4).

All three analog components
(SAH, ADC, and DAC) have separate
gain and offset adjustments. The off-
set adjustments ensure that an input
of 0 V to the ADC and an output of 0 V

by the DAC correspond to the 12-bit
digital representation for OV ($800 for
the 574A ADC, $7FF for the 5680V
DAC). The gain adjustments are nor-
mally used to calibrate the converters
so that the maximum digital value
($FFF) corresponds accurately to the
stated full-scale voltage. The gain ad-
justment on the SAH controls the am-
plification of the incoming analog
audio signal. The gain adjustment on
the ADC should be set to give a nomi-

nal full-scale input
of f5 V. The level of
the outgoing analog
audio signal is con-
trolled by a potenti-
ometer across the
output of the DAC.
The separate gain
adjustment on the
DAC should be set
to give a nominal
full-scale output of
ti.5 V when theOut-
put Level Control is
setatmaximum. For
precision voltage
applications, the
Input and Output

Level Controls should be eliminated
and the SAH should be configured as
a simple voltage follower (in Figure 4,
remove Rl and R2 and connect pin 1
of the SAH directly to pin 7).

The last section to be discussed is
the SCSI section shown in Figure 6.
Four OR gates (74LS32) and two in-
verters (74LSO4) provide various ver-
sions of the SEL5\ pulse to the 5380’s
four chip selection lines (CS\, DACK\,
IOR\, and IOW\). The IOR\ and

DATA BUS

07
^^ Connect each of

.^ w, .,+]El2 (lrb) -u\L-12

Audio Frequency Output

Figure 5-The DAC section includes a 12-bit digital-to-analog converter plus double buffering to allow all 12 bits to be set simultaneously.

40 ClRCUlT CELLAR INK

e
IOW\ signals control the direction of
microprocessor data flow. The CS\
signal selects one of the 5380’s eight
internal registers, as specified by
AO-A2 (address offsets $00-$071. The
DACK\ line is normally generated by
DMA hardware, but here the micro-
processor simulates a DMA controller
by using address decoding logic to
generate the DACK\ signal. This
configuration is known as the 5380’s
pseudo-DMA operation mode. In this
mode, the 5380 is “selected” using the
DACK\ line instead of the CS\ line,
which occurs on microprocessor reads
and writes to address offsets 08OF
(A3 high).

The 5380’s eighteen SCSI signal
pins are open-collector outputs and
can be directly connected to the SCSI
bus of a Macintosh Plus, SE, or II. The
network of resistors shown in Figure 6
provides one standard bus termina-
tion for each line. There has been
some confusion on how many SCSI
terminators are needed for the Macin-
tosh. According to Apple, only one
terminator should be used when there
is only one SCSI device connected to
the Macintosh. If there are two or
more SCSI devices, then two termina-
tors are required, one at each end of
the daisy-chained bus. For a given
hardware configuration, it is not al-
ways easy to determine how many
SCSI terminators are present because

they are often built inside of the SCSI
equipment. The Macintosh Plus has
no built-in terminator; the SE and II
models each have one built-in termi-
nator if an internal hard disk is pres-
ent. All of this means that the
DAQ3000 should work, as shown,
with a Macintosh hardware configu-
ration that has 0 or 1 SCSI device(s)
(including any internal hard disks).
This probably applies to most Macin-
tosh Plus/SE/II systems. For Macin-
tosh systems with a properly termi-
na ted SCSI bus already containing two
or more devices, the DAQ3000 should
work if it is inserted in the middle of
the daisy chain. In this case, the
DAQ3OOO’s internal bus terminator
should be disabled by removing the
two jumpers shown in Figure 6.

The 6502 microprocessor accesses
the ADC, DAC, System I/O, and SCSI
sections as memory-mapped devices.
A programmer’s model for the
DAQ3000 is shown in Figure 7. A
moredetailed descriptionof the68B21
and 5380 hardware registers can be
found in the manufacturers’ data
sheets. Note that the 574A ADC and
5680V DAC conversion codes are
reversed with respect to their polarity
so that a digital value of $000 repre-
sents a full-scale negative voltage on
the ADC, while the same $000 value
represents a full-scale positive voltage
on the DAC. This polarity reversal

should not affect audio applications
but can be compensated by adding
invertersbetween the 74LS374 latches
and the 568OV DAC in Figure 5.

Construction Notes

In order to achieve the theoretical
resolutionof its 12-bit ADCand DAC,
the DAQ3000 must be constructed to
minimize audio frequency noise.
Ideally, printedcircuit construction
with a ground plane should be used.
However, I chose wire-wrap for its
ease in prototype modifications, even
though there may have been an in-
crease in noise. (The ground plane is
still a good idea with wire-wrap.)

Whatever the construction
method, proper power supply and
grounding practices are important.
The goal is to prevent the analog cir-
cuitry from detecting spurious sig-
nalsgenerated by thedigitalcircuitry’s
logic switching. The best solution is
keeping the analog and digital com-
ponents as physically and electrically
independent as possible. Separate
voltage supply lines should be used,
and the digital and analog grounds
should be connected together at only
one point. Decoupling capacitors
should be placed at the power supply
pins of each chip. A l-5@ tantalum
capacitor in parallel with a O.l+F
ceramic capacitor is a typical combi-

. 741s32

Macintosh SCSI

4

_ 10

S

17171

NCR
5380

Figure 6--The NCR 5380 makes interfacing to the SCSI bus much easier.

June/July 1989 4 1

System WO (Module 2)

Peripheral/Data Direction Register A
Control Register A

Peripheral/Data Direction Register B
Control Register B

ADC (Module 3y
Read

$1800 Read 8 MSBs
$1801 Read 4 LSBs & 4 trailing zeros

Write

Initiate 1 P-bit conversion
Initiate &bit conversion

DAC (Module 47’
Read Write

No operation
No operation

I Write 8 MSBs into buffer
1 Write 4 LSBs (4 trailing OS) & latch

SCSI (Module 5)
Read Write

$2800 1 Current SCSI Data Register I Output Data Register I
$2801
$2802
$2803
$2804
$2805
$2806
$2807
$2808

Initiator Command Register
Mode Reaister

Figure DAQ3coO’s 6502 accesses the ADC. DAC, System l/O. and SCSI sections as
memory-mapped devices, as shown in this programmer’s model.

Target Command Register
Current SCSI Bus Status Register

’ ADCconversioncodes: $000 =-5.OOOOV,$800 = o.OOOOV,$FFF=+4.!3!376V
** DACconversioncodes: 5000=+2.4988V.$7FF=0.0000 V,$FFF=-2.5000 V

nation used on IC power supply lines.
The power supply itself should have a
ripple of less than 1 mV while supply-
ing the maximum current require-
ments (+5V @LO-1.5A, +12V @O.lA,
and -12V @O.lA). Finally, digital sig-
nal lines can easily couple capacitively
toanalogcircuitry. Thiscouplingmay
be prevented by electrostatic shields
surrounding wires, connectors, and
components carrying audio signals.
Such shielding should be connected
to the analog ground.

Future Directions

As I developed the project, I real-
ized that the DAQ3OOO’s design has
great potential as the basis for an intel-

ligent, general-purpose SCSI control-
ler. The DAQ3OOO’s functional capa-
bilities can be changed/augmented
by simply substituting/adding hard-
ware (e.g., additional sections sup-
porting TTL digital I/O, additional
ADCs, more memory, etc.).

For some applications, it may be
necessary to hook up an external
modem or terminal. The current sys-
tem has no serial ports, but this could
be changed, of course, by adding
another section. I would suggest us-
ing the 6551A asynchronous commu-
nication interface adapter (ACIA), a
65xx-series device with an internal
baud rate generator.

Although they are good chips,
there is nothing “special” about the

Harris analog devices used in this
project; many other manufacturers
offer devices with similar specifica-
tions. There is also nothing immu-
table about the DAQ3OOO’s 1Zbit reso-
lution. Eight-bit converters could be
used if a faster sampling rate is de-
sired at the expense of a lower digital
resolution. If 16-bit converters are
used, a 4-bit increase in dynamic range
can be obtained with no change in the
sampling rate. Little, if any, software
changes would be required because
the DAQ3000 software already
handles all data as 16-bit values (four
bits are currently “wasted”).

An essential analog component
not discussed so far is the audio filter.
For high-quality audio sampling, a
low-pass filter must be placed in front
of the ADC input to filter out frequen-
cies too high to be digitized, as dic-
tated by the Nyquist theorem. For the
DAQ300O’s 2%kHz sampling rate, the
filter should have a sharp cutoff at ap-
proximately 14 kHz. Without low-
pass audio filtering, frequency com-
ponents in the incoming analog signal
higherthan kHzwillreachthe ADC
and be digitized as &sing noise with
frequency components below 14 kHz.
Aliasingnoise causes an audible whis-
tling or “grunge” when the sample is
played back. The vast subject of ana-
log filter design and construction is
beyond the scope of this article. I will
mention, however, that the newer
switched-capacitor designs seem well-
suited for the sharp cutoffs required
by digital sampling. [Editor’s Note:
For moye information on filter design, see
the sidebay on page 43.1

Next Time: Software Design

The final DAQ3000 system re-
quires three pieces of software. The
first piece, DAQ3 0 0 0 . ASM, is written
in 6502 assembly language and re-
sidesin theDAQ3OOO’sEEPROM. This
code is responsible for initializing the
DAQ3000 and handling all SCSI data
transfer requests from the Macintosh.
The second piece of code,
SCSIFast . asm, contains fast, Pas-
Cal-callable SCSI transfer rou tines writ-
ten in 68000 assembly language for
the Macintosh. The third piece of soft-

42 C/Ram CELLAR INK

ware, SCSIMover.pas, is a Macin-
toshapplicationwritteninLightspeed References
Pascal that performs data acquisition,
storage, and reproduction. [Editor’s
Note: Softwarefor this article is available
for downloading from fhe Circuit Cellar
BBS or on Circuit Cellar lNK Software
On Disk #9. For downloading and order-
ing information, see pge 78.1 In the sec-
ond part of this article, I’ll explain the
design of these three software compo-
nents in detail. +$

John Eng recently completed a research
fellowship with the Howard Hughes
Medical Institure and k currenrly a sen-
ior medical student at the University of
Wisconsin. His interest in microcom-
puting began with the purchase of an
Apple I1 in 1981.

IRS
2 13 Very Useful
2 14 Moderately Useful
215 Not Useful

American National Standards Institute. Small Computer System Infer-
face (SCSI). Document ANSI X3.131-1986, American National Standards
Institute, New York, 1986. [A formal statement of the SCSI standard, this
document also includes practical information.]

AppleComputer, Inc. InsideMacintosh VolumeZV. Addison-Wesley,
Reading, MA, 1986. [This book includes chapters on SCSI hardware and
software on the Macintosh Plus computer.]

Apple Computer, Inc. “SCSI Bugs.” Macintosh Technical Notes, No.
96. Apple Programmer’s and Developer’s Association, Renton, WA.
[Outlines some quirks in the Macintosh implementation of SCSI.]

Chamberlin, Hal. Musical Applications of Microprocessors. Hayden
Books, Hasbrouck Heights, NJ, 1980. [Covers basic digital sampling top-
ics such as the Nyquist theorem, aliasing, filtering, and much more.]

Ciarcia, Steve. “Adding SCSI to the SB180 Computer.” Part 1, Byte,
Vol.11,No.5(May1986~andPart2,Byte,Vol.11,No.6~June1986). [These
articles include a general introduction to the SCSI protocol.]

Fischer, C. R. “Experimenting with Brickwall Filters.” ElectronicMu-
sician, January 1989. [Presents a design for a low-pass, sharp cutoff filter
using switched-capacitor technology.]

NCR Corporation. Standard Products Data Book. NCR Microelectron-
ics Division, Colorado Springs, 1988. [This data book contains detailed in-
formation on programming the 5380 SCSI chip, actually including some
sample 6502 code. Be careful-the 6502 code contains at least one error.]

June/July 1989 43

RSTW CLKB WB l-l@\

QUAD PORT RW,

8 “ESSftGE B Y T E S
1 CHECK BYTE

PORT 1
RST1\

ESSRGE BYTES
CHECK BYTE

I

PROTOCOL REGISTER

T
1

PORT 2
0”FID PORT RFl”

8 PIESSRGE B Y T E S
I CHECK BYTE

T
I

I, L \(, \I,
I

I PORT 2

RST2\ CLKP DO2 ~12,

Figure 2- lhe DS2Q ki has a maximum theoretical throughput of 1.52 Mbps at its top clock speed of 4 MHz.

You gain access to the quad-port RAM message area
by sending a port-select identification byte (8 bits). Each of
the four ports has a specific ID value and will disregard
any transmissions that do not start with the correct ID. The
&bit ID codes are as follows:

PORT0 = 11001011 (CBH)
PORT1 = 11011011 (DBH)
PORT2 = 11101011 (EBH)

PORT3 = 11111011 (FBH)

All bits are sent from least-significant bit to most-sig-
nificant bit. If the correct ID is received, the port will move
into the next phase of the protocol, sending the message
center info to the host computer. The Message Center In-
formation Byte is read by the host and contains two pieces
of information. The lower nibble of the message center
byte indicates to which ports you have sent a message that
has not yet been received. The upper nibble indicates any

messages ready for you to receive from other ports. All
messages sent by the other ports to you should be read
prior to sending any message to prevent a “message jam”
from occurring. The message center byte format is as
follows:

Message Available From: Message Sent To:
Port0 Port1 Port2 Port3 Port0 Port1 Port2 Port3
(D7) (D6) (D5) (D4) (D3) (D2) (Dl) (DO)
------Upper Nibble------- - - - - - L o w e r N i b b l e -

Communication can stop at this point if there are no
messages to receive and none to send. If you do continue,
the port will move into the execution phase. The Execution
Code is sent by the host and again contains two pieces of
information. The lower nibble indicates which action is to
follow: a read, a write, or a write with “more to follow.”
The upper nibble indicates which port the message will be
read from or sent to. Messages can be read from only one
port at a time but may be sent to all ports at once. The
execution code byte format is as follows:

Message Destination: Action Code:
Port0 Port1 Port2 Port3 Code ___
(D7) (D6) (D5) (D4) (D3) (D2) (01) (DO)

- U p p e r N i b b l e - - - - - - - - L o w e r N i b b l e -
0000 (OH) = read

Action codes: 1000 (8H) = write
1100 (CH) = write with more to come

If you have chosen to read a message, the next eight
bytes will be a message sent by the DS2015. These are read
from the source port’s message area and sent to the host
computer. A ninth byte containing status information can

June/July 1989 45

BYTE 1 - DFITFl WRITTEN FROM HOST TO PORT
PORT SELECT ID DATA GOOD ON RISING EDGE OF CLOCK

11001011 - PORT 1
_________________________---.

BYTE 3 - DATA WRITTEN FROM HOST TO PORT
EXECUTION DATA GOOD ON RISING EDGE OF CLOCK

0I00---- - DESTINATION PORT 1
----0000 - READ

-____--_____--_____---~~~_--.

BYTE 2 - DATA READ BY HOST FROM PORT
MESSFIGE CENTER DATA GOOD ON FALLING EDGE OF

----0011 - MESSClGE S E N T TOI P O R T 3
0100---- - MES%GE READY FROM PORT

CLOCK
8 2
1

Figure J--The Invisible Net system requires 80 bits to transmit 64 bits of message data, and 88 bits OxAKfing the check byte) to receive
the same 64 bits.

be optionally read. The status is a message indicating
corrupted data, good data, or good data with more com-
ing. A corrupted data status tells the host that the sending
port has overwritten the message before it was read and
should be discarded. Good data with more coming lets the
host know that there is more to the message. Legal check
byte values include:

Corrupted Data = 1OlOlOlO (AAH)
Good Data = OlOlOlOl (55H)
Good Data With More Coming = 01011010 (5AH)

C ircle No. 120 on Reader Service Card

46 ClRCUlT CELLAR INK

SINGLE CHIP
MICROCOMPUTER DEVELOPMENT SYSTEMS
Each of three products allowsthe IBM PS2/PC/XT/ATto be
used as a complete development system for the Motorola
6805 series single chip microcomputers. MCPM-1 sup-
ports the MC68705 family, MCPM-2 supports the
MC1468705 family and MCPM-3 supports the MC68HC05
family. Each system is $495 and includes a programming
circuit board or programmer with driver, cross assembler
and simulator/debugger software. A system is also avail-
able for the HITACHI 63705 ZTAT micro.

lECr
- The Engineers

Collaborative, Inc.
Route 3, Box 8C; Barton, Vermont 05822
Phone (802) 5253458 Fax (802) 525-3451

If you have chosen to write a message, the next eight
bytes will be sent from the host computer; no ninth byte is
sent. When the last bit of the eighth byte is sent, the
“message from” bit is set to a “1” in the target port’s
message center, indicating a message is ready. When the
target port reads the last bit of your message, the “message
to” bit in your message center is reset to a “0,” indicating
the message has been received. If you write another eight-
byte message before the last message was read by the
target port, a corrupted data code will be sent to the
target’s check byte. The data transmission sequence is
shown in Figure 3.

The system requires 80 bits to transmit 64 bits of
message data and 88 bits (which includes the check byte)
to receive it. The time required is based on the CLK speed
of the host for the send portion and the CLK of the target
for the receive portion. If we assume the absolute maxi-
mum speed of 4 MHz for both sending and receiving, each
bit takes 25 nanoseconds. Therefore,

Throughput = (0.000000025 x 80 + 64)
+ (0.000000025 x 88 + 64)

= 31.25 ns/bit + 34.38 ns/bit
= 65.63 ns/bit or 1.52 Mbps

Realize, though, that this is a theoretical limit that you
won’t even approach in practical applications. Demo
software written for MS-DOS machines, which allows
viewing target directories and copying and erasing of
target files, runs at about 5,000-10,000 bps depending on
the speed of the machines being used. Obviously, the
speed of Invisible Net is not its main selling point!

Invisible Hardware

Thisnetworkconnects inan “invisible” manner when
it receives a “data good” strobe. Data can be placed on the
port and as long as the strobe line is never cycled this data
will not affect a printer in any way. Unfortunately, 8-bit
data cannot be read in through the printer port quite as
easily, since the printer port is a latched output-only port.

DB-25P D&P55

TO COMPUTER T O P R I N T E R

I I I I

gure4- The Invisible Net ‘key’sitson yourcomputer’sparallelport. The keydoesnotinterfere with normalprinting from your computer.

However, there is a status port where four open-collector
output bits are also input bits. If the outputs are left high,
they can be pulled low by an external source and read as
inputs by the status register.

Previously, I described the I/O necessary for commu-
nications with each port of the DS2015. Now let’s assign a
few bits to do this communication. The RST\ line will be
driven from D2 and CLK will be driven by D3 of the printer
port data bus. The D/Q line carries data inboth directions,
so it will be connected to the SLCT\ line. This line is
actually D3 on the status port. It’s important to note that
this line is open collector; if a printer is attached, it must be
on and selected, or the SLCT\ line will be pulled low and
no data can be sent in either direction. Also be aware that
the status port inverts all data written to or read from it.

If we ignore the M\ line on the DS2015 for the present,
the three signals RST\, CLK, and D/Q along with ground
create a four-wire communication line just right for use
with inexpensive modular phone cable. The schematic for
the Invisible Net hardware is shown in Figure 4.

The program in Listing 1 is written in BASIC and will
communicate with the DS2015 when connected to the
printer port. The program attempts to establish communi-
cation with each of the DS2015’s ports at each of the
possible printer port addresses. When it finds an active
port, the port is identified along with the printer port
address, and contains all the building blocks for you to
create your own network.

A Network You Can Call Your Own

The DS2015 is available through distribution for about
$10.00. Call Dallas Semiconductor at (214)450-04OOfor the
nearest distributor. But wait, there‘s more! Dallas makes

a port adapter, the DS1256, which goes in-line with the
printer port. This adapter has a modular jack installed to
make an easy connection to pins 4,5,17, and 18 on the

Featuring l Standard RS-232 Serial Asynchronous ASCII Communications
l 48 Character LCD Display (2 Cines of 24 each)
l 24 Key Membrane Keyboard with embossed graphics.
l Ten key numeric array plus 8 programmable function keys.
l Four-wire multidrop protocol mode.
l Keyboard selectable SET-UP features-baud rates, parity, etc.
l Size (5.625” W x 6.9” D x 1.75” H), Wetght 1.25 Ibs.
l 5 x 7 Dot Matrix font with underhne cursor
l Displays 96 Character ASCII Set (upper and lower case)
Options-backlightlng for aisplay, M-422 I/O. 20 Ma current loop l/O,

302 N. Winchester l Olathe, KS 66062 l 913.829.0600-• 800-255-3739

Circle No. 112 on Reader Service Card

June/July 1989 47

printer port with a modular phone cable. In fact, Dallas has
packaged the DS2015 in a complete product: the DS9050.
This package includes two IX1256 port adapters and one
four-way junction box (two additional adapters are neces-
sary to link together four systems). Priced at about $80.00,
the DS9050 is tough to beat.

Dallas Semiconductor is not in the software business,
but have agreed to allow distribution of evaluation soft-
ware. The software lets any PC/AT user view directories
and copy and erase files from any other PC/AT system on-
line, and creates a simple network that is totally invisible
to the users. The executable code is available free for
downloading from the Circuit Cellar BBS. [Editor’s Note:
Seepage78formoreinformationabout Circuit CellarINK Soft-
ware On Disk #9 and how to download from the Circuit Cellar
BBS.1 This code is not supported in any way by Dallas
Semiconductor or Circuit Cellar.

I use this hardware and software combination to trans-
fer files between my XT and AT. Receiving a 20-file

directory takes under 10 seconds. Copying a 50K file
between machines to a floppy disk takes about 75 seconds.
This exceeds 5 kbps by quite a bit if you take into consid-
eration the overhead of reading and writing the file from
and to floppies. All things considered, this makes an inex-
pensive network for up to four PCs without taking up
valuable expansion slots or ports. +

JqffBachiochi (pronounced “BAH-key-AH-key”) is a member of
the CIRCUIT CELLJR INK engineering stafi His background
includes work in both the electronic engineering and manufac-
turingfields. In his spare timeJflenjoys his family, windsurf-
ing, and pizza

IRS
2 16 Very Useful
2 17 Moderately Useful
2 18 Not Useful

10 PP(O)=&H278:PP(l)-&H378:PP(2)=&H3BO: 4010 REM * Send 8 bits of data
AS-"TestData" 4020 REM **********************************k*

20 DP(O)-&HCB:DP(l)=&HDB:DP(2)=&HEB:DP(3)=&HFB 4030 REM Do all 8 bits
30 FOR X=0 TO 2 4040 FOR Z=O TO 7
40 P=PP(X) 4050 REM Clear CIX (D3-0) on the printer port
50 FOR Y=O TO 3 4060 OUT P,4
60 D=DP(Y) 4070 REM Is bit Z a ‘1' in byte 'D'?
70 GOSUB 2000 4080 REM If yes, Clear D/Q (D3-0 of printer
80 D=DP(Y) 4085 REM status port) to output a '1'
90 WC=8 4090 REM If no, Set D/Q (D3=1 of printer
100 GOSUB 1000 4095 REM status port) to output a ‘0'
110 D=DP(Y) 4100 IF (D AND 2nZ)THEN OUT P+2,INP(P+2) AND
120 GOSUB 2000 &HF7 ELSE DUT Pt2,INP(P+2) OR 8
130 IF D=85 THEN PRINT "Connection to Printer 4110 REM Set CIK (D3=1) on the printer port

Port #";HEX$(PP(X));" Interlink Port #";Y; 4120 OUT P,&HC
n 8 bytes =";F3$ 4130 REM If not done do next bit

140 NEXT Y 4140 NEXT 2
150 NEXT x 4150 REM Set D/Q (D3=1) so input can be read
160 END 4160 OUT P+2,INP(P+2) AND LHF7
1000 REM *************x************************** 4170 RETURN
1010 REM * Write to Interlink Port Routine 5000 REM *******x******************************
1020 REM *********************************x******* 5010 REM * Receive 8 bits of data
1030 GOSUB 3ooo:GosUB 4ooo:GCsuB 5000 5020 REM **************************************
1040 D=2*(7-Y)+wc:GQsUE3 4000 5030 REM Clear data ‘D' to null
1050 FOR M=O TO 7:D=ASC(MID$(A$,M+l,l)):GOSUB 5040 D-O

4000:NEXT M 5050 REM Do all 8 bits of data 'D'
1060 GOSUB 6000 5060 FOR Z=O TO 7
1070 RETURN 5070 REM Clear CLK (D3=0) on the printer port
2000 REM ***********************************x** 5080 OUT P,4
2010 REM * Read from Interlink Port Routine 5090 REM Read ‘D3' on the printer status port
2020 REM ************x********************x******** 5100 REM If 'O', Set bit ‘2' of data 'D*
2030 B$="":GOSUB 3000:GOSUB 4OOO:GOSuB 5000 5110 REM If ‘l', then NOP
2040 D=2"(7-Y):GOSUB 4000 5120 IF (INP (P+2) AND 8) = 0 THEN D=D+Z"Z
2050 FOR M=O TO 7:GOSuB 5000:B$=B@-CHR$(D):NEXT M 5130 REM Set CLfc (D3=1) on the printer port
2060 GOSUB 5000 5140 OUT P,&HC
2070 GOSUB 6000 5150 REM If not done do next bit
2080 RETURN 5160 NEXT Z
3000 REM **x************************************* 5170 RETURN
3010 REM * Set CLK (D3=1) then set *RST (D2=1) to 6000 REM ********************x*******************
3015 REM * start cycle 6010 REM * Clear RST\ (D2=0) leaving CLK at its
3020 REM *****************x********************** 6015 REM * present state to end cycle
3030 OUT P,8:OUT P,&HC 6020 PEM ****************************x***********
3040 RETURN 6030 OUT P,INP(P) AND 6H8
4000 F@M ** 6040 RETURN

listing 1 -This BASICprogram provides a framework for building your own networksoftware. If you wouldrather start with fully operational
networking, see the texf of the ark/e for information on downloading or ordering more complete software.

48 CARCUlT CELLAR INK

SILICON UPDATE
The Waferscale Integration PAC 1000
Microconfroller, RISC, or PLD?

by Tom Cantrell

I know what you’re thinking as you’re reading this-
what aspiring &&no-guru could skip an article with a
three-buzz-word headline?

The PAClOOO from Waferscale Integration in Fre-
mont, CA combines aspects of all three au courant tech-
nologies. Like a microcontroller, the PAClOOO integrates
CPU, memory, and I/O on a single chip. Like a RISC proc-
essor, it has lots of registers; load-store architecture; a
simple, hardware-oriented instruc tion set; and singlecycle
execution. Like a PLD, the PAClOOO can programmably
integrate various high-speed logic functions in a single
chip.

Perhaps the PAClOOOis best described as a single-chip
user-microcoded logic unit. But let me tell the story and
you can decide for yourself.

Microcode Basics

Usually, microcode refers to a level of software hidden
beneath user-written software. A good analogy is the way
an interpretive high-level-language program, such as
BASIC, serves as “data” to a program (the BASIC inter-
preter) that determines which machine codes are ulti-
mately executed. Simi-
larly, for a microcoded
CPU, the machine code
itself acts as data for a
microcoded program
that determines which
operations the machine
performs. Indeed, some
machinescarry the prin-
ciple further with
“nanocode” and even
“picocode.” The point is
that each level consists
of a program which
treats (or interprets) the
next higher level as pro-
gram data.

Just as a single state-
ment in BASIC will re-
sult in the execution of

machine code will result in the execution of many microc-
ode steps.

Consider a typical machine code instruction, lNC
(REG), which increments the contents of a memory loca-
tion whose address is contained in a register. As far as the
machine-level (i.e., assembly language) programmer is
concerned, the hypothetical lNC (REG) instruction is a
single monolithic operation.

But, looking deep inside the CPU we find that one INC
(REG) instruction actually causes many low-level machine
operations to occur:

1) Output the PC (program counter) address
2) Read the instruction (INC (REG)) at the PC address
3) Increment the PC (prepare for the next instruction)
4) Decode the instruction (INC) and operand ((REG))
5) Output the operand address (REG contents)
6) Read the operand
7) Increment the operand
8) Write the operand

This is a simple example; In the real world things get
a lot more complicated. For instance, my “read the oper-

HOST INlEWAcE

J

cwrCNn(153y ca7Q IM(JCO VOVOI ADD(l5.a

many primitive machine
codes, a single primitave

Figure 1 -The PAC loo0 includes microcode memory, registers, ALU, se-
quencer, and more on a single CMOS chip.

and”p;imitivecaus&all
sorts of lower-level ac-
tivity-drive the ad-
dress bus, assert control
signals, sample the
READY line, input the
data, deassert the bus,
and so on. Then there
are those nasty asyn-
chronous events, like
DMA and interrupts, to
deal with. The real
power of microcode is
that a single instruction
performs many hard-
wareoperationsatonce.

Historically, microc-
oding emerged in the
’60s as the preferred ap-
proach for CPU design.
Compared to complex
hard-wired designs, mi-

S IKXMEPRCM I

I CASE Logk

50 C/KU/T CELLAR INK

I Fast Bui. Etc.

STANDALONE MODE

I t
8 Status/lnlerrupts

I,_______________ -____a

PERIPHERAL MODE

Figure 2-Part of the PAC lo[x)‘s flexibility is its capability to run in
either stand-alone mode or peripheral mode.

K
r

Figure 3-A typical application In which the PACKXXJ may be
found is a high-speed M-b/t DMA controller.

PseudoSam Cross-assemblers $50.00
PseudoMax Cross-simulators $100.00

PseudoSid Cross-disassemblers $100.00
‘seudopack Developer’s Package $200.00($50.00 Savings)

POWERFUL
P

Ps
pr
ml

z
di:

,eudoCode is pleased to announce the release of an extensive line o
ofessional crossdevelopment tools. Tools that speed development o
icroprocessor based products. Fast,, sophisticated macro assemblers tc
nerate your program Code: Versatde simulators that allow testing ant
ibugging of the program even before the hardware exists. Easy to us(
sassemblers to help recover lost source programs.

AFFORDABLE
U
Ps
la)

0

ntil now, powerful tools like these have been priced from 5 to 10 time:
;eudoCode’s price. Putting these time saving tools out of reach of all bu
rge corporate engineering departments.

BROAD RANGE OF SUPPORT
PseudoCode currently has products for the following microprocesso
families (with more in development):

l

PI

K(

Intel 8048 RCA 1802.05 Intel 8051 Intel 80S8
Motorola 8800 Motorola 6801 Motorola 8811 Motorola 8805
Hitachi 5301 MOSTechnolog 6502 WDC 86(302
Rockwell 6YxQ

p$c&3p

Motorola A8010
Zllog 280. NSC &I0 Hitachi HiX418C

Motorola 88000,8
To place an order call one of our dealers:

,ogrammer’s Connection USA (600) 336-l 166 INTL (216) 494-3781

3RE Inc. (616) 791-9333
PseudoCode

P.O. Box 1423
Newport News, VA 23601-0423

(804) 595-3703

Cilrcle No, 144 on Reader Service Card

BCC52 BASIC-52 COMPUTER/CONTROLLER

TheBCC52Computer/Controller iskkrcmint’s
hottest selling stand-alone single-bard micro-
computer. itscost-effectivearchitecture needs
only a power su
complete deveo

ly and terminal to become a

Fog
??rammablen

ent or end-use system,
ASlCormachine language.

he BCC52 uses Microminrs new &X52-
BASIC CMOS microprccessor which contains
a ROM-resident BK byte floating-point BASIC-
52 interpreter.
The BCC52 contains so&ets for up to 48K
bvtes of RAM/EPROM. an ‘intelliaent” 27641
12s EPRqM progra?mer, 3 p&let ports, a
senal termma port with auto baud rate selee
tion, a serial printer port, and it is bus compat-
ible with the full line of BCC-bus expansion
boards. The BCC52 bridges the gap between
expensive programmable mnbollers and hard-
to-justify price-sensitive control applications.
BASlG52’s full floatin

9.
-point BASIC is fast and efficient enough for the most

complicated tasks, whl e its cost-effective design allows it to be considered for
many new areas of implementation.
end-use a

t?
lications.

It can be used both for development and

Since the AX-52 is bus oriented, it supports the following Micromint expan-
sion boards in any of Micromint’s card cages with optional power supplies:
WC22 SmalLwmi-albcad KC13 86hanel tiit PJD omwtu

%: :zb%%z board
Bcc30 twhansl wtit Am culwtu
BCCl8 Cud chanel serid I/o board

SK53 Memay md 6fort O exp. boardY

fC.5; F?&&in
M% or bead

BCC52 BASIC -52 Controller board
BCC-SY ST.5 ‘52 PAK' Starter System

lnclubes~s2 ROM A&B UTIL. ccol, MBrJfJ. ups10 l-800-635-3355
BCC52 OEM 100 Quantity Price Tel: (203) U-6170

BCC52C Lower power all-CMOS version
Ho*: The KC52 ties Is avdlatb h Industrial Temperawe Raige, My
l&ted. OEM 1w quantity priccslee.al. Cal IU othsr OEM pitig.

Micromint, Inc. -4 Pork street. Vernon. CT 06066

I
I

C:ircle No. 137 on Reader Service Card

DeveloDment Tools

bead

June/July 1989 5 1

/* inner transfer loop - source to destination*/
/* read data and wait for READY */
WAIT:JMPNC READY WAIT, /* stmt.1 PRCGCNTL */

OUT REm_CYcL!x; /* stmt.1 OUTCNTL */
/* decrement count, update address, write data*/

LWPNZ WAIT, /* stmt. 2 PROGCNTL*/
ACL := ACL + Q, /* stnlt. 2 CPU */
OUT wRITE_CYCLE; /* stmt. 2 OUTCNTL */

listing I--MIcrocode is actually quite different from standard
assembly language due to its parallel nature.

crocode simplifies design and development, and is easy to
upgrade and fix. Many of today’s popular CPU chips are
microcoded.

In contrast to the factory microcode buried in chips,
user-programmable microcode has been relegated to a
high-performance/very high cost-power-size niche.
Typically, a user-microprogrammable CPU requires a
board full of logic built by a team of mad scientists (and
maybe a faith healer for debugging).

The PAClOOO combines all the arcane pieces-microc-
ode memory, registers, ALU, sequencer, and so on-on a
single CMOS chip (Figure 1). A key point is that the mi-
crocode memory is user-programmable EPROM in con-

_. _ -
Figure 4- Ihe Waferscale PAC-SOT development system goes a
long way towards simpk’fying microcoding, but R’s Still not u trivial
process.

trast to the preprogrammed ROM found in a fixed CPU de-
sign.

With the PAClOOO, any budding Cray wanna-be can
roll their own special-purpose chip which can function
stand-alone or as a peripheral for another CPU (Figure 2).
To specifically support the latterapplication, the PAClOOO
includes interface logic which eases host CPU connection.
Thus, a preprogrammed PAClOOO can hook to another
CPU, just like any other peripheral.

Thinking Parallel

Besides raw speed-at 20 MHz the PAClOOO executes
a (micro)instruction every 50 ns-the key for high per-
formance is the parallelism inherent in microcode. The 64

bits at each of the 1K on-chip EPROM microprogram ad-
dresses are divided into fields which simultaneously con-
trol different hardware operations. Of course, thinking in
parallel isn’t easy which is why microcoders are a different
breed.

The PAClOOO goes a long way towards making it easy.
The CPU includes a number of luxurious features like a
stack, case branching, loop counter, interrupt controller,
and so on. The PAClOOO micro-assembler even includes
extensions (micro-macros?) to simplify common opera-
tions and give a high-level-language flavor. Actually, the
PAClOOO instruction set seems quite like that of a typical
CPU chip-except you get to do three things at once.

Each “step” of your program simultaneously per-
forms a CPU operation, performs an output operation, and
determines, by checking internal/external inputs, which
instruction to execute next. In PAClOOO terminology,
these are, respectively, CPU, OUTCNTL, and PROGCNTL
operators.

An example will help clarify things. Figure 3 shows a
PAClOOO programmed to implement a high-speed (up to
10M words/s with 20-MHz clock) 16-bit DMA controller.
Notice how the PAClOOO I/O lines fulfill the roles of those
lines found on a typical DMAC chip (address, data, DMA
req/ack, etc.). Listing 1 shows a small portion of the
microcode which controls each DMA word transfer.

Notice that a single “statement,” terminated by a
semicolon, consists of one to three fields(CPU, OUTCNTL,
PROGCNTL in any order) separated by commas. If you
don’t specify all three operations, the assembler will auto-
matically fill in the missing field with a “do-nothing” code:
NOP for the CPU, MAINTAIN for the OUTCNTL, and
CONTINUE for the PROGCNTL. Of course, since you
don’t want to “do nothing” often, it’s up to you to make
sure your algorithms are fully parallelized.

ThefirststatementsimultaneouslyloopsontheREADY
line while outputting the bus control signals (i.e.,DMACK)
to cause a DMA source data read. Note that a CPU
operator is not specified so the assembler will automati-
cally insert a NOP. The second statement simultaneously
decrements and loops on the transfer counter, updates the
transfer address, and outputs the bus signals to write
DMA destination data.

This is a good example how PAClOOO code can look
funny to those stuck thinking sequentially. To the un-
knowing, it looks like the statements after the LOOP state-
ment will only be executed once at the end of the loop.
Rather, they are executed each time the loop counter is de-
cremented. Taking advantage of the free-form field order-
ing, you could place the PROGCNTL field (the LOOP state-
ment) last to clarify program flow. It’s probably a good
idea to standardize on a fixed order unless you consider
unreadable code a badge of honor (or job security).

The Waferscale PAC-SDT IBM PC-based develop-
ment package includes five programs. WISPER and IM-

52 ClRCUlT CELLAR INK

PACT comprise a menudriven shell, while PACPRO burns
the PAClOOO chip using the company’s MagicPro pro-
grammer. You enter your program with the text editor of
your choice, assemble and link with PACSEL, and then
simulate your program’s operation with PACSIM (Figure
4).

Though Waferscale has gone a long way towards
making microcoding easy, developing and debugging
PAClOOO applications is not for the faint of heart. Besides
writing the microcode, the user faces the dreaded simula-
tion “bottleneck”~fter slogging through a trace (20 mil-
lion operation per second of real time!) it feels like your
neck got hit with a bottle!

Based on price, performance, and complexity, the
PAClOOO is clearly targeted at only the most demanding
applications, for which it offers some unique advantages
compared to older multichip offerings. The ideal applica-
tion for the PAClOOO is one that isn’t served by a standard
LSI chip, is too complex for PLDs, and isn’t high enough
volume (or the design isn’t stable enough) to justify a
custom gate array.

The concept of user-microprogrammable devices fill-
ing a gap between general-purpose microprocessors and
hardware PLDs is an interesting one. Technology will in-
exorably reduce chip price and improve performance.
Fulfilling the concept’s potential depends on the emer-
gence of more powerful and easy-to-use development
tools.

The PAClOOO is available in ceramic and plastic pin
grid array (PGA) and leaded chip carrier (PLCC) pack-
ages; and commercial (O-70°C) and military (-55-125°C)
temperature ranges. In the lowest-cost version (PLCC
package, commercial temp), the RN-piece price for the 12-
MHz version is $75. The 16-MHz version is $107 and the
20-MHz is $160. The PAC-SDT-GOLD package includes
the PAClOOO development software and EPROM pro-
grammer for $4995.

For literature or other information, contact
Waferscale Integration, Inc.
47280 Kato Road
Fremont, CA 94538
(415) 656-5400
+

Tom Cunfrell holds a B.A. in economics and an M.B.A. from
UCLA. Heownsand operates MicrofufureInc.,and has beenin
Silicon Valleyfir 10 years involved in chip, board, and system
design and marketing.

IRS ii;“,*~~~~~,~ r;
2 19 Very Useful
220 Moderately Useful
221 Not Useful

helps save time, money, and cut frustrations. Compare, evaluate, and find products.

FoxBase + /386
High C 386
Hooos/386-32

Ltst Ours
495 429

75 69
190 159
595 399
895 Call
575 489

Lahey Fortran F77L-EM/32
NDP C-386
VMl386

895 Call
595 559
245 218

Dan Brlcklln Demo II
Deslgn/OA graphic design
Interactive EasyFlow
Instant Replay Nostradamus
Matrix Layout flw chart
MetaDwgn by Meta Software
Pro-C
PROTEUS Prototype System
Show Partner F/X demos

195 179
7500 Call

150 119
150 139
150 139
350 329
495 449
149 129
350 329

Pro-C by Vestronix generates commented, structured C
SOUla? for screen programs, reports, menus, rnultl-file
updates, system documentation, context~sens~t~ve help
Runs under DOS, QNX, Xenlx, Unix Workbench provides
source for 60 + lkbrary routines No rcyalt~es MS, Lattice.
Zortech. Quick Turbo C 449

75 + New Products Revsed expanded descrlptlons
make product selection even easw

Perlscope II breakout switch 175 139
Periscope Ill 10 MHz version 1395 1259
SoftProbe II TX debug 395 345
Sourcer 100 89

MKS AWK
MKS Lex & Yacc
PC~Llnt
PC-Metric analyze
Plink 86 Plus overlays
PolyMake
PVCS corporate
TRLlnk
TLIB

*:: 2::
139 ?09
199 189
495 299
149 139
395 369
195 179
100 89

BRIEF
Epsilon llke EMACS
SPFiPC V2 0

195 Call
195 169
245 185

1 Call for a catalog and solid value 1

8001421 n 8006

5 Pond Park Road, Hingham, MA 02043
Mass. 800-442-8070 or 617-740-2510

L;l-- sB ri -
Mathematics by Wolfram Research, lnc NumerIcal symbolic

and graphIcal computation package Includes symbolic
programming language interpreter Supports matrix
operatlons and data analysts Symbolic computations
support, polynomial, 11~1 tensor, symbolic matrix and
rational function operations Graphics Include Z-D, 3-D
contour, density. function plotting. surface rendering 679

Avocet
AVMAC 68020
AVMAC 8 bit Target
AVSIM 8 bit Target
Big Bang Simulator 68020
C Cross 280 (NSCEOO), 8051, 8099

Lattice C Cross 280. 6800
Manx
Aztec C Cross Z80, 68Xx, 8051

MIcrotech
Cross Assembler

Systems & Software
Link & Locate + +
Softprobe II/TX

Z World.
HI-Tech Z8OiC
ISIS Emulator

A -

750 Call
349 329
379 369
345 Call
8 9 5 8 2 9
900 859

750 Call

Varies C a l l

395 349
395 345

345 319
395 379

RTLlnk by Pocket Soft Inc provides fast powerful overlay
and static IInkIng capabllitles. proflles program performance
No changes to source code, tlmlng intervals adjustable to
thousandths of a second Cross-relerence utlllty for analysis
of raw statistics prwlded with source code RuntIme Ilbrary
reduces disk space needed to store. ship proqrams 179

Circle No. 143 on Reader Service Card

June/July 1989 53

1 he CRC (Cyclic Redundancy
Check) is a sophisticated checksum
that has long been the most common
means of testing data for correctness.
EverysectoronadiskhasaCRCofthe
data stored to alert the operating sys-
tem of data dropouts. A CRC doesn’t
identify which byte is in error, but it
pretty much guarantees that you’ll be
alerted to at least single-bit errors.

All CRCs are binary polynomials
that are divided into the data stream.
Although the definition and selection
of the CRC is quite complex, its use is
not.

The most common CRC polyno-
mial is the CCITT form used by IBM’s
SDLC (Synchronous Data Link Con-
trol) protocol. It is of the form:

X16 + x*2 + x5 + 1

The physical representation of this
CRC is a 16-stage shift register. Unlike
a conventional shift register, four of
the input terms are not from the previ-
ous stage;rather, they’re the exclusive
ORof the previous stage and theinput
bit. The inputs to bit positions 16,12,
5, and 1 (the coefficients from the
polynomial) are the exclusive OR of
the previous stage and the new data
bit. Youcan thinkoftheCRCasastate
machine whose output is a compli-

cated function of the input data and
the previous CRC.

Most systems transfer data as a
serial bit stream. Floppy and hard
disks, as well as the newer optical
disks, all write a single bit at a time to
the medium. Modem applications are
also bit oriented. This is fortunate,
since the CRC is particularly well-
suited to serial data transfers. Serial
shift registers, even with the feedback
terms, are easy to implement in sili-
con. Fairchild’s 74F401 chip is a 14-
pin package that will compute CRCs
onserialdatausinganyofeightdiffer-
ent polynomials. Many floppy disk
controllers use this chip or similar cir-
cuitry to automatically append a CRC
to the data stream. Using prepro-
grammed CRC chips, serial CRCs are
almost trivial to add to a system.

If the data is transmitted in paral-
lel, the problem becomes more com-
plex. Think about it: the CRC is com-
puted by eight shifts per byte, each
shift resulting in the exclusive ORing
of several terms within the byte. After
eight of these operations, the output is
far from obvious. How do you com-
pute a useful CRC on 8 bits at once?

While assuring the integrity of
parallel data is difficult, the quest for
speed is bringing more parallel de-
vices into the mainstream. An obvi-
ous example is a large RAM disk. Most
implementations make the hardware
look just like a hard disk, so the oper-
ating system can handle the device
without special drivers. Other pe-
ripherals may be connected using
SCSI, which almost always is designed
to emulate a disk. Whenever the oper-
ating system expects to see a disk, it
will also expect a CRC.

How do you implement a CRC in
a purely parallel interface? An obvi-
ous approach is to convert the parallel
data to serial, compute the CRC, and
convert it back to parallel. Although
conceptually easy, fast data transfers
will require a mind-boggling clock
rate (at least eight times the data rate),
and a lot of hardware.

For a more realistic method of
computing parallel CRCs, remember
how a CRC is derived: The new CRC
(after a byte is shifted in) is a function
of the input data and the old CRC.
Why not derive formulas for each of
the 16 bits of the CRC after the eight
new bits are shifted in? Then all 16
CRC bits can be computed in a single
clock cycle.

Deriving the formulas for the
parallel CRC is easy in principle but
rather tedious. If the input data is bO,
bl,..., b7,andthecurrentCRCisaO,aI,
. . ., ~25, compute the new CRC after
one bit arrives. Then iterate seven
more times, using new values of a0, al,
. . . . a25 each time. You’ll get 16 new
equationseach timeanewbitisshifted
in. The last set of 16 is the result; these
define the values of each bit after an
entire byte is CRCed. Apply these 16
equations to a byte of data to compute
a new CRC in a single cycle.

It turns out that a number of terms
are common to many of the 16 equa-
tions. To simplify the algorithm, the
common terms are identified as I, J, K,
L, M, N, 0, and P. Listing 1 shows a
program written in Turbo C to com-
pute the CRC using the derived for-
mulas.

This program looks horrible! It is
far more cumbersome and compli-
cated than the loop to do normal serial

June/July 1989 55

crc()
I

I=(b3 6 !a3) I (!b3 & a3);
J=(b2 6r !a2) 1 (!b2 & a2);
K=(bl & !a11 I (!bl & al);
LE.(bO & !aO) I (!bO & a0);
M= (b7 & !a7 & !I) I (!b7 & !a7 & I)

I (!b7 & a7 & !I) I (b7 & a7 & I);
N= (b6 & !a6 & !J) I (!b6 & !a6 & J)

I (!b6 h a6 h !J) I (b6 & a6 & J);
O- (b5 & !a5 & !K) I (!b5 & !a5 h K)

I (!b5 & a5 & !K) I (b5 & a5 & K);
P- (b4 & !a4 & !L)) (!b4 & !a4 & L)

1 (!b4 & a4 & !L) I (b4 & a4 & L);
a7-(a15 6 !P) I (!a15 & P);
a6=(a14 & !I) I (!a14 & I);
a5=(a13 6 !J) I (!a13 & J);
a4=(a12 6 !K) I (!a12 & K);
a3=(all & !L & !M) I (!a11 & !L h M)

1 (!a11 & L & !M) I (all h L & M);
a2=(alO & !N) I (!a10 C N);
al-(a9 & !O) I (!a9 & 0);
aO-(a8 & !P) I (!a8 & P);
a15-M;
a14-N;
a13-0;
a12=P;
all-I;
alO=(J & !M) I (!J & M);
a9- (K & !N) I (!K & N);
a8= (L & !O) I (!L & 0);
printf("\nCRC== %X%X%X%X %x%x%x%x %X%X%X%X %x%x%x%x",

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
al,aO);

listing 1 -Program to compute CRC in parallel.

/* Coqmte a parallel CRC */

#include <stdio.h>
int I,J,K,L,M,N,O,P;
int bO,bl,b2,b3,b4,b5,b6,b7;
int ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
int iter;

main0

int kO,kl,k2,k3,k4,k5,k6,kl;

/* Preset CRC to all ones - CCITT rules */

/* Compute a number of CRCs with input data of all zeroes */

bO=bl=b2=b3=b4-b5-b6=b7=0;
for(iterO; iter(l0; ++iter)crc();

/* Now feed ones complement of the CRC back into calculation;
result should be FOB8 */

bO-!aO; bl-!al; b2=!a2; b3-!a3; b4-!a4; b5-!a5; b6=!a6;
b7=!a7;
kO=!a8; kl-!a9; k2-!alO; k3-!all;  k4=-!a12; k5-!a13;
k6-!a14; k7-!a15: crc(1:
bO=kO; bl=kl; b2-k2: &k3; b4-k4; b5=k5; b6=k6; b7=k7;
crc0;

1
/* Remember the following C language operators:

*/
& = bitwise "and"; ! = negation; 1 = bitwise "or"

CRC calculation. Why go through all
of this grief for so little reward? If you
don’t want to develop a new circuit,
the answer is simple: Cumbersome
though it is, the parallel CRC program
works. If you don’t mind adding a
little bit of new silicon to your design,
though, you can make the solution
much simpler and cleaner.

The form of the C program closely
resembles that of the equationsneeded
to define a Programmable Logic De-
vice PLD). In other words, there is a
very close equivalence between the
code and a hardware implementation
of thealgorithm. Fortunately, thePLD
version can operate in a single clock
cycle, and is much more aesthetically
appealing than its awkward software
cousin.

The PLD

For the uninitiated, a PLD is a sort
of “super PAL.” Based on EPROM
technology, the PLD is a device that
can be programmed with a user’s
equations. Like an EPROM, a fairly
simple device programmer is used to
load the formulas.

PLDs are defined in terms of
“macrocells.” Every macrocell is a
multiple-input OR gate optionally
connected to a flip-flop. Each of the
OR gate inputs is an extremely wide
AND gate; any or all of the PLD pins
[and their inversions) can be connected
:o the AND gates.

You can specify the type of flip-
flop; typically D, T, JK, and SR ver-
sions are all available. Or, you can
disable the register altogether, so the
macrocell becomes a big combinato-
rial gate structure.

A PLD is therefore a very large
:ollection  of AND and OR gates with
some internal registers also thrownin.
The connection of these components
s up to the user; you write a set of
>oolean  equations that makes the PLD
mplement the circuit you need.

Intel’s 5CO90  (equivalent to Al-
era’s EP900) is a 40-pin PLD with 24
nacrocells. It contains enough logic
o completely implement the CRC
algorithm in parallel. The rest of this
rticle will be based on programming
he 5CO90.

56 CIRCUIT CELLAR INK



EPLD: 5CO90
Comments: This file computes a CCITT-SDLC CRC in parallel

OPTIONS: TURBO=ON
PART: 5CO90
INPUTS: b0@2,bl@3,b2@4,b3@17,b4@18,b5@19,b6@22,b7@23,preset@38,

hicrc@37,locrc@24,clkl@l,clk2@21
OUTPUTS:aO@5,al@7,a2@9,a3@ll,a4@13,a5@15,a6@25,a7@27,

NETWORK:
bO=INP(bO)
bl=INP(bl)
b2=INP(b2)
b3=INP(b3)
b4=INP(b4)
bS=INP(bS)
b6=INP(b6)
b7=INP(b7)
preset=INP(preset)
losel=INP(locrc)
hisel-INP(hicrc)
clkl-INP(clk1)
clk2=INP(clk2)
aO,aO=RORF(aOd,clkl,gnd,gnd,lo)
al,al=RORF(ald,clkl,gnd,gnd,lo)
a2,a2=RORF(a2d,clkl,gnd,gnd,lo)
a3,a3=RORF(a3d,clkl,gnd,gnd,lo)
a4,a4=RORF(a4d,clkl,gnd,gnd,lo)
a5,a5=RORF(a5d,clkl,gnd,gnd,lo)
a6,aC=RORF(a6d,clk2,gnd,gnd,lo)
a7,a7=RORF(a7d,clk2,gnd,gnd,lo)
a8,aS=RORF(a8d,clkl,gnd,gnd,hi)
a9,a9=RORF(a9d,clkl,gnd,gnd,hi)
a10,alO=RORF(alOd,clkl,gnd,gnd,hi)
all,all=ROR3?(alld,clkl,gnd,gnd,hi)
a12,al2=RORF(a12d,clkl,gnd,gnd,hi)
a13,al3=RORF(a13d,clkl,gnd,gnd,hi)
a14,al4=RORF(a14d,clk2,gnd,gnd,hi)
a15,al5=RORF(a15d,clk2,gnd,gnd,hi)
L,L=COIF(Ld,)
K,K-COIF(Kd,)
J,J=COIF(Jd,)
I,I=COIF(Id,)
P,P-COIF(Pd,)
O,O=COIF(Od,)
N,N=COIF(Nd,)
M,M=COIF(Md,)

EQUATIONS:
lo=/losel;
hi=/hisel;
Id=(b3  * /a3) + (/b3 * a3);
Jd=(b2 * /a2) t (/b2  * a2);
Kd=(bl  * /al) t (/bl  * al);
Ld=(bO * /aO)  t (/bO * a0);
Md=( b7 * /a7 * /I) + (/b7  * /a7 * I)
t (/b7 * a7 * /I) t ( b7 * a7 * I);
Nd=( b6 * /a6 * /J) + (/b6 * /a6 * J)
t (/b6 * a6 * /J) t ( b6 * a6 * J);
Cd=(b5*/aS*/K)t(/b5*/a5*  K)
t (/b5  * a5 * /K) t ( b5 * a5 * K);

Pd*( b4 * /a4 * /L) t (/b4 * /a4 * L)
t (/b4 * a4 * /L) + ( b4 * a4 * L);

a7d=(a15  * /P) t (/a15 * P) + /preset;
a6d=(a14  * /I) t (/a14 * I) t /preset;

LiSting  2- PLD source file for a parallel CRC.

58 CIRCUIT CELLAR INK

Putting the CRC in a PLD

Examining the C program, it
quickly becomes apparent that the
intermediate I through P terms must
be computed before any of the a045
outputs, but once&P are known, then
all 16aO-u15  termscould becomputed
simultaneously. We should therefore
assign the I-P terms to combinatorial
outputs in the PLD. The a0 to a75
terms (the CRC itself) are assigned to
registered outputs. In this case the
current CRC is needed as part of the
new one; therefore the flip-flops’ out-
puts will be fed back into the equation
matrix.

It’s relatively easy to translate the
Turbo-C program into PLDequations.
This was my intention when writing
the code; the real purpose of the C
program is to provide a simulation of
the CRC function as implemented in a
PLD. Listing 2 shows the file that de-
fines the PLD.

For those unfamiliar with PLD
design, the NETWORK section of the
PLD file defines the nature of each of
the device’s pins. bO to b7 are input
bits. I to P are combinatorial outputs.
The a0 to a25 (CRC) terms are defined
as RORF (Registered Output, Regis-
tered Feedback). The termsarelatched
in D flip-flops, but the current value
@eforethedeviceisclocked)goesback
into the equation matrix.

Figure 1 shows the connection of
the PLD to a computer’s data bus.
Most data communication processors
manipulate &bit data, so an &bit  data
bus is shown. The input data is a byte,
but the output CRC is 16 bits. This
PLDis designed to let usmultiplex the
CRC onto the bus as two individual
bytes. The input bits come from the
same data bus. bo is thus tied to uOand
~8, bZ to al and u9, etc.

LOCRC and HICRC are used to
dump the upper or lower CRC byte
onto the bus. Once the calculation is
complete, the processor asserts these
inputs low (one at a time) and reads
the two bytes. These inputs are typi-
cally connected as input port selects.

The PRESET input initializes the
CRC before any data is transferred.
The CCIIT specification requires that
the CRC be initialized to all ones.



a5d=(a13 * /J) + (/a13  * J) + /preset;
aad;=@ * /K) + (/a12 * K) + /preset;
a3d=( all * /L * /M) + (/all * /L * M)

t (/all * L * /M) t ( all * L * M) t /preset;
a2d=(alO * IN) + (/al0  * N) + /preset;
aId=(a9  * 10) + (/a9 * o) + /preset;
aOd=WJ * /P) t (/a8 * P) t /preset;
al5d=M t /preset;
al4d=N + /preset;
a13d=O t /preset;
alZd=P  + /preset;
alld-I  t /preset;
alOd=( J * /M) + (/J * M) t /preset;
a9dS W * /N) + (/K * N) t /preset;
a&b= (L * /O) + (fL * 0) t /preset;

listing 2-_(continuec$

Input data Output CRC

preset FFFF
0 OF87
0 FOB8
0 3933
0 0321
0 3088
77 OF48
CF FOB8

Figure I-A 5CooO PLD makesimplemen- Figure P-Giventhesamp/edatainthele#
t&ion of parallel CRCs  in harabare  easy. column, the expected CRCs  are listed in

the right  column.

When asserted, PRESET loads a 1 into
all of the a045  terms after the next
clock cycle.

Be warned! Your interface circuit
must assert CLOCK when PRESET is
low. Remeber  that CLOCK is high-
edge triggered.

To use the programmed PLD, first
initialize the CRC by asserting PRE-
SET low and driving CLOCK high.
Then transfer data one byte at a time.
For each byte, drive CLOCK high once
the input data is stable, and after the
data has been present long enough to
let the I to P terms propagate (typi-
cally 100 ns). The PLD computes a
new value for the CRC and loads it in
thea registers when CLOCKgoes
high. After a block is transferred, the

CRC is ready to be read by the com-
puter.

The CRC PLD uses a pretty com-
plex series of equations. How can you
be sure the circuit works correctly?
One way is to compare the CRC to
known good values after specific data
is transferred. Figure 2 shows CRC
values for an input data stream of
successive zeros. You can check the
CRC after each clockagainst this table.

The CCITT polynomial has a self-
checking feature. Once a stream of
data has gone through the CRC calcu-
lator, you can supply the one’s com-
plement of the resulting CRC to the
PLD and always get FOB8 as the new
value. Always. This serves as a sanity
check when developing hardware,and

asaquickwayofverifyingdataagainst
a previously computed CRC during
read of a device. Be sure to transfer
the low part of the CRC first, and then
the high byte when making this test.

Software or Hardware?

The PLD computes a CRC in par-
allel using a single IC package. It can
support a data rate of at least 10 MHz,
even when used with relatively slow
devices. Although the equations are
messy and tedious, you can use the
ones presented here as a “cookbook”
solution. Of course, the C version will
work in those situations where you
simply cannot afford to add hard-
ware to the design. Either way, the
parallel CRC lets you be sure that
your parallel data is transferring
safely. +

Jack Ganssle  is the president of Softaid,  a
vendor of microprocessor development
took When not busy pushing electrons
around, he sails up and down the East
Coast on his 35-foof  sloop.

IRS
222 Very Useful
223 Moderately Useful
224 Not Useful

Data communications progress was
slow before the invention of wire.

June/July 1989 59



FIRMWARE FU
From Fixed Point to Floating
Point and Back Again
Writhing Reals
by Ed Nisley

R eal numbers seem to be a hot
spot among you folks. Several read-
ers asked for more details on convert-
ing between floating-point and fixed-
point numbers, because they‘re plan-
ning to use real numbers of one shape
or another in their projects.

All this started with the Mandel-
brot Engine described in “Ciarcia’s
Circuit Cellar” in the October, No-
vember, and December 1988 issues of
BYTE. The Engine is an array of Intel
8751 single-chip microcontrollers pro-
grammed to execute the Mandelbrot
Setalgorithminparallel. Wedesigned
it to demonstrate the advantages of
using many cheap processors to solve
a problemusuallyassociated with big,
fast, expensive machines.

A control program called DRIVER
runsonanIBMPC/ATclonetohandle
keyboard inputs, distribute initial
conditions to the array, and display
the results on an EGA monitor. I used
a special fixed-point numeric format
because the Mandelbrot Set calcula-
tionsrequire exquisite precision, while
8751 processors aren’t well-suited for
floating-point arithmetic.

We didn’t need fixed-point num-
bers in DRIVER'S calculations, how-
ever, because the increased precision
is required only in the Mandelbrot
algorithm’s inner loop. DRIVER uses
ordinary C “double” variables and
converts the values to fixed point
before sending them to the arrayproc-
essors.

At the risk of digressing into soft-
ware, this column will explore how
that conversion works and provide a
pair of routines to convert decimal
fractions to binary fixed-point num-
bers. Because DRIVER works with

ordinary double-precision floating-
point numbers, I’ll start by reviewing
that format.

Double Dealing

Figure 1 shows the double-preci-
sion binary floating-point numeric
format defined by the IEEE and used
in 80x87 numeric coprocessors.  Al-

baggage to indicate we are working in
base 10. The trick behind scientific
notation is to convert all numbers,
regardless of size, to something you
can count on your fingers.. .the man-
tissa must be between 1 and lo!

While scientific notation is useful
for those of us with 10 digits, comput-
ers have only two: zero and one. The
first step in representing 186,000 as a

I-* Eight Bytes = 64 Bits
seeeeeee eeeemmmm mmmmmmmm  mmmmmmmm

exponent- 11 bits

Figure 1 -This is the double-precision floating-poinf  format defined by the IEEE. The range
ofthe  format  is+ 1.7x Wo8.  The  precision is IS- 16 decimal digits with the exponent  biased
by + 1023 (03FF  hex). The mantissa of this format has an implied high-order . I ’ bit, and all
negative numbers are represented in signed-magnitude notation.

though there are other types of float-
ing-point numbers around, nearly all
contemporary PC languages support
80x87 operations. The examples here
are in Microsoft C 5.1, but the bits,
bytes, and algorithms can be adapted
directly to your favorite language.

Each floating-point number has
three fields distributed over eight
bytes, as shown in Figure 1. It’s easier
to understand the fields by compar-
ing them with a format that you are
more familiar with: the scientific nota-
tion used to denote very large or very
small physical quantities. For ex-
ample, the speed of light is about
186,000 miles per second, which is
1.86 x 105 miles/second in scientific
notation.

For this number, the sign is posi-
tive, the mantissa is 1.86, and the
exponent is 5. The “x 10” is standard

binary floating-point number is a
conversion to base two: 2D690 hex, or
0010 11010110 10010000 binary. You
can imagine a “binary point” after the
last bit on the right.

By definition, the mantissa of a
binary floating-point number is
greater than or equal to 1.0 and less
than 2.0 (decimal), so it must have a
“1” bit just to the left of the binary
point. The number of places you shift
the binary point to get a suitable
mantissa determines the value of the
exponent. This process is called
“normalization.”

Then, rather than waste storage
on that high-order “l”,bit,  it is simply
omitted. There are some cases where
the range of the exponent won’t allow
normalization to be done, but I’m
going to ignore those issues here. The
final result is a 52-bit binary value

60 ClRCUlT  CELLAR INK





ne 77 1LWaa Y I
0

I
r I?
l e

The Circuit Cellar
L SB180 Single-Board

L Computer Kit

Since the time it was intro-
duced on the cover of the Sep-
tember ‘85 issue of BYTE, the
SB180  has established itself as
one of the most reliable and cost-

effective single-board 8-bit computer sys-
n the market. lncorooratina UD to 256K RAM, an

8K EPROM monitor, a floppy disk controller, two serial ports, and a
parallel printer port, the SB180  has a remarkable list of features for its small 4” x
7.5”size. An optional SCSI interface adapter easily expands the SBI 80 to include
a hard disk.

Using the Z80-code-compatible Z180/HD64180  super chip, the SBI 80 runs
the thousands of 280/8080/8085 programs faster and more efficiently than ever
before. Up to three times as fast as a ~-MHZ Z80, the g-MHz  SB180  can be used
as a stand-alone controller, or as a complete development system running
CP/M 2.2, CP/fvl Plus, Z-System, MP/M II, TurboDOS,  or Oasis operating
systems.

The SB180  comes with a plug-and-go 24command high-performance ROM
monitor which exercises and tests all its basic functions. For real computing
performance, we have an extensive software collection including the Z-System
enhanced disk operating system. Considerably more advanced than CP/M, Z-
System offers users utility programs and DOS features that have only recently be-
come common to 16-bii PC users.

Through a special licensing arrangement, Circuit Cellar is now able to offer
a complete g-MHz  SB180  kit (less DRAM) for the remarkable price of $195. Just
add a bank of 64K or 256K DRAM S and you are instantly on the air. The optional
Z-System O/S software has also been redesigned with computer experimenters
in mind. Theoperating system checks available memory, apportioning it between
TPA and RAM disk, and looks for the SCSI hard disk as well. Adding a 32-Mbyte
hard disk is as easy as plugging on the SCSI adapter to what you already have
running-no merging or recompiling software. Complete source code for the
BIOS and ROM monitor are also included. Plug and go!
Features;
-9.21~MHz  216O/HD64180  CPU * Floppy controller (1-4  drives, 3.5” or
l 64K or 256K bytes RAM  supported 5.25”,  single/double density, single/double
- 8K monitor and boot ROM sided, 40/80 tracks)
- Measures 4” x 7.5 * One Centronics parallel printer port
with mounting holes * Two RS-232C serial ports (75-19200 bps)

SBl WK-I  : 9.216-MHz  SB180  single-board computer kit. Includes all compo-
nents except DRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $195.00

SB180K-I-20:  Same as above with Z-System hardAloppy  disk operating system;
BIOS and ROM sources) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .$295.00

COMMl80K-S:  SCSI hard disk adapter board for SB180 . . . . . . . . . . . . . . . . . . . . . . $89.00

Available from: CC1  l 4 Park St. l Vernon, CT 06066
For information and orders: (203) 875-2751 l Fax: (203) 872-2204

All payments  should be made in U.S. dollars by check  or money order. MasterCard.  or Visa. Shipping and handling:
surface  delivery  add $31~ U.S.; Pndday  delivery add $7 for U.S. Call  for Canada and air freight delivery ekewhere.

.--
_.__I_  .I_ .1- - ..__,:__ p_urcle  N O. I iu on i<eaaer  *IVILW L,U

62 ClRCUlT  CELLAR INK

Binary Fraction JIecimal

0.10000 l/2 0.50000

0.01000 l/4 0.25000

0.00100 l/8 0.12500

0.00010 l/16 0.06250

0.00001 l/32 0.03125

0.11000 l/2 + l/4 0.75000

0.10100 l/2 + l/8 0.62500

Table 1 -The binary, fractional, and deci-
mal equivalents for some common values.
As with integers, the weights for each ‘I’
bit may be added to get a corresponding
decimal value.

Incidentally, this conversion will
fail if the floating-point number is
already denormalized. In principle,
this “can’t happen here” because the
normal 80x87 settings force zero for
values that would ordinarily under-
flow, but it is worth worrying about
for mission-critical code.. .

With the mantissa in place, the
code simply shifts it left or right as
dictated by the exponent. The rather
complex code in the shifting loops
shows what you must go through to
makeaone-bit shiftacrossamultibyte
quantity.

The mantissa uses signed-magni-
tude notation, so the code converts it
to two’s complement if the sign bit is
one. The two notations use the same
representation for positive numbers,
so no change is needed in that case.

The final step is to copy the first
eight bytes from the work buffer into
the result variable. The bytes left be-
hind may also have bits from the float-
ing-point number, but those bits are
lost forever because there is no room

Iecimal Binarv

0.1000 o.OaH  1001100110011OfJ1...

0.0100 o.OaJO  0010 1000 11110101 . . .

0.0010 o.OOOo OCOO 0100 UOOl  loo0 . . .

0.0001 0.0000OOfN000001101ooo...

0.5000 o.1oooOOxOOOOOOOoOcOO...

0.2500 0.0100 0000 0000 oooo  OOCKI . . ,
0.2ooo 0.00110011 al11 00110011 . . .

0.1100 0.000111000010 1000 1111 . . .

Table 2-Binary equivalents of ‘simple’
decimal fractions. The binary fractions do
not terminate.



in the floating-point format for them.
Recall that the tradeoff was higher
precision over a smaller dynamic
range and you’ll see why this must be
so.

Conversions from fixed point to
floating point are handled by the code
in Listing 2. The process runs more or
less in reverse from the previous rou-
tine: copy to the buffer, convert to
signed-magnitude, shift to normalize,
suppress the leading bit, copy the frac-
tion to the mantissa, and set all the
fields appropriately. If there were
more fractional bits than fit into the
mantissa (which is quite likely) they
are simply discarded.

A Blizzard of Bits

Those two conversion routines
suffice to convert between doubles
and fixed-point numbers. You may
have an application where the deci-
mal number exists only as a text string;
for example, a keyboard input speci-
fying a servo table position. Convert-
ing the ASCII text to a decimal frac-
tion, then to a binary floating-point
number, then to binary fixed-point
number may lose more bits than you
care to discard. In that case a direct
conversion to fixed point is in order.

Because the decimal number ex-
istsasASCI1  text thereisnobitpattern
we can copy directly into the fixed-
point number. However, by treating
each character of the string as a nu-
meric digit you can extract as many
bits as you need with no errors at all.
The trick involves mechanizing the
method you would use if you were
forced to convert the number by hand
(you could convert it by hand, right?).
In effect, we treat the string as a bi-
nary-coded-decimal (BCD)  number
with each ASCII character as a digit.

Figure 4 shows how this works.
Each multiplication by two cooks a
single bit out of the value; if the deci-
mal product exceeds one, the corre-
sponding binary bit is one. The multi-
plications must be performed on a
decimal number using decimal arith-
metic because the number may not
have an exact binary equivalent: that’s
the whole reason for this using
method!

/*- galactic constants */

#define NDMLEN  8 /* bytes per extended precision num */
#define DBLPREC  16 /* total significant digits in double */

/* Extended  precision numbers look like this: */
/* +OOO.OOOOlOOOOOOOO~NUMLEN-3  bytes~00000000 */
/* 6 A */
/* I binary point "1
/* sign bit */
/* Negative numbers are in two's complement form */
/* The overall length is 64 bits, of which 60 are fractional
/* Overflow occurs for positive nums >7.999  & negative <-8.000  =:
/* but we blithely ignore all that... */
/* Extended-precision numbers are stored with least-significant*/
/* byte first, in standard Intel format... */

typedef unsigned char EXTNUM[NUMLFN]; /* ext. precision format*/

/* "double" variables look like this: */
/* tOOOOOOO~OOOOOOOO(5  bytes(00000000 */
/* nl I I I */
1” I exponent mantissa "I
/* sign bit "1
/* Negative numbers are in signed-magnitude form */
/* Exponent  is biased by t1023 (decimal) *!
;: Note that the exponent is split across a byte boundary */

. . .remember  these are stored with LSB in lowest addr. byte */

struct dbits {
unsigned char mantissa[6];
unsigned int highmant:4;

/* mant[O]  is lowest order byte */
/* high-order bits of mantissa */

unsigned int exponent:ll; /* excess-1023 exponent */
unsigned int signbit:l; /* sign for sign-mag mantissa */

f;

typedef union {
double dbl;
struct dbits bits;

f DOUBLEBITS;

/* IMP double & bits to same spot*/

/* */
/* Convert a double-precision value to extended fixed point */
/* Catches overflows into sign bit, sticks at max value */
/* Double values have only 53 bits of precision; force low OS */

void CvtDblPExt(unsigned  char *extval,  double dblval) {

int index;
int expshift;
unsigned int accum;
,unsigned  int saccum;
DOUBLEBITS d;

d.dbl  = dblval; /* put it into the union */
expshift = d.bits.exponent - 1023; /* conv  exp to shift amt */

if (expshift > 2) ( /* catch overflow */
msmset(ExtAccum,'\xff',NUMGSN-1);
ExtAccum[NUMLEN-l]  = Ox3f; /* force to max value */
expshift = 0; /* and do no shifting */

1
else {

EZxtAccum[O]  = 0; /* fill unused bits */
memcpy@xtAccumtl,d.bits.mantissa,6);  /* trans low mant.  */
ExtAccum[NUMLEN-11 = (unsigned char) d.bits.highmant;
E%Accum[NUMLEN-l]  I= 0x10; /* add implied ‘1" bit */

1

listing 1 -A program to convert Tom  floating  point to fixedpoint begins by denormalizing
the mantissa until the exponent is zero.
requires the complex loop shown here.

Performing one-bit shifts  across multiple bytes

June/July 1989 6 3



while (expehift > 0) (
saccum = 0;

/* handle left shifts */

for (index = 0;index  < NUMUN;  index++) (
accum = (unsigned int) ExtAccum[index];
accum = (accum << 1) ) saccum:
ExtAccum[index]  -ii (unsigned char) accum;
saccum = accum >>  a:

1
expshift--;

I

while (expshift < 0) {
saccum = 0;

/* handle right shifts */

for (index = NUMLEN-1; index > -1; index--) (
accum = (unsigned int) EktAccum[index];
accum = rotr(  (accum I saccum),l);
EZxtAccum&ndex]  = (unsigned char) accum;
saccum = (0x8000  & accum) >> 7;

1
expshifttt;

if (d.bits.signbit)  {
NegExt (ExtAccumWUMMN,ExtAccum);  /* compl. & set retn */
memcpy(extval,ExtAccumeNUMIEN,NUMLEN);

]
else  {

~cpy (extval,ExtAccum,NUMLEN); /* just set retn val */

I I

I return:
f

listing I --(continued)

Theonlyarithmeticoperationyou
must perform on the string is a multi-
plicationby two, or, alternatively, add
the number to itself. There may be a
carry from the preceding digit posi-
tion and the operation may produce a
carry for the next position as well.

Listing 3 illustrates one way to
double an ASCII fraction without in-
tricate program logic. A loop exam-
ines each character in the string right
to left. At each character the code
isolates the low-order four bits and
adds 0x10  if there was a carry from the
previous character. The result be-
comes an index into the Dvalue and
Dcarryarrays,whichprovidethenew
result digit and the carry for the next
position. The ASCII string is updated
in place so it is ready for the next pass.

The arrays have 32 elements, of
which only 20 are used. I could have
used 20-element arrays, but wasting a
little space made debugging easier by
separating the effect of the digits and
carries on the array index.

The return value is simply the
carry from the high-order (leftmost)

MICROMINT I
After years of experience in manufacturing OEM controller boards and talking to customers, we think we have
hit upon just the right combination of format and function to satisfy even the toughest case of “relay mentality.”
R e a l i z i n g  t h a t  n o t warrantsaCrayX/MP,  Micromint offers atiny8031/8052-
based controller board for those dedicated and cost-sensitive installations.

RTC31 and RTC52
Technical Specifications
+3031  processor (RTC31)  or
Micromint 8OC52SASIC
processor (RTC52)

-11  .05-t&+2 system clock
muses  8K or 32K memory chips
*Up to 64K  bytes of RAM or EPROM
.5-volt-only operation
~11 o-1  9200  bps RS-232
and/or RS-485 serial port
-Use  stand-alone or networked
012  bit of parallel f/O
*Vertical-stacking expansion bus
Screw  terminal connections
Small 3JYx3.5” format
-80 mA typical operating current

RTCIO  Technical

-Three  bidirectional parallel ports

&channel, b-bit A/D (0-5V);
9,000 sampleslsec
+channel,  &bit D/A (0-W);
2-ps  response time
Battery-backed clock/calendar and
presettable time-interrupted capability

*DC To DC conversion-5-volt-only

Screw terminal connections
Small 3.5”x3.5” format

FfTCIO RTCIO  board with paral!el
I/O and  AU converter

ITTCIO  OEM tOO&srttity  Price

4 Park Street, Vernon, Connecticut 06066
Tel: (203) 87145170 l Fax: (203) 872-2204

Circle No. 139 on Reader Service Card

64 ClRCUlT  CELLAR INK



XKXIT  CELLAR INK’S

ADVERTISER’S INDEX
Reader
Service
Number Advertiser

Page
Number

101102

103104
105
106
107
108

lt
109
110
111
112
113
114
117
118
119
120
121

122123
124
125
126

127128
129
130

115/116.
131
132
133
134
135
136
137
138
139
140
141

142143
144
145
146
147
t

148
149
.

150

2500 AD SoftwareAlSl  Research

Alpha ProductsAVOCET
B8B Electronics
Berry Computers
Binary Technologies
Cabbage Cases
Chrysalis
Ciarcia Design Works
Circuit Cellar
Circuit Cellar
Circuit Cellar
Computerwise
Contact East
Cottage Resources
Covox, Inc.
DATArx
Dycor
Eng. Collaborative
Environmental Optics

Express CircuitsGalacticomm
Grammar Engine
GTEK, Inc.
Hazelwood Computer

Heath Co.Hogware
lnnotec
Intro1  Corp.
tt!  Micpsystems

Logical Systems
LTS/C  Corp.
Meredith Industries
MetraByte
Micro Resources
Micromint
Micromint
Micromint
Micromint
Ming Eng.
NOHAU Corp.

Paradigm SystemsProgrammer’s Shop
PseudoCode
Quinn-Curtis
R&D Electronics
Softaid
Systronix
Thinking Tools
Timeline
Tinney
x-10

:

;
39
49

z
79
79
17
62
17
47

;:
73
34
35
46
70

c63
54
7

68

;;
15
29
23

:“7
38
79
15
34
73

z:
64
76
66

::
51
32
68
71
79
7
4
54
9

IRS
NK Rating Service

iow useful is this article?

4t the end of each article and
;ome  features there are three 3-
Jigit numbers by which you can
ate the article or feature.

Tease  take the time to let us, at
Circuit  Cellar INK, know how you
eel our material rates with you.
lust circle the numbers on the
Ittached card.

/* Convert an extended fixed-point value to double floating */
/* Returns the double value. Some bits will get dropped. */

double CvtExt2Dbl(EXTNUM extval) {
int index:
int expshift;
unsigned int accum;
unsigned int saccum;
DOUEGEJXTS d;

memset(&d.dbl,'\O',NUMLEN); /* clear the decks */
if (extval[NUMLEN-l] & 0x80) { /*  get positive in act. */

d.bits.signbit  = 1;
NegExt(ExtAccum,extval);

)
else {

memcpy(ExtAccum,extval,NUMLEN);
]
accum = 0; /* if zero, we're done! */
for (index = 0; index < NUMLEN; index++) {

accum I= ExtAccum[index];
)
if (accum != 0) {

expshift = 0; /* normalize first 1 bit lot*/
while (ExtAccum[NUMI.EN-11  & OxEO)  ( /* right shift norm */

saccum = 0;
for (index = NUMLZN-1;  index > -1; index-) (

accum = (unsigned int) ExtAccum[index];
accum = rotr((accum  I saccum), 1);
ExtAccumTindex]  = (unsigned char) accum;
saccum = (Ox8000 & accum) >> 7;

)
expshifttt;

)
while (!(ExtAccum[NUMLEN-1]  & 0x10)) ( /* lft shift norm*/

saccum = 0;
for (index = 0;index  < NWLEN;  index++) {

accum = (unsigned int) ExtAccum[index];
accum = (accum << 1) I saccum;
RxtAccum[index]  = (unsigned char) accum;
saccum = accum >> 8;

1
expshift-;

1
d.bits.exponent-expshift + 1023; /* get excess 1023 exp */
d.bits.highnant=OxOOOf&(unsigned  int) RxtAccum[NUMIZN-11;
memcpy(d.bits.mantissa,ExtAccum+l,6);  /*xfer useful bits*/

]
return d.dbl;

1

Listing 2-Converting from fixedpoint to floatingpoinfis  roughly the reverse of the process
shown in Listing 1. Excess fractional bits in the mantissa are simply discarded by this
program.

I
Decimal x 2

0 . 5 4 3 2 1 1 . 0 8 6 4 2
0 . 0 8 6 4 2 0 . 1 7 2 8 40 . 1 7 2 8 4 0 . 3 4 5 6 8 Figure 4-Converting an ASCII representa-

0 . 3 4 5 6 8 0 . 6 9 1 3 6
t/on  to u numeric format requires treating

0.69136 1 . 3 8 2 7 2
the string as a binary-coded decimal (BCD)

0 . 3 8 2 7 2 0 . 7 6 5 4 4
number where each ASCII character is a

0 . 7 6 5 4 4 1.53088 single digit.

0.53088 1.06176
0.06176 0.12352
0.12352 0.24704

I,,,,,,,,"

0.10000101100 binary

June/July 1989 6 5



/* The original dec. number is stored as ASCII text string as */
/* +d.dddddddd...ddddd */
/* III up to 60 fractional digits */
/* ((actual decimal point (Ox2e) */
/* linteger  part of number (less than 8) */
/* sign (+ is Ox2b, - is Ox2d) */
/* */
/* Double the decimal value represented in the ASCII string */
/* Returns ‘carry" from highest character (either 0 or 1) */
/* The string must not contain anything other than dec. digits*/
/" (so strip out things like decimal points and signs first) */
int TimesTwo(char  *Value,int NumDigits) {
static char *Dvalue  = "0246802468......"

"1357913579......";
static int Dcarry[32]  = (00,00,00,00,00,16,16,16,16,16,99,99,

99,99,99,99,00,00,00,00,00,16,16,16,16,16,99,99,99,99,99,99);
int Binary;
char *Digit;
int Counter;
int CarryIn,CarqOut;

Digit = Value + NumDigits - 1; /* point to low-order digit*/
CarryIn = CarryOut = 0;
for (Counter = NumDigits; Counter > 0; Counter--) {

Binary = OxOf & *Digit;
CarryOut  = Dcarry[BinarytCarryIn];
*Digit = Dvalue[Binary+CarryIn];
CarryIn  = CarryOut;
Digit--;

)
return (CarryIn  != 0);

)

Listing J-This program uses array indexes to double an ASCll  fraction without  resotiing  to
complicated logic. The  program begins by isolating the low-order four bits of each ASCII

character which would become the
integer part of the number if you were
doing this by hand. Because the string
does not include the integer position,
it does not need to be modified for the
next pass.

The program CONVDEC  illustrates
how to use this routine. Simply type
"CONVDEC  0 . 1” to get the 60-bit
binary equivalent of 0.1 decimal.
CONVDEC  is limited to positive values
between 0.0 and 7.9999... because I
didn’t want to implement negation
and general integer conversions for
ASCII strings.

Bits from Thin Air

So now we have two methods to
convert decimal fractions into binary
fixed-point numbers. One starts with
a double-precision floating-point
number, but is therefore limited to the
53 bits available in the mantissa. The
other starts with an ASCII text string,
but can produce as many binary bits
as you need with complete accuracy.
Wouldn’t it be nice to be able to com-
bine the two methods and get an infi-

digit and ends by returning the carry from the high-order character.
_

“ The Best 8051 Emulator”

5 ft cable

PC based emulators for the 8051 family
(8051/51FA/52/31132/4ll521451~452/5351552  + CMOS +  more  .
l PC plug I” boards or M-232  box * Program Performance analyzer
* Pull-down menus combined wdh l POwwful  Macros wlh  IF-ELSE, REPEAT-

Command-Drwen  User Interface. WHILE strwt~res
Gmtexl  sensntiw  help and l Source Level debug for  PUM-51  and C51
On-Screen Edibng  of data - Symbolic  debuggmg  with  ln-lme  assembler

* 20 MHz real time emulabon and disassembler
l 128K emulal~on  memory l Execution time counter
l 48 bd wde.  16K  deep trace buffer l Trace can be viewed during emulai~on~

wllh  loop  counter

PRICES: 32K  Emulator for 8031 $1790: 4K Trace  $1495’
CALL OR WRITE FOR FREE DEMO DISK!

‘U.S. only Ask about our demo VIDEO!

notgau ,&$$g~

CORPORATION (408) 888-1820

Circle No. 14 1 on Reader Service Card

A rugged CABBAGE CASEY  lined with
plenty of foam for your equipment can
TAKE A LOAD OFF YOUR MIND

when you’ve goI to travel.

TAKE A LOAD OFF YOUR BACK
with our exclusive tilt-wheels
and extenston  handle optton.

mvi

UNLOAD ON US!
Call or wnte  to tell us about your

shipping or carrying  problems
WE HAVE SOLUTIONS!

< , L

m

CABBAGE CASES, INC.

,?‘a  3
1166-C STEELWOOD ROAD
COLUMBUS, OHIO 43212-I 356
(614) 486-2495 (800) 888-2495

Circle No. 108 on Reader Service Card
66 ClRCUlT  CELLAR INK



nite number of bits from a floating-
point number?

Well, it would be nice to have
perpetual motion, too.

It turns out you can wring more
bits from the floating-point number
than are present, at least for some
numbers. The method is similar to
that used in Listing 3: cook decimal
digits out of the floating-point repre-
sentation, then convert them to binary
fractionswithasmanybitsasyoulike.
This will work as long as you don’t try
to cook more decimals out than the
floating-point number encodes.

Figure 5 shows how this works.
First, you need a table of the binary
equivalents of each decimal place,
taken to as many bits as appropriate.
Next, you break the floating-point
number into separate decimal places,
extract the equivalent of each place
from the table, and multiply them by
the respective digits. Finally, when
you add all the products together, the
result is a reasonable approximation
of the exact binary value, even if the
floating-point number didn’t have that
many bits! Listing 4 illustrates the
code required for this conversion.

The accuracy of the result could
be improved by adding a few more
bits to each table entry and rounding
after the final summation. Evenbetter
results would come from expanding
the table to include equivalents for all
ten possible digits in each of 15 deci-
mal places; this entirely eliminates the
multiplications, at the cost of much
more storage for the table entries.

You don’t get something for noth-
ing, of course. The magic conversion
method doesn’t know what bits were
discarded when you (or the C library
routines) created the floating-point
number,soitcannotrecreatetheorigi-
nal value from thin air. In effect, it is
somewhat increasing the precision of
the equivalent number by assuming
that the decimal values are exactly
correct. This is not always so, but
sometimes it’s useful.

The EXTMATH routine converts a
decimal number to fixed point (and
back again) using both methods and
displays all of the bit patterns so you
cansee  whatgoeson. T~~~"ExT~TH
0 .I” to see what happens.

Decimal Binary

1.00000 = 10 00 00 00 00 00 00 00
0.10000 = 01 99 99 99 99 99 99 99
0.01000 = 00 28 F5 C2 8F 5C 28 F5
0.00100 = 00 04 18 93 74 BC 6A 7E
0.00010 = 00 00 68 DB 8B AC 71 OC
0.00001 = 00 00 OA 7C 5A C4 71 B4

Binary point _I

0.54321 = 5 X 0.10000 = 07 FF FF FF FF FF FF FD
4 X 0.01000 = 00 A3 D7 OA 3D 70 A3 D4
3 X 0.00100 = 00 OC 49 BA 5E 35 3F 7A
2 X 0.00010 = 00 00 Dl B7 17 58 E2 18
1 X 0.00001 = 00 00 OA 7C 5A C4 71 B4

Exact value = 08 BO FC F8 OD C3 37 17
I

Figure Sin some cases. you can wring more bits out of a number than were originally
present. Adding the positions in the table allows you to get a reasonable approximation
of the equivalent. V’s important that you not try to cook out more decimals than the
floating-point number can encode.

1

/* */
/* Extended precision equivalents for decimal fractions */
/* Each entry is the ext-precision  equiv. of the corresponding*/
/* decimal fraction 1.0, 0.1, 0.01, 0.001, and so forth */
/* Stored high-or&r byte first and flipped in Setupt&th */
/* ---because  flipping during transcription is hard to do */
/* and they're easy to mistype if transcribing by hand */

/* */
1" Convert a double-precision value to extended fixed pint */
1" Catches overflows into sign bit, sticks at sax value */
/* Converts at NW.imUm precision in the extended buffer, */
/* using decimal equivalent of each digit in double value... */

void CvtDbl2FullExt(unsigned  char *extval, double dblval) (

int digit;
int reps:
int dblsign;
DOUBLEBITS  d;
double dblint,dblfract;

listing &This  is the program equivalent of Figure 5. The program increases the precision
by assuming that the decimal values are precisely correct. If this assumption is wrong, your
results could begin deviating from correct by an ever-wider margin.

June/July 1989 6 7



d.dbl = dblval; /* set up union with double value */

dblsign = d.bits.signbit; /* force double to positive */
d.bits.signbit = 0;

if (d.dbl >= 8.0) { /* catch overflow */
memset(ExtAccum,'\xff',NUNLEN-1);
ExtAccum[NUNLEN-l]  = Ox3f; /* force to tnax value */

]
else {

memset(ExtAccum,  '\O',NUMTSN); /* zap accumulator */
for (digit = 0; digit < DBLPR!X;  digit++) f

dblfract = modf(d.dbl,&dblint);
for (reps = 0; reps < (int) dblint; reps++) {

AddExt(binfracts[digit]);
]
d.dbl = 10.0 * dblfract; /* extract next digit */

]
]

if (dblsign) {
NegExt(ExtAc~~m+NUNLEN,ExtAccum);  /* compl & set retn */
memcpy(extval,ExtAccumtNUMIEN,NUMUN);

I
else {

memcpy(extval,ExtAccum,NUMLEN); /* set return value */
]
return;

1

listing 4-_(continueci)

.

Now there fs a bus that makes I easy to  use the entire family of 66CC6  components.
Utilizingnative660Wsignals,theK-Eusmakesitpossioletocreate  bwcost66OOOsystems
in a straightlorward manner. The simplicity inherent the K-System concept allows the sys
rem designer the ability to concentrate on meeting the demands of the applications. This
same simplicfty combined wkh its low cost makes the K-System ideal for applications
ranging from personal use through educational and laboratory applications up to industrfal
control and systems devekpment.  All of this is accomplished at no sacriii in performance
or reliabilfhy.

The  Convenient  size (4 x 5 114inch)  of the K-Busboardspermitsth  optimal division
01 system functions thus simplifying system configuration. The motherboard incorporates
integral card  guides and compalafe  power connectors which minimizes packagirvg require-
ments. Both SKDGS and OS-9/66OOO  are fully supported allowing efficient  system
utilization in both single and muhCuser  appikatbns.

Boards currently in production:

K-BUS 12 Slots, .8’ cemers,  PC type power connectors $199.96
K-CP&66K 1OMHz 66000 CPU, 2 ROM  sockets (12 or 16MHz) $159.96
K-MEM 256K static RAM or 27256 type EPROMs (OK installed) $ 99.00
K-AC1 2 serfal ports with full modem coMmk  (66661) $129.95
K-FDC Fbppy disk  COMrOfler  (up to four 5 114  drives) $129.96
K-SCSI Full SCSI implemenration  using 5360 chip $149.96
K-DMA 2 channel DMA controller using 66446 chip $199.96
K-PROTO General purposelwirewrap  board f 59.95
K-xxx-BB Bare board with documentation for above t 44.95

Software:

SKDOS Single user, editor, assembler, utilities, BASIC $150.00
OS-9/66000 Multi-user, editor, assembler, SCRED,  utilities BASIC,

C, PASCAL FORTRAN are available $300.00

Inquire about our UniOuad  line of 66xxx  Single Board Computera
Quantify and pckag  discounts available

Terms: Check, Money Order, Visa,  MasterCar&Prices  include UPS ground shipment in
continental U.S.

Hazelwood Computer Systems
Highway94atBluffton UniQuadTM K-Kits’”

Rhmeland,MO65069 l (314)236-4372

Circle No. 126 on Reader Service Card

68 ClRCUlT  CELLAR INK

I’ve pu t together a pair of test pro-
grams using the routines shown in
this article so you can experiment with
the different conversion methods.
[Editor’s Note: Soffware for this article
is available for downloading from the
Circuit Cellar BBS and on Circuit Cellar
INK Soffware On Disk #9. For informa-
tion on downloading and ordering soff-
ware,seepage  78.1 If you spend enough
time with them, you’ll see where they
work, where they fail, and ways to
improve them for your projects. . .
which is, after all, what this column is
all about. +

Ed Nisley is a member of the CIRCUIT
CELLAR INK engineering staff  and enjoys
making gizmos do strange and wondrous
things. He is, by turns, a beekeeper, bicy-
clist, Registered Professional Engineer,
and amateur raconteur.

225 Very Useful
226 Moderately Useful
227 Not Useful

R &D ELECTRONIC SURPLUS, INC.
Has been in business since 1946 selling NEW
surplus electronics and electromechanical parts.

Send for our FREE 40 page catalogue detailing:
Batteries LEDs
Cables Lugs
Capacitors MOVS
Clocks Ni-Cads
Connectors Power Devices
Digital Timer/Controllers many Power Supplies
Diodes Relays
Displays SemiConductors  galore
Enclosures Stepper Motors 8 Driver ICs
Fans Speakers
Filters Many Switches
Heat-Shrinkable tubing Telephones and components
Heatsinks Transformers
Integrated Circuits Zeners
Lamps & Lights etc.

1224 Prospect Avenue
Playhouse Square
Cleveland,OH44115

Telephone:(216)621-1121  l Fax:(216)621-6628

Circle No. 146 on Reader Service Card



UPDATE:
Build an 87xx Programming Adapter
by Jeff Bachiochi

P TOP VIEW SIDE VIEH

1 rogrammable microcontrollers
require less board space than nonpro-
grammable microcontrollers because
they don’t need external address
latches and EPROMs. The problem is,
not only do programmable microcon-
trollers cost two or three times asmuch
as the nonprogrammable versions,
they don’t fit into a normal EPROM
programmer.

Steve Ciarcia presented an article
describing a Serial EPROM Program-
mer (SEP) in the October 1986 issue of
BYTE. The design gives the user
complete control over the parameters
of the ZIF programming socket
through its use of DATA statements
within the part of the operating sys-
tem written in BASIC. These pro-
grammable parameter statements
make it possible to create a simple,
low-cost adapter for programming
87xx microcontrollers.

Projects are often cre-

[-

L--

C

/

EC

c

.JI ‘28

buy or modify, and found that the SEP
seemed perfect for the job. We began
the process by building a small plug-
inadapter toadapta40-pinZIFsocket
to the 2%pin programming ZIF socket
of the SEP.

WI

Figure l--The  ten components  required for
the adapter lay out very compactly on a
piece of vector board.

The 8751 programming adapter
is made on a 1” x 4” piece of vector
board. Cut the centers out of a 28-pin
wire-wrap and a40-pin  socket to make
individual strips. Alternately mount
the sections on 0300-inch  centers as
shown in Figure 1 (pins l-14,0.300”
space, pins l-20, 0.300” space, pins
15-28,0.300”  space, pins 2140). A 28
pin wire-wrap socket’s long leads
extend through the vector board to
make the connection to the SEE’s ZIF
socket. (A second socket may be
stacked downward if additional clear-
ance between the programming
adapter and the SEP is required.) A
40-pinZIFsocket  maybepluggedinto

the standard 40-pin socket
strips later to make insertion
and removal of the microcon-
troller easier.

The microcontroller
needs an external oscillator to
transfer data internally. Any
crystal from 4 to 6 MHz and
two 27-pF capacitors are all
the components necessary to
drive the oscillator. In addi-
tion, 87xx programmable mi-
cros have various forms of pro-
tection against code theft. A
set of rocker switches and
some pull-up resistors com-
prise the circuitry required to
allow access to all such pro-Figure 2-The schematic for the modifica-

tion shows a 4.9152-MHz  crystal in place. tection  features.
Note that any crystal between 4 and 6 MHz
may be used for the project.

Place thepartson thevectorboard
as shown in Figure 1. Figure 2 is the

ated out of necessity. For
example, the Mandelbrot
Engine required up to 256
8751 microcontrollers to be
programmed.

(Editor’s Note: See the
October, November, and De-
cember 1988 issues of BYTE
for details of this project.)

Before the Mandelbrot
Engine, we had no need for
an EPROM programmer
that would also program
microcontrollers. When
work started on the Engine,
we quickly reached a point
where we could not con-
tinue without a way to program the
EPROM on an 8751: We looked around
for a programmer that we could either

June/July 1989 6 9



DROE GE
D ESIGN R OBOT FOG
THEORIGINQTION 01
EXRCTING GRF~PHI~

E NGINEERING
IFI MRNUFIL  PRINTED
CIRC~$~T~;D/CRM

WLTI-LEVEL SYMBOL CONCEPT
4EMORY LRYOUT  WOVE I S  R
3YMBOL MFlOE  F R O M  T W O  C H I P
SYMBOLS  WITH RODEO BUS WIRE
=HIP  SYMeOLS  QRE MROE  F R O M
AULTIPLE  PFw3 SYMBOLS.

3F16IC oSiO.OO POSTPRIO  :
CGm 3 COLORS 12 LRYERS
64 BY 64 INCH WORKSPFICE
RNY GRID T O  0 . 0 0 1  I N C H
RUNS ON RNY PC COMPRTIBLI
15 LINE WIDTHS
DOT MFlTRIX  OUTPUT
200KB ~Cl~Uhl4~~TION  ON

16 WORK FIRERS SFIVEFIBLE
STITCH BETWEEN LFIYERS
ZOOM Qt.-D  PRN TO RNY SCFlLE

JOVANCEO 6100.00 POSTPRIO  :
RBOVE FEFITURES
E6f7 RESOLUTION 15 COLORS
LFIRGER  JOBS
MOUSE
FIOVF)NCEO  E D I T I N G
PRINTED MFINUFlL

Circle No. 121 on Reader Service Card

70 ClRCUlT  CELLAR INK

In BASIC:

170 DATA 000O1,000H,OO,OOOH,OOOH,OOOH,OOOH,OOOH,O,OO,O,OO,~

In tokenized form in RAM:

(24COH)
start hext start ASCII*
24COH OOH AAH 9CH 30H 30H 30H 30H 31H - . . . 0 0 0 0 1
24CBH 2CH 30H 30H 30H 48H 2CH 30H 30H - , 0 0 0 H , 0 0
24DOH 2CH 30H 30H 30H 48H 2CH 30H 30H - , 0 0 0 H , 0 0
24D8H 30H 48H 2CH 30H 30H 30H 48H 2CH - 0 H , 0 0 0 H ,
24EOH 30H 30H 30H 4BH 2CH 30H 30H 30H - 0 0 0 H , 0 0 0
24E8H 48H 2CH 30H 2CH 30H 30H 2CH 30H - H , 0 , 0 0 , 0

(24FSH)
end hex* end ASCII l

24FOH 2CH 30H 30H 2CH 30H ODH 37H OOH - , 0 0 , 0 . 7 .

schematic. A spot of super glue will
hold things in place before you do any
soldering, but be careful: the thinner
versions of this glue like to wick up
into IC sockets, gluing their contacts
shut. Use small insulated wire (e.g.,
wire-wrap wire) to make all the inter-
connections on the bottom of the vec-
tor board.

WARNING: The SEP can damage
any microcontroller left  in the ZIF socket
uponinitialpower-uporsystem reset. Do
not insert a microcontroller into the
adapter ZZF socket until the system is
initialized with the proper TYPE selec-
tion. Do not turn the SEP ofi until you
have removed uny  microcontroller from
the adapter ZIF socket.

Programming 87xx microcon-
trollers on the SEP with the adapter

Turn on the SEP and make the
proper TYPE selection. Insert the pro-
gramming adapter into the SEP mak-

FigureS-  When you
begin modifying
yoursystem EPROM,
look for the starting
addresses in the
setup data shown
here.

microcontroller (again, align pin 1).
All programming should be done at
Normal programming speed, not In-
telligent or Fast modes.

To program code into a microcon-
troller:

Move the code to be programmed
into the SEP
Set the adapter switches to CODE
Select the Program function

To verify code in a microcontroller:
Move the code to be verified into
the SEP
Set the adapter switches to CODE
Select the Verify function

To read code from a microcontroller:
Set the adapter switches to CODE
Select the Read function

To program the security table:
Move the mask code to be pro-
grammed into the SEP
Set the adapter switches to P. Table

ing sure p&t 1 &aligned properly. The Select the Pr
green light should be on. Insert the gram first 32

In BASIC:

260 DATA S(lO)="USER 1 ":$(ll)="USER 2 ":S(12)="LJSER 3

In tokenized fonn in RAM:

(26C6H)
start hex+ start ASCII +

26COH 32H 2EH 35H 56H 22H ODH 42H 01H - 2 . 5 V u . B .
26CBH 04H 24H EOH 31H 30H 29H EAH 22H - . S . 1 0 ) . m
26DOH 20H 55H 53H 45H 52H 20H 31H 20H - U S E R  1
26DBH 20H 20H 20H 20H 22H 3AH 24H EOH - I8 :S.
26EOH 31H 31H 29H EAH 22H 55H 53H 45H - 1 1 ) . " U S E
26E8H 52H 20H 32H 20H 20H 20H 20H 20H - R 2
26FOH 20H 22H 3AH 24H EOH 31H 32H 29H - " : $ . 1 2 )
26FEH EAH 22H 55H 53H 45H 52H 20H 33H - . oa U S E R 3

(2707H)
end hex & end ASCII +

2700H 20H 20H 20H 20H 20H 20H 22H ODH - II

ram function (pro-
rtes.1

Figurel--Thebegin-
ning addresses for
the display data to
be altered should
appear as in this
frame.



ORIGILJAL cHANc;ETO
ADDRH?ixAscxxExAsc- - - - -

24COH OOH +
24ClH AAH +
24C2H 9CH . +
24C3H 30H . +
24C4H 30H 0 38 8
24C5H 30H 0 31 I
24C6H 30H 0 35 5
24C7H 31H 1 31 1
24C8H 2CH +
24C9H 30H il 30 ;
24CAH 30H 0 31 1
24CBH 30H 0 30 0
24CCH 48H H + H
24CDH 2CH +
24CEH 30H il 32 ;
24CFH 30H 0 38 8
24DOH 2CH +
24DlH 30H ;, 37 ;
24D2H 30H 0 38 8
24D3H 48H H + H
24D4H 2CH +
24D5H 30H il 32 ;
24D6H 30H 0 36 6
24D7H 48H H + H
24D8H 2CH ' +
24D9H 30H 0 30 ;,
24DAH 30H 0 43 c
24DBH 30H 0 45 E
24DCH 48H H + H
24DDH 2CH +
24DEH 30H b 30 ;,
24DFH 30H 0 43 c
24EOH 30H 0 45 E
24ElH 48H H + H
24E2H 2CH +
24E3H 30H ; 30 il
24E4H 30H 0 32 2
24E5H 30H 0 33 3
24E6H 48H H + H
24E7H 2CH +
24E8H 30H ; 30 LJ
24E9H 2CH

il
+

24FAH 30H 35 ;
24EBH 30H 0 30 0
24ECH 2CH
24EDH 30H il

+

30 Ll
24EEH 2CH +
24FZ'H 30H ; 30 ;,
24FOH 30H 0 30 0
24FlH 2CH +
24F2H 30H il 30 ;
24F3H ODH . +

Figure S-These changes are made to the
setup data shown starting in Figure 3.

To program  lock bit 1 or 2:
Set the adapter switches to Lock 1
or Lock 2
Select the Program function (pro-
gram first byte)

Alter ing your system EPROM-
Version 2.0

If you want to program an 8752 or
an 87C252  @7C51FA),  nothing special
must be done since these devices pro-
gram like 2764As. However, if you
want to program 8751s,  8751BHs,  or
87C51s  then you must change a TYPE
SELECTION (SEP ROM version
1.0-1.6) or add a new USER ENTRY
(SEP ROM version 2.0).

[Editor’s Note: There are signify-
cant  diflerences  between  version 1 .x and
version 2.0 of the  SEP system EPROM. If
you have version 2.x and would like more
specificinstructions  on how to modify 2.x
for use with the programming adapter,
send a self-addressed stamped envelope
fo:

87xx Programming Adapter
Circuit Cellar INK
4 Park St.
Vernon, CT 060661

To alter the system EPROM you
must first get the system EPROM’s
code into the buffer. Version 2.0 has a
selection in the main menu for accom-
plishing this. This version also has six
reserved entries, USER l-USER 6, for
adding new device types. In this ex-
ample, USER 1 will be eliminated to
make an entry for 8751s.

Two areas of the system EPROM
will be affected: Setup data and Dis-
play data. First locate the Setup data
using the SEP’s DUMP function and
write down the starting and ending
addresses as shown in Figure 3. Simi-
larly, use the DUMP function to find
the starting and ending addresses for
the Display data area as shown in Fig-
ure 4.

Next, select the CHANGE func-
tion and enter the starting and ending
addresses for theSetupdata  you found
above. Then enter the changes that
are shown in Figure 5. Likewise,
change the Display data as shown in
Figure 6.

MORE GOOD CODE...
FAST!

softaid’s  In-Circuit Emulators givI
IOU all the power and speed yo
leed to develop microprocesso
)ased products in realtime
ncreasing  your productivity ant
;aving you time and money.

Emulators available for:
i4180, 280, Z180,  808818086
10188/80186,  8085, v4o/v50

Priced from $595 to $2995

FULL SCREEN
DEBUGGING!

Vith the optional source leve
‘ebugger, you get a real time, ful
creen debugging environmen
lith pop-up windows and symbolic
isplays. Your source code ant
omments are displayed in z
{indow  that is automatically linkec
I the debugging session. This
lakes embedded
ebugging FAST and EASY!

systerr

TIMELY TECHNICAL
SUPPORT!

Iur technical staff is ready tc
nswer  your questions. Give us 2
all to discuss your microprocessor
evelopment needs!

iomplete information is alsc
vailable  on our BBS from 5 p.m. tc
a.m. EST -- 301-964-8456.

(-1

8930 ROUTE 108
COLUMBIA, MD 21045

..: (301) 964-8455
(800) 433-8812

-0
Circle No. 147 on Reader Service Card

June/July 1989 7 1



GRIGIMIL  CHANQE  M
ADDR HEXASC  WC Asc- - - -

26C6H 42H B t
26C7H OlH . t
26C8H 04H . t
26C9H 24H $ t
26CAH EOH . t
26CBH 31H 1 t
26CCH 30H 0 t
2 6CDH 29H ) t
2 6CEH EAH . t
2 6CFH 22H ” t
2 6DOH 20H 20
26DlH 55H U 38 8
26D2H 53H S 37 I
2 6D3H 45H E 35 5
26D4H 52H R 31 1
2 6D5H 20H 20
26D6H 31H 1 20
26D7H 20H 20
26D8H 20H 32 2
26D9H 20H 31 1
2 6DAH 20H 56 V
2 6DBH 20H 20
2 6DCH 22H ” t

(all+)

2706H 22H ” +
2 7 0 7 8 ODH . t

8751 Must add USER ENTRY

m!

USER ENTRY for 8751:
setup data
DATA 8751,010H,28,78H,26H,OCEH,OCEH,O23H,O,5O,O,OO,O

Display data
v 8751 21V"

For: 8752BH Program as 2764~
For: 87C252BH (87C51FA) Program as 2764~
For: 8751BH Must add USER ENTRY
For: 87C51 Must add USER ENTRY

Lock 2 ON ON OFF

USER ENTRY for 8751BH and 87C51:
Setup Data
DATA 8751,010H,28,78H,26H,OCEH,OCEH,O25H,0.50,O,OO,O

Display data
11 87C51 12.5V"

Figure 6-Change the display data shown Figure 7--The  87xxProgramming  Adapter can be made to work with a variety of devices
starting in Figure 4 as indicated in this table. by changing the switch settings shown here.

Circuit Board This completes the changes. Use
1 l”x4” piece of vector board (preferably the DUMP funtion to check that all

with holes predrilled  on O.lOO-inch
centersand individual pads on each

changes were made correctly. Select
hole) the 27C128  (27128) EPROM type and

insert a blank 27C128  (27128) in the
IC Sockets
2 28-pin wire-wrap sockets (one cut

SEPs programming socket. Program
into two U-pin  strips JlA &JIB, the the whole EPROM and your new
second used as an extension for system EPROM should be ready to
more height if necessary) use. Remember to remove the EPROM

1 @pin ZIF (Zero Insertion Force)
socket from the ZIF socket before turning off

1 40-pin  IC socket (must allow the ZIF the power to replace the system
to plug into it) (cut into two 20-pin EPROM with the new one.
strips J2A & J2B) The adapter can also be used with

Discretes other EPROM programmers to pro-
2 27 pF capacitors
1 10 nF tantalum capacitor

gram 8752BHs and 87C252BHs
1 4.9152-MHz  crystal (anything from 4 (87C51FAs)  by setting the program-

to 6 MHz) mer up for 2764As. The other proces-
1 4.7k  ohm pull-up SIP (or individual

resistors)
sor types discussed requirealterations

1 B-position slide or rocker switch which we’ve accomplished through
(only three positions are used) the flexiblity of the SEP, and not

Miscellaneous
through the complexity of the hard-

Wirewrap  wire for interconnections ware for the adapter. A list of pro-
Cyanoacrylate glue for tacking down parts gramadapter switch settings for work-

ing with other devices is given in Fig-
Figure8-7hepartsrequiredfortheadapter ure 7. Figure 8 shows the program-
are simple, and will require a minimal cash ming adapter’s parts list. Cost for the
outlay by most builders. parts should be minimal.

72 c//?CU/T  CELLAR  INK

It is possible, of course, to buy
completely hardware-based adapters
for programming programmable
microcontrollers. Most such adapters
will cost at least $100 and will be lim-
ited in their application to one family
of micros. I like the fact that, in this
case, hardware and software comple-
ment each other quite nicely. Neither
is more important than the other, with
thelowest-cost solutionbeing a 50/50
mix of both. 4+

IRS
228 Very Useful
229 Moderately Useful
230 Not Useful



CONNECTIME Excerpts from the Circuit Cellar BBS

The message base of the Circuit Cellar BBS in now available
on disk. See page 78 for details.

THE CIRCUIT CELLAR BBS
300/l 200/2400 bps

24 hours/7 days a week
(203) 87 1- 1988 - 4 incoming lines

Vernon, Connecticut

With the upgrade to version 2.1Mof  TBBS (The Bread
Board System), oneof  the most obvious improvements was
to thefile  system. I mentioned a few issues ago that I’d be
implementing the new  file system features, and have been
quite successful at doing so since then. Using the old
software, the only way to group related files into separate
file areas was to define individual menus for each of those
areas. Finding a certain file involved coursing through
menus in an attempt to find the correct subarea. Plus,
checking for new files involved a good memory (yours).

The new software solves these problems as well as
some others not mentioned. You start offat  the main menu
and select the <F>iles area. At the next menu you tell the
system you want to <D>ownload  a file. Once you’re into
the download section, you arepresented with a list of 14file
areas. Areas include files for articles which have appeared
in CIRCUIT CELLAR INK, files related to Electrical Engi-
neering, cross-development tools, and newly uploaded
files which don’t have a home yet.

Upon selecting one of the subareas, you aregiven  a list
of commands available. Commands include cL>ist the
available files, <D>ownload a file, show a list of <N>ew
files, <E>xamine  the contents of an ARC file, and go to a
new cA>rea.

The <L>ist command allows you to include a partial
or a complete file name to restrict the files shown. For
example, type “L *.ARC” to list just the ARC files avail-
able in the selected subarea.

The <N>ew  command will actually show you all files
uploaded after a certain date in all subareas. Used without
any parameters, the <N7ew  command will list all files
uploaded since your last log-on. Used with a date, it will
show all files uploaded since that date.

Once you know whatfile you want to download,you’ll
encounter another nice addition that version 2.lM intro-
duced: moreavailablefile transferprotocols. In addition to
ASCII, XMODEM, and YMODEM (XMODEM/lK),
we now have available YMODEM Batch (True
YMODEM), Kermit, and SEAlink.

Finally, help is available by using the <H>elp  com-
mand. Of course, I’m always available via Email  to answer
any specific questions, so if you’ve been putting off trying
to download files because the thought of trying to figure
out just what a “protocol transfer” really is, give it a t y on
your next call. It really is easy once you’ve tried it.

74 C/RCU/T  CELLAR  INK

The key to any successful hardware project is actually
building the circuit and having it work. There are numer-
ous methods that can be used for building prototype circuit
boards, each with its own good and bad points, as we find
out from the first discussion.

Msg#:11923
From: MARK BALCH To: STEVE CIARCIA

Steve, I will start building a project that I am designing in about
a month or so. Can you tell me how it is best to prototype a simple
&bit microprocessor circuit? Should I wire-wrap, breadboard, or
solder it? In your opinion, what works best for Circuit Cellar
projects like the ones you did back in 1980 and ‘83?

Msg#:11947
From: STEVE CIARCIA To: MARK BALCH

Most people like wire-wrap. Personally, I don’t. I still point-to-
point solder (using PC board sockets and wire-wrap wire) all my
projects. That way they are neater and smaller.

Msg#:12165
From: MARK BALCH To: STEVE CIARCIA

Thanks. I guess I’ll stay with soldering then. What do people see
in wire-wrap? From what I see, it can get extremely messy with
tangled wires. I remember seeing a back issue from 1983 or so
when you addressed that topic and showed pictures of the backs
of your boards. I just wanted your latest opinion.

Msg#:12535
From: BILL CURLEW To: MARK BALCH

I think the only reason Steve gets away with soldering is because
God had intended him to be a brain surgeon. His boards look
more like works of art than protoware.

I, on the other hand, am a big banana when it comes to point-to-
point wiring. Wire-wrap has allowed me to continue dabbling
without excess pain. Just for some perspective, in 1975 I decided
to build an Altair 8800A.  Since I was a poor boy at the time, I



bought the manuals for $30.00 and WIRE-WRAPPED THE
WHOLE SYSTEM, INCLUDING THE FRONT-PANEL ASSEM-
BLY.

Msg#:12266
From: KEN DAVIDSON To: MARK BALCH

For doing small circuits with many discrete analog parts, point-
to-point wiring with a soldering iron works the best. For wiring
an alldigital circuit where you have mostly socketed chips, I find
wire-wrapping is much faster, easier to do, and easier to change.
True, you end up with a board that is a little fatter, but when you
want to do a lot of playing with a circuit before casting it in
copper, it works well. The first cut of the BCClBO  was mostly
wire-wrapped with solder connections to the 6%pin PLCC socket.
The result was that the first prototype PC board worked on the
first try. Wire-wrapping also works better if your soldering
techniques leave your finished work looking like it was done
using a blow torch.

Msg#:12273
From: BOB PADDOCK To: KEN DAVIDSON

Have you ever looked at Vero Speedwire stuff!  It has the same
advantages as wire-wrapping, but without the thickness.

Msg#:12278
From: KEN DAVIDSON To: BOB PADDOCK

One of the problems with the thickness of wire-wrapping is you
usually can’t plug a board into a backplane without taking up
several slots. In a junk box, I found some sockets that could be
glued onto the top of a board that had the pins bent around and
sticking up on the same side of the board as the components. You
couldn’t fit as many parts on the board, and you had to channel
the wires between the sockets, but it made a nice thin board.

Msg#:12291
From: HENRY MINSKY To: BOB PADDOCK

I have also found that Speedwireis the way to go for prototyping.
It seems like there ought to be something better, but Speedwire
seems to be the best for quick prototyping. One thing that would
be a good addition would be whole Speedwire sockets. I have
only seen spools of individual pins, which you have to insert in
the proto board yourself. Has anyone seen prefabricated Speed-
wire DIP sockets?

Msg#:12311
From: BOB PADDOCK To: HENRY MINSKY

Iknowwhatyoumean. WemakeourownSpeedwireboardsand
buy the pins from Vero. Three cents per pin doesn’t seem like
much until you have to put 1500 of them on one board. Someone
in our production department found an interesting way to install
them. Instead of inserting the pins one at a time, they insert them
a row at a time, then use our metal break to press them into the
PC board; sure cuts down on construction time.

Msg#:12839
From: MARK BALCH To: BOB PADDOCK

But aside from Speedwire, would you say that wire-wrapping is
the best to prototype? In terms of ease of use and speed.

Msg#:12877
From: BOB PADDOCK To: MARK BALCH

Wire-wrapping is great for digital projects, but for anything that
has a lot of analog components it can be a curse. You have to
solder some type of wrappable pin to the component so you can
use your wire-wrap tool on it, so you are just as far ahead to solder
the wire in the first place.

Don’t use wire-wrap wire for your power bus. Use something
like at least 22-gauge wire for a bus, then run power to your
sockets using your red & black wire-wrap wire from these buses
(something I learned the hard way!).

Msg#:12503
From: RON LEBLANC To: MARK BALCH

A little background. I have been designing and prototyping
microprocessor-based systems since early 1974. The first com-
puter I built was an 8008-based  unit. Since then I have prototyped
four or five dozen micro-based systems. In short, I’ve been doing
it a while and know of what I speak. Everyone of those projects
except three were all wire-wrapped.

You will find, and already have from what I can see of the other
messages posted here, that there are two camps on what method
to use. I use Vector perf board as a base, Vector bus strips for
running power, T49 pins for mounting resistors, caps, etc., and J
pins for test points and power connections. And of course, wire-
wrap sockets for ICs. The address for Vector is:

Vector Electronics Company
12460 Gladstone Ave.
P.O. Box 4336
Sylmar, CA 91342-0336
(818) 365-9661

Call them; they will send you a catalog full of tools, sockets, plug
boards, and so on. No, I’m not associated with them in any way
except as a long-time customer. I believe if someone makes a
good product you ought to tell others about it.

Why wire-wrap? I have found wire-wrapping to produce the
cleanest, neatest, and most well-behaved prototypes (less
crosstalk, much cleaner power). It is fast! At least for me much
faster than point-to-point soldering. It is also very easy to
modify. Connections are made at 20 or more points and therefore
you don’t get loose or flakey connections because of cold solder
joints. It takes all of about 10 minutes to learn to do correctly. As
to why commercial companies wire-wrap:

1) The connections are good for 20+ years. (Hint, the black
corrosion on the exterior of the wire after a time DOES NOT have
any effect. The connections are made between the pin corners
and the wire,and theyareverygas tight and corrosion resistant.)

June/July 1989 75



2) Ever try to design a complex project and wire the prototype
point-to-point with solder? What a mess! Try making a signifi-
cant modification to that! (Bell Labs has done extensive testing on
this. Solder connections are only good for eight or so years.)

1 know, who’s going to keep a project for twenty years? That’s not
the point. The point is the connections are much more reliable.

Bad points? As always, there are some. Extra cost is a big one.
Wire-wrap sockets are not cheap.

Msg#:12516
From: MARK BALCH To: RON LEBLANC

Thanks a lot for your help. You have thoroughly answered my
question. I already have Vector’s catalog and have seen some of
their stuff. One thing I don’t like is that their boards seem very
expensive. I’ll check their wire-wrap equipment.

So do you think I should buy a cheap wire-wrap starter set and
some sockets and wrap a “dummy” board to see if I like it?

Msg#:12541
From: RON LEBLANC To: MARK BALCH

You should rarely take anyone’s word as the absolute answer to
anything. Yes, by all means, experiment with wire-wrapping.
There are some relatively inexpensive hand wrapping and
unwrapping tools made by a company called OKI. These should
not cost more than 5 to 10 dollars each. The only other things you

- DIGITAL VOICE MODULE -
l Low cost l Super quality
l Selectable banks 0 1Wamp
l 4 Sampling rate l DRAM operation

DVM-1 - $49 (without RAM)

-PASSIVE INFRARED DETECTOR -
l Used in alarm system, moving detection
l Super sensitive l Exchangeable lens
l Very reliable l Analog Pulse Count

RK4000PCA - $59

MING Engineering, Inc.
515 S. Palm Ave., #5
Alhambra, CA 91803

(818)  570-0058 Fax: (818) 576-8748

need are wire-wrap sockets and a set of wire strippers. I would
suggest that you get some wire strippers called T strippers.
These are simple, cost less than $10, and work just fine. Forget
spending any large amounts until you get the “feel” of wire-
wrapping. You may or may not like it.

Of course, you’ll need some wire-wrapping wire. Get at least
three 100’ rolls: one red for power, one black for ground connec-
tions, and another white for signal connections. You will find
color coding the connections very useful when tracing the wir-
ing. I always wire all of the power connections first and then
proceed to do the signal wiring. Strip about 1” of insulation off
the end of the wire. This will give you a good four to five
complete turns about the pin. Use what is called a modified
wrapping tool if you have a choice. The modified wrap puts
about one turn of insulated wire about the pin at the base of the
connection. I have found this to make the best connections.

Finally, do try to do another project using the point-to-point wire
and solder method. You can then compare the two for yourself.
I much prefer wire-wrapping, but not all people do. Experiment!
That’s what it’s all about, isn’t it?

Msg#:12548
From: MATT OLSON To: MARK BALCH

I would like to add my two cents on the topic of wire-wrapping.
I have been wire-wrapping for a few years and nothing can beat
prototyping with it for speed and flexibility. Granted, the profile
will be higher, but surface area can be just as compact as a
soldered board if not more. A few good techniques should be
followed for a good clean board.

Plan the layout carefully, as should be done with any board. Use
prestripped cut lengths of different colored wires, using only the
length that will reach the two connections. This can eliminate the
“rats nest.” This wire can be purchased through a number of
places (Digi-Key,  Specialized Products). There are also a few
low-cost hand-cut-and-strip-type products that workquite well,
although that is more time consuming. Route wires carefully.
Run wire down the center IC or between them, as opposed to in
between their pins. Use different colored wire to identify ad-
dress bus, data bus, control lines, I/O ports, and so on. Use wire-
wrap ID labels and write part or reference numbers on them.

Use a “modified” type bit for your WW gun. This can eliminate
broken wires at the base of the pin. I have been using the Radio
Shack prototype board #276-X38  for a number of projects. The
board has a ground plane on the component side and individual
solder pads on the back, along with an edge connector. I usually
solder the pins of individual components and two pins of an IC
to the pads so that nothing comes loose. Sprinkle a few ground
and power pins throughout the board using a heavier gauge
wire soldered to connect them. Route component connections
for these to the closest pins, and avoid daisy-chaining power and
ground. Ofcourse,useamplebypassanddecouplingcapacitors.

I did have an experience with a just-wrap slit-and-wrap-type
gun, in which the wire inside the insulation was being broken,
but the insulation was not. This turned out to be a total night-
mare and the entire board and all the labor had to be scrapped.
It may have been that the gun and bit I was using were faulty.

Circle NO. 14U on Reader Service Card

76 ClRCUlT  CELLAR INK



Msgk12836
From: MARK BALCH To: MATT  OLSON

Whew. Thank you very much for those ideas and hints. Interest-
ing ideas that you have. I am sure they will help me to make my
first project easier. It looksvery expensive, though. I’m gonna try
using a manual wrapper for my first project because I will be
giving wire-wrapping a “test run.” I already have four colors of
wire: two for power and two for different signals. I think I’ll buy
a fifth color to make the signals even easier.

Do you recommend buying one of those wire kits that has many
precut lengths in assorted colors? And do you know of a good
place for me to get a starter kit for wrapping? If I can’t find
another place, I will order from Jameco because they are very nice
people and have good products (from what I have ordered from
them).

Msg#:13018
From: BILL CURLEW To: MARK BALCH

On the subject of “kits” with different wire lengths: I have found
that wrapping goes MUCH QUICKER if you have prestripped
lengths available, but the commercially precut stuff is too darned
expensive for me.

What I did was to figure out the three or four sizes I use most
often. Then I took some of those DIP carriers (the plastic U-
shaped tube things) and cut them to size. I take the spooled wire
and wrap it around the form, cut the ends, and strip the resultant
wires.

I usually make up a bunch after designing the circuit I’m going to
build, and fill in as needed.

Msg#:12840
From: MARK BALCH To: KEN DAVIDSON

Is it really easy to modify a connection? It always looked hard
because of the turns of the wire and the layers.

What do your boards look like when you finish them?

MS@:12893
From: KEN DAVIDSON To: MARK BALCH

As long as you try to keep it to a limit of two wraps per pin, you
won’t end up with countless layers to unwrap should you want
to move the connection on the bottom of the pin. And as long as
you cut the wires close to their proper length, you won’t end up
with a board that looks like a rat’s nest. Don’t cut the wires so
short that they are like guitar strings once you’re done stretching
them to make the connection, but don’t leave so much extra that
you have to route it three times around the board to take up the
slack. Even though the finished board may look like a mess of
wires going everywhere, it’s actually very easy to trace a wire to
make sure you have a proper connection. Just use a pair of
pointed tweezers and you can easily follow any wire through its
entire path.

We’ve all seen the large shoplifting detection systems
installed in the entrances of stores. Such conspicuous
presence is bound to spark a good electronics experi-
menter’s curiosity, as it did in this discussion.

Msg#:12183
From: DALE REID To: ALL USERS

I’m not about to circumvent the various sensors that stores use to
prevent their products from walking past the cash registers, but
have some questions on the technology used to make them work.

There seem to be two kinds available. The first is a little strip that
B. Dalton or Software Etc. has pasted on the back of every piece
of stuff they have, and has to be “deactivated” in some way. I
assume that this is magnetic, and it always bothers me to have
them do that to anything I have purchased that has a disk in it.
This seems to be like the little strips that the libraries put in the
books to make sure you have checked them out. But if it is a
magnetic strip, how do the little blades of the tunnel you have to
walk through pick up the strip? Why doesn’t my magnetic
screwdriver&off everyone1 walkthough? It seemstobeagiant
hall-effect detector, but can they be tuned to the strip somehow?

The other type is one is a tag a few inches long, has what appears
to be a flat bronze strip in it, with an ordinary diode across it, and
makes me think that it will change an RF field when passed
through; something like a magnetometer.

87C51 PROGRAMMER $125.
Logical Systems brings you support for the Intel 87C51.
The UPA87C51 programs this popular microcontroller on
general purpose programmers that support the 2732A. With
the UPA87C51
bits and the 87E

ou can program the 8751 and 87051  security
51 encryption array. Logical Systems, help-

mg you get the most out of your programming equipment
with our growing line of adapters. OEM inquiries welcome.

ADAPTER PROGRAMS PRICE
UPA C8?51(  8751 H, AMD8753H,  8744 $95.00
UPA87C51 C8751,6751  H AMD6753H,  8744

87C51,87C51  PA
125.00

UPA63701V Hitachi HD63701VO 65.00
UPA N Sign&s  SC87C451  (64 pin DIP) 125.00

llPA637OiX Hitachi HD63701XO  (64
-L Low insertion force socke?

in shrink dip)

-Z Textool  ZIF socket
95.00

149.00

UPA63701Y Hitachi HD63701YO  (64
-L Low insertion force sockef?

in shrink dip)

-Z Textool  ZIF socket
95.00

149.00
tJPA63705V Hitachi HD63;05VO 65.00

CALL (315) 478-0722 or FAX (315) 475-8460

LOGICAL SYSTEMS CORPORATION
P.O. Box 6184, Syracuse NY 13217-6184 USA, TLX  6715617 LOGS

Circle No. 131 on Reader Service Card
June/July 7 989 77



Anyone know in general how these things work? As I say, it is
like asking how a police radar works: someone will always be
wondering why we want to know. I detest the “need to know”
attitude of the military, and have always had a general curiosity
of just how it works, much to my poor old mother’s concern when
I started tearing things apart. I’m sure about 95% of the users of
this board have a similar curiosity. Thanks.

Msg#:12237
From: MARK LAMPKIN To: DALE REID

The systems you are curious about are two totally different
technologies. The first system is magnetic. The strip is actually
magnetized by a little machine that they have at the counter.
When you purchase the item, they demagnetize the strip. The
portal at the entry/exit is a large proximity switch (i.e., the portal
is a big antenna that is part of an oscillator tuned to a specific
frequency). When the mag strip is in the field of the antenna, the
oscillator is detuned proportionally by the size of the strip’s
magnetic permeability. Those strips are not cut to random
lengths; they are all approximately the same size and have the
same magnetic permeability factor. The oscillator will deviate a
specific amount from the center frequency in the presence of the
strip (resulting in the alarm sounding).

The second system is a microwave system. The diode on the strip
is a strip-line transmitter. The “tag” senses the presence of a
certain frequency and retransmits the signal at a different fre-
quency. The main antenna (i.e., transponder) detects theretrans-
mitted  signal and presto! Alarm.

Both are quite simple systems, but effective. The actual detection
ratio is only approximately 72-78% accurate, but it’s the deter-
rent effect of the system on the shopping public that makes it
work. They are psyched out by the visual effect.

Sensors for measuring temperature, wind speed,and wind
direction are relatively easy to find when constructing a
home weather center. However, humidty and pressure
sensors are much more difficult to find, as we find out in
the following discussion.

Msg#:13275
From: JACK DILLON To: ALL USERS

I am building a home weather center and need information on a
low-cost humidity sensor to measure relative humidity. I’m also
looking for a way to measure barometric pressure. I am using an
A/D converter with 0-5-volt inputs.

Msg#:l3538
From: FRANK KUECHMANN To: JACK DILLON

Pressure transducers suitable for barometers are made by Sen
Sym, 1255 Reamwood  Ave., Sunnyvale, CA 94089. Sen Sym’s
“1989 Solid StateSensor Handbook” contains app notes,barome-
ter circuits, design discussions, and so on using their line of
sensors. App note SSAN-29 is a barometer design discussion.

78 c//?cu/T  C/WA/?  INK

Motorola has at least two pressure transducers similar to Sen
Sym’s parts (specs so similar I suspect Motorola buys them from
Sen Sym rather than making them).

January ‘89 issue of Modern Electronics featured a barometer
project using a Sen Sym transducer feeding into an ADC.

Humidity sensor: Mepco/Electra #232269190001  capacitive
humidity sensor. Made by Philips Electronics (Netherlands).
Call (817) 325-7871 for name/address of nearest distributor.

February ‘86 Radio-Electronics had a humidity sensor project.

A small kit of parts to make a variable-frequency humidity sensor
using the Philips capacitor in an NE555 oscillator circuit can be
obtained from Vernier Software, 2920 SW 89th St., Portland, OR
97225, (503) 297-5317.

The kit includes the capacitor itself, NE555, and miscellaneous
parts to hook up to an Apple II-series computer’s gamecontroller
port. The parts could easily be used to work with about any l-bit
input port you can read with machine code.

Cost of the kit is something like $25 (that humidity-sensitive cap
is pricey); contact Vernier. Vernier sells a book called ‘How to
Build a Better Mousetrap” with a humidity monitor (Apple II) as
one of the projects; the discussion of measurement is very good.
Worth it even if you don’t have an Apple II.

The Circuit Cellar BBS runs on a IO-MHz  Micromint
OEM-286 IBM PC/AT-compatible computer using the
multiline  version of The Bread Board System (TBBS
2.1M) and currently has four modems connected. We
invite you to call and exchange ideas with other Circuit
Cellar readers. It is available 24 hours a day and can be
reached at (203) 871-l 988. Set your modem for 8 data bits,
2 stop bit, and either 300, 2200, or 2400 bps.

231 Vet-v Useful
232 Moderately Useful
233 Not Useful

SOFTWARE and BBS AVAILABLE on DISK

Software on Disk
Software for the articles in this issue of Circuit Cellar INK may bs downloaded free
of charge from the Circuit Cellar BBS. For those unable to download files, they are
also available on one 360K,  5.25” IBM PC-format disk for only $12.

Circuit Cellar BBS on Disk
Every month, hundreds of information-filled messages are posted on the Circuit
Cellar BBS by people from all walks of life. For those who can’t log on as often as
they’d like, the text of the public message areas is available on disk in two-month
installments. Each installment comes on three 360K,  5.25” IBM PC-format disks
and costs just $15. The installment for this issue of INK (June/July 1989) includes
all public messages posted during March and April, 1989.

To order either Software on Disk or Circuit Cellar BBS on Disk, send check or
money order to:

Circuit Cellar INK- Software (or BBS),on  Disk
P.O. Box 772, Vernon, CT 06066

or use your Mastercard or Visa and call (203) 875-2199. Be sure to specify the
issue number of each disk you order.



Ctrl

STEVE’S OWN ’ N K

The Good Old Ways

&YJ bt s time someone spoke up in support of the old ways. I’ve been hearing a lot about the “new age” in
everything from music to computer engineering, and I’ve come to the conclusion that traditional styles and
methods need better public relations. I’m not going to spend a lot of time trying to convert you to my kind
of music. Let’s just say that the Doors were a great band and leave it at that. What I really want to get to is
this new-fangled notion that you can‘t be a real engineer unless you’re also a great programmer.

The arguments for engineer-as-programmer usually start out something like this: Modern microproces-
sors and microcontrollers have much more power and flexibility than the chips of yesteryear. They have so
much more, in fact, that you can replace most of the silicon you used to need with a few (hundred) lines of
simple code. Think of how much simpler (and smaller and cheaper) the design can be without all of those
pesky peripheral chips to worry about. The arguments then proceed to their knockout blows: expense and
flexibility. Someone, somewhere, decided that programming is faster than circuit design (they certainly
didn’t talk to me before reaching this conclusion), and it’s “intuitively obvious” that using a full-bore
processor allows you to make your hardware do new tricks with only a software change. Eight.

I’m going to counter the knockout blows first. Programming might be faster than designing a circuit if
you’re used to thinking in software; I’m not. I think in gates and resistors and flip-flops. If I’m forced to do
so, I can translate from hardware into software, but it takes a long time and a lot of aggravation. For me, it’s
cheaper to just do most jobs in silicon and solder. It’s also cheaper to not put flexibility you’ll never use into
every circuit. Now don’t get me wrong, I like microcontrollers as much as the next guy. But if all you want
to do is dim an LED, why not just use a simple resistor? Sure, a PWM controller would be more flexible and
offer an infinite range of brightness, but at a cost of wasted time, money, and computing power. Finally, it’s
true that you can replace a lot of older hardware with assembly code. If I have to put a circuit into a very small
box, I usually consider software in place of hardware. The fact is, most designs don’t have to go into a
matchbox, and I am more comfortable with the predictability and reliability of something I can touch and
troubleshoot with a scope.

I don’t want to sound like a throwback. I can program, and I work with some engineers who are great
programmers. It’s just that I resent the notion that nothing interesting is happening in hardware. There are
many areas where software design is only beginning to catch up to hardware power, and many more areas
where a design in silicon is simply the best way to get the job done. So hang on to your soldering irons. Be
proud of your wire-wrap tools. And don’t be afraid to remind your programmer friends that, without our
hardware to run their software, they’re left just writing bad poetry.

Steve Ciarcia

80 C//?Cu/T  CELLAR INK


