CIRCUIT CELLAR I N K THE COMPUTER APPLICATIONS JOURNAL

August 1994 - Issue \#49

EDITOR'S INK

The Ultimate

 Data Collection Machine
ave you ever thought about the vast amounts of data the human brain collects and processes each day? The raw data coming from your eyes alone would overwhelm even the fastest computer available today with gigabytes of storage. Consider the most mundane daily tasks of recognizing objects on a table, listening to and understanding the spoken word (or even simple telephone call progress tones), using just the right amount of pressure to grasp a delicate object without crushing it, or picking out the subtle aroma of burning potpourri from a roomful of other smells.

Given the wonders of the human body, we have a remarkable amount of work left to do to even approximate a single human sensory processing system. Going back to my sight example, think about the work involved in trying to get a computer with an attached video camera to simply recognize that a human face (any face) is somewhere in its field of view. I contrast that with being able to stare at my newborn daughter's face and compare her features with those of her older sister. The lips are the same, but the nose isn't quite as upturned and the shape of her head is different. The person who can make a computer do that will be very rich indeed.

Returning to the world of the practical, our first data acquisition feature article this month considers the ubiquitous laboratory strip-chart recorder. While simple in concept, it can be expensive. By applying some much cheaper off-the-shelf hardware and some code, we can make a dot-matrix printer do much of the same work.

Next, for those who want to collect data so fast it taxes the capabilities of today's best desktop machine, we present precis: a $\mathbf{1} 00-\mathrm{kHz}, 16$-bit A/D converter board for the ISA bus. Along with covering the details about the board itself, we also show how the precis board was applied to calibrating some seismic sensors.

Finally, following up on an article we carried a few months ago on ownership of work, we look at the current debate raging over copyrights and patents for software. The legal world has a lot of catching up to do.

In our columns, Ed starts a series of articles exploring the somewhat scary world of protected mode programming; Jeff checks out the current state of low-cost voice recognition hardware (it's still not even close to human standards); Tom surveys the current crop of sensors and their slow migration into the digital realm; and John starts experimenting with the Dallas Semiconductor DS80C320 microprocessor that can speed up any 8031 system by simply replacing the processor.

CIRCUIT CELLAR I N N
 THECOMPUTER APPLICATIONS JOURNAL

FOUNDER/EDITORIAL DIRECTOR Steve Ciarcia

EDITOR-IN-CHIEF
Ken Davidson
TECHNICAL EDITOR
Janice Marinelli
ENGINEERING STAFF
Jeff Bachiochi \& Ed Nisley
WEST COAST EDITOR
Tom Cantrell
CONTRIBUTING EDITORS
John Dybowski \& Russ Reiss
NEW PRODUCTS EDITOR
Hats Weiner
ART DIRECTOR
Lisa Ferry
GRAPHIC ARTIST
Joseph Quintan
CONTRIBUTORS:
Jon Elgon
Tim McDonough
Frank Kuechmann
Pellervo Kaskinen

Cover Illustration by Bob Schuchman
PRINTED IN THE UNITED STATES

HAJAR ASSOCIATES NATIONAL ADVERTISING REPRESENTATIVES

NORTHEAST	SOUTHEAST	WEST COAST
Debra Andersen	Christa Collins	Barbara Jones
(617) 769-8950	(305) $966-3939$	\& Shelley Rainey
Fax: (617) 769-8982	Fax: (305) $985-8457$	(714) 540-3554
MID-ATLANTIC	MIDWEST	Fax: (714) $540-7103$

Barbara Best
(908) 741-7744

Fax: (908) 741-6823

CIRCUIT CELLAR INK, THE COMPUTER APPLICATIONS JOURNAL (ISSN 0896-8985) is published monthly by Circuit Cellar Incorporated. 4 Park Street. Suite 20, Vernon, CT 06066 (203) 875-2751 Second class postage paid at Vernon, CT and additional offices One-year (12issues) subscription rate U.S.A and possessions $\$ 21.95$, Canada Mexico $\$ 31.95$, all othercourtries $\$ 49.95$. All subscription orders payable in US funds only, via international postal money order or check drawn on U.S. bank. Direcisubscription orders and subscription related questions to The Computer Applications Journal Subscriptions, P.O. Box 7694, Riverton, NJ 06077 or call (609) 786-0409 POSTMASTER, Please send address changes to The Computer Applications Journal, Circulation Dept., P 0 Box 7694, Riverton, NJ 06077.

[^0]
1

The Two-channel Printer Recorder/ Replace that Expensive Strip-chart Recorder with a Dot-matrix Printer by Brian Millier

28
 Get Precise, with the précis A/D Converter/ Collect Lots of Precise Data with this 16 -bit, $100-\mathrm{kHz}$ ADC by J. Conrad Hubert

3 Calibrating Seismic Velocity Transducers with précis by Chris Peoples

Patents and Copyrights for Protecting Software/ Recent Progress in Finding the Proper Balance by Barry Rein, Esq.

$5 \square \begin{aligned} & \text { Firmware Furnace } \\ & \text { Journey to the Protected Land: }\end{aligned}$

 Segments All the Way Down Ed Nisley$$
6 \square \begin{aligned}
& \text { From the Bench } \\
& \mathrm{Ta}(1) \text { king Control }
\end{aligned}
$$

Ieff Bachiochi

$$
6 \square \begin{aligned}
& \text { Silicon Update } \\
& \text { In the Realm of the Sensors } \\
& \text { Tom Can trell }
\end{aligned}
$$

$$
7 \square \square \begin{aligned}
& \text { Embedded Techniques } \\
& \text { Speed Demon in } 803 \text { I's Clothing/ Exploring }
\end{aligned}
$$ the DS80C320 Processor John Dybowski

8 New Product News edited by Harv Weiner

ConnecTime
Excerpts from the Circuit Cellar BBS conducted by Ken Davidson Steve's Own INK

Steve Ciarcia Time to Move On Advertiser's Index

So Let's Hear it for the Environment

I have been following Circuit Cellar INK since its appearance. I have never seen articles related to the environment. I would like to know, for example, how । can use the wind and the sun to provide electricity in my home? The design of a control system to store the energy and monitor power consumption would be interesting.

Everybody can benefit from using conventional forms of energy. Some areas are particularly suitable for using the wind and/ or solar energy. In the M editerranean area, for instance, there is a huge installation of solar panels used to provide hot water. Maybe these panels could be used in an additional way. There are ways (special heat pumps) to use underground water to heat a house in the winter or air condition it in the summer.

There is air and water pollution in almost every city, and । believe it would be interesting to learn how one can measure the mass of the various gases ($\mathrm{CO}, \mathrm{CO}^{2}$, NO, etc.). I'd also like to be able to measure the pollution in the water resources.

Please include articles that will help me do my part in saving the environment.

Yannis Roussias
Athens, Greece

LAN/WAN Chip Set: One Chip Only Please

I have been a subscriber since issue \#23.In that issue was an article discussing the ISDN BRI chip set that AT\&T Microelectronics had developed. Since then, I have seen many articles on $\mathrm{I}^{2} \mathrm{C}, \mathrm{CEB}$, X - 10 and now, in issue \#47, BIONet. I have enjoyed reading them and like the detail you provided. I have an interest that you could satisfy with articles similar to the AT\&T article.

I have developed a great deal of appreciation for the complexity of the ISO OSI network model. ISDN, X-25, LAN, and WAN protocols are all defined as the lower part of it with the $3 / 4$ interface of each being identical. I believe that, with single-chip implementations of ISDN's layers, I-3 should now be possible or at least more complete than the 1991 AT\&T chip set, which didn't have B channel multiplexing, security, accounting, or control management. I believe Rockwell, Seimens, Northern Telecom BNR, and AT\&T are all working on this. Could you check with them to see if one of them would consider writing an article for your magazine on their work?

Along these lines, I also would like to see X-25 over serial/ parallel cabling discussed, preferably with single-
chip implementation. LAN and WAN single chips are also possible, but most that I have seen have truncated their protocol support with the Microsoft-defined NDIS drive interface, instead of the ANSI/ ISO-defined interface. A single-chip implementation of LAN and WAN protocols to the ISO-defined level 3/4 interface (sans routing) would be an interesting series of articles.

I say this as the ISO has finally finished the management functions definitions in 1992. Thus, the chips now coming out will or should have complete support for all lower-level operations.

William L. Hartzell

Garland, TX

New Address

The Fomebords Co. was listed in the source section at the end of the "Prototyping-Beyond Electronics and Software" article in the June 1994 issue. They have since changed their name and address. Contact them at

> Superior Fomebords Corp. 1040 N. Halsted St. Chicago, IL 60622
> (312) $278-9200$
> (800) $362-6267$

Contacting Circuit Cellar

We at the Computer Applications Journal encourage communication between our readers and our staff, so have made every effort to make contacting us easy. We prefer electronic communications, but feel free to use any of the following:

Mail: Letters to the Editor may be sent to: Editor, The Computer Applications Journal, 4 Park St., Vernon, CT 06066.
Phone: Direct all subscription inquiries to (609) 786-0409. Contact our editorial offices at (203) 8752199.
Fax: All faxes may be sent to (203) 872-2204.
BBS: All of our editors and regular authors frequent the Circuit Cellar BBS and are available to answer questions. Call (203) 871-I 988 with your modem (300-I 4.4 k bps, 8 N 1).

Internet: Electronic mail may also be sent to our editors and regular authors via the Internet. To determine a particular person's Internet address, use their name as it appears in the masthead or by-line, insert a period between their first and last names, and append "@circellar.com" to the end. For example, to send Internet E mail to Jeff Bachiochi, address it to jeff.bachiochi@circellar.com. For more information, send E mail to info@circellar.com.

ADC BOARD FOR THERMOCOUPLE DATA ACQUISITION

The Direct Connect 5508SCi from ADAC Corp. is the first PC plugin board designed for industrial thermocouple data acquisition. The 5508 SCi is a high performance A/ D converter board that includes a detachable screw-terminal panel which provides $1500-\mathrm{V}$ isolation. The board contains integral signal conditioning to accept thermocouple inputs directly. In addition, the unit allows thermocouple type to be user selected on a channel-bychannel basis.

The 5508SCi
features a unique

Universal Software Interface (USI) to allow true crosscompatibility between software and hardware from different vendors. USI allows the 5508 SCi to match the Control and Status Registers of other manufacturer's plug-in boards. USI also provides
compatibility with virtually every DOS- and Windowsbased data acquisition and control software package available.

The 5508 SCi incorporates isolation located at the screw terminations outside the PC to prevent potentially devastating voltages
from entering the host computer. For applications that have the potential for signal alias problems, the 5508 SCi can be ordered with integral 8-pole antialias filtering. Available on a per-channel basis as either Bessel, Butterworth, or Elliptical filtering; the option eliminates the need for costly front-end filter systems. Prices start at \$695.

ADAC Corp.

 70 Tower Off ice Park Woburn, MA 01801(617) 935-6668

Fax: (617) 938-6553
\#500

FAST CHARGE IC

Thebq2004 Fast Charge IC from Benchmarq incorporates Peak Voltage Detect(PVD) fast charge termination for NiMH batteries. PVD is the recommended voltage termination scheme for NiMH from some battery manufacturers. The bq2004 is ideal for insystem charging with a simple-to-use power-down mode and small 16-pin SOIC package.

The bq2004 terminates charge based on negative delta voltage detection and on tempera-ture-slope sensing. This involves calculating the slope of the battery temperature curve using the rapid temperature increase associated with fully charged batteries. This technique provides charge termination quickly when the rate of temperature increase is outside predetermined limits. Fail-safe terminations include maximum temperature, charge time, and battery voltage.

The bq2004 also offers modulated output to 300 kHz for switched-mode current regulation, LED outputs to display battery and charge status, low-power standby mode, battery temperature and voltage qualification before fast charge, and pulse trickle and "top-off" charge control.

The bq2004 sells for $\$ 5.44$ (16-pin narrow DIP) and $\$ 5.83$ (16 -pin narrow SOIC) in I k quantities. Development systems are also available.

Benchmarq Microelectronics, Inc.
2611 Westgrove Dr., Ste. 109 - Carrollton, TX 75006
(214) 407-0011 • Fax: (214) 407-9845
\#501

LOW-COST FORTH COMPUTER

The TDS9092, a CMOS single-board Forth computer/ controller, is available from the Saelig Co. The 8 -bit computer features the Hitachi HD63A03Y microprocessor, a 16K Forth language kernel, and built-in symbolic assembler. Generated code can be stored in either nonvolatile RAM or EPROM onboard. Typical uses for the unit include machinetool control, instrumentation, data logging, flow control, and measurement

The TDS9092
features $35 \mathrm{I} / \mathrm{O}$ lines, two RS-232 serial ports, a watchdog timer, a driver for $\mathrm{I}^{2} \mathrm{C}$ serial peripherals, and two timers. Memory included on the chip includes 16 KB of RAM for data collection applications arrays and variables, 29 KB user application space, and 256 bytes nonvolatile EEPROM. The 4" x 3" board runs from very low power ($3-15 \mathrm{~mA}$ at 6-16 V) and features a battery-low output, touch switch turn-on, and an on-board regulator.

The interactive Forth specially written for the board gives easy access to all its features and allows software to be quickly written. The Forth includes LCD and keyboard drivers together with many other utilities. Programs are
written in a high-level language and can be mixed with assembler if required.

With Forth onboard, there is no need for an in-circuit emulator. The computer is programmed with an ordinary PC, building up program segments as needed. A defined assembler routine can be tested immediately without any downloading step. The interactive debugging of assembler is very powerful.

A StarterPack has everything needed for fast instrumentation control. It includes an improved, comprehensive, ready-made software library from which to mix-and-match subroutines.

The TDS9092 sells for $\$ 105$ in quantities of 25 ; the StarterPack sells for \$225.

The Saelig Company 1193 Moseley Rd.
Victor, NY 14564
(716) 425-3753

Fax: (716) 425-3835
\#502

DATA ACQUISITION BOX

National Instruments has announced a compact, high-performance, external data acquisition box. Compatible with any PC that has a parallel printer port, the D AQ Pad-1200 is ideal for PC-based data acquisition involving laptop and notebook PCs, or PCs with the available slots filled.

The DAQPad- 1200 has a 12-bit A/ D converter that can digitize from eight single-ended or four differential inputs at rates up to $100 \mathrm{kS} / \mathrm{s}$. It features programmable gains of $1,2,5$, $10,20,50$, or 100 ; a 2 kilosample first-in/ first-out ADC buffer; two 12-bit D/ A converters with voltage outputs; 24 lines of TTLcompatible digital I/O; and three user-available 16-bit counter/ timer channels.

The DA QPad- 1200 is fully software calibrated and software configurable, with no jumpers or trimpots. It can sample in a variety of modes, including externally timed acquisition, external trigger with pre and posttrigger mode, and interval scanning. With interval scanning, the DA QPad- 1200 scans all selected input channels at one rate, then delays a programmed interval before repeating the scan.

The
DAQPad- 1200
is compatible with the IEEE 1284 Enhanced
Parallel Port (EPP) standard and works with two types of ports: standard
Centronics
(unidirec-
tional) and the fast EPP ports. In EPP mode, data is transferred at rates up to $100 \mathrm{kS} / \mathrm{s}$. The DAQPad- 1200

DEVELOPMENT TOOLS HANDBOOK

Intel Corporation has announced the availability of the Second Edition of the MW Media Development
Tools Handbook, listing support solutions for the Intel MCS51, MCS96, and 80 C 186 architectures.

Created to assist embedded system designers, the Development Tools Handbook features design support products and services from 62 companies. It contains over 145 pages of information on microcontrollers and peripheral components, compilers and assemblers, debuggers, emulators, simulators, analyzers, program-
mers, design services, training, and accessories. Each page is a complete data sheet detailing each product with descriptions, features, specifications, contacts, and ordering information. This edition also contains a tutorial on "Understanding the Development Cycle" by Steven McIntyre, an Intel applications manager.

To obtain a free copy of the book, call the Intel Literature Center at (800) 548-4725.
\#505

CRYPTOGRAPHIC INSTALLER

HPI has released new versions of Instalit, a cryptographic installer incorporating public and private key and RC4 encryption. Available in 14 national languages, Instalit/ Crypto is designed for developers wanting to lock products on diskettes or CD-ROM.

Developers and data distributors can encrypt product or data files as they are compressed for distribution using keys of
any length. Distributions can be built so that, even on identical CD-ROMs or diskettes, a unique key is needed for each any length. Distributions
installation process performed. After payment arrangements, software vendors can provide an appropriate key allowing product installation. With these techniques, customers can purchase new product increments at a later date or after trying a demo version.

Instalit/ Crypto is a complete product release system. The package incorporates data compression, patching, programmable automatic release production, scriptable compressed library builds, and diskette duplication technology. Versions are available for DOS, OS/2, Microsoft Windows, or Windows NT.

A communicating remote installer version, called hpiOmni, can install or intelligently update a product from a local computer to a remote computer via ZMODEM exactly as though a diskette set had been sent to the remote site. Key exchange can be handled in a completely automatic fashion. The software can operate in unattended mode and can also be used for directory synchronization, hardware and software inventory, backup, and general scripted utility functions at remote sites. Besides remote installation, the product can be used for routine customer check-in for potential
update purchase with immediate direct installation.

Prices start at \$299
for Instalit and \$349 for hpiOmni. No royalties apply. Demos are available on HPI's BBS.

HPI
917C Willowbrook Dr.
Huntsville, AL 35802
(205) 880-8782

Fax: (205) 880-8705
BBS: (205) 880-8785
\#506

Device Programmers

- Easy to use software, on-line help, full sceen editor
- Made in USA
- 182 Year Warranty
- Technical Support by phone
- 30 day Money Back Guarantee

- FREE software upgrades available via BBS
- Demo SW via BBS (EM20DEMO.EXE) (PBIOOEMO.EXE)
- E(e)proms 27168 megabit, 16 bit 27210-27240, 27C400 \& 27 C800
- Flash 28F256-28F020, (29C256-29CO10 (EMP-20 only))
- Micros 8741A, 42A, 42AH, 48, 49, 48H,49H,55, 87C51, 87C51FX, 87C751,752
- GAL, PLD from NS, Lattice. AMD-16V8, 20V8, 22V10 (EMP-20 only)

FOR MORE INFORMATION CALL

NEEDHAM'S ELECTRONICS, INC.

4539 Orange Grove Ave. Sacramento, CA 95841 (Monday-Friday. $8 \mathrm{am}-5 \mathrm{pm}$ PST)

(916) 924-8037

BBS (916) 972-8042
FAX (916) 972-9960

\#105

NEW PRODUCT NEWS

X-10 POWER STRIP

PCS has provided a solution for the need to plug more than one X-lo-type module into a standard wall outlet. The Multimodule is the equivalent of four X-IO-compatible modules packaged in a power-strip enclosure.

Multimodule is available in three versions: a four-outlet lamp module, a four-outlet appliance module, and a combination lamp/ appliance module. The lamp version allows the user to safely control any combination of lights up to 1200 W from any combination of the four outlets. The appliance Multimodule can control any combination of appliance loads up to 15 amps . Every Multimodule is fully protected by a resettable circuit breaker. Each outlet can handle the full load, so every individual outlet is completely protected.

The Multimodule features four consecutive addresses and is compatible with all X-10 commands. The $10.5^{\prime \prime} \times$ $1.7^{\prime \prime} \times 2.6^{\prime \prime}$ unit includes standard 3-prong receptacles and a 6 -foot power cord. Advanced features are available to allow custom user configuration of various options, such as enable/ disable of dimming, remote On activation by load power switch, lamp flashing, and noncontiguous outlet addressing. The lamp module allows outputs to brighten from off without coming to full On first; preset dim and All Lights Off commands; and retention of the current dim level when outlet is turned off or when power fails.

Powerline Control Systems
9031 Rathburn Ave.
Northridge, CA 91325
(818) 701-9831

Fax: (818) 701-I 506
\#507

C COMPILER FOR PIC CONTROLLERS

- Integrated software development environment including an editor with interactive error detection/correction.
- Access to all hardware features from C.
- Includes libraries for RS232 serial I/O and precision delays.
- Efficient function invocation mechanism allowing call trees deeper than the hardware stack.
- Special built-in features such as bit variables optimized to take advantage of unique hardware capabilities.
- Interrupt and A/D built-in functions for the C71.
- Easy to use high level constructs:

```
#include \PIC16C56.h>
#use RS232(Baud=9600,Xmit=pin_1,RCV=p1n_2)
main 0 {
    printf("press any key to begin\n");
    getc();
    printf("I khz signal activated\n");
    while (TRUE) {
        output high(pin_8) ;
        delay us(500);
        output low(pin_s)
        3
]
```

PCB compiler $\quad \$ 99$ (all $5 x$ chips)
PCM compiler $\$ 99$ ('64, '71, ' 84 chips)
Pre-paid shipping $\$ 5$
COD shipping $\$ 10$
CCS, PO Box 11191, Milwaukee WI 53211
$414-78$ I-2794 x30
The
only
8051/52
BASIC
compiler
that is
100%
BASIC 52
Compatible

and

has full
floating point, integer,
byte \& bit
variables.

- Memory mapped variables
- In-line assembly language option
- Compile time switch to select 8051/803 1 or 8052/8032 CPUs
- Compatible with any RAM or ROM memory mapping
- Runs up to $\mathbf{5 0}$ times faster than the MCS BASIC-52 interpreter.
- Includes Binary Technology's SXA51 cross-assembler \& hex file manip. util.
- Extensive documentation
- Tutorial included
- Runs on IBM-PC/XT or compa tibile
- Compatible with all 8051 variants
- BXC51 \$ 295.

508-369-9556
FAX 508-369-9549
0
$\frac{\text { Binary Technclogy, Inc. }}{\text { P.O. Box } 541 \text { • Carlisle, MA } 01741}$
$r \mathrm{csi}$

12 Issue \#49 A ugust 1994 The Computer Applications Journal

NEW PRODUCTNEWS

PARALLEL PORT HARD DISK

Disk Shuttle is a fast, reliable way to increase the hard disk drive storage capacity of a PC. The palm-sized unit features data storage capacities of 170 MB, 260 MB, and 344 MB , and is ideal for storage expan sion, file transfer, backups, and PC installations.

Disk Shuttle features a $2.5^{\prime \prime}$ form factor hard disk that installs in seconds on any parallel printer port without additional hardware for
 DOS and OS/2 systems. The printer can be plugged into the other end of the Disk Shuttle for transparent use. No CONFIG.SYS changes or controller cards are needed and software is provided to complete the installation.

Computer Connections America
19A Crosby Dr. . Bedford, MA 01730
(617) 271-0444 • Fax: (617) 271-0873

Disk Shuttle features an average access time of $8-12 \mathrm{~ms}$ and a data transfer rate of $6 \mathrm{MB} / \mathrm{s}$. The unit measures $6^{\prime \prime} \times 3^{\prime \prime} \times 1^{\prime \prime}$ and weighs 12.5 ounces. The Mean Time Between Failures (MTBF) is 300,000 hours.

Disk Shuttle is offered as a complete kit. It comes in a carrying case and includes power and data cables, driver software, manual, and 2 year warranty. Prices start at $\$ 459$ for the 170 MB model.

Powerful, Portable Data Logging Made Easy

If you need a data logger/controller engine with the processing power and small size to handle the most challenging embedded or remote data acquisition task, there is an Onset Tattletale@ designed especially for the job. From the tiny, 8-channel Model 5F to the powerful 68332-based Model 8, Tattletale loggers offer unparalleled performance for the price.

Tattletale@ Model	SF	$\mathbf{8}$
Price (unit)	$\$ 395$	$\$ 495$
Max sampling rate	3200 Hz	100 kHz
Min/ max current	3.1 mA to 30 mA	$150 \mu \mathrm{~A}$ to 150 mA
Analog channels	812 -bit	$812-\mathrm{bit}$
Digital I/O lines	14	25
UARTs	$1(+1 \mathrm{SW})$	$2(+7)$
Programming Language	BASIC	C, BASIC

Other Tattletale models offer such features as hard disk storage, LCD displays and cases for hand-held applications. Call Onset today to discuss how a Tattletale can enhance your DA application.

Actual size!

Onset Computer
PO Box 3450, 536 MacArthur Blvd . Pocasset, MA 02559. Tel 508-563-9000, Fax 508-563-9477

FEATURES

A Two-channel Printer Recorder channel Printer
A TwoFEATURE ARTICLE

Get Precise, with the précis A/D Converter

Calibrating Seismic
Velocity Transducers with précis

Copyrights and Patents for Protecting Software

The strip-chart

recorder eliminates
worries about lost
memory or post-
processing data to
graph it, but it can be
expensive. Get most
of the features
without the cost by
using a common dot-
matrix printer.
 with the personal computer market is the availability of many useful devices that can be obtained "dirt cheap." This occurs when some new technology makes a particular product less attractive than it was when the manufacturer ordered all the parts needed to make thousands or more of these widgets. Working in a university chemistry department, I often take advantage of this situation to design instruments using such inexpensive components and assemblies.

While research and teaching labs have embraced computers and modern data acquisition systems with open arms, there still exists a substantial need for the trusty old strip-chart recorder. The cost of a two-channel recorder still exceeds $\$ 1000$ in most cases. A dot matrix printer, on the other hand, fighting off low-cost laser and inkjet printers, can currently be purchased for well under \$200. Add a microcontroller with A/D conversion, a large (and cheap) LCD display, and you have the makings of an inexpensive two-channel strip-chart recorder with some added advantages thrown

Figure l--The printer recorder is built in modules so different front ends may be connected to the same core processor board.

The actual analog-todigital conversion is performed by an Analog Devices AD654JN voltage-to-frequency converter. This device produces a square wave pulse train proportional to the voltage applied to it. An inexpensive optoisol ator passes the pulse train to the microcontroller while still maintaining the floating nature of the input circuitry.

Next, to prevent paper waste in a lab environment where measurement parameters vary greatly from experiment to experiment, it is crucial that the user be able to operate a recorder with the pen(s) moving, but with the chart paper stopped. This feature allows you to adjust the gain and zero controls to place the pen where you
in. Printer paper is much cheaper than recorder paper, and this recorder will print out pertinent information such as the date, chart speed, and so forth at the end of the run. Due to the print speed limitations of the dot matrix printer, though, the fastest chart speed available is two inches per minute, so this project is definitely best suited for slow data acquisition.
loops occur when both the device being measured and the measuring device are ground-referenced, but wiring limitations make the individual grounds exist at somewhat different potentials. This is particularly troublesome when measuring low-level signals. ı also chose to power each channel with its own floating power supply.
want it, as well as to get some idea how far the pen is going to move for different experimental conditions.

Since a dot-matrix printer doesn't have a pen to move across the paper, I use a 40 -character by 2 -line LCD to set the limits. During setup, the display prompts the user for various parameters. After parameter entry, but before the data collection and printing actually starts, I use the LCD as an analog needle display with a resolution of 128 positions to set the ranges. It is something like the bar display you see on some digital multimeters, but with much higher resolution.

The third design consideration involves the data printing itself. I chose to work with Epson-compatible printers which have a 960dot mode. In a strip chart mode, this corresponds to a vertical resolution of 960 points over 8 inches or $1 / 120^{\prime \prime}$. This rivals commercial strip chart recorder resolution.

Figure 2- The Tront end of the recorder buffers the input signal and converts if to a frequency for measurement by the processor.

Software that provides bit-mapped graphics output to a dot matrix printer generally does so by filling a memory array with the 960 bytes of data that the printer needs to print each graphic strip. While 960 bytes of RAM is trivial in a desktop machine, RAM is valuable in a microcontroller, which typically has only 256 bytes of RAM. I wrote an algorithm which eliminates the need for this 960 -byte memory buffer and allows me to get by with only the 256 bytes of RAM in the microcontroller.

The final consideration involves filtering. Most data acquisition involves some noise. It is generally best to filter this noise out, particularly before it goes to the hard copy device. I use a fixed one-pole RC filter in the preamplifier and a variable-time-constant, weighted-average digital filter in firmware.

THE NUTS AND BOLTS

While many embedded projects use the ubiquitous 8031 or 68 HC 11 , I've done numerous successful projects
over the years using the Motorola 68701 microcontroller (with EPROM). For this project, though, I decided to upgrade to a more powerful micro family. Texas Instruments had won me over with its DSPs, its imaginative analog and mixed signal parts, and its generous attitude toward universities, regarding technical literature and free samples. I, therefore, chose the TMS370C250 microcontroller and designed a PC board for it that would act as a platform for a number of different projects. The sidebar on page 21 contains a short summary of the features of this device.

Figure 1 contains a block diagram of the entire recorder. The preamplifier and voltage-to-frequency converters are built on two small, identical PCBs. I can, therefore, build different preamps for different applications and plug them into the common circuitry that makes up the rest of the recorder.

Referring to Figure 2, you will see a half-wave-rectified, zener-regulated power supply providing ± 9 volts to run the circuitry on board. There is no
transformer on this board; instead, a small transformer with a dual 8-VAC secondary mounted on another board powers each preamp individually. This allows each preamp input to be completely floating, both with respect to ground and to each other.

U1 is an OP07CN8 op-amp used as the input buffer. This high-quality device has very low input offset current and is very stable. The gain of this stage is either 1 or 10 depending upon the setting of switch S1/changing R1 would allow for other gain ratios to be selected if desired). The input signal is referenced to a variable bucking voltage that comes from the wiper of a lo-turn zeroing pot that is located off-board. The values of R12, R13, and the pot itself could be changed to suit a particular application or eliminated completely. This particular preamp has a full-scale input of 10 mV or 100 mV , depending upon the setting of S 1.

U 2 is an inverting amplifier with a gain of 68. The preamp is designed to produce 6.8 V at the output of U 2 with

Photo 2-inside the printer recorder, the amplifier modules may be unplugged and replaced to allow the recorder to be used in many different applications.
the rated input voltage applied. The 741 will not produce much more output voltage than this with a 9-V supply, and I make use of this clipping to ensure the AD654 voltage-tofrequency converter is never driven beyond its full scale (it acts erratically when overdriven). A single-pole RC filter made up of R2 and C7 filters out high-frequency noise.

The A nalog Devices AD654JN VFC is a very simple, yet versatile, device. The value of the resistor (R7) from pin 3 to ground sets the full-scale input range (V full scale $=0.001 \mathrm{amp} x$ R 7). In this case, it is 10 V full scale. The combination of R6 and D3 remove any negative input signal greater than one diode drop. The full-scale frequency is set by $\mathrm{Cl}(6800 \mathrm{pF})$ to provide a nominal value of 14700 Hz . With the rated input signal applied to the preamp, input to the AD654JN is 68% of its full-scale input voltage. This leads to a full-scale pulse train frequency of 14700×0.68, or 9996 Hz .

The counting time for each sample is 83.3 ms , yielding a full-scale
count value of 833 . The software maps these counts directly into a verticalaxis dot position. Since the printer's dot resolution is 960 , there is about a 15% overrange capability. I must note that the input signal to the AD654JN should never exceed ($\mathrm{V}^{\dagger}-4$ volts). To satisfy this criterion, the AD654JN is fed from the unregulated power rail (approximately 12 VDC).

A simple 4 N 25 N optocoupler with a transistor output is used to couple the pulse train to the microcontroller while maintaining ground isolation.

THE DIGITAL SIDE

As shown in Figure 1, the microcontroller handles five discrete functions:

1) electronic switching (4052 CMOS multiplexer) to rapidly switch between the pulse trains from the two channels,
2) pulse accumulation (part of the TMS370C250) to count the pulses,
3) reading a 16-key matrix keypad for parameter entry,

ADC-16 A/D CONVERTER* (16 channel/8 bit).. $\$ 99.95$ ADC-8G A/D CONVERTER* (8 channel/10 bit). $\$ 124.90$ input voltage, amperage, pressure, energy usage, sitianals. RS-422/RS-485 available (lengths to $4,000^{\prime}$).
(Call for info on other A/D contigurations and 12 bit
converters (terminal block and cable sold separately).

Includes term. block \& 8 temp. sensors (-40° to 146° F). input on/off status of relays, switches, HVAC equipment, siecurity devices, smoke detectors, and other devices.
 Allows callers to select control functions from any phone. IS-4 PORT SELECTOR (4 channels RS-422)....S 79.95 Converts an RS-232 port into 4 selectable W-422 ports. © $0-485$ (RS-232 to RS-42ZRS-485 converter)...... 44.95
*EXPANDABLE...expand your interface to control and rnonitor up to 512 relays. up to 576 digital inputs up to
126 anal inputs he PS-4, EX-16, ST-32 \& AD-16 expansion cards
FULL TECHNICAL SUPPORT...provided over the telephone by our staff. Technical reference $\&$ disk including test software 8 programming examples in Basic, C and assembly are provided with each orde
"HIGH RELIABILITY...engineered for continuous 24 hour industrial applications with 10 years of proven performance in the energy management field.
CONNECTS TO RS-232, RS-422 or RS-485...use with IBM and compatibles, Mac and most computers. All standard baud rates and protocols (50 to 19,200 baud). Use our 800 number to order FREE INFORMATION PACKET. Technical information (614) 464.4470.
'24 HOUR ORDER LINE (800) 842-7714
Visa-Mastercard-American Express-COD
International \& Domestic FAX (614) 464-9656 Use for information, technical support \& orders.
ELECTRONIC ENERGY CONTROL, INC. 380 South Fifth Street, Suite 604 Columbus, Ohio 432155438
4) sending data to a 2×40 LCD module, and
5) sending printer data to a Centronics parallel port.

My general-purpose TMS370C250 PC board contains all of the functions just described except for the printer port (which I didn't need in other projects). Therefore, I wired a small protoboard to contain the printer port and the preamp power transformer. While the TMS370C250 PCB contains its own $5-\mathrm{V}$ supply as well as an isolated supply for other circuitry, I did not have two isolated 8-V transformer secondaries to spare.

Referring to Figure 3, the optically isolated pulse trains from the two preamp/ VFCs, labeled CH 1 and CH 2 , are fed to U8, a CMOS 4052 dual 4channel multiplexer. R23 and R25 are collector loads for the 4N25 phototransistors. I don't use the TMS370 Interrupt 3 pin as an interrupt input, but instead set it up as a generalpurpose output to act as address line A of the 4052 mux to do the channel
switching. The pulse train enters the microcontroller via the T1EVT pin. This pin can be used to clock either the Timer 1 module or the watchdog counter. In most cases, including on this project, I use the watchdog counter to accumulate pulses and leave the other two multifunction counter/ timer modules free. Transformer T2 has dual 8-V secondaries to power up the two preamp/ VFC PCBs, as I described earlier.

While it is possible to scan a small keypad directly using an 8 -bit port and software, many of my projects require the microcontroller to do accurate time-related functions, but also be responsive to a keypress at any time. Since the TMS370C250 has no internal EPROM or ROM, it must supply a complete data/ address bus, resulting in very few general-purpose I/ O pins left over. Therefore, I used a 74C922 keypad scanner chip, which directly connects to the data bus as a peripheral and contains all the key debounce circuits and a Data Available pin.

Two 5-V power supplies are shown in Figure 4, one of which runs the entire microcontroller board. The other supply was present on the PCB for other purposes, but I use it in this case to power the Centronics parallel port, though that could also have been connected to the main 5-V supply.

Figure 3 also shows the actual microcontroller and associated support circuitry. The TMS370C250 runs at 20 MHz , which it divides internally by 4 , giving a cycle time of 200 ns. Note the existence of a TL7702A power supervisor IC controlling the -RESET line. Since some of the projects using this board control critical devices such as large heaters or high-voltage power sources, I felt it critical to add a supervisor IC like this to shut down the controller if the power supply drops or to reset it if a power surge momentarily disrupts the V_{CC} supply. Also, the integrity of the on-board EEPROM contents is assured by this supervisor since the processor will not execute code wildly every time it is powered down. For this particular

- On-board Super VGA

LCD/Video controller

- On-board Ethernet, Featuring AUl and 10 BASE-T interfaces
- On-board SCSI, Floppy controllers and

2 MByte Flash Eprom Solid State Disk

- 3 Serial Ports,

Parallel/Printer port

4"x 4" Small Rugged format For more information call: Meaatel Comouter Cprnoration 125Wendell Ave. Weston, Ont. M9N 3K9 Fax: (416) 245-6505
(416) 245-2953

megatel
 consulting, the Ciarcia Design Works is ready to work with you.
Just fax me your problem and we'll be in touch.

Remember...a Ciarcia design works! Fax (203) 871-8986

Figure 3-At the core of the printer recorder is the
TMS370C250 processor and 8 KB of program memory. A TL7702A ensures a reliable reset, even after brief power interruptions.
application, a simple RC reset circuit would suffice.

The single 2764
(or 27C64) EPROM interfaces directly to the TMS370C250 controller. The *OE signal is derived from the 74LS139 device decoder, which also acts as the device selector for all other peripherals. Rounding out this figure is an activelow device select signal provided by the 74LS139 decoder. The signal is inverted by a single section of a 7400 NAND gate.

Figure 5 shows the printer port circuit. I use a 74LS-

Figure 4-The power supply section develops separate 5-V supplies for the parallel port and onboard circuitry, plus if provides unregulated AC power to the preamp boards.

374 octal latch as the printer data latch. The printer -Strobe signal is generated by INT2 of the TMS370C250. INT2 is another external interrupt input on the micro that I'm using instead as an output bit. The only status signal from the printer that is read is the Busy signal, which is connected to AN7-an analog input set in software to a digital input.

Figure 1 is an interconnect diagram for the whole project. The photos depict a unit designed to measure current from two photomultiplier tubes. As such, the preamps differ from the ones described. The photos also show a new PCB which replaces the general purpose TMS370 PCB and printer port/ power supply board that were used when the article was submitted.

THE FIRMWARE

The firmware that operates the printer/ recorder uses less than 4 K of

The TMS370 Microcontroller Family

The 8-bit TMS370 family of microcontrollers from Texas Instruments is a diverse one. The TMS370Cx10 devices are low-end controllers in 28-pin DIP and PLCC packages targeted at large-volume applications using mask-programmed ROM. The 'x30 and 'x40 devices contain more functionality and come in larger DIP and PLCC packages. The top of the line is the ' $x 50$ group of controllers, which is what I have chosen to use in my designs. While there are devices in this group containing either mask ROM or OTP EPROM for program storage, I chose the inexpensive TMS370C250FNA ROMless version (64-pin PLCC). This is the most cost-effective approach since 27C64 EPROMs are very inexpensive.

When the TMS370C250FNA is configured for external program memory, it yields a microcontroller with the following features:

1) 256 bytes RAM,
2) 256 bytes EEPROM (block protectable),
3) 8 channels of fast 8 -bit A/D conversion,
4) two very flexible counter/ timer modules with features such as programmable prescaling, PWM function generation, and pulse accumulation,
5) watchdog timer (associated with one of the above timers, but more or less independent),
6) a full-duplex Serial Communication Interface with programmable baud rate (independent of the timers above),
7) a bidirectional three-wire Serial Peripheral Interface with programmable transfer speed,
8) three external interrupt inputs which can be either level or edge sensitive and are polarity programmable, and
9) pins associated with functions 3-8 above that are not needed for their original purposes may be reassigned as general-purpose I/ O lines (some are input only).

The TMS370C250 device provides 16 memory address lines and 8 data lines, so there is no need to use
a separate latch to demultiplex the address bus, simplifying the PC board design.

The maximum clock speed is 5 MHz using an external $20-\mathrm{MHz}$ crystal. Most instructions execute in 610 cycles, with the 8 -bit divide instruction taking the longest at 63 cycles.

The instruction set is much like the Intel 8031 family in that it has a rich mix of instructions, addressing modes, and bit operations, but lacks the 16 -bit operations of the Motorola 68 xx and 68 HC 11 devices. The only pseudo-16-bit operations supported are 16 -bit MD V W instructions and the I N C X instruction, which can add a signed 8 -bit constant to a 16 -bit register.

The assembly language conventions are a bit hard to get used to for anyone who has used both Intel and Motorola parts. While the MDV opcodes use Intel convention, the source-destination ordering of the operands is Motorola convention.

Texas Instruments sells a TMS370 application board that works in conjunction with a host PC computer via an RS-232 link. The board itself contains two 'x50 devices: a master unit, which communicates with the host PC, and a slave unit.

The slave shares memory space with the master (which loads it) and runs the user's application in real time, with access to the peripheral ports and other I/ O devices. The 'x10 group of devices is also supported on this board. The host PC runs a windowed monitor/ debugger/ tracer program which is supplied with the application board. Cross-assembler software to run on the host PC is also provided, and a C cross-compiler and linker are available separately.

Texas Instruments runs a BBS devoted to this product family and it contains free software and information. Of particular use to new users is the M5 monitor program which fits in a 27C64 EPROM. Adding a TMS370C250 and a MAX232 produces a fully functional stand-alone evaluator. Floating point and other useful core routines are also available.
memory, residing in the upper half of a 27C64 EPROM. I will first briefly describe the overall program before going into detail about the $\mathrm{P} R \mathrm{I} \mathrm{N}_{-}$ ST R I P routine which is the core.

Upon reset, the program prompts for the current date and then goes into the parameter mode loop which allows the operator to select a chart speed and a filter time constant. Once those are entered, the program goes into the first phase of the acquisition mode loop.

All data acquisition is performed by an interrupt service routine (ISR)
invoked by the Timer 1 interrupt (10 Hz). Timer 1 not only interrupts at a $10-\mathrm{Hz}$ rate, but also generates a PWM gating signal for the V / F pulse accumuIation. The V/ F pulses are counted for 83.3 ms out of the $100-\mathrm{ms}$ interrupt period. I chose 83.3 ms because it equals five line cycles, thereby giving some line-noise reduction due to integration.

The Timer 1 ISR performs the following functions in sequence:

1) reads the watchdog counter,
which has been accumulating the V/ F counts, then resets this counter.
2) converts this count to a float-ing-point number.
3) toggles a variable and the INT3 pin, which drives an address line of the 4052 analog multiplexer IC, thereby alternately reading both of the preamp input channels.
4) adds the current count (in floating point) to an accumulator and multiplies the result by a constant selected by the user's choice of filter time constant. This result is then

Figure 5-A74C922 encoder keeps the keypad interface ample, while a buffer/latch is used to interface to the printer.
restored to the accumulator (this is a moving weighted-average algorithm that acts like a one-pole RC filter).
5) decrements the counter variable SAMCT and when it equals zero, the floating-point accumulator value is scaled and converted back into an integer in the range of O-959 (the number of dots of printer resolution across the page). This value is saved as one of eight points which will later make up a strip to be printed using the PRINT_STRIP routine. The value of SAMCT is determined by the userselected chart speed.
6) calls the routine NE E DLE for each printer data point stored above to place a thin line on the LCD. The line acts as a pseudoanalog meter for the user's convenience in setting up the gain and zero of the recorder. The 2 line LCD allows one line per channel. I use the first 32 characters of each line for the analog "needle" and the last eight for display of the elapsed run time. The 32 characters allocated for the "needle" are further broken down into four positions per character,
giving a resolution of 128 , which is quite adequate for the purpose.
7) updates the Elapsed Time Clock.

All of these functions take place in an interrupt-driven fashion while the user "fusses" with the gain, zero, and the device being measured. When satisfied that all is well, the operator hits any key on the keypad and the real fun begins. In addition to the Timer 1 ISR functions listed above, after eight data points [per channel) are collected into an array, the P R I NT_ STR I P routine is called. This routine prints out the data to the Epsoncompatible printer through the Centronics parallel port on the microcontroller board.

After printing these eight points, the pointers to the two arrays are set back to the beginning and the process repeats until the user hits a key on the keypad to end the run. At that time, the microcontroller sends to the printer ASCII strings representing the date, elapsed time, chart speed, a
device name, and a sequential run serial number. The little report at the end of each run is often very useful in keeping data straight for those who do not keep good lab notes of their own!

THE PRINT-STRIP ROUTINE

This routine takes the eight data points for each channel and prints the equivalent of the two pen traces on the paper. This requires a transform of the eight amplitudes of two channels into the printer's 960 -byte graphic bitmap array. That is to say, we must supply the printer with 960 bytes of graphics data per strip of data printed. Since the TMS370C250 contains only 256 bytes of RAM for all program variables, the program must do this data transform on the fly. Of course, the micro is also collecting and filtering data and updating a real-time clock at the same time, so the TMS3 70 is kept very busy indeed.

Listing 1 contains the assembly code for this subroutine. Prior to calling this routine, nine data points

Figure 6-The actual output of the printer recorder is every bit as useful as that from a real strip recorder. Note that the labels were added after the printout was complete and are not automatically printed.

Listing 1－ThePRINT＿STRIP routine must convert the linear data into the dot array required by the printer．

\＄PRINT＿STRIP

novw 非grafmess1，strptr ；pnt to Epson graphics crod str call \＄prints＿cent
clr pbyte
；CHANNEL 非1
；make an 8－word array of dot on／dot off val ues： 1 for each pi xel
；point to start of three arrays：datal，dotlon，dot1 off

$$
\begin{array}{ll}
\text { mov } & \text { 非8, loopct } \\
\text { novw } & \text { \#sy1,pptr } \\
\text { movw } & \text { 非1on,aptr } \\
\text { movw } & \text { 非loff,bptr } \\
& \\
\text { call } & \text { 1dDoton0ff } \\
\text { incw } & \text { 非2,pptr } \\
\text { incw } & \text { 非2,aptr } \\
\text { incw } & \text { 非2,bptr } \\
\text { djnz } & \text { loopct, Idloopl }
\end{array}
$$

I dl oopl ：
；CHANNEL 非2
mov \＃8，100pct
novw 非sy2，pptr
novw 非Y2on，aptr
novw 非Y2off，bptr
l dl oop2
call 1dDot0n0ff
from each of the two channels have been stored in arrays SY 1 and SY 2. These are unsigned 16－bit integer values，prescaled to the range 0－959． Nine values are needed since we must know the＂position of the pen，＂so to speak，from the last strip printed．This adds one extra data point to the eight we wish to print．Although the 9－pin printer has the ability to print nine dots per pass，only eight of them are used to keep all operations in byte－size chunks．The main program has already sent the printer a command sequence to set its line spacing to $8 / 72^{\prime \prime}$（each dot is $1 / 72^{\prime \prime}$ and eight dots are printed per pass］．This is done only once at the start of a run．

The actual P R I NT＿ST R I P routine starts by sending the string at the label graf ne S s 1 to the printer．This is the Epson command for Graphics Mode 2 （960 dots resolution）．This command must be repeated for each printing pass．

The code starting at label 1d Loop 1 examines the eight pairs of data points from channel 1 （d p 1 and

55MHZ 386DX CPU — \＄695＂
Compact AT／Bus or Stand Alone （In－Board SVGA，IDE，FDC， 2 Ser／Bi－Par FLASH\＆RAM Drives to 2.5 M
Cache to 128 K ，DRAM to 48 M

TURBO XT
w／FLASH DISK－\＄ $\mathbf{2 6 6}^{*}$
To 2 FLASH Drives， 1 M Total DRAM to 2 M
Pgm／Erase FLASH On－Board CMOS Surface Mount，4．2＂x 6．7＂ 2 Ser／1 Par，Watchdog Timer
All Tempustech VMAX products are PC Bus Compatible．Made in the U．S．A．， 30 Day Money Back Guarantee ＊QTY 1，Qty breaks start at 5 pieces．

> TEMPUSTECH, INC.
> TEL: (800) 634-0701
> FAX: (813) 643-4981

| Fax for 295 Airport Road
 fast response！ Naples，FL 33942 |
| :--- | :--- |

Listing l－continued
incw \＃2，pptr
incw \＃2，aptr
incw 非2，bptr
djnz loopct，ldloop？
mov 非255，a
call \＄print＿cent ：print axis
clr markmask
djnz marker，\＄9
mov \＃10，marker
mov 非16，markmask
movw 非1，．j
pbyteloop：
$\mathrm{cl} r \quad b$
mov \＃8．100pet
mov 非128，mask
bitlp：
call RangeCompare
inc b
clrc
rrc mask
djnz loopct，bitlp
nov pbyte，a
cmp 非0，j－1
jne \＄8

jhs \＄8
or markmask
\＄8
call Sprint－cen
\＃1，j
非 $3, \mathrm{j}-1$
$\begin{array}{ll}\text { cmp } & \text { 非3，j－1 } \\ \text { jne pbyteLoo }\end{array}$
cmp 非192，j
jne pbyteloop
novw 非rafmess2．strotr
call \＄prints＿cent
rts

RangeCompare：
$\begin{array}{ll}c l r & f l g \\ \text { nov } & Y 10 f f(b), a\end{array}$
nov a，templ－1
mov Y lon（b），a
nov a，temp2－1
inc b
mov Yloff（b），a
nov a, templ
nov Y lon（b），a load LSBs of $Y 1(b / 2)$ on，off
mov a，temp2
novw j，temp3
sub temp3，templ ；form Yloff（b／2）－j
sbb temp3－1，templ－1
jn rcl
movw j，temp3
sub temp？，temp3
sbb temp2－1，temp3 ；form j－Y1on（b／2）
jn rcl
mov 非，fig ；set the flg for a dot on event
$\mathrm{rcl}:$
；RANGE COMPARE CHANNEL 2
dp 2 , dp 2 and dp 3 , etc.) and determines where the dot for that data point should start printing and where it should stop printing. It produces an array of eight "dot on" words and eight "dot off" words, designated $Y 10 \mathrm{~N}$ and Y 10 F F, respectively. The code starting at 1 d Loo p ? performs the same for channel 2.

Once I know the range in which a dot must be printed for each of the eight dot positions per pass, I then set up a loop to send out 960 bytes to the printer. That loop starts at label p by t e Loop in the listing.

The print head in the Epson printers is set up so its upper pin is designated by the most-significant bit of the graphics data byte sent to it (i.e., 128 decimal). The way the printer is used for this application, this uppermost pin corresponds to the first data point taken in the group of eight that are to be printed per strip. The p by t eLoop initially sets up the variable MASK equal to 128 and calls subroutine RangeCompare to see if either channel needs that dot turned on or off. Depending on the outcome of that check, it either sets or clears the bit in the position specified by the mask. This is repeated eight times: each time the mask value is changed to correspond to the next dot position (by a "rotate right" of MASK).

After these eight iterations of the loop, the variable p by t e is almost ready to be sent to the printer. Before sending it to the printer, however, some checks are made to see if anything must be added to the data. As a convenience to the user, a baseline axis is printed and a small tick is added to this baseline for every inch of paper travel. Examine the code following the label bit 1 p for details of this operation.

After 960 iterations of the p by t e Loop routine, a carriage return and a linefeed are'sent to the printer. At this point, the PRINT_STRIP routine returns to the main program.

"OUT OF PAPER"

That's the overall description of the printer recorder. We are using a number of these instruments successfully in our research labs. By placing

Data Geni e offers a full line of test \& measurement equipment that's innovative, reliable and very affordable. The "Express Series" of sta ndalone, non-PC based testers are the ultimate in portability when running from either battery orAC power. Data Genie products will be setting the standardsforquality on the bench or in the field for years to come.

HT-28 Express

The HT-28 is a very convenient way of testing Logic IC's and DRAM's Tests most TTL 74, CMOS 40/45 and DRAM's 4164-414000, 44164-441000. It can also identify unknown IC numbers on TL 74 and CMOS 40/45 series with the 'Auto-Search' feature. \$189.95

HF 14 Express

The HT -14 is one-to-one EPROM writer with a super fast programming speed that supports devic es from 27320 to 27080, with eight selectable programming algorithms and six programming power(VPP) selections. \$289.95

The Data Genie $\mathrm{P}-300$ is a useful device that allows you to quickly install addon cardsor to test prototype circuits for your PC extemally. Without having to tum off your computer to install an add-on cards, the P-300 maintains complete protection for your motherboard via the built-in current limit fuses \$349.95

Microsystems
Division of MINGEGP.INC 17921 Rowland Street City of Industry. CA 91748 TEL : (818) 912-7756 FAX: (818) 912-9598

Call for a dealer near you. 1-800-473-6606

Data Genie products are backed by a full lyear limited factory warranty.

Listing I - cont i nued			
	mov	Y2on(b), ${ }^{\text {a }}$	I oad MSBs of Y2 $b / 2$) on off
	mov	a, temp2-1	
	i nc		
	nov	Y20ff(b), a	
	nov	a, templ	
	nov	Y $20 n(b), a$; I oad LSBs of Y2(b/2)on, off
	mov	a,temp?	
	novw	j, temp3	
	sub	temp3, templ	: form Y20ff(b/2)-j
	sbb	temp3-1, templ-1	
	jn	rc2	
	novw	j, temp3	
	sub	temp2, temp3	
	sbb	temp2-1, temp3-1	; formj- Y2on(b/2)
	jn	rc2	
	nov	\#1, f7g	; set the flg for a dot on event
rc2:			
		$\text { 非 } 1, f 7 \mathrm{~g}$	
	j ne	clearbit	
setbit:			
	or rts	mask, pbyte	
cl earbit:			
	push	mask	
	xor	非255, mask	; i nvert mask
	and	mask, pbyte	
	pop	mask	
	rts		
1dDot0n0ff:			
	mov	O(pptr) , a	
	nov	a,templ-1	; get first of two dpoi nts
	mov	1(pptr), a	
	mov	a, templ	
	mov	2(pptr), a	
	nov	a, temp2-1	; and second
	nov	3 (pptr) , a	
	nov	a,temp2	
	push	temp2	
	push	temp2-1	
	sub	temp1. temp2	; formY(i+1)-Y(i)
	sbb	temp1-1, temp2-1	
	jn	\$1	
	nov	temp1-1, a	
	nov	a,0(aptr)	
	nov	templ,a	
	mov	a,1(aptr)	: Yon $1=Y(i)$
	pop	temp2-1	
	pop	temp?	
	nov	temp2-1, a	
	nov	a,0(bptr)	
	nov	temp2,a	
	mov	a,1(bptr)	; Yoffl $=$ Y ($i+1)$
	rts		
\$1	nov	temp1-1, a	
	nov	a, 0(bptr)	
	mov	templ,a	
	nov	a, 1 (bptr)	Yoffl $=\mathrm{Y}(\mathrm{i})$
	pop	temp2-1	
	pop	t emp2	
	nov	temp2-1, a	
	nov	a.0(aptr)	
	nov	temp2,a	
	mov	a,1(aptr)	Yonl $=Y(i+1)$
	rts		

the preamp/VFC on a separate PCB, I've been able to design several different preamp modules for different applications. Figure 6 shows an actual printout from the device connected to a chromatography apparatus. Special thanks is extended to Dr. Walter Aue, whose large research group never seems to have enough instrumentation. It was this need which spawned the idea in the first place. Possibly some of the concepts outlined here could also find some use in low-cost hard-copy data logging in industrial process control.

Brian Millier has worked as an instrumentation engineer at Dalhousie University, Halifax, NS, Canada in the Chemistry Department for the past 12 years. In his leisure time, he operates Computer Interface Consultants and has a full electronic studio in his basement. He may be reached at bmil@chem1.chem.dal.ca.

CONTACT

Texas Instruments, Inc.
9301 Southwest Fwy.
Commerce Park, Ste. 360
Houston, TX 77074
(713) 7786592

TI Microcontroller Technical Hotline: (713) 274-2370
BBS mentioned in the TMS370 sidebar: (713) 274-3700

Analog Devices

One Technology Way
P.O. Box 9106

Norwood, MA 02062-9106
(617) 329-4700

Fax: (617) 326-8703
LCD Display
Timeline, Inc.
23605 Telo Ave.
Torrance, CA 90505
(310) 784-5488

Fax: (3 10) 784-7590

IR S

401 Very Useful
402 Moderately Useful 403 Not Useful

FEATURE ARTICLE

J. Conrad Hubert

Get Precise, with the précis A/D Converter Collect Lots of Precise Data with this $16-\mathrm{bit}, 100-\mathrm{kHz}$ ADC

"High speed" and "high resolution" are usually mutually exclusive, but not with précis. This ISAbus board works with

 any PC and has the capability to overrun even the fastest PCcompatible system.
raditionally, high-resolution ADCs have relied on the techniques of successive approximation and dualslope integration to achieve accuracy greater than 15 bits. Although these techniques have served well in the past, they are not without drawbacks. Precision successive-approximation converters require complicated trimming and/or calibration schemes and are expensive. Similarly, dualslope converters require accurate comparators and expensive sample-and-hold circuits. They are also extremely slow.

During the last five years, ADCs based on what is called sigma-delta modulation have become commercially available. Although sigma-delta modulation techniques have been around since the early 1960s, they were not often implemented because they impose a substantial digital signal processing burden.

Converters based on the sigmadelta architecture do not require precisely matched components. Instead, they use a 1 -bit quantizer (comparator) in a feedback loop. High resolution is achieved by oversampling
(which shifts noise to higher, out-ofband frequencies) and on-chip digital filtering.

Unlike conventional ADCs, sigma-delta converters don't require sophisticated antialiasing filters or sample-and-hold amplifiers. This is because their input sample rate is higher than the rate for other techniques which provide the same bandwidth.

What's more, the sigma-delta technique lends itself to implementation in a digital CMOS process, Usually, a silicon process is optimized for either analog or digital circuitry. It is difficult to add high-performance analog circuitry to primarily digital real estate. DSP chip makers are excited about sigma-delta because it will allow them to embed the ADC right on the DSP chip itself. In fact, because sigma-delta ADCs are reasonably tolerant of switching noise, the architecture is uniquely suited to life inside digital computers.

Now that I've extolled the virtues of the sigma-delta architecture, I will remind you that there is, of course, no free lunch. Remember the "l-bit quantizer in a feedback loop"? Well, it points to perhaps the only disadvantage of the sigma-delta architecture: poor DC stability. (Other more complicated implementations of the sigma-delta architecture can provide excellent DC stability at the expense of lower conversion rates. Crystal Semiconductor makes such parts, but refers to them as delta-sigma A / D converters.) One other potential disadvantage is that multichannel systems usually require a separate sigma-delta converter for each channel. Multiplexing is possible, however, provided sufficient time is allowed for the digital filter to "settle" prior to accessing data from the next channel.

The bottom line is that sigmadelta converters are best suited to applications which require high sampling rates along with an extremely good signal-to-noise ratio and excellent differential linearity. Typical applications include signal processing, digital audio, communications, and ISDN (Integrated Services Digital Network).

One example of a sigma-delta converter implemented in silicon is the Motorola DSP56ADC16S. This low-cost ($\$ 24$ in 100s) ADC provides 16-bit resolution at up to 100,000 samples per second (Sps) while consuming less than 0.5 W from a single 5-V supply. Recently, Analog Devices began second-sourcing this part as the AD776.

In the remainder of this article, I'll describe how to build a simple PCbased data acquisition board around the DSP56ADC16S. The schematic for the design appears in Figure 1. The board was christened précis after the French word for "exact". I'll describe the precis hardware in six sections, starting with the ADC and working my way to the bus interface. The printed circuit board and software will be covered last.

ADC

Because the DSP56ADC16S (U3) samples its analog input 64 times
to-back zener diodes D1 and D2. If the absolute value of the voltage into the BNC is greater than the zener voltage plus a forward diode drop (3.8 V), these diodes short-circuit the source driving precis and clip the input signal.

One measure of the "goodness" of an ADC is its ENOB, or effective number of bits. ENOB is to an ADC's accuracy what word length is to an ADC's precision. The ENOB for any analog-to-digital converter is related to its SNR specification by the equation

$$
\mathrm{ENOB}=\frac{\mathrm{SNR}-1.76 \mathrm{~dB}}{6.02}
$$

Motorola quotes the DSP56ADC16S's SNR at 90 dB ; however, that figure represents best case conditions. A more realistic figure appears in the Analog Devices data sheet, which states that a $90-\mathrm{dB}$ SNR is achieved with a $48-\mathrm{kHz}$ sampling rate, and at 100 kHz the SNR drops to 86 dB . This yields an ENOB of 14.66 at 48 kHz and just under 14 at 100 kHz .

The input impedance of precis is nominally $2 \mathrm{k} \Omega$. However, the actual input impedance is $2 \mathrm{k} \Omega$ in parallel with the dynamic input impedance of the DSP56ADC16S. The converter's impedance is a function of its clock frequency, and is related by the equation

$$
\mathrm{Z}_{\mathrm{in}}=3 \mathrm{~F}_{\text {clock }}^{10^{12}}
$$

The input impedance ranges from 1.98 k at 12.5 kHz to 1.85 k at 100 kHz .

Because the ADC's input impedance is a function of clock frequency, the loading on the input bias circuit changes somewhat with clock frequency. Therefore, potentiometer R6 is provided to null the input offset. With the BNC shorted, R6 should be adjusted in real time to yield an offset of zero for a given acquisition rate. (The actual offset may fluctuate slightly.)

You may infer (correctly) from the preceding paragraph that the input more often than it produces a digital output, a high-order antialiasing filter is not required. Motorola does, however, recommend installing a simple single-pole filter prior to the ADC. This filter should be made from a high-quality polystyrene capacitor (C5) and two metal film resistors (R2 and R3).

An input range of 4 V peak-to-peak is realized by using U3's on-chip voltage reference (nominally 2 V). Thus, an input of +2 V results in a 16-bit two's complement output word equal to 32,767 . A -2-V input produces an output code of -32,768. Shorting the input connector yields an output code of 0 . From these values, one can calculate a sensitivity of $61 \mu \mathrm{~V}$ per LSB.

Bipolar overvoltage protection for the ADC is accomplished via back

offset must be nulled separately for every acquisition rate. If this is inconvenient, remember that it's possible to cancel the input offset by adding a constant to the data once it has been stored in main memory. The constant is determined [for a given acquisition rate) by shorting the analog input terminals and observing the resulting output code. The difference between the observed output code and zero must be added to each data point to cancel the input offset. A typical value might be between 10 and 30 , and may well be negative.

Another interesting feature of the

DSP56ADC16S is that it is really two ADCs in one. At the flip of a switch, it can become a 12 -bit (resolution), 400kHz ADC. This is possible because the part uses two internal digital filters (a
fast, low-resolution comb filter and a FIR filter with slower, higher-resolution). By holding pin 6 (marked FSEL) high, the digital output is taken prior to the FIR filter. The intent of JP5 was
to provide access to this $400-\mathrm{kHz}$ data rate. Unfortunately, even fast computers ($33-\mathrm{MHz}$ '486) cannot keep up with that data rate. In practice, only the $100-\mathrm{kHz}$ data rate is usable. Therefore,

Figure 1 c -At the core of précis is the DSP56ADC16 AD converter. The TLE2425 virtual ground generator produces a voltage precisely halfway between 5 V and ground. Note that C7,C8,C15, and Cl6 are 1206-series SMT capacitors mounted on the solder side of the PC board. They may or may not be required depending on the ESR of the electrolytic capacitors used.

JP5 should be configured to tie pin 6 of u3 low.

That about covers the
DSP56ADC16S's analog side as it applies to précis. However, let's cover two of the part's idiosyncrasies. Pins 14-17 of the ADC are manufacturing test points and must be held low during normal operation. Also, please observe that the converter is always running, and that there is no "start" command as is typical with other types of ADCs. For more information about the ADC itself, order document DSP56ADC16/D directly from Motorola.

Finally, the other IC in précis's front end is due a few words of explanation. Called a virtual ground generator by Texas Instruments, the TLE2425 (U11) produces a voltage precisely halfway between 5 V and ground. It is used to bias the ADC^{\prime} s differential input amplifier at one-half $\mathrm{V}_{1, \text {. [A similar part, the TLE2426 is }}$ called a rail splitter. This part is slightly more general purpose, having an input range of $4-40 \mathrm{~V}$.)

SERIAL-TO-PARALLEL

The output of the DSP56ADC16S is serial rather than parallel because it is intended to mate with the highspeed serial port on Motorola's 56001 DSP engine. Unfortunately, the serial data rate is far too high for a PC to accept directly. At the $100-\mathrm{kHz}$ sample rate, the ADC emanates a new 16-bit word every $10 \mu \mathrm{~s}$. However, valid data is available only during the second half of that period. This means the time available to read the output word is only 5 us. A 16-bit word read in 5 us implies a systembus bandwidth of 400 kbps. However, by
resorting to a double buffering scheme, the full 10μ s is available to read the word and the data transfer rate is decreased to 200k bytes per second. Although double-buffering eases the bus bandwidth requirements enough for précis to run on an AT-class machine, the $100-\mathrm{kHz}$ sample rate is

Photo I-The précis high-speed, high-resolution A/D converter works in any ISA-bus computer.
well above the capabilities of an 8086class machine-even using an assembly language data transfer routine.

Before detailing the hardware implementation of the double buffer, I'll first describe the digital side of the DSP56ADC16S. It has three outputs: serial clock out (SCO), serial data out (SDO), and frame sync out (FSO). The format of FSO is determined by the serial format (SFMT) input. If SFMT is pulled low, FSO is compatible with DSP56001-and TMS32020-family

Conversion Rate	Clock Frequency	From	Mux channel
100 kHz	12.8 MHz	OSC1	D4
50 kHz	6.4 MHz	U5B-QA	D3
25 kHz	3.2 MHz	U5B-QB	D2
12.5 kHz	1.6 MHz	U5B-QC	D1
6.25 kHz	0.8 MHz	U5B-QD	DO
User rate	128. rate	osc2	D6
User rate/2	64 * rate	USA-QA	D5
External	28 * rate	External	D7

Table l-The précis can handle conversion rafes from 6.25 kHz up to 100 kHz . The user may also supply an externally generated clock.
processors. Conversely, if SFMT is high, FSO is compatible with the NEC7720. I chose the NEC format because it was easier to interface.

The double buffer itself comprises a pair of 74LS1648-bit shift registers (U9 and U10) and a pair of 74LS374 octal latches (U7 and U8). U3 emits
data MSB first while U9 and U10 are clocked in parallel until all 16 bits have been shifted into place. Each time FSO goes high, a valid word at the shift register's output gets clocked into the latches. Additionally, the FSO signal is polled by the software to determine when to read these latches.

TIMEBASE

The DSP56ADC16S must be docked at 128 times its data output rate (12.8 MHz for a $100-\mathrm{kHz}$ conversion rate). Clocking the ADC slower results in the conversion rates shown in Table 1.

You may ask, "Why not just clock the ADC at its maximum rate, then store every nth conversion to achieve a lower conversion rate." Not a bad idea, but it does have one drawback. Part of the elegance of the sigmadelta architecture is that no antialiasing filter is needed because the signal is processed by an internal brick-wall FIR digital filter. From the Nyquist Sampling Theorem, we know that a reconstructed signal will contain all of the information present in the original signal as long as we
sample at slightly more than twice the bandwidth of the input signal. Since the clock rate alters the pass-band frequency of the brick-wall filter, the likelihood of aliasing the input signal is very small. If you simply "throw away" data to simulate a lower sampling rate, the likelihood of aliasing increases. Presumably, the reason one would desire a lower sampling rate is to diminish the data storage requirement. Throwing away data is still possible via software, as long as you understand the implications of possibly violating the Nyquist limit.

Although Motorola specifies a minimum clock frequency of 1 MHz ($7.8125-\mathrm{kHz}$ conversion rate), I have included the $6.25-\mathrm{kHz}$ conversion rate because it was available "free." Even though, the SNR specification suffers, you may find this acquisition rate useful. This is also true for clock rates higher than 12.8 MHz supplied via the external input. We have experimented with frequencies higher than 20 MHz . Again, the SNR suffers, but the data may still prove useful.

Similarly, please note that there is nothing magical about a $12.8-\mathrm{MHz}$ oscillator. For example, a $12-\mathrm{MHz}$ oscillator would result in acquisition rates about 6\% lower than those quoted in Table 1.

Preliminary data provided by Motorola indicated that a worst-case clock symmetry of $52.5 / 47.5$ was allowed. I found this curious since their example circuit, which showed a simple crystal/ inverter oscillator, was extremely unlikely to provide symmetry that tight. M otorola has since eased that specification to allow for a clock symmetry of $67 / 33$ ratio. (Point of fact: A simple method of obtaining excellent symmetry is to start with twice the desired frequency and use a flipflop to divide by two.) What's more important than clock symmetry, however, is a low-jitter clock source. Generally, ready-made 4-pin oscillators exhibit lower jitter than ones built from a crystal and inverters.

The various acquisition rates are generated by dividing down a 12.8 MHz oscillator via a 74LS393 dual 4bit ripple counter (US). U5 produces

```
Listing l-Board decoding is simplified by using a PAL instead of discrete logic.
```

```
TI TLE
```

TI TLE
PATTERN
PATTERN
REVI SI ON
REVI SI ON
DATE
DATE
étude ADDRESS DECODER
étude ADDRESS DECODER
ETUDE.PDS
ETUDE.PDS
(PRODUCTI ON VERSI ON)
(PRODUCTI ON VERSI ON)
APRI L 7, }198
APRI L 7, }198
CHI P ADDRESS- DECODE PAL16L8

; PINS	1	2	3	4	5	6	7	8	9	10
	A9	A8	A7	A6	A5	B4	B5	B6	B7	GND
; PINS	11	12	13	14	15	16	17	18	19	20
	AEN	E8253	A4	A2	I OW	IOR	COMP	E8255	DMA	VCC

EQUATI ONS

```
```

COMP =/(A7 :+: B7)* /(A6 : +: B6)* (/IOR +/IOW)

```
COMP =/(A7 :+: B7)* /(A6 : +: B6)* (/IOR +/IOW)
/E8253=A9 * / A8 * COMP * /(A5 : +: B5) * /(A4 : +: B4)*/A2 */AEN
/E8253=A9 * / A8 * COMP * /(A5 : +: B5) * /(A4 : +: B4)*/A2 */AEN
/E8255=A9 * /A8 * COMP * /(A5 : +: B5) */(A4 :+:B4)* A2 */AEN
/E8255=A9 * /A8 * COMP * /(A5 : +: B5) */(A4 :+:B4)* A2 */AEN
/DMA = (/IOR +/IOW ) + AEN
```

/DMA = (/IOR +/IOW) + AEN

```
\(6.4-\mathrm{MHz}, 3.2-\mathrm{MHz}, 1.6-\mathrm{MHz}\), and \(800-\) kHz square waves at its \(\mathrm{QA}, \mathrm{QB}, \mathrm{QC}\), and QD outputs, respectively. U4, a 74F 151 multiplexer, is used to select the appropriate clock rate and present it to the DSP56ADC16S's clock input.

\section*{EXTERNAL I/O}

A ccess to the signals listed on the next page is provided via a 15-pin female D-shell connector. Where applicable, the signal levels are TTL compatible.

\section*{Real-Time Multitasking with DOS \\ for Microsoft C, Borland C, Borland/Turbo Pascal}

\section*{Develop Real-Time Multitasking Applications under MS-DOS with RTKernel!}

RTKernel is a professional, high-performance real-time multitasking kernel. It runs under MS- DOS or in ROM and supports Microsoft C, Borland Ctt, Borland/Turbo Pascal, and Stony Brook Pascal+. RTKernel is a library you can link to your application. It lets you run several C functions or Pascal procedures as parallel tasks. RTKernel offers the following advanced features:
- preemptive, eventinterrupt-driven scheduling
- number of tasks only limited by available RAM
- task-switch time of approx. \(6 \mu \mathrm{~s}\) ( \(33-\mathrm{MHz} 486\) )
- performance is independent of the number of tasks
- use up to 64 priorities to control your tasks
- priorities changeable at run-time
- time-slicing can be activated
- programmable timer interrupt rate ( 0.1 to 55 ms )
- high-resolution timer for time measurement ( \(1 \mu \mathrm{~s}\) )
- activate or suspend tasks out of interrupt handlers
- programmable interrupt priorities
- semaphores, mailboxes, and message-passing
- keyboard, hard disk, and floppy disk idle times usable by other tasks
- interrupt handlers for keyboard, COM ports, and network interrupts included with source code
- supports up to 36 COM ports (DigiBoard, Hostess boards)
- supports protocols XOn/XOf, DTR/DSR, RTS/CTS
- full support of NS16550 UART chip
- supports math coprocessor and emulator
- supsorts inter-networkcommunication using Novell's IPX
- runs under MS-DOS 3.0 to 6.x, DR-DOS, LANs,
or without operating system
- DOS calls from several tasks without re-entrance problems
- supports resident multi-tasking applications (TSRs)
- runs Windows or DOS Extenders as a task
- supports CodeView and Turbo Debugger
- Kernel Tracer for easy debugging
- ROMable
- full source code available
- no run-time royalties
- free technical support by phone or fax
\(\begin{array}{lllll}\text { RTKernel-C } & 4.0 \$ 495 & \text { RTKernel-Pascal } 4.0 & \$ 445 & \text { International orders: add } \$ 30 \text { shipping and handling } \\ \text { C Source Code: add } \$ 445 & \text { Pascal Source Code: add } \$ 375 & \text { Mastercard, Visa, check, bank transfer accepted. }\end{array}\)

\section*{On Time \\ MARKETING}

Professional Programming Tools
In North America, please contact:
On Time Marketing
88 Christian Avenue • Selauket, NY 11733 • USA Phone (516) 689-6654. Fax (516) 689-I 172 CompuServe 73313.3177

Outside North America, please contact: On Time Marketing
Karolinenstrasse 32 • 20357 Hamburg • GERMANY Phone +4940437472 • Fax +4940435196 CompuServe 100140,633

Pin I-External Reference In/ Out: Permits you to monitor the \(2-\mathrm{v}\) reference built into the ADC. By removing jumper JP1, an external voltage reference may be injected on this pin. This facilitates using a more precise reference or simply a different reference voltage (maximum of +2 VDC).
Pin 2-Analog Supply In/ Out: The \(+5-\mathrm{VDC}\) analog supply to the ADC. It is isolated from the PC's switching power supply by U6, a 3-terminal regulator. You may use Pin 2 to provide power to external circuitry. (Maximum current draw is 200 mA .) By removing jumper JP4, the ADC may alternatively be powered from an external, linear power supply.
Pin 3-Serial Clock Out: Comes directly from the ADC. It is not buffered.
Pin 4-Frame Sync Out: Comes directly from the ADC. It is not buffered.
Pin 5--Serial Data Out: Comes directly from the ADC. It is not buffered.
Pin 6-General-Purpose TTL Input: Software accessible via port PC6 in the 8255.
Pin 7-General-Purpose TTL Output: Software accessible via port PC3 in the 8255.
Pin 8-External Clock In: If used, this input must be a TTL-compatible square wave. It is directed to the 74LS 151 and is selected via software as mux channel D7. It becomes the master clock for the
12.8-I MHz may be used to acquire data at a rate unavailable internally or to use a higher-stability/
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Base Address Hexadecimal} & \multicolumn{4}{|l|}{Jumper Settings} & \multirow[t]{2}{*}{Possible Conflict} \\
\hline & A7 & A6 & A5 & A4 & \\
\hline 200 & 0 & 0 & 0 & 0 & Game port \\
\hline 210 & 0 & 0 & 0 & 1 & Expansion unit \\
\hline 220 & 0 & 0 & 1 & 0 & Reserved by IBM \\
\hline 230 & 0 & 0 & 1 & 1 & Reserved by IBM \\
\hline 240 & 0 & 1 & 0 & 0 & Reserved by IBM \\
\hline 250 & 0 & 1 & 0 & 1 & \\
\hline 260 & 0 & 1 & 1 & 0 & précis factory setting \\
\hline 270 & 0 & 1 & 1 & 1 & LPT2 \\
\hline 280 & 1 & 0 & 0 & 0 & \\
\hline 290 & 1 & 0 & 0 & 1 & \\
\hline 2 A 0 & 1 & 0 & 1 & 0 & \\
\hline 2B0 & 1 & 0 & 1 & 1 & \\
\hline 2 co & 1 & 1 & 0 & 0 & \\
\hline 2D0 & 1 & 1 & 0 & 1 & \\
\hline 2 E 0 & 1 & 1 & 1 & 0 & \\
\hline 2 FO & 1 & 1 & 1 & 1 & COM2 \\
\hline
\end{tabular}

Table 2-The précis may be set up for any of 16 base port addresses, though not all potential addresses are without conflict.
this by comparing the précis's Base Address Select Jumpers with the PC's corresponding address lines. This occurs in parallel with decoding the PC's I/ O signals A9, A4, A2, AEN, IOR, and IOW, according to the equations found in Listing 1.

Alterability of the base address allows you to locate précis at any one of sixteen base addresses and permits multiple boards in one computer. The précis board occupies four I/ O port locations and may be mapped into specific base addresses in the range 200-
accuracy clock than the onboard oscillator(s).
Pins 9-I 5—Analog/Digital Ground.
Note: Since the SCO, SDO, and FSO signals are available at this connector, it is possible to use précis as an evaluation platform for the DSP56ADC16S even without a PC. Just remember to tie the appropriate mux select lines to provide a clock source.

\section*{ADDRESS DECODING}

U1 is a 16L8 PAL. Although this PAL provides more functionality than is required, it is used in another ADC board we manufacture (see Circuit Cellar INK issues 13 and 15 for construction details regarding an 8-bit, \(25-\mathrm{MHz}\) digitizer called étudel. A JEDEC fuse map for this PAL is available on the BBS if you would prefer not to work with the PALASM source code.

The PAL's job is to generate a chip-select signal for the 8255 . It does

2F0 hex (see Table 2). A read from or write to I/ O space is "in range" when the following conditions are met:
1) address line A 9 is high and A8 is low. This corresponds to a hexadecimal base address whose most-significant digit is 2 .
2) the next-most-significant hex digit is determined by comparing \(A 7\), A6, A5, and A4 with précis's Base Address Select jumpers.
3) the least-significant hex digit is always zero. When A2 is high, the 8255 is selected. Specific registers within the 8255 are accessed by AI and AO. Note: A3 is not decodedtherefore the Base Address +8 is redundant.

\section*{BUS INTERFACE}

Interface to the system data bus is via U2, an 8255 programmable peripheral interface. Although some engineers do not advocate attaching NMOS LSI devices directly to the system bus, I have reliably used the method in several products. The advantage of connecting the 8255 directly to the bus is
\begin{tabular}{|llll|}
\hline Port & Direction & Use & \\
& & & \\
& & & \\
& & GB-15 \\
PC2 & output & Mux S2 (timebase select) & \\
PC1 & output & Mux SI (timebase select) & \\
PC0 & output & Mux SO (timebase select) & \\
\hline
\end{tabular}

PC2 output Mux S2 (timebase select)
PC1 output Mux SI (timebase select)
PCO output Mux SO (timebase select)
Table 3-Port C on the 8255 is split between status inputs and control outputs.
loading limit of two LSTTL loads).

The 8255 is mapped into four locations in the PC's I/ O space. Port A is assigned as
the converter's least-significant byte. Port B is assigned as the converter's most-significant byte. Port C is split into an input nybble and an output nybble. Bits 7-4 are "read-only," whereas bits 3-0 are "write-only." Since it is not possible to perform nybblewide I/ O operations, a full 8 bits must be read from, or written to, an I/ O port. Writing an 8-bit value to port C has no effect on its read-only portion. Likewise, when reading an 8 bit value from port C, bits 3-O are undefined. Individual bit definitions for port C are given in Table 3.

\section*{PCB}

Although the digital portion of this design can, for the most part, be implemented in wire wrap, the analog portion requires a great deal more care. Originally, I prototyped the ADC and analog circuitry "dead bug style" over a copper ground plane. I made all component leads as short as possible and the circuit performed well.

However, the first version of the PCB did not work properly. A trace slightly over \(51 / 2\) inches long connected the ADC (U3) clock input to the mux (U4) output. This proved to be too long for the edgerate involved. Although I found several solutions to the problem, the simplest was to replace the 74LS151 with a 74F151 and replace the \(51 / 2\)-inch PCB trace with a piece of 75-Q coax.

In the second version of the PCB, I decided that changing the chip layout to position U4 extremely close to U3 would have required more effort than I cared for. Instead, I decided to etch the \(75-\Omega\) transmission line directly onto the PCB. Now, it is well known that empirical formulas for fabricating transmission lines in printed circuit boards exist (see Motorola's seminal work, the ECL data book]. Unfortu-nately-for two-sided boards at leastthese formulas are based on having an "infinite" ground plane on the opposite side of the controlled-impedance trace. Since there was little room for any sort of ground plane above the trace, an "infinite" one was out of the question.

Fortunately, I found an easy solution. A friend of mine had recently

\section*{HUGE BUFFER}

FAST SAMPLING SCOPE AND LOGIC ANALYZER C LIBRARY W/SOURCE AVAILABLE POWERFUL FRONT PANEL SOFTWARE


\author{
DSO Channels \\ 2 Ch. up to \(100 \mathrm{MSa} / \mathrm{s}\) or \\ 1 Ch . at 200 MSa /s 4K or 64K Samples/Ch Cross Trigger with LA 125 MHz Bandwidth \\ Logic Analyzer Channels 8 Ch . up to 100 MHz 4K or 64K Samples/Ch Cross Trigger with DSO
}

\section*{Universal Device Programmer}

PAL
GAL EPROM EEPROM FLASH MICRO PIC
etc..


Free software updates on BBS
Powerful menu driven software

\section*{400 MHz Logic Analyzer}
up to 128 Channels
- up to 400 MHz
- up to 16K Samples/Channel

Variable Threshold Levels
8 External Clocks
16 Level Triggering
Pattern Generator Option

\$799 - LA12100 (100 MHz, 24 Ch)
\$1299-LA32200 (200 MHz, 32 Ch )
\$1899 - LA32400 (400 MHz, 32 Ch )
\$2750-LA64400 (400 MHz, 64 Ch )
Call (201) 808-8990
Link Instruments
369 Passaic Ave, Suite 100, Fairfield, NJ 07004 fax: 808-8786,
\#120
begun slinging code for a purveyor of signal integrity software. My friend convinced his boss to use their software to solve for the impedance of a PCB transmission line based on its physical characteristics. Working together, it took only a few iterations before we specified the correct physical layout for a transmission line (having both its signal and return lines on the same side of the PCB) which yielded a \(75-\Omega\) differential impedance.

What we ended up with is probably best described as a two-dimensional coaxial cable. The center conductor was a \(0.062^{\prime \prime}\) trace bounded on either sided by a \(0.022^{\prime \prime}\) shield trace separated by a \(0.008^{\prime \prime}\) space. The artwork was created this way with the expectation that after acid had etched the board, there would be a \(0.020^{\prime \prime}\) ground trace, a \(0.010^{\prime \prime}\) space, a \(0.060^{\prime \prime}\) signal conductor, another \(0.010^{\prime \prime}\) space, and finally a \(0.020^{\prime \prime}\) ground trace. As I recall, we couldn't quite get down to \(75 \Omega\) in the available space, but the board worked beautifully nevertheless.

\section*{SOFTWARE}

Complete source code, in Pascal, for a crude digital storage oscilloscope can be found on the BBS. Listing 2 defines all of the crucial hardwarespecific routines. I chose to show the examples in Pascal because it seemed like a good compromise for those who favor \(C\) and those who favor BASIC.

Acquiring data with précis is extremely simple. Programming consists of three principal functions: configuring the 8255 , selecting a clock source via the multiplexer, and reading the ADC.

When the PC is booted, all 8255 ports are set to the high-impedance state. This protects the hardware until the procedure AssignRegisters can configure the 8255 . Writing 9A (hex) to the 8255's control port (Base Address + 7) configures the 8255 properly.

A clock source is selected by writing the appropriate bit pattern to the 74F15 1 multiplexer through port C. This is detailed in the procedure MUX_ChanneiSeiect.

The application program must have access to the data whether it is

Listing 2-Since using interrupts to ser vi ce précis woul d requi re a great deal of overhead, polling is the besf way to acquire data.
procedure AssignRegisters(BaseAddress: word);


When passed the Base Address, this procedure sets the global addresses of hardware registers rel ative to the Base Address and initializes the 8255
\}
begi \(n\)
\(\left.\begin{array}{lllll}\text { ADCLo } & :=\text { BaseAddress }+4 ; & \{01 & ? ? ? ? & 0100 \\ \text { ADCHi } & :=\text { BaseAddress }+5 ; & \{01 & ? ? ? ? & 0101 \\ \text { LatchC } & :=\text { BaseAddress }+6 ; & \{01 \quad ? ? ? ? & 0110 \\ \text { Ctrl } & :=\text { BaseAddress }+7 ; & \{01 & ? ? ? ? & 0111\end{array}\right\}\)
port[Ctrl]: \(=\$ 9 A ;\{10011010\) A=in, \(B=1 n, \quad\) Chi \(\neq i n, \quad\) Clo=out \(\}\)
BitsC : = \$0F;
port[LatchC]: \(=\) BitsC
end:
procedure MUX_ChannelSelect(Channel: byte);
\{ Direct a clock source to the ADC via the 74F151\}
begi n
BitsC := BitsC and \$F8;\{ 11111000 MUX bits PCO, PC1, PC2 \}
case Channel of

end:
\{ This code fragment actually does all of the work.
The commented-out code shows how to call the assentbly Ianguage subroutine which performs the same function, al beit faster.
(*
MACHINE(DataBuffer, LatchC, ADCLo, LastBufferElement);
*)
Pass := 0 :
repeat
repeat \{ Wait for PC7 to go HI \(\Rightarrow\) vaid data \}
until Port[LatchC] and \(\$ 80=\$ 80\);
DataBuffer[Pass]:=portw[ ADCLo ];
inc (Pass);
repeat \{ Wait for PC7 to go Iow \} until Port[LatchC] and \(\$ 80\rangle \$ 80\);
until Pass = LastBufferElement;
processed in real time or stored in a buffer. Since the overhead required to perform 100,000 interrupts per second would be extremely high, the code fragment shown in Listing 2 simply polls the ADC until a valid word is available. Each time the converter's Data Ready flag (hardware signal called Frame Sync Out) goes high, a valid word exists at the shift register's outputs. A new value is latched each time Data Ready goes high, and this value must be read in real time. To prevent rereading the same value because Data Ready was still high after that value had been processed, it is necessary to wait for Data Ready to go low before reading the next valid word. A nother way to think of this is that the polling routine must be "edge", rather than "level" sensitive.

The Pascal implementation works fine on \(10-\mathrm{MHz} 80286\) O-wait-state [or faster) machines. Slower machines will require an assembly language subroutine like the Pascal-specific one shown in Listing 3.

Finally, it is well known that Intel processors use a byte-swapped memory architecture. The architecture is often called "little-endian" because it employs both reverse byte ordering and reverse bit ordering. By contrast, the Motorola 680 xx architecture is bigendian with respect to bytes, but littleendian with respect to bits. However, it is perhaps less well known that 80x86 processors follow the Motorola scheme as far as I/ O operations are concerned. As far as précis is concerned, that's why the 8255's port A gets the \(\mathrm{ADC}^{\prime}\) s LSB and port B gets the MSB.

Reiterating, although 16-bit data is stored in the PC's memory in bytereversed order, 16 -bit data read from and written to \(\mathrm{I} / \mathrm{O}\) ports is not. This means for I/ O operations, the lower (numeric) address byte contains the least-significant data byte in a 16-bit word.

So start building that board, downloading that software, and collecting some data.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Listing 3-Whie low-/eve/routines implemented in Pascal work fine on relatively fast machines, slower ones require the use of assembly language.} \\
\hline & \begin{tabular}{l}
.MODEL \\
. CODF
\end{tabular} & TPASCAL \\
\hline Machi ne & PROC & FAR \\
\hline \multicolumn{3}{|l|}{DataBuffer:WORD, LatchC:WORD, ADCLO:WORD, LastBufferElement:WORD} \\
\hline & PUBLI C & Machi ne \\
\hline & MOV & BX, [DataBuffer] \\
\hline & MOV & CX, Last Buf f er El ement \\
\hline & MOV & DX, LATCHC \\
\hline \multirow[t]{8}{*}{WAIT1:} & IN & AL, DX \\
\hline & AND & AL, 80H \\
\hline & JZ & Wal T1 \\
\hline & MOV & DX, ADCLO \\
\hline & IN & AX, DX \\
\hline & MOV & [BX].AX \\
\hline & I NC & BX \\
\hline & I NC & BX \\
\hline \multirow{4}{*}{WAIT2:} & MOV & DX, LATCHC \\
\hline & IN & AL, DX \\
\hline & AND & AL, 80H \\
\hline & J NZ & WAl T2 \\
\hline \multirow{5}{*}{Machi ne CODE} & LOOP & Wal T 1 \\
\hline & RET & \\
\hline & ENDP & \\
\hline & ENDS & \\
\hline & END & \\
\hline
\end{tabular}
J. Conrad Hubert is a principal in Deus Ex Machina Engineering Inc., where he provides consulting services for the development of hardware and software for embedded systems, data acquisition, and digital signal processing. He may be reached at (612) 6458088.

\section*{CONTACT}

Motorola, Inc.
P.O Box 20912

Phoenix, AZ 85036
Crystal Semiconductor Corp.
4210 S. Industrial Dr.
Austin, TX 78744
(512) 445-7222

Fax: (512) 455-7581

Texas Instruments, Inc. 9301 Southwest Fwy.
Commerce Park, Ste. 360
Houston, TX 77074
(713) 778-6592

Analog Devices
One Technology Way
P.O. Box 9106

Norwood, MA 02062-9 106
(617) 329-4700

Fax: (617) 326-8703

\section*{SOURCE}
précis [pray-see] nf. exact
Deus Ex Machina Engineering, Inc. 1390 Carling Dr., Ste. 108
St. Paul, MN 55108
(612) 645-8088

Fax: (612) 645-0184
1. Assembled \& tested board with source code in C, BASIC, and Pascal (includes FedEx economy shipping) ...................... \$354.00
2. Printed circuit board only (includes Priority Mail shipping) . \(\$ 99.00\)

Visa and Mastercard accepted.

\section*{IRS}

404 Very Useful
405 Moderately Useful
406 Not Useful

\section*{Calibrating Seismic Velocity Transducers with précis}

\section*{An A/D converter} board in hand is worthless without having something to use it for. Chris picks up where J. Conrad left off in the previous article by applying the précis ADC board to a real application.

\section*{FEATURE ARTICLE}

\author{
Christopher J. Peoples
}
 motion into an electrical signal. Exploration geophysicists use these devices to sense seismic wave energy that has been reflected and/ or refracted off layers within the earth's interior. A seismic velocity transducer, more commonly known as a geophone (Figure 1), will generate a voltage that is proportional to the rate at which the ground displacement changes with time (i.e., it senses the ground's velocity and not the ground's displacement). Inside the geophone, differential motion between a spring-suspended coil and a fixed magnet generates the voltage that is proportional to the ground motion. This electrical signal is then digitized and recorded for later processing. Using data from an array of these sensors, geophysicists process the data to enhance and identify subsurface features that may contain oil and gas.

Basic to exploration seismology is the need for improved seismic resolution of deeper

Figure 1-A geophone, or seismic velocity transducer, generates a voltage that is proportional to the rate at which the ground displacement changes with time.
layers that reflect and refract seismic waves. Signals in the seismic bandwidth range of \(1-60 \mathrm{~Hz}\), and a major goal is to increase the seismic bandwidth to a few hundred hertz. To improve seismic resolution, you must begin with a better understanding of the sensing device used to record seismic waves.

For the research of my Master of Science thesis at Texas A\&M University, my advisors and I developed the theory and a prototype system for calibrating geophones in situ. Using parameters derived from the calibration process, I can model the broadband amplitude and phase response for a planted geophone when it acts as a seismic wave sensor. I present here a brief description of the geophone/ earth-coupling phenomenon and how I used the précis analog-to-digital data converter card (see the article describing précis starting on page 28 of this issue) to measure a geophone's broadband amplitude and phase response.

\section*{GEOPHONE/EARTH-COUPLING PHENOMENON}

Early seismic explorers noted that at high frequencies ( 100 Hz and above),

the motion of the geophone did not necessarily follow the ground motion of the earth itself, and they attributed the causes of these departures to coupling effects between the geophone and the earth. Poor coupling results when the geophone's plant spike fails to develop good cohesion between it and the soil in which it is planted (as happens when planted in loose sand). This effect causes a high-frequency resonance, which in turn acts as a lowpass filter limiting seismic resolution at frequencies above the couplingrelated resonant frequency. In firmer soils, where the cohesion between the geophone and the soil are good,
coupling problems are not as apparent (Krohn, 1984).

Several studies (e.g., Washburn and Wiley, 1941; Hoover and O'Brien, 1980; and Krohn, 1984) have demonstrated that the geophone/earthcoupling phenomenon resembles a damped resonant system that can be modeled using a system of two simple harmonic oscillators stacked in series (i.e., a compound harmonic oscillator, see Figure 2). The smaller mass ( \(m\), ) represents the geophone coil coupled to the geophone magnet and case assembly ( \(m\), by a spring \(\left(k_{2}\right)\) and dashpot \(\left(\beta_{2}\right)\). The coupling of the geophone to the earth is described using an additional spring ( \(k\), ) and dashpot \(\left(\beta_{1}\right)\) combination. The mechanical-toelectrical transfer of energy (geophone transduction) is assumed linearly proportional to the velocity difference between the geophone coil and the casemounted magnet.

The amplitude and phase response for the differential motion between the masses, \(m_{1}\) and \(m_{2}\) corresponding to the geophone coil and casemounted magnet, respectively, is dependent on how the mechanical system is driven. Solving the differential equations for the case where the system is driven


Figure 3-Modeled amplitude and phase response of a geophone for the case when it is driven by simple harmonic ground motion for both poor geophone/earth-coupling (solid curves, i.e., low \(\beta_{1}\) ) and good coupling (dashed curves).
 is underdampened (i.e., a low \(\beta_{1}\) value), while the dashed line shows a better-damped condition indicating somewhat better coupling between the geophone and the earth.

A very different response becomes apparent (Figure 4) when a simple harmonic forcing function ( \(\mathrm{F}=F_{0} e^{\text {iet }}\) ) is applied to the modeled geophone's
mass, \(m_{2}\). In this case, we are modeling the application of an electrical impulse to the geophone coil, assuming a bidirectionally linear electromechanical system. The peak amplitude response corresponds to the geophone's own resonant frequency (10 Hz ), while at the coupling response frequency ( 150 Hz ), a notch appears. This notch is caused by the geophone/ earth-coupling effect, where it acts as a mechanical vibration damper. Higher degrees of damping (that is, increased values of \(\beta_{1}\) ) mitigate this mechanical vibration damper effect, making it unapparent.

\section*{CALIBRATION SYSTEM DESIGN}

The geophone calibration system I developed is a prototype, designed primarily for testing my geophone/ earth-coupling theory. I chose to develop the calibration system using an off-the-shelf technological approach by fitting my 80286 MS-DOS personal computer with a digital data acquisition card. In selecting a data acquisition card for this project, I had to overcome
many of the problems common to engineering, the primary being price versus performance. For my research, I needed a data acquisition card with 16 bits dynamic resolution and a least-single-bit resolution of around \(50 \mu \mathrm{~V}\). To determine the geophone's response at high frequencies (a maximum of approximately 500 Hz ], I needed to do data sampling at about 2000-4000 samples per second (Sps).

I ended up selecting the précis data acquisition card because it met several of the design criteria, and it offered several features that eased the development of the calibration system. In addition to that card, the calibration system also included a battery-powered external unit that functions as a high-input-impedance buffer/ amplifier and a calibration pulse amplitude controller. The calibration system is schematically shown in Figure 5.

The précis board solved several calibration system design problems. First, the card acquires data using sigma-delta modulation, which eliminates the need for a sample-andhold amplifier and an antialias filter. Data sampling rates are software selectable at 12500, 25000, 50000, and \(100,000 \mathrm{Sps}\), with the cutoff frequency located at \(45.5 \%\) of the chosen sampling rate. Even though my bandwidth of interest for calibrating geophones isl-500 Hz, the cutoff frequency for the précis's slowest data acquisition rate of 12500 Sps is still above 5000 Hz and, therefore, did not affect my measurements.

Signal input to the précis is via a BNC connector and can have a range of -2 to 2 V , and because it has a 16-bit analog-to-digital converter (i.e., the Motorola MC56ADC16S), it has a least-significant-bit resolution (LSB) of \(61 \mu \mathrm{~V}\). Also incorporated into précis's design are several external connections


Figure 4-Poorly coupled geophone amplitude and phase response for the case when a simple harmonic forcing function is applied to the geophone coil. The trough located at 150 Hz is caused by coupling behavior, where the lower mass ( \(\mathrm{m}_{1}\) in Figure 2) acts as a mechanical vibration damper.

TTL output port to provide the pulse function (discussed below) to the geophone under test.

The only drawback in the précis's design is its 2 kW input impedance. Because a geophone has a nominal impedance of 250 \(300 \Omega\), this low-valued input impedance may adversely distort the geophone's transient response by excessively damping the geophone. To increase the input impedance, I placed an Analog Devices AD524 instrumentation op-amp between the geophone and the précis signal input (Figure 6, upper portion). I chose this opamp because it has an input impedance of \(1 \mathrm{G} \Omega\); pinselectable gains of 1,10 , 100,1000 ; and it has a flat response from DC to 1000 Hz -well above the bandwidth of interest for calibrating geophones. During the calibration tests, the transient response
available through a DB- 15 female connector, among them TTL-compatible general-purpose input and output ports. The calibration system uses the
(signal-to-noise ratio) of the geophone tested was sufficiently strong to only need the AD524 as a unity-gain amplifier.
rıgure 5-System schematic of the geophone calibration system developed for this research.


Figure 6-To increase the input impedance, an Analog Devices AD524 instrumentation op-amp is used between the geophone and the précis signal input. The external unit a/so functions as a calibration-pulse ampilitude controller.

In addition to being a high-inputimpedance amplifier, the external unit also functions as a calibration-pulse amplitude controller (Figure 6, lower portion). It limits the geophone's calibration-pulse current to a switch-and-potentiometer maximum of either

5 mA or \(100 \mu \mathrm{~A}\). The two different current supplies were originally intended so the calibration system could be used to perform both impulse and step-pulse calibration testing (discussed below). The calibrationpulse signal is generated using the data
acquisition and control software to cycle the précis's TTL output port on and off.

I accomplished software timing control for the calibration-pulse duration using the PCHRT (V3.0) High-resolution Timer Toolbox by

\title{
PRO = Positively Rampant Optimization
}


\section*{. 80C52 with BASIC52}

\section*{8/32K RAM}

PRO31 prices start as low as \$289 (\$219/100), includes SK RAM, watchdog, 56 bits I/O, S-bit ADC, and LCD interface. And it only costs \$10 more for PRO52!

8/32K ROM

EXPANSION HEADER
- Port 1 processor lines: B-bit TTL
- Six decoded I/O address strobes Eight address lines

4 Park Street . Vernon, CT 06066 . (203) 871-6170 . Fax (203) 872-2204
in Europe: (44) 0285-658122 • in Canada: (514) 336-9426 • in Australia: (3) 467-7194 • Distributor Inquiries Welcome!

Ryle Design Inc. To prevent damaging both the ADC card and the computer during the calibration process, I passed the calibrationpulse signal through a optoisolator (Motorola H11B2) in the external unit. Thus, the calibra-tion-pulse current is drawn from the external unit's battery power supply (a pair of 9-V batteries stepped down to 6 V ) instead of the computer. I added the second H11B2 (labeled \#2 in Figure 6) after the initial testing of the calibration system revealed there was an additional inadvertent path to ground, causing unwanted additional damping of the geophone's transient response.

\section*{CALIBRATION THEORY, PROCEDURE, AND RESULTS}

The calibration system as developed is capable of performing both step-pulseand impulse-type calibrations. Step-pulse calibrations are performed by using the data acquisition and control software to switch the précis's TTL output port on, and then waiting a few seconds for the geophone to stabilize before switching the TTL output port off. After switching off the TTL output port, the software starts recording the geophone's transient response. Step-pulse calibrations were performed in the initial testing of the calibration system, but were not included on the research into geophone/earthcoupling because this technique limits resolution at higher frequencies. A step-pulse has a \(1 / 1 \mathrm{f}\) amplitude decay with increasing frequency, and when passed through a convolution with


Figure 7-Pulse-calibration-record beginning, showing the applied calibration pulse (for a pulse duration of 2 ms ) and the onset of the geophone transient response.

Chapman et al. (1988) demonstrate that impulse calibration provides more power at higher frequencies, yielding an improved signal-to-noise ratio for the geophone's transient response. Ideally, a Dirac delta function [a "spike" of energy that has infinite height and infinitesimal duration) would be used to impulse calibrate the geophone. Physically, it's not possible to generate a pure Dirac delta function, but as Chapman et al.
(1988) show, a reasonable approximation can be made by using a shortduration rectangular function. In making the duration of the rectangle function small, it has a near flat spectral response over the bandwidth of interest, and for all intents and purposes can be looked upon as a "bandwidth-limited" delta function. A short-duration pulse offers more energy at high


Figure 8-Amplitude and phase response for a \(10-\mathrm{Hz}\) geophone planted in loose sand, with a poorly damped coupling-related resonance located at 288 Hz .
frequencies, at the expense of a degraded signal-to-noise ratio.

Conversely a longerduration pulse delivers more energy, increasing the signal-to-noise ratio at the expense of decreasing highfrequency resolution. Impulse calibrations were done using a process similar to that used for a step calibration, except isignificantly shortened the time period the TTL port was left. The data acquisition software, as programmed, allows for four different pulse durations ranging from 0.62 to 2 ms (I controlled pulse duration timing using the PCHRT software that I discussed above). Initial testing revealed that pulse durations of I-2 ms are sufficient for analyzing geophone/ earth-coupling behavior. Calibration
system tests also revealed that a recording period of five times the natural resonance frequency of the geophone under test (e.g., 0.5 s for a \(10-\mathrm{Hz}\) geophone) proved to be ample. Longer recording periods only served to incorporate additional noise.

A major concern about the calibration process is the coordination of the onset of data acquisition with the end of the applied calibration pulse. The data acquisition software starts the calibration procedure by first turning the TTL output port on, and then waiting the specified duration before switching it off. After that, data acquisition commences. Any delay between the two actions would cause an error in the amplitude and phase determination. As it turns out (rather serendipitously), this is not a problem because the optoisolators (two Motorola H11B2s) used in the external unit have a slow response and cause an approximate \(1.2-\mathrm{ms}\) delay. The data acquisition software executes faster and is capable of recording the calibration pulse in addition to the geophone transient response (Figure 7). Prior to determining (i.e., Fourier transforming) the geophone's amplitude and phase response to the calibration pulse, the pulse is deleted from the recorded data. The ringing in the calibration pulse is possibly by either Gibb's phenomenon caused by the digitization of the pulse by the précis or some artifact caused by the optoisolators.
i calibrated a variety of geophones with different natural resonance frequencies under similar conditions to examine their geophone/earthcoupling behavior. The geophones I used for testing the calibration theory and system consisted of ones with natural resonance frequencies of 10 , 40 , and 100 Hz .

Planting the geophones in a large bucket of loose sand and performing the calibration tests as described above revealed a coupling-related resonance in the vicinity of 285 Hz for the three geophones tested. Figure 8 shows the amplitude and phase response for the \(10-\mathrm{Hz}\) geophone with its coupling resonance located at 288 Hz . Each geophone has a slightly different coupling resonance frequency because
of small differences in mass between the geophones.
ialso performed calibration tests on the same geophones when they were planted in soils that were significantly more consolidated. Because of the greater cohesion between the geophone plant spike and the soil, the dampening was greater and the coupling phenomenon was not as pronounced and, thus, not observable.

\section*{CONCLUSION}
ideveloped the calibration theory and system presented here to gain a better understanding of a geophone's in situ amplitude and phase behavior and the deleterious effects caused by geophone/ earth-coupling. Based on a better understanding of these effects, exploration geophysicists can predict and adjust their seismic surveying practices to mitigate these effects. The calibration system design is probably not optimal, but it did succeed in demonstrating and proving the theory developed for describing the phenomenon.

The précis data acquisition card performed admirably throughout the project, recording accurate and precise measurements of each geophone's transient response to a calibration pulse. The only drawback in using the précis is that its slowest data sampling rate is \(12,500 \mathrm{Sps}\), which yields a cutoff frequency well above 5000 Hz , and well above any frequency relevant to seismic exploration (approximately \(\mathrm{l}-500 \mathrm{~Hz}\) ).

The external amplifier/ pulse controller could have been designed for better performance, but given the time and monetary constraints present at the time, it was sufficient. For the most part, this project is a success because it did establish and demonstrate the theory on geophone/earthcoupling (in addition to contributing to the completion of my Master of Science research).

Special thanks to my thesis research advisors, Drs. Steven H. Harder and Anthony F.Gangi, and to \(J\). Conrad Hubert of Deus Ex Machina Engineering Inc.

Christopher \(J\). Peoples is presently a part-time community college physics instructor in Southern California. In addition to his obvious interests in geophysical data acquisition and processing, he is also interested in industrial process control and automation. He may be reached at geofizman@aol.com.

\section*{REFERENCES}

Chapman, M.C.; Snoke,J.A.; and Bollinger, G.A., 1988, "A procedure for calibrating short period telemetered seismograph systems": Bull. Seis. Soc. Am., 78, no. 6, 20772088.

Hoover, G.M. and O'Brien, J.T., 1980, "The influence of the planted geophone on seismic land data": Geophysics, 45, no. 8, 1239-1253.
Krohn, C.E., 1984, "Geophone ground coupling": Geophysics, 49, no. 6, 722-731.
Menke, W.; Shengold, L.; Hongshen, G.; Ge, H.; and Lerner-Lam, A., 1991, "Performance of the short period geophones of the IRIS/ PASSCAL array": Bull. Seis. Soc. Am., 81, no. 1, 232-242.
Washburn, H. and Wiley, H., 1940, "The effect of the placement of a seismometer on its response characteristics": Geophysics, 6, 116-13 1.

\section*{SOURCES}

Timer Toolbox
Ryle Design, Inc.
P.O. Box 22

Mt. Pleasant, MI 48804
(517) 773-0587

Deus Ex Machina Engineering, Inc. 1390 Carling Dr., Ste. 108
St. Paul, MN 55108
(612) 6458088

Fax: (612) 645-0184

\section*{IRS}

407 Very Useful
408 Moderately Useful
409 Not Useful

\section*{FEATURE ARTICLE}

\author{
Barry Rein, Esq.
}

\section*{Copyrights and Patents for Protecting Software Recent Progress in Finding the Proper Balance}


0since both were made applicable to computer software at the beginning of the last decade. In 1992, Computer Associates v. Altai in the Second Circuit and Brown Bag Software v. Symantec Corp. in the Ninth markedly reduced the sco copyright, specifically rejecting the Jaslowtoroad brush of as "too facile." Significantly, Apple v. Microsoft and Hewlett Packard (also with the Ninth Circuit) adopted a similar approach to user interfaces. However, with Lotus v. Borland in the First Circuit, which seemed to be following a similar approach, we were taken a step backward. In this case, Judge Keeton held that Lotus's macro language is protectable by copyright, and that Borland's use of it was an infringement. Keeton's judgment is now awaiting decision by the First Circuit where it was heard by a panel including soon-to-be Justice Breyer.

Although the court's position on infringement has developed, it is still not without surprises. Within the last
few years, Sega Enterprises Ltd. v. Accolade Inc. in the Ninth Circuit and Atari Games Corp. v. Nintendo of America Inc. in the Federal Circuit, interpreting Ninth Circuit Iaw, have established a right under copyright law to decompile or reverse engineer software to extract ideas and related elements which cannot be protected to produce non-infringing products. In 1992, Arrhythmia v. Corazonix lent greater rationality to the law on when software constitutes statutory subject matter for a patent. However, the law is not free of mysterious anomalies as this year's In re Schrader indicates.

The net result is that we are much closer to relegating the patent and copyright regimes to their proper constitutional roles, undoing the damage done principally by the inability of the patent system to embrace the new science of software in a timely fashion. We have come a long way, finally closing in on where we should have been at the outset.

\section*{COPYRIGHT PROTECTION} FOR SOFTWARE

The current analytical framework for evaluating the scope of protection for software by the copyright law is best set forth in Computer Associates v. Altai [1], decided June 22, 1992 and amended December 17, 1992. Computer Associates developed specific applications which could run on a pnermberi of differestooferatiagr sestems through the use of a so-called "adapter module." Rather than rewriting the particular application to make it compatible with each different operating system, Computer Associates divided the application into two parts, one constituting the application proper and the other, the adapter module, constituting the coupling between the application and each particular operating system. Thus, to rewrite an application for a different operating system, it was only necessary to rewrite its adapter module.

Altai hired Arney, a Computer Associates programmer, who suggested that Altai also use adapter modules. What he did not tell Altai, according to the facts established at trial, was that he had brought with him purloined
adapter code from Computer Associates and was using it to write the Altai programs. Altai found this out when Computer Associates brought suit, and immediately stopped selling the accused programs. However, Altai then rewrote the programs from unprotected functional specifications using programmers who were not privy to Computer Associates code. Altai admitted that its first version of the programs was an infringement of Computer Associates' copyright, but denied that its second "clean room" version infringed.

The case establishes a model for understanding the various levels within software and software development which lends itself to copyright analysis. I will summarize the bulk of the court's model which, by the way, the court said was not applicable to categorically distinct works such as screen displays:

The Copyright Act defines a computer program as "a set of statements or instructions to be used directly or indirectly in a computer in order to bring about a certain result" (17 U.S.C. § 101). In writing these directions, the courts presume that a programmer works "from the general to the specific."

The model begins by identifying a program's ultimate function or purpose. The model then maintains that a programmer "decomposes" or breaks the purpose down into "simpler constituent problems or 'subtasks' . which are also known as subroutines or modules." Sometimes, depending on the complexity of its task, a subroutine may be broken down further into nested subroutines.

Having sufficiently decomposed the program's ultimate function into its component elements, within this model, a programmer then arranges the subroutines or modules into organizational or flow charts which map the interactions between modules which achieve the program's end goal.

To accomplish these intraprogram interactions, a programmer must carefully design each module's parameter list. A ccording to expert Dr.

Randall Davis, appointed and fully credited by the district court, a parameter list is "the information sent to and received from a subroutine." The parameter list also includes the form in which information is passed between modules and the information's actual content. The courts recognize that interacting modules must share similar parameter lists so that they are capable of exchanging information.

According to the model, "The functions of the modules in a program together with each module's relation-
> \(\square\) We are much closer to relegating the patent and copyright regimes to their proper cons titutional roles, undoing the damage done principally by the inability of the patent system to embrace the new science of software in a timely fashion.
tial similarity when a dispute involves the nonliteral elements of computer programs. The first step is abstraction, an analytical method first enunciated by Learned Hand in Nichols v. Universal Pictures Co. in 1930. Hand maintained that abstraction involves superposing a number of patterns or levels of abstraction with increasing generality on a particular work (more and more specifics are left out with greater abstraction). The court must then determine the level at and above which protectable expression ends (otherwise authors could monopolize ideas). Clearly, at the highest level, everything constitutes idea and, at the lowest, there is a great deal of individual expression. It is usually at the same intermediate level that a court will find the transition from the unprotected to the protected. The level is one that must be determined in each case based largely on the public policy purposes of the copyright law rooted in Article 1 Section 8 of the Constitution.

The Whelan case also used a rudimentary abstractions test to separate idea from expression, but did so with a butcher's knife, rather than a surgeon's scalpel. In Whelan, upheld by the Third Circuit in 1986, a software developer wrote a ships to other modules constitute the 'structure' of the program." Additionally, the term "structure" may include the category of modules referred to as "macros" which the courts define as "a single instruction that initiates a sequence of operations or module interactions within the program." They note that users frequently accompany a macro with an instruction from the parameter list to refine the instruction. For example, a macro would give a current total of accounts receivable, but the parameter list would limit the search to the specific range of \(8 / 91\) to \(7 / 92\) and customer number.

With this structural concept in mind, the court adopted a three-step procedure, which it refers to as the Abstraction-Filtration-Comparison test, a test used to determine substan-
program for operating a dental laboratory and, subsequently, left to write a different program in another programming language which the owner of the first program asserted to be an infringement of his copyright. The court agreed that it was. This case has long been criticized for concluding that the only idea in this case involved the operation of a computer to support a dental laboratory and that all else (i.e. everything at lower levels of abstraction) constituted protected expression. In contrast, Altai's characterization of programs recognizes that software usually consists of many ideas and expressions related to its modular and functional nature and which, therefore, should not be protected.

To execute the abstraction step, a court must dissect the structure of the accused program and isolate each level of abstraction, beginning at the level of
code and ending with the program's ultimate function. The court recommended doing so by viewing a program as a hierarchy of functional modules. At each higher level of abstraction, the instructions in lower level routines are replaced conceptually by the modules' functions until the ultimate function of the program is finally reached. At low levels of abstraction, a program's structure is usually very complex; at the pinnade, it is trivial.

In filtration, the second step in the Altai analysis, the program components are evaluated at each level of abstraction to determine whether, at that level, the specific program component constitutes an idea or an expression. Importantly, not only ideas are to be filtered out, but also unprotectable expression, including elements "dictated by considerations of efficiency, so as to be necessarily incidental to idea," "required by factors external to the program itself," and "taken from the public domain" (982 F. 2d at 707).

Filtration should remove
uncopyrightable subject matter so that what remains is a core of protectable expression. Focusing on the individual elements of the program at each level, the process is sometimes referred to as "analytic dissection." The following discussion addresses what kinds of elements are to be eliminated (i.e., are not protectable expression).
- those dictated by efficiency:

An clement is deemed dictated by efficiency and hence nonprotectable when there is essentially only one way to accomplish the task within a computer framework. According to the merger doctrine, "a court must inquire whether the use of this particular set of modules is necessary to efficiently implement that part of the program's process. If the answer is 'yes,' then the expression represented by the programmers' choice of a specific module or group of modules has merged with their underlying idea and is unprotected." Significantly, Altai used this argument in their defense recognizing that, although many ways may

\section*{Datrax Remote Voice Reporter}

Computer-Remote Terminal-Controller
\begin{tabular}{|c|c|c|}
\hline Datrax Voice Reporter: & Mini Datrax 52 Computer: & Datrax 52 Computer: \\
\hline - Auto Dial and Answer & -80C52 CPU & -Similar to Mini Datraxw \\
\hline - Accessfrom any Touch Tone Telephone & -High Speed Floating Point BASIC & - vuicc Reporter Software \\
\hline - ReportHigh/Low and Event Alams & -32k Nonvolatile RAM & - Watch Dog Timer \\
\hline - Analog ValuesReported InEnginering Units & -16K EPROM Programmer & -Eight 420 mA Andog Inpus \\
\hline - Touch Tone Password and Control & -Two Rs-232 Serial Portl & - Four Discrete liputs \\
\hline - Unlininied Vocabuay by Uscr & - 5 vac Power & -Four Relay Drivers \\
\hline - No CustomRecording & - 24 TTLL p pulCurpu & -1224 Vdc Power \\
\hline - Microprccessor Interface & \$99.00 & \$299.00 \\
\hline \$399.00 & & \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
Datrax 52 Options: \\
- Bell Compaible 202 Modern \\
- ClockCalendar \\
- From One to Four Counters \\
-4-20 mA Oupput
\end{tabular}} \\
\hline \multicolumn{3}{|l|}{} \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
Please call or FAX for \\
a complete description.
\end{tabular}} \\
\hline \begin{tabular}{l}
Data Track \\
2829 Lewis Lane • O \\
Phone (502) 926-0873
\end{tabular} & \begin{tabular}{l}
ystems \\
soro, KY 42301 \\
X (502) \(683-9873\)
\end{tabular} & \\
\hline
\end{tabular}
theoretically exist to accomplish a particular task, only a few of them do so in a realistically efficient manner, and this lack of alternatives may warrant application of the merger doctrine.

The utilitarian nature of programs justifies such an application of the merger doctrine under traditional copyright precepts. As the court perceptively put it, a creative composition such as a narration of Humpty Dumpty's demise does not serve the same ends as a recipe for scrambled eggs.
- those dictated by external factors:

The classical copyright doctrine, scènes à faire, dictates that similarities due to hardware constraints or constraints imposed by having to interact with other programs would be deemed dictated by external factors and hence not protectable. An example of its application in the software field is found in the 1987 case of Plains Cotton Co-op v. Goodpasture Computer Services Inc. in which the similarities between the accused and the defendant were concluded to be dictated by the externalities of the cotton market and the Cotton Exchange ( 807 F. 2 d 1256).
- those taken from the public domain:

Elements in the public domain are deemed unprotectable and, in and of themselves, cannot be made protectable by incorporation in a new program. However, the scope of this exclusion from protectable expression can be somewhat murky. For example, the Altai court said that public domain extended to any element that is "if not standard then commonplace in the computer software industry."

Importantly, elements which are unprotectable because of their public domain status may become protectable as part of a constellation of elements, where the totality is allegedly to be protected and to have been copied. In a compilation, however, the test for infringement of works as a whole is not the usual "substantial similarity" test; instead, "virtual identity" must be found. The unprotectable elements (or a mix of protectable and unprotect-
able elements) become a compilation, and may be protected as such. The courts sometimes speak of this standard as requiring a finding of "bodily appropriation of expression." According to an order issued April 14, 1993 by Judge Walker, this standard was applicable for determining whether user interfaces of Microsoft and Hewlett Packard infringe on those of Apple. Whether this standard has any applicability to software problems other than screen displays remains to be determined.

Comparison is the third and final step in determining substantial similarity of the accused program with the core of protectable expression. In its comparison, a court must assess not only whether defendant copied any protected expression, but also the importance of the copied portion relative to the plaintiff's overall program. In the Altai case, the core of protectable expression became known as the "Golden Nugget."

Altai is notable for its criticism of Whelan, particularly its much broader concept of protectable expression, and distanced itself from Whelan. Whelan's breadth was partially dictated by the policy consideration of providing an incentive for programmers to engage in the hard work of writing programs. However, as the Altai court noted, the death knell of the "sweat of the brow" doctrine was sounded by the Supreme Court in Feist [2]. The undercutting of that policy as a basis for copyright protection by Feist warranted narrowing Whelan's scope and application to the Altai case.

As well, the trial court appointed its own expert to guide it through the intricacies of computer science who, in this case, happened to be Professor Randall Davis of MIT. As expert, Davis promoted a narrow scope of copyright protection for software, a direct contrast to the Whelan conclu-
sions.

Professor Davis also clearly explained programs in a way that illuminated the error of Whelan's synonymous use of catchwords such as "structure," "sequence," and "organiation," which it deemed protectable.

Davis explained all programs have two dimensions-static and dynamic. Written code represents the static dimension, and machine behavior, as directed by the code, represents the dynamic dimension. The court recognized, albeit not in the clearest fashion, that this dynamic behavior constitutes process or method and, hence, such properties in this dimension are probably better suited to protection under the patent laws than under the Copyright Act.

Interestingly, this argument was already made by the defendant in an early phase of Lotus Development Corporation v. Borland International Inc. [3]. Citing Section 102(b) of the Copyright Act which provides that "[i]n no case does copyright protection ... extend to any idea, procedure, process, system, method of operation, concept, principle, or discovery, regardless of the form in which it is described, explained, illustrated, or embodied in such work," the defendant sought to have the court declare that any element of a copyrighted program that was shown to be a process or method should automatically be deemed beyond the scope of copyright protection. Judge Keeton, denying summary judgment in March 1992, refused to make such a rule.

One must question how the Whelan court could possibly have cast such a broad net in view of this explicit limitation on the scope of copyright. The way Judge Keeton incorporated \(\S 102(\mathrm{~b})\) into his analysis was to place all of the items excluded from protection together with ideas in the filtration step. Although it would seem under Judge Keeton's analysis that, to the extent something constitutes a method, it would be excluded from copyright protection, he expressly declined to go this far on the basis that Congressional intent did not warrant it and that a program's right to be patented did not preclude it from also being protectable under the copyright law. Such an extreme position was not, of course, advanced by Borland. Judge Keeton's reluctance to give Section 102(b) its just due squares with his expansive view of
copyright in this area.

Perhaps the clearest expression as to the intersection of the copyright and patent laws in this respect is set forth in the September 1992 decision of the Court of Appeals for the Federal Circuit in Atari v. Nintendo [4]. The CAFC, whose jurisdiction is limited to cases involving patent issues, decided this copyright appeal because the case involved patent issues as well, implicating its jurisdiction, but it decided the copyright issues under Ninth Circuit law. Judge Rader reasoned that while the nonliteral aspects of software were protectable under the copyright law, Section 102(b) precluded extending this protection to ideas, procedures, processes, systems, methods of operation, and so forth. Section \(102(\mathrm{~b})\), he said, "is intended, among other things, to make clear that the expression adopted by the programmer is the copyrightable element in a computer program, and that the actual processes or methods embodied in the program are not within the scope of the copyright law." Fitting Section 102(b) into the abstractions test, and recognizing that the patent laws "provide protection for the process or method performed by a computer in accordance with a program," he concluded, "Patent and copyright laws protect different aspects of a computer program. [The patent law] protects the process or method performed by a computer program; [the copyright law] protects the expression of that process or method. While [the patent law] protects any novel, nonobvious and useful process, [the copyright law] can protect a multitude of expressions that implement that process. If the patentable process is embodied inextricably in the line-by-line instructions of the computer program, however, then the process merges with the expression and precludes copyright protection."

Just where these decisions leave the state of the law is not entirely clear. Neither Altai nor Lotus engages in an analysis based squarely on the dynamic/static dichotomy advanced by Professor Davis, and the facts are not set forth in the opinions in sufficient detail the opinions in
that the courts meant to do so. Certainly, it is true that one can write very different looking programs, in terms of their static dimension, which will result in essentially identical machine function in the dynamic dimension. If such a case were squarely presented for decision, it would be difficult to predict whether a court would hold arguably nonessential components of the program's behavior subject to protection. Judge Keeton has clearly evidenced more of a tendency to hold them protectable than the courts of the Second or Ninth Circuits.

\section*{PREEMPTION}

According to Section 301 of the Federal 1976 Copyright Act, any state or common-law right that is equivalent to those spelled out in Section 106 of the Act is preempted. What is or is not an equivalent right has been the subject of much litigation. If the facts established about copyright infringement are the same facts that establish the state or common-law right, the latter will be preempted. However, if there are additional elements beyond the mere reproduction of a copyrighted work, the state or common-law claim will usually stand. Thus, a claim involving breach of a confidential relationship or a fiduciary duty or misappropriation of trade secrets would usually not be preempted at the Federal level. On the other hand, "other elements," such as awareness or intent, do not alter the nature of the alleged tort, and therefore are subject to preemption.

One way of helping to ensure that a claim for misappropriation of trade secrets is not preempted is to allege and prove it in terms of noncopyrightable elements. In particular, processes, methods, ideas, and systems are not within the scope of copyright by virtue of Section 102(b). Thus, if you allege and prove that those components are the things which have been misappropriated, you should be able to avoid preemption.

In its original decision in Computer Associates, which was handed down in June 1992, the Second Circuit held Computer Associates' claim for
misappropriation of claim secrets to have been preempted. In December 1992, on petition for rehearing of that part of the case, the court reversed itself, holding that the trade secrets claim had not been preempted. Computer Associates did not establish a legally sufficient difference between the copyright and trade secret claims. The focus on the code stolen by the former employee, rather than on the unique nature of the adapter module, seems to have been a good bit of the problem. Thus, if Computer Associates could establish that Altai's second version of its product, written in a "clean room," employed misappropriated trade secrets, Computer Associates may be entitled to damages far beyond those it was awarded, a defeat that would be particularly important given the increasingly narrow view of copyright protection that has evolved.

Another particularly interesting example of a preemption case, also involving Computer Associates, was decided by the Eighth Circuit Court of Appeals last year [5]. There, National Car Rental leased accounting software from Computer Associates, and the lease limited use of the software to National's own data. When National used the software to process the data of other companies, Computer Associates claimed that this processing was in violation of the lease and constituted a breach of contract and an infringement of the copyright in its software.

After a lengthy analysis, the court found that the limitation on the use of the software contained in the lease was an "extra element," beyond the elements necessary to establish copyright infringement, and therefore the breach of contract claim was not preempted by Federal law. However, the copyright law expressly prohibits copying a program. To process data that was not their own, National copied the software into memory. Had Computer Associates challenged National for copying, rather than "using", its software in the alleged breach of contract, the court should have found that the contract claim was preempted.

\section*{THE PERMISSIBLE SCOPE OF REVERSE ENGINEERING}

One area of significant debate in copyright law has been the extent to which one can legally reverse engineer a competitor's program by decompilation to ascertain features necessary to understand how to engineer and design one's own competitive, noninfringing product and not to plagiarize the competitor's work. The argument for reverse engineering claims that, because competition is in the public's best interest, anyone should be free to decompile copyrighted code to understand its ideas, methods of operation, interaction with the operating system, other programs and the hardware, and any other aspects not protectable by copyright. The counter argument, usually presented by those favoring a broad scope of copyright protection, maintains that there should be no special privilege for copying software, and that the end result of such decompilation, albeit not an infringement, should be deemed an infringement because its creation stemmed from the intermediate infringing step.

In 1992, Atari v. Nintendo, decided in September by the Federal Circuit applying Ninth Circuit law, and Sega v. Accolade, decided in October by the Ninth Circuit [6] came down clearly on the side of establishing a limited right of decompilation. In Atari v. Nintendo, the court affirmed an injunction against selling arguably noninfringing works derived by decompilation. However, it would not have sustained the injunction except that Atari, the copier, had "unclean hands" because it obtained the copyrighted Nintendo code from the Copyright Office by falsely alleging the existence of a lawsuit when, in fact, there was none at the time.

Both cases involved decompilation to get at the "lock and key" mechanism which enabled only the manufacturer's games or games licensed by the manufacturer to play on the manufacturer's hardware. Both cases established that such "lock and key" schemes were functional and copyable provided the copier did not appropriate code beyond what was necessary to design programs that could unlock the
software and play it on the appropriate hardware. However, the scope of the decompilation right was limited to situations in which decompilation is the sole means of gaining access to the unprotected aspects of the program and to which the copier has a legitimate interest in doing so (i.e., one that will lead to a lawful competitive use and not to an infringement).

In Sega v. Accolade four arguments were advanced about why intermediate copying through decompilation should not be deemed an infringement. The first argument sought a rule that intermediate copying should not be proscribed under Section 106 unless the final commercial product was also an infringement. The second maintained that decompilation should be deemed lawful under Section 102(b) since that section exempts ideas and functional concepts from copyright protection. The third argued that decompilation was authorized by Section 117, which permits the lawful owner of a program to copy and use it in a derivative work in which doing so is essential to the lawful functioning of the program. Although these three arguments were all rejected, the court nonetheless determined that there was no infringement of the fair use provision embodied in Section 107 of the Act.

Broadly, Section 107 lists four factors to be considered in determining whether an act that otherwise would infringe is exempt as a fair use. The factors, which are not exclusive, include:
- the purpose and character of the use (a commercial versus nonprivate, educational use)
- the nature of the copyrighted work
- the amount and substantiality of the portion used in relation to the copyrighted work as a whole
- the effect of the use on the potential market or value of the copyrighted work.

Analyzing these factors in light of the public policy underlying the Copyright Act, the court found that what Atari did was a fair use. The court recognized that Atari's reverse

\section*{PIC16C5x Real-time Emulator}

Introducing RICE16-5x and RICE5x-Junior, real-time in-circuit
emulators for the PIC16C5x family microcontrollers: affordable, feature-filled development systems from
*Suggested Retail for U.S. only

\section*{RICE16 Features:}

Real-time Emulation to 20 MHz
- PC-Hosted via Parallel Port
- Support all oscillator types
- 8K Program Memory
- 8 K by 24 -bit real-time Trace Buffer
- Source Level Debugging
- Unlimited Breakpoints
- External Trigger Break with either "AND/OR" with Breakpoints
- Trigger Outputs on any Address Range
- 12 External Logic Probes

- User-Selectable Internal Clock from 40 frequencies or External Clock
- Single Step, Multiple Step, To Cursor, Step over Call, Return to Caller, etc.
- Support 16C71,16C84 and 16C64 with Optional Probe Cards
- Easy-to-use Windowed Software
- Comes Complete with TASM16 Macro Assembler, Emulation Software, Power Adapter, Parallel Adapter Cable and User's Guide
- On-line Assembler for patching - 30-day Money Back Guarantee instruction

RICE5x-Junior supports PIC16C5x family emulation up to 20 MHz . It offers the same real-time features of RICE16 without the real-time trace capture.

\section*{PIC Gang Programmers}

Advanced Transdata Corp. also offers PRODUCTION QUALITY gang programmers for the different PIC microcontrollers.
- Stand-alone COPY mode from a master device ■ PC-hosted mode for single unit programming : High throughput: Checksum verification on master device Code protection . Verify at 4.5 V and 5.5 V . Each program cycle includes blank check, program and verify eight devices
- Prices start at \(\$ 399\)


Call (214) 980-2960 today for our new catalog.
ForRICE16.ZIP and other product demos, call our BBS at (214) 980-0067.

Advanced Transdata Corporation
Tel (214) 980-2960
14330 Midway Road, Suite 104, Dallas, Texas 75244 Fax (214) 980-2937
engineering promoted public policy interest through competition and the dissemination of other creative works and, citing Feist, they pointed out that the copied work contained unprotected ideas not protected from decompilation.

In addition, the court invoked the long-established principle that not all copyrighted works are entitled to the same degree of protection. The more functional a work is, the less protection it is awarded. Since the court determined that computer programs are "in essence utilitarian articles ... that accomplish tasks," less protection was warranted.

Finally, although the ideas in most copyrighted works (including many computer programs in which the user interface and the program's operation are apparent without delving into the code) are visible to the naked eye, the court found that decompilation was the only method available to get at the ideas and other unprotected elements of the program.

The scope of this reverse engineering exception under the fair use doctrine remains to be determined.

\section*{THE USE OF TRADEMARKS TO PROTECT SOFTWARE}

Some authorities have long counseled that, by embedding a trademark in copyrighted code, one can in effect force copiers to "use" the trademark so that they explicitly become infringers. (I am not referring to the situation in which a trademark is buried in code by the copyright owner, so that finding the trademark in the infringing work establishes copying.) In the Sega case, Sega tied the particular code sequence that unlocked the hardware and allowed the program to play, with the code sequence which displayed Sega's trademark on the screen. This measure was taken by Sega specifically to assure that plagiarizers in countries where it is difficult to establish copyright infringement would unwittingly become trademark infringers as well.

The posture of the case was wholly different from the usual
trademark situation in which one party alleges infringement and the other denies it. Here, both parties acknowledged trademark infringement and each side claimed damage from it while, at the same time, each accused the other of responsibility for the situation. The court held that, by making trademark involvement a condition of legitimate copying, Sega was responsible and hence Accolade was not an infringer.

\section*{PATENTS}

The Federal Circuit's March 1992 decision in Arrhythmia v. Corazonix [7] introduced the most significant and rational opinion about the applicability of patent laws to software that we
mathematical algorithm involved or was akin to a "law of nature," "natural phenomenon," or "formula," all of which were not patentable subject matter. Its definition of a mathematical algorithm as "a procedure for solving a given type of mathematical problem" offered little enlightenment since many processes in science and engineering are subject to mathematical description. The breadth of Benson was so startling, even at the time, that it caused Professor Chisum, author of a leading treatise on patent law, to write, "A recent Supreme Court decision eliminated patent protection for computer software." Similarly, Judge Rich, an author of the 1952 Patent Act, remarked in 1973, "The Supreme Court in Benson appears to have held that claims drafted in such terms are not patentable-for what reason remains a mystery."

In the 1979 Parker v. Flook, the Supreme Court plunged into its next software problem. In Flook, the process that the court held nonstatutory employed a mathematical formula calculating alarm limits for a catalytic conversion process. In the process, limits were reset so that the alarm would go off if the process strayed beyond calculated boundaries. The Supreme Court seized this opportunity to establish a unique patentability analysis for software. In particular, the claim was evaluated in its entirety, but the algorithm was to be treated as part of the prior art.

Finally, in Diamond v. Diehr, decided in 1981, the Supreme Court was confronted with a software development couched in terms that seemed less threatening. The claimed process was one for molding rubber, and the algorithm at issue was one periodically used to compute the temperature throughout the mold and to turn the heating elements off at the appropriate point. The court did not overturn its prior decisions, including Benson, but instead adopted the view that the presence of an algorithm in an otherwise statutory claim did not make the subject matter unpatentable.

During the period from 1978 to 1982, the Court of Customs and Patent

Appeals fashioned what became known as the Freeman-Walter-Abele test for statutory subject matter. If a mathematical algorithm were recited in the claim, either directly or indirectly, it became necessary to determine whether the claim preempted all uses of the algorithm. Only if it did not was the claim statutory under Section 101 , except that if the algorithm were circumscribed merely by limitation to a particular field of use, or in terms of nonessential, postsolution activity (e.g. using an output signal to set alarm limits), that would not rescue it from being nonstatutory.

In the recent Arrhythmia v. Corazonix, it was held that a method of analyzing electrical signals from electrodes monitoring a patient's heart and processing them to detect the presence of a certain low-amplitude, high-frequency signal indicative of a dangerous type of heart arrhythmia called ventricular tachycardia, was statutory subject matter under Section 101.

In giving the opinion of the court, Judge Newman managed to fit the result within the tortured confines of the rule laid down in Gottschalk v. Benson. In contrast, Judge Rader confronted the situation more forthrightly concluding that, in the 1981 case of Diamond v. Diehr, the Supreme Court itself abandoned the Benson rule. He cautioned against reading anything into the plain words of the statute (which is what caused the Court's misunderstanding in Benson) and admonished lower courts to simply follow the statute. Analyzing the problem under the language of the patent statute itself, Judge Rader found the claim to comply with the provisions of Section 101.

Interestingly, in finding the subject matter statutory, the majority had no trouble dealing with the electrical signals involved. They perceived the electrical signals' representation in numerical form, not as "mathematical laws" or abstract ideas, but as representations of tangible physical structure or process steps. Claim 1 of Arrhythmia recited a method for analyzing electrocardiograph signals to determine the presence or absence of a
predetermined level of high-frequency energy in the late QRS signal which involved:
- converting a series of QRS signals to time segments, each segment having a digital value equivalent to the analog value of the signals at that time
- applying a portion of the time segments in reverse-time order to high-pass-filter means
- determining an arithmetic value of the amplitude of the output of the filter
- comparing the value with the predetermined level

Although Corazonix argued that the process defined no more than a mathematical algorithm that calculates a number, the court found each claim limitation to correspond to physical structure or function and hence to be statutory.

While Arrhythmia is a strong positive clarification of the protectability of algorithms, we can expect minor surgeries along the way such as in the recent In re Schrader, decided by the Federal Circuit in April 1994. The invention in Schrader was an algorithm for evaluating bids at an auction by making them comparable even if submitted in a form which was not comparable. The court found that the claim didn't meet the Freeman-Walter-Abele test because there was no physical transformation of data by the algorithm. It is not altogether clear whether the court objected to the form of the claim under consideration or, more fundamentally, to protecting this kind of algorithm.

\section*{CONCLUSION}

Historically, patents have protected technology while copyright has protected literary works. When protection for computer programs was demanded in the 1950s and 1960s, the patent system failed to respond. The 1976 Copyright Act became the primary legal vehicle for protecting programs, clearly a technology, rather than patent law. That turnabout has now largely been undone as the patent law has appropriately shouldered its
burden of protecting software technology, and the role of copyright has commensurately narrowed.

We are left with the lesson that the fundamental time scale of our legal systems is much slower than the pace of technological change.

Barry D. Rein is a specialist in patent and copyright for high-tech companies at the intellectual property law firm of Pennie e) Edmonds where he is a senior partner. Barry holds an electrical engineering degree from MIT and a law degree from Georgetown University Law School. He may be reached at (212) 790-6546.

\section*{REFERENCES}
[1] Computer Associates International, Inc. v. Altai, Inc., 982 F.2d 693.
[2] Feist Publications, Inc. v. Rural Telephone Service Co., U.S., 111 S . Ct. 1282 (1991).
[3] 788 Federal Supplement 78 (D. Mass. 1992).
[4] Atari Games Corp. et al. v. Nintendo of America Inc. et al., 1992 U.S. Appeals Lexis 21817.
[5] National Car Rental System, Inc. v. Computer Associates International, Inc. 1993 WL 98043 (Eighth Circuit (Minn.)).
[6] Sega Enterprises Ltd. v. Accolade, Inc., 977 F.2d 1510 (Ninth Circuit 1992).
[7] Arrhythmia Research Technology, Inc. v. Corazonix Corp., 958 F.2d 1053 (Federal Circuit 1992).

\section*{IRS}

410 Very Useful
411 Moderately Useful
412 Not Useful

\title{
DEPARTMENTS
}

Firmware Furnace

\title{
FIRMWARE FURNACE
}

\author{
Ed Nisley
}

From the Bench

Silicon Update

\section*{Journey to the Protected Land: Segments All the Way Down}

Embedded Techniques


\section*{The \\ protected land where}
80x86-type processors
try to be like the big
boys is fraught with
peril, so you must be
careful. Travel with Ed
as he tries to make the
journey smoother for
those who follow.
 back of a mighty turtle. Upon learning this, one thoughtful adept asked his tutor, "What does the turtle stand upon?" The master replied, "The turtle stands upon the back of another turtle, even more mighty."

The adept paused, thought this over, and asked, "Well, then, what does that turtle stand upon? The master quickly replied, "Yet another turtle."
"And that turtle?"
"Listen, lad, it's turtles all the way down."

Last month we pushed the CPU into 16 -bit protected mode through the BIOS knothole designed for that task. This month we'll JMP into 32-bit mode on our own and explore some of the new territory. In particular, we need to know about various types of segments.

Contrary to popular opinion, the 80386's segmented architecture doesn't mystically vanish when it enters 32 -bit mode. You need new code segments, data segments, stack segments, table segments, and seg-
ment segments on both sides of the border.

Yes, folks, it's segments all the way down....

\section*{RIGHT...WHAT'S A SEGMENT?}

To judge from popular sentiment, Intel invented segments specifically for the bedevilment of PC programmers. The truth, as always, is more complex and we must discuss what a segment is and what it can do before the 80386 architecture makes any sense.

Long before PCs ruled the land, the notion of a segment was simple and had nothing at all to do with hardware. Segments provided a convenient way to partition the contents of a program: instructions would be in one segment, initialized data in another, constants in another, the stack in yet another. Each source file in a program could place information in any of several different segments; the linker would then collate the sections so all the code segments were contiguous, all the data lined up together, and so forth.

Intel's hardware segments solved an entirely different problem: how to access more than 64 KB of memory with the newfangled 8086 16-bit processor while remaining more-orless compatible with the older 80808 bit CPU. In this context, a segment is a chunk of memory that has no special attributes. If they'd called it something else, the world would surely be better off today.

The 8086 included four 16-bit segment registers: CS for code, DS for data, SS for the stack, and ES for anything else (extra). Each segment register pointed to the start of a 64 KB block of memory that was further addressed by a 16 -bit offset quantity. Using a value within the 64 KB region, starting at the address in any segment register was easy; anything else was hard.

Because the CS, DS, and SS registers were used implicitly by many instructions, their associated segments were known as the code, data, and stack segments. The linker now collated the various source program segments and associated

Listing 1—The layout of segment descriptors involves several nested fields. These \(C\) structures mapping the fields provide bit-by-bit control over the descriptor contents.
a) Segment Attribute Byte. This structure includes the high-order four bits of the Segment Length field so that it's aligned on a byte boundary.
```

struct SEG_ATTR {
WORD SegLimitHigh : 4; // Segment limit high nybble
WORD Available : I; // 4 "available" bit for OS use
WORD Zerobit : 1; // 5 must be zero
WORD DefOpSize : 1; // 6 operation size 0=16-bit 1=32-bit
WORD Granularity : 1; // 7 segment granularity 0=byte l=4K
};

```
b) Segment Access Rights Byte. Memory segments, those with the \(S\) bit \(=1\), use the SEG ACCESS structure. System segments, with \(\mathrm{S}=0\), require the SYS_ACCESS fields.
```

struct SEG_ACCESS / // for Code, Data, and Stack segments
WORD Accessed : 1; // 0 0=unused l=descriptor loaded
WORD ReadWrite : 1; // 1 Code: 0-execute only, l=readable
// Data: 0=read only, 1=writable
WORD Conforming : 1; // 2 Code: 0=nonconforming l=conforming
// Stack: 0=expand up l=exp down
WORD Executable : 1; // 3 0=data/stack 1=code
WORD SegType : 1; // 4 0=system l=code/data/stack
WORD DPL : 2; // 5:6 descriptor privilege level
WORD Present : 1; // 7 0=not in memory, l=present
|;
typedef struct SEG_ACCESS seg_access;
struct SYS_ACCESS I // for System segments
WORD Type : 4; // 0:3 type of segment
WORD SegType : 1; // 4 must be zero for system segment
WORD DPL : 2; // 5:6 descriptor privilege level
WORD Present : 1: // 7 0=not in memory, 1=present
};
typedef struct SYS_ACCESS sys_access;

```
c) Segment Descriptor. The DESC_NORM and DESC_SYS structures handle most of the possible segments. Call, trap, and interrupt gates use slightly different field definitions that l'll cover in next month's column.
struct DESC_NORM \{
    WORD SegLimit; // segment limit, bits 0:15
    WORD SegBaseLow; // segment base, bits 0:15
    BYTE SegBaseMid; // ... bits 16:23
    seg_access Access; // access bits
    seg_attr Attributes; // attribute bits \& limit 16:19
    BYTE SegBaseHigh; // segment base 24:31
! ;
typedef struct DESC_NORM desc_norm;
struct DESC SYS
    WORD SegLimit; // segment limit, bits 0:15
    WORD SegBaseLow; // segment base, bits 0:15
    BYTE SegBaseMid; // ... bits 15:23
    sys_access Access; // access bits
    seg_attr Attributes; // attribute bits \& limit 16:19
    BYTE SegBaseHigh; // segment base 24:31
!;
typedef struct DESC_SYS desc_sys;
them with the CPU's hardware segments.

The catch was that the hardware had no way to verify that the segment registers were actually loaded with the correct values. Hardware segments were simply addresses, so any association with a program segment was just a promise made by the linker. Worse, there was no restriction on the offset values: even if the source program's code segment was only 10 KB long, you could branch to an address 50 KB from the start of the hardware segment in CS and execute whatever you found there, much to the amazement of all concerned.

That is the essence of real-mode programming: you promise the CPU you'll set up the segments correctly and never make a mistake. The CPU promises that it will hide in the bushes when it finds the mistake you didn't expect to make. You get to reboot the system and track down the problem without any help from the CPU.

What you really want is a way to tell the CPU what each code, data, and stack segment contains, then allow it to enforce those properties and report on discrepancies. That's the basis of protected mode: promises with teeth. It's sharks all the way down....

\section*{FLIPPING THE BIT}

As you learned last month, every chunk of memory accessible to the CPU is defined by a descriptor in the Global or Local Descriptor Tables. Figures 1 and 2 in that column described all the descriptor fields; glance back at Issue 48 for a refresher. Listing 1 this month shows the C structures I used to build the descriptors.

The only difference between a 32 bit code segment and a 16 -bit code segment is the D (Default Size) bit in their segment descriptors. When \(\mathrm{D}=1\), the CPU assumes all operands and addresses are 32 bits long, allowing full use of the hardware. \(\mathrm{D}=0\) forces 16 -bit operations for compatibility with real mode and 80286 protected mode. The operand size prefix ( \(0 \times 66\) ) and the address size prefix ( \(0 \times 67\) ) allow you to modify a single instruction in either

Listing 2-A program running in 32-bit mode requires only a 32-bit code segment, but a stack less than 64 K bytes long can be a "16-bit" stack using SP instead of ESP and data segments have no inherent length. This fragment of code from the BuildGDT() function creates three new GDT descriptors with the D bits set just for neatness.
```

++pDesc;
pDesc->Access.SegType = 1;
pDesc->Access.Present = 1;
pDesc->Access.Executable = 1;
pDesc->Access.ReadWrite = 1;
pDesc->Attributes.DefOpSize = 1;
SetDescAddr(pDesc,
MakeLinear(PMCodeBase),
(DWORD)\&PMCodeLength);

```
```

++pDesc;
pDesc->Access.SegType = 1;
pDesc->Access.Present = 1;
pDesc->Access.ReadWrite = 1:
pDesc->Attributes.DefOpsize = 1;
SetDescAddr(pDesc,
MakeLinear(\&PMDataBase),
(DWORD)\&PMDataLength);

```
\(++p D e s c\);
pDesc->Access.SegType \(=1\);
pDesc->Access. Present \(=1\);
pDesc->Access.ReadWrite \(=1\);
pDesc->Attributes.Def0pSize \(=1\);
SetDescaddr(pDesc,
    MakeLinear(\&PMStackBase),
    (DWORD)\&PMStackLength);
type of segment to act as though it were the other size.

Note that you cannot have a 32 bit code segment in real mode because, by definition, segment descriptors aren't used in real mode. It Would Be Nice, but....

The D bit is also used in stack segments, which are just data segments referred to by a selector in the SS register. The CPU uses all 32 bits of ESP when \(\mathrm{D}=1\). When \(\mathrm{D}=0\), it uses only the low-order 16 bits in SP, so if you need more than 64 KB of stack space, the stack descriptor must have \(\mathrm{D}=1\). A code segment with \(\mathrm{D}=1\) can use a stack segment with \(\mathrm{D}=0\) and vice versa, but there are some distressing gotchas.

Data segments that aren't accessed by SS don't have an inherent size because the D bit in the CS descriptor determines the size of the instruction's operands. It is probably a good idea to set the data descriptor's D bit just so you remember what you
were thinking about when you created the segment, but it doesn't really matter.

Contrary to what you might think, the G (Granularity) bit in the code or data descriptor does not affect the 32 -bithood of the segment. Setting \(\mathrm{G}=1\) simply multiplies the Segment Limit field by 4096 to allow segments up to 4 GB in size. For data segments up to 64 KB , every byte can still be reached with a 16 -bit offset in \(D=0\) code segments. Obviously there is little benefit to \(\mathrm{G}=1\) data segments in 16-bit mode, but it does work nonetheless.

To run 32-bit programs, we need at least a 32 -bit code segment. I also created 32 -bit stack and data segments, even though this isn't strictly necessary. Listing 2 shows the lines in BuildGDT () that initialize the three new GDT entries.

The assembler normally produces 16-bit code because that's all you need in real mode. The next step is persuad-
ing it to emit 32 -bit code in our new code segment.

\section*{CODE MODES}

The compatibility barnacles forced a difficult decision on the 80386 CPU designers: creating a CPU that can process either 16- or 32 -bit instructions and operands. The solution was simple: the same instruction opcodes-the identical binary values-will execute in either mode depending on the code segment descriptor's D bit.

But because the default operand size changes from 16 to 32 bits, you cannot simply transplant 16 -bit code into a 32 -bit segment and run it. The CPU will fetch the wrong number of immediate data bytes (for just one example) and quickly fail with, yes, a protection exception. In this case, the CPU may stumble along for a few instructions while doing entirely the wrong thing, but eventually the protection hardware will catch an invalid operation.

The assembler directives in Listing 3 create the 32 -bit code, data, and stack segments corresponding to the descriptors in Listing 2. The USE32 keyword tells the assembler that the default operand and address sizes are now 32 bits. Simple labels and EQU statements provide the starting and ending addresses for the GDT segment descriptors; in effect, we are performing relocation "by hand" on these few values.

The MODEL directive establishes the assembler's memory model and the function-calling protocol. In our case, the SMALL model is appropriate: code and data are in separate segments. The FARSTACK modifier tells the assembler that the stack is not part of the data segment. The C language specifier allows us to use the C calling convention for assembly language functions; although I don't plan to use a C compiler right away, this keeps the option open.

There are two sets of promises in Listings 2 and 3 . Listing 2 promises the CPU that the new segments will have certain properties. Listing 3 promises the assembler that the CPU will treat the segments in a certain way. The

CPU will eventually verify that both promises are kept.

If we were writing an application program for a PM operating system, all this would be handled automatically by the linker and loader. The operating system would analyze the program file, assign the proper descriptors, then load the program into memory and update the descriptor addresses. We get to do this by hand because none of that infrastructure exists down at our level.

Once the 32 -bit segments are defined, using them within the program is simple. Listing 4, which I extracted from the assembler output file, shows the code generated by the source instructions for the first few lines of the initial 32-bit entry routine. Several characteristics of 32 -bit code are worth noting.

You must now use the 32-bit register names: EAX, EDX, and so forth. In 16-bit mode, those registers require an operand length prefix byte, which means you don't use 32-bit registers unless they are essential. The
reverse is true in 32 -bit mode: 16 -bit operands generate the prefix byte shown in line 1987. Single-byte registers, such as AL in line 1978, continue to work as you'd expect.

Immediate data values loaded into 32 -bit registers are four bytes long. This tends to plump up your code with fluffy binary zeros since the highorder bytes of most constants are zero...but that's the price you pay for a wide data path. You can use the MOVSX and MOVZX instructions to sign- or zero-extend a byte value to 32 bits on the fly.

The values loaded into segment registers are now numeric selectors rather than addresses. The constants used in Listing 4 correspond to the GDT I described earlier. Loading an invalid selector, or a selector to an invalid GDT entry, causes a protection exception, so it's a good idea to use manifest constants rather than raw numeric values.

Finally, code and data addresses are 32 bits long. The linker's / 3 command-line option enables support

\section*{Video Frame Grabber}
- \$495 Including Software with "C" Library
- Half Slot Card for Compact Applications
- Real Time Imaging with Display Output
- 8 Bit ( 256 Gray Levels)

\section*{Mentirisw}
- Single \(512 \times 484\) Image or Four \(256 \times 242\) Images
- External Trigger
- Input Look Up Table
- Low Power Option Available
- Elegant Software Interface
- <10 nsec Pixel Jitter Means Accurate Digitization
- EISA (PC) Bus and STD Bus Products Available
- RS-170 and CCIR Video Formats Available
- Binary and TIFF File Formats

> The Cortex I is used in machine vision, industrial control, medical, security and scientific applications around the world.
> ImageNation strives to delight customers with quality products and personal service at a competitive price.

\section*{Call today for volume pricing or to discuss your application.}

> ImageNation corporation
> Providing lmaging Solutions
> RO. Box 276
> Beaverton, OR 97075
> (503) \(641-7408\)
> FAX (503) 643-2458 - (800) 366-9131

\section*{188SBC}

\section*{Use Turbo or MS 'C'} Intel 80C188XL
Two 1 meg Flash/ ROM sockets
Four battery backed, 1 meg RAM
16 channel, 12 or 16 bit A/D 8 channel, 12 bit D/A
2 RS-232/485 serial, 1 parallel 24 bits of opto rack compatible I/O 20 bits of digital I/0 Real-time clock
Interrupt and DMA controller 8 bit, PC/104 expansion ISA bus Power on the quiet, 4 layer board is provided by a switcher with watchdog and power fail interrupt circuitry.
The 188SBC is available with Extended Interface Emulation of I/O - a Xilinx Field Programmable Gate Array and a breadboard area. Define and design nearly any extra interface you need - we'll help! 188SBC prices start at \(\mathbf{\$ 2 9 9}\)
Call right now for a brochure!
552SBC
The 80C552 is an \(\mathbf{8 0 5 1}\) with:
8 ch. 10 bit A/D 2 PWM outputs Cap/cmp registers 16 I/O lines
RS-232 port Watchdog
We've made the 552SBC by adding:
2-RS-232/485 multi-drop ports
24 more I/O Real-time Clock
EEPROM 3-RAM \& 1-ROM
Battery Backup Power Regulation Power Fail Int. Expansion Bus Start with the Development Board - all the peripherals, power supply, manual and a debug monitor for only \(\$ 349\). Download your code and debug it right on this SBC. Then use OEM boards from \(\mathbf{\$ 1 4 9}\).

\section*{True Low-cost In-circuit Emulation}

The DrylCE Plus is a low-cost alternative to conventional ICE products. Load, single step, interrogate, disasm, execute to breakpoint. Only \(\$ 448\) with a pod. For the 8051 family, including Philips and Siemens derivatives. Call for brochure!
8031 SBC as low as \(\$ 49\)
Call for your custom product needs. Quick Response.


HiT ech Equipment Corp. 9400 Activity Road San Diege, cA92126
\([F a x:(619) 530-1458]\) Since 1983
(619) 566-1892
70662.1241 @ compuserve.com

Listing 3-The segment descriptors in Listing 2 refer to these assembly language definitions. You must be sure the assembler and CPU use the same code segment instructions size because executing 16-bit code in 32-bit mode, or vice versa, will cause protection exceptions when the CPU stumbles over incorrect data lengths. The data segment contains a flag value that's displayed during the real mode setup sequence.

MODEL USE32 SMALL,C ; C language calling sequence
;- code segment
SEGMENT _prottext PARA PUBLIC USE32 \(\cdot\) CODE

LABEL
PUBLIC
PMCodeBase PROC
PMCodeBase
ENDS _prottext
;- data segment
SEGMENT _protdata PARA PUBLIC USE32 'DATA'

LABEL
PUBLIC
DD
ENDS
;- stack segment
SEGMENT
LABEL
PUBLIC
DD
LABEL
DD

PMStackLength PUBLIC

ENDS

PMDataBase DWORD
PMDataBase
Obabefaceh ; flag the first location
_protdata
_protstack PARA PUBLIC USE32 'STACK'
PMStackBase DWORD
PMStackBase
1023 DUP (?)
PMStackTop
? ; this is the stack top!
= \$-PMStackBase
PMStackLength
_protstack
for the larger values. In our case, we won't have address offsets above 64 KB for quite a while, but once you decide to use 32 -bit code, there's no turning back!

\section*{‘JMPING' THE BARRIER}

Paradigm designed their Locate utility to handle ordinary real-mode 16-bit code. It will handle our simple 32-bit code because we are taking care of the segment selectors manually. The segment definitions in Listing 3 tell the linker to put the three 32-bit segments in the same classes as the corresponding 16 -bit segments. Locate handles the combined classes as it normally does, so the code and data wind up at the expected spots.

The code in Listing 2 that generates the GDT descriptors uses labels and values computed by the assembler
to find the starting addresses and lengths. While this may seem like a kludge, it neatly sidesteps the need for a specialized tool to handle a trivial task. Things will get a little more complex later on, but this is a good start.

Transferring control from the 16 bit code segment created by the BIOS function into our 32-bit code segment requires a FAR JMP to reload both the segment and offset registers. Realmode code segments are just address bits, so the arbitrary PM selectors simply won't work. The linker complains that it can't resolve the address of the JMP target, which is quite correct because there is no way to tell it that the segment address isn't what it expects.

Listing 5 shows the macro I wrote to synthesize a FAR JMP instruction.


\section*{ADVANTECH.}

750 East Arques Ave., Sunnyvale, CA 94086 Tel:(408) 245-6678 FAX: (408) 245-8268

Listing 4-When USE32 is in effect, the assembler generates 32-bit operands and assumes 32-bit addressing. This section of the assembler output listing shows the code generated af the initial 32-bit entry point Consfanfs loaded info EAX and EDX (the 32-bit counterparts of \(\mathbf{A X}\) and \(D X\) ) require four bytes each, while values going info AL still use a single byte. The opcodes are the same as those in 16-bit mode because the segmenf's \(D\) bit specifies the operand size. When an instruction requires a 16 -bit value, such as the OUT DX,AX in line 1987, an operand size prefix must precede the opcode.
```

1 9 7 0 ~ 0 0 0 0 0 0 0 0 ~ S E G M E N T ~ \& p r o t t e x t ~
1971 PUBLIC PMEntry32
1972 00000000 1973 0UBLI C PMEntry32
1974
1975 ASSUME CS:_prottext
1976
1 9 7 7 0 0 0 0 0 0 0 0 ~ B A ~ 0 0 0 0 0 3 7 8 ~ M D V ~ E D X , ~ S Y N C \& A D D R ~ ; ~ s h o w ~ e n t r y ~ h e r e
1978 00000005 EC IN AL.DX
1 9 7 9 0 0 0 0 0 0 0 6 OC 20 OR AL,20h
1980 00000008 EE OUT DX,AL
1981
1982 00000009 B8 00000048 MDV EAX,GDT_DATA32; set up data seg
1983 O000000E 8E D8 MDV DS,AX
1984
1985 00000010 BA 0000031E MDV EDX,LED_ADDR
1986 00000015 B8 FFFF9886 MON EAX, NOT 6779h : show P3 for ' 386
1987 0000001A 66| EF OUT DX,AX ; 32-bit mode
1988
1989 0000001C B8 00000050 MDV EAX,GDT_STACK32; set up stack seg
1990 00000021 8E DO MDV SS,AX
199100000023 BC 00000FFCr MDV ESP,OFFSET PMStackTop

```

Because it uses a data constant to generate the selector value, the assembler doesn't mark it as relocatable and the linker doesn't try to relocate it. The macro also inserts the prefix bytes that specify 32 -bit operands and addresses in a 16-bit segment. Sometimes this high-level assembler stuff just gets in the way.. .

After all that buildup, the single instruction that enters 32 -bit mode is anticlimactic:

PM mpFar GDT_CODE32, PMEntry32
The selector value matches up with the 32-bit code segment descriptor in the GDT and the offset marks the first instruction in Listing 4. The CPU loads the selector, verifies the segment's attributes, and fetches the first instruction shown in Listing 4. That's all there is to it.

Once in 32-bit mode, the code twiddles a few LEDs. sets up the SS and DS registers, and enters a loop that

Listing 5-Because the segment values are now arbitrary numbers the real mode assembler and linker cannot relocate them. This macro synthesizes a FAR JMP with a constant selector value using data definitions rather fhan the usual instruction mnemonics to prevent the assembler from "helping out" with relocation values. The macro a/so inserts the prefix bytes that specify 32 -bit operands and addresses in 16 bit segmenfs.
\begin{tabular}{|c|c|c|}
\hline MACRO & PMJmpFar Sel, Offs & \\
\hline I F & 0 @32Bit & \\
\hline DB & 066h & ; force 32 -bit operand size \\
\hline DB & 067h & : force 32-bit address size \\
\hline ENDIF & & \\
\hline DB & OEAh & : JMP LARGE FAR (6-byte imm) \\
\hline DD & OFFSET Of fs & ; 4-byte offset \\
\hline DW & Se] & ; Z-byte sel ector \\
\hline ENDM & & \\
\hline
\end{tabular}
\#126
displays a counter on the FDB'sLEDs. A subroutine converts the count to LED segments (talk about function overloading: that's the third "segment" we've met so far) to verify that the 32 -bit stack is usable for calls, returns, and ordinary pushes and pops.

Part of the loop transfers the FDB's DIP switches into the ES register. All is well if the switches contain a valid selector, otherwise the CPU will cause a protection exception. This allows you to exercise the IDT and demonstrate that your system really is in protected mode.

The IDT is unchanged from last month, which means the CPU switches from 32 -bit mode to 16 -bit mode when it enters the error handler. Each interrupt gate descriptor in the IDT specifies the original 16 -bit PM code segment descriptor, which remains ready for use in the CDT.

Although we know nothing can go wrong (right?), the real-mode code displays status and tracing information as shown in Figure 1. If your system doesn't make it to the Protected Land, check the LEDs and traces to see where it veered from the trail.

\section*{CODE BASE ONE}

Although I'm sure you'd like to see the whole FFTS protected-mode task switcher presented in the next column, that's not the way it's going to be. After all, what would I do in October?

What you will see is a series of columns exploring the fundamental building blocks beneath FFTS. For example, we will explore interrupt gates by writing an interrupt handler, activating hardware interrupts, and measuring the response time. Working step by step gives me enough room to explain what is going on without having to cover everything at once.

Along the way I'll accumulate a variety of utility routines that handle serial I/ O, display things on LCD

Li nked poi nters and val ues fromthe PM segments...
PM Code 123B:0000 = 00012380, I ength 000000B4 (BA 78 030000 EC \(\propto 20\) )
PM Data 2000:04D0 \(=000204 D 0\), length 00000018 (BABEFACE 12345678)
PM Stack 2252: \(0000=00022520\), length 00001000 ( 00000000 )
Allocating IDT at 2000:051C
Re-vector table 1000:062B \(=0001062 \mathrm{~B}\)
First IDT entry 062B 003086000000
Allocating GDT at 2000:0D20
GDT NULL 0000000000000000
GDT alias 0057 OD20 92020000
IDT alias 07FF 051C 92020000
DS FFFF 000092020000
ES FFFF 000092020000
SS FFFF 000092020000
CS FFFF 00009 9A01 0000
BIOS CS 0000000000000000
32-bit code 00B3 23B0 9A01 0040
d a t a 0017 04DO 92020040
stack OFFF 252092020040
Figure 1--The real mode startup code dumps the first few byfes of each 32-bit protected mode segmenf to verify that the linker and Paradigm's Locate handled the relocation correctly. Only the last three GDT entries specify 32 -bit mode because, as in last month's code, the BIOS "Switch to Protected Mode" function requires the other 16-bit segments for compatibility with the Original IBM A T's 80286 CPU.
panels, twiddle the FDB hardware, and so forth. Most of this code appeared in \(C\) as I built the Firmware Development Board; this time around I'll cast it in 32-bit assembler to show what it looks like in PM. You won't see much of this code unless PM or 32-bit data makes a big difference in how it's handled. For example, accessing the real physical memory of the graphic LCD panel is a little trickier now.

In two or three months, the realmode code will atrophy to a loader that doesn't display quite so much diagnostic information. The PM code, by then a disk file of its own, will split into several distinct modules. Until then, the code will remain a simple monolithic chunk to reduce the number of files and keep our attention focused.

What you should do is participate: download the code, experiment with it, and report back on the BBS. First of all, if it doesn't play, I want to know! More important, you should modify the code to make sure you understand how the machinery works. Try different interrupts, tweak the timings, add bells and whistles. After all, it's small enough that you can't go too far wrong and safe enough that you won't get hurt!

\section*{RELEASE NOTES}

The BBS code this month puts your CPU into 32-bit protected mode,
setting a variety of LEDs along with a way to track any problems. Once in 32-bit mode, it blinks an LED on the printer port and shows an incrementing count on the FDB LED display. The real-mode code sets up the GDT entries and sends a variety of information on the memory addresses going into each descriptor to the serial port before entering PM.

Next month, I'll examine interrupt and error handlers in the IDT and make a few timing measurements.

\section*{Ed Nisley, as Nisley Micro Engineering, makes small computers do amazing things. He's also a member of the Computer Applications Journal's engineering staff. You may reach him at ed.nisley@circellar.com or 74065.1363@compuserve.com.}

\section*{SOFTWARE}

Software for this article is available from the Circuit Cellar BBS and on Software On Disk for this issue. Please see the end of "ConnecTime" in this issue for downloading and ordering information.

\section*{IRS}

413 Very Useful
414 Moderately Useful
415 Not Useful

\section*{Ta(I) king Control}

\section*{FROM THE BENCH}

\author{
Jeff Bachiochi
}
 ®re not a connoisseur of (hard or soft) rock, jazz, C\&W, rap, pop, hip-hop, swing, or classical music, then one of the public or college stations surely carries programming to please. Talk shows enjoy peak ratings these days. With a twist of the dial you can be enlightened and entertained by programming like "Car Talk" with hosts the Tappet Brothers.

When driving any distance, I like to listen to prerecorded audio dramas I have on cassette. Something about letting your mind paint its own pictures helps to solidify the space between fantasy and reality. Audio is a powerful medium unto itself.

Even television has its audio memories. Some personalities have
become synonymous with a particular program from just one single phrase.
"Herrrzzz Johnny" is the best example that comes to mind. We can't envision the "Tonight Show" without Ed McMahon. Although in video a picture is worth a thousand words, in audio a couple of well-chosen words can paint an entire picture. Or those same words can take control of the picture.

\section*{TAKING CONTROL}

When I think of voice recognition today, PCs with ungodly amounts of memory come to mind. Memory for mammoth prerecorded vocabularies needed as baseline comparisons to real-time audio. Memory for the highspeed processing necessary to analyze the live input and attempt to match it with one already in existence.

Today, attempts to create the allpowerful recognition algorithm are cloaked in secrecy, yet great advances have been made in voice recognition. Phrase recognition has finally reach the usable stage, while continuous recognition, in all honesty, still has a ways to go. So, for the near future, voice recognition will remain a slave of memory and speed.

Some silicon has been developed which combines a number of masked preselected phrases with a patternmatching algorithm. Refer to Michael Swartzendruber's "Control Your


Photo I-The HM2007 does on a single chip what required a boardful of electronics just a few years ago: speakerdependent, discrete-utterance voice recognition.
\begin{tabular}{|cl|}
\hline \begin{tabular}{c} 
Status Register \\
Value (K-Bus)
\end{tabular} & \multicolumn{1}{c|}{ Meaning } \\
\hline 2 & Ready for a command from the CPU \\
1 & Ready for audio input \\
3 & Ready to RD/WR lower nybble \\
0 & Ready to RD/WR upper nybble \\
\hline
\end{tabular}

Table l-Besides being busy, there are only four states the HM2007 can be in.

Telescope by Voice" in issue 32 (March 1993). Although limited to eight unchangeable phrases, the hardware is simple. Why can't someone take this a step further and allow the vocabulary to be user selected. Well, they can, and they have.

HMC (Hualon Microelectronics Corp.) distributes the HM2007 voice recognition chip through the Summa Group. The HM 2007 will store up to 400.9 -second durations or up to 20 1.9-second durations of audio. Successive audio is sampled and a "best guess" is provided for the closest match.

Information other than that contained in the device's data sheet is difficult to come by. I found it a bit
aggravating to have to go though a third party to get answers to the more technical questions I had about the device and its usage. Not having an applications engineer available in the United States will definitely have an affect on how this chip is received by other developers.

There must have been some heavy disagreements during the development of this device. The final design seems to be a weak compromise between a manual and CPU-controlled device. This makes it more difficult to use effectively in either mode.

The handiest package available for the HM2007 is the 52 -pin PLCC, although it is also available in a 48 -pin PDIP and a 48-pin die. It contains an analog AGC front end, A/ D converter, and masked CPU running at a handy 3.58 MHz . The minimum audio signal input necessary
is about 20 mV . I've found a bit of preamplification may be required (depends on microphone used) to avoid having to shout into the electret mic.

\section*{MANUAL MODE}

In manual mode, seven I/ O lines create a twelve-key scanned matrix: 09 , clear, and train. Twenty additional I/ O lines create the twelve address and eight data connections supporting the
\begin{tabular}{|cc|}
\hline \begin{tabular}{c} 
Command Value \\
(K-Bus)
\end{tabular} & \begin{tabular}{c} 
Meaning \\
(parameter)
\end{tabular} \\
0 & \begin{tabular}{l} 
Clear a trained word (input word\#)
\end{tabular} \\
2 & Train a word (input word\#) \\
2 & \begin{tabular}{l} 
Recognize a word (audio in) \\
Give recognition result \\
(get word\# and Score)
\end{tabular} \\
4 & \begin{tabular}{c} 
Upload a word (input word\#, get \\
length and stored patterns)
\end{tabular} \\
5 & \begin{tabular}{l} 
Download a word (input word\#, \\
length, and saved patterns)
\end{tabular} \\
6 & Reset (clears all words)
\end{tabular}

Table 2-The HM2007 supports seven CPU-issued commands.

SRAM and a display register. External SRAM is used for phrase storage. An 8bit display register holds two BCD digits. These digits provide the user


visual feedback about the state of the HM2007.

Using the keypad, any word can be cleared, trained, or recognized. During training, two types of errors may be encountered. If the sound duration is either too short or too long, it is flagged by the system and displayed as BCD digits 55 or 66 , respectively. The user must then retrain that word. Once training is complete, recognition mode is entered and successive sounds are compared to the trained patterns for a match. There is an internal value [a summation of differences in pattern matching) that must not be exceeded if the device is to indicate a match and display the matching word number. If this value is exceeded, then a 77 is displayed indicating no match.

Although the display register (two BCD nybbles) could be interrogated by
a CPU, the manual mode does not offer any indicator of the confidence level for the recognition process. With manual mode, you are limited to the internal confidence setting to determine whether or not a match has been made.

\section*{CPU MODE}

The CPU mode reconfigures the keypad's seven I/ O lines as a bidirectional nybble bus [K-bus) and three control lines (S-bus). The first control line chooses between the HM2007's status register and data register. The second and third control lines are read and write enables. Pulling the RD line high forces the HM2007 to place either the status or data register's 4 bits on the K-bus. Pulling the WR line high forces the HM2007 to read the 4-bitKbus.

Besides being busy, there are only four states the HM2007 can be in. These are reflected in the status register as the values \(0,1,2\), or 3 as shown in Table 1.

CPU commands instruct the HM 2007 to perform a specific function. There are seven such commands as shown in Table 2. [Upon power-up, the HM2007 presents a status " 2 " and awaits a command.)

The HM2007 was not designed to be directly interfaced as an I/ O device. Because of this, it requires a bidirectional \&bit-programmable port or two nybble output registers and one nybble input register. I chose to use the latter so the circuit could be used with the RTC stacking series of controllers. Adding another peripheral to the existing RTC line only strengthens its effectiveness and versatility.

Refer to Figure 1 for the base circuitry needed to use the HM2007. Audio from an external microphone is processed through an internal AGC and fed into the internal 8-bit A/ D converter. Both amplitude and frequency data are extracted from the audio. Sampling is done for either 0.9 or 1.92 seconds, depending on the logic level presented to the WLEN input. The sampling length also determines the maximum number of words in the vocabulary (40 or 20, respectively). Note that this is a maximum and not a requirement. Vocabularies which


Figure 3-/n addition to CPU mode, the HM2007 also supports a manual mode using push buttons and LED displays.
are smaller in size have higher (correct) rates of recognition.

The vocabularies are held in SRAM. By battery backing the SRAM and holding the WAIT input at logic low during power-up, the vocabulary's data patterns can be preserved while the system is off. I placed the CPU interface circuitry shown in Figure 2 on the same proto board with the HM2007. I could have used port 1 of the 8052 as the interface, but I wanted to make the HM2007 look like an I/ O device so it could be used with the other RTC processor boards. I also chose to use discrete registers for clarity as opposed to an 8255, 6821, or other multiregis-tered part.

By wiring up a header with all the signals necessary to use the HM 2007 in manual mode, I built a second (and optional) piggyback proto board to hold the keypad and display. This can be used as an alternate method of training and testing. When the CPU input is pulled to a logic low (by the jumper on this board), the HM2007 is placed into manual mode. In this mode, external circuitry disables the I/ O register
outputs which share the HM2007'sSand K-bus I/ O lines with the keypad.

\section*{HM2007 SEMAPHORE}

The CPU mode's K-bus user output register is only enabled when the S 3 control line (WR) is pulled to a logic high by the S -bus user output register. A high on the HM2007's S3 input indicates that the user has placed information on the K-bus and the information can now be read by the chip. The HM2007 receives both commands and data using the above procedure.

Likewise, while a logic high is placed on the \(S 2\) input (RD), the HM 2007 will output information on the K-bus. The user determines whether the information comes from the HM2007's status register or data register by the state of S 1 : logic low for status and logic high for data.

Since the HM2007 is interfaced through I/ O ports as opposed to the CPU bus, the user must constantly poll the status register to determine what state the HM2007 is in. The command sequences, therefore,
contain intertwined software handshaking.

\section*{EXERCISING THE HARDWARE}

Writing a BASIC subroutine for each command was easy (see Listing 1) using the flowcharts in the data sheet as a guide. All seemed like a piece of cake until I ran into problems getting back the word number and score from the HM 2007. When WLEN was high (which puts the HM2007 into the higher 40 word, but shorter 0.9 second/ per word mode), the chip refused to present the score. The program would just hang. Since there is no reset on the HM2007, things got locked up tighter than Fort Knox.

After considerable frustration with checking and rechecking my wiring, flowcharts, and coding, I broke down and called for assistance. I talked with Louis Gerhardy of the Summa Group.
"Louis. I would like to report a few errors I've found in the data sheets you faxed me," I offered as if a carrot on a stick.
"Sure, what ya got?" the enthusiastic voice replied.
"I'm guessing the status check on flowchart 2 should be a value 1 instead of 2 and the command in flowchart 7 should be 7 ?"
"Yes, yes that is correct," came the acknowledgment.
"Well, if there are errors in these two charts, is it possible there is a problem with chart 3 ?"I asked gingerly. A short pause stretched into a long one.

Finally, after what sounded like a bunch of paper shuffling, "I do have a note scratched in the border here. Bug in result command when.. .when...it looks like WLEN, yes, WLEN is high. Work around is drop WLEN to logic low when in result command. Does that make any sense!"
"You're asking me!" I thought to myself, then answered, "No, but let me think about it. Thanks." Louis must be as frustrated as I; he handles this device and is not an applications engineer.

Back in the code, I altered the result routine to twiddle WLEN Iow while asking for the data (a no-no according to the data sheet). As if by magic the command now returned the proper response. Gotcha. Grrr.

Once I had words trained, I needed a way to offload them so I wouldn't have to retrain them if the memory backup failed. I use ProComm on my PC to give me a smart terminal interface for the RTC52. By using the line pacing protocol, program uploads to the processor are paused after each line (carriage return/ linefeed) to allow the RTC52 to process the line and catch up. When ready, the RTC52 automatically returns the ">" character. ProComm resumes sending the next line after receiving that character.

Serial uploading from the PC using BASIC's GET or I N PUT commands is usually not successful. BASIC is slow compared to the rapid rate of a serial transmission, so characters always get lost. Lost, unless handled like the line pacing of a program upload. This means one character at a time.. .or one string.

The word data coming from the HM2007 is in 8 -nybble blocks, so why not put those eight nybbles in a string and move it that way! One other

Listing 1-Following the flowcharts in the HM2007 datasheet makes writing the actual support code much easier. However, watch for undocumented pittalls.
```

10 STRI NG 3281,80
20 BASE=OEOOOH
30 KRD=BASE+85H
40 KWR=BASE+84H
50 CWR=BASE +86H
60 RWR=BASE+87H
70 PRINT "Press 0 for 20 words @ 1.92 s or 1 for 40 words @ 0.9 s"
80 G=GET : IF (G=0) THEN GOTO 80
90 IF ((G<>30H).AND.(G<>31H)) THEN GOTO 70
100 IF (G=31H) THEN WL=80H ELSE WL=O
110 REC=1 : TRN=2: RSL=4: L=5: DNL=6 : RST=7
170 SRD=2+WL : DRD=3+WL
180 DWR=5+WL: SWR=4+WL
190 REM STATUS 1=READY FOR VO CE I NPUT
195 REM STATUS 2=READY FOR COMMAND A COMMAND
200 REM STATUS 3=READY FOR WLSN OR AVAI LABLE
210 REM STATUS O=READY FOR MSN OR AVAI LABLE
220 PRINT "Speech Recognition Demo using the HMRO07"
230 PRINT
240 XBY(CWR)=SRD
250 PRINT "Checki ng HINROO7 status"
260 S-2 : GOSUB 1000
270 PRINT
280 PRI NT " Press Menu Sel ection"
290 PRINT
3 0 0 ~ P R I N T ~ " 1 ~ T r a i n ~ a ~ W b r d "
310 PRINT "2 Recogni ze a Wbrd"
320 PRI NT "3 Save a Vocab"
330 PRI NT "4 Load a Vocab"
340 PRINT "5 Turn "
345 IF (Q=0) THEN PRI'NT "on ", ELSE PRINT off "
350 PRINT "status reporting"
360 PRINT "6 Clear al memory"
370 PRINT "7 End"
380 G=GET
390 IF (G=0) THEN 380
400 IF (G<31H.0R.G>37H) THEN }38
410 IF (G=31H) THEN GOTO 3000
420 IF (G=32H) THEN GOTO 4000
430 IF (G=33H) THEN GOTO 6000
440 IF (G=34H) THEN GOTO 7000
450 IF (G=35H) THEN Q=(O+1).AND.1
460 IF (G=36H) THEN GOTO 2000
470 IF (G=37H) THEN STOP
480 GOTO 230
1000 REM status check
1010 NS=(XBY (KRD).AND . 3)
1020 I F (NS=S) THEN RETURN
1030 IF ((Q=0).OR. (OS=NS)) THEN GOTO 1000
1040 OS=NS: PRINT "Checking Stat us ",
1050 IF (S=1) THEN PRINT "-Ready for Audio I nput"
1060 IF (S=2) THEN PRINT " - Ready for Command"
1070 IF (S=3) THEN PRINT "- LSB Ready"
1080 IF (S=0) THEN PRINT " - MSB Ready"
1090 GOTO 360
2000 REM CLEAR ALL MEMDRY
2010 XBY(CWR)=0: XBY(CWR)=SRD
2020 S=2: GOSUB 1000
2030 XBY(CWR)=0: XBY(KWR)=RST: XBY (CWR)=DWR
2040 XBY(CWR)=0 : XBY(CWR)=SRD
2050 S=2: GOSUB 1000
2060 GOTO 230
3000 REM TRAI N
3010 XBY(CWR)=0: XBY(CWR)=SRD
3020 S=2: GOSUB 1000
3030 PRINT
3040 PRINT "Enter the word number to train (1-",(WL*20)+20,")",:
I NPUT N
3050 IF ((N<1).OR.(N> (WL*20)+20))) THEN GOTO 3030
3060 PRINT "Type in a description of the audio for word ",N,:
I NPUT \$(N)
3070 LSNN=N. AND. OFH
3080 MSNN=INT (N/16)
3090 XBY(CWR)=0: XBY KWR)=TRN

```
(continued)

\section*{Listing l-continued}
```

3100 XBY (CWR)=0: XBY (CWR)=SWR
3110 XBY(CWR)=0: XBY (CWR)=SRD
3120 S=3:GOSUB 1000
3130 BY (CWR)=0: XBY (KWR)=LSNN
3140 XBY(CWR)=0: XBY (CWR)=SWR
3150 XBY (CWR)=0: XBY (CWR)=SRD
316C S=0: GOSUB 1000
3170 XBY(CWR)=0: XBY(KWR)=MSNN
3180 XBY(CWR)=0: XBY(CWR)=SWR
3190 XBY(CWR)=0: XBY(CWR)=SRD
3200 S=1: GOSUB 1000
3210 PRI NT "PI ease Speak Now..."
3220 GOSUB 5000
3230 I F (R>40) THEN PRI NT "Try Agai n" : GOTO 3070
3240 GOTO 230
4000 REM RECOGNI ZE
4010 XBY (CWR)=0: XBY (CWR)=SRD
4 0 2 0 ~ S = ? : ~ G O S U B ~ 1 0 0 0 ~
4030 XBY(CWR)=0: XBY(KWR)=REC
4040 XBY (CWR)=0: XBY (CWR)=SWR
4050 XBY(CWR)=0: XBY(CWR)=SRD
4060 S=1: GOSUB 1000
4070 PRINT "PI ease Speak Now. .."
4080 IF (XBY (KRD)=1) THEN 4080
4090 GOSUB 5000
4100 IF (R>40) THEN PRI NT "Try Agai n" : GOT0 4000
4110 GOTO 230
5000 REM RESULT
5010 XBY (CWR)=0: XBY (CWR)=SRD
5020 S=2: GOSUB 1000
5030 XBY (CWR)=0: XBY(KWR)=RSL
5040 XBY(CWR)=0: XBY(CWR)=SWR
5050 XBY(CWR)=0: XBY (CWR)=(SRD.AND.7FH)
5060 P=2
5070 PRI NT "Looki ng for LSN"
5080 S=3: GOSUB 1000

```
\(5090 \times B Y(C W R)=0: X B Y(C W R)=(D R D . A N D .7 F H)\)
\(5100 \mathrm{~V}=(\mathrm{XBY}(\mathrm{KRD})\). AND.0FH)
\(5110 \times B Y(X C W R)=0: X \dot{B Y}(C W R)=(D W R . A N D .7 F H)\)
\(5120 X B Y(C W R)=0: ~ X B Y(C W R)=(S R D . A N D .7 F H)\)
5130 PRI NT "Looking for MSN"
5140 S=0: GOSUB 1000
\(5150 \times B Y(C W R)=0: X B Y(C W R)=(D R D . A N D .7 F H)\)
\(5160 \mathrm{~V}=\mathrm{V}+((X B Y(K R D)\). AND.OFH \() * 16)\)
\(5170 \times B Y(C W R)=0: X B Y(C W R)=(D W R . A N D .7 F H)\)
\(5180 \times B Y(C W R)=0: X B Y(C W R)=(S R D . A N D .7 F H)\)
5190 P=P-1.
5200 I \(F(P=1)\) THEN \(R=V\) : GOTO 5070
5210 S=?: G0SUB 1000
5220 PHO. "The word recogni zed was ", R
5230 PRI NT "The score was ", V
5240 RETURN
6000 REM UPLOADI NG
6010 PRI NT
6020 PRI NT "Enter the word number to save (1-", ((WL*20)+20),")", :
    INPIIT. N
6030 IF \((N<1.0 R . N\rangle((W L * 20)+20))\) THEN GOTO 6020
6040 IF \((A S C(\$(N), 1)=13)\) THEN PRINT "Wbrd ",N," NOT rai ned" :
GOTO 6000
6050 PRI NT "Press any key when ready to accept dat a"
6060 G=GET : IF (G=0) THEN GOTO 6060
\(6070 \mathrm{MSNZ}=\mathrm{INT}(\mathrm{N} / 16): \quad \operatorname{LSNZ}=\mathrm{N}-(\mathrm{MSNZ} * 16)\)
\(6080 X B Y(C W R)=0: X B Y(C W R)=S R D\)
6090 S=2 GOSUB 1000
\(6100 X B Y(C W R)=0: X B Y(K W R)=U P L\)
\(6110 \times B Y(C W R)=0: X B Y(C W R)=S W R\)
\(6120 X B Y(C W R)=0: X B Y(C W R)=S R D\)
6130 S=3: GOSUB 1000
6140 XBY \((C W R)=0: X B Y(K W R)=L S N Z\)
\(6150 \times B Y(C W R)=0: X B Y(C W R)=S W R\)
\(6160 X B Y(C W R)=0: X B Y(C W R)=S R D\)
\(6170 S=0:\) GOSUB 1000
6180 XBY \((\) CWR \()=0: ~ X B Y(K W R)=M S N Z\)
\(6190 X B Y(C W R)=0: X B Y(C W R)=S W R\)
\(6200 X B Y(C W R)=0: X B Y(C W R)=S R D\)
6210 S=3: GOSUB 1000
\begin{tabular}{|c|}
\hline Replace Four \\
Conventional PC/I 04 \\
Modules with \\
One \\
CMF8680 cpuModule \({ }^{\text {cm }}\)
\end{tabular}

Embedded PC/XT Controller witt Intelliqent Power Manaagement

- PC/XT compatibility with 286 emulation - 14 MHz , 16 -bit C\&T F8680 CPU
\(\mathrm{I}+5 \mathrm{~V}\) only; 1.6 W at \(14.3 \mathrm{MHz}, 1 \mathrm{~W}\) at 7.2 MHz
1 Intelligent sleep modes, 0.1 W in Suspend
- ROM-DOS and RTD enhanced BIOS
- Compatible with MS-DOS \& real-time operating systems
11 M bootable solid state disk \& free software
I 4 K -bit configuration EEPROM ( 2 K for user)
2M on-board DRAM
1 IDE \& floppy interfaces
I CGA CRT/LCD controller
I Two RS-232 ports, one RS-485 port
1 Parallel, XT keyboard \& speaker ports
I Optional X-Y keypad scanning/PCMCIA interface
- Watchdog timer \& real-time clock

Expand This Or Any PC/l 04 System with the
CM106 Super VGA Controller utilityModule \({ }^{\text {TM }}\)
- Mono/color STN \& TFT flat panel support

I Simultaneous CRT \& LCD operation
I Resolution to \(1024 \times 768\) pixels
I Displays up to 256 colors
jpeed Product Development with the SK-CM1 06-X Starter Kit
Your kit includes the CMF8680 cpuModule, CM106 SVGA controller, CM1 02 keypad scanning/PCMCIA utilityModule, CMF8680 cable kit \& VGA monitor cable for just \$1295.

Additional PC/104 compliant modules from RTD:
I CM104 1.8" hard drive carrier utilityModule
|12-\&14-bit analog I/O modules
|12-bit, 4-20 mA analog output modules
I opto-22 \& digital I/O modules
For more information on our PC/104 and ISA bus products, call today.


Real Time Devices USA
200 Innovation Blvd. . P.O. Box 906 StateCollege, PA 16804 USA (814) 234-8087 / Fax: (814) 234-5218

2TD Europa. RTD Scandinavia
:al Time Devices is a founder of the PC/104 Consortium

\section*{Listing I-continued}
\(622 \mathrm{C} \quad X B Y(C W R)=0: X B Y(C W R)=D R D\)
623C LSNL=(XBY(KRD).AND.OFH)
\(624 \mathrm{C} X B Y(C W R)=0: X B Y(C W R)=D W R\)
\(6250 X B Y(C W R)=0: X B Y(C W R)=S R D\)
6260 S=0: GOSUB 1000
\(6270 X B Y(C W R)=0: X B Y(C W R)=D R D\)
6280 MSNL \(=(X B Y(K R D)\). AND. OFH \()\)
\(6290 L=M S N L * 16+L S N L:\) IF \((L=0)\) THEN \(L=256\)
\(6300 \times B Y(C W R)=0: X B Y(C W R)=D W R\)
6310 PRI NT \(\$(N), C H R(O 7 E H), C H R(N+2 O H), C H R(L S N L+2 O H), C H R(M S N L+2 O H)\)
6320 L=L-1
\(6330 \times B Y(C W R)=0: X B Y(C W R)=S R D\)
6340 S=3: GOSUB 1000
6350 XBY \((C W R)=0: X B Y(C W R)=D R D\)
6360 PRI NT CHR ( \(\mathrm{XBY}(K R D)\). AND. OFH \()+20 H)\),
6370 XBY \((C W R)=0: X B Y(C W R)=D W R\)
\(6380 X B Y(C W R)=0: X B Y(C W R)=S R D\)
6390 S=0:GOSUB 1000
6400 XBY \((C W R)=0: X B Y(C W R)=D R D\)
6410 PRI NT CHR ( \((X B Y(K R D)\). AND. OFH \()+20 H)\),
\(6420 \times B Y(C W R)=0: X B Y(C W R)=D W R\)
\(6430 X B Y(C W R)=0: X B Y(C W R)=S R D\)
6440 S=3: GOSUB 1000
\(6450 \times B Y(C W R)=0: X B Y(C W R)=D R D\)
6460 PRI NT CHR ( \(\mathrm{XBY}(\mathrm{KRD})\). AND. OFH \()+20 \mathrm{H})\),
\(6470 \times B Y(C W R)=0: X B Y(C W R)=D W R\)
6480 XBY \((C W R)=0: X B Y(C W R)=S R D\)
6490 S=0: GOSUB 1000
6500 XBY \((C W R)=0: X B Y(C W R)=D R D\)
6510 PRI NT CHR ( (XBY (KRD). AND.OFH) +20H),
\(6520 X B Y(C W R)=0: X B Y(C W R)=D W R\)
\(6530 \times B Y(C W R)=0: X B Y(C W R)=S R D\)
6540 S=3: GOSUB 1000
\(6550 \times B Y(C W R)=0: X B Y(C W R)=D R D\)
6560 PRI NT CHR ( \((X B Y(K R D)\). AND.OFH \()+20 H)\),
\(6570 \times B Y(C W R)=0: X B Y(C W R)=D W R\)
\(6580 \times B Y(C W R)=0: X B Y(C W R)=S R D\)
6590 S=0: GOSUB 1000
\(6600 X B Y(C W R)=0: X B Y(C W R)=D R D\)
6610 PRI NT CHR ( \((X B Y(K R D)\). AND. OFH \()+20 H)\),
\(6620 X B Y(C W R)=0: X B Y(C W R)=D W R\)
\(6630 X B Y(C W R)=0: X B Y(C W R)=S R D\)
6640 S=3: GOSUB 1000
6650 XBY \((C W R)=0: X B Y(C W R)=D R D\)
6660 PRI NT CHR ( \((X B Y(K R D)\). AND. OFH \()+20 H)\).
\(6670 \times B Y(C W R)=0: X B Y(C W R)=D W R\)
6680 XBY \((C W R)=0: X B Y(C W R)=S R D\)
6690 S=0: GOSUB 1000
6700 XBY \((C W R)=0: X B Y(C W R)=0 R D\)
6710 PRI NT CHR ( \((X B Y(K R D)\). AND. OFH \()+20 H)\)
\(6720 \times B Y(C W R)=0: X B Y(C W R)=D W R\)
6730 IF \((L<>0)\) THEN GOTO 6320
6740 PRI NT " - END"
6750 GOTO 230
7000 REM DOWWLOADI NG
7010 PRI NT
7020 PRI NT "Ready to accept data"
7030 I NPUT \$(0)
\(7040 \quad \mathrm{P}=1\)
7050 IF (ASC \((\$(0), P)=13)\) THEN PRINT "File Error": GOTO 230
7060 IF \((A S C(\$(0), P)\langle>07 E H)\) THEN \(P=P+1\) : GOTO 7050
7070 IF \((A S C(\$(0), P+1)\rangle 45 H)\) THEN GOTO 7100
7080 IF (ASC \((\$(0), P+2)\rangle 4 E H)\) THEN GOTO 7100
7090 IF (ASC \((\$(0), P+3)\rangle 44 H)\) THEN GOTO 7100 ELSE PRINT ">":
GOTO 230
7100 N \(=A S C(\$(0), P+1)-20 H: \quad L S N L=A S C(\$(0), P+2)-20 H:\)
\(M S N L=A S C(\$(0) \cdot P+3)-20 H\)
\(7110 L=\left(M S N L^{\star} 16\right)+L S N L:\) IF \((L=0)\) THEN \(L=256\)
7120 IF ((N<1).OR. \((N\rangle(W L * 20+20)))\) THEN PRINT "Wbrd ii inval id" GOTO 230
7130 PRI NT "Now downl oading word number ", N," of I ength ", L
\(7140 \mathrm{MSNN}=\mathrm{INT}(\mathrm{N} / 16): \quad \mathrm{LSNN}=\mathrm{N}-(\mathrm{MSNN}\) *16)
\(7150 \times B Y(C W R)=0: X B Y(C W R)=S R D\)
\(7160 \mathrm{~S}=2\) : GOSUB 1000
\(7170 \times B Y(C W R)=0: X B Y(K W R)=D N L: X B Y(C W R)=S W R\)
\(7180 X B Y(C W R)=0: X B Y(C W R)=S R D\)
```

Listing |-continued
7190 S=3: GOSUB 1000
7200 XBY (CWR)=0: XBY (KWR)=LSNN: XBY CWR)=SWR
7210 XBY(CWR)=0: XBY (CWR)=SRD
7220 S=0:GOSUB 1000
7230 XBY(CWR)=0: XBY(KWR)=MSNN: XBY CWR)=SWR
7240 XBY(CWR)=0: XBY(CWR)=SRD
7250 S=3: GOSUB 1000
7260 L=(L.AND.255): MSNL=INT(L/16): LSNL=L-(MSNL*I6)
7270 XBY(CWR)=0: XBY(KWR)=LSNL : XBY CWR)=DWR
7280 XBY (CWR)=0: XBY (CWR)=SRD
7290 S=0: GOSUB 1000
7300 XBY(CWR)=0: XBY(KWR)=MSNL: XBY (WR)=DWR
7310 I F L=O THEN L=256
7320 L=L-1
7330 PRI NT ">"
7340 I NPUT $(0)
7350 XBY (CWR)=0: XBY (CWR)=SRD
7360 S=3:GOSUB 1000
7370 XBY(CWR)=0: XBY(KWR)=ASC($(0),1--20H: XBY (CWR)=DWR
7380 XBY(CWR)=0: XBY(CWR)=SRD
7390 S=0 : GOSUB 1000
7400 XBY(CWR)=0: XBY (KWR)=ASC($(0),2-20H XBY(CWR)=DWR
7410 XBY(CWR)=0: XBY(CWR)=SRD
7420 S=3: GOSUB 1000
7430 XBY(CWR)=0: XBY (KWR)=ASC($(0),3-20H XBY(CWR)=DWR
7440 XBY(CWR)=0: XBY(CWR)=SRD
7450 S=0: GOSUB 1000
7460 XBY(CWR)=0: XBY(KWR)=ASC($(0).4 - 20H XBY(CWR)=DWR
7470 XBY(CWR)=0: XBY (CWR)=SRD
7480 S=3:GOSUB 1000
7490 XBY (CWR)=0: XBY (KWR)=ASC($(0),5 -20H XBY(CWR)=OWR
7500 XBY(CWR)=0: XBY(CWR)=SRD
7510 S=0 : GOSUB 1000
7520 XBY(CWR)=0: XBY(KWR)=ASC($(0),6-20H XBY(CWR)=DWR
7530 XBY(CWR)=0: XBY(CWR)=SRD
7540 S=3 : GOSUB 1000
7550 XBY(CWR)=0: XBY(KWR)=ASC($(0).7-20H XBY(CWR)=DWR
7560 XBY (CWR)=0: XBY (CWR)=SRD
7570 S=0:GOSUB 1000
7580 XBY(CWR)=0: XBY (KWR)=ASC(\$(0),8)-20H: XBY (CWR)=0WR
7590 IF (L<>0) THEN GOTO 7320
7600 PRI NT ">"
7610 GOTO }703
8000 REM SAVES PROGRAM I NTO NVRAM A 8000H (NOT NECESSARY)
8010 XBY (8010H)=55H
8020 FOR X=200H TO (200H+LEN)
8030 XBY (X+7E11H)=XBY(X)
8040 NEXT X
8050 XBY (8000H)=34H
8060 XBY (8001H)=0FFH
8070 XBY (8002H)=00CH
8080 XBY}(8003H)=7\textrm{FH
8090 XBY (8004H)=0

```
thought about the data is appropriate here: since it is in nybbles ( \(0-15\) ), why not add 20 h to each value to make them printable characters? This avoids control-character unpleasantries.

Now that we know how the data must be formatted to upload properly into the RTC52 and the HM2007, the download portion is just a matter of collecting the data and outputting it in the compatible format. Each word's data is output separately and collected by ProComm into separate .DAT files. You can concatenate any of these words (.DAT files) into a single file for
easy handling using any ASCII editor. This also lets you prepare separate files of differing vocabularies.

\section*{SPEAKING OF APPLICATIONS}

Picture this: Saturday afternoon. The playoffs are on and you've got multiple teams to keep track of. A cold beer in one hand and a \(6^{\prime \prime}\) hoagie in the other. You speak, "TV... .channel.. .O.. 2." The channel changes and you're there as a 30 -footer is sunk. You decide to tape the other channel so you won't miss a moment of these last four minutes. You speak again, "VCR..
record." As the front panel indicates life, you think you hear something.
Once more you speak, "TV.. .mute." Ring, ring, it's the phone, but it's answered almost immediately by one of the kids. You don't get phone calls anymore; remember, you just live here. "TV.. .mute," you repeat again. Instantly, you're back in the action.

This application uses the RTC52 and the MCIR-Link in an interactive RS-232 mode. The MCIR accepts "SMx" [where \(x\) is a number) as a command to send out a prerecorded IR transmission. All the television and VCR functions were trained on the MCIR, and when a spoken word is recognized, the RTC52 outputs the appropriate "SMx" command to the MCIR-Link. A null-modem cable is needed here because both the RTC52 and the MCIR-Link look like DCE devices.

I admit this is not all that practical, but I bet you can come up with a situation where it does make sense. Or maybe like me, you just want to have a little fun.
P.S. HMC, if you're listening, I think the hardware implementation and documentation could be improved, just a bit. But you've probably already ('scuze me] recognized that!

\section*{Special thanks to Louis Gerhardy (The Summa Group Limited) and H.C. Lee (Hualon Microelectronics Corp.).}
leff Bachiochi (pronounced "BAH-key-
AH-key") is an electrical engineer on
the Computer Applications Journal's engineering staff. His background includes product design and manufacturing. He may be reached at jeff.bachiochi@circellar.com.

\section*{CONTACT}

The Summa Group Limited
1 California St., Ste. 1940
San Francisco, CA 94111
(415) 2880390

Fax: (415) 288-0399

\section*{IRS}

416 Very Useful
417 Moderately Useful
418 Not Useful

\section*{In the Realm of the Sensors}


\section*{In any}
embedded
control or
data
collection
system, the sensors
are just as important as
the controller. While
typically analog, sensor

\section*{interfaces are slowly}
making the transition to
digital. Check out
what's new.

\title{
SILICON UPDATE
}

\section*{Tom Cantrell}
 you don't mind pictures of Mickey Mouse and Goofy instead of the paint-by-thenumbers masterpieces that grace the typical tourist trap.

However, except for the few who qualify as an electronic Michelangelo, a paint-by-the-numbers design mentality is the way to go lest your time-tomarket be measured in Sistine Chapellike terms.

It's an oft-repeated theme of "Silicon Update" that much of the art, albeit black, of scientific and industrial applications revolves around sensor interfacing and analog design antics.

Sure, you can attribute some of my "analogphobia" to a simple case of bit-head bias. Nevertheless, even an objective observer must admit that the process control world is way behind the digital eight ball.

The inertia to do things the "good old way" is strong, but under constant attack by wave after wave of ever more powerful digital ICs. Though reluctant, the data acquisition and process control folks are slowly, but surely, moving into the 1 s -and- 0 s age.

\section*{"G" WHIZ}

Don't expect the digital takeover to happen overnight. The first tentative steps will include chips that combine analog and digital interfaces to ease the way for wary designers.

Consider the AMP ACH04-08 accelerometer (\$40 qty. 1). The device integrates piezoelectric sensors configured to measure acceleration in three axes: \(Y, Z\), and rotation around \(Z\) as shown in Figure 1.

While piezo accelerometers are nothing new, the ACH04-08 is innovative because of its integrated interface logic that culminates in-hooray-a digital output mode.

As shown in Figure 2, the three raw inputs are fed to amplifiers with programmable gain which, in turn, feed comparators with programmable threshold. The result is a digital Q (or Q *) output flagging a "shock" defined by the user-specified gain, threshold, and reference voltage: 3-53 g's for the Y - and Z -axis and \(125-1660 \mathrm{rad} / \mathrm{s}^{2}\) rotation about \(Z\). As shown in Figure 3, once awoken from low-power (200 \(\mu \mathrm{A})\)
\(\left.\mathrm{mV} / \mathrm{g}, \quad \mathrm{mV} / \mathrm{rad} / \mathrm{s}^{2}\right)\)
\begin{tabular}{l} 
amplified \\
\(\left.\mathrm{rad} / \mathrm{s}^{2}\right)\)
\end{tabular}\(\quad\)\begin{tabular}{l} 
or \\
\((7.5-100 \mathrm{mV} / \mathrm{g}\),
\end{tabular}
\(\mathrm{mV} / \mathrm{m}\)


Figure 1-The AMP ACH04-08 accelerometer measures acceleration in three axes: \(Y, Z\), and rotation around \(Z\).


Figure 2-While piezo accelerometers are nothing new, the \(\mathrm{ACH} 04-08\) is innovative because of ifs integrated interface logic that produces digital outputs.

The idea of offering both digital and analog outputs is fine, but I question funneling both through the same pin (though note that the rotation output-ROUT-is separately available). For instance, if two pins were provided, it would be possible to connect the digital output to a micro's interrupt request and the analog out to an A/ D converter. Then, the micro could ignore minor jiggles, yet still take detailed readings via the ADC in response to a shock interrupt.

At first glance, it seems fairly easy to duplicate two-pin functionality by dynamically reprogramming the OUTPUT SELECT bits and adding a gate or two to route the single output pin. However, beware of gotchas when contemplating such a scheme.

Clocking the data into the on-chip shift register via the CLK and DATA lines takes only a dozen or so microseconds, but the minimum programming time (i.e., subsequent pulse on the PROGV pin) is on the order of 10 ms each for EEPROM A (gain) and EEPROM B (VREF, TRIP, and OUTPUT SELECT). Assuming the idea is to interrupt with the digital output and then quickly sample the analog
reading, missing the first, and likely most interesting, 20 ms while making the mode switch would seem problematic for high-speed applications.

The \(20-\mathrm{ms}\) reprogramming time that might be "too slow" in an application sense may be "too fast" in terms of the 100k EEPROM writecycle endurance limit. A worst-case design that did nothing but switch back and forth continuously could die in less than an hour! Yet, a more careful design, perhaps coupled with a little reality-checking software, can


Figure 3-Once the \(\mathrm{ACH} 04-08\) is awoken from low-power sleep mode, the output is asserted when a shock is defected and remains latched until c/eared by a subsequent reset input.


Figure 4-The ACH04-08's user settings (gain, threshold, etc.) are he/d in 14 bifs of EEPROM

EEPROM-based chips: data retention time.

Yes, ten years is a long time in the electronics business and, in the fasterpaced sectors, it's marginally valid to ASS-U-ME that your gizmo will have long since become a door stop or boat anchor. On the other hand, industrial applications tend to be much more long-lived, and examples abound of machines that outlast their masters.

So, should you decide to ignore the data retention issue, I suggest you mark your calendar. It might be wise to be on vacation or otherwise be "out of the office" 10 years from now when the phone starts ringing.

\section*{SONIC TONIC}

First-generation ultrasonic transducers were little more than speaker-microphone combinations, leaving the burden of driver modulation, echo detection, and other housekeeping chores to the system designer. Now, reflecting the "smarter is better" trend, transducers are starting to integrate the various bits and pieces-amps, filters, power supply, and so on-needed for a total solution.

Consider the EDP (Electronic Design \& Packaging) Sonaswitch 1750 (Photo 1) which measures distances from I" to \(30^{\prime}\), as is typical for ultrasonic rangers.

What isn't typical is the amount of glue logic integrated in the \(1.5^{\prime \prime} \times 6^{\prime \prime}\) harsh-environment-tolerant steel and polymer package.

First is a built-in high-efficiency switching power supply that operates from a wide 10-30-VDC (0.5 A max) input range. Though they haven't gone as far as offering digital output, onboard amplification and conditioning does allow them to offer eminently usable 10-bit analog outputs-both O-5 VDC and \(4-20 \mathrm{~mA}\). Ah, if only all analog gadgets would so easily mate with micros.

Having accepted the burden of providing meaningful outputs, the 1750 goes for the gusto with built-in temperature calibration, programmable slope (i.e., the polarity of the output can be inverted), and adjustable output filter, easing your micro's processing burden considerably. The settings are programmed via built-in RS-232 port.

Other goodies include push-button
inputs and NPN outputs that support calibration (zero/ span) and an automatic setpoint monitoring scheme with programmable hysteresis and glitch reduction.

At \(\$ 450\) in singles, the 1750 isn't cheap, but that's usually the case for heavy-duty steel gadgets. On the other hand, it does include DOS upload, download, calibrate, and monitor software.

Besides, if you're in a hurry and aren't making a zillion gizmos, the price is really quite reasonable. Figure it out-unless you're willing to roll your own interface logic and either work very fast or for minimum wage, the \(\$ 450\) may indeed be money well spent.

\section*{BIG BROTHER IS DRIVING}

While everyone blabs about the "information superhighway," progress is being made on the equally intriguing "superhighway information" front.

What do you get when you combine Caltrans (our state highway bureaucracy), ex-bomb designers from Lawrence Livermore Labs, and a dash of high-tech diodes from HP? It may sound scary, but don't worry-it's only
an "Automatic Vehicle Identification" (or "AVI") system.

As shown in Figure 5, the system consists of a roadside "reader" that, despite its name, supports both reads and writes with a car-mounted "tag" via a \(915-\mathrm{MHz}( \pm 13 \mathrm{MHz})\) RF link. The tag uses a "backscatter" approach in which the incoming RF is bounced back to carry the tag's response. This reduces cost by eliminating the need for an RF generator in the tag. It also improves performance since the response frequency (i.e., that generated by the reader) is known exactly, which wouldn't be the case if each tag had its own clock subject to variable tolerances and drift. Furthermore, the system is frequency "agile" in the sense that everything will still work if a roadside reader's frequency must be changed to avoid interference.

Ultimately, it all adds up to a 300 k -bps bidirectional link between your wheels and Big Brother's computers. This can support, for example, five


Photo 1 -The EDP Sonaswitch 1750 measures distances from \(1^{\prime \prime}\) to \(30^{\prime}\).
read/ write cycles (i.e., error correction) per lane on a four-lane highway, nailing scofflaws traveling at up to 100 MPH through a one-meter RF "trap."


Figure 5-In the Automatic Vehicle Identification system being implemented by Caltrans, a roadside "reader" can both read and write car-mounted fags via an RF link.

RF tags are going to be a big deal, not just for AVIs, but for all manner of ID applications up to and including bar code replacement. A detailed discussion of the concept won't fit here. However, as a citizen and a driver, I will take a few moments to pontificate on the implications of AVI systems.

Ostensibly, AVIs are our friends, making life easier with automatic toll collection, directions to the next restroom, or whatever. What could possibly be wrong with that?

Of course, the road to ruin is always paved with good intentions. To me, the situation is analogous to the government's attempts to "encourage" us to accept the so-called "Clipper" voice and data encryption technology whose most notable feature is that it gives the feds access to the "keys." But don't worry, they say, there are lots of "safeguards" and we really just want to catch "bad guys." Trust us.

You've probably heard about the roadside "candid camera" automatic speeding ticket generators that use radar to clock a car's speed and snap a picture of any hot rodders. Well, the skeptics and paranoids among you might easily imagine an AVI system put to equally dubious use. Why, the system could not only issue the speeding ticket, but directly debit your Visa card as well-no muss, no fuss.


Figure 6-The integration path from analog to digital for sensors can be broken down info five levels from discrete devices to full integration

OK, OK so you've got to slow down whenever you spot a lurking AVI-they aren't going to be able to blanket every inch of asphalt are they? No, but should they draw the automakers into the unholy alliance, it wouldn't be hard to "log" your bad driving habits to later "tattle" when you do pass an AVI.

However, an AVI-based "Officer Speed" scheme suffers at the hands of our justice system since it turns out all you have to do is say you happened to loan your car to "some person whose name escapes me." Yes, the good old "cars don't speed, drivers do" defense to the rescue.

If the system were only one-way (i.e., tag data to reader), that would be the end of it. But a two-way system allows our leaders to take active countermeasures. Maybe the same "timeout" strategy used for obnoxious kids is in order-if the AVI detects your transgression, it can tell your car to shut off, giving you time to contemplate the error of your ways.

Nobody knows how all this will turn out, but I do predict that once we let Big Brother into the driver's seat, he'll be there for good.

OF SINKS, KITCHEN, AND HEAT
Having started down the slippery slope of combining analog sensors with digital intelligence, the question is, where it will all end?

According to Motorola, the integration path can be broken down into five levels from discrete devices (Leve I) to full integration (Level V) as shown in Figure 6.

For many, many years we've used and abused Level itechniques. Only recently have Level II-III options, such as those mentioned in this article, emerged. Level IV-V devices remain on the horizon for now.

Putting everything but the kitchen sink on a chip raises a couple of issues. Basically, what makes money and what makes sense?

From the manufacturer's point of view, assuming integrating all the goodies is possible, the concern boils down to keeping die size near that which provides optimal yields.

Most of you may be aware that die cost doesn't necessarily scale linearly with size. A die with twice the area may cost more than twice the smaller device. In technospeak, the phenomenon is referred to as the "iso-defect
curve" that relates die size to yield. The curve is nonlinear because wafers are characterized by a certain defect density, no matter how many die they may contain. Thus, it's easy to see that a larger die has a higher probability of running into a defect than a smaller one. In the above example, the big die might fail, but one of the two smaller ones will make it.

If die size is small enough, the isodefect issue becomes fairly moot. Given, for example, 10 defects per wafer, whether there are 200 or 300 die per wafer matters relatively little. Boost die size into the 50 or 100 die per wafer range, though, and things start to get-pardon the pun-dicey.

From my (a user's) point of view, I'm all for ultimate integration since it gives me the freedom to choose the design-time versus unit cost tradeoff. Naturally, I'll use the availability of lower-cost, less-integrated alternatives to push the supplier to cut the highly integrated unit's price. Why should । care if it's hard for the supplier to make money on the "overintegrated" unit? (Of course, I'd also be the first to whine should they decide to quit supplying the "unprofitable" part).

Otherwise, my only concern about full integration is the migration of high-voltage and high-temperature functions on-chip at levels IV and V . I'm sure the chip designers will be careful to guard against IC meltdown, while power consumption and thermal management remain issues at the system level, whatever the number of chips inside.

Nevertheless, I've never really felt comfortable with chips that are too hot to touch, so talk of 40-W ICs tends to make me a little nervous.

It seems likely that power, voltage, and heat will remain a dividing line with chips falling into one of two camps. Since both camps believe the sky's the limit with integration, many systems may ultimately devolve to two chips. One chip will be a big ugly metal thing with lots of cooling fins or perhaps even liquid or thermocouple "active" cooling-dumb, but able to handle the juice needed to make something happen in the real world. The other will be a high-pin-count, low-voltage
( 3 V down to perhaps 1 V ), plasticpackaged Cray-on-a-chip that does all the thinking.

Tom Cantrell has been an engineer in Silicon Valley for more than ten years working on chip, board, and systems design and marketing. He can be reached at (510) 657-0264 or by fax at (510) 657-5441.

\section*{CONTACT}

Hewlett-Packard
Communication Components Division
350 West Trimble Rd.
San Jose, CA 95131-1096
(408) 4354303

Fax: (408) 4354303

LLNL Transportation Program, L-644
Lawrence Livermore National Laboratory
P.O. Box 808

Livermore, CA 94550
(510) 423-4497

Fax: (510) 423-9649
Motorola Semiconductor Products
Sector MD 56-102
3102 N orth 56th St.
Phoenix, AZ 85018-6606
(602) 952-4103

Fax: (602) 952-4067

\section*{AMP, Inc.}

Piezo Film Sensors
P.O. Box 799

Valley Forge, PA 19482
(215) 666-3500

Fax: (215) 666-3509

\section*{EDP}

37666 Amrhein
Livonia, MI 48150
(313) 591-9176

Fax: (313) 591-7852

\section*{I R S}

419 Very Useful
420 Moderately Useful
421 Not Useful

\section*{3½-DIGIT LCD PANEL MEIER}
-Available now at an unheard of price of \(\$ 15\) plus s \& h
New! Not surplus!


Maximum input: \(\pm 199.9 \mathrm{mV}\)
additional ranges provided through external resistor dividers
Display: \(31 / 2\)-digit LCD, 0.5 in. figure height, jumper-selectable decimal point
Conversion: Dual slope conversion, 2-3 readings per sec. Input Impedance: > 100 M ohm Power: 9-12 VDC @ 1 mA DC

\section*{Circuit Cellar, Inc.}

4 Park Street, Suite 12, Vernon, CT 06066 Tel: (203) 875-2751 Fax: (203) 872-2204

\section*{NEW! UNIVERSAL DALLAS DEVELOPMENT SYSTEM from \(\$ 199\) !}

- It's a complete single board computer!
- One board accommodates any 40 DIP DS5000, 40 SIMM DS2250, 40 SIMM DS2252, or 72 SIMM DS2251, 8051 superset processor! Snap one out, snap another in.
- Programs via PC serial port. Program lock \& encrypt.
- LCD interface, keypad decoder, RS232 serial port, 8-bit ADC, four 300 mA 12 V relay driver outputs.
- Power with 5VDC regulated or 6-13 VDC unregulated
- Large prototyping area, processor pins routed to headers
- Optional enclosures, keypads, LCDs, everything you need
- BC151 Pro BASIC Compiler w/50+ Dallas keywords \$399

SYSTRONIX \({ }^{(1) \text { TEL: }} \begin{aligned} \text { 801. } 534.1017 \\ 555 \text { FAX: } 801.534 .1019 \\ \text { South } 300 \text { East, Salt Lake City, UT, USA } 841\end{aligned}\)
555 South 300 East, Salt Lake City, UT, USA 84111

\section*{Speed} Demon in 8031's Clothing

\section*{Exploring the DS80C320 Processor}


\section*{EMBEDDED TECHNIQUES}

\author{
John D ybowski
}

As an example, I still remember in amusement how hard Intel tried to convince everyone that their 8096 architecture was the logical successor to the 8051 . They even went so far as to provide a code translator that would, presumably, take your 8051 application and translate it into 8096 code. The fact that the two chips had memory and I/ O models that were completely different and that the 8096 maintained no continuity with anything that came before it apparently didn't deter them. Most people saw this as a ridiculous marketing ploy intended to sell them a more expensive processor than they needed or wanted. It didn't work.

The basic 8031 is still a viable candidate for new designs, and new-and-improved derivatives based on this fundamental architecture promise to safeguard your investments well into the future. Obviously, this is what it's all about. With the massive investment in development equipment, substantial firmware libraries, and an enormous working knowledge of the 8031 many engineers possess, it would be very difficult, indeed, to move away from any such "standard" architecture. This is especially true if the architecture is perfectly adequate for the task at hand. But for every 8031 user that is satisfied with the basic 8031 feature set, there's someone who needs a little more performance or additional


Photo I--The ec. 32 high-speed processor comes with an extensive set of PC-hostedsoffware tools that includes an 80C320 simulator and monitor/debugger, and 80C320 cross-assembler, and a C cross-compiler.
functionality. These needs don't go unfulfilled for long since there's always some manufacturer willing to up the processing ante.

Truly impressive 8031 based derivatives are being continually developed that provide specialized built-in peripheral sets that are well suited for a number of specific applications. As far as performance goes, most manufactures simply boost the basic clock rate, in some cases, beyond 40 MHz . Although this is one way of getting additional performance, it would make sense to first fix the execution core before throwing faster clock cycles at the problem. And if you don't think the 8031 is broken, how do you explain that it takes 12 oscillator clocks to choke out a machine cycle? And what about those instructions that contain clocks that do nothing?

This is where the story takes a bizarre twist. It turns out that the processor I'm about to tell you about, though based on the S-bit 803 1, attains a level of performance that allows it to give some of the 16 -bit machines on the market a run for their money. And it shows that given enough raw processing power, you can overcome such seemingly insurmountable deficiencies as a meager instruction set.

\section*{GO FASTER}

Dallas Semiconductor's new 80C320 addresses a number of performance-related issues plus adds a number of new features to the familiar 8031. Actually, it's based on the 8032, which contains 256 bytes of internal RAM and a third timer. The new, high-speed 80C320


Figure 1-In a typical \(80 C 320\) setup where, for simplicity's sake, the EPROM chip select is tied active, the EPROM access time is primarily determined by its address access time parameter.

MHz , a single-cycle instruction executes in as little as 160 ns. This is where architectural refinement pays off since it results in an apparent execution speed of 62.5 MHz , which works out to about 6 MIPS. Admittedly, these 6 MIPS are made up of tiny, little instructions, so take it as a relative, not an absolute, figure. Surprisingly, with the multitude of derivatives that had been introduced since the 8031's inception, it's taken this long to get any real architectural progress. If you've been avoiding using a language compiler on the 8031 because
operates all the way from DC to 25 MHz . M ore importantly, the machine cycle, which is a processor's basic unit of timing, now consumes only four oscillator clocks instead of twelve as with a conventional 8031 . In addition, wasted cycles have been removed, streamlining certain instructions.

All instructions run faster, but some realize more of a performance gain than others. Typical applications should see a 2.5 times speed improvement using the same code and same crystal. Stepping it up a bit, at 25


Figure 2-One alternative that allows the use of lower-cost EPROMs is to speed up the discrete logic path by using an f-series part in place of HCT. Jhe faster parts give fhe EPROM extra time during a program fetchcycle.
of performance concerns, your case has just gotten a lot weaker.

Other new features include dual data pointers, a second full-duplex serial port, built-in power-on reset, watchdog timer, power-fail interrupt, and a total of 13 interrupt sources (six external).

\section*{IT'S ALL IN THE TIMING}

By now, experienced engineers may be wondering what these performance gains are going to cost them. The cost I'm talking about goes beyond the price premium that the 80C320 exacts and involves system-wide concerns. Obviously, there are going to be timing-related questions since the 80 C 320 runs faster than a standard 8031 , even at a given crystal frequency. And to really tap its potential, many people will run it at maximum speed. Cranking up the clock rate implies tradeoffs involving logic families, memory and peripheral costs, and power consumption. When considering a new 80 C 320 design, one of the first things
you'll need to know is the boundary frequency at which faster-and more expensive-memory components are required, and the point at which a truly lowpower design becomes difficult to attain.

Existing applications can be enhanced by using the 80 C 320 as a drop-in replacement for the 803 1. Since the instruction execution time is faster, there is less time available to transfer data to and from memory. Although it's true that, for a given clock speed, there is less time for memory access, the problem may turn out to be negligible for many systems running at 12 MHz or less. For example, a standard 8031 running at 12 MHz has an address access time (neglecting any delays in the support circuitry) of 300 ns. The corresponding figure for an 80 C 320 running at the same frequency is 230 ns. Take this with a grain of salt, however, since we really can't afford to neglect any delays in the support circuitry, as I'll demonstrate in short order.

Shifting our attention to the upper frequency extreme, things become more constrained. Since a memory's read timing usually proves to be more restrictive than its write timing, I'll look at an instruction fetch cycle first. For simplicity, let's consider a hypothetical bus configuration where the EPROM has its chip select pin permanently enabled (see Figure 1). In this arrangement, the access time is primarily determined by the EPROM's address access time parameter, \(\mathrm{t}_{\mathrm{AA}}\). The limiting factor in this timing path is the time it takes the low-order address to propagate through the transparent address latch.

At 25 MHz , an instruction must be read into the processor within 100 ns from the time at which the address is emitted. This is dictated by the 80 C320 timing parameter \(\mathrm{t}_{\text {Aviv1 }}\), which


Figure 3-Similar to Figure 2, the data memory read timing alsobenefits from using F-series logic in critical paths.
run at higher speeds, I would urge you to look to the 80 C 320 and all of the memory, peripheral, and logic timing in some detail. It's alarming to see how some engineers have grown complacent about timing issues just because they've been working with "safe" processors for a long time.

There are many different logic families available that are suitable for use in high-speed systems. Some are more conducive to low-power operation
is defined as \(3 \mathrm{t}_{\mathrm{clcc}}-20\), where \(\mathrm{t}_{\text {clcl }}\) is the oscillator clock period. With just 100 ns available for the data transfer, you've got to take a hard look at the propagation delays in your support circuitry. Naturally, these delays are dependent on the logic family you choose. Using a CMOS 74HCT373 would introduce a maximum propagation delay of 45 ns. This amounts to a fairly substantial proportion of the overall time available for access and, consequently, requires the use of a fast \(55-\mathrm{ns}\) EPROM. Although you can get \(55-\mathrm{ns}\) EPROMs, they're not common, which means they're costly.

An alternate approach is to use a faster technology for the address latch, A safe bet would be a 74F373 with a worst-case propagation delay of 8 ns . This results in a address access requirement of 92 ns that is much easier to satisfy while staying on budget. Figure 2 is a simplified timing diagram of a program fetch cycle.

When beginning a new design, I always like to start by analyzing the timing relationship between the processor and all the memory and I/ O components on the bus. With most conventional 8031 designs, this results in a somewhat academic activity since seldom do I encounter any surprises. To anyone considering using the 80C320, particularly if the system is to
than others. Regardless of the choice, faster operation unquestionably means higher power consumption. There are tricks you can use to keep the power consumption in check, such as running the processor intermittently using idle or stop mode, for instance. The effectiveness of such tricks is very much dependent on the technology you select for your glue circuitry. Unfortunately, you compromise your potential power savings once you leave the domain of a full CMOS design.

An attempt to delimit where the performance/ power boundaries fall indicates that an economical, lowpower design can be rendered in CMOS if you keep the oscillator frequency under 16 MHz . This implies a relatively conventional implementation using a 120 -ns EPROM. If you're willing to opt for a 90 -ns EPROM, then the limit for full CMOS design falls at about 18 MHz . Once you exceed this range, you leave the realm of what can economically be attained using conventional HCT logic.

\section*{ACCOMMODATING TIMING}

The 80 C 320 references its program storage at a fixed rate. This rate is based exclusively on the oscillator frequency and, as a result, imposes a fixed timing constraint on the system program memory. The only way to
slow down the program memory accesses is to use a lower crystal frequency. Unlike program memory, when performing external data accesses, the 80 C 320 has a special feature that allows the application to control the access speed via a variablespeed MD V X instruction. The 80C320 can perform a MDV X in as little as two instruction cycles. This interval can be extended, if needed, all the way to nine cycles. Although it's true that fast RAM is easier to come by than fast PROM, the problem is that a lot of memory-mapped peripherals are not fast. Even if a fast system is required, the peripherals usually don't have to be fast, and fast RAM might not be necessary either unless the processor spends a significant portion of its time accessing data memory.

The processor can be instructed to stretch its read or write strobe by specifying a stretch value of between one and seven. The use of stretch cycles (or wait states), which widen the read or write strobe, gives the memory or peripheral more time to respond. These stretch cycles can be dynamically controlled by firmware if slower devices are being accessed. The stretch value is selected using the bits CKCON.2-0 in the Clock Control SFR (special function register) located at 8Eh. On power-up, the 80C320 defaults to a one stretch cycle for systems with slow data memories.

The timing requirements for external data memory are similar to those for the system PROM except that stretch cycles can be introduced to accommodate slower devices. For example, an HCT-based system running at 12 MHz would typically require a 170-ns RAM with zero stretch cycles, but could run with a 200-ns device with one stretch cycle. At 16 MHz , still in HCT CMOS, the corresponding figures would be 120 ns and 200 ns, respectively. A system using FAST logic operating at 25 MHz would require an 80 -ns RAM with zero stretch cydes, but could get by with a 170 -ns part with one stretch cycle. Figures 3 and 4 illustrate the basic data memory read and write timings.

At this point, some readers might be wondering what fringe effect these
stretch cycles have on the access cycle. In other words, what happens to the setup and hold times? These are certainly valid concerns since you can extend the read or write strobes indefinitely, but if you are unable to meet the setup and hold times of your particular device, you're out of luck. A nd the setup and hold times get tight at 25 MHz , which could render a lot of your favorite peripheral chips useless; that is, unless you could buy yourself a little extra time.

Early 80C320 data sheets gave little clarification on these important timing aspects, but more recent documentation reveals that the introduction of stretch cycles does, in fact, adjust the setup and hold times as hoped. The term \(\mathrm{t}_{\text {MCS }}\) represents the time interval added for each stretch cycle. Generally speaking, the value of \(\mathrm{t}_{\text {MCS }}\) is increased by \(4 \mathrm{t}_{\text {clel }}\) (remember \(\mathrm{t}_{\text {clcl }}\) is the clock period) for each additional stretch cycle that is called out. Note, however, that the first stretch cycle does not follow the expected pattern of
adding four clocks to the strobe. This first stretch, in fact, uses one clock to create additional setup time and one clock to create additional hold time. The other two clocks are dropped into the middle of the read or write strobe. Subsequent stretch values have no further effect on the setup and hold times and instead are entirely used to extend the strobe.

Considering the particular timing parameters that are important in rendering a high-speed computing system economically, Dallas did their homework on this one. Conversely, it should be pretty apparent that the guys who have been pushing the clock rate of the original 8031 core to inordinate extremes haven't done us any favors for anything other than basic singlechip systems.

Another timing-related area where the 80 C 320 accommodates the programmer is in the number of oscillator clocks used to advance the on-chip timers. Although the 80C320 is capable of using four clocks per


The Real Logic Analyzer is a software package that converts an IBM or compatible computer into a fully functional logic analyzer. Up to 5 waveforms can be monitored through the standard PC parallel printer port. The user connects a circuit to the port by making a simple cable or by using our optional cable with universal test clips. The software can capture 64 K samples of data at speeds of up to 1.2 uS (Depending on computer). The waveforms are displayed graphically and can be viewed at several zoom levels. The triggering may be set to any combination of high, low or Don't Care values and allows for adjustable pre and post trigger viewing. An automatic calibration routine assures accurate time and frequency measurements using 4 independent cursors. A continuous display mode along with our high speed graphics drivers, provide for an' "Oscilloscope-type" of real time display. An optional Buffer which plugs directly to the printer port is available for monitoring high voltage signals,

timer tick, the default value is twelve, just like the 8031 and 8032. This allows you to calculate your baud rate divisors and other timer parameters in the conventional manner you're accustomed to. If you need higher timer resolutions, the speed of any of the timers can individually be adjusted higher. The control bits are contained within CKCON (the Clock Control Register) located at 8Eh. CKCON. 5 controls
the speed of timer 2, CKCON. 4 controls timer 1, and CKCON. 3 controls timer 0 .

\section*{\(80 C 320\) TEST FLIGHT}

A processing engine as advanced as the 80 C 320 requires a test chassis equipped with matching capabilities. We've already established the superiority of the 80 C 320 architecture as a drop-in replacement for an 8031 in a given application. At the other extreme of the performance band, the 80 C 320 can be cranked all the way up to 25 MHz . But a fast processor buys you nothing unless you have a suitable peripheral set to do some useful work.

Since the 80C320 will, doubtless, find its way into applications such as process control and data acquisition, it follows that including the support functions necessary to satisfy these applications goes a long way toward showcasing the processor's capabilities in a realistic manner. To satisfy this need, Mid-Tech Computing Devices has embarked on a joint development effort with Dunfield Development Systems. The results are the ec. 32 high-speed processor (Photo 1) and an extensive set of PC-hosted software tools that include an 80 C 320 simulator and monitor/ debugger, an 80C320 cross-assembler, and C cross-compiler. Rest assured that I will complete my overview of the 80C320 and cover the ec. 32 's hardware and firmware in
detail in upcoming columns, but since I'm almost out of space, let me leave you with an overview of the ec.32's principal features.

\section*{THE EC. 32 HIGH-SPEED PROCESSOR}

The ec. 32 includes an 80 C 320 processor running at 25 MHz that supports the primary analog/digital peripherals directly on its high-speed bus. The digital I/O section includes 16 TTL inputs; 8 TTL outputs; and 8 high-voltage, high-current Darlington outputs. A nalog I/ O is supported with a 4-channel ADC and a 4-channel DAC. These are high-performance 8 bit devices that operate over a voltage span of O-2.5 V. The ADC performs a conversion in 3.6 us and has the capability to sample all four channels simultaneously. The DAC offers a 6 -us settling time and can update all of the outputs simultaneously.

The system has 32K of EPROM, 32 K of data RAM, and 32 K of program RAM. All RAMs are backed up using a high-density capacitor power source. Possessing some of the desirable attributes of a battery, this "supercap" exhibits no wear-out mechanism and doesn't require any maintenance. The program RAM permits users to download executable programs from a host computer and allows the resident monitor to set breakpoints and to perform program modifications from
the console. Access to the monitor is normally via the ec. 32 's secondary RS-232 port, leaving the primary serial port (RS-232 or RS-485) free for applications.

The secondary peripheral set is supported on an \(\mathrm{I}^{2} \mathrm{C}\) bus. Locally, this bus connects a real-time clock, 256 bytes of nonvolatile RAM, 512 bytes of E2PROM, and a fully programmable interval timer that is set up for use as an interrupt source. The \(\mathrm{I}^{2} \mathrm{C}\) bus is carried through to a connector where external peripherals can be attached.

Finally, an efficient switch-mode power supply provides 5 V to the system and tolerates an input range of 8.5-28 VDC. Unlike a simple pass stage, this supply doesn't double as a heater. And the wide input range works well in a centrally powered configuration.

John Dybowski is an engineer involved in the design and manufacture of hardware and software for industrial data collection and communications equipment. He may be reached at john.dybowski@circellar.com.

\section*{SOURCES}

For elements of the project, contact
Mid-Tech Computing Devices P.O. Box 218

Stafford Springs, CT 06075-02 18
(203) 684-2442

Individual chips are available from
Pure Unobtainium
13109 Old Creedmoor Rd.
Raleigh, NC 27613
Phone/ fax: (919) 676-4525

422 Very Useful
423 Moderately Useful
424 Not Useful conducted by Ken Davidson

\author{
The Circuit Cellar BBS \\ 300/1200/2400/9600/14.4k bps \\ 24 hours/7 days a week \\ (203) 871-I 988-Four incoming lines \\ Internet E-mail: sysop@circellar.com
}

Reliability testing can be the bane of any electronic design. Getting the circuit to work is one thing, but keeping it working in the real world can be quite another. In our first thread this month, we look at some design techniques that can be applied to your next circuit to allow it to withstand transient voltage tests.

Next, we move over the world of telephones with a short discussion about how to do call progress monitoring. While the human ear can do it effortlessly, it's not always that easy to do it electronically.

Switching to the software side of things, converting between infix and postfix notation is something most any compiler must do, but knowing how to do it is a prerequisite to writing that compiler. We discuss some tips.

Finally, while Tom Cantrell talks about automatic vehicle identification in his "Silicon Update" column this month, what about having the computer take complete control of the car, allowing the driver to actually fake a nap? Our last discussion looks briefly at what's been proposed for making such a system a reality.

\section*{High-voltage protection}

\section*{Msg\#:42055}

From: GARY OLMSTEAD To: ALL USERS
I am developing a system that will (probably) be required to pass UL508 Standard for Industrial Control Equipment. I am concerned about passing the Transient Voltage Test described in paragraph 59. It says that a single \(5-\mathrm{kV}, 50-\mu \mathrm{s}\) pulse will be applied.

I assume that it may, or will, be applied to any pin that comes to the outside world (although the standard doesn't say anything about this). I have protected the analog inputs with an MOV/resistor/zener combination, but I also have a \(4-20-\mathrm{mA}\) output and an RS-485 communications circuit. I can put an MOV across them, but the current-limiting resistor can't be used.

How do you protect these points?

\section*{Msg\#:43400}

\section*{From: GEORGE NOVACEK To: GARY OLMSTEAD}

A piece of cake. Well, not really, but it's not as difficult once you have done it the first time and understand the
mechanics. I am not familiar with UL508 specifications, so you'll have to let me know what it is. The " \(5 \mathrm{kV} / 50 \mu \mathrm{~s}\) " means nothing unless I know the impedance of the transient generator.

There is one word of caution, however. Most designers make the mistake of designing their circuit from the functional standpoint first and only then start worrying about EM1 and/ or transient protection. You have to do it the other way around. You start with the protection circuits you will need (of course it is not a completely isolated process; you keep the functionality in mind) and only when you have it do you design the function. You may have to go back and forth a few times, but I can guarantee that if treated as an afterthought, no protection will work very well in tough environments.

\section*{Msg\#:44650}

From: DAN HOPPING To: GEORGE NOVACEK
Well put, George.
I want to put a large "!" at the end of George's statement. I have been involved with medical equipment hardware design for years and there were major problems with *every* piece of equipment that left the component protection (and isolation) as an afterthought. On the other hand, when it was designed in at the beginning (i.e., the rest of the circuit is built up around the required protection scheme) the protection and isolation testing required at the end of the project *always* went VERY smoothly. Like the guy in the oil commercial says, "You can pay me now.. .or you can *PAY ME* later!" All you youngsters who claim to "want to learn" ought to tape George's statement to your design bench.

\section*{Msg\#:44654}

\section*{From: JOHN HARTMAN To: GARY OLMSTEAD}

Well, we use 25 -ohm PTCs as the series resistors on our RS-485 inputs, which are then clamped with back-toback zeners as follows:


\section*{Msg\#:44750}

\section*{From: GARY OLMSTEAD To: JOHN HARTMAN}

Yes, I asked Raychem about using PTCs in that application. They said their PTCs are only rated to 600 V and they won't survive 5 kV . Raychem specializes in the telecom market and only has to worry about UL1489.

\section*{Msg\#:44749}

\section*{From: GARY OLMSTEAD To: GEORGE NOVACEK}

Well, it really doesn't matter too much which part of the circuit is designed first: the input just feeds an ADC, and the output is either a DAC feeding a \(4-20-\mathrm{mA}\) output or an RS-485 link. Either way, starting over isn't much of a problem.

Anyway, on to UL508. I'm really looking forward to being able to send graphics to a BBS; it would be a lot easier... (Say, maybe there's a product idea there. :-1) Here goes:

where:
-the stuff to the left of the input is a \(120-\mathrm{V}-\mathrm{to}-5-\mathrm{kV}\) converter. It reduces, more or less, to a \(10-\mathrm{M}\) resistor to ground in parallel with a \(0.1-\mu \mathrm{F}\) cap.
- S.G. is a spark gap ("employing boiler electrodes," whatever they are.. .)
-R4 is 12 ohms, wirewound, wound to reduce reactance.
- C 2 is \(0.07 \mu \mathrm{~F}\) (yes, \(0.07: 2 \times 0.01+0.05\) ).
- R5 is 350 ohms ( 300 watts!) I know you don't need to know that, but stage one of the conversion is a neon
sign transformer. I've seen neon sign transformers, but never one that made anybody think of \(300-\mathrm{W}\) resistors. (Of course, maybe they just need it for the voltage rating.)
- The output pulse is described as a "single 1.2 by 50 microseconds fullwave impulse with a crest value of 5.0 kV."

Well, that's it.

\section*{Msg\#:46339}

\section*{From: GEORGE NOVACEK To: GARY OLMSTEAD}

That is a fairly standard transient generator. R4C2 determines the rise time and R 5 C 2 the fall time of the pulse. Also, R4 determines the maximum current you can zap your circuit with. In this case, with 12-ohm resistor, the maximum current will be roughly 417 A. Nothing to sneer at, but no big deal.

There are generally two types of tests: pin injection and bulk injection. In pin injection the generator is grounded, as is your enclosure, and then the generator discharges into each pin of your connector (or wire, if you have just fly leads). This is usually referred to as a damage tolerance test, since you want to make sure nothing gets fried.

In the bulk injection test the entire harness from your box passes through a current transformer. When the generator is discharged into the transformer, the entire harness swings, injecting common mode transient into your system. This is generally referred to as a functional upset test. You inject all kinds of pulses and single and multiple bursts, examining what the system does. You want to make sure that if the transients upset it, the upset is benign and you also want to know how the system recovers from it.

Testing for damage tolerance between two pins is highly unusual. If, for example, you have an RS-485 line, it is a twisted pair. You do not test it by sticking a \(5-\mathrm{kV}\) pulse between the two pins. In a lightning strike, for instance, both lines are close enough to be at the same potential. Sure, you can have a short on one line, but then you are getting into a higher level of protection. Now, you are not dealing with the environment, but with failures. You need to consider, however, what is connected to your equipment. You can have the best protection in the world just to be blown out of the water if the other guy did not do his job right.

Your simplest protection of the circuit is to have either a plastic enclosure or, if it is metal, then floating the electronics inside it. The test is performed by applying the transient between the ground-usually a large copper
plate to which your equipment is fastened-and every connector pin or lead coming out of your box. If the electronics are floating, then all you have to worry about is the dielectric strength between the guts and the case. For the most part it is a question of spacing if you have a metal envelope.

You also want to make sure that the parasitic capacitance between the electronics and the enclosure will not allow high-voltage spikes to build on the lines. This is easily prevented by capacitors, which should be on the inputs for ESD protection anyway (you can buy ICs, such as RS-232 line drivers with the ESD already on chip). A typical line (input or output) would look like this:


Here, R would be a small resistor, say 25 ohms on an RS-485 line. On high-impedance inputs you can go a lot higher (the higher the better). C should be as large as possible, typically \(0.1 \mu \mathrm{~F}\) on output lines. Again, you have to make sure you are not limiting your system bandwidth. The RTN (return) line should go through without a resistor if it is actually your common potential of the electronics. If not, such as with a differential pair (RS-485), both lines should have the RC elements, tied internally to RTN.

I would also use spark gaps (SG) between each line and the cabinet. This will ensure that the potential between the cabinet and the electronics will never exceed the flash-over level. I use CP Clare's dual spark gaps. They fire at about 200 V and the smallest ones (about \(0.5^{\prime \prime}\) dia \(\times 1^{\prime \prime}\) ) will easily take a 5-kA surge. In addition, the dual gaps, when used on differential lines, will both fire at the same time, thus preventing differential voltage buildup which could damage the IC. They cost around \(\$ 4\) in quantities of 10 . Unlike MOVs, they do not deteriorate with use.

You will always have a residual spike due to finite turn-on time of the surge suppressors. This is where the RC comes in. It is also a good idea to put a device between two differential lines, be it inputs or outputs, to limit the differential voltage between them. It is shown as T (for transzorb), but can be many other devices. In the isolated cabinet scheme you do not need to use these devices between single input or output lines and RTN unless you want to protect the line from overvoltage. The RC is already taking care of those. Also, keep in mind that in this scheme, any current due to transient injection flowing between your electronics and the chassis ground is through the spark gap (once fired, the voltage drop will be about 20 volts) and some parasitic capacitance between the line and the chassis. Consequently, the current will be a narrow, low-energy spike which any quarter-watt resistor in place of \(R\) will handle.

It is unusual to require that this (isolated cabinet) system take a hit or accept very high voltage between two lines as opposed to a line and the chassis. If this is a requirement, then you will have to protect the lines the same as if the case were on the same potential as the common potential of the electronics (internal ground).

To limit the voltage between two differential lines (device T above), you have many options. For communications lines, the best choice is usually a bipolar transzorb. It depends on the differential voltage you can allow and the maximum current which would flow through the clamp. For many current inputs where voltage difference would be minimal, two parallel signal or rectifier diodes limiting the voltage to 0.55 V will do. Or you can use back-to-back zeners, although I prefer bipolar transzorbs, as they are faster and take higher surge.

If the leakage is critical, using a reverse-biased P-N junction of a PNP or NPN transistor (small-signal transistors are best; leave the collector unconnected) gives you a beautiful "zener" with an extremely sharp knee zeners can only dream about at just few microamperes of current. Leakage below that knee is hardly worth considering. They will dissipate about the same as \(500-\mathrm{mW}\) zeners and their zener voltage will vary between about 5 and 10 V , depending on the device (voltage of a device is very consistent).

LEDs in forward bias also make excellent zeners. Their voltage will again depend on the type, starting from about 1 V to 3 V , with red LEDs at the low end, followed by green and yellow the highest. I used them once as a voltage reference when I had only \(2 \mu \mathrm{~A}\) to work with and no commercial zener could do the job.

MOSFETs are also great. You connect drain and gate together to the line, source to the return. With many

MOSFETs having a gate threshold voltage around 3 V , you'll have a nice, often powerful (depends on the FET) clamp. And it will be bidirectional. The leakage will be determined by the \(I_{\text {dsoff }}\).

I can't think of one commercial application where you would need to ground your electronics to the chassis (cabinet). You generally have no other choice when you are up against some onerous emission and susceptibility requirements, which make it necessary to run your interface with the world through feedthrough low-pass filters. Their unfortunate shortcoming is they are rated for only about 50 V . That means you have to cut the transients first, then go through the filter into your electronics. The filters are usually in a pi configuration, with capacitors grounded to the chassis. You could have an isolated metal box within another box, but this is expensive and heavy. The solution is in using a dual cavity, but then the electronics ground must be connected to the chassis ground. (If it was not, you'd be getting some nice signal feedback through these capacitors.)


As you can see, the RTN is now internally connected to the chassis. Spark gaps will take care of any voltage over 200 V and, once fired, clamp it to 20 V . In the second stage, the transzorb T with resistor R cut the spike to, say, 5 V on the RS-485 lines. On some differential lines you may want to use three transzorbs: each line to ground and then one between the lines.

\section*{Call progress detection}

\section*{Msg\#:44803}

\section*{From: JAY SISSOM To: ALL USERS}

I am looking for an easy way to monitor what is happening on a phone line. I need to know if the remote phone is ringing, if the line is busy, if they picked up the phone/ hung up the phone, and so forth. My first thought was to purchase a cheap modem, but I need to send audio to the phone line and record from the phone line.

Does anyone know of a chip that does it all (and works with an approved DAA)?

\section*{Msg\#:45165}

\section*{From: BEN MEHLMAN To: JAY SISSOM}

What you are talking about is called "Call Progress Detection" and there are chips out there that do it. Since I have no experience with any of them I won't attempt to say more on that score, except that you might want to check out Cermetek, Harris, Teltone, and Motorola among others.

A nother possible option for you is a software-driven solution. You could couple the phone line (through some simple shaping circuitry) to the serial port on a computer (or to a pin on your microcontroller). But what I'm suggesting is not to attempt to measure the frequency as some have done, but rather to look at the timing of silence versus sound on the line. Each type of signal has its own distinctive rhythm. This is how it was done for call progress detection on the old Applecat modem. This really cuts your hardware and software down to a minimum.

\section*{Msg\#:45455}

From: JAY SISSOM To: BEN MEHLMAN
Thanks for the message. That's a good idea. I never thought about measuring silences. I'll have to play with it to see if I can make that work!

\section*{Msg\#:45221}

\section*{From: RICHARD NEWMAN To: JAY SISSOM}

Dialogic makes boards for PCs that can do everything you want and more, however they are quite expensive: about \(\$ 250\) per port and usually have 2 or 4 ports.

Is this in your price range?
If you want to build one yourself, it's easy to do. You can get a DTMF transceiver in a single package with call progress detection included. You must validate the call progress with software to derive specific signals (busy, ringback, sit, voice, answer machine).

The DAA should have a duplexer so as to improve your transceiver characteristics. (Being able to hear the DTMF
being sent to you while you are sending speech back to them.) The duplexer could be as simple as a transformer which would already be UL typ

Digital speech recording and playback is simple to do also. You need to make some decisions about fidelity versus cost and storage space. If you need great fidelity, you're probably better off with a DSP. You can do ADPCM encoding/ decoding and reduce your bit rate considerably and then do compression to reduce storage requirements even more. All of this in one DSP.

If your going to be satisfied with average fidelity and you don't need to use a standard audio file format then using a CVSD type part is cheap and easy. You can record one second of speech in 1500 bytes of storage and the audio quality compares with a telephone line on a long distance call.

All of the software to drive this could be written in C, and one piece of software could drive multiple cards in one PC. It's probable that one card could have several interfaces on it also.

Your price range for a single-port card, if you built it yourself, would probably be about \(\$ 40\) including a PC prototype card.

\section*{Msg\#:45456}

\section*{From: JAY SISSOM To: RICHARD NEWMAN}

Thanks for the message. Basically, I want to use a SoundBlaster board to do the recording and playing. I am writing the user interface in Windows and do not want to do low-level calls if I don't have to. There are multimedia drivers for the SB card, so I would like to use them. I want to build a board that I can control with the serial port to do the call monitoring. The \(\$ 40\) solution you were talking about sounds good. Thanks for your help!

\section*{Msg\#:46086}

\section*{From: BEN MEHLMAN To: JAY SISSOM}

If you must use the SoundBlaster, you'll definitely need an external DAA which you can take on or off hook via a control line on the serial port or parallel port. You can detect call progress through silence detection and you can generate DTMF for dialing out fairly easily. The only thing that's not totally straightforward is detecting DTMF in software. But I question whether you are using the right tool for the job.

Someone mentioned Dialogic boards which do everything you want including the DAA. I have one and it's very nice, but expensive. There are cheaper boards if you only need to handle one line (the Dialogic does four). A friend has a \(\$ 199\) voice mail board (including software! ) that works
very nicely. I believe they sell an SDK for it for \(\$ 150\). There may be others that come with an SDK or, better yet, just a edocumented interdface, or perhaps a TSR with a documented interface.

\section*{Infix to postfix conversion}

\section*{Msg\#:42727}

From: SCOTT CHRISTENSEN To: ALL USERS
I am looking for source in C to convert from infix to postfix. I envision input and output are strings. For example:
\[
\begin{aligned}
& \text { In: } 4+5 /(2+1) \\
& \text { Out: } 45+21+/
\end{aligned}
\]

Thanks.

\section*{Msg\#:43024}

\section*{From: DAVE TWEED To: SCOTT CHRISTENSEN}

Ah, that brings back memories of college and the compiler class. Every compiler has to do that conversion and it was a basic exercise that we all had to write.

I don't have source code for you, but I can tell you that you basically need to set up a stack to hold the operators as you scan them from the input string, and then a "precedence table" tells you when to take things from the stack and send them to the output string. The operands (numbers or variables) are always passed through.

Be careful: the example you give seems to use "calculator precedence," which is really no precedence at all-all operators are equally important. A nother translation of your input string, using algebraic precedence in which multiplication and division are done before addition and subtraction, would be:
\[
4+5 /(2+1) \longrightarrow 4521+/+
\]

This is part of the problem with infix notation-the precedence rules need to be established separately. With postfix (or prefix) notation, it is explicit, and you never need parentheses to make it clear.

Let's say you have a scanner that gives you one token (operand or operator) at a time. As you scan the input string left to right, you look at each token in turn and apply the following rules:
1. If the current token is an operand, append it to the output string.
2. If the current token is an operator, check the operator stack:

2a. If it is empty, put the operator on the stack.
2b. If the last operator on the stack has equal or higher precedence than the current token, pop operators from the stack and append them to the output string until you find one with lower precedence or the stack is empty. Put the current token on the stack.
3. If the current token is an open parenthesis, push it on the stack unconditionally.
4. If the current token is a closed parenthesis, pop operators from the stack and append them to the output until you find the open parenthesis, then throw away both parentheses.
5. If there are no more input tokens, pop any remaining operators from the stack and append them to the output.

N ote that rules 3 and 4 can be mostly implemented by treating parentheses as operators and setting up the precedence table so that the open parenthesis is the highest possible precedence and the closed parenthesis is the lowest. You still need to make sure you throw them away rather than put them into the output string. The precedence table will look something like one of these:


This should get you going. The \(C\) code is left as an exercise for the reader :-). I did mine in PDP-11 assembly language.

\section*{Msg\#:43068}

\section*{From: SCOTT CHRISTENSEN To: DAVE TWEED}

Thanks, Dave. I started working on this yesterday using a data structures book that talks about this. The thing that may be a problem is multiple occurrences of operators in a row. For example, \(6 * / 5=\) ?. This would of course be illegal, but \(6 .-5=\) ? would be legal. Differentiating this is the fun part.

\section*{Msg\#:43346}

\section*{From: DAVE TWEED To: SCOTT CHRISTENSEN}

Yes, I wondered whether that was going to be an issue for you. It's really two problems: The scanner should deal with literal numbers with leading sign digits, since the sign really is part of the number (like-123). The other problem
is really the "unary operator" problem, in which unary "_" (as in " \(y+-x^{\prime \prime}\) ) is really a one-operand prefix-type operator, just like functions such as "sin x," "logy," and so forth.

The infix-to-postfix algorithm is really only for binary (two-operand) operators; it is assumed that a parser has already validated the string and dealt with the unary " - ," usually by changing it into some other symbol analogous to "change sign" (which is how most calculators deal with the issue in the first place). So, your example would look something like this:

\section*{Input: 6*-5}

After parsing: 6. CHS 5
After postfix conversion: 65 CHS .
All of the unary prefix operators have a precedence between "!" and the binary operators; this causes them to be transferred to the output string at the right time, while still allowing things like:
\[
\sin (x+y)
\]
to be turned into
\[
x y+\sin
\]

Just to cover all of the bases, if you should have any postfix operators in the input string, like factorial ("!"), the infix-to-postfix conversion should simply copy them straight to the output when they occur in the input. So,
\[
3+10!
\]
would become
\(310!+\)
and
\((3+10)!\)
would become
\[
310+!
\]

\section*{Msg\#:43591}

\section*{From: LEE STOLLER To: SCOTT CHRISTENSEN}

Allen Holub has written a book, "Compiler Design in C." I haven't read it, but from other books he has written, it ought to be good. The man writes clearly with good examples. Try to see if you can borrow it from someone or somewhere. It ought to have just what you need.

\section*{Msg\#:40108}

\section*{From: SCOTT COLSON To: ALL USERS}

A friend of mine has been asked to research Intelligent Highway Vehicle Systems (IHVS). She has no technical background and asked me for a quick explanation of how the system works. I have no idea how IHVS works so I was wondering if anyone here might be able to direct me to a source of information. I believe IHVS is used in those automated toll booths but that's all I know about it. I would appreciate any info.

\section*{Msg\#:42093}

\section*{From: GEORGE NOVACEK To: SCOTT COLSON}

We looked into it some time ago. With the recession in the aerospace industry and the defense cuts, the high-tech companies were looking at what to do next. I'm not really cognizant of the subject as it exists today. Undoubtedly a lot of things happened since I looked into it. Basically, freeways and throughways would be set up in such a way that once the automobile gets on the ramp, a computer takes over the control of the car. The passengers can literally go to sleep until the car comes to the predestined exit, where the driver is alarmed and takes over from the computer.

Of course, two-way communications must exist between the car and the system. Inductive control with a cable buried in the road was considered as well as something similar to the cellular phone. Car spacing was to be either controlled centrally by splitting the road into small segments, as well as giving vehicles their own intelligence by installing ranging devices on them. On the top level, one had a computer system capable of routing thousands of vehicles for their destinations at shortest, fastest, and most efficient way.

To maintain the safety (this is where the aircraft companies could score), almost everything on the vehicles was to be at least dual redundant, fail safe, with detected faults forwarded through communications to the nearest service depot, so that spare parts and maintenance crews would be waiting by the time the vehicle arrived.

The big issue, of course, was software reliability (this is a misnomer, but is being used], with the minimum \(10^{-10}\) probability of failure (bugs]. All of the system software was to be done in Ada according to avionic criticality level A. The main computer was to be at least triple redundant, with each of the three computers using a different processor with software written by different teams to prevent any
possibility of a common mode error. As you can see, a bug could result in quite a carnage.

I don't know where the project stands now. Some of the first work was to be done in California and many aerospace companies were interested. A lot of interest dried up when it was indicated that this was not a government-funded project, but that each company would do their R\&D for their nickel and hope to capitalize on it in the future from commercial success. This might work when the times are good. When companies struggle, there is little money left for pie-in-the-sky speculation. This is where I was pulled out of it.

Hope it helps.

\section*{Msg\#:43335}

From: BOB PADDOCK To: SCOTT COLSON
If this is the same as Intelligent Vehicle Highway System (IVHS) you might want to check out the June 1994 issue of Ward's Auto World for "IVHS: A smart way to go: Conference growth indicates blossoming industry" by Tim Keenan.

We invite you call the Circuit Cellar BBS and exchange messages and files with other Circuit Cellar readers. It is available 24 hours a day and may be reached at (203) 871 1988. Set your modem for 8 data bits, 1 stop bit, no parity, and 300 , 1200, 2400, 9600, or 14.4 k bps. For information on obtaining article software through the Internet, send Email to info@circellar.com.

\section*{ARTICLE SOFTWARE}

Software for the articles in this and past issues of The Computer Applications Journal may be downloaded from the Circuit Cellar BBS free of charge. For those unable to download files, the software is also available on one 360 K IBM PC-format disk for only \(\$ 12\).

To order Software on Disk, send check or money order to: The Computer Applications Journal, Software On Disk, P.O. Box 772, Vernon, CT 06066, or use your Visa or Mastercard and call (203) 8752199. Be sure to specify the issue number of each disk you order. Please add \(\$ 3\) for shipping outside the U.S.

425 Very Useful 426 Moderately Useful

427 Not Useful

\section*{Time to Move On}

just spent the last hour and a half on the Circuit Cellar BBS answering electronic mail. Coincident with the physical posting of the magazine, I lasked Ken to put last month's "Ciarcia Junk" editorial on the BBS as well. Barely a day later, I've already got a dozen requests. Everybody is requesting a specific project box, but ultimately they petition to receive virtually anything. The present requests range in scale from the earliest switching regulator project to the 64processor Mandelbrot Generator, with no two appeals for the same project.

The fact that the first request was for the Mandelbrot Generator brought up the question of whether some projects were too expensive to give away. If I remember correctly, it cost close to \(\$ 12,000\) to build. Of course today, with \(\$ 150486-25\) motherboards having equivalent power, the Mandelbrot box would sell by the pound. Obsolete hardware is just that, obsolete. \(\mathrm{OK}, 60 \mathrm{Ibs}\) into the UPS box.

Processing these requests has generated some vivid recollections. While the hardware in these projects is significant because it often marked a technological milestone, the fact that these projects were published so others could physically share the experience is what makes them truly significant. If having a circuit kludge or noteworthy manuscript page tacked to your computer room wall helps you remember that, so be it. I'm glad to help.

Ensuing technical events will probably be less dramatic, but no less important. We have witnessed a major evolution in computer systems. Among the half dozen or so technical revolutions brewing, be prepared for similar advances in home automation and building control technology. Of course, some people will be dragged kicking and screaming into this new world because our misinformed media usually depicts home automation as something to do with expensive entertainment and stereo systems. How wrong they are.

If I had said the words "energy management" instead, the whole world of political correctness opens up. Add functional embellishments like "security enforcement" and "lighting manager" and people want to know more.

The problem with political correctness in technical nomenclature is that such terminology beats around the bush. Functional interrelationships are lost. If you have not realized the energy benefit of your air conditioner turning on two hours before you get home rather than having it run all day because I call the \(\$ 10\) control module that accomplishes the task a home control device rather than an energy management facilitator, I apologize. Political correctness is not my bag.

I recently came across a good videotape that may help many fence sitters better understand an electronically enhanced home. Presented so that a novice can learn and a professional won't get bored, "Living With An Intelligent Home" is a good introduction describing current applications using today's technology. This VHS tape retails for \(\$ 24.95\) plus \(\$ 5\) shipping, but is being offered to Computer Applications Journal subscribers for \(\$ 17.95\) plus \(\$ 4\) shipping (in U.S.). Call, fax, or write us and be sure to include the subscriber number from your Computer Applications Journal mailing label.

Understanding new technology always benefits those who recognize and do something with it first. Next month I'll give you an opportunity to do both.```


[^0]:    CircuitCellarBBS-24 Hrs. 300/1200/2400/9600/14.4kbps, 8 bits, no parity, 1 stop bit, (203) 871-1988; 2400/ 9600 bps Courier HST, (203) 871-0549

    All programs and schematicsin Circuit Cellar INK have been carefully reviewed to ensure theirperformance is in accordance with the specifications described, and programs are posted on the CircuitCellar BBS for electronic transfer by subscribers.

    Circuit Cellar INK makes nowarranties and assumes no responsibility or liability of anykind for errorsin these programs or schematics or for the consequences of any such errors. Furthermore, because of possible variation in the quality and condition of materials and workmanship of reader-assembled projects. Circuit Cellar INK disclaims any responsibility for the safe and proper function of reader-assembled projects based upon or from plans, descriptions. orintormationpublishedin Circuit Cellar INK.

    Entire contents copyright © 1994 by Circuit Cellar Incorporated. All rights reserved. Reproduction of this publication in whole orin pall withoutwritten consent from Circuit Cellar Inc. Isprohibited

