

Before the Horse

efore I talk about what’s in store in this issue, I

thought I’d get ahead of myself and talk about

what’s coming in the new year. If you haven’t read

Steve’s editorial yet (you mean you don’t read the last page first?), be sure

to flip back there when you’re done here. In the meantime, let me be the first

to warn you that we kick off our seventh year of publication with a completely

new cover. The insides won’t change one bit, either graphically or editorially.

We’ll simply be easier to find on the newsstand (or in the mailbox).

To make storage of back issues easier, we’re also going perfect bound

(flat edge) as opposed to saddle stitched (folded and stapled) as we’ve been

since the first issue. Finding a specific issue will be as easy as scanning the

spines on your bookshelf.

But, back to the issue at hand, we’re focusing on real-time program-

ming. We start with a primer article that draws a comparison between real-

time programming and state machines. By representing the task with a

relatively simple model, writing the code often becomes more manageable.

Next, we take another look at ACCESSbus. Not only can it be used to

tie together desktop peripherals for a single user, but it can be the basis to

connect multiple users to a single computer for real-time applications

ranging from interactive educational software to competitive gaming.

When it comes to real-time signal processing, you may not have to buy

a new, dedicated DSP board to get the performance you’re looking for. The

Sound Blaster board already in your PC probably contains a DSP that can

be completely reprogrammed to do more than just enhance your multimedia

experience. Check out just what’s involved.

In our final feature, we follow up Octobers introduction to the ARM pro-

cessor with a more in-depth look at its hardware and development boards.

Be sure not to miss this years Circuit Cellar Design Contest winner

spread. We had our toughest time yet trying to pick winners from a field of

highly creative entries. We’ll be featuring many of the projects in feature

articles in the coming year, so watch for them.

In our columns, Ed continues through the protected land by adding

some LCD display code to track execution, Jeff gets his green thumb wet by

creating an automated plant-watering system, Tom tries to find his way

through Silicon Valley using the latest in compass technology, and John lays

the groundwork for working with bar codes.

?L

2 Issue #53 December 1994 The Computer Applications Journal

CIRCUIT CELLAR ~~~~~~ ~

THECOMPUTER
APPLICATIONS
JOURNAL
FOUNDER/EDITORIAL DIRECTOR
Steve Ciarcia

EDITOR-IN-CHIEF
Ken Davidson

TECHNICAL EDITOR
Janice Marinelli

ENGINEERING STAFF
Jeff Bachiochi & Ed Nisley

WEST COAST EDITOR
Tom Cantrell

CONTRIBUTING EDITOR
John Dybowski

NEW PRODUCTS EDITOR
Hat-v Weiner

ART DIRECTOR
Lisa Ferry

GRAPHIC ARTIST
Joseph Quinlan

CONTRIBUTORS:
Jon Elson
Tim McDonough
Frank Kuechmann
Pellervo Kaskinen

PUBLISHER
Daniel Rodrigues

PUBLISHER’S ASSISTANT
Sue Hodge

CIRCULATION COORDINATOR
Rose Mansella

CIRCULATION ASSISTANT
Barbara Maleski

CIRCULATION CONSULTANT
Gregory Spitzfaden

BUSINESS MANAGER
Jeannette Walters

ADVERTISING COORDINATOR
Dan Gorsky

CIRCUIT CELLAR INK, THE COMPUTER APPLICA-
TIONS J O U R N A L (ISSN 0696-6965) IS publIshed
monthly by Circuit Cellar Incorporated, 4 Park Street,
Suite 20, Vernon, CT 06066 (203) 675-2751 Second
~IasspostagepaldatVemon, CTandadditionaloffices.
One-year (12 w,“es) subscnpt\on rate U S A. and pas-
sess1ons$21 95,CanadaiMexlco$31 95,allothercouw
tries $49.95 All subscrlptton orders payable 10 U.S.
funds only, wa international postal money order or
check drawn on U.S bank. Direct subscrlptlon orders
and subscr\ptvx, related questmns to The Computer
Appllcatlons Journal Subscnptlons, P 0. Box 696.
Holmes, PA 19043-9613 oicall(600) 269.6301
POSTMASTER: Please send address changes to The
ComputerAppl!cattons Journal. Clrculabon Dept P.0
Box698, Holmes, PA 19043.9613.

Cover Illustration by Bob Schuchman
PRINTED IN THE UNITED STATES

HAJAR ASSOCIATES NATIONAL ADVERTISING REPRESENTATIVES

NORTHEAST &
MID-ATLANTIC

Barbara Best
;908) 741-7744
Fax: (908) 741-6823

SOUTHEAST

Christa Collins
(305) 966-3939
Fax: (305) 985-8457

MIDWEST

Nanette Traetow

WEST COAST

Barbara Jones
& Shelley Rainey
(714) 540-3554
Fax: (714) 540-7103

(708) 789-3080
Fax: (708) 789-3082

Clrc”ltCellarBBS-24 Hrs.300/1200/2400/9600/14.4k bps, 6 bits, nopanty 1 stop bit, (203)671-1986:2400
9600 bps Courier HST, (203) 671.0549

All programs and schematlcs in Qrwf CellarlNKhave been carefully reviewed to ensure thelr performance
a~naccordancew~ththespec~fzabonsdescr~bed,andprogramsarepastedantheC~rcu~tCellarSSSforelectranic
transfer by subscrtbers.

C~rcutCellarlNKmakesno warrant~esandassumes no responslbllltyorliabllltyof any klndfoterrors ~nihesc
programs or schematics or far the consequences of any such errors Furthermore, because of poss& varlatlor
in the quality and condltlon of materials and workmanshlp of reader-assembled projects, Circuit Cellar INh
dwlatms any responsebhty for the safe and proper funcuoo of reader-assembled pro]ects based upon 01 frorr
plans, descripbons, or mformatlon publlshed !n Cirwt Cellar INK

Entfre contents copyrlght 0 1994 by Cwit Cellar Incorporated. All rights resewed Reproduction of thir
publtcatlon in whole or ln part wthout written convent from Cirwt Cellar Inc IS prohIbIted.

1 2 Designing Real-time Embedded Software
Using State-machine Concepts
by David Tweed

20 All Together Now/Writing Multiuser
Application Software for ACCESS.bus
by David Rodgers eG Peretz Tzarnotzky

Make the Most of Your DSP-based Sound Card
30 byBobFine

4 0 Circuit Cellar Design Contest Winners
compiled by Janice Marinelli

44

A RISC Designer’s New Right ARM/Development Boards
and Design Specifics
by Art Sobel

5 6 q Firmware Furnace
Journey to the Protected Land:
Fancy Text Output and a Boot Mystery
Ed Nisley

66 q From the Bench
Engineer Seeks Personal Gardener/Assisting
Vocally Challenged Vegetation
/eff Bachiochi

72 q Silicon Update
Do You Know the Way to San Jose?/Precise
Navigation Technology
Tom Cantrell

78 /& Embedded Techniques
Between the Lines/Bar Code and Decoding
Bar-code Algorithms
fohn Dybowski

Editor’s INK
Ken Davidson
Putting the Cart
Before the Horse

New Product News

edited by Harv Weiner

ConnecTime
Excerpts from

the Circuit Cellar BBS
conducted by

Ken Davidson

Steve’s Own INK
Steve Ciarcia

What’s in a Name?

Advertiser’s Index

The Computer Applications Journal Issue #53 December 1994 3

B~~NEW~
Edited by Harv Weiner

VGA-TO-VIDEO
CONVERTER

Telebyte Technology
has announced a device
for converting VGA
images to television’s
NTSC and PAL formats.
The Model 704 Super
Deluxe Videoverter
enhances presentations,
training sessions, and the
creation of video tapes.

The Model 704 offers
a complete list of
features for a VGA-to-
NTSC converter at an
economical price. It is
equipped with three
outputs: S-VHS, AV, and
RF. Any video device-
from a standard televi-
sion with RF input to the
most sophisticated

VGA image on a TV. The
VGA-to-video conversion
features a three-line, video-
RAM memory. This
memory gives independent
retiming of the NTSC signal
which provides simulta-
neous display on the VGA
monitor and television. The
Model 704 operates under
the control of a DOS TSR
software driver. This driver
assigns a group of hot keys
to adjust the TV display for
position and overscan.

With each Pow-R-Bar, IMEG supplies a Microsoft
Windows-based, graphical-interface demonstration
program and a DOS-based demonstration program,
which operate l-26 Pow-R-Bars daisy chained together.
Using the included software, the bars can be labeled
using the letters A-Z and each outlet can be individually
named (names can be any character length).

With 26 Pow-R-Bars linked together, up to 156
outlets, each individually controllable, are joined. The
distance from the computer to the first Pow-R-Bar can be
up to %I’, which means that a total distance of 1300’ can
be on-line. Greater distances are possible using short-
haul modems or phone-line modems.

The Model 704 supports
Windows 3.0 and 3.1
operation and VGA modes
up to 640 x 480 with 64K
colors. The Videoverter
supports all VGA modes in
which the horizontal
frequency is fixed at 3 1.5

Pow-R-Bar is rated for 110-V AC, 60-Hz operation,
and has a total capacity of 10 A.

Pow-R-Bar has a manufacturer’s suggested reselling
price of $149.95 alone or $159.95 with a serial cable and
DE9-DB25 connector. Future release models will include
a wall-mount model, a 19” rack-mount model, and a 220.
V industrial model.

International Micro Electronics Group, Ltd.
155 West Tivetton Way l Lexington, KY 40503
(606) 271-0017 l Fax: (606) 245-1798

SERIALLY CONTROLLABLE AC POWER CENTER
International Micro Electronics Group (IMEG) has

just released their flagship power-control device, Pow-R-
Bar. Pow-R-Bar is an intelligent, configurable, six-outlet
AC power center, which connects to a computer using
RS-232 to individually control each of the unit’s six 1 lo-
V AC outlets.

With Pow-R-Bar connected to a computer, each
outlet on the back of the unit can be controlled through
a computer’s serial port. The user types in simple
commands using the included demonstration software or
through custom programming (all necessary codes are
provided in the owner’s manual). All functions are also
available through any standard, serial-communications
package. Virtually any computer can control Pow-R-Bar.

#501
television monitors, kHz.
projectors, or VCRs with The Model 704 is 7.5” x
S-VHS inputs-may be 5.5” x 1.5” and sells for $545.
connected. Since the
outputs are available Telebyte Technology, Inc.
simultaneously, the 270 Pulaski Rd.
Model 704 can drive Greenlawn, NY 11740
three different output (516) 423-3232
devices. Fax: (516) 385-8184

The Model 704
provides flicker-free #500
operation for displaying a

The Computer Applications Journal Issue #53 December 1994 7

SINGLE-BOARD faster graphics. Windows displays 256 simultaneous interface, and has
COMPUTER accelerators are built-in for colors from a palette of transfer rates up to 10

Computer Dynamics up to 100 times faster 262,000. MBps. Strap options
has introduced the Windows graphics through- The Local Bus IDE support a wide variety of
SBC104-DX single-board put. The CPU supports both hard-disk-drive interface IDE drives.
computer which features l024x768and640x480 runs at 33 MHz, four times The SBC 104-DX also
a powerful GUI engine. It color TFT LCDs and faster than the original IDE has on board up to 16 MB
combines a 486DX4 CPU of DRAM, keyboard and
at 100 MHz with state- speaker interfaces, a real-
of-the-art Local Bus video time clock, and the PC/
and IDE hard-disk-drive 104 8- or 16-bit interface.
interface. This combina- A variety of PC/104
tion effectively removes expansion modules are
the bottlenecks of video available.
processing and hard disk The SBC 104-DX is
I/O which slow down priced at $1895 for the
graphics-intensive 486SX version with 4 MB
applications. of DRAM.

The 486DX4 CPU is
the fastest processor
available for the PC/IO4
standard. The SBC 104-
DX Local Bus video
controller offers 32-bit
video access for maxi-
mum throughput and

Computer Dynamics
107 S. Main St.
Greer, SC 29650
(803) 877-8700
Fax: (803) 879-2030

#502

PROTOTYPE DEVELOPMENT BOARD
The Zeta ZlOO board is a prototype development board designed for Microchip’s PIClbC71 and PIC16C84

microcontrollers. The ZlOO helps design engineers reduce their time to market by providing a quicker, more efficient
method of prototype development.

The ZlOO board uses a +5-V supply generated from a 9-V battery. The board holds a crystal, dual rail-to-rail I/O
op-amps, an RS-485 serial driver, an alphanumeric LCD-display-module interface, and a large prototype area. Addi-
tional features include software routines which give examples of how to interface the LCD and serial port. The board
fits in a standard PacTec enclosure with a battery compartment.

The PIC16C84 is pin compatible with the PIC16C71, but features an EEPROM without the A/D converter. The
PIC16C84 board has a lo-MHz crystal and the PIC16C71 board, a 16-MHz crystal.

The ZlOO provides connections for common LCD display modules. A
potentiometer is available for contrast adjustment and software driver
routines are included. A 2” x 3” prototyping area accommodates wire-wrapped
custom circuitry. Interfacing to the microcontroller and op-amp is provided
through 24 wire-wrap pins.

The Zeta ZlOO board comes with a disk of easily modifiable software and
sells for $39.95. The board with a PIC16C84 sells for $79.95 and $89.95 with
the PIC16C71 EPROM version. LCD displays and enclosures are available.

Zeta Electronic Design
7 Colby Ct., #4-193
Bedford, NH 03110
(603) 644-3239
Fax: (603) 644-3413 #503

8 Issue #53 December 1994 The Computer Applications Journal

SOFTWARE DEVELOPMENT KIT
Datalight has configured a special version of its

ROM-DOS Software Developer’s Kit for the Intel 386EX
embedded processor. It includes a miniBIOS, ROM-DOS,
and all of the software needed to get a DOS application
up and running out of flash memory on the Intel 386EX
processor evaluation board. The kit, which is being
offered free for evaluation on the Intel 386EX processor, is
a subset of Datalight’s full ROM-DOS Software
Developer’s Kit which can be bought directly from
Datalight for $495. An OEM license agreement is re-
quired to include software with any product.

The kit includes ROM-DOS 6 (an MS-DOS 6 equivalent operating system), Datalight’s miniBIOS (a no-royalty
minimal BIOS), REMDISK (a remote disk utility), and ROM Disk Builder (used to load applications on the Intel
386EX processor board). The ROM-DOS files can be quickly transferred to flash memory on the board.

A 4-KB miniBIOS brings the system from power on through the initialization process and allows ROM-DOS to
take control. The BIOS supports memory disks and a remote console. Full source code to the miniBIOS is included.

ROM-DOS 6 supports Windows 3.1 and local area networks. It has advanced power management for low-power
systems which have APM BIOS support, and an XMS memory manager (H I M EM. SY S) for handling extended memory.

The kit can be downloaded from Datalight’s BBS (206) 435-8734 or obtained by contacting Datalight.

Datalight, Inc.
307 N. Olympic Ave., Ste. 200 l Arlington, WA 98223 l (206) 435-8086 l Fax: (206) 435-0253 #504

io4

Pow-R-Bar- $149” 0n%P)

is an intelligent, programmable, six outlet power
strip which connects to a computer’s serial port and
operates via RS-232 protocol. Pow-R-BW is the
perfect solution for controlling multiple AC outlets.

With Pow-R-B~F connected to a computer, each of
the six AC outlets on the back of Pow-R-B- can
be turned on/off from the computer, by typing in a
simple command or through custom programming.

Up to 26 Pow-R-B~IV can be daisy chained to-
gether providing up to 156 outlets individually con-
trollable horn a single computer. With this system,
an entire building can be automated.

Ez! IMEG

International
Micro Electronics

Group Ltd3 .
155 W. Tiverton Lexington, Kentucky 40503
P.O. Box 25007 Lexington, Kentucky 40524

800-274-8699 606-271-0017 Fax: 6(M245-1798

. WORLD’S SMALLEST

Embedded PC with
floating Point,
Ethernet & Super

x VGA Only 4"x4"
1 The PC/II +i includes:

* . 486~~~~ CPU at 25MHz or
* 33MHz clock frequency
e
r l Full 8K Co& with Floating Point

o . Ethernet local Area Network

. Local Bus Sups VGA V;deo/lCD

l Up to WE@ FlashTM with TFFS

l 4 or 16MBytes User DRAM

. PC/l04 o(ISA Bus compcnible option (with a&+]

. 4”~ 4” Format; 6 wats power consumption at t5 volt only

48601 arc Flash are rqstered tiademahs Of Mel cap
as are PC, AT Of IBM, mqak? Of Mepael Computer /we) cap (416) 245-2953

0 0 0 0 0 0 0 0 l 0 * 0 0 0
125 Wendell Ave. - Weston, Onl. - M9N 3K9 * Fax: (416) 245.6505

megatel”

The Computer Applications Journal lssue#53 December1994 9

D!~NtiWS
HIGH-SPEED ANALOG The DT-CONNECT feature the R E P I N S W command and card. The precision
INPUT CARD enables such large blocks of the onboard 1 -KB FIFO. counters support sample

A high-speed, 8- data to be transferred to the Analog-input ranges are pacing and event count-
channel, 1 -MHz analog- buffer card at the full speed software programmable. ing.
input card has been of the board. Windows The unique programming InstaCal, supplied
announced by application software flexibility of the 256-byte free, is a software
ComputerBoards. The experiences no delays in channel-gain queue lets package which installs,
CIO-DAS16/
Ml supports 1 I tests all
MHz of Computer-
continuous 1 Boards’ cards.
input to a For program-
MEGA-FIFO mers, the
accessory card Universal
through Library is an
DTCONNECT, easy-to-use
pre- and post-
trigger buffers m
of unlimited

software
l i b r a r y

DP I supporting all
size, a 256-

I
board lan-

step program- guages in
mable channel and gain
queue, 24 lines of digital
I/O, and three 16.bit
counters.

Augmenting the
speed of the card is its
ability to transfer huge
blocks of data when
using the companion
MEGA-FIFO board. By
attaching a fully loaded
MEGA-FIFO, up to 128
megasamples of data can
be stored at top speed.

concurrent programs during
sample transfers.

A precise, 12.bit analog-
to-digital converter trans-
forms high-speed analog
signals into their digital
representation. This 1 -MHz,
0.8-us A/D converter
resolves the data to an
accuracy of 1 part in 4095.
Without the MEGA-FIFO,
acquisition speeds of 800
kHz to system memory are
attainable through use of

analog inputs be sampled at
different ranges on different
channels. Ranges may be set
for bipolar and unipolar
values.

The I/O lines and
counters are accessible
through a SO-pin, dual inline
connector on the rear of the
card. The I/O lines may be
used for relay closure to
turn on motors and valves
or to latch signals into an
analog-input channel of the

DOS and Windows.
The CIO-DASlG/MI

card sells for $999 and
the Universal Library
sells for $49.

Computer-Boards, Inc.
125 High St., Ste. 6
Mansfield, MA 02048
(508) 261-1123
Fax: (508) 261-l 094

#505

POCKET REFERENCE BOOKS
Jensen Tools Inc. offers two pocket-size handbooks complete with reference

information on a broad range of technical subjects. The books are about the size of a
3” x 5” postcard and less than %” thick. The books tuck easily into a pocket, glove box,
or briefcase.

The Pocket PC Ref (939BOlO) is a reference of computer information, especially
PC hardware. It presents 320 pages of tables and charts on video standards, keyboard
scan codes, floppy-drive and hard-drive specifications, printer codes, and CPU
processor types, ASCII codes, trademarks, DOS 5.0 commands, and more.

The Pocket PC Ref sells for $14.95. A free Jensen catalog is available.

Jensen Tools, Inc.
7815 S. 46th St. l Phoenix, AZ 85044 l (602) 968-6231 l Fax: (602) 438-1690

#506

10 Issue #53 December 1994 The Computer Applications Journal

FUZZY LOGIC optimization, including
DEVELOPMENT TOOL “what if” analyses for

Microchip Technology efficiently handling large
has introduced fuzzyTECH- designs, transfer plots for
MP, two suites of advanced identifying redundant rules
PC-based development tools or regions of instability, and a
for creating, analyzing, comprehensive data analyzer
simulating, and debugging for signal processing and
fuzzy-logic applications for visualization. Once the
its PIC 16 and 17 microcon- system design is complete,
trollers. The new tool suites, the fuzzyTECH-MP suites
developed by Inform Software generate assembly code
Corporation, are the first compatible with MPASM,
fuzzy-logic development tools Microchip’s Universal
to include a fully functional, fuz integrated into a PIC 16 or 17
demonstration board. The board offers hands-on experi- application.
ence with fuzzy-logic system implementation and speeds The MP Explorer includes all the graphics editors
the overall development process. and tools to guide designers through the fuzzy-system

fuzzyTECH-MP is available in two versions: the MP design process for systems with up to two input and one
Explorer for designers who need a working knowledge of output variable. The MP Edition includes this tool set
fuzzy-logic system design and the MP Edition for with expanded flexibility for handling more complex
engineers who implement more complex systems. Both systems of up to eight-input and four-output variables.
versions run in Windows and feature simple point-and- Both suites support 8- and 16.bit resolution for input and
click commands with powerful graphical editors. output variables, and 16-bit computational resolution.

In addition to fuzzy-logic system specification, the The fuzzyTECH-MP Explorer sells for $295; the
suites provide the graphical tools needed to simulate fuzzyTECH-MP Edition sells for $995.
fuzzy solutions in real time or in response to recorded or
simulated process data. Six different debug modes are Microchip Technology, Inc.
included for comprehensive program test and verifica- 2355 West Chandler Blvd. l Chandler, AZ 85224-6199
tion. Graphical support is also provided for fuzzy system (602) 786-7200 l Fax: (602) 899-9210 #507

3-CCD shading errors that some- color temperatures and programming control by
COLOR CAMERA times occur with C-mount illumination levels. Field- customers through the 2-

A i/2n 3-CCD color lenses. The camera mea- On-Demand offers immedi- way, RS232C interface.
camera with 410,000 sures only 65 mm x 65 mm ate output of a single field Composite, Y/C, and
pixels and a micro lens x 125 mm. and immediate reset. A RGB outputs on the
has been introduced by The HV-C20 features long-exposure mode is camera provide a video
Hitachi. The HV-C20 is 700-line TV resolution, provided for those applica- interface for a wide
designed for the indus- sensitivity of f8.0 at 2000 tions that require extreme variety of external
trial user and is ideal for lux, a signal-to-noise ratio of sensitivity. equipment, and a gen-
video conferencing, 60 dB, and vertical contour Protocol documentation lock input provides
image processing, and correction. For fully auto- is available for computer synchronization of
microscope applications. matic, real-time, auto-white multiple cameras.

New C-mount prism balance, AGC and CCD
optics provide a much Hitachi Denshi America, Inc.
smaller and less expen- 150 Crossways Park Dr.
sive package than Woodbury, NY 11797
previously available with
3-chip cameras. An
automatic correction
circuit eliminates #508

The Computer Applications Journal Issue #53 December 1994 11

Designing Real-Time
Embedded Software
Using State-Machine
Concepts

All Together Now

Make the Most of Your
DSP-Based Sound Card

Design Contest

A RISC Designer’s
New Right ARM

David Tweed

Designing Real-time
Embedded Software
Using State-machine
Concepts

that all software is

Think about it. All a programmer
knows about the statements he or she
writes is that they will be executed in
a certain order. Each statement speci-
fies the change in the computer’s state
between when the CPU begins and
when it finishes executing the state-
ment (state information includes the
CPU’s program counter, other regis-
ters, main memory, and I/O registers).
This is true whether the programmer
is writing machine code (1s and OS),

assembly language (mnemonics), or a
higher-level language like C.

next state = current state

D Q

r:-I’

state

clock

Figure l--The simplest state machine has one bit, hyo
states, and no inputs.

12 Issue #53 December 1994 The Computer Applications Journal

Understanding this fundamental
concept can bring a new clarity to the
design process for real-time systems.

INTRODUCTION TO STATE
MACHINES

The concept of a state machine
goes back to the theoretical underpin-
nings of computing--the Turing
machine, which consists of a state
machine and a memory tape. In this
article, a state machine includes any
hardware that can be in a finite
number of discrete states and the rules
about how it makes a transition from
one state to another.

The simplest state machine has
two states: the on/off of an electronic
flip-flop or the in/out of a retractable
ballpoint pen. Each process has a
single input that we call clock, and
each time the clock is activated, the
machine changes to the opposite state.
The electrical output of the flip-flop or
the physical position of the pen tip is
the memory of the current state, and
this single “bit” of storage can keep
track of two states. Figure 1 represents
either the flip-flop or the pen.

In general, a state machine can
have no more than 2N states, where N
is the number of bits of memory
available to store the state. Most state
machines will have significantly fewer
states, because many bit combinations
will be either meaningless or redun-
dant.

For example, a BCD counter has 4
bits of storage, but only 10 of the 16
possible states are meaningful. This
isn’t to say that the other six states
don’t exist. In fact, the designer must
make sure that, if the counter happens
to be in an incorrect state (say, at
powerup), it can be switched to a
correct one.

This is what reset pins are for, but
sometimes it is sufficient to make sure
that the illegal states eventually make
transitions to legal states. Figure 2
shows a typical implementation of
such a counter. As long as it remains
in the states 0000-1001, it cannot
make transitions to the states lOlO-
1111. However, if it should happen to
powerup into one of the latter states, it
will get back into the correct sequence
within two transitions.

next
state

ti

logic

I

Figure P-These diagrams show the states as circles and the fransitions from one state to another as arrows. Each
state is labeled with the combination of state variables (bits) that represents that state.

State machines that have only one chines we’ve talked about so far, the
exit from each state are useful as coun- state variables themselves are used as
ters, but not much else. In general, a the output. This represents one kind of
state machine will have external machine in which the output states
inputs that can modify its behavior. are directly associated with the
For example, we might want a 2-bit (4. internal states of the machine.
state) counter that has reset and enable In more complex state machines,
inputs. Figure 3 shows one possible often the output is in the form of
state diagram for such a counter. events that are associated with the

Now that there is more than one transitions from state to state rather
possible transition out of each state, than the states themselves. In this
each arrow is labeled with the input kind of machine, there may even be
conditions that cause a particular more than one transition from one
transition to be selected over another. state to another, differing only in the
Care must be taken to ensure that it input conditions that select them and
isn’t possible for two arrows to be the output events that they generate.
selected by the same set of input When I get to specific examples, you
conditions. will see this kind of state machine.

The clock input to the state We can continue to extrapolate
machine is implicit: the machine this concept until we get to a micro-
makes one transition per clock pulse processor, which along with all of its
or edge. Sometimes an arrow leads
back to the state from which it
starts. This simply means that
for such a combination of
inputs, the machine remains in
the same state.

A state machine can also be
described by a table in which
each line of the table describes
an arrow in the diagram. There
are columns for the start state,
input conditions, and next state.
Table 1 offers a table layout to
the state machine of Figure 3.

So far, there has been no
mention of output from a state
machine. In the simple ma-

internal and external memory, forms a

Current State input Conditions Next State

00 reset + enable 00
00 reset & enable 01

01 reset 00
01 Et & enable 01
01 reset & enable 10

10 reset 00
10 reset & enable 10
10 reset & enable 11

11 reset & enable 11
11 reset + enable 00

Table 1-A state-machine description in tabular form makes it
easy to veriv that transition conditions are mutually exclusive.

The Computer Applications Journal Issue #53 December 1994 1 3

reset -

e n a b l e -

reset + enable reset & enable

--
reset & enable

-~
reset & enable

Figure 3-A diagram for a state machine with inputs musf have labeled fransitions.

complex state machine with a large event that might occur at a given
number of states. A large (but slightly moment, and the software must make
smaller) number of those states is an appropriate response to the next
completely meaningless-you can event. The overall structure of the
imagine filling memory over and over software should be set up to make
again with random numbers until you programming responses to external
create a program that plays solitaire. events as simple as possible, while
But, this isn’t an efficient way to meeting the real-time constraints of
program. those responses.

With a microprocessor, we
actually have a kind of hierarchy of
state machines. At the lowest level,
there is the microcode that specifies a
state machine with a few hundred
states. This state machine, as it
operates, causes registers to be updated
and external memory to be read and
written.

At the next level up, we see the
concepts of a program counter, address
register, and data register. These are
really nothing more than convenient
abstractions which make it easier to
write machine-language programs for
the processor.

There are two common ways of
accomplishing this: polling loops and
interrupts. Let’s consider each one in
terms of state machines.

The polling loop is usually
considered to be the simpler of the
two, and consists of having the state
machine test external inputs one at a The decision of whether to use
time. The loop moves from a current polled I/O or interrupts in an embed-
state to one of two possible next states ded real-time computer is complex and
based on the value of that input. This doesn’t always have a clear-cut
might take the form of a conditional answer. Next, I will explore some of
jump, conditional subroutine call, or the issues affecting this decision.
conditional return statement. Such
branching makes the state machine THE SYSTEM’S STRUCTURE

At the highest level, we have
languages like BASIC and C. These
languages provide yet another level of
abstraction. On the one hand, variables
and data structures are the state-
machine memory. On the other, each
statement may represent dozens or
even hundreds of machine-language
instructions, yet each can be thought
of as single state-machine transition.

more complicated, but it still can be in All nontrivial systems have inputs
only one state at a time. and outputs that allow them to inter-

Nonelectrical

STATE MACHINES IN REAL-TIME
SYSTEMS

In real-time programming, the
operation of the computer or state
machine must be synchronized with
events occurring outside the system.
Often, there is more than one possible Figure 4-Real-time systems interact with their environment in various electrical and nonelectrical ways.

Unfortunately, with the polling
loop, while the state machine is
testing or responding to one external
input, it is ignoring all of its other
inputs. Interrupts, on the other hand,
get the attention of their state ma-
chine right away (assuming the
priorities are arranged appropriately).

Interrupts are a way of multiplex-
ing the hardware among two or more
state machines. The main-line code
specifies one state machine, while
each interrupt-service routine (ISR)
specifies another. When an interrupt
occurs, the operation of the current
machine (the main line or a lower-
priority ISR) is suspended, its state is
saved, and the ISR associated with that
interrupt begins to operate.

The drawback of the interrupt-
based system is the complexity of
multiplexing the hardware among
state machines. This complexity is
mitigated by the availability of real-
time executive kernels that handle
low-level details and allow the
programmer to get on with the
application’s real work. Even if you
rolls your own kernel, the results can
often be used over and over again in
other applications.

1 4 Issue #53 December 1994 The Computer Applications Journal

Input

Transducers
Electronic
Hardware Transducers

System
outputs

among many others. Simi-
larly, output transducers
include solenoids and motors,
heating elements, and
displays of various kinds.

So far, my description has
been very abstract. Let’s bring
things down to earth by
considering some real
systems.

Figure 5-The microwave oven interacts with the user via keypad and display, and controls a magnetron to cook food.

One common real-time
computer that many people
use daily is the controller in
their microwave oven. When
we put it into the context of
our generic system, it has
input transducers (a keypad),
output transducers (a display
and magnetron on/off con-

trol), and most likely a single-chip
microcontroller driven by a crystal (see
Figure 5). Since it also needs a way to
measure the passage of time, we add a
hardware counter that is advanced by
the oscillator (most microcontrollers
have such a counter built-in).

The first step in designing the
software for this system is understand-

act with their environment. In the case
of electronic systems-computer-based
systems in particular--the interactions
must be either electrical or converted
into electrical form. Figure 4 shows a
generic hardware and software system
with inputs and outputs.

The electronic hardware performs
conversions of electrical signals

(amplification, analog-to-digital,
digital-to-analog, etc.) and implements
state machines of various kinds,
including the one on which the
software runs. The software, in turn,
determines the behavior of the CPU
state machine. Input transducers can
be mechanical (switches), temperature
(thermistors), and light (photodiodes),

H A L - 4
The HAL-4 kit is a comnlete batte ry-operated 4-channel electroenceph-
alograph (EEG) which measures a mere 6” x 7”. HAL is sensitive enough
to even distinguish different conscious states-between concentrated I ’
mental activity and pleasant daydreaming. HAL gathers all relevent alpha,
beta, and theta brainwave signals within the range of 4-20 Hz and presents
it in a serial digitized format that can be easily recorded or analyzed. HAL’s
operation is straightforward. It samples four channels of analog brainwave
data 64 times aer second and transmits this digitized data serially to a PC
at 4800 bps. There, using a Fast Fourier Transform to determine frequncy,
amplitude, and phase components, the results are graphically displayed m
real time for each side of the brain.

H A L - 4 K I T N E W P A C K A G E P R I C E - $ 2 7 9 +SHIPPING

Contains HAL-4 PCB and all circuit components, source code on PC diskette,
serial connection cable, and four extra sets of disposable electrodes.

to order the HAL-4 Kit or to receive a catalog,
CALL : (203) 875-2751 OR FAX: (203) 875-2204

C I RC U IT CE L L A R K I T S l

S U I T E 12 l V E R N O N

4 P A R K STREE
l CT 06066

T

*The Clrcult Cellar Hemispheric Activation Level detector IS presented as an engineering example of
the design techniques used in acquiring brainwave signals. This Hemlspherlc Activation Level detector IS

not a medically approved dewe, no medlcal claims are made for this dew%, and it should not be used for
medlcaf diagnostic purposes. Fudhermore, safe use requires HAL be battery operated only!

The Computer Applications Journal Issue #53 December 1994 15

Event: Counter overflow

Event: User presses number key
Response:

Shift digit Into right end of display

Flesponse:
Decrement time remaining
If time>0 stay in running

Event: User presses “Stop”
Response:

Turn off oven
Go to stopped

Figure 6--A state-machine diagram, in which the outputs are events, ties the responses to fhe fransifions rather
than to the states.

ing what the overall system must do.
We want the user to be able to enter a

oven runs while the display counts
down and stops when the display

time period, start the oven, and have it reaches zero. The user can press “stop”
stop by itself when the specified time while the oven is running to immedi-
has elapsed. (We’ll leave niceties like a ately stop it and freeze the count at its
time-of-day clock and temperature current value. Such high-level system
sensing for the competition to worry behavior can be easily described with a
about for now.) state diagram (see Figure 6).

The user enters a sequence of
digits on the keypad, sees them in the
display, and then presses “start.” The

Since the hardware is so simple,
the computer clearly has to implement
these behaviors directly in software,

of 62.5MHz!!! Equally impressive is the T-l 28’s high-speed NVRAM
.

interface. Any of the 128K RAM may be programmed directly from a PC file through the console:
eliminating EPROMs and associated tools. Program Development has never bee” faster OP more
convenient, even with the finest EPROM emulator.The T-128 features PORT 0 bias and a-select for
DSB7C520 upgrade.

mJallas Semiconductor’s DSSCC320
-3w% more efficient than the SO51
*Three 1 &bit Timer/Counters
-13 Interrupts (6 Ext. 7 lntj
.A second IS-bit Data Painter
684 &es of Internal RAM
*Programmable Watchdog
timwnout Pmtecdon
*Powerfail Reset/Interrupt
~PowerOn Reset
-Fully supported by Fmnkli~ C51

v Entire 128K Memory Map
populated with fast NVRAM
[64K DATA+64K CODE]

rAll memory pmgrammed onboard
@aeonable as
C#XIATA/UvERAJD
lcodespaceisW-Me
-ti.%& Data hntetion

BASIC520
Modified BASIC52 Interpreter [BASIC5201
Now Fast Enough for N&v Applications

&ack BASIC Programs and Autorun
GLL ASM Roudnes for Maximum Speed

iu!
*Three 8-i+ Parallel Ports
*Two Full01plex RS232 Serial Ports
Qecoded Dewce I/O Stmbes
dOfIn Bus connector

UPGRADE
9S87C520 pmcessor (33MHz)
wtruction cyzle: 121 ns
4.25 MIPS
-9351 equivalent 82.5 MHz
Internal 16K ROM/lK SRAM

Comes Ready to Run
with pourer adaptarlcabla era~mbly.

lacludsa utiliq diikatta with
PETnllEB lECHNICAl MANUAL

$199 in PTV.

and it must do so in terms of the
details of operating the keyboard,
counter, display, and relay. It must
constantly scan the keyboard to
receive input from the user. When the
oven is on, it tracks the state of the
counter and must constantly scan the
display to show the user what’s
happening. Finally, it must turn the
magnetron on and off at the appropri-
ate times.

FUNCTIONAL SPECIFICATION
What we have been doing so far is

coming up with a functional specifica-
tion for the software (and not a line of
code has been written yet!). As the
process continues, we divide each
high-level behavior into its subtasks
until the subtasks are the lowest-level
primitive operations of the system.
You may have heard of this before-
it’s called top-down design.

The lowest-level primitives in our
microwave oven are the following:

l Activate a row on the keyboard and
check whether any of the switches in
that row are closed

l Activate a digit on the display and
turn on the correct segments

l When the oven is on, check whether
the counter has overflowed

We need to come up with some
time limits on the operation of these
primitives. For example, a user expects
the oven to respond more or less
immediately when he presses a button,
so this puts a lower limit on the
keyboard-scanning speed.

Also, we need to worry about
things like debouncing the mechanical
switch, which in turn puts an upper
limit on the speed. Generally, a good
compromise between apparent
response speed and the typical charac-
teristics of the switch is IO-20 ms. We
want to scan the entire keyboard at
least once during this time, and
preferably a few times. Since our
keyboard has four rows, let’s scan one
row per millisecond.

Similarly, our J-digit display needs
to be refreshed at a rate that’s high
enough to make it seem to be continu-
ously lit. Unless it uses technology
that has optical persistence (like a

#106
16 Issue #53 December 1994 The Computer Applications Journal

maximum execu-
Task How Often? How lona? CPU utilization tion time, they can
Scan keyboard row every 1 ms 100 ps 10%
Scan display digit every 1 ms 50 ps 5%

be completed

Check counter every 1 ms 70 ps 7% within the 1-ms

Total: 220 ps 22% 1 period. These are
good indications

Table 2--A microwave oven indicates that a polling loop would be most appropriate. that a simple
polling loop is a

CRT), a refresh rate of a few hundred
hertz is required to eliminate flicker-
ing and other annoying artifacts. If we
can display one digit per millisecond,
the overall refresh rate will be 250 Hz,
which should be fine. Do you see a
trend developing here?

good overall architecture for the
firmware of the oven. The control flow
might look something like Figure 7.

A SECOND EXAMPLE

Finally, our CPU runs at 1 .OOO
MHz, and our hardware counter
divides the CPU cycles by 1000, which
means it’s going to overflow once per
millisecond (aha!). It would seem at
first blush that it might be appropriate
to use the counter overflows at all
times to synchronize the operation of
the other primitives. But, we only have
half the story so far. We also need to
know how much CPU processing is
associated with each of these primitive
tasks.

Another example of a real-time
system is an audio-spectrum-analyzer
display that might be used in a high-
end home-audio system. In some ways,
it is simpler than the microwave oven,
yet it brings to light some problems
which require a different approach.

The hardware consists merely of
an analog-to-digital converter (ADC), a
DSP chip, and a 32 x 128-LED display.
We need a DSP to compute the Fast
Fourier Transform, but you can think
of it as a fast microprocessor. Figure 8
shows the analyzer system in its
generic format.

When a key is pressed, we are
going to either shift a digit into the
display or start/stop the oven. We will
also have to update some internal state
information associated with debounc-
ing the key. Call it 100 instructions for
the first cut.

To refresh a display digit, we need
to update our digit counter, generate a
digit strobe, look up the digit in a table
to generate its 7-segment pattern, and
send that pattern to the display. Call it
50 instructions for now, although this
is probably generous for most
real microprocessors.

The system has three tasks:
collect values from the ADC, compute
a 256-point FFT, and display the
results on the LED display. The ADC
produces 44,100 values each second
that must be saved in groups of 256.
When a group is complete, the second
task computes the FFT, and when the
results are available, the third task
displays them one at a time on the
multiplexed display. About 172 groups
(44~‘ooh56) are processed each second (one
every 5.8 ms).

Finally, when the counter
overflows (and the oven is
running), we need to increment
an internal millisecond counter
and decrement the display every
time it reaches 1000 (and
possibly turn off the.oven). Let’s
say 70 instructions.

When we put all of this
information into a table, several
things immediately become
obvious (see Table 2). First, all
the tasks need to run with the
same 1-ms period. Second, even
if all three tasks require their

u No

Figure ‘I--The top-/eve/ flowchart for the microwave polling loop
shows each task as a box.

Ef (CONNECTS TO RS-232)

ADO16 AID CONVERTER’ (16 ctranndls bB)..S 96.96
ADG6G A/B CONVERTER* (6 channel/IO bB)$124.90
Input voltage, amperage, pressure, energy usage,
joystii and a wide variety of other types of analog
stgnals. RE-422/RS4S5 availabte (lengths to 4,ooo’).
Call for info on other A/D configurations and 12 bit
converters (teninal block and cable sokf separately).
ADWE TEMPERATURE INTERFACE’ (6 ch)..$199.96
Includes term. block 6 6 temp. sensors (-40’ to 146’ F).
STA-6 MQITAL INTERFACE’(6 channel) S9Q.95
Input on/off status of relays, switches, HVAC equipment,
security devices, smoke detectors, and other devices.
STA-6D TOUCH TONE INTERFACE’................ S 134.90
Allows callers to select control functions from any phone.
PB-4 PORT SELECTOR (4 channels RS-422)....$79.96
Converts an W-232 port into 4 selectable W-422 ports.
CO-466 (RS-232 to RS-422/RS-466 convartar) $44.95

‘EXPANDABLE...expand your interface to control and
monitor up to 512 relays, up to 576 diiital inputs, up to
128 anal0
the PS-4, p:

inputs or up to 128 temperature inputs using
X-16, ST-32 &AD-l6 expansion cards.

FULL TECHNICAL SUPPORT...provided over the
telephone by our staff. Technical reference 8 disk
including test software & programming examples in
Basic, C and assembly are provided with each order.

HIGH RELIABILITY...engineered for continuous 24
hour industrial applications with 10 years of proven
performance in the energy management field.

CONNECTS TO RS-232, RS-422 or RS466...use with
IBM and compatibles, Mac and most computers. All
standard baud rates and protocols (50 to 19.200 baud).
Usa our 600 number to order FREE INFORMATION

PACKET. Technical information (614) 464-4470.

24 HOUR ORDER LINE (800) 842-7714
Visa-Mastercard-American Express-COD

International & Domestic FAX (614) 464-9666
Use for information, technical support &orders.

ELECTRONIC ENERGY CONTROL, INC.
380 South Fifth Street, Suite 604

Columbus, Ohio 43215-5438
,

#107
The Computer Applications Journal Issue #53 December 1994 17

System
Inputs

audio _
signal

Input
Transducers

Hgure 8- Ine specrrum analyzer taKes an auulo sIgnat as rnpuf anaproduces a uor-marrcf uksplay tor the user’s eyes

The display consists of 128

columns, and it would be most
convenient to tie the column-refresh
rate to that of the input rate. Since
there are 256 input values per group,
the display will actually get refreshed
twice per group, for an overall rate of
344 Hz, which should look fine.

Now we hit a snag. It takes the
DSP 5 ms to calculate our 256-point
FFT, yet we need to take in an ADC
value and refresh a display column
every !&oos or 22.7 vs. While we
could rewrite our FFT to pause at the
appropriate points to take care of these
activities, the resulting code would
violate all the principles of modular
programming and be next to impos-
sible to debug or modify.

This is where interrupts come to
our rescue. We take advantage of the
hardware’s ability to multiplex itself
between two software programs-one
program does nothing but compute
FFTs and another handles I/O. Obvi-
ously, these two programs need to
communicate with each other, and the
trick to using interrupts effectively is
understanding just how much (or how
little) communication is required. A
data-flow diagram is an incredibly
useful tool for this.

THE DATA-FLOW DIAGRAM
The data-flow diagram is some-

what analogous to the flowchart or
control-flow diagram, but rather than
showing how the execution proceeds
in time, it shows the flow of informa-
tion among processes.

The processes are shown as circles
and the information or data structures
are shown as boxes. Circles are
connected only to boxes and never
directly to other circles. An arrow
drawn from a circle to a box indicates
that the process writes or updates that
data structure. An arrow from a box to
a circle indicates that the process reads
the data structure.

The processes are assumed to be
running in parallel, although in most
real systems, they are really just
multiple tasks running on a single

The data-flow diagram
also helps bring out
potential problems such as
having two processes that
update the same data
structure (two arrows
pointing to the same box).
In this situation, care must
be taken to ensure that
only one of the processes
can make its update at a
time. If one process
interrupts the other, then
the structure can be left in
an inconsistent state with
some data from one
process and some data
from the other.

Figure 9 shows the data-flow
diagram for the audio-spectrum
analyzer. There are three processes,
two double buffers, and a l-bit flag
that controls which set of buffers is
being used by each process at a given
time.

The input routine collects values
from the ADC into input buffer #l.
When that buffer fills, it sets the flag
and begins filling input buffer #2.
When the second buffer fills, it clears
the flag and goes back to buffer #I.
Similarly, the output routine sends the

CPU. The important thing is that the data from output buffer #l to the LED
data-flow diagram does not specify the display when the flag is cleared and
order in which things happen. Hence, sends data from buffer #2 when it is
it helps to make clear what communi- set.
cation among the processes is required The FFT routine has four states:
so that things happen in a particular
order when needed. l wait for the flag to be set

Processing

Figure 9--The data flow diagram for the spectrum analyzer shows how to partifion the individual activities.

18 Issue #53 December 1994 The Computer Applications Journal

l calculate the FFT over
input buffer #l, placing
the result into output
buffer #l

l wait for the flae to be

How often? How lona? CPU utilization

Scan display column
systems, starting with overall

cleared
l calculate the FFT over

I I
Table 3-The task list for the analyzer shows why we need to use an interrupt and

with the lowest-level primi-

verifies that the CPU is not overloaded. tive operations that are
input buffer #2, placing
the result into output buffer #2, then
go back to state 1

You can see that this routine and its
programmer can be essentially un-
aware of the actual I/O activity.

The hardware switches between
the two software programs controlled
by the interrupt, which is generated
every time the ADC has a new value.
The activities of the FFT are sus-
pended, the new ADC value is stored,
and new row and column data are
output to the display. As long as the
total CPU time, including the context
switch, doesn’t exceed lOO%, then the
analyzer will work well (see Table 3).

This may seem like high utiliza-
tion to someone used to working with
general-purpose microprocessors. But,
since there is no variability in the
execution times of any of the tasks,
there’s no real need for any padding.

GENERAL GUIDELINES
Let’s take what we’ve seen here

and try to formulate some general
guidelines about polling versus
interrupts. Of course, there are no
hard-and-fast rules, and very often a
hybrid approach is called for.

l If all of the tasks in the system can
be made to run equally often, and
the total execution time of all the
tasks is less than that period, then
polling will generally produce a
simpler system.

l If the tasks run with widely varying
periods, or the periods cannot be
synchronized with each other,
interrupts are strongly preferred.

l If any one task takes longer to run
than the minimum periodicity of
any other task, then interrupts are
almost certainly required.

The real trick comes in not using
more interrupts than you really need.
For example, in a complex system,

there might be a group of tasks which
fall under the first guideline when
taken out of the context of the system.
It might be wise to tie the entire group
to a single-timer interrupt whose ISR
executes them in sequence. You can
then go back and evaluate the remain-
ing tasks in light of the resulting
simpler system context.

CONCLUSION
By considering the embedded

computer and its firmware as a state
machine and seeing how the firmware
specifies state-machine behavior, we
get a better feel for how the software
and hardware interact. Data-flow and
state diagrams help make the structure
of the system and constraints on its
implementation clear.

available. In addition, we
have developed some guidelines that
help to guide the decision about
whether to use polled I/O versus
interrupts in system design. l&)

Dave Tweed has been developing real-
time software for microprocessors for
more than 18 years, starting with the
8008 in 1976. His system design
experience covers the gamut from
supercomputers and workstations to
microcomputers and DSPs. He may be
reached at dave.tweed@circellar.com.

401 Very Useful
402 Moderately Useful
403 Not Useful

ImageNation Corporation
Vision Requires Imagination

800-366-9131
p.0. BOX 276 BEAVZKTON. OR 97075 USA PHONE (503)

1the CXlOtprecision video frame 1
grabber for OEM, industrial and scientific

applications. With sampling jitter of only +3 nS
and video noise less than one ISB, ImageNation
breaks new ground in imaging price/perfor-
mance. The CXlOO is a rugged, low power, ISA
board featuring rock solid, crystal controlled
timing and all digital video synchronization.
A Software developers will appreciate the simple
software interface, extensive C library and clear
documentation. Ihe CXlOO is a software com-
patible, drop-in replacement for our very
popular Cortex I frame grabber. A CalI today
for complete specifications and volume pricing

TP~~~~~~~~ FRAME GRABBER ’
FOR ONLY $495*

- CXlOO FEATURES -
n Crystal Controlled Image Accuracy
. Memory Mapped, Dual-Ported Video RAM
. Programmable Offset and Gain
. Input, Output and Overlay LIlTs

512x486 or Four Images
of 256x243 (CCIR 512x512 & 256x256)

. Monochrome, 8 Bit, Real Frame Grabs

. Graphics Overlay on Live or Still Images**
External Trigger Input

. RGB or B&W, 30 Hz Interlaced Display

. Auto Detect, Auto Switch
n VCR and Resettable Camera Compatible
. Power Down Capability
n BNC or RCA Connectors
. Built-In Software Protection**
.63 Function C Library with Source Code
. Text 8r Graphic Libtaty with Source Code
. Windows DLL, Examples and Utilities
. Software also available free on our BBS
. Image File Formats: GIF, TIFF, BMP, PIC,

PCX,TGA and WPG
** “r”n”NS ~v~\IAIIARI.r 1r

*SINGLE UNK P R I C E .

641-7408 FAX (503) 643-2458 BBS (503) 626-7763 ,

The Computer Applications Journal Issue #53 December 1994 19

All Together
Now
Writing
Multiuser
Application
Sofware for
ACCESShus

I

David Rodgers &
Peretz Tzarnotzky

CCESS.bus is a
erial communica-

ion protocol between
computer host and its

peripheral devices. It provides a
simple, uniform, and inexpensive way
to connect peripheral devices such as
keyboards, mice, joysticks, modems,
monitors, and printers to a single
computer port.

ACCESSbus (a bus for connecting
ACCESSory devices to a host system)
was defined and developed by Digital
Equipment Corporation. DEC offered
it to the computer industry as an open
standard, enabling any vendor to
implement it on host systems or in
peripheral devices without fees or
royalties.

Although ACCESS.bus protocol
architecture is an open industry
standard, it is controlled and main-

tained by the ACCESSbus Industry
Group (ABIG). Significant corporate
and individual members, representing
all facets of the computer industry,
participate in the evolution, definition,
and proliferation of ACCESS.bus
technology.

ACCESS.bus is a system for
connecting up to 125 I/O devices to a
single port on a host computer.
Interface adapters to ISA-based PC
systems and SPARCstation SBus
systems facilitate easy connection to
common hardware installations.
ACCESS.bus peripheral I/O devices
(keyboards, mice, trackballs, etc.) are
already available from leading manu-
facturers such as Logitech, Key Tronic,
and Lexmark, to name a few. Full
peripheral and software application
development tools are also available
for easy ACCESSbus product develop-
ment. System-board-level adaptations
of ACCESS.bus are currently being
evaluated by several personal com-
puter systems manufacturers.

As well, the ACCESS.bus protocol
is general enough to accommodate a
wide range of specialized vertical
applications including point of sale,
education, embedded control, virtual
reality, and PC-based games. See
Figure 1 for the typical ACCESS.bus
system.

ACCESS.bus data-transmission
technology (clock, data, power, and
ground) provides microcontroller
integration on various open and

inter
Modem

ACCESS.bus

Figure l-/n a typical ACCESSbus deskrop comguraoon, me usual nesr or caoles reqoreo IO connecr exremal
peripherals is replaced by a single four-conductor cable.

2 0 Issue #53 December 1994 The Computer Applications Journal

proprietary operating platforms and
peripherals. From medical imaging and
training systems to multiplayer,
multimedia computer games, from
point-of-sale systems integration and
data collection to set-top cable
converters, ACCESS.bus has evolved
into a versatile and powerful tool.

MULTIPLAYER GAMES
With the ACCESS.bus hardware

interface defined and stable, software
application opportunities are now
emerging. Three key market areas
have initial momentum in application
development: multiplayer PC games,
training and simulation, and educa-
tion.

Computer Access Technology
Corporation (CATC) developed two
multiplayer games to show the
features and benefits of the ACCESS.
bus. The Windows versions of black-
jack and Chinese checkers host up to
six simultaneous players. These games
highlight the simultaneous and
independent interaction of multiple
players, each with his or her own I/O
devices. Both these games use multiple
mice as their primary input device.
Joysticks, trackballs, tablets, or arrow
keys can also serve as the device-of
choice.

These games demonstrate AC-
CESS.bus technology, offering insight
into additional game possibilities.
Interactive video games, in which
combatants participate seated adjacent
to each other and not through a
network link, offer participants the
opportunity to heighten reactive and
cognitive-interactive computer skills
while also experiencing the emotional
intensity of shoulder-to-shoulder
competition and collaboration.

EDUCATIONAL SOFTWARE
Though most people queried

believe that computer games are more
recreational than educational, early
indications of the educational benefits
of games using interactive computer
skills show that games enhance
learning.

ABIG hosted a Software Creators
Contest over Internet. Several ab-
stracts for ACCESS.bus software
applications were submitted for

- 1 Black - GRD

-._---- 2 Green - SDA

- 3 Red - +5V

- y 4 White - SCL

Figure 2-ACCESS.bus uses a four-conductor, shielded, modular connector similar to a telephone RJ-11.

review. ACCESS.bus technology
games were predominant. Of the
submissions, four finalists were
picked. Finalists were chosen accord-
ing to the perceived functionality and
benefit of their ideas. Notably, the
proposals’ underlying theme involved
interactive learning tools disguised as
games.

Imagine the benefits of having the
entire classroom connected to a single
CPU. Schools would only need to
provide individual keyboards and
displays, not an entire CPU, for each
student. Interactive teaching, on-line
tutorials, and instant feedback on
lesson plans are only some of the
potential benefits. It would be easier to
monitor the students’ learning process.
Student-specific course curricula could
be administered and monitored with
greater expediency and accuracy. Most
importantly, the budget required to
supply a single school with computers
could be spread across the entire
school district.

With ACCESS.bus, educational
applications for text and document
storage and retrieval now offer a viable
alternative to the hard-bound book.
Standardized achievement tests can be
distributed, graded, and the results
tabulated with greater simplicity and
less cost. While the technologist and
entrepreneur might find this new
market opportunity appealing, so does
the taxpayer who endorses the applica-
tions because it makes better use of
the public coffers and increases the
potential educational benefit and
knowledge retention of the student.

TRAINING AND SIMULATION
SOFTWARE

ACCESS.bus is also useful for
more advanced forms of training and

technical orientation. The first flight
simulator available to the desktop
computer was a derivative of an actual
military training tool. Unfortunately
for the simulation program, the
“student” was only able to play
against the computer and not other
humans. No amount of “fuzzy logic”
is yet able to adequately imitate the
dynamic of human behavior. Virtual
reality does offer significant promise in
allowing many people to interact with
each other in simulated training or
game conditions.

ACCESS.bus offers the virtual
developer a complete hardware,
software, and application layer
interface with an easy and cost-
effective cabling and connector
interface. The programmer can realize
the full potential of a given creation
without prohibitive implementation
costs.

ACCESSbus LAYERING
The ACCESS.bus standard

includes a physical layer as well as
several software layers. The physical
layer defines the transmission medium
and connectors for the bus (electric
signals, cables, and connectors) and the
basic message format (Start, Stop,
Acknowledge, Arbitration, etc.). In
addition, ACCESS.bus specifications
describe base and application protocols
in communications between periph-
eral devices and the code on a host
computer.

THE PHYSICAL LAYER
At the hardware level, ACCESS.

bus physical layer is based on the well-
established Inter-Integrated Circuit
(1°C) serial bus developed by Philips/
Signetics. The serial bus architecture
features a single data line which

The Computer Applications Journal Issue #53 December 1994 2 1

Number
1
2
3
4

Bit Number
MSB LSB
7 6 5 4 3 2 1 0

destaddr 1 0
srcaddr 1 0

P (length
body

0
0
l

Destination address
Source address

Protocol flag, message length
1 to 127 bytes

Length + 4 1 checksum

Figure 3- ille ACCtSSbus message packet mcludes a standard header, a varfable-length body, and a checksum.

carries one bit of information at a
time. This, of course, results in lower
costs for cabling, connectors, and
controller circuitry.

The simple and efficient PC
protocol defines a symmetric, multi-
master bus on which arbitration
among contending masters is effected
without losing data. PC cooperatively
synchronizes the serial clock for
exchange of data between bus partners
with different maximum clock rates.
Addressing, framing of bits into bytes,
and byte-acknowledgment by the
receiver are all defined by a bus-
transaction scheme within the PC
protocol. PC microcontrollers handle
the logical requirements of bit-level
handshaking.

Pictured in Figure 2 is the
ACCESSbus physical connection. The
shielded cable contains four wires:
serial data (SDA), serial clock (SCL),
power (+5 V), and ground (GND). It
uses standard, shielded, modular
connectors available from AMP and
Molex. This shielding of the cables and
connectors enables ACCESS.bus to
meet FCC radiation and ESD require-
ments.

A typical ACCESS.bus device has
two connectors so that devices may be
chained on the single bus. Hand-held
devices may have a captive cable
joined to the bus trunk with a T
connector. The serial-data (SDA) and
serial-clock (SCL) lines work together
to define the information carried on
the bus.

The physical layer can support
clock rates up to 100 kbps.

BASE PROTOCOL The high-order bit of the third

metrical interconnect between a host

The base protocol establishes the

computer and a number of peripheral

nature of ACCESS.bus as an asym-

devices. The host plays a special role
as a manager of the ACCESS.bus.
Data communication is always
between host and peripheral device
and never between two peripherals.
Although the PC protocol provides for
mastery by either the sender or the
receiver of a bus transaction, the
ACCESSbus protocol defines masters
as exclusively senders and slaves as
exclusively receivers. Of course, the
host and all the devices are both
master senders and slave receivers at
different times.

messages (P = 0) and control and status

byte is a protocol flag (P), which

messages (P = 1). Datastream messages
carry the application information

distinguishes between data stream

exchanged between the device and the
host. The control and status messages
manage the ACCESS.bus protocol. As
well, the base protocol defines a set of
nine control and status message types
used in the configuration process (see
Table 1).

Two of the unique features of this
configuration process include autoad-

dressing and hot plugging. W i t h
autoaddressing, devices are assigned
unique bus addresses in the configura-
tion process without the need for
setting jumpers or switches on the
devices. Hot plugging enables devices
to be attached or detached while the
system is running.

The ACCESS.bus base protocol
defines the format of an ACCESSbus
message envelope, which is an I*C bus
transaction with additional semantics,
including checksum reliability control.
The base protocol defines a set of
control and status message types,
which are used in the configuration
process.

Figure 3 gives the ACCESS.bus
message format. The first byte in the
message is the receiver’s unique
address. The second byte contains the
transmitter’s unique address. The third
byte of a message comprises two fields.
Bits 2-7 provide a byte count for the
body of the message. Thus, a message
body can have O-127 bytes and is
followed by a checksum byte for error
control. The checksum is the bitwise
X 0 R of all the preceding bytes of the
message.

APPLICATION PROTOCOL
The application protocol is the

highest level of the ACCESS.bus
protocol. It defines message semantics
that are specific to particular func-
tional types of devices. Different
device types require different applica-
tion protocols.

So far, application protocols have
been defined for three device classes:
keyboards, locators, and text devices.
Each of these predefined classes is
designed to be broad. The keyboard
device protocol, for instance, defines
standard messages for reporting
keystrokes and controlling keyboard
peripherals. The protocol attempts to

22 issue #53 December 1994 The Computer Applications Journal

4
Cornouter-to-device Messaoes
Reset()
I d e n t i f i c a t i o n R e q u e s t 0
A s s i g n Address(ID strng, new addr)
C a p a b i l i t i e s Requestcoffset)
Enable Appl icat ion Report
Presence Check

b)
Device-to-cornouter Messaaes
A t t en t i on

Messaae Puroose
Force device to power-up state and default ACCESSbus address.
Ask device for its identification string.
Tell device with matching identification string to change its address to new address.
Ask device to send the fragment of its capabilities information that starts at offset.
Enable or disable a device to send application reports to the host computer.
Check if the device is present on the bus at the specific address.

Messaae Puroose
Inform computer that a device has finished its powerup or reset test and needs to be

configured.
I d e n t i f i c a t i o n Reply(ID s t r i n g) Reply to identification request with device’s unique identification string.
C a p a b i l i t i e s Reply(offset, data frag) Reply to capabilities request with data fragment which includes a fragment of the

device’s capabilities string. The computer uses offset to reassemble fragments.

Table l--The ACCESS.bus base promto/ defines nine control and status messages used in the configuration process.

define the simplest set of functions
from which industry-standard key-
board interfaces can be built.

Participation in all three of the
protocol levels requires understanding
of the device level. The lower levels of
this firmware are likely to be common
to many devices. Higher levels of the
firmware are expected to be more
specific to the device and the applica-
tion.

device microcontroller and the
application-specific I/O transducer
circuitry.

The locator device protocol
defines a set of standard messages for
reporting locator movement and key-
switch activation for mice, tablets, and
other positioning devices. Complex
locator devices can be modeled as a
combination of basic devices or as
their own device driver.

SOFTWARE ARCHITECTURE

The text device protocol provides
a simple way to transmit character or
binary data to and from stream-
oriented devices such as a
printer, bar-code reader,
or modem. The sequen-
tial-character-stream
model also serves as a
common denominator for
connecting RS-232
interface devices.

Figure 4 depicts the host software
structure of the ACCESS.bus. An
ACCESS.bus peripheral requires
software at both ends of the bus

ACCESSbus Application

The host-system operating
software must provide interfaces so
that application programs can access
both ACCESS.bus devices and the
ACCESS.bus itself. Since the lower
levels of the interaction are common
to diverse device types, they can be
supported by the same or similar
software modules.

The Mini Port Driver (MPD),
pictured in Figure 5, is a communica-

tion software layer that
separates the ACCESS.
bus specific hardware
from the ACCESS.bus

Designing devices
that conform to the
general device semantics
is a major advantage.
Device-specific software,
both in the device-
resident firmware and the
driver software needed for
the host operating
system, can be accessed

Base Protocol Physical Layer

Device A Device B Device C Device M

Figure 4-The application software running on the host is shielded from the ACCESSbus
controller by several layers of software.

manager.
The manager is a

central software driver
that controls the opera-
tion of all ACCESS.bus
devices attached to the
bus. It communicates
with the Mini Port Driver
on the one side and
with the ACCESS.bus
device drivers on the
other.

The manager initial-
izes and controls the
ACCESS.bus, recognizing
newly inserted or re-
moved devices. It links

by the new device.
In the future, it is

anticipated that more
device-specific application protocols transaction for managing all levels of device drivers and applications with
will be defined under the aegis of the the peripheral interaction-the specific ACCESS.bus devices, validates
ABIG. As well, any device vendor may physical layer, base protocol, and incoming messages, and serves as a
implement a special device protocol application protocol. As well, the bidirectional data switch routing
within the general message envelope peripheral device requires software to messages to and from the appropriate
defined by the base protocol. support communication between the device(s).

24 Issue #53 December 1994 The Computer Applications Journal

SOFTWARE DEVICE DRIVERS
The software device drivers serve

as a bidirectional interface between
application programs and a specific
type of device or devices (mouse
driver, keyboard driver, etc.]. Obvi-
ously, the appropriate driver depends
on the device type. However, there
may be further parameters that
characterize the device and affect the
choice of driver or specific arguments
for a selected driver.

It is important to remember that
the application program may also need
to be informed of these device param-
eters. The device-capabilities-informa-
tion feature of the ACCESS.bus
protocol gives a measure of device
independence in the selection of
drivers and informs the host software
of device characteristics.

APPLICATION LAYER
All application programs commu-

nicate with ACCESSbus devices via
an ACCESS.bus device driver or
directly with the bus manager.
Applications can use many devices of
the same type (multiple mice, multiple
keyboards).

TRANSFERRING DATA TO AND
FROM APPLICATIONS

For a device to be accessible to
application programs running on the
host, it must be connected to an
appropriate software driver. Establish-
ing this association is the last phase of
configuration.

Device-capabilities information
explicitly states a device’s functional
characteristics. Although these
characteristics are implicit in the
device-type designation contained in
the ID string, there are sometimes
variances among individual devices of
a given type. For example, the capabili-
ties information might include the
national alphabet for a keyboard or
resolution and units for a locator.

The capabilities information is
contained in an ASCII-encoded text
string stored on the device ROM. The
base protocol defines a simple and
compact grammar for building the
capabilities string.

The semantics are carried by
keywords. The base protocol defines

We’ve beefed up our well-respect
new releases featurina more capacity and

p;werful new capabilities. Experience the raw power and searing speed of these F+
field-tested development tools yourself. Be ready to kick a little butt and rest
assured that Team Paradigm is here to back you up. Y

n E X T E R M I N A T I N G P E S K Y

(‘M’f said.) I

I-800-537-5043
Paradigm Systems
3301 Country Club Road, Suite 2214 I

keywords which apply to all device
types. The application protocol defines
the keywords specific to certain device
types. To date, the application proto-
cols define semantics for the capabili-
ties information for generic keyboards,
locators, and general text devices. The
grammar allows for easy extension of
the capabilities-information specifica-
tion.

THE MOUSE DRIVER
The ACCESSbus Multiple Mouse

Driver(ABMSWIN.DLL)isadriver
developed by CATC and offered as part
of their Windows application develop-
ment kit.

The driver connects to as many
devices as specified in the (AbMs W i n]
section under the ma xDe v entry. The
application connects to this driver by
supplying the target queue (H W N D) for
mice movements and button state.
Interrupts are converted to Windows
messages and placed in the applica-
tion-input queue. These messages are
in raw format and cannot be used by
the application.

To convert the raw message into a
more useful format, the application
returns the messages to the driver,
which in turn processes the informa-
tion and sends additional messages to
the application message queue. The
messages include information such as
moves, button state, connect, discon-
nect, and so on. The processed mes-
sages are in the following format:

wParam:
LOBYTE is the mouse ID
HIBYTE is the button state

Param:
LOWORD is the x position in pixels
HIWORD is the y position in pixels

There are certain restrictions that
the programmer must plan for:

l The driver blocks information from
the application once a raw message
is sent. To continue to receive
information, the application must
return the raw message to the
driver. This feature prevents
overflow of the message queue.

l The driver is capable of handling one
window at a time. Mouse bitmaps
are displayed in the client area of
the connected window.

l Application information is saved and
restored when the mouse is in
motion, but there is no protection
to the mouse image. The applica-
tion must explicitly turn mice off
prior to screen update, and then
turn them on again.

MOUSE DRIVER SERVICES
Upon interrupt, the application is

notified with a raw message, “type
MICE-EVENT" which is defined as
WM_USER+128. The application must
then send this information to the
driverusingthe AbMouseMoveMouse
service. The driver processes the
raw information and finally replies
with one of the messages listed in
Table 2.

Specific service messages are also
necessary for complete application
compatibility. Many of the service
messages and their meanings are
included in Table 3.

The BEST in ROM
emulation technology:

Q I Mbit
0 IOOns
Q Price $295

ROMboy includes a 70 day ,
no -r isk money back guarantee !

C a l l T o d a y - 800-776-6423

Gra
Eng
Inc.

921 Eastwind Dr., Su

nmar
ne

:e 122
Westerville, OH 43081
514/899-7878
‘ax 614/899-7888

T E C H N O L O G Y

The O-Bit Solution

‘l‘he Cimetrics Technology 9-Bit
Solution is a complete microcontroller
network @LAN) that supports the SOS 1,
68HC 11, WC 186EB/EC, and many other
popular processors. The O-Bit Solunon
takes full advantage of n~icroproccssor
modes built in to microcontollers.
The 9.Bit Solution allows simple and
inexpensive development of master/slave
multidrop embedded controller networks.

- 8051, 68HCll. EOC186EWEC compatible

. A full range of other processors
supported

. Up to 250 nodes

* 16 Bit CRC error checking with
sequence numbers

* Complete source code included

26 Issue #53 December1994 The Computer Applications Journal

THE KEYBOARD DRIVER
The ACCESS.bus Multiple-

KeyboardDriver(ABKBWIN.DLL),
which is included in CATC’s

ACCESS.bus Manager

ACCESS.bus
application development kit, Mini Port Driver-MPD

connects to as many devices as
specified in the ma x De v entry of
the [AbKbWi n] section. The ACCESS.bus

application connects to this driver Firmware

by supplying the target queue
(HW N D) for keyboard events.

1

Interrupts and the resulting
12C Physical Layer

messages are processed in a re 5-The ACCESSbus Mini Port Driver is the ACCESSbus
manner similar to that described firmware-specific interface. The bus manager layer remains constant
for mouse drivers.. despite hosf firmware adaptions

CHINESE CHECKERS
Chinese checkers is a native

Windows game application. Similar to
the board game, the application can be
played by two to six players. Ten
marbles are “placed” in the player’s
section of a six-pointed star. Each
group of marbles is a color unique
from the rest of the groups and the
player of a group is represented by a
same-color pointing device (i.e., only
the player with the yellow cursor can
move the yellow marbles). The
number of players can be changed, and
one or more groups can be assigned to
the computer using the Game Setup
command. (Previous to the ACCESS
.bus implementation, Chinese check-
ers was a single-cursor game in which
one cursor could control and move any
and all marbles.)

The setup window is simple and
self explanatory. A group of marbles
can be added or removed, assigned to
an individual or the computer, allotted
a turn sequence, and changed color.
The addition or deletion of a mouse (or
another locating device) automatically
adds or deletes a cursor and group of
marbles for the associated player.

Each one of the active mice moves
a colored cursor while it is inside the
game window. You can turn the
colored cursor into a Windows system
cursor by moving it out of the game
window from the top side of the
window (the menu side). Once the
cursor is out of the game window, it
becomes a standard Windows mouse
cursor. When you move it back into
the application window, it automati-
cally reverts to a colored game cursor.

BLACKJACK
The ACCESS.bus version of

blackjack was created specifically to
show the simultaneous, multiplayer
capacity of the ACCESS.bus. The game
window gives a top-down view of a
blackjack table in a casino with
stations for six players, each having
their own betting chips and cursors.

Unlike Chinese checkers, which
operates in serial mode, each player
playing in turn, blackjack is a parallel
game-participants play simulta-
neously. Each participant can concur-
rently place a wager, buy more chips
from the cashier, and indicate a “hit”
or “stand” from the dealer.

All setup and operational charac-
teristics associated with the Chinese
checkers apply to blackjack. The game
includes on-line help, configuration of
mice and colors, rules of the game,
changing active mouse buttons, and
alteration of card design.

DESIGNING A GAME
Not only is the Chinese checkers

an adaptation of a classic board game,

it is an example of converting an
existing game into an ACCESS.
bus game. When David Williams
originally created the Chinese
checkers computer game, he
intended it to be a single-input-
device game. Whether play was
against the computer or other
humans, only one interface device
could be used by participants. As
one move completed, the next
person took over the mouse and
made his or her move.

The opportunity for each
participant to “own” his or her
pointing device (mouse, trackball,

or joystick) and the ability of the
software to accept and accommodate
actions of several devices brings a
whole new look and feel to the game.
No longer do participants need to
clamor for their turn at the mouse.
Players can even use the pointing
device of their choice.

MICROCODE DEVELOPMENT
The microcontroller in the device

provides the intelligence for managing
the device’s participation in all levels
of the ACCESS.bus protocol. Use of
components with PC interface
functionality simplifies development
of the lowest level of the interface and
protocol. Since the protocol concerns
only the bus communication methods
common to all sorts of peripheral
devices, they may be implemented by
reusing software previously developed
for some of these components. Devices
conforming to the semantics of the
predefined standard application
protocols may also benefit from the
availability of some off-the-shelf code
at the top level.

MICEPLDOWN (MICE_EVENT+l) /* left button pressed *I
MICE_LDBLCLK (MICE_EVENT+Z) /* left button dblclk */
MICEPLUP (MICE-EVENT+31 I* left button released */
MICEPMDOWN (MICE-EVENT+41 I* middle button pressed */
MICE_MDBLCLK (MICE-EVENT+51 /* middle button dblclk *I
MICE_MUP (MICE_EVENT+G) /* middle button releases */
MICE_RDOWN (MICE-EVENT+71 I* right button pressed */
MICE_RDBLCLK (MICE_EVENT+8) /* right button dblclk *I
MICE_RUP (MICE_EVENT+9) I" right button released *I
MICE-MOVE (MICE_EVENT+lO) I” mouse move */
MICE-CONNECT (MICE_EVENT+ll) I* mouse connected *I
MICE_DISCONNECT (MICE_EVENT+lP) /* mouse disconnected */

Table 2-Upon a mouse interrupt, the application is notified of a mouse event with a raw message. Once that
message is passed to the driver, the driver responds with one of these messages.

1

The Computer Applications Journal issue #53 December 1994 2 7

void far Pascal AbMouseDriverOn(HWND hwndApp, HDC hdc)
Invoked at initialization to indicatethetargetwindow for mice events. Zero is returned
for success, and a negative number if the driver is already busy with another applica-
tion.

v o i d f a r Pascal AbMouseDriverOffCvoid)
Disconnects the window from the driver.

int f a r Pascal AbMouseActiveDevsCvoid)
Returns the number of connected devices.

int f a r Pascal AbMouseGetPosCint i d , i n t f a r *btn, i n t f a r *x, i n t f a r *y)
Returns the mouse position and button state. If the mouse is disconnected, then the
service returns zero. If the mouse is connected, then the service returns a nonzero
value. bfn, x, and yare set with the button state and the mouse position. Buttons are
represented by bits: DO = left button, Dl = right button, and 02 = middle button.

void far Pascal AbMouseXorMouse(HDC hdc, int id)
XORs the mouse bitmap at the current position.

void far Pascal AbMouseMoveMouse(HDC hdc, WPARAM wParam. LPARAM event)
Must be called for each raw message from the driver. The wParam and IParam
parameters should be identical to the values passed via the MI C E_EV E NT message.

void far Pascal AbMouseClientArea(RECT far *rect)
Informs the driver of the client area size. The mice images are restricted to the client
area of the connected window. Invoke this service upon the WM_S I Z E message.

void far Pascal AbMouseSetPos(int id, int x. int y)
Sets a particular mouse position. At initialization, the position is set to x = 0 and y = 0.
The application may use this service to center the mouse in the client area. If a device
was connected while the application was running, the driver assigns the position as the
center of the client area.

int far Pascal AbMouseGetSysMouse(void)
Instructs the system mouse driver (ABMOUSE . DLL) to release one of its devices and it
releases the last active device. The multiple device driver (ABMSW I N . DLL) then
attempts to claim that mouse. Applications can use this routine to convert a system
mouse into an application mouse. The returned value is negative if no slots are
available in ABMSW I N . DLL driver. In this case, you can increase the number of the
devicesinmaxDevofthe [AbMsWinl sectionofyourACCBUS.INI.However,the
normal return is zero which the service returns even if no mouse is found (this occurs
when no system mouse is available). An application may test for this condition using
theAbMouseActiveDevs0 services.

i n t f a r Pascal AbMouseRelSysMouse(int i d)
Causes ABMSW I N . DLL to release a device and ABMOUSE. DLL to claim it. Applications
may use this service to convert application mice to system mice. Zero is returned for
success, and a negative value is returned if the device identification is invalid or not
connected.

void far Pascal AbMouseSetBitmap(HDC hdc, int id, HBITMAP hBmp)
Sets the mouse image. The mouse image is a 16 Y 16 bitmap that was loaded using
Windows’ Load6 i t ma p () . Note that the driver will not delete the bitmap upon
termination. It is the responsibility of the application to call Windows’
Del eteOb j ect (1. The returned value is 0 if the function is successful and -1 if the
device identification is invalid.

int far Pascal AbMouseRestoreBitmap(HDC hdc, int id)
Restores the default mouse image. Zero is returned for success, and -1 for an invalid
device identification.

int far Pascal AbMouseShortCapabilities(int id. DevProt far *devProt)
Fills the given structure devProt with the device’s prot, type, and model strings (see
ACCESSbus specification for the meaning of these parameters). Zero is returned for
success and -1, for invalid device identification. This service may be invoked to
determine the specific model of a device

Table 3-Under the ACCESS.bus protocol, service messages are defined to handle all aspects of the operation of
attached devices. This is just a sampling of some of the messages available to do mouse support.

2 8 Issue #53 December 1994 The Computer Applications Journal

HOST SOFTWARE
DEVELOPMENT

Vendors of host systems support-
ing ACCESS.bus must supply drivers
and other operating systems modules
necessary for access to the ACCESS.
bus port both for application program
clients and for other system software
such as the interactive I/O handlers of
the window system. Here again, many
ABIG member companies offer a wide
variety of products to support AC-
CESS.bus functionality, including a
manager, mini port and device drivers
for various operating systems, software
development kits, and source-code
modules.

OTHER GAMES
What fun is a game that cannot be

played with other people?
Chinese checkers and blackjack

are small examples of the feature
characteristics that ACCESS.bus offers
the game and entertainment industry.
Skill games especially, like chess or
checkers, can be played by humans in
front of a single video display without
the need to either share an input
device or be relegated to competition
with a computer.

Other classic casino games-
poker, roulette, and craps-are natural
candidates for ACCESS.bus support as
these games typically have several
participants involved at one time. As
in blackjack, each player needs
individual control over the amounts
and placement of their betting chips.
Simultaneous placement of wagers,
cashier interaction, and execution of
play would be easy and effective in the
ACCESS.bus environment.

Chinese checkers offers insight
into other board games such as
Monopoly, Life, or Clue. Although
some of these are available for com-
puter, they don’t offer player interac-
tivity. The games would gain new life
with control devices for each player.
Players would gain more control over
piece movement and game interaction.

The largest game-growth sector,
however, is the action-game market.
Imagine SuperMario with two or more
plumbers or a multiplayer Wolfen-
stein. The interactive opportunity of
these types of games would open new

markets to the manufacturers of both
the games and peripherals.

With ACCESSbus, the software
company would no longer be confined
to building games with the idea that
only one mouse, joystick, keyboard, or
trackball can be attached to the
system. In fact, the game company
could bundle new peripherals with the
game at attractive prices and be
assured that the new devices would be
compatible with the system.

BEYOND GAMES
ACCESSbus is an evolution of

peripheral connection technology for
the personal computer industry. The
ability to add or delete devices from a
system is only the first step. Intelli-
gent components of the entire systems
may soon have plug-and-play support
characteristics. The ability to plug in a
memory module or coprocessor, turn
on the system, and have the new
components recognized with the
power-on self test is a near reality.

The Video Exchange Standards
Association (VESA) has adopted
ACCESS.bus for use in display devices.
The display data channel (DDC)
specification incorporates ACCESS.bus
as a control interface for autoconfigur-
ation of a compliant display device to a
host computer system. The DDC also
facilitates control of the display
adjustments-refresh rate, vertical and
horizontal scan, resolutions, color
temperatures, screen position, bright-
ness, contrast, and other characteris-
tics-and lets users create software
files that load user-defined or preset
configurations to the monitor. Video
adapter vendors may offer ACCESS.
bus host interfaces in their products or
pass the ACCESS.bus information to
another device such as an add-on card,
adapter, or system motherboard.

Eventually, it may be possible to
hide the computer under or behind the
desk. Peripherals will be connected to
an ACCESS.bus port on the front of
the monitor. The need to run several
cables out the back of the system onto
the desk will be eliminated.

OTHER APPLICATIONS
While games are attractive and

splashy, many other applications

appear to benefit from the use of
ACCESS.bus. At this time, the most
pressing need is educational software.

In the classroom, where computer
literacy is as much a part of the course
curriculum as math and language, the
opportunity to place a computer
system at every student’s desk is not
feasible due to cost, configuration, and
connectivity. Even in today’s market
of low-cost, preconfigured, off-the-
shelf systems, the typical Windows-
compatible personal computer is about
$1,000. If you multiply that by 500-
1000 students per school, the overall
cost could approach $l,OOO,OOO per
school! Add in the cost of maintenance
and support-the computing class-
room becomes untenable.

Conversely, educational software
programs that serve an entire class
from one computer system makes the
possibility of the computing classroom
much more feasible. A keyboard with
a small LCD panel and an appropriate
software application would let the
teacher engage the class in a host of
on-line activities.

Computer systems manufacturers
are developing these hardware solu-
tions today. What’s needed the most is
a software base!

THE FUTURE OF ACCESS.BUS
ACCESS.bus is already a proven,

stable technology with a strong base in
embedded control and vertical applica-
tions. Even without the opportunities
of the game and educational markets,
the possibility of attaching multiple
peripherals to the power of the latest
wave of high-speed CPUs is attractive.
The system board and CPU certainly
have enough bandwidth and power to
support multiple concurrent tasks.

Why limit multitasking to four
COM ports and a couple of parallel
ports? ACCESS.bus not only provides
system connectivity, but may in fact
obviate COM ports and conventional
peripheral connectivity arrangements.

The fact that ACCESS.bus is an
open industry standard providing an
easy and effective connection to
multiple devices ensures its use and
growth in scope and appeal.

In fact, now is a good time to
initiate a ride on the ACCESS.bus

wave since the field is not crowded.
The hardware cost benefits are such
that new software and applications
will arguably achieve greater profit
margins and quicker market accep-
tance than new nonACCESS.bus
applications. (&)

David Rodgers is the director of sales
for Computer Access Technology.
After starting his career as an engi-
neering technician in 1983, he has
worked as a national sales and
marketing director for several large
companies.

Peretz Tzarnotzky is vice-presi-
dent of engineering at Computer
Access Technology and has 22 years
experience as an electronics and
systems engineer.

Either author can be reached at
catc@netcom.com.

For full details about the Software
Creators Contest:

ACCESS.bus Industry Group
370 Altair Way, Ste. 215
Sunnyvale, CA 94086
(408) 991-3517
Fax: (408) 991-3773
ABIG@netcom.com

For complete systems solutions
including development tools for
hardware, software, and firmware.

Computer Access Technology
Corp.

3375 Scott Blvd., Ste. 410
Santa Clara, CA 95054
(408) 727-6600
Fax: (408) 727-6622
catc@netcom.com

For educational software:

Emerald City Education
Lowry Building, Ste. 103
700 North Egan Rd.
Madison, SD 57042
(605) 256-5681

404 Very Useful
405 Moderately Useful
406 Not Useful

The Computer Applications Journal Issue #53 December 1994 2 9

Make the
Most of Your
DSP-based
Sound Card

Bob Fine

Q7 ave you ever

used a sound card

V
‘with your personal

computer only to grow
tired of using the standard applications
software? Have you ever wished you
could get into the “guts” of the sound
card, to go beyond the standard voice
processing and sound generation, to
make it do what you wanted! Or, have
you wished there were a convenient
platform for developing signal-
processing software and controlling it
with your PC, thereby giving your PC
access to real-world signals?

In this article, I will show you
how to access the DSP resource on the
newest sound cards, develop your own
algorithm code, download it to the
RAM on the card, and control the
software via a Windows program.

For the context of this article, I’ll
assume you have some experience
writing code for a DSP either in
assembly language or C. It would also
be useful to become familiar with
Windows programming (if you aren’t
already) before following the program-
ming tips. In the Windows environ-
ment, a good user interface can provide
a powerful, yet easy-to-use, mecha-
nism for interacting with the DSP-
based sound card. This article will
show a simplified Windows program.

A BIT OF HISTORY
As the popularity of the personal

computer grew in the 1980s so did the
number of programmers writing
entertainment software. This software
evolved from basic games to more
sophisticated programs that took
advantage of animation and color.
Sound was added to these games by

using the computer’s built-in speaker
to produce “blips” and “beeps”
sounds. There were no standards;
everyone just did their own thing.

The popularity of video game
devices that connected to a standard
television spawned the desire for
computer-based games that could
produce sound effects and music. This
led to the introduction of the first ISA-
bus sound card which featured sound
capabilities beyond those available
through the small speaker in the PC.

Creative Labs introduced one of
the first PC audio cards, the Sound
Blaster, and soon many software
developers began working on new
games and a number of musical and
MIDI applications (the applications
took advantage of the Yamaha 0PL2
synthesizer chip on the card). Decent
sound effects and music were possible
for the first time. The Sound-Blaster
standard was born out of the large
library of software titles that was
available.

In 1990, a number of hardware and
software companies formed the
Multimedia PC Marketing Council
(MPC). Part of the MPC specification
for minimum PC hardware require-
ments included a sound board with 8-
bit MIDI sampling in and out (11.025
kHz and 22.05 kHz sampling rates).
This formed the beginning of an
industry movement to offer developers
access to a standard platform and
meant that software written for one
MPC-compatible PC card could also
run on any other. However, there still
existed some incompatibility, and the
functions of the PC sound cards were
fairly fixed.

Figure I-First-generation sound cards had most of
their funtionality fixed in the hardware and had no
upgrade path.

3 0 Issue #53 December 1994 The Computer Applications Journal

Photo l--The Personal Sound System card, part of Analog Devices’ ADMK-610 manufacturing kit, offers high-end
audio, voice, and speech for personal computers.

Industry acceptance of the
Windows operating system led to the
eventual release of Windows multime-
dia extensions, which provided further
capabilities for processing sound and
MIDI files and more programming
tools for multimedia capabilities. This
movement helped overcome some of
the compatibility obstacles, but didn’t
do much to overcome the limited,
fixed-function capabilities of first-
generation sound cards.

FIRST- AND SECOND-
GENERATION SOUND CARDS

amount of game software developed
for these cards and their popularity.
The card’s functions, however, were
limited and fixed by the hardware. The
hardware limitations forced consumers
to buy a new sound card to take
advantage of newly available features.

Second-generation sound cards use
a programmable Digital Signal Proces-
sor (DSP) which flexibly processes the
signal fed to the card. Software mimics
the fixed functions found in first-
generation cards and provides func-
tions never before implemented.
Software upgrades replace hardware
upgrades-only the programmer’s
imagination and the speed of the DSP
cause a limitation. For the first time,

you can program the DSP on the sound
card for whatever function you desire.

Photo 1 shows the Echo Personal
Sound System, a second-generation,
DSP-based sound card. Other similar
sound cards include:

l Cardinal Digital Sound Pro 16
l Orchid Soundwave 32
l Wearnes Beethoven ADSPl6
9 Western Digital Paradise 16-DSP
l Adaptec AME-157x

A typical first-generation sound
card consisted of an ADC and DAC,
ASIC, FM-synthesis chip, jumpers, and
connectors. The functions of
the card were fixed in hard-
ware. The programmer merely
selected one of the fixed
functions by writing com-
mands to control registers in
the ASIC.

Every major DSP manufacturer
offers a chipset solution with a
software development toolkit which
can be used to build a DSP-based
sound card. Analog Devices, AT&T,
IBM, Motorola, and Texas Instruments
are involved in the specification of an
industry-standard DSP Application
Programming Interface (API) which
enables Windows programmers to
write generic applications software for
just about any sound card.

The generic design for a DSP-
based sound card consists of a DSP,
ISA bus interface, and analog I/O
circuitry. The common architecture
used by sound card manufacturers
such as those listed above is based on
an Analog Devices ADSP-2115 DSP
shown in Figure 2. The circuit has
three basic components: a DSP with
associated memory, a 16-bit analog
interface with programmable sampling
rate, and an ISA-bus-interface ASIC.

I won’t go into the details of the
hardware since you can easily buy a

sound card. Instead, I will
focus on the software develop-
ment process and some of the
underlying hardware which
deals with the communication
over the ISA bus.

I CD Audio-In

Figure 1 shows the
software partitioning of the
first-generation sound card.
The host applications accessed
the sound-card functions
through a driver. The driver
passed the proper commands
to the ASIC registers where
fixed functions were con-
trolled. Ease of programming
and existence of a standard
ushered in the considerable

Figure 2--The latest round of sound cards are based on a DSP, so offer much
improved functionality and flexibility. The operation of the board can be
completely changed simp/y by loading new software onto if.

GETTING AT THE DSP
Contrary to popular belief,

second-generation DSP-based
sound cards are RAM-based
and are programmable. I will
guide you through the step-by-
step creation of a DSP program
which runs the DSP of the
sound card and of a Windows
program which controls the
DSP-program execution. To re-
create or modify the code,

The Computer Applications Jwrnal issue #53 December 1994 31

you’ll need a Windows C
compiler (I used Borland C 4.0)
and a software development kit
from a DSP manufacturer (I used
Analog Devices’ kit).

Once you write your
algorithm software, you still
need to get the DSP code down-
loaded to the processor. Then,
you need to control the execu-
tion of the software interactively
via some host software. At this
step, you will need the help of
some software utilities or tools.

Figure 3 illustrates the
communication between the
host PC’s software and the DSP
software. The Windows applica-
tion makes API (or function) calls
Behind the scenes, the device driver
passes the information along the ISA
bus to registers inside the ASIC on the
sound card. These registers are
accessed by the DSP under control of
DSP code. The key software elements
controlling this communication are
the DSP manager and the DSP shell.

If you could look inside the DSP
API and the driver software, you would
see that the ASIC controls all the
information passed between the host
and the DSP. The ASIC contains a
number of data and control registers
which are mapped into the PC I/O
space and the DSP memory space.
Under program control, both the host
PC and the DSP can read and write the
ASIC’s registers. The ASIC also has
some additional hardware control lines
that can signal the host PC and reset
and interrupt the DSP. Figure 4
provides a more detailed diagram of
the connections between the ISA bus
and ASIC, and between the ASIC and

Figure 3-Support for code development tools is located not only on
the hosf PC but also on the sound board ifself.

ADSP-2115.
To load DSP code into DSP’s

program memory, the host first
loads an ASIC register with the
first instruction byte for the DSP.
The host then writes a control
word to the ASIC which, in turn,
resets the DSP. The DSP begins its
boot sequence, reading the ASIC’s
data register. The ASIC detects the
DSP read operation and suspends
the DSP by requesting its bus. At
this point, the DSP has read one
byte and is essentially frozen.

The ASIC detects the DSP going
into its bus-request mode and sends a
message back to the host requesting
another data word. While the DSP is
suspended, the host writes another
instruction byte and then a control
word to the ASIC. The DSP is taken
out of bus request and is allowed to
read the next byte. The DSP read
operation is detected by the ASIC, and
the DSP’s bus is requested again,
suspending the DSP.

This process of writing data words
to the ASIC, having the ASIC momen-
tarily request and release the bus of
the DSP, and letting the DSP read
another instruction word is repeated
until the DSP’s program memory is
filled with code.

Once the complete DSP program
is loaded, program execution starts.
This sequence of events is illustrated
in the flowchart in Figure 5. The host
can communicate to the DSP by
writing data to the ASIC register and
having the DSP read this register.

the host and the DSP. The underlying
communication is done for you, so you
don’t have to worry about explicitly
writing to the ASIC.

The manager is implemented as a
Windows Dynamically Linked Library
(DLL) and also contains a driver for
specific hardware platforms. The DSP
manager coordinates the resources of
the DSP subsystem and is not depen-
dent on the specifics of hardware
implementations.

In fact, the DSP manager will
adhere to the proposed API standards
being set by the Interactive Multime-
dia Association (IMA). Therefore, you
should be able to make DSP-API calls
in your Windows program and have
the function work with different
manufacturers’ DSPs.

The DSP shell consists of a set of
the ADSP-2100 family functions
which are written in assembly lan-
guage and can be called using C. The
functions are combined in a library.
The shell provides services for a DSP

Bus :

Data

Addr.

IRC!

DRQ-
DACK ESC614
IOR B U S

low Interface
AEN

Reset

SBHE

TC

l/O CH16

EMS ADSP-2115
DSP

Processor

Communication from the DSP to
the host is just the reverse.

This process may sound very
complex and, in fact, can be
complicated for the programmer.
But, this is why software devel-
opment tools are available. Such
tools simplify things by supply-
ing a DSP manager and shell.

The DSP manager is a
program (actually, a library of
functions) which runs under
Windows and provides overall
control of the DSP-based sub-
system. The DSP manager lets
you load and unload algorithms
on the DSP and provides a
communication system between

I

Figure 4-On DSP-based sound boards, an AS/C handles all the The operation of the host
interface details between the DSP and the ISA bus. application and the DSP program

algorithm such as initialization of
DSP hardware, real-time interrupt
servicing, algorithm and applica-
tion communication, audio input
and output device driver control,
and miscellaneous system and
debug services.

Again, you are freed from
worry about the details.

SENDING AND RECEIVING
MESSAGES

3 2 Issue #53 December 1994 The Computer Applications Journal

on the sound card is based on a
messaging scheme between the two
programs. The DSP manager and shell
each use a messaging scheme similar
to that of Windows. If you have
experience in programming for
Windows, this messaging scheme
should be easily followed.

Message values are usually
checked in a c a s e statement in your
program and appropriate action is
taken for each message. Messages are
sent and received via API function
calls. Function calls are made by the
host application to the DSP
manager and are also made by the
manager to the host application.
The same relationship holds true
for the DSP algorithm and shell.

The arguments of the function
describe the message. These
functions are used to carry out
specific tasks such as loading a
program onto the DSP or filling a
data buffer with samples from the
A/D converter. The messages are
used to inform the various program
modules of the status of operations.
Messages can also be associated
with a buffer for functions that will
either provide or require data. For
instance, a message could be used
to let you know that the buffer you
requested to be filled with data
from the ADC is full.

The generic message consists
of a DSP-algorithm identification
number (or handle), a message
identification number, and the body
(data words) of the message. The
DSP program will typically request
a message from the host application
which sits in a queue until a
message is ready. The host applica-
tion will do the same. These
function calls and messages will
become clearer when I show code
examples.

Now we can look at developing a
DSP program that can be linked with
the DSP shell of the software develop-
ment kit. For this example, I have
selected a FIR filter with a Windows
interface that lets you control the
operation of the filter by pointing and
clicking the mouse. You can use this
technique to create just about any
signal-processing function.

For simplicity, the example
program does not perform any error
checking. Most function calls return
an error code if the function was not
successful. To create a robust program,
you should always check for any
returned error codes and take the
appropriate action.

THE CODE DEVELOPMENT
PROCESS

There are actually three layers of
DSP code that will eventually be
linked together to form an executable

Host writes first instruction1 byte t;,,lC 1

1 DSP begms boot sequence 1

DSP grants the bus and

I I
DSP reads another

suspends operation instruction byte from ASIC

Host wtes first instruction“.;“’

Figure E--The procedure for downloading code to the
sound card DSP involves some nontrivial code, but isn’t
particularly hard to understand.

process of writing DSP code for a
sound card installed in a PC. Program-
mers of embedded DSP systems code
their DSP algorithm, then take the
assembled-and-linked DSP code and
either program it into an EPROM
(plugged into a socket on the board) or
use a communication connection
(usually via the RS-232 port) to
download the code to the DSP.

Even though the algorithm code
for the embedded system looks similar
to that for the DSP on the sound card,
other software components are also

required. The technique of getting
the DSP code onto the DSP is also
different. I will explore these issues
later on in this article.

The DSP assembly code for a
FIR filter is shown in Listing 1. The
code for a DSP-based sound card is
basically the same as for an
embedded system. The key
differences lie in the manner in
which the executable is created and
the way in which the program is
downloaded to the processor.

As you can see in Listing 1,

data values and filter coefficients
are fetched from memory. These
values are multiplied together and
the product is accumulated with
previous products. This process
repeats N times, where N is the
number of taps of the FIR filter.

For this program to run on the
sound card and process information
in real time, several things have to
happen. First, the program needs to
be loaded from the memory (or
disk) of the PC into the local
memory of the DSP. Filter coeffi-
cients also need to be loaded. The
processor must be initialized along
with the sampling characteristics

program which can be downloaded to of the A/D and D/A converters (i.e.,
the DSP. At the lowest level are the sampling rate). After a buffer is filled
DSP algorithm subroutines. These with data from the ADC, the data is
routines are called from a main
module which communicates to the
DSP shell. The shell handles all the
interrupt servicing, I/O, and communi-
cations to the host PC via the ASIC.

WRITING DSP CODE
If you have experience writing

DSP code for an embedded system, you
will note some differences in the

processed by the filter routine and a
result buffer is filled. Data values from
the result buffer are sent to the DAC.

From a user perspective, the
filtering is performed in real time and
no data is lost. However, there is a
small delay resulting from the storage
of data samples in the buffer. Tradeoffs
between the size of the data buffers
and the amount of interrupt-servicing

The Computer Applications Journal Issue #53 December 1994 33

overhead can be made by the program-
mer. The smaller the delay and the
less data stored, the more frequently
the DSP shell must vector to the filter
routine. A larger buffer results in less
vectoring, but a bigger delay.

A data-memory delay-line buffer
called da t. a is declared. Two coeffi-
cient buffers are also declared and
initialized with values from coefficient
files. For more flexibility, you could
also send the coefficient values to the
subroutine interactively. In the sample
program, a decision is made based on a
mode value sent from the host applica-
tion. The program then implements
either a high- or a low-pass filter
depending on the value of the mode.

Two functions, Re g S a v e and
RegRestore, are referenced in the
filter program. These functions
perform a save-and-restore of all
processor registers, so DSP shell data is
not lost. This is important since many
other ADSP-2lxx routines may be in
the system. By not paying attention to
the housekeeping of registers and data
values, both your program and others
may not work as expected.

The filter code shown contains
two subroutines. One initializes the
delay line buffer (i n i t F i 1 t e r_) and
the second performs the filter calcula-
tions(sFilter_).Whenthefilter
routine is called by the main DSI?
program, two parameters are passed to
the filter routine. The input data value
from the A/D converter is passed in
the AR register and the filter mode
value is passed in the AYl register.
The result of the filter is left in the AR
register to be passed back to the main
program.

CREATING A MAIN PROGRAM
As mentioned, a main program is

used to call the DSP subroutines and
to communicate with the host via the
DSP shell. Since the main program is
not performing time-critical calcula-
tions but acting as more of a control-
ling function, the main module can be
written in C.

Writing a main DSP program in C
that works with the DSP shell differs
from writing regular C programs.
Normally, a C program makes calls to
the operating system or runtime

libraries; the program controls the
system. In the DSP shell system, the
shell controls and calls your program
when an event occurs. Listing 2 offers
a sample main program.

Each algorithm has a d s pA 1 g -
Main0 function.ThedspAlgMain
function is the entry point to your
algorithm’s main module, much like
the ma i n function in C. The DSP shell

calls dspA1 gMai n with messages. The
first message that an algorithm
receives is an initialization message.
After receiving this message, your
algorithm may call DSP shell func-
tions to enable I/O devices, host
communications, or system service
messages. Your d s pA1 gMa i n function
must return to the DSP shell after
processing a message.

Listing l--This program implements a sing/e-precision, direct-form, NR-fi/fer structure. The coefficients in
this program are for a filter wifh a length of 81 faps. The filter can be programmed to select coefficients for a
low or high-pass filter. The fi/fers are designed via the Parks-McClellan algorithm and the coefficients are
sforedinfhefiles Hf_COEFf. DATand LP_COEFF. DAT.

.MODULE/RAM FIR_LPF;

#define taps 81
.VAR/CIRC data[tapsl:
.VAR/DM/RAM iO_pnt:
.VAR/PM/CIRC lp_coeff[tapsl;
.VAR/PM/CIRC hp_coeff[tapsl;
.INIT lp_coeff: <lp_coeff.dat>;
.INIT hp_coeff: <hp_coeff.dat>;

.external RegSave;

.external RegRestore;

.ENTRY

.ENTRY

initFilt

zero:

sFilter_

not_hp:

conv:

.ENDMOD;

initFilter_;
sFilter_;

call RegSave:
IO=^data;
MO=l;
LD=taps;
CNTR=taps;
DO zero UNTIL CE:

DM(IO,MO)=O;
dm(iO_pnt) = IO:
call RegRestore:
RTS;

save all regs except AR and AYll
start addr of delay line buffet-l
use address modify of 11
circular buffer size)

clear the filter delay line buffer1
save address pointer in memory}
restore registers 1

DIS M-MODE; perform two's complement math1
call RegSave; save all regs except AR and AYll
IO= dm(iO_pnt); load addr reg with buffer pointer)
MO=l; use address modify of 11
LO=taps; circular buffer size)
M4=1: use addr modify of 1 for coeff ptri
LLi=taps; coeff buffer size)
DM(IO,MO)= AR: store sample in data buffet-1
14= ^lp_coeff; addr of coeff buffer1
AR=PASS AYl; check mode, hi pass or lo pass)
if EQ jump not_hp: {if mode 0, use lo pass filter coeffl
i4=^hp_coeff: {if mode 1, use hi pass coeffl
CNTR=taps-1;
MR=O, MXO=DM(IO,MO), MYO=PM(I4,M4); (1st coeff, data1
DO conv UNTIL CE:

MR=MR+MXO*MYO(SS) MXO=DM(IO,MO), MYO=PM(I4,M4)
MR=MR+MXO*MYO(RND);
IF MV SAT MR;
AR = MRI; {pass result in AR register)
dm(iO_pnt) = IO;
call RegRestore; {restore registers)
ENA M-MODE;
RTS;

34 Issue #53 December 1994 The Computer ApplicationsJournal

The DSP main program included
in Listing 2 first defines the messages
it will send to or receive from the host.
I have created five messages that I
would like to use with my Windows
interface. I want to be able to turn the
code on or off, switch between a
filtered or unfiltered signal, and select
between a high- or low-pass filter. A
message structure is defined along
with some message and I/O buffers.
Two buffers of each type are declared,
so that while the host is working with
one (filling or emptying it), the DSP
code can be working with the other.
The host and the DSP exchange the
buffers to transfer information. This
way, it is guaranteed that each pro-

a) Funct ions Activity
dspGetMsg Gives a buffer to the driver to use when a message comes in
dspSendMsg Sends a message to the host
dspGetlo Gives a buffer to the device driver to fill
dspsendlo Sends a block of data to the I/O device
dspGetloDevConf Returns the configuration of an I/O device
dspSetloDevConf Sets the configuration of an I/O device
dspstartlo Starts an I/O device driver
dspstoplo Stops an l/O device driver
dspGetData Gives a buffer to the driver to use when data comes in
dspSendData Sends a block of data to the host

b) Functions Activity
dspLoadAlg Loads and starts an algorithm on the DSP
dspGetMsg Gets a message from the DSP algorithm
dspSendMsg Sends a message to the DSP algorithm
dspGetData Provides a buffer for data from the DSP algorithm
dspSendData Sends a block of data to the DSP algorithm
dspReset Resets the DSP device and returns it to a known state
dspUnloadAlg Terminates and unloads the algorithm on the DSP device

gram, both host and DSP, has access to
a buffer.

Table l--The DSP she// functions (a) run OR the sound board’s DSP chip while the LISP manager funcfions (b) run
on the hosf PC. Together they form a powerful interface.

The d s pA 1 g M a i n routine accepts
four calling parameters from the DSP tion. Here, the message queue is code (ADC and DAC) with the
shell: a message ID and three related started by requesting two messages dspSetIoDevConf function._.. .
data words. A c a se statement is used with the d s p G e t. M s g function. When Other messages are checked in the
to test the passed message ID when the DSP shell has information for the c a s e statements and are used to
the DSP shell calls dspA1 gMa i n. The algorithm, it fills and returns these confirm that a buffer has been filled or
DS PC B-1 N I T message is sent to tell buffers. The initialization routine also emptied by the I/O device driver or
d s pA 1 gM a i n to perform its initializa- sets the operating configuration for the that a message has been sent or

b Good 5tuff 4
Bar Code Sensor

Battery Controllers
Clock/Calendars

Digital Power Drivers
DTMF & Phone Interfaces
Firmware Furnace Widgets
HCS-II Hard-to-find Parts

1% Bus ICs
IR LEDs & Photodiodes

IR Data Link Parts
IR Remote Control

Laser Diode Controllers
Linear Hall Effect Sensor

Multiplexers & Crosspoints
Power Op Amp

Remote Temperature Sensor
Stepper Motor Drivers

Watchdogs & Power Monitors
8051 Information

and more!
Use a soldering iron? Get the parts!

UPS: Ground/Pnd day $6.5019.00 to 46 US states, COD add $4.50. PO Boxes and
Canadian addresses. $6 for USPS mail Check, MO, or COD only; no credit cards.
no open POs. NC residents add 6% sales tax. Quantity discounts stari at five parts

Data sheets included wth all parts

Call/write/FAX for serious/y tempting catalog...

Pure Unobtainium
F Your unusual part5 Source 4

13109 Old Creedmoor Road Raleigh NC 27613-7421
FAX/voice (919) 676-4525

NEW! UNIVERSAL DALLAS
DEVELOPMENT SYSTEM from $199!

l It’s a complete 8051-family single board computer!
l One board accommodates any 40 DIP DS5000,40 SIMM

DS2250,40 SIMM DS2252, or 72 SIMM DS2251, 8051
superset processor! Snap one out, snap another in.

l Programs via PC serial port. Program lock & encrypt.
l LCD interface, keypad decoder, RS232 serial port, 8-bit

ADC, four relay driver outputs, four buffered inputs.
l Power with 5VDC regulated or 6-13 VDC unregulated
l Large prototyping area, processor pins routed to headers
* Optional enclosures, keypads, LCDs, everything you need
l BC151 Pro BASIC Compiler w/50+ Dallas keywords $399

SYSTRONIX@ TEL:801.534.1017 FAX:801.534.1019
555 South 300 East, Salt Lake City, UT, USA 84111

._
#llP

The Computer Applications Journal Issue #53 December 1994 35

received by the host program. When a
buffer has been filled with data by the
I/O device driver, a D S PC B-G ET I 0
message is sent by the DSP shell to
dspA1 gMa i n. The pointer to the buffer
is saved and the buffer is sent back to
the DSP shell with the d s p G e t I o
function. When the data buffer has
been emptied by the I/O device driver,
a DSPCB-SENDIOmessageis sentby
the DSP shell to dspA1 gMai n. A
pointer to the buffer is saved and the
filter subroutine is called. Filtered
samples are put into the buffer, which
is then sent to the I/O device driver
with the d s p S e n d I o function.

Table la lists some examples of
DSP shell functions that can be called
from your d s pA1 g Ma i n routine. Most
of these functions return an error code
that should be checked.

LINKING THE DSP CODE TO THE
DSP SHELL

After the DSP main routine and
related DSP subroutines have been
written and assembled or compiled,
the object modules must be linked
with the DSP shell. The command
sequence to assemble, compile, and
link is shown in Listing 3.

The -c switch tells the C com-
piler (g 2 1) to produce only an object
file and not to link. The link command
(1 d 2 11 specifies a link file which
contains the names of the object
modules for the FIR subroutine and
the main module. The library, 1 i b -
debug. a, contains the DSP shell code.
The final command line invokes the
splitter which properly formats the
object code to create a f i 1 ename. 1 d
file. This file contains the executable
code that is loaded onto the DSP.

WRITING THE
WINDOWS HOST CODE

Programming in Windows offers
key advantages: a “point and click”
environment and the ability to run
several programs simultaneously and
share resources. Windows multimedia
extension provides the added conve-
nience of hooks for sound.

Using standard Windows program-
ming techniques, a window can be
created with a number of child-
window controls which relate to the

Listing I--This program offers an example of a main DSP module for a FIR-filter demo program.

#include "dspshel1.h"

/**+.* Define messages that will be sent from the Host **+.*/
/* to the DSP. Each message has an associated ID. */

#define msg_CODEC_ON 5 0 0
#define msg_CODEC_OFF 501
#define msg_SET_LOWPASS 502
#define msg_SET_HIPASS 503
#define msggFILTER_TOGGLE 504

,**** Define message parameters *******************,
/* (size of message and data buffers */

#define SIZE_DATAMSG
#define SIZE_IO-BUFFER k4

/* Size of message buffers */
/* Size of Codec IO buffers */

typedef struct { /* Create message structure */
WORD hAlg; /* The DSP alg handle */
WORD hApp; /* The Host app handle *I
WORD wMsgId; /* The message ID */
WORD wLen; /* The message data length */
WORD wData[SIZE_DATAMSGl; /* The message data */

i MSG_STRUCT;

MSG_STRUCT msgl, msg2; /* Use 2 message structures */
DSPIOCONF devConf; /* IO configuration struct */
DSPIOCAPS devCaps; /* IO capabilities struct */

,*********** Declare global variables and arrays ********,

int
int
int
int
int
int
int
int
int
int
int

InputDevice: /* Handle to Codec input *I
OutputDevice; /* Handle to Codec output */
hAlg; /* Handle to DSP algorithm "I
hApp; /* Handle to Host app "I
Talkihru = 1; /* Turn filter on (0) or off (1) */
FilterType=O; /* 0 = low Pass, 1 = Hi Pass */
bufferl[SIZE_IO_BUFFERI;/* Data buffer for DAC output */
bufferZ[SIZE_IO_BUFFERl; /* Data buffer for DAC output */
buffer3[SIZE_IO_BUFFERl: /* Data buffer for A/D input */
buffer4[SIZE_IO_BUFFERl;/* Data buffer for A/D input *I
lastInputBuffer; / Pointer for input buffers *I

,***** Declare external functions and data *****,

extern void initFilter(void); I* Initializes filter *I
extern int sfiltercint, int);/* FIR filter routine */

/*
/* Description
/*
/*
/* Parameters:
/*
I"
I*

WORD wParamP,-WORD wParam3) */
The dspAlgMain function is the entry */
point to the algorithm. The DSP Shell */
calls dspAlgMain with messages. */

WORD wCbId callback message ID *I
WORD wParam1 message dependant value */
WORD wParam2 message dependant value */
WORD wParam3 message dependant value *///* Return Value: none "I

,*********x**,

void dspAlgMain(WORD wCbId,WORD wParaml,WORD wParam2,WORD wParam3)

int *pBuf;
int wTemp;
int i, wNumDevs:
MSGGSTRUCT *pMsg;

/* Pointer to output data buffers */

/* ptr to a message structure */
/continued)

36 Issue #53 December 1994 The Computer Applications Journal

Listing 2-continued

switch(wCbId) i
case DSPCB_INIT: I* Sent

hAlg = wParam1: I* Save
hApp = wParam2; I* Save
msgl.wLen = SIZE_DATAMSG; i* init
msgZ.wLen = SIZE_DATAMSG:

by DSP Shell for init */
DSP algorithm handle */
Host app handle *I
message data length */

/* Request some messages from the DSP Shell "I
dspGetMsg(hAlg, (int *)&msgl, sizeof(MSG_STRUCT));
dspGetMsg(hAlg, (int *)&msgZ, sizeof(MSG&STRUCT));

initFilter0; /* initialize filter buffers */

/**** find out how many I/O devices there are ******,

wNumDevs = dspGetNumIoDevs0; /* how many devices? */
for (i=O; i<wNumDevs; i++) 1

dspGetIoDevCaps(i, &devCaps, sizeof(DSPIOCAPS));
/* only want 1848 ports, ignore other DAC */
if(strcmp (devCaps.szDeviceName,"ADl848") == 0) l

if (devCaps.dir == DSPIODIR-IN) InputDevice =i;
if (devCaps.dir == DSPIODIR_OUT) OutputDevice = i;

1
,**** initialize the Codec for 8 kHz ****,

dspGetIoDevConf(InputDevice, &devConf, sizeof(DSPIOCONF));
devConf.rate = 8000;
devConf.mode = DSPIOMODE_MONO;
dspSetIoDevConf(InputDevice, &devConf, sizeof(DSPIOCONF)):
break: /* end of DSPCBBINIT msg handling */

case DSPCBBCLOSE:
dspStopIo (hAlg, InputDevice);
dspStopIo (hAlg, OutputDevice);
break;

case DSPCBBSENDIO: /* buffer was emptied by output I/O device */
if (wParam3==0) i

pBuf = (int *)wParamZ: /* save pointer to buffer */
/* if talkthru mode, just copy in buffer to out buffer */
/* if not talkthru, put filtered samples in out buffer*/
for (wTemp = 0; wTemp < SIZE_IO_BUFFER: wTemp++) i

if(TalkThru) pBuf[wTempl = lastInputBufferLwTemp1;
if(!TalkThru) pBufLwTemp1 = sFilter(

lastInputBuffer[wTempl, FilterType);

/* requeue the output buffer */
dspSendIo(hAlg, OutputDevice, pBuf, SIZE-IO-BUFFER):

break:
case DSPCBBGETIO:

if (wParam3==0) i
/* Buffer was filled by I/O device*/

1astInputBuffer = (int *)wParamZ; /* pointer to buffer */
/* requeue the input buffer */
dspGetIo (hAlg,InputDevice,(int *)wParam2,SIZE_IO_BUFFER);

break:
case DSPCB_GETMSG:

pMsg = (MSGGSTRUCT *) wParam2; /* save pointer to message *,
switch(pMsgm>wMsgId) i

case msg_CODEC_ON:
/* initialize I) buffers, 2 for Xmit and 2 for RCV */
for (wTemp=O; wTemp<SIZE_IO~BUFFER; wTemp++) 1

bufferl[wTempl=O;
bufferZLwTempl=O;
buffer3LwTempl=O;
buffer4[wTempl=O;

/* send buffers to IO for input/output */
dspSendIo (hAlg, OutputDevice, bufferl, SIZE_IO_BUFFER)

(continued)

execution of the DSP routines. In my
example, I have created six controls:

l Turn Codec On
l Turn Codec Off
l Enable/Disable Filter
l Select High-Pass Filter
l Select Low-Pass Filer
l Exit Program

I’ve developed a sample host
program, however there isn’t room to
list it here. It is posted on the Circuit
Cellar BBS for you to refer to in the
following discussion.

During the processing of the
W M-C R EAT E message, the controls are
created and the algorithm is loaded
using the d s p Lo a dA 1 g function. The
d s p Lo a d A 1 g function has the follow-
ing syntax:

LONG dspLoadAlg(dwDeviceID,
dwInstance, IphAlg,
IpAlgSection, dwcallback,
dwflags);

where dwDev i ce I D is the DSP device
number (the DSP manager can deter-
mine this for you), dwInstance
represents application instance
information, 1 p hA1 g is a far pointer to
an algorithm handle, 1 pA1 gSect i on
is a far pointer to a null-terminated
string identifying the algorithm to be
loaded, dwCal1 back specifies the
address of a call-back function where
Windows processes messages from the
DSP shell, and d wf 1 a g s is a callback
flag.

Since I am only sending messages
from the host to the DSP (no messages
are being sent from the DSP to the
host), I selected the CALLBACK-NULL
flag. If messages are to be sent from
the DSP to the host, a CALLBACK-
FUNCTION or CALLBACK-WINDOW flag
should be used to instruct the DSP
manager to send the message to your
W n d P r o c routine or your own callback
function.

The host program responds to the
six controls by sending a message to
the DSP shell via the DSP manager.
Table lb includes some examples of
DSP manager functions that can be
called from your host Windows
program.

The Computer Applications Journal Issue #53 DeFember 1994 37

Listing I-continued

dspSendIo (hAlg, OutputDevice, buffer-Z, SIZE~IO~BUFFER);
dspGetIo (hAlg, InputDevice, buffer3, SIZEEIO_BUFFER);
dspGetIo ChAlg, InputDevice, buffer4, SIZE~IO_BUFFER);
dspStartIo (hAlg, OutputDevice); /* start the Codec */
dspStartIo (hAlg, InputDevice);
break:

case msg_CODEC_OFF:
dspStopIo ChAlg, InputDevice); /* stop the Codec */
dspStopIo ChAlg, OutputDevice);
break:

case msggSET_LOWPASS:
FilterType=D;
break:

case msggSET_HIPASS:
FilterType=l:
break;

case msg_FILTER_TOGGLE
if (TalkThru) j

TalkThru = 0:

else /
TalkThru = 1:

break;

dspGetMsg(hAlg,(int *)wParamZ,sizeof(MSGGSTRUCT));
break: /* end of DSPCB-GETMSG */

case DSPCB_SENDMSG:
case DSPCB_ERROR:
case DSPCBBGETDATA:
case DSPCBKIDLE:
case DSPCBBSENDDATA:
case DSPCB-TIMER:
break:

/* unused messages */

A c a se statement is used to check pointer to the array will be specified in
the ID of the control (button) which theform (LPVOID)&msgl.wBody.
has been selected by the user. The The example host program only
d s p S e n d M s g function is used to send sends messages. For more flexibility,
the appropriate message to the DSP. In you would want the host program to
my example, a simple message is sent receive messages as well. The host
that has no additional data except a program can receive messages from the
message ID. A N U L L value is used DSP through W n d P r o c or through a
instead of the required pointer to the callback function that you specify.
message data and the data size is 0. If a These options are specified in the
message is sent with a buffer of data, a dspLoadA1 g function call.

Listing J--The commands to assemble, compile, and link fhe DSP code are besf placed in a bafch file.

set sdk=..\..\..

921 -a %sdk%\bin\psa\psa.ach -I%sdk%\include bobfir.c -c
921 -a %sdk%\bin\psa\psa.ach -I%sdk%\include fir.dsp -c
921 -a %sdk%\bin\psa\psa.ach -I%sdk%\include regutil.dsp -c
ld21 -i linkfile -a %sdk%\bin\psa.ach -e bobfir

-user %sdk%\bin\psa\libdebug.a -lib -x -g
sp121 bobfir bobfir -Id

set sdk=

SUMMARY
If you want to make the most of

your DSP-based sound card, customize
it by writing your own code. For
example, if you don’t like the quality
of the music synthesis on a DSP-based
sound card, remember it’s the soft-
ware, not the hardware, you’re listen-
ing to. Take a stab at writing your own
code. With a large installed base of
these sound cards, the task may even
turn out to be a profitable venture. 0

Bob Fine is product support manager
for Analog Devices’ DSP products. He
has over 10 years of DSP system
design experience and has published a
number of articles on DSP design
issues, He may be reached at
bob.fine@analog.com.

Software for this article is avail-
able from the Circuit Cellar BBS
and on Software On Disk for this
issue. Please see the end of
“ConnecTime” in this issue for
downloading and ordering
information.

Microsoft Windows Software
Development Kit (SDK), Muhi-
media Programmer’s Guide and
Multimedia Programmer’s
Reference.

Microsoft Windows Device Driver
Kit (DDK), Multimedia Device
Adaptation Guide.

Petzold, Charles. Programming
Windows: the Microsoft guide to
writing applications for Win-
dows 3.1, 3d ed. 1992.

ADSP-2100 Family Assembler
Tools & Simulator Manual, 1st
ed. 1993.

ADSP-2100 Family C Tools
Manual, 1st ed. 1993.

ADSP-2100 Family C Runtime
Library Manual, 1st ed. 1993.

SCOPE Technical Reference, 2d ed.
1994.

407 Very Useful
408 Moderately Useful
409 Not Useful

38 Issue #53 December 1994 The Computer Applications Journal

Canpiled by Janice Marinelli

he eye mouse offers in-
dividuals with extreme disabili-
ties the opportunity to commu-
nicate and control their environ-
ment.

For several years now, the
electrooculogram has been clas-
sified as a bioelectric phenomena
just as the electrocardiogram
(ECG) and the electroencephalo-
gram (EEG). The EOG measures
the changes in potential which
emanate from the eye orbit when-
ever the eye moves. This micro-
volt-signal passes throughout the
extra cellular fluid in the head
and is easily detected by scalp
electrodes on the face.

Taking advantage of this
technology, Eric designed an elec-
trode interface which enables in-
dividuals to manipulate a com-
mon “mouse pointer” on a per-
sonal computer using their eyes-
no bodily movement is neces-
sary. The ionic currents on the
surface of the skin are converted
to the electronic currents neces-
sary to drive the computer mouse.
The ionic current is amplified,
filtered, offset, and then run
through a PIC16C71.

The bulk of the software,
written as a mix of Forth and
68HC 11 assembler, was designed
bycreatingaflowchartrepresent-
ing how the EOG data is analyzed

and interpreted to create mouse
commands. The left/right andup/
down EOG voltages are directly
mapped to the X-Y cursor coordi-
nates on the computer screen.
Position shift is initiated after
the eyes have looked in a direc-
tion for half a second, and the
cursor continues moving in that
direction until it is stopped by
the double blink of the eyes. Since
it takes one second for most indi-
viduals to blink their eyes twice,
mouse movement is limited to 1
cm/s.

Test results reveal that dis-
abled persons were able to make
16 selections in any order in about
1.5 min. This marks a significant
improvement in the quality of
life for people who previously
needed an interpreter to only com-
municate yes/no eye blinks.

4 0 Issue #53 December 1994 The Computer Applications Journal

talking Santa? No. An
automated stocking stuffer? No.
Remote-controlled Christmas
tree lights? No. But, you’re get-
ting closer.

XMAS actually stands for an
X-10 compatible Miniblind Au-

tomation System. Faced with
needing to control some out-of-
reach blinds and the options of
either scaling custom-made,
hand-rubbed, slate-toppedspeak-
ers to get to them or buying a
$300-per-blind commercial solu-
tion, Herbert chose to go back to
the drawing board.

Instead, he designed control
circuits and a drive motor which
fit within the blind’s header as-
sembly. Anadapterunit connects
to an X-10 interface module

(TW523) and power supply. The
modular cable may be concealed
in a traditional telephone jack or
run through the walls to outlets
in the window sills for a more
professional installation. Up to
256 units may be connected with
each unit having a unique ad-
dress or up to eight units may be
grouped into one unique address.

XMAS interprets X-10 on,
off, bright, and dim commands as
open, close, up step, and down
step, respectively. There are 16
stages between full up and full
down. Control and programming
of XMAS units can be supplied by
many currently available home-
control products.

Although this was Herbert’s
first PIC project, the code turned

he RCSS is an add-on,
home-stereo component designed
for loudspeaker selection from
any infrared (IR) remote control-
ler. The remote can be used with
off-the-shelf IR repeater systems.

Scott’s primary concern for
the remote was compatibility.
But, since he couldn’t find appro-
priate learning algorithms and
specialized chips, he ‘decided to
develop his own. Finally, after
hours of examining IR codes, Scott
found a pattern that could be
implemented in firmware.

It appears that all remote
code sequences come in a pre-
amble, space, code-information
format. The real breakthrough

came when Scott determined that
the absolute difference between
the low and high count following
the preamble is significantly
greater than 0 for a binary 1 and
near 0 for a binary 0. This reduced
the difficulty of programming by
an order of magnitude.

Despite this breakthrough,
the IR code learning and recogni-
tion as well as the complete, in-
tuitive user interface still use
most of the microcontroller’s re-
sources. Every I/O bit, all32 bytes
of RAM, and all but 7 of the 504
bytes of ROM in Motorola’s
68HC705 are used.

The electronic parts for this
prototype unit were under $50.

out to be the smaller battle. The jack onto a 2.82-square inch,
challenge proved to be in placing single-sided circuit board.
a power supply, crystal, 3 flat So, Herbert’s speakers are
packs, a motor and driver, no longer in danger, protected by
optosensor, 2 limit switches, 15 a controller much less expensive
pull-up resistors, and an RJ- 11 than $300 per unit.

The Computer Applications Journal Issue #53 December 1994 41

Although a pessimist when
it comes to the latest in micro-
processor debugging and devel-
opment tools, Tom recognizes the
value of debuggers when it comes
to multiple software modifica-
tions.

He needed an emulator
which could provide both 16- and
32-bit EPROM arrays as well as a
high-speed and menu-driven in-
terface. Of course, to achieve high
speed, the command-line inter-
face has to be executed from
within batch files.

The tricky part came in de-
termining how to have multiple
emulatorscontrolledfromasingle
parallel port and cable. To solve
this problem, Tom tied all emu-
lators to a single parallel port bus.
He had the emulators work out
which bytes they should be stor-
ing.

And, it is compact. The
whole system is built on a couple
of PCBs, taking up no more real
estate than a single 32-pin DIP.
With a combination of standard
and surface-mount components,
the design stands no more than
an inch tall as well. Since power
is taken directly from the target
socket, there is not even the need
for a power supply.

Connection to the emulator
is made via a 26.pin female IDC
connector. This lets multiple
emulators run from a single cable
in a multidrop fashion and just
fits lengthwise over a 32-pin de-
vice.

So, here you have it-one of
the smallest, fastest, and cheap-
est emulators around.

Last year, the National Association of Broadcasting adopted a
standard for the Radio Broadcast Data System, frequently referred to
as RBDS. Based on the European RDS, it enables an ordinary car or
home radio to display digital station symbols which are recovered
from the inaudible 57-kHz band of an otherwise regular FM multiplex
signal.

Chris’s goal was to build an inexpensive add-on RDS decoder unit
that would work with any existing FM tuner while also displaying full
radio text messages and exploring various other types of transmis-
sions.

Although several manufacturers have inexpensive RDS chips
which include signal demodulator circuitry, he chose Philips’s
SAA6579T because it is readily available and well documented. He
also picked Microchip’s PIC16C84 for its fast Harvard architecture
and EEPROM structure.

Predictably, the real trick was decoding the 57-kHz signal. RDS
uses the concept of syndromes for synchronization and error detec-
tion. Data falls in 26.bit blocks and must be multiplied by a 26 x 10
matrix to give a lo-bit syndrome. You have to keep reading additional
bits until you’ve achieved synchronization. The calculation has to be
done repeatedly in less than 1 bit time which, at the rate of 1187.5 bps,
is 842 us.

Necessity is the mother of invention. Or so it seems, for when
Ken wanted to program the PIC16C64 and found that Microchip still
had no design tools available for it, he set off to create his own.

The Micro-bRISC device programmer offers low-cost, high-speed
support of the PIC16C64, ‘71, ‘74 and ‘84 microcontrollers. In fact,
Micro-bRISC firmware and software were specifically written in an
open-ended manner so that support of fu-
ture PIC16C6x, ‘7x, ‘8x microcontrollers
would not require a firmware upgrade.

The first step in creating the device
came by successfully following Microchip’s
serial programming specifications rather
than the parallel method used to program
the ‘71 and ‘84 chips. Although these first
accomplishments fell somewhat short, they
did set him on the right path.

Using the PIC16C57 to coordinate ev-
erything, Ken achieves one-chip design with
Micro-bRISC. To further streamline the de-
velopment process, the programmer inter-
faces to any PC printer port for quick data
transfer.

The quality of this
year’s entrants tookagreat
leap forward this year. For
most entrants, the design
and presentation was out-
standing. We encourage all
Design Contest winners
and entrants to write com-
plete articles about their
projects. Design Contest
articles willbehighlighted
with the finish-line logo
you see throughout this
spread.

If you would like
more information about
any of the projects, you
will have to patiently wait
for the full article to ap-
pear in an upcoming issue.
We will not give out the
addresses or phone num-
bers of any of our project
designers.

If you absolutely
must get intouchwithany
of them, you may send a
letter to the designer in
care of us. We will forward
your letter to the designer.
Send letters to DesignCon-
test Winner, Computer
Applications [ournal,

42 Issue #53 December 1994 The Computer Applications Journal

A RISC
Designer’s
New Right
ARM
Development
Boards and
Design
Specifics

Art Sobel
contrasted to the previous develop-
ment board for the ARM2. The
BlueStreak board plugged into an AT’s
ISA slot and operated as an ISA bus

0
first article (see CAT 51), I covered the

.L

background of the ARM, overviewing
existing systems and briefly introduc-
ing ARM architecture. In this article, I

L

will examine an ARM development
board and describe its design. The

) his is the second

third article, coming in the new year,
discusses software development with
ARM.

r’
article in a three-

part series about the
‘ARM processor. In the

broadened our market to include IC

master for downloading code. As you

designers and high-end programmers.
Also, a stand-alone board permitted

can imagine, some “compatibles” did

the umbilical cord to be broken; a user

not want to operate with an ISA

application could exist without a host
computer. The board was aptly dubbed
PID, which stood for Processor

master and hung up.

Independent Development.

An independent board meant that
the development software could be
located on UNIX workstations as well
as PCs. Workstation availability

When I joined VLSI in 1991, the
ARM600 was still on the drawing
board. It was apparent to me that the
chip would need a usable development
board for engineers and programmers
and a generous supply of RAM and
ROM for potential applications. I
wanted to ensure that other developers
would have a useful example of a

ARM Ltd. (in England) decided to
build a small board for the ARM60 and
call it PIE (Processor Independent
Evaluation). In addition, they were
writing cross-development software
and a PIE monitor program called
DEMON for DEbug MONitor. VLSI
and ARM Ltd. worked together to
ensure that DEMON could be ported
to the PID board and that development

ARM610 CPU

P a r a l l e l 0

LEDs 0

PGA expansion
socket

Figure l--The Processor hdependent Development (P/D) board simplifies ARM development

44 Issue #53 December 1994 The Computer Applications Journal

Clocks

+ NTRST
- TDO

Scan interface

Control
bus

Power

Interface

Coprocessor
Interface
ARM600 only

software would work the same on both
boards.

However, at this time, the
ARM600 is an orphan since it has been
replaced by the ARM610, which is
being mass produced for the Apple
Newton. The ARM610 comes in the
very small 144-pin Thin Quad Flat-
Package and lacks a coprocessor port
while the ARM600 is in a larger 160-
pin Plastic Quad Flat-Package. But, as
far as electrical and software specifica-
tions, they operate interchangeably.

In this article, I will be describing
the PID board because

l it is more usable than the PIE series
(the PIE has a very limited amount
of SRAM)

l PID has proven more popular with
our developers

l we have a greater quantity of PIDs
available for development

OVERVIEW OF THE PID BOARD
Figure 1 shows the simple board

architecture of the PID. The PID board
uses the ARM600 as its CPU, which
reflects the PID’s ancient, 1992 origin.
The ARM600 has an ARM6 CPU with
4 KB of cache, an MMU, and a write
buffer. In addition, the ARM600 has a
coprocessor port to be used with an
optional floating-point coprocessor
or other customer-invented coproces-
sors.

Figure 2-The ARM600/610 processor signals can be divided into seven groups.

The PID features a large amount
of DRAM (1-16 MB) using standard 80.
ns, 30-pin, &bit SIMMs. Four EPROMs
contain the C-DEMON and floating-
point emulator code. Board logic is
provided by QuickLogic PGA-based
memory and interrupt controllers.

The board also has a 16C551 serial
and parallel port chip. Communication
to the host computer is accomplished
through the serial port. The serial port
is connected to a DE-9 male connector
with PC pinout, and connection to the
PC is achieved through a null modem
cable. The parallel port is terminated
at a DB-25 female connector with a
pinout compatible with the PC. The
16C551 has an extra
general-purpose port
which is used for lighting
the LEDs.

Once the application
has been developed, it
can be transported to the
EPROM and live inde-
pendently from the host.
Expansion to a
customer’s application is
provided by an AT-like
slot which has a full 32.
bit interface.

FAST CACHE AND
FASTER SRAM

Because the FCLK
for the ARM600 is going

so fast (24 MHz, 40-ns cycle), external
SRAM would need to have 20-ns
performance or better to match the
performance of the cache in an
ARMbO-based system. Otherwise, it
would be unable to compensate for pad
delays on and off chip.

To avoid these problems, internal
memory is used. This turns out to be a
better solution in many ways since
internal memory is faster and has
much better total power dissipation.
When the cache is enabled, bus use
drops to about 15%.

GETTING TO KNOW THE ARM
Before designing a board for the

ARM600 or ARM610, it is wise to get
acquainted with the CPU pins (see
Figure 2). Grouped together are FCLK,
MCLK, and NWAIT. The internal
ARM6 CPU uses FCLK to access
internal cache or to do internal cycles
and uses MCLK to access external
memory or I/O. FCLK and MCLK can
be stopped to save power since the
CPU is fully static.

A CPU bus cycle is defined as
running from an active-negative edge
of the clock to the next active-negative
edge. The NWAIT signal is ANDed
with the MCLK and is used to cancel
the positive part of the cycle. So, a
constant NWAIT (low active) signal
will also cause the internal MCLK to
stop.

Bus control pins ABE, ALE, DBE,
MSE, and CBE are used to affect the
way the ARM operates on a computer

N W A I T -\ /-

Raw AddressXX-

Latched Address

14 Active cycle 4

Figure J-Among the ARM intedace signals are those that support
memory accesses.

The Computer Applications Journal Issue #53 December 1994 4 5

A24 LA24

A l LA1

A0 LAO

&K)

WE3

LNRW- D R A M
L N B W - signal c i rcu i ts -

L A 1 _

LAO _

IMCLK-

, LNRW

WE2

WE1

WE0

RAS

CAS

A[=:21 n------j Mux p MA[I o:o]

-

Figure 4-Control of the P/D memory is achieved with fhe MEMC3 QuickLogic PGA.

bus. The ABE (address bus enable)
signal enables the address pin drivers.
If a DMA device is enabled on the
same bus, the ARM’s address lines can
be turned off to allow for bus sharing.
DBE (data bus enable) is used similarly
to disable the ARM data bus. ALE
(address latch enable) is used to delay
the output of the address bus so it is
valid throughout the bus cycle. MSE
(Memory Sequential Enable) can be
used to disable the request to the
memory controller if two processors
are sharing the bus.

memory systems (e.g., DRAM),

The NRW (not read/write) is used
to indicate a read or write on the bus.
The NBW (not byte/word) tells the bus

sequential access can be made much

controller that the processor is
accessing bytes or words. When bytes

faster than random access.

are written, the lowest significant byte
in the string register is repeated four
times on each byte lane. Only one byte
lane can have an active write enable,
which is decoded from NBW, NRW,
and the lowest two bits of address.

ARM access to the bus is con-
trolled by the NMREQ, SEQ, LOCK,
NRW, and NBW pins. The NMREQ
signal low indicates that the ARM will
request the bus in the next cycle. SEQ
indicates that the address will be N+4.
In the ARM600, SEQ is always active
when NMREQ is active because
internal cycles turn MREQ off as the
clock is switched to FCLK. In many

LOCK tells the memory controller
that a lock-swap instruction is being
executed. This instruction is not
interruptible to ensure that operating
system constructs, like semaphores,
work correctly.

In the ARM600, coprocessor pins
are used when a floating-point unit or
another attached instruction-set
extender is added. A true ARM

coprocessor monitors the instruction
stream using the NOPC (not op-code
fetch] signal. When it recognizes its
own instruction, it waits for the ARM
to generate the CPI (coprocessor
instruction] signal before responding
with a CPA (coprocessor available)
signal.

If the coprocessor must take a
number of cycles to complete the
instruction, it generates a CPB
(coprocessor busy) signal to stall the
ARM. If there is no such coprocessor,
the lack of the CPA signal causes the
ARM to go to the undefined instruc-
tion trap, which is used, for instance,
to emulate a floating-point unit and
support the floating-point chip in the
generation of transcendental functions,
such as sine, log, and so on. The board,
however, comes only with a socket for
a floating-point coprocessor (the
floating-point coprocessor is available
from GEC Plessey Semiconductors if
you need one).

In the PID design, the address
signals are latched throughout the
active cycle by using an external-

The timing relationships of some
of these signals are shown in Figure 3.
To complicate life, the memory
request (NMREQ) and sequential
access (SEQ) signals appear one cycle
before the active cycle. The address
and the read/write (NRW) and byte/
word (NBW) signals appear one-half
cycle ahead of the active cycle.

0400,0000

ROM 16 MB

0300,0000
02Co,oooo Slot memory space 4 MB

0280,OOOO Slot I/O space 4 M B

0240,OOOO Pseudo DMA 4 M B

0200,OOOO internal peripherals 4 MB

not used 16 MB

0100,0000
DRAM/

Reset DMA
ROM[O] area 16 MB

OOlC select MPU vector
oooo ,oooo area

Figure 5--The P/D memory map includes a dual area
in low memory used by both a boot ROM and DRAM/
DMA.

46 Issue #53 December 1994 The Computer Applications Journal

Figure Ga-At the core of the P/D board are the
ARM processor, memory controller PGA, and
DRAM SIMMs.

Collection

Get all these capabilities and

Rllb

The Computer Applications Journal Issue #53 December 1994

address latch made from 74AC573s.
The PID board uses statically ad-
dressed ROM and I/O. The states of
the NBW and NRW signals are
captured at the beginning of a bus
cycle by the MEMC PGA and are used
to generate the appropriate RAM,
ROM, and I/O timing.

MEMORY CONTROLLER PGA
Control of the PID memory is

achieved with the MEMC3 Quick-
Logic PGA (see Figure 4). The memory
map (see Figure 5) covers only 64 MB
of total memory and is divided into
three areas: DRAM, ROM, and I/O.
The gate array generates a preset
number of wait states for each cycle

type.
MEMC3 controls the DRAM

multiplexed-address bus, RAS, CAS,
WE[3:0], ROMOE as well as the I/OCS,
I/ORD, and I/OWR signals. A fixed
counter produces a constant 15ps
refresh-request period which forces a
CAS-before-RAS refresh sequence. The
ARM writes single bytes by replicating
the byte in each byte lane (four times
total) and activating the proper byte
write. When NRW is high and NBW
low, the lowest two address bits select
the proper WE pin. For word writes, all
WE pins are driven low active.

The connections of the ARM600
to MEMC3 and the DRAM SIMMs are
shown in the PID schematics (see
Figure 6a). A 4%MHz oscillator is
connected to the FASTCLK pin.
FASTCLK is divided by two to make
the 24-MHz FCLK signal and then
divided by two again to make the 12-
MHz MCLK signal. The memory state
machine operates off inverted MCLK
and responds to NMREQ and the
addresses A[25:24] from the ARM600
to generate memory control signals
and wait states.

As Figure 7 shows, the sequencer
is in the IDLE state when there is no
MREQ from the ARM600 or RFREQ
from the internal refresh counter.
When there is an MREQ, the logic
checks the address range and responds
with DRAM and IR (I/O or ROM)
cycles. After reset, the ARM proces-
sors start execution at address 0. After
some initializing of ARM registers, the
code jumps to the real ROM location

PIG1 6C5x116Cxx Real-time Emulators
Introducing RICE16 and RICExx-Juniors, real-time in-circuit
emulators for the PIC16C5x and PIC16Cxx family microcontrollers:

affordable, feature-filled development systems from
a Suqgeeted Rdail for U.5. only $599 *

RICE16 Features:
n Real-time Emulation to 20MHz for

16C5x and 1OMHz for 16&x

n PC-Hosted via Parallel Port
n Support all oscillator type5

m 5K Program Memory
n 0K by 24-bit real-time Trace Buffer

m Source Level Debugging
i Unlimited Breakpoints

= External Trigger Break with either

“AND/OK“ with Breakpoints

Emulators for 16C71/84/64
available now!

n Trigger Outputs on sky Address Range n Support; 16C71,16C84 and 16C64 with
m I2 External Logic Probes Optional Probe Cards
n User-Selectable Internal Clock from n Comes Complete with TA5M16 Macro

40 frequencies or External Clock Assembler, Emulation Software, Power
n 5ingle 5tep, Multiple Step, To Cursor, Adapter, Parallel Adapter Cable and

Step over Call, Return to Caller, etc. User’s Guide
n On-line Assembler for patch instruction n 30-day Money Back Guarantee

n Easy-to-use windowed software n Made in the U.S.A.

RICE-xx Junior series
RICE-xx “Junio?’ series emulators support PlC16C5x family, PIC16C71, PIC16C04

or PIC16C6-4. They offer the same real-time features of RICE16 with the
respective probe cards less real-time trace capture. Price starts at $599.

PIG Gang Programmers
Advanced Transdata Corp. also offers PRODUCTION QUALITY
gang programmers for the different PIC microcontrollers.

n Stand-alone COPY mode from a master device n PC-hosted mode
for single unit programming n High throughput w Checksum verification
on master device n Code protection n Verify at 4.5V and 5.5V m Each
program cycle includes blank check, program and verify eight devices
n Prices start at $599

PGMlGG: for 160~ family PGM47: for 16CW34 PGMl7G: for 17C42

Call (214) 980-2960 today for our new catalog.
FarRICEl6.ZlPandotherproductdemos,callourE36Sat (214)900-0067.

Advanced Transdata Corporation Tel (214) 980-2960
14330 Midway Road. Suite 128. Dallas. Tocaa 75244 Fax (214) 980-2937

#117
The Computer Applications Journal Issue #53 December 1994 4 9

Figure Gd-The P/D board facilitates expansion and debugging
by providing an ISA bus connector and a logic anafyzer connector.
A PGA and a PAL hand/e I/O, DMA, and interrupt details.

Figure &The P/D board also allows the use of
an 82C500 FPA (floating-point accelerator)
supported by the ARM.

50 Issue #53 December 1994 The Computer Applications Journal

Figure 7-The P/D memoy state machine operates off the inverted MCLK signal
and responds to NMREQ and the addresses A[25:24] from the ARM.

latched and held to
the end of the
cycle by the
74AC573s. These
addresses are also
used for I/O
accesses. ROM
access is straight-
forward and lasts
for three MCLK
cycles, asserting
NMWAIT for two
cycles for a total
time of 240 ns. So,
when operating
out of ROM
without cache on,
the CPU has an
effective band-
width of about 4
MIPS peak. See
Figure 9 for a
graphic depiction
of ROM accesses.

I/O connection to the 16C551 is
shown in Figure 6c of the PID sche-
matics. Data is buffered through a set
of 74AC245s
before going to
the I/O sub-
system. Since
the I/O data is
also placed on
the expansion
slot, it is wise to
eliminate the
unknown
loading that
might occur. I/O
accesses (shown
in Figure 10) are
stretched to
seven MCLK
cycles (480 ns),
asserting
NMWAIT for
six cycles. The
state machine
starts at the IRl
state and
proceeds from
IR2 to 16, and
then back to R3
before going
back to IDLE or
to IRl for
another I/O
access.

(at address x3xx xxxx). The address
map is then set to normal operation
which enables DRAM accesses to low
address space.

DRAM accesses are shown in
Figure 8. When MREQ is received and
DRAM is selected, the RAS signal is
asserted in the middle of the first
MCLK cycle while the sequencer is
still in IDLE state. CAS is asserted
during the last half of the next MCLK
cycle while the sequencer is in
RCYCLE state. If a sequence of MREQ
accesses is presented to the memory
controller, RAS is held low and CAS
cycles with a new column address on
each cycle. The effective access time
for nonsequential cycles is then two
cycles (160 ns), and for sequential
cycles, it is one MCLK cycle (80 ns) for
a peak of 12 MIPS. The ARM600/610
will not go over a page boundary
without getting off the bus for at least
one cycle. This eliminates the need for
page detect logic, even though it has
been included.

The ROM circuitry is shown in
Figure 6b of the PID schematics. The
ROM data pins are tied to the memory
data bus, but the addresses are routed
through a set of 74AC573 latches.
Because the address bus of the ARM-
600 changes half an MCLK early in the
access cycle, the addresses must be

The I/OCS, I/OWR, and I/ORD
signals are provided by the MEMC3,
but are further decoded by the INTWT
PGA into I/OR or I/OW and MEMR or
MEMW signals. This decoding is done
in order to support the split I/O and
memory space on the connector. The
I/O signals are soooo long because
many AT-compatible boards will not
work any faster than the leisurely AT-
bus signals. In fact, that is why there is
an MEMC3. The MEMC2, a much
faster board, produced a 240-ns I/O
cycle with 160.ns IjOWR and I/ORD.
This speed caused so much incompat-
ibility problems that we created the
MEMC3 to meet the need for a slower
AT-bus signal.

INTWT PGA DESCRIPTION
The expansion-bus connector, the

logic-analyzer connector, and the
INTWT QuickLogic PGA are shown in
Figure 6d of the PID schematics. The
INTWT (interrupt with timer), shown
in Figure 11, provides the BE[3-0] (I/O
Byte selects) and the I/O control

Address Nonsequentlal address

NMREQ MREQO MREQl

RAS ti

CAS r
State Idle Idle RCYCLE RCYCLE Idle

Figure &The DRAM control signals perform normal RAS-beforeGAS memory
accesses.

NMREQ
I

NWA’T r

RoMoE L
State Idle IRI IR2 R3

I(
Active cycle

H

Figure 9-ROM accesses slow down processor throughput considerably.

The Computer Applications Journal Issue #53 December 1994 51

L

-_-----__---____--____-___
NMREQ

NWA’T r
‘OCS \
IORDNVR

\ /

State Idle IRI IR2 l-3,1-4,1-5,1-6
Delay states

R3

Active cycle

Figure W--The I/O access fiming is s/owed down a great deal to be compatible with AT-fype expansion boards

1-l CS2-parallel

IRQ .
mask

AND

IRQ to ARM

IRQ
inputs

FIQ _
mask

i Mux _-Do E3D[7:0]

AND

FIQ to ARM

r

Figure 11 --The /N7MT (interrupt with timer) PGA handles the ISA-bus I/O and interrupt details.

signals (MEMR, MEMW, I/OR, and
I/OW) that go to the AT bus. The
interrupts are divided into two classes:
IRQ and FIQ (fast interrupts).

The AT bus has both I/O and
memory space. Therefore the huge
raw I/O space (16 MB) is split into a
local area, a slot DMA area, a slot I/O

area, and a slot memory area. Each slot
area has 4 MB A[21:0] of addressable
space. The AT slot’s normal interrupts
are routed to the INTWT and are
ANDed with a mask register and
ORed together to form the IRQ (a
lower priority interrupt to the
ARM60).

The DRQ signals are likewise
ANDed and ORed to form the FIQ. An
additional PAL16L8 is used to generate
DACKs and the TC signals, which
operate peripherals using the DMA
channels. The DACKs are memory
mapped and are operated by the
processor. A constant timer is used to
generated a periodic interrupt on IRQl
every 10 ms. The INTWT internal
timer can be used as an interrupt
source only, or the counter contents
can be latched and read to get fine-
timing information. Functions such as
interrupt vectors and priority are
handled by the interrupt software.

EXPANSION CONNECTOR
The standard AT pinout has been

changed to include all 32 bits of
interface on the connector [see Table
1). It was probably a mistake to make
any modifications to the AT pins, but
the slot connector still has been very
useful for test and development and is
sufficiently compatible to allow the
SMC Ethernet board and an old-time
AT hard-disk controller to run.

8- AND 16-BIT ACCESSES
ON AN AT BUS

Normally, an AT bus has a
mechanism to pack word accesses into
two byte accesses. I voted to jettison
this capability for hardware simplicity.
If the user wants this function, it can
be done in software. Each potential
application would be understood by
the programmer and designer well
enough to figure out how the interface
would operate. Listing I has examples
of data packing and unpacking.

FLOATING-POINT SUPPORT
Figure 6e of the PID schematics

shows the 82C500 FPA (Floating-Point
Accelerator). The ARM600 and
ARM700 have a coprocessor port that
can be used on the PID2 board with
the FPA. Currently, the FPA is
supplied by GEC Plessey only. The
ARM700, also supplied by Plessey, has
twice as much cache (8 KB) as the
ARM600 and can be carefully placed
on the same board (you have to be
careful because it is surface mounted).

Future versions of PID will have
the CPU mounted on a daughtercard

52 Issue #53 December 1994 The Computer Applications Journal

to make processor replacement
something that even I could do.

ARM-BASED
MICROCONTROLLERS

In addition to designing the PID
board, one my first jobs at VLSI
Technology was overseeing the
development of glue logic parts for an
AM29000-based laser printer control-
ler. It bothered me that we were using
this chip since its instruction bus and
data bus shared only one address bus,
and this function could easily be done
by the ARM. In addition, it was clear
to me that we could and should
include both the processor and the
laser printer peripherals on one chip.

AMD had the same idea and soon
came out with the AM29200, which
added to the CPU core most of the
logic for the laser printer. This move
placed the chip set recently developed
by VLSI for AMD customers into the
discard pile. However, as Tom Cantrell
pointed out (CA/ 33), the AMD29200
has very high power usage, which
effectively limits the operating
frequency without forced-air cooling.

When VLSI began making plans
for an ARM-based microcontroller, I
was given the responsibility of design-
ing the laser printer chip. After talking
with several customers and gathering
some great logic designers together, we
developed the 86C650.

Unlike the AM29200, the 86C650
uses only 500 mW with a 50.MHz
main clock and develops 9500 Dhry
stones for a sustained 5 MIPS. The
86C650 has built-in memory control
and important peripherals such as
synchronous and asynchronous serial
ports, parallel port, laser video port, 4-
channel DMA, and an external
peripheral expansion bus. And, since
every chip needs a development and
test board, the 86C650 microcontroller
chip was placed onto the 86LX650
laser printer controller board.

VLSI has developed another ARM
microcontroller aimed at portable
communicators based on the PCMCIA
electrical specifications and form
factor. This little guy, called Ruby, has
a peripheral PCMCIA interface, 8530
synchronous serial port, 8250 asyn-
chronous serial port, timer, interrupt

PINA (circuit)B C_o (c i rcu i t)D
1 GND (I/O CHK) GND BE1 * (SBHE) GND (MEMlG*)
2 DO7 RESET BE2* (LA23) GND (l/O1 6*)
3 DO6 +5 v D24 (LA22) NC (IRQlO)
4 DO5 NC (IRQ9) D25 (LA21) NC (IRQll)
5 DO4 NC (-5) D26 (LA20) DRQ4 (IRQ12)
6 DO3 DRQ2 D27 (LA1 9) DACKP (IRQl5)
7 DO2 NC (-12 V) D28 (LA1 8) DRQO (IRQ14)
8 DO1 NC (0 WS) D29 (LA17) D16 (DACKO*)
9 DO0 +12v D30 (MEMR*) D17 (DRQO)
10 NC (I/O CH RDY) GND D31 (MEMW*) D18 (DACK5*)
11 BEO’ (AEN) MEMW DO8 Dl9 (DRQ5)
12 LA21 (SAl9) MEMR* DO9 D20 (DACKG*)
13 LA20 (SA18) vow* DlO D21 (DRQG)
14 LA1 9 (SA17) l/OR* D l l D22 (DACK7*)
15 LA18 (SA16) DACKB* D12 D23 (DRQ7)
16 LA17 (SA15) DRQ3 D13 +5
17 LA16 (SA14) DACKl* D14 BE3* (MASTER*)
18 LA15 (SA13) DRQl D15 GND
19 LA14 (SA12) NC (Refresh)
20 LA1 3 (SAl 1) 1 ~-MHZ MCLK
21 LA1 2 (SAl 0) NC (IRQ7)
22 LA1 1 (SA09) IRQ6
23 LA1 0 (SA08) IRQ5
24 LA09 (SA07) IRQ4
25 LA08 (SA06) IRQ3
26 LAO7 (SA05) DACK2*
27 LAO6 (SA04) NC (TC)
28 LAO5 (SA03) NC (BALE)
29 LAO4 (SA02) +5 v
30 LAO3 (SAOl) NC (OSC = 7.7 MHz)
31 LAO2 (SAOO) GND

Note: DACK[S:O] requires PALl6L8 to be installed

Table l-The P/D expansion slot is based on the standard A J pinout, but has been changed to include all 32
processor bits.

controller, I/O extension bus, and 8255 Table 2 offers a comparison
parallel port. Currently, there is a PC- between the various ARM develop-
based development board for it, but it ment boards. All of these boards have a
is specialized for wireless PCMCIA common debugger environment. The
developers. operating system DEMON includes a

More microcontrollers are on the ROM debugger with a PC/OS real-time
horizon. One that I am enthusiastic kernel. The development hosts include
about is the ARM7500. The ARM7500, the PC, SPARC, HP, IBM PowerPC,
announced at the fall ‘94 Microproces- and NeXT (Black).
sor Forum, contains an ARM704 CPU
with 4-KB cache, memory controller THIRD-PARTY BOARDS
for DRAM and EPROM, interrupt, An ARM2-based module is
timer, keyboard, mouse, joystick, available from Applied Data Systems.
VGA, and sound output. I will report Called the Pixel Press, it attaches to a
on this part when the development computer parallel port, has an SVGA
board and software are ready. output port, and a serial port for

Features NPlE PID 86LX650
Processor ARM60 ARM600 86C650
ROM 1 27COlO 4 27CO80 l-4 27CO80
Main Memory 128-KB SRAMs l-l 6-MB DRAM l-l 6-MB DRAM
Communications RS-232 RS-232 RS-232

Parallel (Host) Parallel (Printer)
Coproc socket RS-170 Video

Dhrystone 20,000 Q40 MHz 28,000 Q24 MHz 9500 Q50 MHz
SRAM, 1 WS 4-KB cache 80-ns DRAM, 1 WS

Expansion PC/l 04 AT style XT style

Table 2-There are several ARM development boards available, each with its own advantages.

The Computer Applications Journal Issue #53 December 1994 53

debugging code. It can operate in a SUMMARY
high-level, interpretive-language
mode which includes move, draw
point, draw line, circle, fill, and
character drawing. It is used primarily
for offloading remote displays such as
air traffic control or other industrial
uses.

Simple development boards can be
made or bought that can harness the
power of the ARM600 and ARM6 10.
Microcontroller versions are being
made and introduced that will make
the task of using the ARM processors
even easier. &j

Listing l- The normal A J-bus mechanism of packing word accesses into two byfe accesses must be done
in software on fhe P/D board.

a) Pack bytes to double word
; IO Port pointed to by R5, R4 has DMA address, R6 is DMA limit,
; RO-R3 are used as scratchpad registers

DMALOAD8
LDRB RO, [R51 ; Load first byte into RO=O,O,O,BO
LDRB Rl, LR51 ; Load second byte into Rl
LDRB R2, LR51 : Load third byte into R2
LDRB R3, LR51 : Load fourth byte into R3
ORR RO,RO,Rl,LSL ii8 : RO <-O,O,Bl,BO
ORR RO,RO,RZ,LSL #16; RO <-O,BZ,Bl,BO
ORR RO,RO,R3,LSL 1124; RO <-B3,BZ,Bl,BO
STR RO,[R41,#4
CMP R4,R6
BNE DMALOAD8

b) Pack word to double word
; IO Port pointed to by R5, R4 has DMA address, R6 is DMA limit,
; RO-R2 are used as scratchpad registers

MOV RP,iI-1 ; RZ=OxFFFFFFFF a useful constant
DMALOAD16

LDR RO, LR51 : Load first word into RO=X,X,Bl,BO
LDR Rl, [R51 : Load second word into Rl=X,X,B3,B2
BIC RO,RO,RZ,LSL j/16: RO <-O,O,Bl,BO
ORR RO,RO,Rl,LSL i/16: RO (-B3,BZ,Bl,BO
STR RO, LR419114
CMP R4,R6
BNE DMALOAD16

c) Store double word to bytes
; IO Port pointed to by R5, R4 has DMA address, R6 is DMA limit,
; RO-R3 are used as scratchpad registers

DMASTORE8
LDR RO,CR41,#4 ; qet DMA DATA from memory
MOV Rl,#4
STRB RO, LR51
SUBS rl,#l
MOVNE RO,RO,LSR
BNE %BOl
CMP R4,R6
BNE DMASTORE8

d) Store double word to
; IO Port pointed to

ii8

RO <-B3,BZ,Bl,BO,Ol
Store byte into IO=BO,BO,BO,BO

shift data to right=O,B3,BZ,Bl
more shifts and stores

word
by R5, R4 has DMA address, R6 is DMA limit,

; RO-R2 are used as scratchpad registers

DMASTORE16
LDR RO, [R41,#4

STR RO, [R51
MOV RO,RO,LSR ii16
STR RO, LR51
CMP R4,R6
BNE DMASTORE16

get DMA DATA from memory
RO <-B3,BZ,Bl,BO
Load first word into I/O=B3,BZ,Bl,BO
shift data to right
Load first word into I/O=O,O,B3,BZ

Art Sobel is the hardware applications
manager for embedded products at
VLSI Technology. He has spent 24
years in Silicon Valley designing disk
drive electronics, disk drive control-
lers, laser interferometers, laser printer
controllers, many controller chips, and
speech synthesizers. He can be
reached at sobel_a@vlsi.com.

PIE and PID boards, ARM
coprocessors, and ARM Cross-
Development Kit 86CDEV-C
(including cross-development
software, toolkit, and manuals):

VLSI Technology
18375 South River Pkwy.
Tempe, AZ 85284
(602) 752-6630
Fax: (602) 752-6001

Other suppliers of ARM processors
and information:

GEC Plessey Semi. (U.S.)
1500 Green Hills Rd.
Scotts Valley, CA 95066
(408) 438-2900

GEC Plessey Semi. (U.K.)
Cheney Manor
Swindon, Wiltshire
United Kingdom SN2 2QW
(0793) 51800

Sharp Electronics, Inc.
5700 NW Pacific Rim Blvd.
Camas, WA 98607
(206) 834-2500

Other ARM suppliers:

Applied Data Systems, Inc.
409A East Preston St.
Baltimore, MD 21202
(410) 576-0335
Fax: (410) 576-0338

CASM Compiling Assembler
Nikos
1126 Taylor Draper La.
Austin, TX 78759

410 Very Useful
411 Moderately Useful
412 Not Useful

54 Issue #53 December 1994 The Computer Applications Journal

DEPARTMENTS
Firmware Furnace

From the Bench

Silicon Update

Embedded Techniques

ConnecTime

Ed Nisley

Journeyto the- m . A

Protected Land:
Fancy lext output and a
Boot Mystery c,0 ,

ur base camp at

r
’ 1 megabyte com-

V municates with the
outside world using

9600-bps serial data and a few LEDs.
Before venturing further into the
protected-mode wilderness, we need
more bandwidth for on-the-scene
reports.

A serial link can display relatively
slow status information such as a
register dump following a system
crash. It simply cannot keep up with
the torrent of information needed to
track the activity of a task-switching
operating system. If FFTS has 100 task
switches per second, it can send only
10 characters to the serial port during
each task!

One of Murphy’s corollaries says if
you don’t display all the information
all the time, the most interesting
crashes will show the least informa-
tion.

The Firmware Development
Board’s Graphics LCD Interface is a
better choice for a status display. It
doesn’t interfere with the PC’s BIOS or
video-display hardware, and a 640 x
200 panel has lots of room. The only
catch is that the CPU must build each
character literally dot by dot. This
means we should make some timing
measurements.

If your embedded application
doesn’t use the PC video display, of

56 Issue #53 December 1994 The Computer Applications Journal

course, you can show status informa-
tion on a standard CRT. Should your
desk have room for two monitors, you
can devote a second video channel to
the debugging display. The hardware
character generator makes video
output much faster than the roll-your-
own LCD interface.

This month, we’ll add the pro-
tected-mode code required for charac-
ter output to both a VGA board and
the Graphics LCD Interface. I’ll also
explore a mystery in one of the drivers
that may save your bacon some day.

ARRANGING THE CHARS
DOS regards even the fanciest

video hardware as a glorified Teletype:
characters appear one by one starting
at the upper left. When the bottom
line fills up, a vertical scroll makes
room for more text. The speed of that
operation contributes mightily to the
board’s DOS-video benchmark rating.
There is no standard way to position
the cursor or change text colors
without using ANSI control strings.

Fortunately, we use hardware that
doesn’t have to look like a dimwit
terminal. The real-time system-status
output will fit neatly on a fixed-format
screen which doesn’t scroll vertically.
Because a program generates all the
output text, presumably without
typing errors, we don’t need even
rudimentary character editing. Even
better, we can add features as we need
them rather than writing a huge lump
of code at once.

The status display does require
cursor positioning and color control,
but the prospect of writing an ANSI
command parser in protected-mode
assembler gave me pause. Rather than
get bogged down in overly complex
routines, I opted for a simpler system
with binary codes. If you’d like to
write a full ANSI decoder, the details
are in CA/ 46!

The code in Listing 1 copies a
string to the video display. When the
loop detects a V I DCM D byte, it calls the
command decoder to interpret the next
few bytes in the string. A trailing zero
marks the end of the string, an idiom
familiar to C aficionados.

Listing 2 is the video-command
decoder. The snippet of code following

Listing l--This routine displays a character string on the video hardware. The loop scrutinizes each byfe fo
locate cursor and color-control sequences as we// as the binary zero marking the end of the string. The input
parameters are the segment and offset of the string, which allows the string fo reside in any valid data
segment. A similar roufine produces output on the LCD panel.

PROC VidSendString
ARG StrSeg:DWORD,pString:DWORD
USES EAX,ESI,ES

MOV EAX,[StrSegl
MOV ES,AX
MOV ESI,[pStringl
OR EAX,ESI ; skip if pointer is null
JZ SHORT @@Done

@@Continue:
LOOS [BYTE PTR ES:ESIl ; fetch the byte
CMP AL,0 ; check for terminator
JZ SHORT @Done

CMP AL,VIDCMD ; command byte?
JE SHORT @@CmdCode ; yes, special case
CALL VidPutChar,EAX ; no, show the char
JMP @@Continue ; and pick up the next one

@CmdCode:
CALL VidCommand : yup, invoke command decoder
JMP @@Continue : and pick up next char

@@Done: RET
ENDP VidSendString

each CM P converts the byte after a
V I DCMD into a row, column, or
attribute. When we need a few more
commands, we won’t invoke any
rocket science to add them, although
changing to a table-driven decoder may
be a good idea at some point.

This simple command encoding
has a gotcha. Setting the cursor to row
or column 0 embeds a binary zero in
the string. Our command decoder
interprets the result correctly because
it expects a numeric value rather than
a character at that spot. The C-style
string routines, which we haven’t
written yet, will terminate early when
they encounter that zero. I opted for a
simple solution: the code ignores the
high-order bit of the row and column.
You can OR each coordinate with 80
hex or just replace each zero with 80.

Remember that only the FFTS
kernel will display status and tracing
information through this interface.
We’ll build a more polite routine for
user code when we need it.

The process of moving characters
and color attributes to the video buffer
should be familiar from previous
columns as well as your own experi-

ence in real mode. There is one
exception-we need a segment
descriptor for the video buffer!

GAINING ACCESS, LOSING RISK
The original PC had two video

adapters: a monochrome card (MDA)
for decent text and a color card (CGA)
for mediocre graphics with ugly text.
You could install both cards in the
same machine because their I/O ports
and memory addresses were different.
BIOS and DOS text output went to the
“primary” display selected by a
system-board switch.

The VGA BIOS ignores that
switch. It reads the monitor ID bits
through the video cable and sets itself
up accordingly. Fortunately, the PC-
compatibility barnacles dictate that
the BIOS data area must identify the
VGA as either an MDAish or CGAish
card. The advanced capabilities of the
VGA aren’t obvious at this level.

The segment descriptor required
in protected mode must include the
video buffer’s starting address and
length. The length is easy enough
because the BIOS puts the video page
size at 0040:004C. A standard 80-

The Computer Applications Journal Issue #53 December 1994 5 7

#118

Replace Four
Conventional PC/l 01

Modules with
One SuperXT’”

ZMF8680 cpuModule
nbedded PC/XT Controller w
ntelligent Power Managemer

PC/XT compatibility with 286 emulation
14 MHz, 16-bit 8086 CPU
+5V only; 1.6W at 14.3 MHz, 1 W at 7.2 Ml
Intelligent sleep modes, O.lW in Suspend
ROM-DOS and RTD enhanced BIOS
Compatible with MS-DOS & real-time
operating systems
1 M bootable Solid State Disk & free softw;
4K-bit configuration EEPROM (2K for useI
2M on-board DRAM
IDE & floppy interfaces
CGA CRT/LCD controller
Two RS-232 ports, one RS-485 port
Parallel, XT keyboard & speaker ports
Optional X-Y keypad scanning/PCMCIA
interface
Watchdog timer & real-time clock

xpand This Or Any PC/l 04 Syster
with the

CM106 Super VGA
Controller utilityModule’”

I Mono/color STN & TFT flat panel support
I Simultaneous CRT & LCD operation
I Resolution to 1024 x 768 pixels
I Displays up to 256 colors I$%?

peed Product Development with tl
IS6660 Development System
our DS8680 includes the CMF8680, CM1
eypad scanning/PCMCIA, CM1 04 with 1.
‘5MB hard drive, CM106 SVGA controller
lM5406 12-bit, 100 kHz dataModuleTM in i
enclosure with external power supply, 3.5
floppy, keyboard, keypad, TB50 terminal

loard, SIGNAL*VIEWTM, SIGNAL*MATH’l
&DOS, SSD software & rtdLinxTM for ju:

$2950.

‘or more information on our PC/104 ar
ISA bus products, call today.

Real Time Devices USA
100 Innovation Blvd. l P.O. Box 90

State College, PA 16803 USA
814) 234-8087 / Fax: (814) 234-521,
TD Europa l RTD Scandinav
II Time Devices is a founder of the PC/104 Consort

Photo l--This test pattern exercises most of the video driver’s functions by displaying text in a fixed format.
Because the driver does not scroll, the screen fexf wraps from the lower-right corner to the upper-left. The eighf-
character counter jusf below the fab-stop fesf shows an incrementing value that may be slightly blurred due to photo
exposure. You can’t see blinking fexf on this page, either, sad fo say.

column, 25-line display requires 4000
(decimal) bytes (don’t forget the
attributes!) and thus has a 4096-byte
page size. Even though those 96 bytes
at the end are not visible on the
screen, I felt tweaking the official BIOS
page size wasn’t worthwhile.

As with all protected-mode
segments, any write beyond the video
page will trigger a protection excep-
tion. If you need access to other pages,
you must either expand the segment or
create additional descriptors for the
new pages. Using one descriptor per
page is a nice way to handle output
from separate tasks.

In fact, putting the screen-page
descriptor in the task’s LDT ensures
that it cannot write into any other
page. You can have several tasks, each
using the same LDT selector to access
the screen, but each selector refers to a
different chunk of the video buffer.
Might come in handy, indeed!

Oddly enough, the BIOS doesn’t
store the video-buffer address in its
data area. It does, however, save the
CRT controller I/O port address at
0040:0063, and that gives us enough to
locate the buffer. The bad news is the
BIOS stores the MDA address, even if
no video board is installed.

Listing 3 presents the video-
initialization code. It extracts several
values from the BIOS data area, creates
the segment descriptor covering the
buffer, then performs a simple memory
test. If the buffer holds data correctly,
the code sets a status flag that enables
the remaining video functions, turns
off the cursor, and clears the screen.

The MemPeekReal(1 function
converts a real-mode segment:off
address into a 32-bit linear address and
returns the double word at that address
in EAX. The familiar shift-segment-
left-four and add-the-offset dance
produces a 20-bit value. The protected-
mode startup code created a read-only
descriptor that maps all of installed
memory starting at address 00000000.
That 20-bit address is our first non-
trivial 3%bit flat address, albeit with a
dozen high-order zeros.

MemSetDescriptorO handlesall
the hocus pocus required to load a
descriptor entry. The code is similar to
Listing 6c in last month’s column. The
functions accessing the buffer load a
4%bit full pointer called CurPointer

using LES instructions. Cut-Pointer's
segment component is just the
GDT_V IDE0 selector forthevideo-
buffer descriptor.

58 Issue #53 December 1994 The Computer Applications Journal

The proof of the coding is in the
viewing. Photo 1 shows the video test
pattern you should see when you run
this month’s code. The first few words
on the top line are wrapped from the
bottom to demonstrate that the screen
does not scroll vertically. The driver
supports cursor positioning, color
changes, and the usual CR, LF, and tab
control characters.

The eight-hexit number a few
lines below the tab-stop test pattern is
a double-word counter driving a simple
binary-to-ASCII conversion routine.
The last digit or two may be slightly
blurred because of the photo’s lengthy
exposure time. You’ll also see a
moving dot on the LPTl LEDs to
indicate that the test code is really
alive inside your system.

That’s enough to let FFTS report
back in style!

DOING IT WITH DOTS...
I originally planned to use the

FDB’s Graphic LCD Interface for this
part of the project. The folks at the
local robotics club convinced me that
standard VGAs outnumbered hand-
wired LCD panels by umpty-zillion to
one. My wounds are healing nicely,
thank you very much.

As it turns out though, the top-
level code is essentially identical for
both displays. I suppose a device-
independent interface with automatic
color mapping would be a nice touch,
but you’ll probably just omit the code
for the hardware you don’t have.. .and
that simplifies things a lot.

Earlier this year, you saw that
graphic LCD panels have a wide
variety of interfaces, timing specifica-
tions, and dot arrangements. The low-
level, hardware-dependent code
required for each panel is bottled up in
an assembler file with an obvious
name: OMF651 . ASM, for instance.
While the drivers may work with
similar panels, you must verify that on
your own.

Refer back to CA{ 4(i for a cram
course on the BIOS CGA font table
and similar matters since I’ve recycled
some of that code into 3%bit pro-
tected-mode assembler. I’ll skip the
detailed background discussions here
to save space.

HUGE BUFFER
FAST SAMPLING

SCOPE AND LOGIC ANALYZER
C LIBRARY W/SOURCE AVAILABLE

POWERFUL FRONT PANEL SOFTWARE

$1799 - DSO-28204 (4K)
$2285 - DSO-28264 (64K)

DSO Channels
2 Ch. up to 100 MSa/s

1 Ch. at ,%O MSa/s
4K or 64K Sample&h
Cross Trigger with LA
125 MHz Bandwidth

Logic Analyzer Channels
8 Ch. up to 100 MHz
4K or 64K Sample&h
Cross Trigger with DSO

PAL
GAL
EPROM
EEPROM
FLASH
MICRO
PIG
stc..

Free software updates on BBS
Powerful menu driven software

up to 128 Channels
up to 400 MHz
up to 16K Samples/Channel
Variable Threshold Levels
8 External Clocks
16 Level Triggering
Pattern Generator Option

$799 _ LA12100 (100 MHz, 24 Ch)
$1299 _ LA32200 (200 MHz, 32 Ch)
$1800 _ LA32400 (400 MHz, 32 Ch)
$2750 _ LA64400 (400 MHz, 64 Ch)

Call (201) 808-8990

/(c
Link Inst;um&ts
369 Passaic Ave, Suite 1 0 0 , F a i r f i e l d , N J 0 7 0 0 4 f a x : 8 0 8 - 8 7 8 6

The Computer Applications Journal issue #53 December 1994 5 9

The LCDWriteGlyph routinein
Listing 4 converts an ASCII character
into the appropriate bit pattern from
the BIOS 8 x 8 CGA font. The code
substitutes a question mark for any
characters beyond the 128 present in
that table. Multiplying the resulting
numeric character value by the font
height gives the character’s offset from
the start of the BIOS table.

Listing 2-Choosing a simple binary encoding makes interpreting the cursor and co/or-control commands
a/most trivial. The loop in Lisfing 1 defects fhe VIDCMD byte preceding each command and invokes this
routine to examine the remaining bytes. The next byte determines the operation and specifies how many
data bytes are included. If you add more commands, a table-driven decoder would tidy up the code by
eliminating the chain of CMfs.

PROC VidCommand
USES EAX,EBX

LODS [BYTE PTR ES:ESIl ; pick up command byte

LCDWriteGlyph alsocombines
the current cursor location with the
font height and width to get the dot
address of the upper-left corner of the
character cell on the panel. This
calculation is easy because the
characters are always aligned on an 8 x
S-dot grid. If you want proportional
fonts (yikes!), this is the place to keep
track of character widths on each
line.. .which I leave as an exercise.

--- cursor positioning

CMP AL,VIDROW
JNE SHORT @@NotRow

LODS [BYTE PTR ES:ESII ; set new row
AND EAX,07Fh
CALL VidSetRowCol,EAX,[CurColl
JMP @@Done

@@'NotRow:
CMP AL,VIDCOL
JNE SHORT @NotCol

The compatibility barnacles
anchor the CGA font table to the same
address in every PC. That makes the
48-bit c p Font pointer a simple
constant in the _p rot. c o n s t segment.
You can substitute a different fixed-
pitch font table by aiming c p FO n t at it
and tweaking the font-size constants.
If you have a VGA card, you can filch
its bitmapped fonts to trade off infor-
mation density for eye appeal using
the techniques I covered in CA\ 46.

LODS [BYTE PTR ES:ESIl : set new column
AND EAX,07Fh
CALL VidSetRowCol,[CurRowl,EAX
JMP SHORT @Done

@NotCol:
<<< code to set both row & column omitted >>>
JMP SHORT @Done

@NotRC:
;--- on-the-fly color changes

<<< code to set foreground & background omitted >>>

The LCDWriteGlyph loopfetches
successive bytes from the font table
and writes them into the refresh buffer
using the low-level LCDWri teByte
routine. Each panel has a different dot
layout, which means a custom routine
must distribute the dots into the
buffer. That code translates blinking
characters into something useful on
panels that don’t support blinking.

CMP AL,VIDFGBG
JNE SHORT @NotFGBG

LODS
AND
MOV
LODS
AND
SHL
OR
MOV
JMP

[BYTE PTR ES:ESI] ; set foreground
EAX,OOOOOOOFh
EBX,EAX
[BYTE PTR ES:ESIl ; and background
EAX,OOOOOOOFh
EAX,4
EAX,EBX
[CurAttrl,EAX
SHORT @@Done

For more grubby, bit-twiddling
details, check the source code on the
BBS. I’ve written drivers for three
different panels in the hopes they’ll
either match what you have or be
close enough that you can adapt the
code without too much trouble. _

@@NotFGBG:
NOP

@@Done:
RET

ENDP VidCommand

The test pattern on a TLY365 is PM PERFORMANCE The counter shown on each
essentially the same as Photo 1. The The video-output routines are the display provides a convenient way to
last few digits of the double-word first nontrivial 32-bit protected-mode collect some data because the code is
counter are harder to read because code we’ve seen so far, although I’d running in a known pattern with all
LCD panels have a slower response argue that just getting into 32-bit PM interrupts disabled. I flipped the LPTl
time. If you don’t have the LCD is nontrivial enough for most purposes. strobe bit at key points during the test
interface installed, the code will In any event, the question comes up: loop to produce the upper trace in
simply disable itself. how fast does this stuff run, anyway! Photo 2.

60 Issue #53 December 1994 The Computer Applications Journal

Listing 3--The protected-mode descriptor covering the video buffer must include ifs starting address and
length. The B/OS initializes several key values in ifs data area during each reset, making if reasonably easy
to figure out what kind of video hardware is installed. The MemPee k Rea 7 i i function returns the double
word at the protected-mode address corresponding to a real-mode segmenf:off address.

PROC VidInitialize
USES EAX,EBX,ESI,ES

extract a few BIOS variables for our use

CALL MemPeekReal,BIOS_SEG,4Ah ; columns
MOVZX EAX,AX
MOV [NumColsl,EAX

CALL MemPeekReal,BIOS_SEG,84h ; r o w s 1
MOVZX EAX,AL
INC EAX
MOV [NumRowsl,EAX

CALL MemPeekReal,BIOS_SEG,63h ; CRT controller addr
MOVZX
MOV

ADD
MOU

~-- create a GDT
we tweak the
address...and,

CALL
MOVZX
MOV

MOV
MOV
CMP
JE
MOV
MOV

@UseColor:

CALL

EAX,AX
[CRTCBasel,EAX

EAX,06h
[CRTStatusl,EAX

; status port address

descriptor covering the video buffer
memory starting address based on the CRTC I/O
if it's a color display, we assume it's a VGA

MemPeekReal,BIOS_SEG,4Ch : video page length
EBX,AX
[PageLengthl,EBX

EAX.OOOB8000h
[CRTAttrCt11,03cOh
[CRTCBasel,03D4h
SHORT @@UseColor
EAX,OOOBOOOOh
[CRTAttrCtll,O

; assume color
; for VGA Attribute Ctl

; assume monochrome
: disable this access

MemSetDescriptor,GDT_VIDEO,GDTGDT_ALIAS, \
EAX,[PageLength],ACC_DATA32,ATTR_3ZBIT

;--- see if the video buffer actually holds data
if not, disable the video functions

MOV [CurPointer.Segl,GDT_VIDEO ; set char pointer

LES
MOV
MOV
NOT
MOV
CMP
MOV
JNE
INC

@@NoVideo:

ESI,[FWORD PTR CurPointer]
AL,[ES:ESIl ; fetch it
AH,AL ; save for later
AL ; flip all the bits
[ES:ESIl,AL : write it out
AL,[ES:ESII ; s e e i f i t s t u c k
[ES:ESII,AH : restore orginal value
SHORT @NoVideo ; skip if no match
[VideoEnabled] ; indicate that we're OK

;--- these functions will bail out if video is disabled

CALL VidTurnCursorOff
CALL VidClearScreen,VID_DEFAULT

RET

ENDP VidInitialize

The VGA, running in text mode,
writes eight pairs of attribute and
character bytes in 270 ps, or 34 ps per
character. I eyeballed the code listing
to come up with about 370 instruc-
tions for the complete display. That
works out to about 1.4 MIPS or,
inversely, 730 ns per instruction. The
‘386SX CPU is running at 33 MHz,
implying that each instruction
requires 24 clock cycles.

The Graphic LCD Interface is a
bitmapped graphics device with a byte-
wide data path. Each character requires
eight font-table reads and, for the
TLY365, 16 writes into the refresh
buffer. The lower trace in Photo 2
shows those accesses blotting up a
total of 2 ps, or 250 ps per char.
Another eyeball count reports 2700
instructions or 1.4 MIPS again.

Bear in mind that those averages
include the ‘386SX bus-interface
overhead for 32-bit data and stack
accesses through a 16-bit data path,
ISA bus delays, prefetch queue flushes,
DRAM refresh interference, and
memory wait states. The instruction-
cycle counts that you read in the
manuals quietly exclude all that,
giving the novice a rather optimistic
view of the world.

Homework assignment: if you
think this is lots worse than real
mode, recode the test program to run
in 16-bit real mode, make the same
measurements, and report back on the
BBS. My guess is that real mode will
be about lo-15% faster-maybe 20
clock cycles per instruction instead of
24. Hmmm?

This code has an unusually high
number of accesses to unusually slow
memory. The system-board memory
runs much faster than the video and
LCD RAMS on the ISA bus. For extra
credit on your homework: map the
accesses into fake buffers in system
memory and retime the code. I bet
you’ll pick up another 10% right there!

THE CASE OF THE CAPITAL ‘7”
When I wrote the TLY365 driver,

my ‘386SX developed a curious
problem. The LCD panel worked fine,
but the system hung midway through
the next BIOS boot sequence after I
pressed the reset button. Cycling the

The Computer Applications Journal Issue #53 December 1994 61

power worked fine. It hung reliably
after every manual reset. Hmmm...

A little probing showed that the
CPU was stuck in a loop doing a little
I/O and a lot of memory writes. It
surely wasn’t any of my code because I

didn’t have any BIOS extensions
installed. Just to make sure, I pulled
the battery-backed RAM out of the
Firmware Development Board’s
socket. The CPU still got wedged.

For lack of a better idea, I pulled
the Graphic LCD Interface’s refresh
RAM. As you might expect, the
system worked perfectly even though
the LCD wasn’t displaying much of
anything. Swapping RAM chips didn’t
solve the problem.

The system worked correctly with
the DMF65 1 and LG64AA44D panels
and the appropriate test code. The
TLY365 worked OK with the Game of
Life and ANSI test code from earlier
this year. It failed only after displaying
the test pattern in protected mode.

I modified the test pattern to write
all blanks into the panel’s RAM, and
found that the system boot normally.
A quick divide-and-conquer search
showed the failure occurred when a
“T” appeared in the first position of
line 12. No other characters seemed to
matter: “Tab stops.. .” failed just like a
single “T” followed by blanks.

I whipped out my jeweler’s loupe,
examined the panel, then drew up
Figure 1 showing the bit patterns, dot
row numbers, and RAM addresses for
character line 12. If you’ve been paying
attention for the last year or so, the
problem should be obvious.

This is a quiz!

Listing 4-Jhe Graphic LCD Interface does nof include a hardware character generator. This routine draws
character glyphs into the LCD refresh buffer using the B/OS CGA font fable. Segment register FS contains
the GDJ_CONSJ selector needed to read values stored in the _p rot c on s t segment Their names start
with a lowercase “IT” to indicate fhaf they are not in the same segment as the usual read-write variables.

PROC
ARG

LOCAL
USES

MOVZX
CMP
JB
MOV

@CharOK:

IMUL
LES
ADD
MOV

MOVZX
IMUL
MOV
MOVZX
IMUL
MOV
XOR

@@NextRow:
MOV

GLCDWriteGlyph
CharValue:DWORD,CharRow:DWORD,CharCol:DWORD, \
Attribute:DWORD
DotRow:DWORD,DotCol:DWORD
EAX,EBX,ECX,ESI,ES

EAX,[BYTE PTR CharValue] ; can we draw it?
EAX,[FS:cNumFontCharsl
SHORT @@CharOK
AL,'?' ; nope, flag the char

[BYTE PTR FS:cFontHeightl ; get char offset in font
ESI,[FWORD PTR FS:cpFontl : pick up font base
ESI,EAX : add char offset
ECX,[FS:cFontHeightl : set up row counter

EAX,[BYTE PTR CharRow]
[BYTE PTR FS:cFontHeightl
EBX,EAX
EAX,[BYTE PTR CharCol]
[BYTE PTR FS:cFontWidthl
EDX,EAX
EAX,EAX

convert coordinates
into dots

preload OFF dots

AL,[ES:ESIl ; pick up dot row
CALL LCDWriteByte,EAX,EBX,EDX,[Attributel
INC ES1 : next fon
INC EBX : and next
LOOP @NextRow

RET

t line
screen line

ENDP GLCDWriteGlyph

OK, here’s the story. Twelve lines
(O-l 1) of 8 x 8 BIOS character cells
puts the top bar of the T on dot row
96. Each dot row occupies 320 bytes of
RAM because the TLY365 has 1280
dots on each of 100 rows, arranged in a
640 x 200 physical array. Row 1 starts
at address 0000 (for reasons I covered
in CA/ 43), which puts row 96 at
address (96-l) x 320 = 76C0. 7 I I

Row 97, the second row of the t1 = 33o.ous t2 = 2.330ms At = Z.OOOms l/At = 500.0 H z

character cell, begins at address 7800. I

The dot pattern for that row begins Photo P--This scope shot shows how rapidly the VGA and JLY365 LCD drivers write the eighf-character counter

2

with the tips of the T’s serifs and its
two-dot-wide central stroke. The hex
value is 5A, which looks suspicious

value to fheir respective displays. The VGA driver is acfive during the second pulse on fhe upper trace; if takes about
35 ps per char. The LCD driver starts immediately after that. Drawing each row of each character using the B/OS
font fable requires about 250 ps per char. Each of the eight-pulse groups in the lower trace correspond to one
character. Each character has 8 rows, and each row requires 2 LCD refresh buffer writes.

6 2 Issue #53 December 1994 The Computer Applications Journal

already. Recall that the TLY365 has a
four-bit data interface and the Graphic
LCD Interface implements blinking by
alternating between the two nybbles of
each refresh RAM byte.

Because the T isn’t blinking, the
refresh-buffer bytes at addresses 7800
and 7801 have identical nybbles: 55
AA. If that doesn’t raise your hackles,
you flunk..

Recall that the BIOS boot routine
scans memory between COO0 and EFFF
for BIOS extensions. By definition, a
BIOS extension must start on a 2-KB
memory boundary with two flag bytes
and the length of the extension in
multiples of 512 bytes. Yes, the flag
bytes are 55 and AA.

The second character on line I2
was either a lowercase “a” or a blank,
neither of which has any dots on row
97. That translates into a pair of binary
zeroes in the refresh RAM after the 55
and AA.

The test pattern’s first three bytes
define a BIOS extension starting at
7800 with a length of zero bytes.

Gotcha!
A valid BIOS extension also

includes a checksum byte to make the
sum of all the bytes defined by the
length equal to zero. Evidently, the
BIOS checksum routine in my PC
concludes that a zero-length extension,
lacking any content, is always valid.
Remember that the refresh buffer
contents after the header had no effect
on whether the CPU got wedged.

So the situation goes a little
something like this..

During a power-on reset the BIOS
finds nothing particular in the LCD
refresh RAM and boots normally. My
protected-mode code displays a test
pattern on the LCD panel which, quite
accidentally, plunks what looks like a
BIOS extension header on a 2-KB
boundary within the refresh buffer.

Pressing reset sends the BIOS
through its extension scan again,
where it finds the header at address
DOOO: 7800. It (erroneously) concludes
that the extension’s checksum is valid
and branches to offset 7803 in the LCD
refresh buffer, which is the second zero
byte. What happens after that is up for
grabs. On this system, the CPU finds a
loop that never ends.

Data Genie offers a full line of test & measure-
ment equipment that’s innovative, reliable and
very affordable. The “Express Series” of stand-
alone, non-PC based testers are the ultimate
in portability when running from either battery
or AC power. Data Genie products will be
setting the standards for quality on the bench
or in the field for years to come.

HT-28 LP=

The HT-28 is a very convenient way
of testing Logic K’s and DRAM’s Tests
most TTL 74, CMOS 40/45 and DRAM’s
4164-414000.44164-441000. It c a n
also identify unknown IC numbers on
llL 74 and CMOS 40/45 series with the
‘Auto-Search” feature.
$189.95

HT- 14 UP-
74
1

The HT-14 isone-to-one EPROM writer
with a super fast programming speed
that supports devices from 27328 to
27080, with eight selectable pro-
gramming algorithms and six pro-
gramming power (VPP) selections.
$289.95

P-300

The Data Genie P-300 is a useful device that allows you to quickly install add-
on cards or to test prototype circuits for your PC externally. Without having to
turn off your computer to install an add-on cards, the P-300 maintains com-
plete protection for your motherboard via the built-in current limit fuses.
$349.95

M i c r o s y s t e m s
Div is ion of MING f 8 P. INC,,

17921 Rowland Street “I’
City of Industry, CA 91748

TEL : (818) 912-7756
FAX : (8113) 912-9598

Data Genie products are backed by a full
lyear limited factory warranty

0 I994 MNG ,%#cro~ms. Al rights reserved. Doto G&e logo k a ,e@ste,ed trode,,,~ of MNG ,%#cro~te,,,s. CCDGnl

#121
The Computer Applications Journal Issue #53 December 1994 63

NEW Data
Acquisition
Catalog
Covers expanded
low cost line.

NEW 120 page catalog for PC, VME,
and Qbus data acquisition. Plus infor-
mative application notes regarding
anti-alias filtering, signal condition-
ing, and more.

NEW Software:
LabVIEW @ , LabWindows@,
Snap-MasterTM, and more

NEW Low Cost I/O Boards

NEW Industrial PCs

NEW Isolated Analog and
Digital Industrial l/O

New from the inventors of
plug-in data acquisition.

Call, fax, or mail
free copy today.

for your

ADAC
American Data Acquisition Corporation
70 Tower Office Park, Woburn, MA 01801
Phone: (800) 648-6589 Fax: (617) 938-6553

#122

Figure l--The LCD tesf code writes “Tab stops.. ” on Line 12. This
figure shows the LCD refresh buffer addresses and bitpafiems
corresponding fo the first two letters for the TLY365 640 x 200
pane/, which is electrically a 1280 x 100 panel. The Graphic LCD
Inferface hardware blinks by alternating the upper and lower
nybbles of each byfe, so every four dots on the panel require an &I-
bit byle in the buffer.

So much for real mode, hmmm!
The solution is easy enough:

disable the LCD refresh RAM when
the system reset line goes active so the
BIOS scan cannot find a bogus exten-
sion in the buffer. The Firmware
Development Board sprouted a
MAX691 watchdog timer in CAT 37,
with a latch to stretch the timeout
interval after a reset. That extra
guardian hardware provides the signal
we need to keep the BIOS under
control.

Add a wire from the -Q output of
the latch (U18.8) to the RAM’s -CE
input (U45.20). The FFTS code sets
that latch and enables the RAM chip
shortly after the CPU enters protected
mode. The LCD driver will activate
the 8254 timer, clear the buffer, and
set up the test pattern fast enough that
you’ll see just a blink of the previous
buffer contents.

A different cure would be a
(deliberate!) BIOS extension in the
FDB’s battery-backed RAM that gets
control before the BIOS hits the refresh
buffer. That extension would set up
the Graphic LCD Interface for the
particular panel and clear the buffer to
ensure the BIOS doesn’t find anything
disturbing. If you’ve converted
PMLoader to an extension, just add
the requisite lines of code.

This error is an oversight, pure
and simple. I knew [and so did you!)
that the LCD refresh RAM contents
survived a reset. It never occurred to
me that the BIOS might discover an
extension in the bit patterns left over
from the last display!

If you build anything
with dynamic bit patterns in
the region where the BIOS
expects extensions, take heed.
You, too, may spend hard
time wondering why your
system doesn’t boot correctly
once in a while.

In a few columns, the
watchdog timer will stand
guard over the FFTS kernel,
making that port output part
of the normal startup activi-
ties. Until then, just watch
the watchdog LED blink
merrily along at its fast rate.

RELEASE NOTES
The code this month displays a

test pattern on both a 640 x 200
Toshiba TLY365 LCD panel and an
ordinary VGA. The drivers for 640 x
200 Optrex DMF65 1 and 640 x 400
Matsushita LG64AA44D panels are
included; just uncomment the appro-
priate line in MAKE F I L E and rebuild
FFTS. PM0 to suit your system.

The test pattern still includes that
fateful T, so you should add the wire
to disable the RAM after each system
reset. I suspect many BIOSs ignore
zero-length extensions and reject
invalid checksums. Don’t take any
chances. After all, a bit pattern that
looks like a valid extension will occur
just before your big demo.. .

The video driver should also work
with a text-only monochrome adapter
or an old Hercules card, but I can’t test
that here. If you have the appropriate
hardware, give it a shot and report
back on the BBS.

Next month we start ‘386SX
multitasking and measure just how
long a task switch really takes. q

Ed Nisley, as Nisley Micro Engineer-
ing, makes small computers do
amazing things. He’s also a member of
the Computer Applications /ournaPs
engineering staff. You may reach him
at ed.nisley@circellar,com or
74065.1363@compuserve.com.

413 Very Useful
414 Moderately Useful
415 Not Useful

64 Issue #53 December 1994 The Computer Applications Journal

Jeff Bachiochi

ivy leaf would be different from a
cactus appendage.

And, what about interpreting the

Engineer Seeks
Personal Gardener

differing dialects of each of the plant
species? Not something I want to
devote my life to.

HELP I’M DROWNING
My real problem is under or over

watering. By the time I do remember

Assisting Vocally Challenged Vegetation_ -

to water my plants, they are bone dry
and I over compensate by giving them
too much.

orn farmers
don’t talk to their

crops. But, many
green thumbers do talk

There are many ways to measure

So, let’s try to monitor the
moisture content of the soil and sound
an alarm if it becomes too dry. I can

the moisture content of the soil. One

then respond with a small sip of that
mineral-collecting essence, H,O. Also,

of the least expensive is to measure

I can add a bit of fertilizer to the water
in an attempt to restock the depleted

the conductivity of the soil. The

soil.

presence of moisture within the soil

to their plants. Some even have names
for them.

Me-I like plants. But, I don’t
know the needs of each variety and, in
ignorance, I often neglect them-
sometimes beyond the point
of no return. You could call it
murder in the third degree (or
perhaps “plantslaughter”?).

When the cat starts
pacing figure-eights about my
feet, I know it’s looking for
food or water. When my six-
year-old, Kristafer, greets me
at the door with “What’s for
supper?” instead of “Hi
daddy! “, there is no doubt
where the priority is. Occa-
sionally, my stomach will
rumble a bit if I’ve skipped
lunch. These are signs I can
interpret as a need for
sustenance.

On the other hand, by
the time plants show signs of
neglect, it’s often too late.
Root systems have shriveled.
Leaves are turning (and I
don’t mean fall colors). In
general, they are experiencing
total body (cellular) collapse.

Photo l--Able to hand/e up to eight plants, the Persona/ Gardener
tracks soil moisture and automatically delivers wafer to parched
plank.

66 Issue #53 December 1994 The Computer Applications Journal

Figure 3-/n a fluidpresence defector, the probe’s conduction path couples the Figure 4-/n a fluid absence detector, the probe’s conduction path shorts the input
signal, raising the output (no alarm). With loss of the conductance path, the loss of the signal to ground, raising the output (no alarm). With loss of conductance path, the
signal lowers the output and sounds the a/arm. signal lowers the output and sounds an alarm.

here and put a push-button switch the current needed by the solenoid is metered into the plant’s container.
between the battery and the circuit. It replacing the beeper. Rapid flow might put too much water
would require a push of the button to The replacement of the beeper on the plant before the fluid detector
test the soil, but it will still only last with the solenoid gives me a closed- could shut off the supply solenoid. A
for the shelf life of the battery. loop system. Water will be supplied to slower flow sustains a more uniform

I want this to be on guard 24 hours the plant whenever the fluid detection moisture level. You may wish to wate
or at least autonomously. To achieve drops below the alarm threshold. The from above or below the soil’s surface
this, the circuit must be externally hysteresis is automatic, but can be depending on the type of plant or the
powered not just for the 5 mA, but for controlled by the speed at which water container.

Integrated software development environment including an
editor with interactive error detection/correction.

Access to all hardware features from C.

Includes libraries for RS232 serial I/O and precision delays.

Efficient function invocation mechanism allowing call trees
deeper than the hardware stack.

Special built-in features such as bit variables optimized to
take advantage of unique hardware capabilities.

Interrupt and AJD built-in functions for the C71

Easy to use high level constructs:

#include (PIC16C56.h)
Ruse Delay(Clock=2OOOOOOO)
#use RS232(Baud=9600,Xmit=pin_l,RCV=pin_2)

main 0 (
",~,~xi~~'"P'""s any key to begin\n") ;
_~~~ ., .
printf("l khz signal activated\n") ;
while (TRUE) (

output_high(pin_8) :
delay_us(500) ;
output_low(pin_S) ;

I
delay_us(500):

I

PC6 compiler $99 (all 5x chips)
PCM compiler $99 (‘64, ‘71, ‘84 chips)

Pre-paid shipping $5
COD shipping $10

CCS, PO Box 11191, Milwaukee WI 53211
414-78 l-2794 x30

TIRE0 OF WAITING FOR THE PROMPT 7

Speed up with a ROM ORIVE’ BOOt.5 DOS IN ROM!005 and programs inscantly. Alsoused to replace mechanical drivecompletely in controllers ol-diskless workstations. The onlypet+ect protectzon rrom viruses.Easy to install half-size card.
MVDISKI 128k 5 7 5
MVDISK2 720k 5150
MVDISK3 2 89m 5 1 9 5 $75
Quantity diSCOUntS!

$95 EPROM
PROGRAMMER- Super Fast Programming

- Easer to use than others

- Does 2764/27080 (8 Meg1

Merrimack, NH
WeI 792 9507

#124#123
68 Issue #53 December 1994 The Computer Applications Journal

Figure 5 depicts a convenient,
single-plant, gravity-fed system which
can keep the green stuff happy without
daily attention even for a sustained
vacation. Notice the water container (a
2-l pop bottle] is hung IV style between
the hanger and the plant. I used two
pop-bottle bottoms (the old style
bottle with the added cup or foot since
the new ones are one molded part] to
capture the bottle and hold it upside
down.

The lower cup’s center is removed
allowing the bottle’s neck to hang
through it. A small hole is needed in
the bottle bottom to let air in as the
water drains from the bottle’s mouth.
A small cork with a “T” (fashioned
from a bobby pin or paper clip) poked
into it (like a squirt gun’s plug) keeps
the hole closed when filling the bottle
and doesn’t get lost.

MOISTURE CONTENT VERSUS
SOIL RESISTIVITY

To set the moisture and alarm
levels, we need some kind of reference.
Let’s look at a way to develop a

Z-1
Pop Bottle
IU 5ple

Z-wire c a b l e

I

Hanging Flower Pot

Figure ~--BY using a ULN2429A for each
plant plus a common wafer reservoir, the
system controls a solenoid to wafer the plant
when necessary. Potentimeter Pl is used to
adjust how dry the soil must be before watering
commences.

breakdown between types of
soil, the relative volume of
water they contain, and the
ohmeric values produced by the
water content of each soil
composition.

To start, three equal-sized
containers are filled with equal
volumes of different plant
media. In the first is a desert
mixture, good for growing plants
of the succulent variety like
cactus. It is gritty and low in
organic matter. The second is a
meadow mixture with the high-
humus content preferred by
many plants including the ivy
and fern families. In the third
container is a swamp mixture,
which is peat-moss rich to

P WC TM HARDWARE X-10”
TRANSCEIVER CHIP

8M I C R O M I N T , I N C . ~I
4 PARR ST., VERNON, CT 06066
003) 871-6170 FAX: (203) 872-2204 z

w Memory mapped variables

w In-line assembly language
option

H Compile time switch to select
805 l/803 I or 8052/8032 CPlJs

n Compatible with any RAM
or ROM memory mapping

w Runs up to 50 times faster than
the MCS BASIC-52 interpreter.

w Includes Binary Technology’s
SXA51 cross-assembler
& hex file manip. util.

w Extensive documentation

n Tutorial included

n Runs on IBM-PC/XT or
compatibile

w Compatible with all 8051 variants

n BXCSI $295.

508-369-9556
FAX 508-369-9549

q
Binary Technology, Inc.
P.O. Box 541 l Carlisle, MA 01741

#125
The Computer Applications Journal Issue #53 December 1994 6 9

Use Turbo or MS ‘C
Intel SOClSSXL

Two 1 meg Flash/ ROM sockets
Four battery backed, 1 meg RAM

16 channel, 12 or 16 bit A/D
8 channel, 12 bit D/A

2 RS-232/485 serial, 1 parallel
24 bits of opto rack compatible I/O

20 bits of digital I/O
Real-time clock

Interrupt and DMA controller
8 bit, PC/104 expansion ISA bus

Power on the quret, 4 layer board I S

provided by a switcher wrth watchdog and
power fall Interrupt circurtry.

The 188SBC IS available with Extended
Interface Emulatron of I/O - a Xilrnx Field
Programmable Gate Array and a
breadboard area. Define and design nearly
any extra Interface you need - we’ll help!
188SBC prices start at $299.
Call riaht now for a brochure!

The BOC552 is an 8051 with:
8 ch. 10 bit A/D 2 PWM outputs
Cap/cmp registers 16 I/O lines
RS-232 port Watchdog
We’ve made the 552SBC by adding:

2-RS-232/485 multi-drop ports
24 more I/O Real-time Clock
EEPROM 3-RAM & l-ROM
Battery Backup Power Regulation
Power Fail Int. Expansion Bus
Start wtth the Development Board all the
peripherals, power supply, manual and a
debug monitor for only $949. Download
your code and debug It right on this SBC.
Then use OEM boards from $149.

The DryICE Plus is a low-cost alternative
to conventional ICE products. Load,
single step, Interrogate, drsasm, execute
to breakpoint. Only $449 with a pod.
For the 8051 family, rncludrng Philips and
Sremens denvatrves. Call for brochure!

BO31SBC as low a s $ 4 9

S ince 1983

To prevent my office from looking
like an infirmary with IV bottles
suspended all over, I created one
reservoir for all the plants. A 5gal
water-cooler bottle serves as a spring
to all ye wishing a drink. Each plant
receives water through its own
umbilical cord consisting of a i/8”, clear
plastic tube and two conductors. The
two wires bring the probe leads to and
from the plant. At the far end of the
umbilical, the circuit senses conduc-
tivity and enables a solenoid valve.
Once enabled, the solenoid releases
the nutrients for thirsty vegetation.

- (619) 566-l 892 - Eight such subsystems come

70662.1241 @ compuserve.com together and are fed from the same

increase the drainage and aeration
favored by palms and peperomia (I

suddenly have an uncontrollable urge
for pizza).

Prior to any measurements, the
containers, each holding a different
mixture, are allowed to dry thoroughly
by exposing them to a dry heat source
for three days. Two stainless steel
probes are implanted (sorry) into each
container to serve as measurement
contacts. Then, systematically, an
equal and measured amount of water
is added to each container. Each
container is measured after a short
waiting period to give the water time
to permeate throughout the soil.

The measurement process is
repeated until the saturation point is
reached and water leaks out the
bottom of the container. The graph in
Figure 6 shows the results of the tests.

MULTIPATIENT CARE
This all started with Elaine’s

rejected fern plant I fished out of the
trash at the office. When it began to
show signs of improvement, I brought
in another plant from home. Then, I
rooted cuttings that Rose and Dottie
(two other coworkers) had given me.
Soon, I was up to eight plants.

At this point, the system has to
change. One missed watering cycle
leads to irreparable damage in some,
and an overall gloom in the atmo-
sphere. This is not the effect I was
after. Having healthy plants indoors
helps camouflage an office environ-
ment. (If I wanted death and destruc-
tion, I would watch the evening news.)

source. Once primed, a gravity feed is
all that’s necessary as long as the
water source remains above all the
plants. Since most of my office plants
are hanging, this becomes a problem.
The solution is to add a small water
pump which is enabled whenever any
of the subsystems request water (see
Photos 1 and 2).

The pump was a great find. It has
a 120-V, fan-cooled motor driving a
bellows-type pump. A small
microswitch is cammed to operate
once per stroke. The volume is
adjusted by changing the length of the
bellows’ drive arm, and the intake and
output lines fit into 1%” plastic tubing.

I made a manifold from short
lengths of W copper tubing I had left
over from a previous project. I gathered
eight pieces in a group and soldered
the openings between the tubes. Once
cooled, I bent the free ends away from
one another so they would accept the
plastic l/g” IV tubing going to each
solenoid. I coated the other end with
Goop (a trade name, believe it or not)
and forced it into a short length of %”
plastic tubing. A small relay turns on
the pump whenever any of the eight
sensors request nutrition.

Since all alarm inputs and control
outputs are now local, I could add
some intelligence to the system. Using
a microcontroller, I could log and
retain a history about the use of water
on a plant-by-plant basis. If incessant
watering was requested beyond a
reasonable average, the microprocessor
could command the flow to be halted,
thereby preventing the catastrophe of
drowning more than the plants.

The same sensors might be used
outside the home to request the
automatic sprinkling of the lawn when
watering was necessary instead of on a
scheduled basis. This refinement
would help conserve water. (Usually,
consumer devices of this kind cost
around the $50.) It is also a good
application for HCS, but would be a bit
of overkill for me here at the office.

Now, I can forget about watering
entirely. My plants will live on, even
when I’m not around. I just have to
remember to check the water reservoir
once in a while. Maybe if I place a
ninth sensor in the reservoir and.. q

70
#126

issue #53 December 1994 The Computer Applications Journal

Soil Volume = 96 cubic inches

Blue container (Meadow Mixture)

Aqua container (Swamp Mixture)

Red container (Desert Mixture)

0 I I I I
0 10 20 30 40

Cubic Inches of Water

Figure GDifferenf kinds of soil have different wafer-retention characferistics, so the watering set point on each
plant (and each kind of soil) must be individually adjusfed

Ieff Bachiochi (pronounced “BAH-key-
AH-key”) is an electrical engineer on
the Computer Applications [ournal’s
engineering staff. His background
includes product design and manufac-
turing. He may be reached at
jeff.bachiochi@circellar.com.

Sensor ULN2429A
Allegro Microsystems, Inc.
115 Northeast Cutoff
P.O. Box 15036
Worchester, MA 016 15
(508) 853-5000
Fax: (508) 853-7861

Solenoid G42,533
Edmund Scientific Company
101 E. Gloucester Pike
Barrington, NJ 08007-1380
(609) 573-6250
Fax: (609) 573-6295

Pump #35-139
Megatronics, Inc.
2700 Sunset Blvd.
Steubenville, OH 43952
(614) 266-2223

416 Very Useful
417 Moderately Useful
418 Not Useful

Photo 2-Since many of the plants being monitored and watered are hanging higher than the wafer reservoir, a
small water pump pushes the wafer up to the plants.

SOLID STATE DISK - $135*
1% Card 2 Disk Emulator

EPROM, FLASH and/or SRAM
Program/Erase FLASH On-Board
1M Total, Either Drive Bootable

25MHZ 386DX CPU - $695”
Compact AT/Bus or Stand Alone

In-Board SVGA, IDE, FDC, 2 SedBi-Par
FLASH/SRAM Drives to 2.5M

Cache to 128K, DRAM to 48M

TURBO XT
w/FLASH DISK - $266*
To 2 FLASH Drives, 1M Total

DRAM to 2 M
Pgm/Erase FLASH On-Board

CMOS Surface Mount, 4.2” x 6.7”
2 Ser/l Par, Watchdog Timer

All Tempustech VMAX. products are
PC Bus Compatible. Made in the

LISA., 30 Day Money Back Guarantee
‘QTY 1, Qty breaks start at 5 pieces.

TEMPUSTECH, INC.
TEL:(BOO) 634-0701
FAX:(813)643-4981

Fax for
fast response!

295 Airport Road
Naples, FL 33942

The Computer Applications Journal Issue #53 December 1994 71

Do You
Know The
Way To San
Jose?
Precise
Navigation
Technology

Tom Cantrell

esides being the
name of a song by

Dionne Warwick, it’s
a question I often ask

myself, even after 15 years in Silicon
Valley.

You see, Silicon Valley is actually
composed of dozens of small commu-
nities ringing the southern portion of
San Francisco Bay. Alternately named
after saints (Jose, Clara, Teresa, Mateo,
not to mention, the well-known
Francisco] or geographic features
(Blossom Hill, Mountain View,
Sunnyvale, Redwood City), it’s a
hodgepodge of tract homes, defense
contractors, universities, malls, and of
course our beloved chip factories.

However, despite the homogeniz-
ing effects of suburban sprawl, the

original balkanization can still be seen
in the road system. Unlike the ratio-
nal, chip-like grid system you might
expect, this nether-world is a fractured
network of highways and byways
meandering hither and yon.

No wonder Dionne got lost-what
with streets that change name half a
dozen times as they meander across
the valley floor. Perhaps the most
troublesome aspect of the whole mess
is a kind of cardinal fuzzy logic that
makes giving directions a real chal-
lenge.

Heading north or south on
Highway 101, you’ll encounter many
exits in which you are given a choice
of heading-you guessed it-north or
south. Choose wrong and, as the other
old song goes, you may be stuck in
Lodi again.

The problem is the highway is
really headed SE-NW with exits
heading SW-NE. Assuming a two-
letter designation beyond the capabili-
ties of your average commutoid, the
road bosses, not fazed by ending up
with two northbound routes that
remarkably intersect at right angles,
turn both NW and NE to N.

My wife happily gets around using
a kind of “rip up and retry” routing
scheme. (Another of her other handy
driving tips includes “don’t use the

Photo l-Precision Technology’s compass offerings include the military TC3M3 (right), the civilian Wayfinder car
compass (left), and the TCMI compass with computer interface (bottom left).

7 2 issue #53 December 1994 The Computer Applications Journal

brakes or they might wear out.“) I,
being the more logical sort, rely on a
compass to keep things straight.

Which brings up the subject of
this article. If you’re involved with
applications such as navigation,
robotics, or even virtual reality, you’ll
be pleased to note the arrival of
computer-savvy compass technology
from the aptly named Precision
Navigation.

NEEDLE THROUGH A CORK-
NOT!

Thanks to the fact that the earth
has a magnetic field, wayfarers and
wanderers have been able to make
their way with compass technology
that has changed little over the
centuries. However, once you delve a
little deeper into the subject, you’ll
find that needle-through-the-cork
technology is by no means precise.

First of all, the magnetic field isn’t
exactly aligned with the earth’s spin
axis, which leads to a distinction
between “magnetic” north and the
“true” north. The difference between
the two-known as declination-is
roughly 11 O, but varies with geographic
location.

The magnetic field is best repre-
sented as a three-dimensional vector
(X, Y, and Z) whose vertical compo-
nent (Z), known as inclination,
increases to 90” as the poles are
approached. It’s easy to see how this
can diminish compass effectiveness
(i.e., increase susceptibility to interfer-
ence) as the poles are approached since
the needle is essentially being pulled
down rather than forward.

Worse, this problem dictates that
the compass must be exactly level for
accurate results since each degree of
uncorrected tilt can cause up to two
degrees of heading error. To correct
this, compasses are always placed in
gimbals that are made up of one form
(U-joints, pendulums; floats) or
another of mechanical leveling.

The earth’s magnetic field is also
subject to distortion by a variety of
natural phenomena. On a planetary
level, the solar wind causes shifts over
time while, on a smaller scale, a
compass is easily affected by proximity
to local sources of magnetic interfer-

ence. Forces such as an
electric current or
magnetically generated
constant interference-
proximity to other ferrous
materials can cause
inconsistent magnetic
distortion.

It’s possible to
calibrate for these local
interferences, but note the
catch-22 imposed by the
gimbal. Yeah, the com-
pass stays level, even
though the surrounding
(and interfering) materials
shift in their relationship
(i.e., the car going up or
down a hill). A compass
calibrated against local

Photo 2--The KM1 compass uses three magnetometers (kept in
alignment by the plexiglass block) to sense magnetic direction, a circular
inclinometer to sense board filt (far left), and a temperature sensor (just
above the inclinometer). A Mitsubishi sing/e-chip processor coordinates
everything.

interference at one incline may exhibit
large heading errors as the incline
changes.

All these effects are easily seen in
my car compass. I know mine shifts a
healthy 20” or so as soon as I turn the
key. It’s still generally good enough to
figure out what the road bosses meant,
and after all, the stakes aren’t all that
high (heck, Lodi is kind of quaint).

Given the disparaging tone of the
old saying “It’s good enough for
government work,” it’s ironic that the
government-specifically the mili-
tary-has funded the development of
more precise and reliable electronic

compass technology. Here, the stakes
are much higher, ranging from the
career-limiting (getting lost in the
woods) to the lethal (when calling in
air or artillery).

INDUCTIVE LOGIC
Indeed, it was at the military’s

request that Precision Navigation first
developed their electronic compass
technology in the form of the TC3M3.

This is a battlefield-hardened unit
with a heavy-duty aluminum case and
LCD shield, a marching-pace counter
(for tracking distance), and nightvision
navigation via low-intensity focused

Photo 3-The JCMI comes with PC-based software fo provide calibration and evaluafion of the board.

The Computer Applications Journal Issue #53 December 1994 7 3

LEDs recessed into the compass body.
Marching orders can be entered as a
sequence of headings and distances,

Needless to say, the TC3M3 is

and the TC3M3 will steer you to your

kind of price/performance overkill
when it comes to finding San Jose. So,

destination.

Precision Navigation commercialized
their technology in the form of the
Wayfinder car compass (the TC3M3
and Wayfinder are shown in Photo 1).

At less than $100, the Wayfinder
clearly can’t offer military accuracy
(e.g., +9” vs. *lo), temperature range
(e.g., -10 to 60°C vs. -20 to +7O”C),
sampling rate (5 Hz vs. 8 Hz), and so
on. Nevertheless, underneath their
respective aluminum and plastic cases,
both compasses are based on the same
key concepts.

I’m no expert, but to my under-
standing the first electronic compasses
(built in the ’30s) were based on flux-
gate technology which saturates a
magnetometer with a high AC current.
The second harmonics are amplified
and signal conditioned. Furthermore,

using the technology in a digital
application requires an ADC, making
the flux gate an altogether expensive,

By contrast, modern magneto-
inductive techniques use a low-power

power hungry, and noise-sensitive

LR (inductive and resistive) oscillator
circuit in which the inductance and

approach.

thus, frequency of oscillation, vary
with heading. The essentially digital
output clock is easily tracked by a
microcontroller, dispatching the need
for an A/D converter.

Thanks to the low cost and power
of the magnetoinductive sensor
technology, it’s feasible to provide full
three-axis (two is more typical)
capability. The notable result of this
decision is that the compass, knowing
the relationship between horizontal
(X,Y) and vertical (Z) components of
the field, can automatically detect
transient distortions and thus warn the
user that the current headings are
suspect. Though automatically
compensating for such disturbances is
a challenge that remains unsolved, a

warning beats having a compass you
can never really trust. In a sense, it’s
like handling memory errors-ECC is
best, but parity checking is better than
nothing.

Another innovation is built-in
electronic leveling which addresses the
tilt and calibration concerns. Using an
inclinometer yielding very accurate
(0.2”) pitch and roll, the compass can
automatically correct for tilt. Further,
the compass body itself can be physi-
cally strapped down which, unlike a
gimbaled approach, maintains a
fixed-and thus cancellable-interfer-
ence relationship, even when the
equipment tilts.

HIGHWAY DIRECTIONS
The TCMl (Photo 2) is the latest

addition to Precision Navigation’s
lineup and is targeted towards micro-
based applications that need a little
direction. It offers compass specs
(accuracy, resolution, sampling rate,
etc.) nearly matching those of the
military T3CM3 while replacing the
hand-held unit’s LCD, LED, and

C-Programmable Controllers
Use our controller as the brains of your next
control, test or data acquisition project. From
$149 qty one,. Features I/O to 400 lines, ADC,
DAC, RS232/RS485, printer port, battery-backed
clock and RAM, keypads, LCDS, enclosures and
more! Our simple, yet powerful, Dynamic CTM
makes programming a snap!

Issue #53 December 1994 The Computer Applications Journal

switch-based user interface with an
RS-232 port for connection to your
favorite computer. Looking at the
photo, notice the three (i.e., 3-axis)
magnetometers; the circular, liquid-
filled inclinometer; and the Mitsubishi
single-chip CPU (large chip) that runs
the whole show.

Installation of the TCMl is pretty
straightforward. The user manual
points out the obvious-the unit
should be located away from sources of
magnetic interference (transformers,
motors, etc.). Otherwise, it’s a simple
matter of aligning the compass with
your equipment (the alignment
references are the mounting holes, not
the board edges-see Figure 1) and
leveling it as much as possible (to

maximize the tilt range which is +25”).
The electrical connection is via &pin
header (a pinout is shown in Figure 2)
and is equally simple.

Power (~10 mA) is deliverable
either as a regulated 5 V (pin 1) or
unregulated 6-25 V (pin 2) with
associated ground (pin 3). RxD and
TxD (pins 4,5) are the familiar RS-232
lines with fixed format (8Nl) operating
from 300 to 19.2 kbps (9600 is default).
Note the separate data ground on pin 7
(from power-supply ground) that
connects to pin 7 of a DB-25 RS-232
cable.

Pins 6 and 8 provide heading
output for those who insist on doing
things the hard(ware) way. The oddly
named N+l (pin 6) is a PWM output
(i.e., duty cycle = heading) while the
analog-output signal (pin 8) is just that.
The latter is software programmable
either as a linear (i.e., O-2.5 V, O-359”
in 1.4” increments) or quadrature
output (sine and cosine of heading).

Actually, neither the manual nor
apps engineers I talked to go into great
detail on these pins, because they
typically aren’t used. Besides the fact
that the pins aren’t very computer
literate (i.e., need ADC, etc.), they only
deliver heading information.

The RS-232 line supports the
delivery of a lot of other neat informa-
tion including pitch, roll, temperature,
magnetic-distortion alarm, and various
out-of-range conditions. The RS-232
port (with input capability) is also the
only way to issue configuration and

pitch
-II-

0.10 TYP

Figure l--Alignment of the TCMl is done
using ifs mounting ho/es rather than the
edges of the board. Pitch and roll are
measured through the center of the PC
board.

calibration commands to the TCMl the kitchen sink” marketing, though a
during installation. temp sensor is often handy. Rather, it

You may question (as I did) the turns out that the liquid-filled incli-
inclusion of a temperature sensor. It’s nometer is affected by temperature. So,
not simply a case of “everything but the compass needs to know the

The Computer Applications Journal Issue #53 December 1994 7 5

temperature to deter-
mine the tilt to come up
with the heading.

Anytime a smart
gizmo uses an RS-232
port for host communi-
cation, I recommend
adopting-as the TCMl
does-an ASCII-based
command and response
scheme. This makes it a
snap to connect a
terminal or PC with
comm software and start
tapping away. Further,
experimentation and

Analog Output,

Data Ground

N+l Output

0.0 to 2.5 V linear

Figure 2--The electrical connections to the TCMi include bofb digital and analog interfaces.
The serial lines are most often used when connecting the unit to a computer.

testing for both the device and host-
driver software are eased in a
WYSIWYG manner. Think twice
before adopting a binary protocol-
only do so if speed is a must.

The only gotcha that might cause
a little head scratching is that the
TCMl defaults to a nonecho mode.
You either have to enable a local echo
at your terminal or configure the
TCMl to echo (with Ctrl-E) if you
want to see what you type.

less often) outputs an ASCII string
(terminated by an XOR checksum and
<CR><LF>) that encodes some or all of
the following items: heading, pitch,
roll, (raw) magnetometer output, and
temperature. From time to time, you
may also receive an error message
warning of a magnetic or temperature
distortion and incline or magnetom-
eter out of range.

Once connected, you’ll find the
TCMl monitor offers dozens of
commands roughly classified into
groups as either configuration or
sampling.

The configuration commands,
besides handling a few mundane
matters like specifying baud rate,
largely serve to define the format of
the TCMl output once sampling
starts.

I should note that the TCMl
supports an arcane
National Maritime
Electronics Association
(NMEA) 0183 format
which, as best I can tell, is
kind of an infohighway
for the yachting set (i.e.,
connects GPS, compass,
radar, etc.). Like the extra
output pins, this option is
flawed (fatally in my
opinion) by being limited
to heading info.

The TCMl is rather smart when it
comes to massaging the output. For
instance, heading, pitch, and roll can
be requested as degrees (360 per circle)
or mils (6400 per circle). You’re even
given the choice of referencing the
heading against the true or magnetic
north. Temperature can be either “F or
“C, and so on. Sure, your driver
software could handle such conver-
sions, but the more stuff the TCMl
does, the less software you have to
write (and test, and debug, and main-
tain...).

ence info is stored in EEPROM, and a
new calibration is recorded if the
compass mounting or equipment
location is changed.

As mentioned before, with some
knowledge of the ambient interfer-
ence, the TCMl can detect (though
not correct) unexpected transients and
issue a distortion alarm.

With the output format specified
and the compass calibrated, you can
issue single sample (heading, temp,
incline, etc.) commands to check
everything out. Indeed, if your applica-
tion doesn’t call for constant sampling,
issuing a command each time you
want an update may be the way to go.
This is also a good approach for
battery-powered applications since
power consumption is reduced
between samples.

Should you prefer (likely the case
if you’re up against the ~-HZ sampling
limit), you can issue the command to

put the TCMl in continu-
ous sample mode. As the
name implies, the TCMl
will take continuous
samples (at the

$C<compass>P<pitch>R<roll>X<Bx>Y<By>Z<Bz>T<~emp>E<error
code>*checksum<cr><lf>

Example:
The TCMI will return the following:

BC328.3P28.4R 12.4X55.1Y12.3Z-l8.4T2Z.3EO6*checksumO<lf>

under the following conditions:

So, assuming you’re
using the more fulfilling
TCMl format, each
sample (up to five times
per second, but optionally

compass heading = 328.3” (true or magnetic, depending on configuration)
pitch = 28.4”
roll = -12.4
Bx = 55.1 FT (x-component of magnetic field)
By = 12.3 FT (y-component of magnetic field)
Bz = -18.4 pT (z-component of magnetic field)
Temperature = 22.3” (F/C depending on configuration)
E07 = Distortion flag is raised-magnetic anomaly nearby

Figure 3-The JCMf outputs its data using printable ASCll strings, making it fairly easy to
interact with the board using just a comm program if necessary.

76 Issue #53 December 1994 The Computer Applications Journal

preconfigured sampling
rate, i.e., 6 to ‘/ho Hz) and
output a result string
(with data items you
previously selected) each
time. A sample output
string is decoded in Figure
3.

While the somewhat
terse command and
response protocol is best
for computer communica-
tion, it admittedly is a

Besides specifying the
output format, the other
major installation
commands deal with
calibration. The idea is,
with the compass
mounted, to take a
number of sample
readings as the equipment
is rotated and tilted,
allowing the TCMl to
decompose the local
magnetic field into the
geographic (good) and
interfering (bad) compo-
nents. The local interfer-

little cumbersome for experimentation
and evaluation. Fortunately, the
TCMl comes with a DOS evaluation
program (Photo 3) that offers an easy-
to-use menu-based interface.

VIRTUALLY REAL
A key to making the much-hyped

the associated display rendering,
bandwidth, and cost challenges, it may
be a case of the designer’s eyes being
bigger than technology’s stomach.
Nevertheless, the customer is king. So,
look for the Wayfinder VR to spit out
samples as fast as it can.

virtual reality (VR) more real and less
virtual is the headtracker-that weird
helmet with built-in displays (LCD)
instead of a visor-which is at the
heart of the experience. Obviously, the
VR system needs to know which way
your head is pointing and, if it does a
poor job, will surely make you sea-
sick-not a good selling point!

To specifically target the VR
promised land, Precision Navigation
plans to offer soon a new variant of the
TCMl, the Wayfinder VR. The main
differences are a tradeoff of slightly
less accuracy (e.g., k2’ vs. cl” heading
accuracy) in exchange for a yet-to-be-
determined, faster sampling rate.

Precision Navigation technology
has a lot to offer. Alternative
headtracking schemes include gyros,
which must be periodically recali-
brated due to drift, and active transmit
and receive systems that must be
physically installed in a single loca-
tion. By contrast, the TCMl combines
excellent accuracy (notably, no drift)
with low power, small size, and total
portability.

The bad news is that, at $500+ in
small quantities, the technology isn’t
really accessible for high-volume VR
(or any other price sensitive) applica-
tion. The good news is it’s Precision
Navigation’s intention to license their
technology to high-volume customers.

Of course, the VR wizards are So, if you’ve got a serious applica-
demanding 30+ Hz so they can update tion in mind, don’t let the high sticker
position every frame. However, given price mislead you into writing the

technology off. Judging by the compo-
nent bill of materials and the less-
than-$100 price of the similar
Wayfinder, you may well be wearing
one of these things before long.

Meanwhile, I hope Dionne can
finally find San Jose. If I hear that song
once more, I’m moving to Lodi. q

Tom Cantrell has been an engineer in
Silicon Valley for more than ten years
working on chip, board, and systems
design and marketing. He can be
reached at (510) 657-0264 or by fax at
(510) 657-5441.

Precision Navigation, Inc.
1235 Pear Ave., Ste. 111
Mountain View, CA 94043
(415) 962-8777
Fax: (415) 962-8776

419 Very Useful
420 Moderately Useful
421 Not Useful

l 1 & 2 Year Warranty
l Technical Support by phone
l 30 day Money Back Guarantee
* FREE software upgrades avarlable via BBS
* Demo SW via BBS (EMZODEMO.EXE) (PBlOOEMO.EXE)
* E(e)proms 2716 8 megabrt. 16 bit 27210-27240, 27C400 & 27C800,
* Flash 28F256-28FO20, (29C256-29COiO (EMP-PO only))

l GAL PLD from NS Lattice AMD-16VB 20VB 22VlO EMP-20 onl

4539 Orange Grove Ave.
Sacramento, CA 95841
(Monday-Friday. 8 am-5 pm PST) FAX f916) 972-9960

HIGH PERFORMANCE 8051
CONTROLLERS

Features: 32K EPROM, 64K EEPROMIRAM, 6, 10 or 10 bit with sun A/D converter,
real-time clock/calendar, sewal I/o’s (RS232 I RS422), 16 bits TTL I/O, 16 bits of opto-
isolated Inputs, and 16 bits of h!gh-voltage/high-current outputs, LCD, keypad interfaces
wth software dnvers, standard 50.pm headers to drive industrial Input/output modular
boards (Grayhtll, Opto 22), mdustnal noise Immunity with ground and Vcc planes

Program the RIC320 using C, Basic, Forth, or Assembly.
An mtegrated assembly language environment with example software programs comes
with the WC320

RIGEL CORPORATION
PO BOX 90040, GAINESVILLE, FL 32607

(904)373-4629 B B S (904)377-4435

130
The Computer Applications Journal Issue #53 December 1994 ’

Designed to handle demanding control applications, the WC320 is
optimized for the DS80C320 at 24 MHz or SABC501 at 40 MHz
(accepts any 40 pin dip 6051 mcludmg the Intel 6052 Basic)

Between
the Lines

John Dybowski

Bar Code and
Decoding
Bar-code
Algorithms

Identification or

decoding various machine-readable
symbologies. This art is far faster and
more accurate than manual data entry
and therefore serves as a superior
alternative. Although there are several
machine-readable media, the most
popular and enduring is bar code. Its
ease of production, proven reliability,
and especially its low cost make it a
prime solution.

A bar code can be viewed as a
form of paper memory, a printable
machine language, or a machine-
readable document. Any way you look
at it, bar code easily translates directly
into bitstreams of ones and zeros, the
substance of modern computers.

With greater amounts of micro-
electronic integration, miniature
computers are everywhere, often
masquerading as appliances. Bar-code
readers, having attained appliance
status, can be placed anywhere data
capture is convenient or necessary.
Combined with hand-held or station-
ary, contact or no-contact bar-code
scanners, they function as front ends
for automated data-collection systems.

In extreme cases, small computers
are embedded in hand-held bar-code
wands providing intelligent, stand-
alone readers capable of outputting RS-
232 datastreams. These datastreams
are suitable for direct input into larger,
data-processing computers.

Although a survey of the 50 or so
prevailing bar codes reveals that some
relatively weak encoding methods
have survived, their numbers are few.
They exist for historical reasons. That

is, because of their rapid early adoption
and large installation base, they
became entrenched in specific applica-
tion areas.

As a general rule, however, the
industrial and financial sectors are
firmly based on pragmatic footing.
Poor performers just don’t last.

Let’s start with an overview of
some alternate data-capture method-
ologies so we can get a better apprecia-
tion of bar code’s simplicity.

KEYBOARD ENTRY
By definition, Auto ID is keyless

data entry. Except as an auxiliary input
device, the keyboard is gone. It is only
used to enter supplementary informa-
tion and as a backup if the encoded
symbology cannot be read.

OCR-NICE TRY
Optical character recognition

(OCR) applies electrooptical tech-
niques to machine-read printed
characters which are also humanly
readable. OCR is attractive because
the same printed characters can be
read by people and machines. Using a
matrix of phototransducers, the
illuminated symbol is scanned, usually
with a hand-held device. As the scan
head travels across the label, the
presence or absence of reflected light
indicates the presence or absence of
portions of a character. Once the scan
is completed, the acquired optical
characteristics are evaluated, and
(hopefully) the scanned character is
identified.

Unfortunately, the key word is
hopefully. If you’ve watched someone
labor at scanning an OCR label, then
you know what I mean. The problem,
of course, is that the information
available to decode OCR is very sparse.
If a void, spot, or smudge is present,
information is often misread or not
decoded. As well, OCR has a problem
distinguishing similar characters.

To counter this ambiguity, the
National Retail Merchants Association
(NRMA) has developed two OCR
standards. In OCR-A, machine
readability is maximized by making
each character as different as possible
from all others. Although this helps
with the problem of machine-induced

78 issue #53 December 1994 The Computer Applications Journal

substitution errors, it
follows that the
unfamiliar appearance
of the OCR-A alpha-
bet results in an
increase in human-
induced errors.

To make the
character set more
humanly pleasing,
OCR-B was developed.
Unfortunately, OCR-B
cannot be machine
read with the same
assurance as OCR-A.
Since it is impossible
economically to
maximize both
human and machine
readability using the
same character set,
machine and human
readability are, by
nature, contradictory.

Font

OCR-A Numeric
subset (A)

OCR-A Numeric
subset(B)

Character Set

01?34!ib789 Ivsrc-

012345b789 IL.*-

Application

Font distorted to
maximize machine
readability

OCR-A 0123u5b789

Alphanumeric ABCDEFGHIJKLflNOPQRSTtJVWXYZ
i>??L”r+$,.-/‘=l;:l

OCR-A Numeric 01~3uSb769*~-./~l

OCR-A ABCDEFGHIJKLfiNOPQRSTUVWXYZ
Alphabetic E)%“&“*$‘=ll:i

Farrington 78 OlE'3Lt5b789 Used on credit
cards

E13B (MICR) 0 L l? 31, 56 789l:,r’ri’w
Used by banks
on checks

Enhanced
OCR-B Numeric 0 1 2 3 4 5 6 7 8 9 < >+-/I appearance to

human eye

407 01234567891+S.-/ tl

1428 oL~3LsL78918/-+H

Figure 1-OCR characters are used when if’s necessary fhaf both humans and machines be able to
read the coded message.

Why has so much effort been
expended refining a technology that
cannot deliver? Technological im-
provements can yield incremental
OCR performance gains, but it’s
primarily based on economics, not
technology. If you consider the
inherent problems and the necessary
tradeoffs, the whole concept looks like
it’s based on shaky ground. For your
analysis, several OCR fonts are
depicted in Figure 1.

MAGNETIC STRIPES
Recording data on a magnetic

stripe results in a higher bit density
that can easily be produced using a
printing process on paper. Magnetics
also offers the capability of altering or
rewriting the recorded data after it’s
laid down. Although this rewriting
capability is useful in a number of
applications, it is actually a disadvan-
tage in applications where data
security is important.

Most commonly, magnetic stripes
are read by passing an encoded card
manually through a slot reader or by
using a mechanized, insertion-reading
device. Alternatively, a hand-held
wand reader can be passed over a
stationary magnetic stripe.

The primary disadvantage of
magnetic media is its inability to be

is seldom the case.
Unfortunately,
savings at the reader
end are offset by the
relatively high cost
of the touch devices
themselves,

The touch
microcontroller
interface consists of
a single bidirectional
port pin and a
mechanical probe.
The probe contacts
the touch device’s
case, which re-
sembles a small coin
cell. The outer shell
is the return connec-
tion and the center
contact is the data
connection. This
simple and rugged
case design is one of

inexpensively printed. Advantages
include a very high bit density and, for
certain applications, its read/write
capability.

TOUCH MEMORY
Touch memory, a fairly recent

addition to the Auto-ID field, comes in
a variety of forms. Available in read-
only and read/write configurations,
touch technology can serve applica-
tions that otherwise use OCR, mag-
netic stripe, or bar code.

The storage medium is silicon
rather than ink-on-paper or the
magnetic-flux reversals of the tech-
nologies I’ve already described. Silicon
offers some intriguing possibilities.
The fundamental device is ROM based
and functions as a silicon number tag.

Other devices add nonvolatile
RAM to the basic ROM configuration
for storing changeable data. This
provides numerous variations for high-
and low-security storage regions. As
well, they can be equipped with a real-
time clock, a feature that opens
applications which are otherwise
simply unattainable.

A touch reader is easily the least
expensive of the data-capturing
technologies. It would be a great deal if
your system had a lot of readers and
just a few touch devices. However, this

the touch device’s principal features
since this hermetically sealed, stain-
less-steel case survives hostile envi-
ronments that would quickly turn
paper or magnetic tags to pulp.

BAR CODE
Bar-code symbology provides the

right feature mix for a lot of data-
capture tasks, including identification
of objects, locations, and people. The
first step in deciphering a bar code
involves acquiring the optical bar or
space pattern using some form of
electrooptical scanning device.

Let me briefly touch on some of
the more common input devices before
moving on.

Bar-code scanners can be hand
held or stationary, fully automated or
require a human operator, and they
can operate in the visible or infrared
spectrum. The least expensive way to
scan a bar-code label is with a hand-
held wand or a light pen. This device
contains a built-in light source and a
sensor for detecting the light reflected
from the bar code.

Modern bar-code wands translate
the optical symbol into a digital
representation. To do this, they have
the required amplification and wave-
shaping circuitry built in. Optical slot
readers operate essentially on the same

The Computer Applications Journal Issue #53 December 1994 79

680X0,683xX
80x86188 real mode

80386 protected mode
i960’ family

R3000, LR330xO
280, HD64180

Features

Preemptive, priority based task
scheduler with optional time
slicing

Mailbox, semaphore, resource,
event, list, buffer and memory
managers

Configuration Builder utility
eases system construction

Night’” Debug Tool is available
to view system internals and
gather task execution statistics

Supports inexpensive PC-hosted
development tools

Comprehensive, crystal clear
documentation

No-hidden-charges site license

Source code included

Reliability field-proven since 1980

Count on KADAK.
Setting real-time standards since 1978.

For a free Demo Disk
and your copy of our excellent AMX
product description, contact us tcday.

Phone: (604) 734-2796
Fax: (604) 734-8114

KADAK Products Ltd.
206 - 1847 West Broadway
Vancouver, BC, Canada V6J 1Y5

(0 1 1 0 0) Bars (0 1 1 0 0)
spaces (0 1 1 0 0)

c) , , codi , , d) , UPWEAN, ,

ears (0 1 1 0 0) (0 1 0 1 1 1 1) (1 0 1 0 0 0 0)

spaces (0 1 0 0)

Figure 2%-These four common bit-encoding methodologies alldepictthe character6 UfCgoes one step further
and defines both left- and right-handed symbols for the same character (dj.

principal, but require bar code to be
passed through a slot in a manner
similar to a magnetic card.

Fixed-beam scanners require bar
code to be moved past the scanner.
These can range from very small
devices designed to read high-density
codes to large units that read contain-
ers as they pass along a conveyor belt.

spaces) are organized according to the
specific rules of a particular bar-code
symbology. In contrast to OCR, bar
codes are conceived as a machine
language designed for computers.

Moving-beam scanners can be
hand-held or stationary. A number of
light sources have been used, but
modern devices almost exclusively use
laser light. Helium-neon or solid-state
lasers are most often used. A great
depth of field, combined with a rapid,
repetitive light sweep, results in a
much higher “first-read rate” than a
single-pass scanner offers. This
improved first-read rate is also the
result of reading the symbol continu-
ously until it comes out right.

Bar code uses the ones and zeros
fundamental to digital logic and is
essentially binary in form. That’s not
to say that human-readable characters
may not be contained on a bar-code
label. But, the characters are provided
for information purposes only; there is
no attempt to electrically decipher
them. The computer and human
information is kept segregated-a
lesson learned from OCR. Similarly,
for increased efficiency, bar-code
symbologies are optimized for a
specific application. Tradeoffs are
made between conflicting properties.

Scanners based on charge-coupled
device arrays (CCD) replicate the
function of a moving-beam scanner
without moving parts. Using such a
linear array, a solid-state scan is
achieved by flooding the symbol with
light and reading the transducer-array
outputs sequentially. The resulting
datastream is accomplished without
physical contact or relative motion
between the symbol and the read head.

I’ll be looking at several of the
more popular and useful, not to
mention simpler, bar-code structures a
little more closely. But first, let me
cover some fundamental concepts.

The smallest element of a bar code
is a module (also sometimes referred
to as the X dimension). In most cases,
the wider bars and spaces are integer
multiples of a module. Clearly, these
relationships remain consistent as the
codes are magnified or reduced in
overall size and as they are scanned at
different velocities.

ENCODING TECHNIQUES
Bar codes are composed of a series

of dark and light bars that represent
letters, number, and other symbols.
These dark and light bars (or bars and

Modules translate optical bar code
into a binary code. Ones and zeros are
extrapolated from the bar-space
pattern which varies according to the
specific bar code. In some cases, wide

80
#131

Issue #53 December 1994 The Computer Applications Journal

Character Code
0 00110
1 10001
2 01001
3 11000
4 00101
5 10100
6 01100
7 00011
a 10010
9 01010

Start 110
stop 101

Table l--Two-of-Five encoding defines just the
numbers O-9 and unique sfarl and stop symbo/s. The
code has been wide/y used in industrial applications
since the lafe ’60s.

Finally, codes such as UPC are
structured so that a bar denotes a bit
and a space denotes a zero. With UPC,
width measurements are usually done
by making comparisons between a bar
and its associated space and the next
bar and its associated space.

elements translate to ones and narrow
elements, to zeros.

There are some characteristics
that are important for evaluating bar-
code symbologies. I’ll introduce these
concepts here and elaborate more fully
on them later when I describe real bar-
code symbologies.

Finally, for added data security a
check digit can be appended to the bar
code. With some codes, this is manda-
tory, but is optional with others. In
any case, detailed calculation methods
are outlined in the respective bar-code
specifications. It is important to
realize that these check digits are
treated as an inherent part of the bar
code. If the check calculation does not
yield the expected result, the reader
does not decode the scan.Other bar codes assign binary

values to dark and light elements. In
such a scheme, a dark bar, which spans
several module dimensions, accumu-
lates the respective number of one
bits. Similarly, zeros are accrued codes. Having its origin in the

First, some codes are classified as
continuous and others are classified as

REAL BAR CODES
Two-of Five Code is one of the

simplest and most straightforward bar

(I 2/S) requires bar-to-bar and space-to-
space comparison. Spaces are used in
an identical fashion to the bars. Code
39 can be most easily understood as a
series of dark and light bars rather than
bars and spaces. Its wide and narrow
elements, however, are interpreted the
same as 215 and 1215.

Secondly, some codes are designed
in such a manner that they are self-
checking. In other words, an algorithm
can be applied to each character so
that substitution errors can only occur
if two or more elemental errors appear
within a single character.

using spaces of varying width.
There are different ways

these fundamental bit-encoding
techniques are applied to
creating a bar-code character set.
Some bar codes use only the
bars to renresent data bits, with

II I
0 0 2

late 196Os, this numeric-only
code has been applied to a
number of industrial applica-
tions and most recently has
been used in sequentially
numbering airline tickets.

Two-of-Five Code contains
the spaces functioning merely as

I -I
Figure J-Two-of-Five code contains all the information in the width of the

all the information in the width
separators. Others use both bars bars. The spaces function only as separators. of the bars-the spaces function
and spaces to form a single-code
representation of a character. Another
method using both bars and spaces
interleaves the coded characters so
that bars encode odd characters and
spaces represent the even.

Although a variety of other
techniques are also in use, these
methods predominate.

IT’S ALL RELATIVE
Bar-code decoding algorithms

assume the velocity of the code scan
and the size of the bar-space elements
are unimportant. Provided the scan-
ning velocity does not vary beyond a
given parameter, the module relation-
ship between bars and spaces can be
determined by comparing the bar and
space widths in the time domain.

Figure 2 presents the four most
common bit-level encoding tech-
niques. Some code structures, such as
Two of Five (2/5), compare bar widths.
A code such as Interleaved Two of Five

discrete. These terms describe the way
encoded characters are concatenated to
form a multicharacter, bar-code label.
In a continuous code, the intercharac-
ter space is part of the code structure
and must adhere to strict dimensional
restrictions as defined in the code
specification. In a discrete code, the
intercharacter space is not part of the
code and is allowed to vary within
fairly wide dimensional limits.

01234567890128
Figure 4-Interleaved Two-of-Five attains a higher
density than Two-of-Five by using the spaces as we// as
the bars for encoding data.

exclusively as separators. Two
bar widths are defined as a wide bar
typically three times the width of a
narrow bar. Narrow bars are inter-
preted as zero and wide bars as one.
The intervening spaces may be any
width, but are typically equal to the
narrow bars.

Data is encoded using a modified
binary method in which the bar
positions from left to right are assigned
weighting factors of 1, 2, 4, 7, and
parity. (Zero is an exception to this
rule.) In addition to the numeric
symbols, distinctive start and stop
codes are defined for bidirectional
scanning. The character set encoding
for Two-of-Five Code is shown in
Table 1.

From Table 1, you can see that
there are two levels of algorithms for
deciphering bar code. First, an algo-
rithm is applied to recover the stream
of one and zero bits. Second, these
ones and zeros are combined to create

82 lssue#53 December1994 The Computer Applications Journal

the bar-code character set. Two-
of-Five Code uses a simple
modified binary approach in
which conversion is direct. Other
codes use different coding
schemes or lookup tables.

Since the white spaces carry
no information, it follows that
their width within the characters
is not critical. The spaces between
characters can be loosely defined
as well. Because of this, Two-of-Five
Code is classified as discrete.

I [really good, the natural inclina-
tion is to say that it came out just

11 111 11 111 I 11 I 11 ther;:,~:,::::-,::::,,,.ecame
common in retail, it tracked the

I 0 1 2 3 4 5 I movement of millions of tons of
I 1 freight. This 1959 implementa-
Figure 5--Each Code-39 character is represented by a group of five tion, developed by Sylvania, used
bars and four spaces. Two of the bars and one of the spaces are a stationary reader. The reader
wide (giving three wide bars out of the nine elements, hence the
name). Code 39 includes a full alphanumeric character set. included a Xenon light source and

photomultipliers which sensed

The Two-of-Five-Code structure
is also self-checking since all charac-
ters are composed of two wide bars and
three narrow bars. Notably, this is
where the code gets its name-two of
five bars must always be wide. A
decoding error would require two
independent printing defects within
the same scan line, a condition which
would dictate the alignment of a void
on a wide bar with a spot on a narrow
bar within the same character. A Two-
of-Five bar code is shown in Figure 3.

Developed in 1972, Interleaved
Two-of-Five Code attains higher
character density than Two-of-Five
Code by using the spaces as well as the
bars for encoding data characters. The
actual encoding methodology is
identical to that used in Two-of-Five
Code. This code has seen much use in
warehousing, heavy industrial applica-
tions, and the automotive industry.

Bars are used for encoding those
numbers that appear in the odd
positions and the even-number
positions are represented by spaces. As
a result of this interleaving, the
symbology requires that an even
number of digits be encoded. If an odd
number of digits must be represented,
a leading zero initiates the data string.

Note that by placing information
in the spaces as well as the bars,
Interleaved Two-of-Five Code is no
longer discrete. It does, however,
retain the self-checking attributes of
Two-of-Five Code. Figure 4 illustrates
an Interleaved Two-of-Five bar code.

The ‘full alphanumeric Code 39
(also known as 3-of-9 Code) was
developed in 1975. Each stand-alone
Code 39 icharacter is represented by a
group of five bars and four spaces. Two
of these bars are wide and one of the

four spaces is wide (i.e., there are three
wide elements out of a total of nine
elements).

This arrangement results in 10 x 4
possibilities, or 40 characters. Four
extra characters ($, /, +, and %) are
formed with all narrow bars and three
wide spaces. The character set in-
cludes a single start/stop code (*) and
43 alphanumeric data characters. Code
39 is a discrete, self-checking code.
Figure 5 shows a Code 39 bar code.

JUST AS PLANNED
Pick up a spec on any of the

current bar-code symbologies and you
will find everything-print-to-contrast
ratio, dimensional information,
reference-decoding algorithms-
spelled out in great detail. Judging
from the vast information, you might
conclude that the evolution of the bar
code had been carefully orchestrated
and strictly regimented. The fact is, as
in so many human endeavors, these
specifications are an attempt to
document what had taken place.

Technology often evolves in
surprising and unexpected ways.
Sometimes it takes on a life of its own.
Few of us like to admit this, especially
if we’re charged with advancing the
art. When we come up with something

the reflected light from the bar code.
The numeric symbology consisted of
strips approximately ,x“ x 6”. These
giant bar codes were scanned by
moving past readers and were called
the Kartrak rail-tracking system.

After overcoming numerous
technical obstacles, the read rate was
purportedly comparable with many of
today’s UPC scan rates. This ulti-
mately led to the installation of about
1000 readers and the bar coding of
approximately 1.8 million railroad
cars. In addition, 200,000 piggyback
tractor-trailer containers were also bar
coded. The readers were usually
situated at junctions, interchanges,
and entrances to rail yards. Kartrak
usage peaked in 1948 and then gradu-
ally declined due mostly to inadequate
label maintenance. Today, only about
50 scanners are still in operation.

MULTIDIMENSIONAL CODES
The codes I’ve described so far use

only one dimension for information
storage. However, there is a limit to
how much data can be encoded using
this, essentially serial, method.

Using two dimensions for data
storage results in a substantially
higher volume of data-per-unit size.
However, this does rule out the use of

Figure 6-Examples of two-dimensional codes include (a) CodaBlock, which is representing 65 characters here,
and (b) Code 49, which is depicting 26 characters here.

The Computer Applications Journal Issue #53 December 1994 8 3

Figure 7-Among other20 codes, Veri Code (left) encodes 185 characters while its counterpai?, Data matrix (right),
represents 68 characters.

an inexpensive, hand-held scanner. to contribute some data redundancy
Moving-beam laser scanners or CCD and, more importantly, error-detection
scan heads prove suitable for this and error-correction information. If the
purpose. These devices are available in error-recovery mechanism is imple-
fixed-base or hand-held configurations. mented properly, a label can be

The capability of packing more accurately read even if substantial
information into a given area can be portions have been damaged or
useful in a number of ways. First, it obscured by dirt.
simply stores more information. A less Developers of these 2D symbolo-
obvious method is to provide enhanced gies have taken different approaches to
data integrity using the extra storage concatenating symbols as well as

r

--- ,--- -_J‘_ __.___._ __. . . .T e s t VOW Looic c i r c u i t s u/ith

the pr inter port of your IBM
or compatible computer!

L?l 5 Input capture channels via printer port
El High Speed 64K input capture buffer

El Glitch capture and display
EEl Full triggering on any input pattern
q Automatic time base calibration

El 4 cursors measure time and frequency
El Save, print or export waveforms (PCX

The Real Logic Analyzer is a software package that converts an IBM or compatible computer
into a fully functional logic analyzer. Up to 5 waveforms can be monitored through the
standard PC parallel printer port. The user connects a circuit to the port by making a simple
cable or by using our optional cable with universal test clips. The software can capture 64K
samples of data at speeds of up to 1.2~s (Depending on computer). The waveforms are
displayed graphically and can be viewed at several zoom levels. The triggering may be set to
a?y combination of high, low or Don’t Care values and allows for adjustable pre and post
trigger viewmg. An automatic calibration routine assures accurate time and frequency
measuremen!s using 4 independent cursors. A continuous display mode along with our high
speed graphics drivers, provide for an “Oscilloscope-type” of real time display. An optional
Buffer which plugs directly to the printer port is available for monitoring high voltage signals.

LOGIXELL Requires 286, or higher with EGA or VGA display.

E L E c T R 0 N I c i
61 Piper Cr.

LA20
Software Only $79.95us

Kanata, Ontar io
Software With Test Cable $99.95us

Canada K2K 2S9
BUFF05 Buffer $39.95us

Tel: (613)599-7088
Fax:(613)599-7089

w

implementing data security and binary
bit-encoding techniques. Figure 6
shows a number of 2D bar codes.

The simpler 2D codes start with
existing symbologies and add the
required control information to handle
longer records and to ensure data
accuracy. CodaBlock, which is based
on Code 39 with additional control
information and check digits, is
representative of this approach.

Another strategy is to combine
computer science disciplines with a
formal data-redundancy and error-
correction regimen that detaches the
symbology from its traditional bar-
code precursors. Only the optical
scanning characteristics are retained.
Figure 7 offers representatives of this
class of inventive thinking. Judging by
this strange landscape, all of a sudden
it looks like we’re a long way from the
rail yards of 1959.

A SLIGHT REPRIEVE
Last time, I promised to put a

microcontroller behind bars. Even
though I tried to keep this month’s
introduction as brief as possible, I’ve
managed to run out of space. Although
I’ve covered a broad range of topics,
I’ve done little to explain the technol-
ogy in depth. As a result, our micro-
controller has gained a slight reprieve.

To gain a better understanding of
how a bar code really works, it would
be instructive to pick one apart. Next
month, I’ll narrow my focus and
concentrate on the hardware and
firmware issues involved in putting a
real microcontroller to work decoding
real bar code. q

lohn Dybowski is an engineer in-
volved in the design and manufacture
of embedded controllers and commu-
nications equipment with a special
focus on portable and battery-oper-
ated instruments. He is also owner of
Mid-Tech Computing Devices. fohn
may be reached at (203) 684-2442 or
at john.dybowski@circellar.com.

422 Very Useful
423 Moderately Useful
424 Not Useful

#132
84 Issue #53 December 1994 The Computer Applications Journal

The Circuit Cellar BBS
300/l 20012400/9600114.4k bps
24 hours/7 days a week
(203) 871-l 988-Four incoming lines
Internet E-mail: sysop@circellar.com

With somwhat limited space this month, I decided to devote the
who/e column to just one message thread. RS-232, RS-422, and RS-
485 connections are the most popular in use today for relatively slow
asynchronous serial lines. However, not understanding how to
ground systems that use them can cause major headaches. Check
out some tips from the experts.

RS-232, -422, -485 grounding

Msgk30409
From: IAN GARMAISE To: ALL USERS

This may seem like a silly question, but it is perplexing
to me. I have a control system that uses RS-232-to-RS-422
converters. After a lot of on-line consultation, I went with
the following wiring scheme:

I use two twisted pairs of #22 wire, overall shielded.
The converter takes RJ-11 connectors. The vendor supplied
RJ-1 l-to-DB-25 female connectors for the RS-232 side. I
made RJ-1 l-to-DE-9 connectors to connect the adapter to
the RS-422 cable. I used shielded DE-9 connectors. On one
side, I connected the ground directly from the converter
board to water-pipe ground. I did not connect ground on this
side to the cable shield. On the other end, I connected the
ground from the converter board to the PC’s metal case, and
I also connected the shield wire from the cable to the same
case.

What’s the right way to deal with the shield wire when
you’re attaching a metal DE-9 cover? I just wrapped it back,
attached it to the cover with one screw, and ran a wire from
the other screw to my case ground. Somehow this doesn’t
look right. I couldn’t solder the wire to the cover cause I
couldn’t get the cover hot enough. Any suggestions?

By the way, the RS-422 works fine as long as I use surge
protectors with my cheap 9-V power supplies on each end,
and as long as both sides are grounded. Without a ground on
both sides, the RS-422 didn’t work, which makes sense.

Msgk30908
From: JAMES MEYER To: IAN GARMAISE

Not to me, it doesn’t.
The way I understand it, there should be no need for a

“ground” in a connection that is truly RS-422 based.
I would be *very* careful about “water-pipe grounds” if

I were trying to implement an RS-422 connection.

by Ken Davidson

The whole point of RS-422 is its balanced, push-pull,
differential nature and the fact that it doesn’t need any
“grounds.” If you need a “ground” to make things work,
then you must be doing something wrong.

Perhaps I missed something when I read your descrip-
tion of the connections you made. Please expand a little on
exactly what you’ve got in the way of converters and how
they’re hooked up.

Msgk31048
From: IAN GARMAISE To: JAMES MEYER

I basically was following some precise instructions
from a person on the CompuServe Eng forum. He said that
the differential voltages used in RS-422 still need a refer-
ence ground. His instructions were as follows:

1. If concerned about ground loop, use isolated RS-422
drivers and receivers, and CONNECT the (isolated) signal
ground of each driver and receiver to provide a reference
ground (the RS-422 dot does in fact show a connected signal
ground.

2. If ground loop is not an issue, then connect the
ground of each driver and receiver to mains ground at each
end (this is what I did]. As for the shield ground, lots of
difference of opinion here, but the consensus of the noise
books I borrowed and my converter supplier is to ground
the shield at one end to the mains ground.

The CompuServe person said that sometimes RS-422
drivers connected without ground reference will appear to
work correctly, but will fail eventually.

On one end, I have a PC serial RS-232 port. On the
other end, I have a mag card reader with an RS-232 inter-
face. They are connected as I described above.

On both ends, I’m using Tripp Lite surge protector/
noise filters with the 12-VAC/9-VDC power supplies to the
converters. While testing I discovered that as the Compu-
Serve person predicted, transmission was impossible if I
disconnected the signal ground at one end.

Msg#:31960
From: JAMES MEYER To: IAN GARMAISE

Sorry. Your CompuServe person is entirely right, and I
was entirely wrong.

No, I can’t leave it at that....
The reason I put “ground” in quotes above, is because

The Computer Applications Journal Issue #53 December 1994 85

UPTIME
“ground” is a lot like the weather. Everybody talks about it,
but very few know exactly what it is.

Msgk32647
From: ED NISLEY To: JAMES MEYER

If you’re in an experimental mood, you may want to try
this:

Disconnect all of your “water pipe grounds.” Then
connect the shield(s) of your twisted-pair cables at *each*
end of the cable to the “common” connection on the
isolated RS-422 side of each converter box.

Don’t connect the shields to anything else. Don’t make
any connection from the RS-232 side of the converter box to
“ground ” *or* the isolated RS-422 side of the network.

The RS-422 side of the converter boxes is described as

The catch with all this is the common-mode voltage
rating of the RS-422 (or -485) circuits. If there’s a nontrivial
voltage difference between “ground” at the two locations
you can fry the receivers without too much trouble. Adding
a common connection between the two ends won’t help, as
it’d have to carry enough current to equalize the ground
potentials.. .and that could be quite a lot!

Might be worth measuring just to find out how much
trouble you’re in..

“isolated” for a very good reason. That’s because there
should be no necessity to make any connection to any-
where other than another RS-422 circuit.

Msgk36141
From: PELLERVO KASKINEN To: IAN GARMAISE

Msg#:31977
From: IAN GARMAISE To: JAMES MEYER

I’ll give that a try. I believe that should work. But is it
intrinsically safer than using water-pipe ground? (The
converters I’m using do not have built-in isolation.)

There are two or three basic situations that determine
the amount of ground potential difference between two
sites. Let’s call the first one a steady state, the second one a
usual-transients state, and the third one, abnormal-tran-
sients state.

Msg#:32412
From: JAMES MEYER To: IAN GARMAISE

I got confused. The CompuServe person said:
1. If concerned about ground loop, use isolated RS-422

Starting from the abnormal-transients state, we are
talking mainly of a direct hit or a near miss of lightning.
The likelihood is low, but the consequences are very severe.
You can have potential gradients of 100 V per foot or more
for a very short time. The gradient decays with distance in a
hyperbolic fashion, but the voltages between cable ends can
be truly amazing.

drivers and receivers, and CONNECT the (isolated) signal
ground of each driver and receiver to provide a reference
ground (the RS-422 dot does in fact show a connected signal
ground.

I went back and reread your earlier messages and you
never said explicitly whether your converters were isolated
or not. I just assumed they were.

In any event, I believe the following will get you going
with as “clean” a connection as you can get without adding
anything else to your system.

The usual transients are due to in-rush currents to
motors and transformers. If there is no sparking from the
winding to the frame or similar faults, the resulting jolts to
the grounding post are not likely to exceed a few tens of
volts for a few tens of milliseconds. This is something that
your communication lines can (and should) be fortified
against. The lightning strike is an almost hopeless situation
even with optocouplers and similar, but the usual tran-
sients should be covered.

Wire the two twisted pairs to the + and - signal connec-
tion pins on the ‘422 side and connect the shield(s) of the
pairs to the common on the ‘422 side. Do this on both ends
of the cable between the converter boxes.

You already have the equivalent of a “water-pipe
ground” in the third (ground) leg of the AC power line
which is carried all the way through the system from the
entrance box where the AC power comes into the building,
through the wiring in the wall, through the three-prong AC
plugs, through the Tripp Lite surge/noise box, through the
AC power cord to the computer chassis and then to the RS-
232 common connection on the back of the computer.

A steady-state voltage is normally due to unbalanced
loads on three-phase systems or something like an electric
train system using the rails as a return path. The unbal-
anced loads with reasonable ground conductivity (moist
soil, minerals, and so on) rarely results in more than about a
5-VAC difference between any two points within a plant or
a building, even between separate buildings.

Now, what are the consequences for an RS-422 line?
The 5 VAC is a little over the limit where communication
errors creep in. RS-485 may work properly, depending on
whose chips you use. Just a couple of weeks ago I read a
new National Semiconductor app note about this particular
issue.

If you make any *other* connections to ground, such as You say your converters do not have any built-in
another connection to a water pipe somewhere, you are isolation. Given that, your options are somewhat limited,
creating a “ground loop” and run a risk of introducing because I assume the computers are locally grounded. With
stray currents and noise. an isolation at least on one end, you could use the cable

86 Issue #53 December 1994 The Computer Applications Journal

shield to make the connection back to the end that is
grounded. Without that option, you probably have to build a
big (60-HZ) common-mode choke at one or both ends. You
could get commercial common-mode chokes for each signal
line pair, but probably it would be best to have just one that
includes the shield. What you would need to do is get a
good-size transformer core (say 50-100 W size), take the
windings-if any-out and loop your whole signal cable
through the opening some 30 times or more if there is
room. The more, the better, within reason. The common-
mode choke takes care of the ground potential difference
without affecting the overall signal (that is differential)
fidelity.

This common-mode choke should bring the currents
running in your cable under control, together with any
resistance in the cable. It may sound funny, but beefing up
the cable might be actually counterproductive, because the
low impedances involved maintain the potential difference
and just feed more current through a thicker cable.

Now, I understand your cable does not run between
different buildings, What I have said is more for anybody
who might have such a situation. But within a single
building, the conditions can be equally bad. And I wanted to
give the numbers for putting the safety issues a little into
perspective. Leaving one end not locally grounded presents
indeed the danger of having two potentials exposed side by
side. That is, the local ground and the remote ground.
Touching two different potentials simultaneously is the
danger that safety grounding tries to avoid. However, it is
also acknowledged that voltages below 24 V or even 48 V
are considered “safe,” except in bath tubs and such. If our
voltages are typically below 5 V and with usual transients
below 48 V, we would not violate the principles of safety if
we have one end with optically isolated converter that is
actually tied to the far side ground.

Finally, we naturally should provide touch protection
anyway, just like the phones do. You just do not have an
easy access to the conductive parts within the phone or the
converter. See, where I’m coming from? The phone system
actually uses transformer isolation but is otherwise very
analogous with the isolated RS-422 converter. You also
have the local overvoltage protectors somewhere near your
home, tied to your home ground (or close enough to be
effectively the same). But the only DIRECT ground is at the
phone company premises. So you have the remote ground
situation with an insulated phone in your hand. Dangerous?
Yes, it CAN be dangerous during a direct lightning hit, but
how often do you think that!

In other words, get at least one isolated RS-422 (or -485)
converter and do the grounding at one end and you should
have almost no problem, either for signal fidelity or for your
safety.

Msgk36346
From: IAN GARMAISE To: PELLERVO KASKINEN

Thanks for a well-reasoned discussion of this issue.
This is not a subject that usually gets a good practical
treatment, at least in the texts I’ve looked at.

I do still have a signal fidelity problem, but I have the
impression this is coming from the RS-232 sections beyond
the converters. The card readers I am using in this system
do provide toroid chokes (intended to reduce radiated RFI)
that they suggest running the signal cable around at least
three times. I have not done this because the Canadian
DOC does not require it (unlike the FCC) and I had the
impression it might reduce signal strength.

For peace of mind, and to see if it improves fidelity, I’m
going to try adding isolation on one end as you suggest. I

assume you also would want to ground the cable shield on
one end and have it not pass over the isolated converter.
Would one connect the shield ground to the RS-232 signal
ground (before the conversion, on the grounded end of the
line), either with or without a resistor?

Msg#:44439
From: PELLERVO KASKINEN To: IAN GARMAISE

Regarding the toroids: Yes, the small toroids would
help against radiating the RFI. And contrary to your fear,
they would not reduce your signal strength, being used in a
common-mode-reducing fashion. But they are too small to
do any good for the 60.Hz common-mode noise you are
assumed to experience.

What actually is likely to cause signal fidelity problems
is exactly the common-mode noise, and that mostly due to
the effects it has to the -transmitter_, if I read the National
Semiconductor application note correctly. But why specu-
late, when we can determine the situation with a simple
measurement?

Just hook up the cable at one end. Connect the shield
to the local ground at the same end. Leave the other end
completely floating by whatever is the easiest way. Then
put a voltmeter on AC scale between the cable shield and
the equipment frame and/or common at the disconnected
end. Make several measurements over a period of time, to
include potentially varying conditions due to starting
motors and so on. This measurement period should be at
least as long as your average time between the signal
fidelity problems, if they are not continuous.

When you add an isolated converter at one end, that is
exactly the end that you leave completely floating. You
make the ground connections at the unisolated end,
preferably to the computer (or other communication
equipment) frame. At the isolated end, take precautions
against accidental shorting of the cable shield to anything.
Use heat shrink tubing or electrical tape to keep the end of

The Computer Applications Journal Issue #53 December 1994 87

the cable shield within an insulating jacket, unless you
need that for completing the _common_ between the two
RS-422 sections (i.e. if you do not have a wire in your cable
for that purpose). But in principle, you should have two
pairs for the signal and one wire for the common between
the two units.

At the isolated end, definitely do not bridge the
isolation barrier with anything, intentional or accidental!
No resistors, capacitors, or anything. The only two things
required besides the signal connection to the other unit are
the optically isolated signals and an isolated power for the
floating part. The power may be provided by a built-in DC/
DC converter on the isolated RS-422 converter or is
requested through a marked terminal, in which case a
simple wall mounted power supply should do fine.

Now one more concern. My experience points towards
protocol problems as often as to ground noise. There may be
bias resistors with jumpers to select an appropriate combi-
nation. We had to study the situation for some time before
we got the idea straight the first time. The RS-232 single-
ended system had been simple and had set our minds.
Getting into the differential -422 with its biasing require-

The BCC52 controller continues to be
Micromint’s best selling single-board com-
puter. Its cost-effective architecture needs
only a power supply and terminal to become
a complete development system or single-
board solution in an end-use system. The
BCC52 is programmable in BASIC-52, (a
fast full floating point interpreted BASIC), or
assembly language.

The BCC52 contains five RAM/ROM
sockets, an “intelligent” 27641126 EPROM
programmer, three E-bit parallel ports, an
auto-baud rate detect serial console port, a serial printer port, and much more.

PROCESSOR
* 8OC52 S-bit CMOS processor w/BASIC-52
*Three V-bit couoterit~mers
*Six mterrupts
*Much morel

lNpUT/OUTpUr
’ Console RS232 - autobaud detect
- Line printer R-232
. Three 8.bit parallel ports
. EXPANDABLE1

* Compatlbk with 12 BCC expansion boards

B C C 5 2 Controller board with BASIC-52 and SK RAM $189.00 Single Qty

BCC52C Low-power CMOS vewon of the BCC52 $199.00
BCC521 -40°C to t85”C industrial temperature version $ 2 9 4 . 0 0
BCC 52CX Low-power CMOS, expanded BCC52 wi32K RAM $ 2 5 9 . 0 0

CALL FOR OEM PRICING

MICROMI NT, INC. 4 Park Street, Vernon, CT 06066

ments and the + and - naming conventions at first did not
seem to fit into place at all. But reading the instructions a
few times and making a few sketches of the signal current
flow paths finally made things drop into place. I hope you
have all this part under control.

Msgk46481
From: IAN GARMAISE To: PELLERVO KASKINEN

I believe I do have the noise problem mostly under
control now, on both my RS-422 segment that I am testing
and the other three lines that are straight RS-232. Right
now I have no isolation on any of the lines. The RS-422
currently is referenced to mains ground at each end, and the
shield is connected to ground at one end, as it is on the RS-
232 lines. I was using solder connector DE-9s, but I am
going to switch to inserted crimp pin DE-9s since these
seem to present less opportunity for the ground wire to
accidentally contact a signal wire. The only problem I’ve
had so far is finding a good-quality crimping tool for these
crimp connectors that costs less than $175 (cdn).

It did take me a while to be certain that I had the
correct polarity on the RS-422 adapters, given the jumpers
on each end and poor documentation, but by quadruple
checking and careful diagramming I was able to achieve
correct connection on the first try.

We invite you call the Circuit Cellar BBS and exchange
messages and files with other Circuit Cellar readers, It is
available 24 hours a day and may be reached at (203) 871.
1988. Set your modem for 8 data bits, 1 stop bit, no parity,
and 300, 1200, 2400, 9600, or 14.4k bps. For information on
obtaining article software through the Internet, send E-
mail to info@circellar.com.

Software for the articles in this and past issues of
The Computer Applications [ournal may be downloaded
from the Circuit Cellar BBS free of charge. For those
unable to download files, the software is also available
on one 360 KB IBM PC-format disk for only $12.

To order Software on Disk, send check or money
order to: The Computer Applications Journal, Software
On Disk, P.O. Box 772, Vernon, CT 06066, or use your
VISA or Mastercard and call (203) 8752199. Be sure to
specify the issue number of each disk you order. Please
add $3 for shipping outside the U.S.

425 Very Useful 426 Moderately Useful 427 Not Useful

#119

88 Issue #53 December 1994 The Computer Applications Journal

9 6 issue #53 December 1994 The Computer Applications Journal

What’s in a Name?

his issue is the last magazine of our sixth year. I guess that’s a milestone of sorts. It’s not easy starting

a magazine, and it’s a lot harder keeping one going. It requires a constant balancing act among editorial

focus, advertising support, newsstand recognition, and subscriber patronage. Change too much in any one

direction and the whole thing can start sliding.

As you already know, Circuit Cellar INKwas started as a spin-off of my original Ciarcia’s Circuit Cellar projects in BYE.

I was offered the opportunity to continue at BYTEfollowing their new direction catering to “computer-purchase influencers,”

but I declined. MIS sounded like a disease to me.

The first issue of Circuit Cellar INK purposely looked like the hardware glory days of the computer revolution. I titled it

“Inside the Box Still Counts” as a reminder that, although computers were turning into appliances, someone earlier in the process

was actually responsible for designing the device. Circuit Cellar /NKwas to be the new refuge for displaced technical

inquisitiveness.

over the years, we have tried hard to preserve that foundation and direction, While original readers identified instantly with

the name “Circuit Cellar” and the Tinney cover paintings, we wondered if a more descriptive name might be less confusing. For

the last couple years, we’ve sort of been INK, Circuit Cellar, Computer Applications Journal, and “You know, Ciarcia’s magazine.”

Interestingly, if we’ve had five letters in total regarding all the presentation changes, I’d be surprised. Is it disinterest?

No. My wife would be kind and just call it the “engineering mentality.” Seventy-five percent of Circuit Cellar subscribers have

been with us for more than 4 years, and 47% have been there since day one! Because we have maintained the same editorial

focus, independent of names and colors, basically you don’t care what we call it.

Should I be concerned? As an engineer, I subscribe to the collective mentality. But, as a publisher, I definitely blew it!

The last straw was a couple weeks ago. While at a Brentanos bookstore, I overheard a couple of techies talking. Staring

point blank at the latest copy of Computer Applications Journal, one said to the other, “I wonder whatever happened to Circuit

Cellar? I used to like the kinda stuff that Serseeah fella did.”

Well, that did it. So, my fellow techies, put on your sunglasses for the next issue. WeIi be there bigger and brighter than

ever. There’s only one name, and I guarantee you won’t miss it!

