


Warm Fuzzies?

uzzy logic is an idea whose time has come. The

Japanese and Europeans are far ahead of U.S.

designers in embracing this novel programming ap-

preach.  It’s about time more engineers started to take notice.

When I sat down to choose themes for 1995, I had one fuzzy logic

article in hand, so decided to gamble and devote an issue to the topic. I’d

been seeing it discussed elsewhere on a more regular basis, so thought it

was time for us to take a look. I was pleasantly surprised when I ended up

with three substantial articles and an extensive sidebar describing fuzzy

logic and its applications, We even have a fuzzy-based home controller

article waiting in the wings for a future issue of Home Automarion & Building

Control.

I guess I shouldn’t have been surprised. The methodology more

closely approximates the way humans make decisions, so resulting control

systems behave more “naturally.” As more people become aware of its

advantages, more writers will talk about it. I learned a lot working on this

issue, and I hope you do, too.

Our first fuzzy article presents a good overview of what the technique

is and how it can be applied to a simple temperature feedback system. Can

fuzzy logic truly be called ‘the next generation of control”?

Next, we narrow the focus to see how fuzzy logic can be simplified

enough to be effective on a small microcontroller with limited resources. It

doesn’t necessarily require lots of horsepower as was thought in the early

days.

Our next article continues on the seemingly never-ending quest for the

best way to levitate a ball on an air cushion. Tom Cantrell originally threw

down the gauntlet and presented one approach based on PID algorithms.

However, fuzzy turns out to be just as effective and requires less tweaking.

The sidebar to this article presents yet another approach to the same

problem.

Our final feature is a follow-up to another past article. In the February

‘94 issue, Do-While Jones cautioned against the indiscriminate use of

interrupts. Mike Smith shows that under the right circumstances, software

interrupts can be quite effective.

In our columns, Ed continues enhancing his multitasking kernel by

providing a way for low-level tasks to access high-level routines. Jeff comes

to Bev’s rescue with an RF-based link to her car that enhances her safety in

dark, lonely parking lots. Tom explores yet another 8051 derivative, but this

one comes from the designers of the original 8051-Intel.  Finally, John

explains how to put together a low cost but highly effective development

system for the Atmel  AT89C2051.
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~B~~(NEW~
Edited by Harv Weiner

MULTIPURPOSE
EMBEDDED
CONTROLLER

Remote Processing
has released a multipur-
pose embedded controller
with an operating
system, operator inter-
face, and I/O on a single
card. The RPC-320 uses
the Dallas Semiconduc-
tor 8OC320  CPU with a
unique addressing
scheme to access 1 MB of
memory. Normally, the
8OC320  (a variation of
the Intel 8032) can only
access 64 KB of RAM.

The RX-320
features industrial I/O. It
has 8 ADC input lines
with 12-bit resolution,
20-MHz quadrature
encoder and counter
input, 34 digital lines,
and 2 RS-232 or RS-485
serial ports. A keypad
and LCD character and
graphics port for operator
interface are also in-
cluded. Over 12,000 lines
of code can be stored and
executed to a flash
EPROM by the oncard
RPBASIC.

RPBASIC is an
improved version of Intel
BASIC-52 which directly
supports the hardware
using single commands.
The included RPBASIC
operating system ac-
cesses up to 1 MB of
RAM and flash memory
for data logging and
program storage. Over
500 KB of programs can
be autorun on powerup.

A built-in tempera-
ture transducer monitors
ambient temperatures.
Two operational amplifi-

ers buffer, amplify, and filter
inputs from sensors. The
temperature transducer and
amplifier can be connected
directly to an ADC input,
which accommodates eight
single-ended or four differ-
ential inputs with ranges of
O-5 or f2.5 V. Inputs are
overload protected to f25 V.

The 20.MHz  multi-
mode counter interfaces to
auadrature encoders or

Many LCD displays Remote Processing
interface to the display port. 6510 W. 91st  Ave.
RPBASIC positions the Westminister, CO 80030
cursor and writes to the (303) 690-l 588
display in a single com- Fax: (303) 690-l 875
mand. Graphics commands
draw lines and control #500
pixels to show level or
position. BASIC also scans
and buffers entries from a
16.key  keypad port.

The RPC-320
sells for $365 and

FAULT-TOLERANT POWER SUPPLY
A line of active fault-tolerant power supplies which provide mission-critical PC users
with automatic backup power has been introduced by Antec. Available as a tower
enclosure (KS022), file server tower (KS033),  and disk array tower (KS044), the Reliant
products are the first power supplies which cause absolutely no power interference to
computer components.
Antec is also introducing the RPT-600, a unique AT-size, fault-tolerant power supply

designed with two built-in, 300-W power
units. The RPTGOO works as a highly
efficient 600-W supply or as a
loadsharing, fault-tolerant unit with two
individual 300-W supplies.
The Reliant immediately takes over
when a master power supply fails to
prevent damage due to overvoltage,
overcurrent, and other power problems.
If a master power supply fails, sophisti-
cated diagnostics sound an alarm,
alerting the user to hot-swap the failed
power supply.
The RPT-600 sells for $199, the KS022
for $799, KS033 for $1699, and the KS044
for $1799.

Antec, Inc.
2859 Bayview  Dr. l Fremont, CA 94538
(510) 770-1200 l Fax: (510) 770-1288 #501
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DATA ACQUISITION AND CONTROL SYSTEM
Prairie Digital has introduced a low-cost data-

acquisition and control system for all ISA bus comput-
ers. The Model 100 provides the most commonly used
features of analog and digital I/O boards. Typical mea-
surements include temperature, pressure, humidity,
light levels, force, and acceleration.

Through software, users can select eight single-
ended channels or four differential channels. Conver-
sions are performed in 10 us with 12 bits of resolution.
Users set an input range of O-5 V or +2.5 V. Four chan-
nels of 8-bit  analog
output (O-5 V) can also

provided are three 16-bit timer/counters for timing
events, counting pulses, and generating interrupts with
accurate timing.

Atlantis software enables the Model 100 to emulate
strip-chart recorders, oscilloscopes, and digital voltme-
ters simultaneously. Up to ten instruments can be dis-
played at one time, including bar graphs and a real-time
clock. Foreground or background sampling, software
triggers, and user-definable macros are also featured.

Model 100 sells for $279. Optional Atlantis software
sells for $79.

Prairie Digital, Inc.

Twenty-four lines of
digital input and/or
output are provided
(eight lines are semidedi-
cated)  for controlling
relays, lights, motors,
switches, thermostats,
and liquid levels. Also

Prairie du Sac, WI

Fax: (608) 643-6754

If, like Dot, you think bugs belong six feet under, then step
up to Paradigm DEBUG and get the right weapon for the
toughest ‘186 or V-series embedded application. Take ‘em
on by yourself with Paradigm DEBUG/BT  or gang up on
‘em with a popular in-circuit emulator. ‘Cuz no matter what

,‘ kind of Borland or Microsoft C/C++ vermin you’re fightin’,
ya better not go in empty-handed or firing blanks from
inferior weapons. Ya just might not live to regret it.

- %

Proven Solutfons  for Embedded C/&t Developers

I -800-537-5043
Paradigm Systems
3301 Countrv Club Road. Suite 2214. Endwell. NY 13760

. (607) 748-5966  I FAX: (6071748-5968’
-,

01994 Paradigm Systems. Inc. All rights reserved.
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UNIVERSAL FRONT- deep and records switch
PANEL CONTROLLER scan codes and the address

The IQC816 Univer- of encoders which have
sal Front-Panel Control- changed state. A sound
ler chip from IQ Systems generator with program-
is the first in a series of mable frequency and
chips which greatly duration and an UART are
simplifies incorporating also on the chip.
encoders, displays, The software interface PENTIUM  COOLING SOLUTION
keyboards, switches, is flexible and easy to use. Thermacore Inc. has announced a new series of
sound, and speech in The goal is to standardize standard and customizable products designed to cool
electronic products. The the user interface command Pentium or other high-performance processors in
product family is founded set in much the same way notebook computers. The Processor Thermal Manage-
on a new command set as the interface to modems ment Systems offer high-efficiency cooling without
which provides a stan- was standardized with the noise, moving parts, or electrical power requirements.
dardized user interface Hayes AT command set. The performance of these compact solutions helps chips
regardless of the host The IQC8 16 is available such as the Pentium to maintain case temperatures at
processor type. in a 40.pin DIP package and less than 40°C over the ambient temperature, thereby

IQC8 16 can support sells for $19.95 in single ensuring the chip’s intended life and performance
32 digits of LED display quantity and $9.95 in 1000s. characteristics.
addressed as 4 displays of An evaluation kit is avail- This new line of products uses Thermacore’s
8 digits. Displays can be able for $95. The kit, which exclusive heat-pipe technology. Through this passive
concatenated for more contains C drivers for the technology, heat is moved from the chip’s surface via a
than 8 digits or reduced IBM PC and numerous two-phase heat-transfer process which requires no
in width for increased application examples, moving parts or power from a notebook’s battery.
brightness. An intelligent enables a designer to plug Depending on design and space considerations, heat can
display offers features on displays, encoders, then be dissipated by natural convection using fins
such as left and right speakers, and so on, then attached to the heat pipe or through existing compo-
formatting, choice of couple them to any host nents such as the keyboard’s aluminum back plane,
cursors, alpha decode, with a UART. which can act as a heat sink.
programmable display Unlike other heat-transfer solutions, Thermacore’s
width, and so on. Thirty- IQ Systems, Inc. products have been designed from the ground up for the
two segments of LCD 20 Church Hill Rd. notebook computer. For example, they operate in any
display plus 4 x 40 lines Newtown,  CT 06470 position the user places the notebook, including upside
of alphanumeric smart (203) 270-8667 down. Its light-weight (less than 65 g for the full heat
LCD display are also Fax: (203) 270-9064 sink) and snap-on chip design optimize manufacturing
supported. Internet: 76636.3267@ while its mean time to failure is over 100,OO  hours.

Sixteen nonmulti- compuserve.com Thermacore’s new products are available immedi-
plexed outputs drive ately. Designs can be modified to fit any style case or
actuators, relays, or #503 board configuration.
incandescent bulbs. Eight
rotary encoders with full Thermacore, Inc.
quadrature decoding are 780 Eden Rd.
supported, and each Lancaster, PA 17601
encoder is supported by (717) 569-6551
an g-bit up/down Fax: (717) 569-4797
counter. Forty-eight
standard switches ( 176 #504
with shift, control, and
alternate key modifiers)
can be supported. The
output buffer is 8 bytes
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PASSIVE bottlenecks. The
BACKPLANE SBC card also includes a

The PCI-930 256-KB write-back
from Teknor cache, a real-time
Microsystems is a clock with battery
‘486DX-based, backup, AM1 BIOS,
passive backplane watchdog timer,
CPU card, operating SVGA output, and
at processing speeds mouse port.
of up to 100 MHz Configurable
with Intel’s DX4 with up to 128MB
microprocessor chip. DRAM and up to 4-
The ICI-930 is MB flash memory,
designed to the new the ICI-930 is well-
PICMG Rev 2.0 suited for high-
industrial PC1 speed, performance-
specification and offers full PC1 and ISA passive dependent applications such as medical imaging,
backplane compatibility. This standard enables compat- telecommunications, and industrial automation.
ible cards to run on a shared PC1 and ISA passive PCI-930 microprocessor configuration options
backplane. include an Intel ‘486DX @50 MHz, ‘486DX2  @66 MHz,

Full onboard  I/O, such as hard and floppy disk and ‘486DX4  @lo0 MHz. The ‘486DX-50 entry-level
controllers, serial, parallel, and keyboard ports, and version is priced at $1595.
bootable flash memory, is standard on the card. SVGA
resolutions to 1024 x 768 x 256 colors are included. OEM Teknor Microsystems, Inc.
designers gain fast video access through a 32.bit  PC1 616 Cut-4 Boivin l Boisbriand, Quebec l Canada J7G 2A7
local-bus interface to Cirrus Logic’s CL-GD5430 video- (514) 437-5682 l Fax: (514) 437-8053
processor chip. High PC1 transfer rates (up to 132 MBps)
provide maximum throughput and help alleviate system #505

DYNAMIC CLOCK OSCILLATOR
Vector Dynamics has introduced the DCO-100 Dynamic Clock Oscillator, a self-contained test instrument for

development engineers. This product emulates an oscillator toolbox, eliminating the need to stock multiple oscilla-
tor frequencies to meet the demands of new product design.

The DCO-100 provides user-selectable clock frequencies from 500 kHz  to 99.999 MHz in 1-kHz  steps. Changes
in frequency are glitch-free, allowing on-the-fly frequency selection without removing it from the circuit under test.
Frequency is selected by using two push buttons and is displayed on a 5-digit decimal display located at the top of the
module. The module can be easily reprogrammed to any frequency within its range, making it a versatile develop-
ment tool which can be reused on other projects.

The DCO-100 module has an identical footprint to a standard 4-
pin (14-pin configuration) full-size, fixed-frequency oscillator and is
powered by the 5 V normally provided to pin I4 of the clock oscilla-
tor in the circuit. The unit’s dimensions are 1.27” x 2.75” x 0.5”.

The DCO-100 includes a built-in display and programming
buttons, so no accessories are needed. A user handbook with useful
application notes and storage box are also included. The DCO-100
sells for $200.

Vector Dynamics, Inc.
1880 Tanglewood Dr. NE l St. Petersburg, FL 33702
(813) 526-7038 l Fax: (813) 527-6534 #506
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NEWS
MULTIPLE METER SOFTWARE DATAACCESS

AGX has introduced a new, multiple-meter software ARRANGEMENT
product with drivers for most serial interface meters. The first all-silicon,
Metersoft offers real-time display, meter monitor and full-function Data Access
logging, controllers, counters, bar graphs, sensors, and
transmitters with an RS-232 or RS-485 serial interface.
Metersoft displays 1, 4, 9, or 16 meters per PC screen
with alarms, channel ID, engineering units, and trending
information.

Metersoft provides such as uniform meter setup and
configuration, data logging, multiple-meter display, test
and measurement, quality control, and the creation of
virtual meters (for example, you could determine the

sum or difference of two
real meters).

Priced from $99,
Metersoft provides the user
with a low-cost data
acquisition and monitoring
system for existing and
newly purchased meters.

AGX Corp.
Metersoft Division
5761 Uplander  Way
Culver City, CA 90230
(310) 642-6663
Fax: (310) 642-6661 #507

MICROCONTROLLER
BOOK

Lakeview Research
has announced a hands-
on guide of circuits,
programs, and applica-
tions featuring the 8052.
BASIC single-chip

computer. Jan Axelson’s
The Microcontroller Idea
Book presents practical
designs for use in data
loggers, controllers, and
other embedded computer
applications. In addition to
the basic circuits needed for

any project, the book
shows how to add
keypads, switches,
relays, displays, sensors,
clock/calendars, motor
controls, wireless links,
and other I/O interfaces.

This 277-page book
includes complete circuit
schematics, parts lists,
design theory, construc-
tion and debugging tips,
and program listings.
Circuit and program

Arrangement (DAA) has
been developed by Krypton
Isolation. The K2 DAA
chip set provides isolation
from 1.5 and 2 kVDC (3.5
kVDC for European
standards) in stand-alone,
card-level, and PCMCIA
fax modems for computers
ranging in size from
portable and hand-held systems to desktop workstations.

As a total solution to the problem of isolating
modem chip sets from the telephone line, the devices are
easy to use, lower in cost than other forms of DAA, and
function at all speeds up to V.32, V.32bis,  and V.34. It is
designed to mount inside any kind of fax-modem card
housing without any modifications to the motherboard.
The chip set connects directly to the telephone line.

Other features of the K2 chip set include off-hook
relay control, ring-indication control, internal 2-to-4 wire
conversion, and caller ID. K2 offers a power-down mode,
operation from a single 5-v source, and low power
consumption. The chip set includes one device in an 8-
pin SOIC package, one in a 16.pin QSOI?  package, and
one in a 20-pin QSOP package. The chip set meets all
appropriate standards.

The K2 Chip Set sells for $8.50 in quantity.

Krypton Isolation, Inc.
39111 Paseo Padre Parkway, Se. 202
Fremont, CA 94538
(510) 713-9100
Fax: (510) 713-9188 #508

examples are based on the
popular 8052.BASIC
microcontroller, whose on-
chip BASIC interpreter
includes over 100 com-
mands, statements, and
operators for convenient
writing, running, and
debugging of programs.
Special commands store
user programs in EPROM or
other nonvolatile memory.
As a member of the 8051

microcontroller family,
the chip uses a standard,
popular architecture.

The Microcontroller
Idea Book sells for $31.95
plus $3.00 shipping.

Lakeview  Research
2209 Winnebago St.
Madison, WI 53704
(608) 241-5824 #509

12 Issue #56 March 1995 Circuit Cellar INK



WRES
Fuzzy Logic:
The Next Generation
of Control

Fuzzy Logic for
Embedded
Microcontrollers

Levitating a Beach Ball
Using Fuzzy Logic

PC FuzzPong

Being ASSERTive
with Your Processor

Fuzzy Logic:
The Next
Generation
of Control

Bud Moss

0 tizzy  logic is
ranother  step toward

r eliminating the need
‘to reduce our thoughts to

the point they become unrecognizable.
It lets us design the core software of a
control system or similar task using a
method which simulates how we
think. It’s no longer necessary to break
down our ideas into line after line of
code or long, complex equations.
Instead, we can use graphs and shapes,
and a few IF.. .THEN rules complete
the system.

Fuzzy logic is not for everyone-
just most of us. If you enjoy generating
and optimizing equations more than
implementing and debugging the
system, fuzzy logic may not be for you.

For the rest of us, it’s well worth
the effort.

ABSOLUTESVERSUS
GENERALIZATION

Have you ever been hiking and
had to cross a stream, but there wasn’t
a bridge?

My first reaction is to look for
another way. Scanning the water, I
search for rocks that can be used as
stepping stones. To pick the right
rocks, I jump into the water and
document every characteristic of every
rock using the tools-a protractor and
ruler-I just happened to pack. Next, I
generate a formula, plug the data into a
calculator, and hope. Two or three
days later, the stream is conquered and
I’m on my way.

Not very likely.
Instead, I base my decision on

approximations. First, I decide which
characteristics should be considered
and how important they are compared

14 Issue #56  March 1995 Circuit Cellar INK



to the others. I know that rocks with a
large flat top are easier to stand on and
the closer together they are the better.
I also know that the distance between
them is more important than the
shape of the top. After finding how
well each rock fits the categories, I
choose the right one.

Fuzzy logic follows a similar
process. It allows us to be imprecise
and still arrive at the correct answer.
By setting up graphs (size, top, and
distance), adding shapes (large, flat,
and close), and specifying the rules (IF
the rock is small AND pointed OR is
too far away, THEN eliminate it), I
come up with the best rocks.

Unlike a system that uses abso-
lutes, this system, once it is proven,
enables me to find the correct rock in
any stream, not just this one.

ITS BEGINNINGS
In 1965, Lotfi Zadeh found that,

due to the contradictory nature of
control systems, they were not easily
represented using the traditional
method of mathematical modeling. He
theorized that adding imprecision to
the system would allow it to react
more precisely when presented with
conflicting input data. His article
“Fuzzy Sets” launched the field of
fuzzy logic.

Read ADC values at
port; apply values to

Find output value
using graphs, shapes,

and rules

with  op.amp  to create
sawtooth waveform

Western countries didn’t exactly
jump when fuzzy logic was born. In
fact, it took almost 30 years for it to
hit mainstream media. There’s

Figure 2--An  Lb7335  converts temperature to a volfage  which is digitized by fhe ADC0803.  The digital value is
transferred to the PC via one of fhe parallel ports.

Figure l--The sample  fuzzy logic system described
starts  with temperature and ends with sound. However,
if doesn’t simply pass the ADC output value to the inpuf
of a DAC.

probably a multitude of reasons, but
most are related to the fact that the
system could not be proven math-
ematically. Some believed that an
unprovable system was the same as no
system. Others were uncomfortable
with the word fuzzy-an excellent
word for what it describes, but to those
accustomed to precision, it may not
have been the best choice.

Unlike the West, the Japanese
were interested. The word fuzzy was
not translated, but transferred phoneti-
cally, thereby facilitating the accep-
tance of the concept at face value.
With an easy acceptance, the Japanese
went straight to the next step-
experimentation, which quickly
demonstrated that traditional methods
of proof were unnecessary. For years,
the Japanese have marketed fuzzy-
based products.

But, the West is catching up. In
the last few years, many companies
have been developing products based
on fuzzy logic concepts. Most large IC
manufactures are marketing micro-
controllers and coprocessors  optimized
to perform in a fuzzy-logic environ-
ment.

For example, did you know that
fuzzy logic controls the Saturn
automobile’s transmission? The
designers found that they achieved
better performance and smoother
operation with fuzzy logic than they
did using a traditional approach. This
trend should continue as more design-
ers see the benefits of this type of
control.

THE HARDWARE
To gain an understanding of fuzzy

logic, we’ll use the simplest control
problem: one input and one output.
Figure 1 shows the flow of an entire
system. We’ll vary the frequency of a
speaker as the room temperature
varies.

The hardware was designed to
show the ease of setting up a control
system based on fuzzy logic. Most of
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25-Pin  D-Sub
18, 19, 20,21, 22,23, 24,25 tied to 1

Figure 34nsfead  of using a board, fhe interface fo ADC and DAC is done through a 2531 D-sub printer port
connector.

us have an unused parallel port or an
A/B box. Instead of using another slot
in the PC, the hardware interface will
be done via the PC’s printer port.

TEMPERATURE TO VOLTAGE
The LM335 converts the room

temperature into a voltage that’s used
to feed the ADC. Basically, it’s a zener
diode whose breakdown voltage varies
proportionally with temperature. For
each Kelvin degree, the junction
voltage changes 10 mV.  (Remember
Kelvin begins at absolute zero, which
is -459.67”F. To convert Kelvin to
Fahrenheit, use the following formula:
F” = 1.8 x Kelvin - 459.67O.J  To hold
the input stable, R2 and C2 are
configured as a low-pass filter with a
one-second time constant.

Frequency= 1
l.lxR3xR4

with R3 = 10 kR. The range of input
voltages is set using the V,,_ and VRLF,Z
pins and the potentiometers connected
to them.

For example, if the minimum
input voltage is 0.5 V and the maxi-
mum is 3.5 V, the reference voltage is
(3.5 - 0.5)/2
read with both V,,+
V,,_at 0 . 5  V  a n d  V,,+
1

of the printer port’s hardware. Table 

8-
analog-

&j&r port2 port3
1 3BC 3 7 8 2 7 8
2 3BD 3 7 9 2 7 9
3 3BE 37A 27A

Table l--The actual 110 port addresses used in your
code depend on which physical parallel porf you’re
using. The Addr numbers correspond to the Addr labels
in Figure 3.

9DG1% A!D CONVERTER* (16 channel/8  b&t ..$ SW%
kDG80 A/D CONVEATER’(fJ  channaVl0 bil.Sl24.901
nput  voltage, amperage, pressore,  energy usage,
oystk%s  and a wide variety  of other types of analog
signals. RS-422/R&465 available (lengths to 4,ooOq.
:all  for info on other A/D configurations and 12 bit
:onverters  (terminal block and cable sold separately).
9DGBE  TEMPERATURE INTERFACE’ (8 ch)..$139.9$
ncludes term. block & 6 temp. sensors (-40’ to 146’  F).
3TA-8 DIGITAL INTERFACE‘ (8 channel) . . . . . . . . . $99.1
nput on/off status of relays, switches, HVAC equipment.
security  devices, smoke detectors, and other devices.
STA-8D TOUCH TONE INTERFACE* . . . . . . . . . . . . . . . . $ 134.90
Wxvs callers to select control functions from any phone.
‘S-4 PORT SELECTOR (4 channels W-422)....%  79.95
>Onverts  an RS-232 port into 4 selectable W-422 ports.
:0-485  (RS-232 to RS-422JRS-405  converter)......$44.95

EXPANDABLE...expand  your interface to control and
nonitor up to 512 relays, up to 576 digital inputs, up to
126 anal0
he PS-4. I!

inputs or up to 126 temperature inputs using
X-16, ST-32 &AD-16 expansion cards.

*FULL TECHNICAL SUPPORT...provided  over the
telephone by our staff. Techntcal reference 8 disk
including test software & programming examples In
Basic, C and assembly are provided with each order.

*HIGH RELIABILITY...enginesred  for continuous 24
hour Industrial applications with  10 years of proven
performance I” the energy management field.

0 CONNECTS TO RS-232, RS-422 or RS-485...use with
IBM and compatibles, Mac and most computers. All
standard baud rates and protocols (50 to 19,200 baud)
Use our 800 number to order FREE INFORMATION

PACKET. Technical InformatIon (614) 464.4470.

24 HOUR ORDER LINE (800) 842-7fid
i_ @a-Mastercard-Amerqn  Express-COD _ ~_,

International & Domestlc FAX (614) 464-9656
Use for Information, techmcal support & orders.

ELECTRONIC ENERGY CONTROL, INC.
360 South Fifth  Street, Suite  604

Columbus, Ohlo  43215.5436
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ports. Don’t confuse the address of
LPTl with that of port 1. They may
not be the same. The operating system
sets the address of LPTl  equal to the
first parallel port found, which may or
may not be port 1.

Each parallel port can be broken
into four sections: status, control,
input, and output. The circuitry uses
every free line of the port, except the
interrupt to the processor, which must
remain off (control port D4 = 0).
Depending on how your system is
configured, you may end up with
unexpected results or a system crash if
you forget this.

The software used to read the
ADC is shown in Listing 1. To start
the conversion, we drive D2 of the
control port low then high pulse the
WR pin. After giving the ADC time to
digitize the voltage, the data can be
read.

The port’s hardware wasn’t
designed for this, so to get the data, we
have to do a little manipulation. First,
bits O-2 are read from Status A via data
bits 0, 1, and 3. There is a reason

Listing l--This procedure reads the ADC and returns the value read in the AX register. The equates are
used in a// three listings.

Port equ

StatusPort equ
ControlPort equ
DOS equ
Screen equ
GetDisplay equ
Cls equ
Display equ
PositionCursor equ
Exit equ
GetKey equ
KeyPressed equ
CheckKey equ
LoopsToWait equ

GetADValue proc
mov
mov
out
xchg
out
xchg
out

0378h

Port+1
Port+2
021h
OlOh
Ofh
00
02
02
020h
08
Offh
Obh
0

base address of port to use
change this if different

addr of status port for rd
addr of ctrl port
DOS interrupt
BIOS int for screen access
get video mode
set video mode
DOS display char function
BIOS set curser function
program exit
func to get char from keybd
key was pressed
function to check key pressed
each loop takes 17 clocks. To
find number required for your
system, Loops = 115 Ps/time
period of PC clock/l7 (e.g.,
a 33.MHz  PC needs 224 loops)

near
dx,ControlPort
ax,04
dx,al ;set start to 1 just in case
ah,al
dx,al ;start  to 0
ah,al

;then back to I

4cs i 1 Energy Minagement
&$$I0 pj$~

I, _... Security kd Alarm
d

38 ““-Ipi _.i_aP”rK @ Coorsnated
r I i Home Theater

Coordinattd  Lighting

Monitorin;  and Data
/ Collection

more with the Circuit Cellar
HCS II. Call, write, or FAX us

sembled or as a kit.
x: (203) 872-2204 j

18 Issue #56  March 1995 Circuit Cellar INK



Listing 1-confinued

1

WaitOnAd:

AndAZero:

GetADValue

mov

loop
in
not
mov
and
shr
and
or
mov
in
and
or
test
jnz
or
ret

and
ret
endp

cx,LoopsToWait ;number  of loops for 115 ps

WaitOnAd
al,dx ;get the first 3 bits
al ;complement  all the bits
ah.al
ah,07 ;unused  bits to 0
al,1 ;D3-D2 position
al,04 ;mask all but D2
ah,al ;DO-D2  in ah
dx,StatusPort
al,dx ;get D3-D7
al,Of8h ;dump DO-D2
al,ah ;OR in DO-D2
al,080h ;top bit a one?
AndAZero ;n0

al,080h ;invert  top bit

al,07fh :invert  top bit

behind using D3 instead of D2. Notice
that the clear input of the control port
is tied to the PC’s reset line. On
powerup,  pins 1, 14, and 17 are pulled
high, pin 16 is driven low. The outputs
are open collector. Thus, by using pin
17, we eliminate the possibility of bus
contention with data bit 2 of the ADC.

BITS TO VOLTAGE
After the value from the ADC is

processed by the fuzzy system, the
DAC in Figure 4 converts it back to a
value we can use. The DAC0832 is a
double-buffered, multiplying DAC
with complementary current outputs
that is easily interfaced to many
microprocessors.The other five bits, D3-D7,  are

read at Status B. Notice bits DO-D2
and D7 are inverted by the port’s
hardware and must be reinverted to be
used. A couple of lines of code later, the I”“,, pin. External conditioning
we’re back to the original byte. circuitry then converts the current to a

The 8-bit  value to be converted is
simply sent to the DAC’s  data lines.
The resulting current is presented on

T”. 1wF

Figure 4-Affer  the ADC3 value is processed by the fuzzy system, a DACO832  and associated circuifry  drive a
piezoelectric  buzzer. The buzzer’s tone varies with the room temperature.

A Complete
Family of

Data Acquisition
, Products from

American Eagle Tethnologj

Data acquisition rates from
1OOkHz to 1 MHz.
Newest designs incorporate
the latest technology: FIFO
buffers, dual-DMA, REP INSW
data transfers, programma-
ble gains, etc.
Simultaneous sampling
option for all boards.
Lowest prices on the market
for comparable performance.
Digital I/O w/ on-board relays.
16-bit analog output (D/A).
Large inventory of popular
items for next day delivery.
Also available: signal condi-
tioning, multi-port serial
boards, device programmers,
logic analyzers, & much more.

Only American Eagle Technology
Gives You All This Free Software:
l WaueView  menu-driven software
l &c&earn  high-speed streaming

software
l Complete software developers’

kits for both DOS and Windows
* Drivers for all popular applica-

tion programs such as LabView,
LabWindows,  NO T E B O O K,
SnapMaster  and DASyLab

Eagle Technology
526 Durham Rd
Madison, CT 06443

Call: (203) 245-6133
Fax: (203) 245-6233
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voltage if necessary. The current at the
output can also be affected by using
the V,,, input for feedback.

Software to set the DAC is shown
in Listing 2. The byte is written to the
output port and immediately con-
verted to a DC current.

CURRENT TO SOUND
The remainder of the circuitry in

Figure 4 converts the current from the
DAC to a pulse train that drives a
buzzer. To stay with one supply, an
ICL7660  (U4) is used to generate the -5
V. Internally, an onboard  oscillator
controls the on time of four MOS
switches.

The first half of the cycle is used
to charge C7 to Vc,. During the next
half, the positive side of C7 is tied to
ground and the negative, to pin 5. The
charge is transferred in the opposite
polarity. U4 can deliver 100 mA
without significant change in the
output voltage.

First, we integrate the current,
creating a sawtooth waveform (U3a).
The frequency of the signal is depen-
dent on the amount of current flowing
through pin 11. With an input of 0,
essentially no current flows through
IOUT,. Thus, the frequency is 0. As the
input value increases, the current also
increases, varying the charge and
discharge rate of C6.

The signal is passed to an open-
collector comparator (U3b)  to generate
the square wave. Notice its output is
tied to V,,,. With each cycle, the
charge across C6 must be reversed. To
do this, we drive U2/8 to +5 V and
then to -5 V.

For example, assume the
comparator’s output just switched to
+5 V. C6 was charged to +1.667  V
during the previous half cycle. C6
discharges into I,,,, (electron flow)
through the resistor ladder to V,,,.
U3b’s output switches to -5 V when
the voltage of C6 exceeds one-third of
the positive supply. At this point, all
of the available supply voltage is
dropped across R5. When U3b/3  is
driven below U3b/2,  the output
switches, reversing the direction C6
charges.

To find component values, use the
following formula:

Listing 2-A// that’s required to send a value to the  DAC is a couple of lines of code.

WriteDac proc near
mov dx,Port
out dx,al ;Assumes  value is passed in AL

WriteDac endp

Listing 3-The  minirnurn  software required to calibrate and verify the hardware.

cal
main

star

mair

t:

segment
proc
assume
org

mov
xor
out
call
mov
mov
int
mov
int
call
mov
mov
int
call
call
mov
mov
int
call
call
mov
mov
int
mov
mov
out
mov
int
call
int
endp

ReadAD proc
mov
int
mov
mov
mov
int
call
mov
mov
ror
xchg
push
call
mov
mov
int
POP

far
cs:cal
OlOOh

dx,ControlPort
ax,ax
dx,al
Clear-Screen
dl,'l'
ah,Display
DOS
ah,GetKey
DOS
Cleat-Screen
d1,'2'
ah,Display
DOS
ReadAD
Cleat-Screen
d1,'3'
ah,Display
DOS
LoopWriteDac
ClearScreen
dl,'4'
ah,Display
DOS
dx,Port
al,Offh
dx,al
ah,GetKey
DOS
ClearScreen
Exit

near

;set IREQ to off

:indicate  step 1

;send 1 to display

;apply  power then press return

:indicate  step two

;send 2 to the display

;indicate  step three

;send 3 to the display

:indicate  step four

;send 4 to the display

;send an ffh to DAC

:get a key

;a11  done

ah,GetDisplay ;read display mode
Screen
ah,PositionCursor  ;going  to set cursor to start
dh,l ;line number
dl.0 ;column  number
Screen ;bh has display page
GetADValue ;rets al with value
ah,al
cx,4 :set up for rotates below
ah,cl ;high nybble to low
al,ah ;digits  right to display
ax ;save for second digit
ToAscii
dl ,a1
ah,Display
DOS ;char in dl to screen
ax

(continued)
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Listing 3-continued

xchg
call
mov
mov
int
mov
int
cmp
jne
mov
int
ret

ReadAD endp

al,ah
ToAscii
dl,al
ah,Display
DOS
ah,CheckKey
DOS
al,KeyPressed
ReadAD
ah,GetKey
DOS

LoopWriteDac proc near
inc al
mov dx,Port
out dx,al
mov cx,08000h

WaitABit:
loop WaitABit
push ax
mov ah,CheckKey
int DOS
cmp al,KeyPressed
POP ax
jne LoopWriteDac
nlov ah,GetKe,y

next digit

check for key

clear keybd

next value

wait so change can be seen

check for key

int DOS :clear  keybd
(continued)

Frequency= Digital Input
256 x 15 kfi (typical) x C6

where R5 = 3 x R4. For the circuit
shown, the component values are:

Frequency max = 255
256xl5kRx5nF

= 13 kHz

BUILDING AND CALIBRATION
Due to the simplicity and purpose

of the circuitry, several ADC and DAC
characteristics were not mentioned.
All converters have a list of pitfalls. If
your application requires increased
accuracy, look into the converter’s
specifications before beginning.

When building the board, keep the
converters’ components as close as
possible to the ICs. Keep the digital
and analog grounds separated, except
at the point of connection where they
enter the board. To overlook the
problems associated with driving
cables, the board uses an onboard
connector. If you use a cable, add the
necessary components. To avoid the
possibility of setting up a ground loop,

8051 EMBEDDED CONTROLLERS
RIGEL Corporation builds and supports professional development
tools for embedded controller systems, with hardware and software for
industrial applications, and books and kits for educational and training
purposes.

THE RIGEL DIFFERENCE
All of our boards come
standard with:
l 32KEPROM
l 32K RAM or EEPROM
l Machine screw sockets
l Power on LED
l All system signals

on headers
e All I/O available on

terminal blocks
l Sample programs
l Circuit diagrams
l IDS software READS

READS is a DOS based
menu driven, windowing
platform. You can wk.
assemble. download.
debug. and run
applications software

I” the MCS-51 language.

@ BBS Tech support

3ur  entire line of 8051 boar 3!
we programmable in Assembly,
3ASIC,  “C”,  and Forth. We also offer low cost Fuzzy Logic Software for the 8051

Complete systems start at $85
CALL TODAY FOR MORE INFORMATION ON OUR PRODUCTS

RIGEL Corporation,
PO BOX 90040, GAINESVILLE, FL 32607

Telephone (904) 373-4629 BBS (904) 377-4435

#ill

MTAMUISmON,SERI’O’Jl_~
e-erTRESOUmONzzsHzsMtPRATE
sfunPalmFFAMIuwnLTER
CREATE  SlEREO  w_hstEa  (.Mc)  FtLEs 9%

2 CHAN DACVMCE Mb& MUSIC,  ALARMS.,  ‘ZLVOLT
wTREw_ulw44lwSPLEPATE
PuYsMow/sTEaEoeUSTERnlES
FuNcTwaAsMGrr~AlTENuAToaTw 7%

m %%$I!+
5 YEAR LIMITED WARRANTY

F R E E  S H I P P I N G  I N  U S A
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float the supply’s ground (i.e., discon-
nect the jumper between the supply
and earth ground).

Listing 3-continued

The software in Listing 3 checks
your setup and gives the step number
and data.

ret
LoopWriteDac endp

Step l-The port’s interrupt request is
disabled. Apply power. Verify U4/5
is approximately -5 V.

Step 2-The ADC is read and the value
displayed. Change the sensor’s
temperature to the lowest that will
be encountered. Measure the voltage
on pin 6. Adjust TempMin  (pin 7) for
the same value. Change the sensor’s
temperature to maximum. Again,
measure the voltage on pin 6. Set the
voltage on pin 9 to one-half that of
pin 6. Verify the data displayed is FF
hex. Put the sensor in minimum
temperature. Ensure the displayed
value is 0.

ToAscii proc near
and al,Ofh
add al,030h
cmp al,03ah
jl ToAsciiEnds
add al,07h

ToAsciiEnds:
ret

ToAscii endp

;only low nybble

;> 9

;get to A

ClearScreen proc near
mov ah,GetDisplay
int Screen
mov ah,Cls
int Screen
ret

Clear-Screen endp
cal ends

end start

:get display mode

;clear  screen

Step 3-0-FF is written to the DAC in
a continuous loop. Verify all data The difficulty of the task quickly Instead, specify the frequency of
pins of the DAC are pulsing. escalates into a full-blown project. the speaker as maximum when the

Step 4-FF is sent to the DAC. Check What’s needed is a way to tell a room temperature is perfect and
that the sawtooth waveform and the computer that Warm, KindaWarm, and minimum at either extreme. You
pulse train are present.

ON TO FUZZY LOGIC

Cold are not separate entities, but a
combination of all three.

Let’s see how fuzzy does it.
Now that the hardware is in place,

there are several ways the control
system could be generated without
using fuzzy logic. One way might be to
equate the temperature of the room
with the different frequencies pro-
duced by the speaker.

SET UP THE GRAPHS
START AT THE BEGINNING

That’s not too hard. All we need
to do is specify in absolute terms the
difference between warm and cold.
We’ll say that the room is warm when
the value read at the ADC is between
2.5 and 75. So, if the
value is below 25, the
room is considered cold.

The first thing to do is to decide
what the input versus the output graph
should look like. You could specify
that as the room temperature in-
creases, the frequency of the speaker
also increases. In other words, the
control system is the equivalent of
reading the ADC and sending the
value to the DAC, which is no fun at
all.

Both the input and output require
a separate graph. Figure 5 shows the
graph for the input. The values for the
x-axis are the input values from the
ADC. The values start at 0 (room
coldest) and end at 255 (room warm-
est].

But, is that correct?
Does the room suddenly
change from warm to
cold at one specific
temperature? What’s
needed is another set,
which we can call
KindaWarm. This set is
defined as the span of
inputs somewhere
between Warm and
Cold.

100%
_Y axis referred to as percent of membership

annotated “p”. Range O-i (0% to 100%)

The y-axis is called the degree of
membership (fuzzy value). Most
documentation specifies its range as
0.0 to 1 .O and annotates it as p. Instead

of adding to the com-
plexity of this, I’ll refer
to this axis as the
percentage of member-
ship.

I increasing Fuzzy values

Temperature

+ Room Warmer +
Max

i

RoomTemp  @ 1.000 per division
Values from ADC

2 5 5

L

Figure 5-After  deciding what output shape is needed, input and oufpuf  graphs are set up. The
values on the y-axis are fuzzy values. The x-axis inputs from the ADC.

should further stipulate that the graph
resembles a bell curve.

The range starts at
0 (i.e., no membership)
and ends at 100%
(complete membership).
If we were using
Boolean logic, there
would only be two
values on this axis: 0
(false) and 100 (true).
Fuzzy logic includes
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Boolean values as well as all the other
values in between the Boolean poles.
One could view Boolean as a pulse
train (True or False) and fuzzy as a
sine wave with varying degrees of
truth.

ADD THE SHAPES
Shapes replace all the drudgery of

defining and redefining values. The
values contained in each set are still
defined, but they conform to a shape
rather than matching specific num-
bers, Each shape defines what values
are contained in the fuzzy set and the
weight (i.e., percentage of membership)
of each.

As an analogy, say you’re in a boat
and the dock is one mile away. The
input shape (set) contains the distance
between you and the dock. The output
shape equals the range of the gas lever.
When the dock is a mile away, the
distance has little membership in the
input set, so the lever remains un-
changed. The closer you get to the
dock, however, the higher the dock’s
membership within the shape. This
membership is transferred to the
output’s shape, thereby decreasing the
lever’s position.

The shapes available are trap-
ezoids and triangles. And, it is not
readily apparent how to achieve a bell
curve using these shapes. However,
when rules are added, any output
shape can be represented.

To select input shapes, first
establish what values belong in each
set. This defines the base of the shape.

Figure I-Trapezoids, triangles, and rectangles are used to define which ADC  values are contained in each set and
to what degree (i.e.,  the percentage of membership) each belongs.

Figure 7-Three  shapes on the oufput  graph generate the be// curve. FreqLow  controls fhe leading and falling
edges, FreqMiddle,  the transition to the peak, and FreqHigh,  the peak.

The left bottom is the minimum and
the right, the maximum. Next, you

Figure 9-The  input from fhe ADC is converted to a fuzzy value by first drawing a vertical line from the x-axis
Horizontal lines fo the y-axis determine fhe value.

need to decide when the fuzzy set
becomes 100% true.

For example, refer to the Warm
shape in Figure 6. Here, the room is
completely warm (i.e., membership =
100%) at only one point, the shape’s
peak. If necessary, we could replace
the triangle with a trapezoid, allowing
the set to be completely true for more
than one input or, for that matter, it
could be true for all inputs as in
rectangles. Now that the points are
defined, all that’s left is to connect the
dots.

Unlike criteria in an absolute
system, fuzzy logic lets you overlap
shapes anytime values belong to more
than one set. When the input value for
the RoomTemp  graph (Figure 6) is
within the KindaWarm  shape three

Circuit Cellar INK Issue #56 March 1995 2 3



components-Cold, KindaWarm, and
Warm-interact. KindaWarm is not a
singular set of values, but a varying
degree of three.

Output shapes are a little differ-
ent. Instead of working directly with
the edges, centroids are used. To use
an analogy again, you could consider
this the center of gravity or the
fulcrum on which the pivot balances.
Each centroid has an x and y coordi-
nate of which only the x value is
actually used.

Shape selection is easier than
inputs. You start out by finding the
number of shapes required, a decision
dictated by the number of dissimilar
areas you’re attempting to control. In

Figure 9-Very seldom is the output-versus-input graph correct the  first time. Three transitions need to be corrected:
62, 118-138, and 194.

position the shape by visualizing the
centroid with a fuzzy value of 100%.

Figure W-After  finding the  fuzzy values, fhey are processed by the rules and transferred to the output graph.
Cenfroids are used to find fhe X-axis values.

for equilateral triangles, trapezoids
with equal slopes, and rectangles,
and it is always in the middle of the
shape.

l when using trapezoids, the length of
the top determines how close each
centroid is to the previous. With a

Figure 1 l--Small  modifications to  fhe Kinda  Warm and KindaHof  shapes are a//  that’s required to  smooth the
transition at the fop of the  be// curve.

longer top, there is less change in INPUT TO FUZZY VALUE
the x coordinate of the centroids. Figure 8 shows the completed

l of all the components, output shapes graph for RoomTemp.  To see how the
have the least affect. fuzzy value for a given input is
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derived, I use a sample input value of
205.

I first draw a vertical line from 205
to the top of the graph. This line
intersects two shapes. Thus, the value
has membership in both of the fuzzy
sets Hot and KindaHot. To find the
fuzzy value, I draw a horizontal line
from the point of intersection to the y-
axis. This tells me that 205 has an
82% membership in the KindaHot
set and 21% membership in the Hot
set.

Once I have the fuzzy value, I can
apply it to the output. Before doing
that, I need to specify how the conver-
sion takes place.

FORMULATING RULES
Rules define the relationship

between input and output shapes.
They are formulated much like the
BASIC statement IF.. .THEN  with a
few modifications. Valid operators are
AND (intersection], OR (union), and
NOT (complement).

As stated, rules tell the system
how the inputs and outputs are linked
together. For instance, take the
propeller of a boat. If there’s no
propeller (rules], the motor (input) can
run all day, but we ain’t goin’  nowhere
(output). If we install a small propeller,
the rule becomes: IF motor = fast
THEN output = slow. However, with a
larger propeller, the rule becomes: IF
motor = slow THEN output = fast.

Fuzzy rules differ from their
conventional counterparts. Instead of a
rule evaluating to one of two values,
which are true or false, they can have
varying degrees of each. For example,
the statement, IF p AND q THEN I,
evaluates to true (the rule fires) as long
as both p and q have values greater
than 0. Each rule specifies what input
conditions must be met for the rule to
evaluate to true, and once it’s true,
which output shapes to use.

Once the operators are under-
stood, rule development is straightfor-
ward. Write the rules as if you’re
explaining how the system works.
Visualize the input graph superim-
posed over the final output graph
(Figure 9), and for each input shape,
define what the output should do
when the input is within the set.

PlCl6C5x/16Cxx Real-time Emulators
Introducing RICE16 and RlCExx-Juniors,  real-time in-circuit
emulators for the PIC16C5x and PIClGCxx  family microcontrollers:

affordable, feature-filled development systems from
* Suggested Retail for U.S.  only $599 *
RICE16 Features:

n Real-time Emulation to 20MHz for
16C5x and 1OMHz  for 16&x

n PC-Hosted via Parallel Port
W Support all oscillator type5

m 0K Program Memory
m 0K by 24-bit real-time Trace Buffer

n Source Level Debugging
w Unlimited Breakpoints

n External Trigger Break with either
“AND/OR” with Breakpointe

Emulators for 16C71/84/64
available now!

n Trigger Outputs on a& Address Range n Support 16C71,16C04  and 16C64 with
m 12 External  Logic Probes Optional Probe Cards
n User-Selectable Internal Clock from w Comes Complete with TASM16 Macro

40 frequencies or Etiernal  Clock Assembler, Emulation 5oft;ware, Power
n Single Step, Multiple Step, To Cursor, Adapter, Parallel Adapter Cable and

Step over Call, Return to Caller, etc. User’s Guide
n On-line Assembler for patch instruction w SO-day Money Back Guarantee

n Easy-to-use windowed software n Made in the U.5.A.

RICE-xx Junior series
RICE-xx “Junior” series emulators support PlC16C5x  family, PIC16C71,  PlC16C04

or PlC16C64.  They offer the same real-time features of RICE16 with the
respective probe cards less real-time trace capture. Price starts at $599.

PIC Gang Programmers
Advanced Transdata Corp. also offers PRODUCTION QUALITY
gang programmers for the different PIC microcontrollers.

n Stand-alone COPY mode from a master device n PC-hosted mode
for single unit programming n High throughput n Checksum verification
on master device w Code protection w Verib at 4.5V and 5% n Each
program cycle includes blank check, program and verify eight devices
. Price5 start at $599

PGMl6G:  for 16cEx family PGM47: for 16X71/&34 PGM17G:  for 17C42

Call (2141980-2960  today for our new catalog.

Advanced lransdata Corporation Tel (2141980~2960
14330  Midway Road, Suite 1’28. Dallas, Texas 75244 Fax (214) 980-2937
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Figure 1 P-After  a couple of simple modifications to the rules and shapes, the output is much closer, buf still
unsatisfactory. A little  more work on fhe raising and falling edges, and we’// achieve our goal.

For example, rule B in Table 2a
declares that if the input falls in either
the Cold or Hot shape, the frequency is
set low. This rule controls the outside
edges of the bell curve.

How many rules are required? It
depends on the number of inputs. This
system has one input with six shapes.
To cover all possible input conditions,
a minimum of six rules is required. If
the system had two inputs, each with
eight shapes, then you need 8 x 8 or 64
rules to cover all input combinations.

In addition, you might add rules to
optimize the output shape. For
example, this system uses ten rules
instead of the minimum of six (the OR
operator is used as a connector). As
you can imagine, there’s a point when
the number becomes unmanageable.
Typically, for systems with more than
one input, not all combinations are
possible. Thus, not all rules are
required. Also, the number of shapes
can often be reduced without compro-
mising the output.

TRANSLATING FUZZY VALUES
TO USABLE OUTPUTS

Now that we have the rules (recall
Table 2a),  let’s figure out which rules
are acted on. As stated, an input of 205
has membership in both KindaHot and
Hot. Both rules B and C use the shapes
and the OR operator, so they evaluate
to true even though there is no value
for Cold or KindaWarm.

Next, we have to apply the fuzzy
values to the output. In fuzzy terms,
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this is considered defuzzifying. To take
the values from input to final output,
we read the crisp input, make it fuzzy
by determining its membership
percentage, apply rules, defuzzify, and
finally convert to a crisp output.

With an input of 205, the percent-
age membership for rule B is Hot at
2 1%. This value needs to be
defuzzified and applied to the output.
Notably, the process is more complex
than converting to fuzzy values.

Refer to Figure 10. Draw a hori-
zontal line from the 2 1% mark on the
y-axis. The shape is specified in the
rule as FreqLow.  That’s how the
percentage membership is transferred.
The fuzzy value defines the top of the
area (dark outline) that’s used to
calculate the centroid. After finding

the centroid, draw a vertical line to the
x-axis. This value of 29 is the output
for rule B.

If this were the only rule that
fired, the speaker’s frequency would be
close to minimum, which is not
exactly what we want. With an input
of 205, the room is hot but has not
reached maximum. This is where
fuzzy starts to work.

Due to the overlapping of the Hot
and KindaHot shapes, rule C also fires,
increasing the speaker’s frequency.
Any time more than one rule fires, the
final output is modified according to
the weight of each that fires. This
modification corresponds to driving a
car with pressure on both the brake
and the gas. The final output (i.e., the
speed of the car) is dependent on the
amount of pressure applied to each.

Before finding the crisp output, it
is necessary to calculate the centroid
for the second rule (C). Once again,
start with transferring the 82%
membership to the FreqMiddle  shape
(the shape is an equilateral triangle, so
the centroid is in the middle of the
base regardless of what the fuzzy value
is). If you refer again to Figure 10, you
can see that the centroid is 77. No
other rules fired. The final output is
calculated by:

CrispOutput=  Cmp 1 x We&t  1 + Crisp2 x Waght2
Weight 1 + Weight2

=29x0.21+77x0.82
0.21+0.82

=67

The final output is sent to the DAC.

Figure 13-The AND operator is used to zero in on specific areas where shapes ovedap. The system is complete.
Although if took several tries, it’s much easier than modifying code or manipulating equations.



a) A-IF (RoomTemp Perfect) THEN (Speaker FreqHigh)
B-IF (RoomTemp Hot) OR (RoomTemp Cold) THEN (Speaker FreqLow)
C-IF (RoomTemp KindaWarm) OR (RoomTemp KindaHot)

THEN (Speaker FreqMiddle)
D-IF (RoomTemp Warm) THEN (Speaker FreqHigh)

b) E-IF (RoomTemp Hot) OR (RoomTemp Cold) THEN (Speaker FreqLow)
F-IF (RoomTemp KindaHot) AND (RoomTemp Hot) OR (RoomTemp KindaWarm)

AND (RoomTemp Cold) THEN (Speaker FreqLow)

_.. ^ I^. ,.

I aDIe  z-a) nuas  uerfne  me re/at!onshfp  between fnput  and output graphs and are formulated much like fhe BASlC
IF.. THEN  statement. b) Additional rules are often required to opfimize  fhe input versus output shape.

Notice the fuzzy value is used first the rule is relative to itself and then
in the calculation of the centroid and how true it is relative to total truth.
then again to find the final output. And, that’s the basis of fuzzy logic. It
There are a few reasons for this. First, doesn’t deal with absolute truth, but
whatever the type of shape, centroids relative truth.
move very little. Using the value to Still fuzzy? Let’s try it another
define the usable area allows fine way. Break the equation into two parts
adjustments to be made on the final and use the first:
output shape.

Next, it must be used in the final Crisp 1 x Truth 1

calculation so that the relative truth of Truth 1 + Truth 2

each rule is considered. For example, Essentially, this relates the output for
the weights [relative truth) of rules B the rule to its truth and puts that in
and C are 21% and 82%, respectively. relation to total truth.
If we want rule C to affect the output Why is total truth used? Because
more than rule B, we first see how true up front, there’s no way to know what

completely true is. In the equation
above, 103% (i.e., 21% + 82%) repre-
sents complete truth and not 100%. If
ten rules fire, each with the weight of
lOO%,  complete truth becomes 1000.
In essence, regardless of what the
value for total truth is, it equals 100%
true.

MAKING IT WORK
The output versus the input graph

for the system is shown in Figure 9.
Unfortunately, as you can see, I didn’t

RoomTemp

IN=0
O<IN<62

IN =62
62<IN  118
118<lNc124
124 IN 132
132 > IN < 138
138 IN<194

IN = 194
194 < IN < 255

IN = 255

Rules Fired

B,E
B,C,LF

C
CD

A,W
AD

A’GD
CD

C
B,C,E,F

W

Table J-Multiple  rules can evaluate to true (fire) for the
same value. This prevents fhe absolufes  common in
conventional logic.
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meet the objective. There are two
problems: the top shouldn’t be flat, nor
should the corners be abrupt. I need to
modify the system to achieve the
desired output. Let’s break the prob-
lem into three parts: the areas in the
ranges of O-62, 118-138, and 194-255.

In the first area, the Cold shape
begins at 0 and ends at 62. We need to
add another rule that “pulls” the
output toward 0 when the input is
within this shape. Also, notice that the
Hot shape controls the same portion,
but on the opposite end. Both ends get
fixed with this one rule.

The final output can be derived by
two methods: the max method and the
average. Using the max method, only
one centroid per output shape is used
in the final calculation. The average
averages all centroids.

For example, to fix the problem
with the abrupt corners, you can
specify rule B twice. With an input of
205, three centroids would be pro-
duced: one for rule C and two for B.
Using the max method, the final crisp
output becomes:

CentrmdC  x Fuzzy C + LargestCentrmdB  x FuzzyB
Fuzzy C + Fuzzy B

Using the average method, the final
crisp output becomes:

CentroidC x Fuzzy C + 2 x CentroidB  x Fuzzy B
Fuzzy C + 2 x Fuzzy B

At first glance, it may appear that
specifying a rule twice doubles its
effect. Unfortunately, it’s not that
easy. Due to the interaction between
all centroid and fuzzy pairs (it’s that
relative truth thing), it may fix the
problem, create another, or have no
effect. It works here, so we use it.

How should the area between 118
and 138 be adjusted? Should we
modify the rules or the shapes?

To be honest, it’s a toss up. It’s
kinda  like your toast. If you toast some
bread and it’s too light, you have to
decide how to make it darker. You
could toast it again (input), change the
toaster’s setting (rules), or manually
hold the lever down (output). All of
these activities achieve the same
thing.

However, since modifying shapes
is the easiest, let’s start there. If you
superimpose the input graph over the
output, the area in question falls
within the perfect shape. In fact, the
top goes flat as soon as the shape
comes into existence.

When the input is within this
shape, two rules (A and D) fire. There’s
our problem. Both rules tell the system
to increase the frequency. To fix it,
you need to add interaction, holding
the output low longer. Since rule C
uses the FreqMiddle  shape, it could
provide the fuzziness needed if we
make it fire. After modifying both the
KindaWarm  and KindaHot shapes as
shown in Figure 11, the problem is
solved. At the points of overlap, the
rules “fight” each other, smoothing
the transition.

The modified output is shown in
Figure 12. Although it’s better, it still
isn’t right. The transition with an
input of 62 is still too abrupt. To
smooth it further, add another rule
that fires only when input is within
the area where the Cold and Kinda-

$-~:-~PY,“j.~-“$~~:Z’A~~
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d CROSS ASSEMBLERS -
e

Y D E B U G G E R S  b
d 68HC08 8051/52
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Low Cost!! PC based cross development packages which d

include EVERYTHING you need to develop C and assembly
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+ MICRO-C compiler, optimizer, and related utilities. fi

+ Cross Assembler and related utilities.
-%t Hand coded (efficient ASM) standard library (source included).
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* 68HCO8 and 68HC16 kits do not include monitor/debugger. -
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Each Kit: $99.95. + s&h (please specify CPU)
d

G’&~AL!! Super Developer’s Ku
_  Includes all 8 kits above, plus additional assemblers for 6800,

6801/6803, and 6502. Reg. $400.00 NOW $300.00 7
(Askfor  SDK Specid)

-

Dunfield  Development Systems
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Use one of our embedded
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Warm shapes overlap. The fuzzy value
applies to the FreqLow shape:

l robotics
l home and office burglar alarm and

climate control
IF (RoomTemp Cold) AND

(RoomTemp KindaWarm)
THEN (Speaker FreqLow)

The AND operator allows us to zero in
on specific areas of shape overlap. At
any other time, one or more of the
fuzzy values is 0, preventing the rule
from firing.

l AC/DC motor control
l weather prediction through humid-

ity, temperature, pressure, and so on
l analyzing data for patterns and

trends.
l controlling product flow in produc-

tion (anything requiring control or
generalization is a possible applica-
tion)

The same problem exists on the
falling edge of the output. Instead of
writing a separate rule, we can com-
bine both using the OR operator as
shown in Table 2b, rule F.

WHERE TO GO FROM HERE

The final output is shown in
Figure 13. Table 3 shows which rules
fire as the input varies. Although it
took several tries to get the optimum
shape and rule mix, it’s much easier
than modifying code or manipulating
equations.

I hope this gives you a basic
understanding of fuzzy logic. The next
step is to apply the principles outlined
in the article to your own designs. All
you need is a lot of time, a ream or two
of graph paper, and a calculator. If that
is not appealing, there is a better way.

I have development systems for
both the novice and advanced user.
Please call or write for details. q

SOME USES Bud Moss has worked in the electronic
The applications are endless. and electrical fields for more years

Some of them include: than he cares to remember. After

researching and using several uncon-
ventional technologies, he founded
Xcentrics to provide affordable fuzzy
logic development tools. He may be
reached at 75313.2353@compu-
serve.com.

Software for this article is avail-
able from the Circuit Cellar BBS
and on Software On Disk for this
issue. Please see the end of
“ConnecTime”  in this issue for
downloading and ordering
information.

Xcentrics, Inc.
P.O. Box 1268
McMinnville,  OR 97 128
(503) 434-5729

401 Very Useful
402 Moderately Useful
403 Not Useful

MicroViewTM Simulation Environment Assemble! TM Universal PIC Assembler

MICROVIEWTM  is a full-featured simulation environment for ASSEMBLE!  is a universal macro assembler for the
the Microchip Technology, Inc. PIG 160X microcontrollers.
Other simulation engines available.
Features:
. Integrated Programming Editor, Macro-Assembler
. Simultaneous Multiple Device Simulations
. Graphical Timing Diagrams, Input Stimulus Generation
. Step, Register, Full Break Point Capability
. Compatible with PICMASTER. and the Parallax

Downloader

Microchip Technology, Inc. microcontrollers. Assemble!
supports all ofthe  Microchip device families.
Features:
. Integrated Programming Editor, Macro-Assembler
. Bookmarks.,  Macro Key Recording, Search and Replace
. Error Report, Listings, Context Sensitive On-Line Help
. COD File Format, INHXSS,  INHXSM,  INHX16
. Direct Download to PICSTART
. Compatible with PICMASTER. and the Parallax

Downloader

MicroViewTM  $149,95USD VISA/MC Assemble!TM $99.95USD VISAMC
TRISYS Send check or Money Order, VISA/MC Accepted, Company Purchased Orders Accepted, Shipping and Handling Included.

r’f

k

TRISYS, Inc. P.O. Box 11087 * Glendale, AZ 85318-1087.  USA*  PH: (602) 581-1760 * FAX: (602) 516-0582 mm
[PIG,  PICMASTER, and PICSTART are  tmdemarks  and tradenames  of Mmochlp Technology, Inc. / Parallax LS the tradename  of Parallax, Inc  ]
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Jim Sibigtroth

Fuzzy Logic for Embedded
Microcontrollers

explains how to imple-
ment fuzzy-inference algorithms in a
general-purpose embedded controller.
The examples, written in assembly
language, are for an MC68HC11, but
the algorithms could be adapted for
any general-purpose microcontroller.
Code size is surprisingly small and
execution time is fast enough to make
fuzzy logic practical even in small
embedded applications.

Perhaps because of its strange
sounding name, fuzzy logic is still
having trouble getting accepted as a
serious engineering tool in the United
States. In Japan and Europe, the story
is quite different. The Japanese culture
seems to respect ambiguity, so it is
considered an honor to have a product
which includes fuzzy logic. Japanese
consumers understand fuzzy logic as
intelligence similar to that used in
human decisions.

In the US, engineers typically take
the position that any control method-
ology without precise mathematical
models is unworthy of serious consid-
eration. In light of all the fuzzy success
stories, this position is getting hard to
defend.

I think the European attitude is
more appropriate. It recognizes fuzzy

logic as a helpful tool and uses it. They
regard the difficulties of the nomencla-
ture as a separate problem. Since the
term “fuzzy” has negative connota-
tions, they simply don’t advertise that
products include fuzzy logic.

NOT AS FUZZY AS IT SOUNDS
Curiously, the results produced by

fuzzy-logic systems are as precise and
repeatable as those produced by re-
spected traditional methods. Instead of
indicating lack of precision, the term
“fuzzy” more accurately refers to the
way real-world sets have gradual
boundaries.

When we say “the temperature is
warm,” there is not a specific tempera-
ture at which this expression goes
from completely false to completely
true. Instead, there is a gradual or
fuzzy boundary, which requires a non-
binary description of truth. In fact, the
fuzzy logic definition for a set contains
more information than the conven-
tional binary definition of a set.

In conventional systems, the range
of an input parameter is broken into
sets that begin and end at specific
values. For example, a temperature
range described as warm might include
the temperatures 56-84°F (see Figure
la). The trouble with this thinking is
that the temperature 84.01”F suddenly
stops being considered warm. This
abrupt change is not the way humans
think of concepts like “temperature is
warm.”

Fuzzy logic uses a two-dimen-
sional membership function to express
the meaning of an input parameter
such as “temperature is warm.” Figure
Ib shows how to express the meaning
of warm temperature in a fuzzy-logic
system. The x-axis shows the range of
possible values for the input parameter
temperature. The y-axis shows the
degree to which temperature can be
said to be warm (the degree of truth for
the expression “temperature is
warm”). The y-axis ranges from $00
(not at all true) to $FF (completely
true). You may see references where
the degree of truth varies between 0.00
and 1 .OO, but in an embedded micro-
controller, it is more practical to treat
the truth value as an R-bit binary value
between $00 and $FF.
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OVERALL STRUCTURE OF
A FUZZY KERNEL

Figure 2 shows a block diagram of
a fuzzy-logic inference program in an
embedded controller. Preprocessed
system inputs enter the top of the
fuzzy-inference kernel and system
outputs leave at the bottom. The three
processing blocks in the fuzzy kernel
are executed in series each time the
fuzzy kernel is called.

For each of the three processing
blocks in the fuzzy kernel, there is a
corresponding data structure in the
knowledge base. Fuzzification com-
pares the current value of system in-
puts against the input membership
functions to determine values for
fuzzy inputs stored in S-bit RAM loca-
tions. L

As rules from the rule list are
Figure l--Traditional sets are simply defined by their endpoints. Fuzzy sets add a second dimension to express  fhe
degree of truth (on the y-axis), which allows  sets to be defined with gradual boundaries between false and true.

processed, current fuzzy input values
are used. The resulting values are any detailed knowledge of the systems by competent humans. Fuzzy logic has
stored in the fuzzy output locations in in which it will be used. taken a giant step in this direction
a second RAM array. Finally, the fuzzy with the introduction of membership
output values are combined in the EXPRESSING EXPERT functions.
defuzzification step to produce system KNOWLEDGE A fuzzy logic system is pro-
output values. For years, researchers have grammed with a series of rules such as

The fuzzy-inference kernel and struggled to translate human knowl- “If temperature is warm and pressure
the knowledge base can be developed edge into a form which can be manipu- is medium, then heater is full_on.”
independently. The advantage to this lated by computers. If researchers This natural-language control rule is
is that the microcontroller program- could express the meaning of an idea simple enough for a human expert.
mer developing the fuzzy kernel like “temperature is warm” in an un- Although conventional digital systems
doesn’t need to be familiar with the ambiguous numerical way, a digital have trouble dealing with concepts
process to be controlled. Similarly, the computer could use this knowledge to like “temperature is warm,” fuzzifi-
process expert doesn’t need to be a make decisions similar to those made cation gets around this problem by

r I assigning a concrete
number between $00

microcontroller pro-
grammer.

All that is neces-
sary is that they agree
on some basic ground
rules such as number
of inputs and outputs,
number of labels for
each input and output,
and some basic limita-
tions on rule structure.
The fuzzy kernel can
even be developed by a
third party such as a
semiconductor manu-
facturer or a fuzzy-
development-tool
vendor. The kernel
software described in
this article is an ex-
ample of a fuzzy ker-
nel developed without

interference
kernel

[false) and $FF (true) to
this linguistic expres-
sion so that the micro-
controller can process
it further.

+

System outputs

FUZZIFICATION
In this step, the

current value of each
input is compared to
the membership func-
tions for each label of
the corresponding in-
put. From this, it is
possible to determine a
numerical truth value

*
Figure P-The knowledge base in fhis block diagram is developed by an application expert  and fhe

for every label of every

inference kernel, by an MCU  programmer. Note  the relationships between data sfrucfures in the
input. Input signals are

knowledge base and the three main processes in the kernel. Fuzzyinput  and fuzzy-output RAM data typically preprocessed
sfrucfures hold intermediate results during execution. sensor signals scaled to

a) Cold Warm Hot

I--

0°F 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128°F
4 Temperature *

b)
t

WF

$CO

Truth
value

0°F 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128°F
* Temperature +
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fit in the range from $00 to $FF.  Pre-
processing sensor inputs is an ordinary
part of any embedded-control applica-
tion, and fuzzy logic does not require
any special skills for this job.

~ Segment 0 ~ Segment 1 i Segment 2
p=o : p=Al*sl  :

i
p = ($FF - (A2 l ~2))  but not < $00

i but not > $FF
i

The inputs to the fuzzification
process are the current s-bit value of
each system input and a membership
function definition for each linguistic
label of each system input. Results of
the fuzzification step are fuzzy inputs
in RAM-there’s one byte for each
label of each system input.

The fuzzy kernel in this article
uses trapezoidal membership functions
defined by two points and two slopes
per membership function in nonvola-
tile memory. In other words, in an
application with two system inputs
and five labels per input, there would
be 10 membership functions (4 bytes _.

_

‘it 1 ’ I ’ I ’ I ’ I ’
-X

$00  10 20 30 40 50 60 70 80 90 I A0 “;( CO DO EO FO F F

Membership function Input
r Definition in ROM 7
$8600 $40 ;point 1 (Input - p2)

$B601 $08 ;slope 1 - A l (Input - pl)

$B602 $ 7 8  ;point 2
$8603 $05 ;slope 2

each = 40 bytes of ROM or EEPROM)
and 10 fuzzy inputs (1 byte each = 10
bytes of RAM).

Figure 3-This figure shows one way of defining and evaluating a trapezoidal membership function. Segment 0 is
defined by the position of point 1, segment 1 is defined by the values of point 1 and slope 1, and segment 2 is
defined by the values of point 2 and slope 2.

The major processing element in current value of one system input. The outer loop executes once for
this step is a routine to determine the Place this routine inside of two con- each system input. In a system that
y-intercept on the membership func- centric loops. The inner loop executes has two inputs with five labels each,
tion for one label corresponding to the once for each label of one input. the outer loop executes twice and the

H A L - 4
The HAL-4 kit is a complete battery-operated 4-channel  electroenceph-
alograph [EEG) which measures a mere 6” x 7”. HAL is sensitive enough
to even distinguish different conscious states-between concentrated
mental activity and pleasant daydreaming. HAL gathers all relevent alpha,
beta, and theta brainwave signals within the range of 4-20 Hz and presents
it in a serial digitized format that can be easily recorded or analyzed. HAL’s
operation is straightforward. It samples four channels of analog brainwave
data 64 times per second and transmits this digitized data serially to a PC
at 4800 bps. There, using a Fast Fourier Transform to determine frequncy,
amplitude, and phase components, the results are graphically displayed in
real time for each side of the brain.

HAL-4  KIT......NEW P A C K A G E  P R I C E  - $279  +SHIPPING
Contains HAL-4 PCB and all circuit components, source code on PC diskette,
serial connection cable, and four extra sets of disposable electrodes.

I to order the HAL-4 Kit or to receive a catalog,
C A L L :  (203) 875-2751 OR FAX:  (203)  875-2204

C I R C U I T  C E L L A R  K I T S  l 4  PA R K  S T R E E T

S U I T E  1 2  l V E R N O N  l C T  0 6 0 6 6

I I *The Circuit Cellar Hemiwheric Activation Level detector is Dresented  as an enaineerina  examule  of I
/ 1 the design techniques used in acquiring  bralnwave  signals.  ihis Hemispheric A&ation‘ievel  detector is 1
/ 1 not a me~cally approved device, no medical c/aims are made,!:‘;  this device, and it,s~oul~  “ot be used for 1r .I
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Data Genie offers a full line of test & measure-
ment equipment that’sinnovative, reliable and
very affordable. The “Express Series” of stand-
alone, non-PC based testers are the ultimate
in portability when running from either battery
or AC power. Data Genie products will be
setting the standards for quality on the bench
or in the field for years to come.

HT-28 Mr=

The HT-28 is a very convenient way
of testing Logic IC’s  and DRAM’s Tests
most llL 74, CMOS40/45  and DRAM’s
4164-414000.44164-441000.  It can
also identify unknown IC numbers on
TTL 74 and CMOS 40/45 series with the
‘Auto-Search’ feature.
$189.95

HT- 14 ,Wress

The HT-14 is one-to-one EPROM writer
with a super fast programming speed
that supports devices from 27328 to
27080, with eight selectable pro-
gramming algorithms and six pro-
gramming power (VPP)  selections.
$289.95

P-300

The Data Genie P-300 is a useful device that allows you to quickly install add-
on cards or to test prototype circuits for your PC externally. Without having to
turn off your computer to install an add-on cards, the P-300 maintains com-
plete protection for your motherboard via the built-in current limit fuses.
$349.95

M i c r o s y s t e m s
Division of MING f pr  P. lNCm,

17921 Rowland Street
City of Industry. CA 91748

TEL : (818) 912-7756
FAX : (818) 912-9598

Data Genie products ore backed by a full
lyear limited factory warranty.

routine inside the inner loop a total of
10 times (five times for each pass
through the outer loop). Figure 3
shows the routine for finding the y-
intercept for one label of an input.

Listing 1 shows a practical algo-
rithm for finding the grade of member-
ship for one label of one system input.
This routine is embedded inside the
inner loop of the fuzzification process
and follows the pattern mentioned
above. The outer loop executes twice
while the inner loop circles 10 times.

This routine also updates two
pointers. The first one (X) points at the
J-byte  membership function definition
in the knowledge base. The second one
(Y) points at the RAM location where
the fuzzy input (result) will be stored.

The calculations associated with
segment 2 take slightly longer than
those for segment 1, so the routine
checks to see if the input is there first.
This check helps balance the execu-
tion time and keeps the worst-case
path as short as possible. The shortest
path occurs when the input is in seg-
ment 0. Two range-checking se-
quences, BLS NOT_SEG2  and BLO

HA V-G RA D, are in this path.
This algorithm uses the x-posi-

tions of two points and two unsigned
slope values to define a membership
function. While it would be more
straightforward to describe a trapezoid
with four corner points, it then re-
quires at least one divide during run
time. The method described here never
needs to execute anything more diffi-
cult than one g-bit multiply to find a
grade of membership.

Trapezoidal membership func-
tions are commonly used because they
meet the requirement of providing a
gradual transition from false to true
while requiring only simple calcula-
tions to compute an intercept. Some
programs only allow triangular mem-
bership functions, but trapezoids are
just as easy to process. A trapezoid
with a top width of zero makes a trian-
gular membership function.

RULE EVALUATION
Although rules sound like arbi-

trary, natural-language statements,
they follow a fairly strict syntax. The
typical fuzzy-logic kernel in a small,
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Listing l--This routine performs fuzzification for one label of one system input. Refer to Figure  3 while
sfudying  this program.

*GET-GRADE-Routine to project a current input value onto *
* an associated input membership function (fuzzification). *
* Result is stored to fuzzy input and pointers are updated. *
*ENTRY VALUES: A = Current system input value *
* X = Pointer to membership function in ROM *
* Y = Pointer to fuzzy input in RAM *
*EXIT VALUES: A unchanged (ready for next GET-GRADE call) *
* B used internally to calculate grade (result)*
* X add 4 to point at next MF definition *
* Y add 1 to point at next fuzzy input in RAM *

GET-GRADE PSHA ;Save input value of A
CLRB ;In case grade = 0
SUBA 2,X ;Input  value - pt2 -> A
BLS NOT_SEGZ ;If input < pt2
LDAB 3,X :Slope  2
BEQ HAV_GRAD ;Skip if zero slope
MUL ;(In ~ ptl) * slp2 -> A:B
TSTA ;Check  for > $FF
BEQ NO-FIX :If upper 8 = 0
CLRB ;Limit  grade to 0
BRA HAV_GRAD ;In limit region of seg 2

NO-FIX SUBB II$FF ;B - BFF
NEGB ;$FF - B
BRA HAV_GRAD ;($FF -((In - pt2) * ~1~2))

NOT_SEGZ  ADDA  2,X :Restore  input value
SUBA 0,X ;Input  value - ptl m> A
BLO HAV_GRAD ;In < pt.1  so grade = 0
LDAB 1,X ;Slope 1
BEQ ZERO_SLP ;Skip if zero slope
MUL :(In ~ ptl) * slpl -> A:B
TSTA ;Check  for > BFF
BEQ HAV_GRAD :Result  OK in B

ZERO_SLP LDAB #$FF :Limit  region or zero slope
HAVPGRAD INX ;Point  at next MF spec

INX
INX
INX
STAB 0,Y ;Save one fuzzy input
INY ;Point at next fuz input
PULA ;Restore  A register

embedded-control system limits rules for the whole rule is the value of the
to the following form: smallest fuzzy input on the left side.

There is an implied OR between suc-
IF system-input-x is label-a

AND system-input-y is label-b
THEN output-w is label-c.

Each of the linguistic expressions
like “system-input-x is label-a” corre-
sponds to a specific fuzzy input value
in RAM. These values are determined
by the fuzzification step. The expres-
sion “system_output_w  is label-c”
corresponds to a specific fuzzy output.
AND is a fuzzy operator which corre-
sponds to the mathematical minimum
operation. All the linguistic expres-
sions on the left side of the rule are
connected by ANDs. The truth value

cessive rules, which corresponds to the
mathematical maximum operation.

Before processing the rules, all
fuzzy outputs are initialized to $00
(meaning not true at all). As rules
process, the truth value for the current
rule is stored in each fuzzy output on
the right side of the rule unless the
fuzzy output is already bigger (this is
the maximum operation).

Rules can be stored in the knowl-
edge base as a simple list of pointers to
fuzzy inputs and fuzzy outputs. For the
kernel described in this article, a 7-bit
offset from the start of the fuzzy input
array is used for each rule antecedent.

8051 Family Emulator is
truly Low Cost!

The DrylCE Plus IS a modular emulator
designed to get maximum flexibilln/
and functIonal@  for your hard earned
dollar. The common base unit
supports numerous 805 1 family
processor pods that are low In price.
Features include: Execute to
breakpolnt,  Line-by-Line Assembler,
Disassembler,  SFR access, Fill, Set and
Dump Internal or External RAM and
Code. Dump Registers, and more.
The DrylCE Plus base unit is priced at
a meager $299, and most pods run
3nly an additional $149. Pods are
available to support the 8031/2,
375 1/2,8OC 154,8OC45  1,8OC535,
3OC537,  8OC550,  8OC552/62,
3OC652,  8OC851,  8OC320  a n d
more. Interface through your senal
2ort and a comm program. Call for a
Irochure  or use INTERNET. We’re at
info@hte.com  or ftp at ftp.hte.com

Iur $149 DrylCE model is what
/ou’re looking for. Not an evaluation
)oard - much more powerful. Same
eatures as the DrylCEPlus, but limited
o just the 803 l/32 processor.

;o, if you’re still doing the U V
Afaltz  (Burn-2-3. Erase-2-3). or
Jebugglng  through the llmited  window
3OM emulators give,  call us now for
elief! Our customers say our products
are a the best Performance/Price
emulators  avatlable!

S ince  1983

- (619) 566-l 892 -
I p&q

Internet e-mail: info@hte.com
Internet ftp: ftp.hte.com
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Figure 5 corrects this. It shows the
membership functions below and to
the right of the rule matrix. This figure
shows the areas where more than one
label of an input is true at the same
time. The knowledge base only speci-
fies the system-output level at the
nine shaded cells of Figure 5. The
other cells represent combinations of
input values that cause two or four
rules to be true to some degree at the
same time. In these areas, the defuzzi-
fication step combines the recom-
mended actions of all of the contribut-
ing rules.Figure 4-A// possible combinations of input condifions

are summarized in this course rule matrix. The  shaded
cell represenfs  the rule “If temperature is hot and
pressure is high, then heat is off. ’

DEFUZZIFICATION

The MSB of all antecedent pointers is
clear. A byte with the MSB set plus a
7-bit offset from the start of the output
array is used for each rule consequent.

After the rule-evaluation step,
each of the fuzzy outputs has a value
corresponding to the degree that out-
put action should be applied. These
can be considered as recommendations
for the system-output level. The
defuzzification step combines these
separate recommendations into a
single, composite system-output value.

The program in this article uses
singleton membership functions,

Since the MSB distinguishes con-
sequents from antecedents, rules may
have any number of inputs or outputs.
It would be faster, but less flexible, to
define rules with a fixed structure such
as two antecedents and one conse-
quent. It would also
be faster to use
whole addresses

Two rules
are active here

rather than offsets
in the rule list, but
that would more
than double the
amount of memory
required for the rule
list.

Four rules
are active here

0

1

2
3
4
5
6
7
8
9
10
11

12

13

14

15

which are simply the x-axis position of
one label of a system output. The
fuzzy output value in RAM represents
the height (y value] of this member-
ship function or the degree to which it
should apply. The following formula
shows the calculation needed for
defuzzification:

l$l F, x S,

where n is the number of fuzzy out-
puts associated with system output, Pi
is a weight (fuzzy output value from
runtime  RAM), and Si is a member-
ship-function singleton position (from
the knowledge base]. The result of this
calculation is the system-output ac-
tion. Fr and Si are &bit values and the
value of n is typically 8 or less. This
makes the numerator a lo-bit  value
and the denominator an 1 l-bit value.

Normally, a lo-bit by 1 I-bit divide
yields up to a lo-bit  result. But in our
case, the values are not independent
and we know the result fits in an S-bit

number. Figure 6
shows the defuzzifi-
cation process graphi-
cally.

Since each
input has only a
finite number of
labels, there are
only a certain num-
ber of possibilities
for unique rules. A
system with two
inputs, each having
three labels, has a
maximum of nine
possible rules as
shown in Figure 4.
As you can see, the
treatment of values
is very coarse. No
transition regions
are shown between
adjacent labels of
the inputs.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15\

Cold
\

Hot_ If Temperature is
Hot and Pressure
is High then Heat
is Off

Temperature

Figure 5-A more detailed view of the rule space shows the areas where more than one rule can be active
at a time. Membership functions for temperature and  pressure are shown below and to the righf  of the rule
space.

AN ALTERNATE
OFF-LINE
APPROACH TO
FUZZY LOGIC

When fuzzy logic
was first introduced,
it was thought to
require a lot of pro-
cessing horsepower.
If you choose to use
floating-point calcu-
lations and complex
shapes for member-
ship functions, this is
true.

By using simple
shapes such as trap-
ezoids and singletons,
we greatly simplify
the calculations for
fuzzification and
defuzzification. By
using fixed-point
calculations in which
truth varies between
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!J System-Output
Off Low Med High Very-high

$00 IO 20 30 40 50 60 70 80 90 A0 BO CO FF
s, = $00 $40 $80 $FF
F, = $00 $00 $40 $80 $CO

S, x F, = $0000 $0000 $2000 $6000 $BF40

n

System Output= L=+ -

Figure 6-W figure demonstrates the defuzzification process in which three fuzzy outputs are active at the same
time to different degrees. The  result is the weighted average of a//  active fuzzy outputs.

$00 and $FF, we eliminate the need for
floating point.

Some of the first embedded-con-
trol applications for fuzzy logic used
the more complex floating-point calcu-
lations running on a larger computer
or workstation. An output value was
calculated for every combination of
inputs to derive a control surface. This
control surface was then stored in the
embedded controller as a large table.
During operation of the application,
current input values were used to look
up the required output in the table.

Although this approach was fast,
it tended to require a large memory for
the control surface look-up table. It
was also difficult to modify this type
of system because you had to return to
the workstation to make changes and
generate a new control-surface table.

CONCLUSION
Fuzzy logic is a powerful and ac-

cessible tool for embedded-control
applications. It offers a way to work
with complex human concepts within
a relatively small microcontroller
program. This in turn makes it pos-
sible to solve problems previously
thought to be too difficult for a small
microcontroller.

Not surprisingly, many of the first
fuzzy-logic applications are traditional
control problems in which fuzzy logic

replaces another methodology such as
PID. The more interesting applications
involve new problems in which an
embedded controller was previously
unable to solve the problem using
traditional digital techniques. q

/im Sibigtroth is a system design engi-
neer working on advanced microcon-
trollers for Motorola. Prior to his work
on fuzzy logic, Jim was the systems
project leader for the MC68HCll  and
wrote the M68HCll  Reference Man-
ual. Jim’s other book, Understanding
Small Microcontrollers (ISBN  O-23-
089129-0), introduces working engi-
neers to microcontrollers and assem-
bly language programming. He may be
reached at jims@seasick.sps.mot.com.

Software for this article is avail-
able from the Circuit Cellar BBS
and on Software On Disk for this
issue. Please see the end of
“ConnecTime”  in this issue for
downloading and ordering
information.

404 Very Useful
405 Moderately Useful
406 Not Useful

Add these numbers u p :
8OC552  a ‘51 Compatible Micro
40 Bits of Digital I/O
8 Channels of 10 Bit A/D
3 Serial Ports (RS-232  or 422/485)
2 Pulse Width Modulation Outputs
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1 Real Time Clock
64K bytes Static RAM
1+ UVPROM Socket
512 bytes of Serial EEPROM
1 Watchdog
1 Power Fail Interrupt
1 On-Board Power Regulation

It adds up to real I/O power!

That’s our popular 552SBC, priced
at just $299 in single quantities.
Not enough I/O? There is an
expansion bus, too! Too much
I/O? We’ll create a version just for
your needs, and pass the savings
on to you! Development is easy,
using our Development Kit: The
552SBC-50  Development board
with ROM Monitor, and an 8051 C
compiler for just $449.

Our popular 803 1SBC  can now be
shipped with your favorite 8051
family processor. Models include
8OC51  F A ,  DSBOC320,  8OC550,
8OC652,  8OC154,  8OC851  a n d
more. Call for pricing today!

The DrylCE  Plus is a low-cost
alternative to conventional ICE
products. Load, single step,
interrogate, disasm, execute to
breakpoint. Only $448 with a pod.
For the 8051 family, including
Philips and Siemens derivatives.
Call for brochure!

Since 1 9 8 3

- (619) 566-l 892 -
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Internetmail: info@hte.com

Internet ftp: ftp.hte.com
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pong ball with a beach ball.

Robert Schreiber DEMO DESCRIPTION
The trade show demo we came up

with is shown in Figure 1. A control

Levitating a Beach Ball
using Fuzzy ,oaic

J

panel prompts the user to enter the
desired beach ball height on the 16.key
keypad. The keypad input echoes on
the LCD module and the user is
prompted for confirmation.

On confirmation of user input, the

hen we took on
the task of coming

up with a project for a
recent trade show, we

control panel initiates a ranging cycle
to calculate the current height of the
beach ball. The desired height and
current height are continually dis-
played on the LCD module. From the
current height, the control panel
calculates both the velocity and the
delta height (i.e., difference in desired
height from current height).

This information, along with the
were inspired by the PID-Pong demo desired height, is transmitted to the
described by Tom Cantrell’s “Silicon I
Update” (INK 42, 50). Tom’s demo
used a PID algorithm to set the fan I

1 PortD,APortB  1

PlCl6C74

192x6 RAM1

4Kx14 ROM Ultrasonic transducer
for height detection

Beach ball

+J

Figure l--The  trade show demo consists of a co&o/pane/  and demo cabinet. The demo cabinet contains the DC
fan, transducer, power supplies, and the 6” c/ear tube. The control pane/ houses the PICXC74  microcontroller,
which provides the “brains” for a//  interfaces-PWM  DC fan control, ultrasonic ranging (fimer  capture), keypad
decoding, LCD control, and the RS-232 communication to the PC.

38 Issue #56  March 1995 Circuit Cellar INK



Input variables Output variable
capabilities, I/O

I I pins, PWM
Current Height Delta Height Velocity Duty Cycle module, capture

very lo neg big neg big very slo
and compare

lo neg small neg med slo modules, timer
medium zero neg small medium slo modules, serial
hi pos small zero medium communications
very hi pos big pos small medium fast

pos med fast
interface (SCI),

pos big very fast and A/D
converter make

Table l--To describe the  system adequately, a sufficient number of variables and
terms describing the system musf  be defined.

it a perfect fit for
the application.
In addition, the

PC via an RS-232 link. The fuzzy logic on-chip, pulse-width-modulation
algorithm, running on the PC, calcu- (PWM) module allows a single-
lates the appropriate duty cycle of the component (FET) interface for the DC
DC fan and transmits this information fan control.
to the control panel. This emulates a The ranging module interfaces
real-world environment in which directly to the microcontroller. The
system-level debugging can be done on only external component required is a

Variable
Current Height
Delta Height
Velocity
Duty Cycle

Shell Value Code Value
min max min max

0 120 0 255
-50 50 0 255
- 5 5 0 255
0 255 0 255

Table 2-The  code value is passed to the fuzzy-logic algorithm
and is converted to a she// value wifhin  fuzzy logic. The  shell value
is converted back to a code value when fhe fuzzy-logic algorithm
oufpufs  if.

pull-up resistor on the ECHO
line because it is an open-
collector output. Also, we
replaced the gain resistor (Rl)

for the receiver on the ultra-
sonic ranging board with a 20-
kfi potentiometer. This
enables us to adjust the gain
during debugging to reduce
reflections inside the tube.

The other major differ-

7-l-k
)] )Pi-type

the PC in real-time. The control panel
controls the duty cycle of the DC fan
with this input.

ence from the PID-pong
project is the control algorithm. Not
only did we have a much larger project
than the ping-pong ball, we had a six-
week time constraint. This gave us a

-A _I-
(Lambda-type(S-type

This ranging process continues
indefinitely until interrupted by the
user. The noticeable differences this
project has from the PID-pong project,
other than the obvious physical ones,
are in the control algorithm and the
microcontroller.

Figure 2--The  standard membership function can be
mafbemafically represented as piecewise linear
functions wifh  up to four defining points.

Jerm

very-10

medium

The control panel houses an
ultrasonic ranging module and the
microcontroller. The microcontroller
handles all of the peripheral interfaces
including the keypad, the LCD display,
the ultrasonic ranging module, and the
RS-232 serial link.

hi
very-hi

We wanted a microcontroller that
could handle the data throughput and
all of these peripherals with little or no
external components. The best choice
for handling all these functions turned
out to be Microchip’s PIC16C74.

The PIC 16C 74 contained more
than enough on-chip program and data
memory. Furthermore, the interrupt

Photo l--The  term “medium” for the variable Current Heighf is a Lambda-type membership function centered
around 52. When fhe beach ball has a value of 52 (or Zf?‘~,  the degree of membership for fhe beach ball is 1.0
medium. The  degree of membership decreases for medium as fhe beach ball moves in either direction from 52.

month and a half to conceive the
project and build it to aesthetically
pleasing, trade-show standards.

It was enough of a task getting the
hardware assembled in the short time
frame, but with a PID control algo-
rithm, the project seemed impossible.
So, out of desperation, we thought we
would put fuzzy logic to the test. We
wanted to see if fuzzy logic would
deliver on its promises of accurate
control and shorter development time.
The development tool we used for
fuzzy logic control was Inform
Software’s fuzzyTECH-MP.

Because the hardware develop-
ment consumed virtually all of the six-
week schedule, there was little time
left to develop the control algorithm.
We didn’t really know how the beach
ball would behave in the tube or even
if we could reasonably control it.
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delta_heig neg_big pos_big

El
current_.hf

very-10

lo

medium

hi

very-hi

; neg_small ;
, : zero , @ Degree of Support

Eegree of Support

F-w

current-height delta-height uelocity

JHEN

@ duty-cycle

Photo 2-The  Fuzzy Associative Map (FAM) shows the degree of support for each of the rules. For fhe rule in this
example, the degree of support is 0, which indicates a totally implausible rule.

Finally, five weeks into it, we had the beach ball to within a couple of
the hardware built enough for a man- inches of the desired height.
ual test. The test was crude, but it did
show that control of the beach ball FUZZY DESIGN
was possible. We at least learned that Next, we turned our attention to
the algorithm would be able to control the fuzzy-logic control algorithm.

current-height

Photo J-The  rule listed in Photo 2 can be represented as a 30 picture.

1

4 0
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a duty-cycle

lerm uery_slow
1

0

-KI

Yle Duty_Cucle

&puts: O_utputs:

Photo 4--The  crisp value is calculated by an inference weighted mean of the term-membership maxima. That is, the
degree of membership for the term medium (long black arrow) is 0.7 and the degree of membership for the term
medium fast (short black arrow) is 0.1. The resulting crisp output value is 166.

Basically, fuzzy logic first translates The key is deciding which of these
the crisp inputs from the sensors into a inputs are significant and which aren’t.
linguistic description. It then evaluates To do this, we put ourselves in the
the control strategy contained in place of the beach ball. We formed a
fuzzy-logic rules and translates the list of critical questions, and for each,
result back into a crisp value. we defined a corresponding variable:

Of course, the first step in a fuzzy-
logic control design is system defini-
tion. This is relatively straightforward
for this project. The only possible
sources of inputs to the fuzzy-logic
control algorithm are the ultrasonic
transducer, the user, and the DC fan.

l Where am I? -+ Current Height
l How far am I from where I want to

be? + Delta Height
l How fast am I getting there? + Velocity
l What external force will get me there?

--t Duty Cycle

Term
1

IO

medium
hi

Photo &Once the system-/eve/ debugging completes, the final input and output variables are graphically
represented. These representations are included in Photos 5-8. Here, although the current height variable contains
five terms, we now recognize that three terms would probably have been sufficient. The five terms are fairly
symmetrical across the range.

FREE
Data Acquisition
Catalog

ta

acquisition catalog

from the inventors of

plug-in data acquisition.

Featuring new low-cost

A/D boards optimized

for Windows,

DSP Data Acquisition,

and the latest

Windows software.

Plus, informative

technical tips and

application notes.

Call for your free copy

l-800-648-6589

ADAC
American Data Acquisition Corporation
70 Tower Office Park, Woburn, MA 01801
phone 617-935-3200 fax 617-938-6553
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In fuzzy-logic control, the linguistic
system definition becomes the control
algorithm. And, although defining the
variables is the starting point, it isn’t
good enough to say, “I have velocity.”
Instead, you need to know to what
degree you have velocity.

Determining the extent of a
variable is accomplished by defining
terms that more fully describe it. The
combination of variables and terms
gives a linguistic description of what is
happening to the system. From this, a
variable can be described as having a
“positive small velocity” or a “positive
big velocity” rather than just a
“velocity.”

There is no fixed rule on how
many terms you need to define a
variable. Typically, three to five terms
are defined, but more or less may be
needed depending on the control
algorithm. Table 1 lists the four
variables used for the trade-show demo
and their associated terms. In retro-

Jerm neg_big

Delta_Heioht
50

Photo 6-The  delta height variable contains five terms: neg big, neg small, zero, pos small, andpos big. The middle
terms bunch together around zero.

Once the linguistic variables are
defined, we start defining data types
and values. For this application, we
defined data types as s-bit integers and
then specified the shell and code
values for each variable. The code
value is the crisp number that is used
in the digital domain and is used when

For example, you can define the
shell value for Duty Cycle to be a
minimum of 0 percent and a maxi-
mum of 100. Within the fuzzy-logic
development tool, Duty Cycle there-
fore takes on a value between 0 and
100, inclusive.

Similarly, although the code value
spect, we probably could have reduced the code is generated. The shell value is limited by the data type, it can take
Current Height to three terms and is the equivalent number used in the on any or all of the digital range. That
Velocity to five terms. fuzzy domain. is, if the shell value is 0 to 100, the

Tom Cantrell’s

FuzzPong,  a fuzzy-logic teaching
tool.

The hardware setup is pretty
much as Tom Cantrell described in
his article (INK 42, 50), except that I
used a 12-V  centrifugal blower
instead of a muffin fan. The duty
cycle of a pulse-width modulated
(PWM) waveform applied to the
gate of a power MOSFET deter-
mines blower speed. My ultrasonic
rangefinder is an old Polaroid demo
kit (unmodified) giving 5 samples
per second and a minimum range of
about 9”.

I do the fuzzy calculations on a
PC, so I’m able to add a real-time
graphics interface to show fuzzy
logic in action. The PC screen
(Photo I) depicts the outlines of the
input and output membership

PC FuzzPong David Rees-Thomas

Photo I-Part of FuzzPong’s  success as a teaching tool lies in its graphics display. The control surface shows
the controller oufpuf  for a//  possible values of the two inpuf  variables. Red indicates areas of large positive
change in blower speed, while blue depicts regions of large negative change. The white region indicates little or
no change in blower speed.

42 Issue #56 March 1995 Circuit Cellar INK



Listing l--The FTL  (Fuzzy Technology Language) code ended up compiling down lo 0.7 KB of P/C code
and used 29 bytes of data memory.

PROJECT i
NAME = B_BALL.FTL;
SHELL = MP;
COMMENT i

1 /* COMMENT */
SHELLOPTIONS 1

ONLINE_REFRESHTIME = 55;
ONLINE_TIMEOUTCOUNT = 0:
ONLINE_CODE = OFF;
TRACE-BUFFER = (OFF, PAR(10000));
BSUM_AGGREGATION  = OFF;
PUBLIC_10 = ON:
FAST_CMBF  = ON;
FAST_COA  = OFF;
SCALE_MBF = OFF;
FILE-CODE = OFF:
BTYPE = B-BIT;

1 /* SHELLOPTIONS */
MODEL (

VARIABLE_SECTION  {
LVAR j

NAME = current-height;
BASEVAR = Current-Height;
LVRANGE = MIN(0.000000), MAX(120.000000),

MINDEF(O),  MAXDEF(255).
DEFAULT_0UTPUT(120.000000~;

RESOLUTION = XGRID(0.000000), YGRID(1.000000),
SHOWGRID (ON), SNAPTOGRID(ON);

(continued)
J

code values can be 0 to 100. However,
to get full resolution, we defined the
code values as 0 to 255. The code and
shell values are shown in Table 2.
Note that for the height and velocity
variables, the shell values are scaled by
two (e.g., a Current Height with a crisp
value of 60 corresponds to 30”).

Next, we defined the membership
functions that further describe the
variables. FuzzyTECH-MP, the fuzzy-
logic development tool we used,
creates membership functions auto-
matically. Although this gives a good
starting point, the membership
functions still need to be fine-tuned
during debugging. In this application,
we used only the linear-shaped
functions (Pi, Z, S, and Lambda types)
as shown in Figure 2.

FUZZIFICATION
Once the variables are specified,

it’s time to define the interfaces
between the input variables. These
interfaces contain the fuzzification
procedures, which also need to be
defined. For code efficiency, the

functions (MF) and a map of the
control surface generated by the
current rule base. The instanta-
neous values of delta-x  [distance
from setpoint), dX/dt,  and change in
controller output appear as moving
vertical bars.

An MC68HCll  E9 microcon-
troller does the low-end measure-
ment and control work, communi-
cating with the PC serially at 9600
bps. Input Captures monitor two
signals on the rangefinder logic
board to give a 16-bit value propor-
tional to the height of the ball. This
value is transmitted to the PC as
four ASCII characters.

The control value returned by
the PC is Shit binary and repre-
sents a change in the duty cycle of
the PWM waveform. A toggle
switch selects fuzzy or manual
control. In manual mode, a 2-kQ
pot, connected to one of the
‘HCl l’s ADC inputs, sets the PWM
duty cycle.

FuzzPong  is written in Turbo C
and takes advantage of that com-

Listing I--This  code fuzzifies crisp inputs, performs max-min  composifion,  and defuzzifies weighted
output membership functions to yield crisp output value.

/* F_CONTROL-fuzzy  computation on crisp inputs T, Tdot */
unsigned int f_control(unsigned  int T, unsigned int Tdot)
i

int i, j:
float f_T[91,  f_TdotL91; /* input membership value */
float f_out[91; /* output singleton MFs */
unsigned int output: /* crisp output vale */
for Cj = 0: j < N-T: j++) /* fuzzification-m TL] */

f_T[jl  = fuzz (T, m_T[jl): /* and m_Tdot  are Input */
/* membership functions */

for (i = 0: i < N_Tdot;  i++) /* defined in file */
f_Tdot[il  = fuzz (Tdot, m Tdotfil): /* FUZZYSET.DAT */

infercrule,  f_Tdot,  f_T

output = defuzz(f_out,
return (output);

/* FUZZ-returns membersh
float fuzzcunsigned int

, f_outO;  /* MAX-MIN composition */

m-OUT,  N-OUT);  ix defuzzification */

p of input in a fuzzy set */
nput. unsigned int fmL41)

if ((input >= fm[ll)  && (input <= fm121)) /* fm[] is MF */
return (1.0); /* definition */

else if ((input > fm[Ol)  && (input < fm[ll))
return ((float)(input fm[0l)/(float)(fmill  fm[Ol)):

else if ((input > fm[21)  && (input < fm[31))
return ((float)(fm[31 - input)/(float)(fmC31  fmi21)):

else return (0.0):
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computation of fuzzification is carried
out at runtime.

In this project, the type of
fuzzification used is a membership-
function computation. This choice is
largely due to the code-space efficiency
and accuracy of this method. Once
fuzzification has taken place, the
algorithm is performed in the fuzzy
world according to the rule base.

FUZZY RULE BASE
Next, we are ready for fuzzy

inference. The entire fuzzy inference is
contained within the rule blocks of a
system. For example, if the beach ball
is near the top of the tube and we
commanded it to be near the bottom of
the tube, the rule that describes the
situation would be:

IF Current Height = very hi
AND Delta Height = neg big

THEN Duty Cycle = slow

Rule definition continues until we
have adequately described the system.
Note that the IF part of the fuzzy

Listing l-confirmed

TERM L
TERMNAME = very-lo;
POINTS = (0.000000, l.OOOOOO),

(14.117647, 0.000000),
(120.000000, 0.000000);

SHAPE = LINEAR;
COLOR = RED (2551, GREEN (01, BLUE (0)

I
TERM {

TERMNAME  = lo;
POINTS = (0.000000, O.OOOOOO),

(5.176471, O.OOOOOO),
(24.941176, l.OOOOOO),
(40.941176, O.OOOOOO),
(120.000000, 0.000000);

SHAPE = LINEAR;
COLOR = RED (01, GREEN (2551, BLUE (0)

TERM j
TERMNAME  = medium:
POINTS = (0.000000, O.OODDOD),

(27.294118, O.OOOOOO),
(51.294118, l.OOOOOO),
(66.352941, O.OOOOOO),
(120.000000, 0.000000);

SHAPE = LINEAR:
COLOR = RED (01, GREEN (01, BLUE (255)

TERM (

Listing I-continued

/* INFER-maxmmin composition on crisp inputs T, Tdot */
void infer(int rule[l[91,  float f_TdotLl,  float fT[l,

float f_out[l)
i
int i, j, k;
float cons[91[91; /* weights of rule o/ps */

for (i = 0: i < N_Tdot;  i++) /* compute min for each */
for Cj = 0: j < N-T; j++) /* combination of inputs */

cons[il[jl = amin (f_Tdot[il,  f_TLjl):

for (k = 0; k < N-OUT;  k++) /* clear fuzzy o/p array */
f_out[kl  = 0.0:

for (i = 0; i < N_Tdot;  i++) /* compute max for each */
for Cj = 0; j < N-T; j++) 1 /* output membership fen */

k = rule[il[jl;
if (f_out[kl  < cons[il[jl) /* giving fuzzy weight */

f_out[kl  = consLil[jl; /* for each output MF */
1 .

1

/* DEFUZZ- COG defuzzification of singletons MFs */
unsigned int defuzz(float f_out[l,  unsigned int mmoutL1,

int n)
i

int i; /* f_out[il  is the fuzzy */
float crisp = 0; /* weight computed for */
float weights = 0; /* the singleton output *i

/* MF m_out[il  */ (continued)

piler’s graphics library. The program
includes three main modules:
F U Z Z MA I N, which contains the
graphics routines, F U Z Z C OMM, which
handles data to and from the ‘HCl  1,
and FUZZMATH, which is the actual
fuzzy controller.

In addition to managing the
graphics display, FU Z Z MA I N runs
the executive loop, which keeps the
whole show going. FUZZCOMM scales
height values received from the
‘HCl 1 and computes their rate of
change using a three-point, back-
ward-difference formula. It also
massages output data prior to
transmission to the microcontrol-
ler. Here, I experiment with various
software filters and smoothing
algorithms, with dubious results.

FUZZMATH (see Listing ljdoes

its fuzzification, inference, and
defuzzification straightforwardly. I
stuck to trapezoidal or triangular
membership functions for the input
fuzzy sets and singletons for the
outputs. FUZZMATH  performs the
usual max-min composition to
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Listing l-continued

TERMNAME  = hi;
POINTS = (0.000000, O.OOOOOO),

(55.529412, 0.000000),
(82.352941, 1.000000),
(106.352941, O.OOOOOO),
(120.000000, 0.000000);

SHAPE = LINEAR:
COLOR = RED (128), GREEN (01, BLUE (0);

I
TERM {

TERMNAME  = very-hi;
POINTS = (0.000000, O.OOOOOO),

(73.411765, O.OOOOOO),
(113.411765, l.OOOOOO),
(120.000000, 1.000000):

SHAPE = LINEAR:
COLOR = RED (01, GREEN (1281, BLUE (0)

1 1" LVAR "1

1 /* VARIABLE-SECTION */

OBJECT_SECTION i
INTERFACE i

INPUT = (current-height, FCMBF);
POS = -213, -137;
RANGECHECK = ON;

inference is aggregation and can be
AND or OR.

The rules of the rule block can be
defined in terms of plausibility. A
plausible rule is defined by a I .O while
a totally implausible rule is defined by
0.0. The degree to which a crisp value
belongs to a term is known as the
degree of membership.

For example, the terms medium
and hi for the variable Current Height
are defined as a Lambda-type member-
ship function centered around the
crisp values 52 (26”) and 82 (41”),
respectively, as shown in Photo 1.

Therefore, if the beach ball was at
26”, the degree of membership is 1 .O

for medium and 0.0 for hi. However, as
the beach ball rises in height, the
degree of membership for the term
medium decreases and the degree of
membership for hi increases.

The interplay of these linguistic
variable terms is controlled by the rule
base, which defines not only the
relationship between the terms, but
also how much each rule is supported.
The support of a rule, or plausibility, is

generate fuzzy outputs, combining
them to produce a crisp output
value by center-of-gravity weight-
ing.

FuzzPong  uses membership
functions and a rule base, defined in
an ASCII text file (Listing II). It’s
easy to change the number and
limits of membership functions or
to tweak the rules so you can see
the effect of the changes. Even
without a real pong system con-
nected, FuzzPong’s  control surface
shows roughly how the controller
reacts in each case. (Note: the
surface shows controller action only
and not overall system response!)

HOW WELL DOES IT WORK?
I haven’t made any quantitative

measurements, but in the absence
of external disturbance, FuzzPong
can hold the ball within roughly
one ball diameter of the setpoint. It
recovers nicely if the system is
“bumped” by placing a finger across
the end of the tube. Both bumping
and a change of setpoint  show a

Listing I-continued

for (i = 0; i < n; i++){
crisp += f_out[il * (float) m_out[il:
weights += f_out[il; /* compute weighted average */

return (unsigned int)(crisp/weights);

Listing II- FUZZY S E T DA T includes fuzzy membership funcfions  and rules.

* Input MFs are entered as four hex values A B C D
trapezoidal shape:* where the MF has the generalized

* B---C
* I \
* / \
* A 0
* N-T (number of MF for first inpu

5
* Membership function names:

NL NS ZR PS PL
* Membership function limits

0x00 0x00 0x60 0x70
0x60 0x70 0x70 Ox7C
0x70 Ox7C 0x88 0x98
0x88 0x98 0x98 OxBO
0x98 OxBO OxFF  OxFF

variable):

* N_Tdot  (number of MF for second input variable):
5 (continued)
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known as the degree of support for
that rule.

From the list of rules, a Fuzzy
Associative Map (FAM) is constructed.
As you can see in Photos 2 and 3, the
FAM shows the plausibility (degree of
support) of each rule.

DEFUZZIFICATION
The interface for the output

variables contains the defuzzification
procedures. This project, like most
control applications, the center-of-
maximum (CoM)  method is used for
defuzzification.

CoM evaluates multiple output
term as valid and makes a compromise
between them by computing a
weighted mean of the term-member-
ship maxima. The example in Photo 4
shows defuzzification of the linguistic
variable Duty Cycle using CoM.

The crisp values of the three input
variables used in Photo 4 are:

Current Height: 30
Del ta  Height :  0
Velocity: 0

Listing l-continued

I
INTERFACE l

INPUT = (delta-height, FCMBF):
POS = -216, -83;
RANGECHECK = ON:

INTERFACE l
OUTPUT = (duty_cycle,  COM):
POS = 158, -79;
RANGECHECK = ON;

RULEBLOCK 1
INPUT = current-height, delta-height, velocity;
OUTPUT = duty-cycle;
AGGREGATION = (MIN_MAX,  PAR (0.000000));
COMPOSITION = (GAMMA, PAR (0.000000));
POS = -39, -113;
RULES 1

IF current-height = very-lo
AND delta-height = neg_big

THEN duty-cycle = slow WITH 1.000
IF current-height = very-lo
AND delta-height = neg_small

THEN duty-cycle = med-slow WITH 1.000;

IF current-height = very-hi
AND delta-height = pos_small (continued)

Listing II-confinued

* Membership function names:
NL NM NS ZR PS PM PL

* Membership function limits:
0x00 0x00 0x50 0x70
0x50 0x70 0x70 ox7c
0x70 Ox7C 0x72 0x98
0x82 0x98 0x98 OxCO
0x98 OxCO OxFF OxFF

* N-OUT  (number of output MFs)
5

* Singleton output function (0x80 => zero change):
* NL NS ZR PS PL

0x70 Ox7C 0x80 0x82 0x88

* Fuzzy rule base (FAM matrix): the consequent of each rule
* is the index of the corresponding output MF,e.g.,  2 => ZR
* Tdot T m> NL NS ZR PS PL
* NL

4 3 3 3 3
* NS

4 4 3 2 2
* ZR

3 3  2 1 1
* PS

2 1 1 0  0
* PL

0 0 0 0 0

fairly heavily damped response.
FuzzPong  also handles a ball
wrapped with one turn of electrical
tape without significant loss of
control.

All in all, the exercise of
writing and using FuzzPong  has
been a great introduction to fuzzy
control. q

David Rees-Thomas has a B.Sc. in
chemistry and math from Queen’s
University and a diploma in
Electronics Technology from
Northern College in Kirkland Lake,
Ontario. For the last ten years, he
has been teaching at the British
Columbia Institute of Technology
in Burnaby, BC, where he special-
izes in microcontrollers and data
communications. David may be
reached at resd2215@bcit.bc.ca.
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Listing 1-continued

AND velocity = neg_big
THEN duty-cycle = very-fast with 1.000;

} /* RULES */
i
INTERFACE (

INPUT = (velocity, FCMBF);
POS = -211, -29;
RANGECHECK = ON;

i
1 /* OBJECT_SECTION  *i

) /* MODEL */
1 /* PROJECT */
TERMINAL i

BAUDRATE = 9600:
STOPBITS = 1;
PROTOCOL = NO:
CONNECTION = PORTl;
INPUTBUFFER = 4096;
OUTPUTBUFFER = 1024;

1 /* TERMINAL "i

The crisp value can be calculated using
the CoM method with the following
equation:

C=I:i[Ixmax,(M)xarg(max,(M)))
CiI

JO.7~165)+(0.1~178)
0.7 + 0.1

=166

where C is the crisp output value, i is
the linguistic term, I is the inference
result, and M is the membership
function of the linguistic term.

For this example, when the crisp
values are fuzzified, the Duty Cycle
variable is defined to be mostly
medium (=0.7 degree of membership)
and somewhat medium fast (~0.1

Height terms-we bunched neg small,
zero, and pos small-and the beach
ball stabilized at 30”. There was
virtually no fluctuation in the height.

Although 30” was a good starting
point, we knew that the system was
highly nonlinear. So, we began testing
the system at extreme levels and
moving the beach ball at different rates
from one extreme to the other.

From the manual control tests
performed earlier, we had a good
characterization of how the beach ball
would behave in the extreme regions.
It turned out that terms for Current
Height and Velocity needed almost no
adjustment. In fact, the Velocity
variable was not even used.

The variable that required the
most work was the Duty Cycle. But
before the end of the day, the algo-
rithm was working well beyond our
expectations. The beach ball could go
from resting, with the DC fan off, to
the maximum allowable height of 42”
in less than 8 s with no overshoot.
Operation between the minimum and
maximum height was much quicker,
and there was no overshoot.

We felt confident that we could
sleep well that night. Ironically, it was
the last sleep we got for a while.
During the night, a cold front moved
in. When we tried to run the beach ball
demo the next day, it sent the beach
ball to the top of the tube every time.

To make a long story short, the
problem turned out to be with the
ranging module. The receiver gain was
set a little too high. The potentiometer
was set just below the level of receiv-
ing reflections in the tube. The
changes in the environment pushed it
over the edge. After a minor adjust-
ment to the potentiometer, we were
up and running again.

However, this time, once we
started the demo again, the beach ball
would stop 6” short of the desired
height. After thinking about what else
we may have missed, the answer hit us
like a blast of cold air-literally.

The cold front changed the
atmospheric conditions enough so that
the DC fan didn’t have enough juice to
push the ball up to the desired height.
This is where Velocity, our one unused
term, came into play. We decided to

degree of membership). The arguments
for the medium and medium-fast
term membership maxima are 165 and
178, respectively. When this fuzzy Ie rm neg_big

description is defuzzified, the output is -1

the crisp value I66 as is shown in neg_med
Photo 4. neg_small

zero
SHOW TIME pos_small

The first time we ran the demo, pos_med
the beach ball barely lifted off the DC pos_big
fan. Apparently, we had our Duty 1 I

Cycle defined too low. So, in real time,
t.ti[-3.78431 Q 5

we shifted the Duty Cycle terms to the . . I
-5

Uelocity
right and watched the beach ball
slowly lift off the DC fan. We adjusted
the Duty Cycle so that the beach ball

Photo ‘I--The  velocity variable contains seven terms: neg big, neg med, neg sma/!  zero, pas sma//,  pas med, and
pas big. The terms are near/y symmetrical across the range. With hindsight, we realize that  these seven ferms  could

reached 30”. We played with the Delta be reduced to five.
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add a few rules that used Velocity to
nudge the ball into place-you know,
as sort of a turbo mode. With this
adjustment, the demo worked.

Photos 5, 6, 7, and 8 graphically
depict the final state of the linguistic
variables. Listing 1 offers an excerpt of
the Fuzzy Technology Language (FTL)
that we used. (FTL is a vendor and
hardware-independent language which
defines the fuzzy-logic based system.)

Once we had completed the fuzzy
logic algorithm, we ran the assembler
to get an estimate of the memory
needed to embed it in the PIC16C74.
The fuzzy logic algorithm used
approximately 0.7 KB of program
memory and 41 bytes of data memory.
The total code space for the project
was 1 KB of program memory and 80
bytes of data memory. Including the
fuzzy logic algorithm, we still had well
over 50% of the memory resources
available on the PIC16C74.

FUZZY CHALLENGE
Our trade show demo was very

successful. The positive feedback

lerm

-
SIOUJ

medium
med_fast
fast
very-fast

uery_slow

Duty_Cycle
2 5 5

Photo &The du!y cycle  variable contains seven terms: very slow, slow, med slow, medium, med fast, fast, and
very fast. The tern& bunch together around medium.

virtually guaranteed that the demo
will surface again at future trade
shows. However, now that the public
has seen the demo, marketing wants to
capitalize on its success by adding
enhancements.

Two enhancements are already in
the works. The first includes adding
manual control to allow a user to
challenge the fuzzy logic control. The

second entails breaking the serial
communication link and embedding
the fuzzy logic in the microcontroller.

Finally, if we get crazy enough,
we’ll remove the tube and run the
demo in free air.

So, if you happen to see us at a
trade show near you, come put fuzzy
logic to the challenge! I&

Q How do you know you’re
@getting  the most from your

development tool purchase?

Compare A vote  t Sys terns
l with the competition.

a A Broad Line of High-Quality

Products at Competitive Prices

I Free On-Line Technical Support

n Attractive Multi-User Discount Prices &

Our “50%+”  Educational Discount Plan

n Unconditional 30-Day

Money-Back-Guarantee

Now call the obvious choice!

SYSTEMS: INC.

The Best Source for Quality
Embedded System Tools

(800)  448-8500
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Robert Schreiber is a senior applica-
tions engineer at Microchip Technol-
ogy. He has more than ten years of
embedded systems, hardware, and
software design experience. He may be
reached at apps@mchp,com.

Microchip Technology, Inc.
2355 West Chandler Blvd.
Chandler, AZ 85224
(602) 786-7200
Fax: (602) 899-9210

Inform Software, Inc.
1840 Oak Ave.
Evanston, IL 60201
(708) 866-1838
Fax: (708) 866-1839
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Mike Smith &
Kathy Kim

Being ASSERTive with
Your Processor
The Advantage of Software Interrupts

article on “Inter-

need to remember the old computer
adage-more haste, less speed. He
claimed that introducing interrupts
into time-critical code can often be
counterproductive.

In this article, I want to take a
contrary approach and examine some
advantages in deliberately using inter-
rupts. Bear in mind though that the
interrupts I’ll be covering are in soft-
ware, while Do-While covers hardware
interrupts specifically.

The Motorola’s MC68010 is con-
sidered in some circles as the first
processor to make good use of software
interrupts. The 680x0 is a family of
processors, which Motorola planned to
make code-compatible with future
processors. To do this, an actual in-
struction on a future processor caused
an illegal instruction trap on an earlier
processor so that the instruction could
be emulated in software. Although the
code is the same across the processor
family, the differences in speed are
quite dramatic.

Advanced Micro Devices also
chose this approach. The Am29050
processor performs pipelined floating-

point and integer operations in a single
cycle. The Am29200 microcontroller
on the SA-29200 evaluation board [l]
performs integer operations in the
same single cycle. Floating-point op-
erations, however, are handled via a
software trap through the monitor on
the evaluation board and take 280
times longer. This approach has one
critical advantage. If your require-
ments change, you can make tremen-
dous cost savings because you can
move already developed and tested
software to the faster system.

There are other special features on
processors using software interrupts.
After every arithmetic operation, the
programmer should check to see
whether results can still be repre-
sented in the number of bits available
on the processor. On IBM’s PowerPC
and most other floating-point proces-
sors or coprocessors,  floating-point
instructions are highly pipelined to
obtain good performance. Specifically
testing for a floating-point overflow
condition can be costly. Not only do
you have to fetch the compare instruc-
tion, you may also have to wait for the
flags to pass through the pipeline be-
fore you can test them.

Rather than fetching an additional
software instruction to test for pos-
sible floating-point problems, chip
designers take a hardware approach-
the floating-point exception. If there is
no overflow, then the program contin-
ues smoothly. Otherwise, the proces-
sor traps and uses the information in
the vector table to jump to an error-
correcting routine. As Do-While points
out, interrupt overhead can be expen-
sive. But, since the traps are not taken
frequently, the normal condition is
handled more efficiently.

Considering its advantages, it is
surprising that the exception idea is
not often extended to integer arith-
metic. Most processors require that
you specifically check for integer over-
flow.

By contrast, the Intel 80960 pro-
cessor has integer (signed) and ordinal
(unsigned) add and subtract instruc-
tions that can be enabled to trap on
overflow. The AMD 29k RISC proces-
sors operate somewhat similarly. They
have specific signed (AD 0 S and S U B S)
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and unsigned ( AD D U and
S U B U) instructions that
trap. Other add and sub-
tract instructions can be
used when it doesn’t mat-
ter.

Analog input signal
x 0)

&,
I I

The 29k processors
have another interesting
class of single-cycle, soft-
ware-interrupt instruc-
tions. These are the
ASSERTive  instructions
(highlighted in the title),
which act essentially as a
single-cycle compare-and-
trap instruction.

Although exceptions

Figure l--The typical DSP  experimental setup for application of a digital finite-impulse-
response filter (FIR) digitizes the signal, modifies if in some way, and converts it back fo
analog.

from normal integer and floating-point
instructions typically occur infre-
quently, ASSERT instructions can be
advantageous even when the excep-
tions occur as frequently as 30% of the
time. The rest of this article examines
the advantages of these instructions in
a number of DSI? situations.

Analog output signal
Y 0)

Digital input

x [nA  T]

Digital output

Y InAT]

tion errors and overflows, which are
drawbacks of the digital filter.

FIR FILTERS
A simplistic experimental setup

for a digital filter is shown in Figure 1.
After conditioning the analog signal to
reduce its noise bandwidth, the signal
is digitized and then manipulated by
the processor. The digital filter’s out-
put is converted to an analog signal
and finally smoothed to produce the
required filtered signal.

To maximize the bandwidth, it is
necessary to take advantage of the
processor architecture to reduce the
number of instructions generating the
digital-filter output. The FIR (finite
impulse response) filter produces an
output y(nAT),  which is a weighted
(H(i)) average of the last p input sig-
nals, x( [n - i]AT):

Because of the nature of the convolu-
tion equation, it is not unusual to find
that both the input and output signals
can be expressed in 12 bits, yet the
internal states of digital filter need 20
bits or more accuracy. These 20 bits
correspond to the 12 data bits together

Digital filters have the advantage
over analog filters in that their compo-
nents (coefficients) are unaffected by with lower guard bits to reduce prob-
temperature or time. And, if you lems associated with truncation and
widen the register and memory data additional guard bits to reduce the
paths, you avoid many of the quantiza- chances of overflow.

Listing l-Here’s the AMD 29k  code for a software-implemented saturated-arithmetic algorithm.

C P L E  b o o l e a n ,  d a t a ,  m a x i m u m ; if (data>max!  goto TOOLARGE
JMPF boolean, TOOLARGE
CPGE boolean, data, minimum ; if (data<min)  goto TOOSMALL

(following instruction in
I branch delay slot for speed)

JMPF boolean, TOOSMALL
NOP ; (unfilled delay slot?)

CONTINUE: Rest of code

TOOLARGE:JMP CONTINUE ; data=max; goto CONTINUE
ADD data, maximum, 0 : (in delay slot)

TOOSMALL:JMP CONTINUE ; data=min; goto CONTINUE
ADD data, minimum, 0 ; (in delay slot)

An advantage of the
FIR filter over the IIR
[infinite impulse re-
sponse) filter is that the
output signal only over-
loads if the input signal
becomes distorted for a
maximum of p sample
periods after the distor-
tion is removed. However,
the FIR filter requires a
large number of filter taps
to obtain any useful filter
characteristics (100 or 200
FIR taps compared to 10
IIR taps). Completing the
FIR calculations between

sampling periods may nearly stretch a
processor to its limits. If you want the
processor to do anything else, you had
better do that efficiently.

Consider this same application
with the additional requirement that
you need to display the filter output in
real time with minimal distortion.
Now suppose the input results in the
occasional 13-bit numbers going to the
12.bit DAC. With this overflow, a
large (13.bit)  positive number appears
as a large (12-bit) negative number
since the display unit truncates the 13.
bit number to 12 bits. To avoid such
confusion, you must waste cycles
continually testing for an overflow.

One approach to getting a better
output representation of the signal is
to use the saturation-arithmetic con-
cept found on the Motorola DSP-56000
processors. The 56000 accumulator
has a large number of bits (56 bits) to
avoid overflow during the calculation
of the convolution sum.

However, the external memory is
only 24 bits wide. If the result in the
accumulator is too large to store in
memory, then saturation arithmetic
means that the largest 24.bit  value is
saved rather than just the lowest 24
bits of the result. Thus, Ox7FFFFFFF
would be stored as Ox7FFFFF  (largest
positive number) rather than clipped to
OxFFFFFF  (a garbage, negative number).
For a non-DSP-specific processor, all
the output values must be examined
with software and truncated when it is
necessary to provide saturation arith-
metic. Needless to say, this is a time-
consuming process.
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FAST-FOURIER TRANSFORMS
Different, but equivalent prob-

lems, can occur when using the fast-
Fourier transform (FFT) for digital
filtering. Here, the input samples are
accumulated until there are 256 or 5 12
values placed in an array. These input
values are then discrete Fourier trans-
formed, multiplied by the transform of
the filter coefficients, and inverse
transformed to give the filtered signal.
An industrially related tutorial appli-
cation of the FFT algorithm is given in
reference [2].

The FFT approach has the advan-
tage that it requires a time of the order
of Mog,N  operation compared to the
N, operations of the direct FIR filter.
The number of filter taps p does not
have to be very large before the appar-
ently more complex FFT approach is
the faster one.

The FFT algorithm is simple to
implement using floating-point com-
putations. However, there are many
processors that do not support fast-
float operations for the following rea-
son. The IEEE standard for binary,
floating-point arithmetic is to take a
number and to break it into fields,
which can be stored in a 32-bit register
and memory location:

( -1 )” x 1 .frac x 2 ( “T 12’ )

where s represents the sign bit (1 bit],
bexp the biased exponent (8 bits), and
frac the fractional part (23 bits).

So, thenumber 10.75 (%lOlO.ll)
is stored with s = 0, bexp = 0x82 (3 +
127),  and frac = Ox2COOOO (%O.OlOll).
The advantage of this approach is that
a very wide range of numbers can be
represented. The disadvantage is that
any mathematical operation requires
that all of the fields be manipulated,
which takes considerable time unless
specialized hardware is available. Soft-
ware floating operations take orders of
magnitude longer than the equivalent
integer operations.

BLOCK-FLOATING-POINT
FORMAT

Instead of using floating-point
operations, you can represent the num-
bers using the block-floating-point
(BFP) number representation, also
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Listing 2--The code to  determine maximum and minimum data values differs Me  from that  for saturation
arithmetic.

TOOLARGE: JMP CONTINUE maximum = data; goto CONTINUE
ADD maximum, data, 0 (in delay slot)

TOOSMALL: JMP CONTINUE
ADD minimum, data, 0

minimum = data; goto CONTINUE
(in delay slot)

Listing 3--This  /isf;ng demonstrates the ASSERTive  approach fo safurafion  arithmetic.

ASLE 0x80, data, maximum : if (data > maximum) trap 0x80
ASGE 0x81, data, minimum : if (data < minimum) trap 0x81

CONTINUE: Rest of code

; TRAP 0x80 Interrupt Service Routine
TOOLARGE: ADD data, maximum, 0 ; data = maximum

IRET ; (return from trap)

: TRAP 0x81 Interrupt Service Rou
TOOSMALL: ADD data, minimum, 0

IRET

ine
; data = minimum
; (return from trap)

called fixed point. With this method,
thevalue  10.75 (0xA.C (%lOlO.ll))
might be stored as (0x000AC000  x 2-16)
in 32 bits. The binary exponent value
(2-l”) is common (fixed) for all numbers
(a block) used in the algorithm.

The advantage of the BFP number
representation is that the numbers can
be manipulated as if they were integers
since the exponent is not explicitly
stored and manipulated by software.
This gives a tremendous speed im-
provement over a full software float-
ing-point implementation.

Unfortunately, the range of float-
ing-point numbers is limited. For the
above 32-bit example, the range is just
below 32,768 to -32,768. A second
disadvantage is the precision associ-
ated with the BFP number representa-
tion. For our example, the smallest
change that can be recorded is 1 bit,
which corresponds to ‘h36.

Despite these limitations, 32-bit
BFP numbers are extremely useful. A
typical DSP application might read a
12-bit, dual-sided ADC and manipu-
late the results. A 32-bit BFP represen-
tation would be fine with a I2-bit
value OxVVV stored as OxOOOOOVVV if
positive and OxFFFFFW  if negative.
The coefficients, H,, for the DSP appli-
cation can be calculated via an off-line
floating-point C algorithm and con-
verted to BFP format using (int)(H,  x
0x10000).

A further problem with BFP oc-
curs when division is required. A divi-
sion may lose bits from the result that
are not recovered by future multiplica-
tions. This effect can be reduced by the
correct placement of the 12 bits within
the 32 bits available. Thus, a BFP rep-
resentation using the value
OxOOOOVVVO provides 4 lower guard
bits before any precision is lost. In

Am29200
Format integer
Purpose controller
Bus single
Instruction Cache -
Data Cache -

Branch Cache - -
Integer multiply software
Floating point software

Am29245 Am29240 Am29000 Am29050
integer integer integer integer/float

controller controller processor processor
single single Harvard Harvard
4 KB 4 KB -

2 KB -
- 0.5 KB 1 KB

software hardware software hardware
software software software hardware

Table l--The AMD 29k  family of processors  and microconfrollers  offers various architectures suited for specific
applicafions,  but retains code capafibilify  across the line.



addition, it provides 16 upper guard
bits before multiple additions result in
an overflow. “Correct” placement
depends on the DSP algorithm being
programmed.

Although the FFT algorithm does
not explicitly involve any divisions, an
equivalent problem occurs when it is
implemented on an integer processor.
A 256-point  FFT algorithm is made up
of eight passes. At each pass, it is pos-
sible for the output values to grow at a
rate of 2Jz relative to the input.

To avoid overflow problems with
the BFP numbers, the input values
must be downshifted to compensate
for this growth. However, each down-
shift produces data truncation and its
associated inaccuracies. As the data
growth is only potential, it is impor-
tant to determine the data maximum
and minimum and only scale when
necessary. This determination requires
essentially identical code to the satura-
tion arithmetic discussed earlier.

THE DIRECT APPROACH TO
SATURATION ARITHMETIC

The saturation-arithmetic opera-
tion on non-DSP-specific processors
must be handled in software via sev-
eral compare instructions. The code in
Listing 1 is for the AMD 291~  RISC
processors. To maximize speed on
these systems, the data to be checked,
together with the maximum and the
minimum allowable values, are stored
in one of the processor’s many regis-
ters. Listing 1 includes the code seg-
ment check for possible overflow.

When programming a pipelined
processor for efficiency, you must take
into account the possible RISC proces-
sor stalls associated with changes in
program flow. We have manipulated
the code segment so that the normal
flow, which is no overflow, has mini-
mal delay (i.e., no jumps). By doing
this, we are able to maximize the per-
formance.

We have also optimized the code
on overflow by placing useful instruc-
tions in the RISC processor’s J M P delay
slots. A slightly different coding ap-
proach is possible with a superscalar
processor such as the PowerPC. This
processor has different branching in-
structions depending on whether you

Listing 4-This fest  code compares the efficiency of COMPA R E and ASSERT with saturation arithmetic on
a 29k  processor.

.global start

.equ LARGE, 0x80

.equ SMALL, 0x81

.equ EXIT-SERVICE, 1

.equ VECTOR_SERVICE, 290

.equ ARRAY-SIZE, 1000

.set

.set

.set

.set

.set

.set

.set
start:

CONST
LADDR
CONST
ASNEQ

CONST
LADDR
CONST
ASNEQ

CONST
CONSTN

boolean, gr96
outaddress, lr2
inaddress, lr3
counter, lr4
value, lr5
maximunl,  lr6
minimum, lr7

lr2, LARGE
lr3, ISRLARGE
gr121, VECTOR_SERVICE
0x45, grl, grl

lr2, SMALL
lr3, ISRSMALL
gr121, VECTOR_SERVICE
0x45, grl, grl

maximum, 5
minimum, -5

; FIRST TIMING POINT
INV

; Normal COMPARE test
LADDR inaddress, array
LADDR outaddress, array1

; (Vector table offset)

; (HIF service calls)

: (Register declarations)

: (Set up the traps)
; (trap number)

; (HIF request)

(trap number)

(HIF request)

; (Set the limits)

; (Invalidate the caches)

; inaddress = &array[Ol
; outaddress = &array1101

CONST counter, (ARRAY_SIZE 2) : (Set loop counter)

LOOPl:LOAD 0, 0, value, inaddress

CPGT boolean, value, maximum
JMPT boolean, TOOLARGE
CPLT boolean, value, minimum
JMPT boolean, TOOSMALL
NOP

CONTINUEl:
ADD inaddress, inaddress, 4
STORE 0, 0, value, outaddress
JMPFDEC counter, LOOP1
ADD outaddress, outaddress, 4

; SECOND TIMING POINT
JMP ASSERT
NOP

TOOLARGE:
JMP CONTINUE1
ADD value, maximum, 0

TOOSMALL:
JMP CONTINUE1
ADD value, minimum, 0

while (counter > 1)
value = *inaddress;
if (value > maximum)

value = maximum;
if (value < minimum)

value = minimum:
(Can't fill delay slot

inaddress++;
*outaddress = value:
counter--:
outaddress++;

; (Fix if too large)

: (Fix if too small)

; ASSERTive approach
ASSERT:

INV ; (Invalidate the caches)
LADDR inaddress, array ; inaddress = &array[Ol
LADDR outaddress, array1 ; outaddress = &array1101
CONST counter, (ARRAY-SIZE 2) ; (Set loop counter)

(continued)
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want to prefetch the branch code or
the fall-through code.

The checking required for the FFT
scaling operations is identical. But, as
you can see in Listing 2, the operation
to be performed on failing the compari-
son is different.

If we assume that there are N data
values to check, of which L is too large
and S, too small, we then know it
takes(N-L-S)x5+Lx5+Sx7
instructions for this code segment to
execute. Similar results (within lo-

20%) can be found with other proces-
sors depending on their architecture.
The actual time required depends on
the number of clock cycles per instruc-
tion.

Even within the AMD 29k family
of processors, the time varies widely.
On the Am29050 floating-point pro-
cessor, there is a branch target cache
where the J M P target instructions can
be stored. As a result, the number of
clock cycles is equivalent to the num-
ber of instructions.

By comparison the Am29200
microcontroller has neither branch nor
instruction cache. Thus, there is a
processor-stall penalty roughly equi-
valent in time to two instructions
every time the processor has to take a
jump and reestablish the instruction
pipeline. In this situation, the effective
number of instructions becomes (N - L
-S)x5+Lx9+Sxll.

Listing 4-continued

LOOP2:LOAD 0, 0, value, inaddress

ASLE LARGE, value, maximum

ASGE SMALL, value, minimum

ADD inaddress, inaddress,
STORE 0, 0, value, outaddress
JMPFDEC counter, LOOP'2
ADD outaddress, outaddress, 4

; THIRD TIMING POINT
CONST lr2, 0
CONST gr121, EXIT-SERVICE
ASNEQ 0x45, grl, grl

ISRLARGE:
ADD value, maximum
IRET

ISRSMALL:
ADD value, minimum
IRET

array: .rep (ARRAY_SIZE/lO
.word 0
.word 4
.word 6
.word 4
.word 0

while (counter > 1) i
value = *inaddress;
if (value > maximum)

value = maximum:
if (value < minimum)

value = minimum;
inaddress++;
*outaddress = value:
counter--:
outaddress++

exit(O);

(Fix if too large)

(Fix if too small)

AN ASSERTIVE APPROACH
On all processors, DSP or other-

wise, optimum performance is ob-
tained by taking into account the ar-
chitecture of the processor. The 29k
processor ASSERT instruction is a
specialized compare instruction. If the
assertion is true, the instruction effec-
tively acts as a NOP. However, if the
assertion is false, a trap occurs to a
service routine. The trap overhead is
fairly small since 29k processors are
register oriented.

Listing 3 offers an example of
saturation-arithmetic code using the
ASSERTive  instructions. This routine
takes a total time of (N - L - S) x 2 + L
x 4 + S x 4 + (L + S) x trap overhead,
which is close to 2% times faster than
the original code provided the trap
overhead is not too large.
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MORE HASTE, LESS SPEED?
Obviously, the speed advantage of

the ASSERT instruction is optimistic
as no code segment ever stands alone.
It is also necessary to take into ac-
count the effect of any loop overload,
the fetching (from memory] of the data
value to be examined and its output to
the D/A converter, as well as the ini-
tial overhead of setting up the trap
handlers.

As Do-While Jones states in his
article on hardware interrupts, it is
important to know when you are
ahead of the game! So, we need to
decide on which processor architecture
you profit from this sort of program-
ming trick and when you are worse off.

One of the reasons that I write a
lot about the Advanced Micro Devices
RISC processors is that these let me
armchair design with a great deal of
ease. As Table 1 illustrates, the 29k
family of RISC processors has a wide
range of system architectures.

However, they also all have an
identical instruction set. Instructions
such as floating-point operations are
supported across the family either
directly by hardware or through soft-
ware emulation, so no recoding is
necessary.

I can therefore redesign the chip,
check my results on simulators, hassle
the guys on the AMD 29k hot line
when the numbers don’t come out the
way I expect (or want), and suggest
how it should have been done. All this
fun without having to wade through a
tremendous learning curve of new
instructions and architectural pecu-
liarities for each processor. Armed
with this knowledge, I have a jump-
start knowing what to look for when I
want to discuss the performance of
other manufacturer’s CISC, RISC, and
DSP chips.

We can test the performance of
the ASSERTive approach with the
code segment in Listing 4, which ac-
cesses values from memory as would
occur in the FIR and FFT algorithms.
The data is checked and manipulated
(if necessary) before being stored back
to memory. The host interface (HIF)
operating system places the start of the
interrupt-service routine into the vec-
tor table.

Listing 4-continued

.word -4

.word -6

.word -4

.word 0

.word 2

.endr
arrayl:

.block  (ARRAY-SIZE * 4) ; (Output array ~~ normal approach
array2:

.block  (ARRAY_SIZE * 4) ; (Output array ~- assert approach

THE REASON WHY?
The results for the standard and

ASSERTive approaches for the various
architectures are shown in Table 2.
These results provide an interesting
insight into the effect of various sys-
tem features on RISC performance.

There are no conflicts between
instruction and data fetches since the
Am29000/050  processors have a true
Harvard architecture. The Am29200
microcontroller is doubly disadvan-
taged with two wait states on memory
accesses and instruction and the data
fetch conflicts. Both the Am29240 and
Am29245 microcontrollers have an
effective Harvard architecture because
of their internal instruction cache.
Although slower in their initial
memory access of instructions (one
wait state), once the instructions are
stored in the instruction cache, the
effective instruction access time is
zero wait states.

Given the Harvard architecture of
the Am29050 processor, you might
expect that this processor would be at

least as fast as the Am29240 microcon-
troller with its instruction cache. In
addition, since both the Am29240 and
the Am29245 microcontrollers have
instruction cache, their performance
should be identical.

However, this is not the case. The
difference is associated with the fact
that the Am29240 has a two-stage
output buffer associated with the data
cache. This means that the use of the
data bus for a ST0 R E instruction better
meshes with the data bus use for a
nearby LOAD instruction. This differ-
ence gives a data cache and buffer
architecture a small 3% speed im-
provement over a Harvard dual-bus
architecture and a whopping 20%
improvement over the single-bus ar-
chitecture.

In practice, the performance im-
provement depends on how the com-
piler and programmer organizes the
positions of the various LOAD and
STORE instructions. It would be inter-
esting to see the effect if the dual-
output buffer was added to the Am29-

Clock Speed
Memory Access
Cache

COMPARE Cycles
ASSERT Cycles

COMPARE Cycles
ASSERT Cycles

COMPARE Cycles
ASSERT Cycles

Break-even point

Am29200
16 MHz
3 cycles

Am29245 Am29240 Am29000/50
16 MHz 33 MHz 40 MHz
2 cycles 2 cycles 1 cycle

Instr. Instr./Data Branch

NO OVERFLOW OCCURS
38400 12800 10700
32000 9600 8 0 0 0

10% OVERFLOW OCCURS
39500 12800 10700
35000 10800 9100

20% OVERFLOW OCCURS
40800 12900 10800
38000 11900 10200

3 2 % 3 0 % 2 5 %

11000
8000

11000
9000

11200
10000

3 3 %

Table P-Using  the same AMD  29k processors as those in Table 1, we can compare fhe COMPARE and
ASSERTive approaches to saturation arifhmefic.
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245 microcontroller, which does not
have a data cache.

The presence of the data cache and
buffer can also be seen during interrupt
handling. With the Am29050 proces-
sor, the effective time to execute the
ADD and I RET instructions is 10
cycles. On the Am29240 microcontrol-
ler (with the data output buffer), the
time required varies between 10 and
I4 cycles, depending on whether the
two-stage data-output buffer needs
flushing when the interrupt occurs.

The Am29245 microcontroller,
which has no data buffer, requires
normally between 11 and 14 cycles,
although some configurations of the
data sequence can handle interrupts in
only 9 cycles. I can’t explain the lower
number of instruction cycles, which I
interpret as being associated with the
differences of how the interrupt target
addresses are fetched from the instruc-
tion and data caches.

For the COMPARE instruction ap-
proach, the Am29000/50  processors
perform exactly as predicted with two
additional cycles for a negative under-

flow than for a positive overflow.
However, the processors with instruc-
tion cache require between 0.7 and 3.8
extra cycles, which apparently depends
on where the underflow occurs in the
data stream. I can offer no reasonable
explanation for this other than “just
because....”

These results are intended to show
the programmer when to use software
interrupts rather than the standard
program-flow approaches. Regardless
of the architecture, if it seems that
there is less than a 25% chance of
overflow occurring, then it pays to be
ASSERTive  in your programming
style. q
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,RTMENTS
Firmware Furnace

From the Bench

Silicon Update

Embedded Techniques

ConnecTime

Ed Nisley

Journey to the Protected
Land: Smashed Gates &
Conforming Code

around. Got those
caffeine heebie-jeebies after flattening
a couple of nuisance bugs. It’s time to
get down to work.

The grand topic this month is
controlling low-level access to high-
privilege kernel routines. The solution
involves call gates, language conven-
tions, synthesized instructions, one
new segment, and two major nui-
sances. Hang on!

CALLING THROUGH GATES
As you saw last month, the ‘386

passes control to a different privilege
level through a call gate. Gates aren’t
strictly necessary for our code because
the FFTS kernel and taskettes all run
at most-privileged Level 0. Thus, there
is no distinction between kernel and
user code, no protection between
tasks, and no fettered memory and I/O
access. Later on, when we create Level
3 user tasks, these gates will be vital.
Until then, they are just a convenient
way to organize our code.

Passing through a call gate is a
simple matter of executing a FAR
CALL with the gate selector in the
segment part of the address. The offset
part of the CAL L address is unused
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because the CPU
extracts the target
procedure’s code-
segment selector and
offset from the gate
descriptor fields. A low-
privilege task cannot
access higher-privilege
segments and thus can
“see” and execute only
those PROCs  identified
in call gates. Assuming
you install sufficient
checking and verifica-
tion in each gate
routine, pesky low-
level tasks cannot crash
the system.

Although gates
require selectors, our

Low-privilege
stack
l
0
l

Right-most
parameter

t
N-2

parameters

1

Left-most
parameter

Caller’s
return

address

0
0
l

Wrapper
stack

0
0
0

Right-most
parameter

t
N-2

parameters

convention  with N 1

Left-most
parameter

Caller’s
return

address

Parameter
pointer

Wrapper
return

address

a
l
0

Kernel
stack

Calling convention
suitable for ‘386
call gate

real-mode tools can’t Figure l--The FFTS  code passes parameters with the C convention of right-to-left  PUSHes,

mer’s Reference refers
to values on the CPU’s
stack as parameters
while the Borland
assembler dot de-
scribes CA L L instruc-
tions and macros as
having arguments. I’ve
tried to keep these
terms separate, but
probably the best
advice is to regard
them as synonyms
while keeping any
subtle differences in
mind.

A similar fog
engulfs Intel’s proce-
dures and Borland’s
functions. Both refer to
the chunk of code

put protected-mode stacking the leti-most argument jusf above the refurn  address. Because ‘386 call gafes accept only executed by a CALL and
selectors into ordinary fixed parameter lists, a wrapper routine converts variable argument lists info a single pointer. The

FAR CALLS. Because
CPU copies call gate parameters to a higher-privilege stack, leaving the original list behind on the

ignore the Pascalian

TaskDisoatch  hasno
original caller’s stack.

quibble about return-
ing a value versus just

parameters, I could synthesize a FAR (see Listing 1). Note that I’ve renamed causing side effects. I’ll attempt to use
CALL instruction with the simple Sy s C a 11 to C a 11 Sy s for consistency C functions and assembly procedures,
Sy s C a 11 macro shown last month. with other macros we’ll meet later on. even if I can’t keep a straight face
Extending this macro to pass param- In another bit of terminological throughout the whole affair.
eters on the stack is straightforward misdirection, the Intel '386 Program- The FFTS assembly code uses the

C-language function-calling conven-
tion, meaning that the assembler
pushes arguments onto the stack from
righttoleft.CallSys  invokes Push-
A r g s, which then calls itself recur-
sively to simulate this convention in
the synthesized CAL Ls. Each invoca-
tion of Pus h A r g s cracks its argument
list into two pieces. Recursion halts
when P u s h A r g s finally encounters an
empty list. The recursed levels then
unwind with each pushing its left
argument and incrementing a counter.
Honest, it works!

Listing l--Passing a fixed list ofparameters through a callgate is simple enough because gates are
invoked wifh ordinary FAR CAL is. The Cd I I Sys  macro pushes ifs arguments in right-to-left order, then
synthesizes a FAR CAL i instruction with the gate's selector as part of the address. The PushA  rg
macro counts the number of parameters so that Ca  7 7 Sys  can adjusf fhe stack after the called function
returns. A//parameters must be 32.bit quantities for this fo work correct/y.

MACRO PushArgs LeftArg,ArgList:RESl

IFNB <LeftArg>
PushArgs ArgList
PUSH LeftArg

ArgCount = ArgCount + 1
ENDIF

ENDM

MACRO CallSys  FnSel:REQ,ArgList:REST

ArgCount = 0
PushArgs ArgList

DB 09Ah : CALL LARGE FAR (6-byte  imm)
DD 0 ; 4-byte offset is unused
DW FnSel : Z-byte selector for call gate

IF ArgCount NE 0
ADD ESP,4*ArgCount ; discard stacked parameters
ENDIF

I ENDM

Cal 1 Sys then inserts a FAR CALL
opcode, a zero-offset address, and the
gate’s selector into the code segment.
Some operating systems place param-
eters or diagnostic values into the
offset, then extract it by reaching back
through the gate to the caller’s stack. If
you need that level of trickery, feel
free to go ahead as Intel defines the
offset address as “not used,” rather
than “reserved.”

The C-calling convention leaves
stack cleanup in the hands of the
caller. C a 1 1 Sy s observes this require-
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ment by keeping track of the values it
pushes on the stack and removing
them after the function returns.
Although TASM handles this auto-
matically while processing a CALL
statement, it seems macros such as
PUS h A r g s cannot determine the size
of their arguments. Pus h A r g s simply
counts the number of arguments it
pushes on the stack, C a 1 1 Sy s multi-
plies that number by four to get a byte
count and then adds the result to the
ESP after the CALL instruction.

Call gates generally reside in the
GDT where they are available to all
tasks with enough privilege to use
them. When you are working with
many gates, it makes sense to build a
call-gate table and transfer many gates
into the GDT with a block move
rather than hand-crafting each gate.

Listing 2 shows how I imple-
mented the copy operation. Each of the
FFTS kernel’s functional areas defines
a table in the_protconst segment,
which holds all of the kernel’s call-
gate structures. During the FFTS
initialization process, the kernel calls
the set-up routine in each area to pre-
pare its own GDT call gates. Remem-
ber that the CPU can’t use call gates
that are not in either the GDT or LDT.
The gates in _p rot c on s t are useless
until they’re copied to the GDT.

Procedures accessed by call gates
are no different than any other kernel
procedures, save that they must end
with a FAR RET instruction. The FFTS
kernel code can thus invoke them
through a call gate using the C a 1 1 Sy s
macro or directly with a FAR CALL
using the C a 1 1 F a r macro. The two
macros are identical except that
C a 1 1 F a r inserts the target procedure’s
offset into the CALL instruction.

Up to this point, we have worked
entirely in the SMA L L memory model
with a fixed set of segment-register
values. Now that each task has
separate code and data segments, the
kernel must aim DS, FS, and GS at its
own GDT descriptors rather than
(mis)use  whatever the calling task
provides. I’ll adjust the code to reflect
this as we add more call gates.

The call-gate-descriptor structures
include a CO py C o u n t field specifying
the number of 32.bit  parameters on
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Listing P-The  code in (a) defines a block of call-gate structures in fhe _p r o t cons t segment and
copies them to the GDTduring  the FE initialization process. Each gate structure contains fhe code
segment and starting address of a FAR procedure along with the number of doubleword (32.bit)  parameters
if expects fo find on the stack. The procedure in (b)  copies a block of descriptors info either a GDT  or LDT.
Accessing a descriptor fable, as always, requires a data alias because the GDT has no descriptor and LDT
descripfors  do not allow read/write operations. Affer clearing the target selector’s low-order three bits, if is
numerically equal to the descriptor’s offset  in the fable-data segment.

4
SEGMENT _protconst

LABEL SysGates  BYTE

DESC_GATE iOffsetLow=SMALL  MemfMakeLinear,  \
CSSelector=GDT_CODE, \
CopyCount=Z, \
Access=ACC_CALLGATE \

DES'_GATE

GATELENGTH =
NUMGATES =

ENDS

{OffsetLow=SMALL  MemfPeekReal, \
CSSelector=GDT_CODE, \
CopyCount=Z, \
Access=ACC_CALLGATE \

$ SysGates
GATELENGTH / 8

_protconst

<<< called during setup >>>
CALL MemCopyDescBlock,SYS_MEMORY,GDT_GDT_ALIAS,  \

GDT_CONST,OFFSET SysGates,NUMGATES

b)
PROC
ARG

USES

MOV
MOV
AND

MOV
MOV

MemCopyDescBlock
Selector:DWORD,TableAlias:DWORD,  \
InSeg:DWORD,pIn:DWORD,NumDesc:DWORD
ECX,ESI,EDI,DS,ES

ES,[TableAliasl ; set up target pointer
EDI,[Selector1 ; convert selector to offset
EDI,OOOOFFF8h ; strip LDT and privilege bits

DS,[InSegl : set up source pointer
ESI,[pInl

MOV
SHL

ECX,[NumDescl ; set up block length
ECX,l : . . . in DWORDS

REP MOVS [DWORD  PTR ES:EDIl,[DWORD  PTR DS:ESIl

RET

ENDP MemCopyDescBlock

the caller’s stack. When the caller is
less privileged than the callee, the
CPU switches to a different stack for
the duration of the procedure. It
automatically copies those parameters
onto the new stack before executing
the procedure, then copies them back
before returning. This prevents the
less-privileged caller from finding any
trace of the more-privileged callee  on

its stack. The CopyCount  field isn’t
used for transfers between code on the
same privilege level because the CPU
doesn’t switch stacks.

The TSS defines the three addi-
tional stacks required to protect
transitions into Levels 0 through 2. A
CALL from Level 3 to Level 0 switches
into the stack defined by the St a c k -
P t r 0 field in the TSS (see Listing 4 in



INK 54 for details). The operating
system must reserve stack areas for
each task before allowing entry to the
task. Are you getting a glimmer of why
FFTS runs at Level O!

The presence of CopyCount  in
each call gate raises an interesting
question: how do ‘386 gates handle a
procedure with a variable number of
arguments? We don’t have to look far
for an example. Good old StrFormat
is a case in point.

POINTERS TO PARAMETERS
I’ll spare you the extended rant on

RISC versus CISC architectures that
should occupy this space. Suffice it to
say that call gates work perfectly well
for Pascalian procedures with a fixed
number of parameters and not at all for
C-oid functions like p r i n t f ( 1 and
StrFormat( 1 withanarbitrary
number of parameters.

The C calling convention puts the
left-most argument on the stack just
above the return address. The remain-
ing arguments (if any) follow in left-to-
right order in ascending addresses. A
wrapper procedure can pass a single
pointer to the argument list through a
call gate to the kernel routine. Regard-
less of the number of parameters on
the original caller’s stack, the gate
handles only a single FAR pointer.

The kernel code, running at a
more-privileged level, reaches back
through the pointer to read the
parameter list on the original caller’s
stack. Figure 1 shows how this works.
If a privilege level change occurs, the
kernel’s stack does not have the
original caller’s parameters because
the CPU copies only the parameters
specified in the call gate’s CO py CO u n t
field. The caller’s stack is accessible to
the kernel as a data area because it is,
by definition, at a lower privilege level.

It’s worth noting that privilege
level changes do not cause a task
switch. Except for CS:EIP (and possibly
SS:ESP), the CPU registers remain
unchanged and the caller’s LDT
remains in effect. The kernel must
load the segment part of the wrapper’s
pointer into another segment register
to ensure that the original caller’s
stack is accessible since SS points
elsewhere.
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Listing3 shows StrfFmtFull,
the wrapper I put around St r Fo r ma t
F i r s t A r g is a text macro defined by
the assembler that boils down to a
displacement from the EBP register.
That register has a completely differ-
ent value in the kernel code, requiring
an LEA instruction to compute
F i r s t A r g's actual offset address in
the stack segment.

The parameters stacked beyond
Fi rstArg  are accessed through the
pointer and, thus, need not be men-
tioned explicitly in St r f Fmt F u 1 1 's
A RG directive. I defined F i r s t A r g as
DWO RD : ? to indicate that more values
may or may not follow even though
the question mark is just syntactic
sugar. In fact, if the format string does
not specify any values from the stack,
F i r s t A r g and the corresponding
pointer are never used.

Each St r f Fmt F u 1 1 call includes
several mandatory arguments in
addition to the variable-length list. I
decided to pass the fixed arguments
unchanged in the hope we wouldn’t
lose sight of their names. You could, of
course, bottle everything up in a single
pointer to reduce the amount of stack
copying during a privilege transition.

I modified last month’s St r F o r -
mat to accept a pointer to the variable

part of its argument list, renamed it to
StrfFmtPtr,changedall  therefer-
ences in the rest of the code, recom-
piled it, and it works fine. We can now
callStrfFmtFul1  fromanytaskwith
any number of arguments. It repack-
ages the parameter list and calls the
proper kernel routine through a call
gate.

However, we’re not done with the
‘386 privilege hardware yet. Recall that
a less-privileged task must use call
gates to access more-privileged
functions because it cannot call them
directly. Even though the St r f Fm t
F u 1 1 wrapper is an operating-system
function, it must execute at the same
privilege level as ordinary user tasks.

Not only does the ‘386 prohibit
CAL Ls to more-privileged routines, it
also prohibits CAL Ls to less-privileged
code. Call gates are the only way to
transfer between privilege levels. If
you want to go slumming in user code,
you must get there through a call gate.

In our case, we’re wedged. Lowly
Level-3 tasks can’t call St r f Fmt F u 1 1
if it’s at Level 0. Kernel tasks at Level
Ocan'tcallStrfFmtFull  ifit’satuser
Level 3. Neither can use a call gate
because St rf Fmt Full accepts a
variable number of parameters. The
obvious solution is duplicating

Listing 3-Call  gates fransfer  a fixed number of parameters defined by their descrpfor’s  Copy Coun t
field and cannot handle funcfions  accepfing  a variable number of parameters. This wrapper procedure
determines the sfarfing  address of fhe variable part of the caller’s parameters and passes that pointer as a
single paramefer. The 5 t r f Fm  t F IA 7 7 procedure has exactly seven paramefers and can be accessed
through a call gate, although if’s a sfandard CA i i in this  code because the fargef  is located in the same
source ii/e.

SEGMENT_conform
ASSUME CS:_conform

PROC StrfFmtFull FAR
ARG OutSeg:DWORD,pOut:DWORD,OutSize:DWORD,  \

FmtSeg:DWORD,pFmt:DWORD,  \
FirstArg:DWORD:?

USES EAX,EBX

LEA EBX,[FirstArgl : EBX = offset of 1st var in SS
MOV AX,SS : set up SS as DWORD
MOVZX EAX,AX

CALL StrfFmtPtr,[OutSegl,ipOutl,[OutSizel,  \
[FmtSegl,[pFmtl,EAX,EBX

RET

ENDP StrfFmtFull

ENDS -conform



St r f Fm t F LI 11 on each priority level-
a kludge if ever I saw one.

CISC got us into this and CISC
can get us back out again. It’s just
another code segment..

CONFORMATION HEARINGS
Ordinary code segments run at the

privilege level set by their descriptor’s
DPL bits. The CPU reads these bits
when it branches into the segment and
sets the CPL if the transfer is permit-
ted. If the transfer is forbidden, the
CPU invokes an error handler. This
action is automatic and can’t be over-
ridden by the program, which is what
makes protected mode so protected.

Something slightly different
happens when a CALL instruction
enters a code segment that has the
Con f o r m i n g bit set in the descriptor’s
type field. As long as the target
segment’s DPL is at least as privileged
as the CPL, the CALL occurs without
changing the CPL. The procedure runs
at the same privilege level as the
caller, even if the caller is less privi-
leged than the segment’s DPL.

As the Intel manual puts it,
“Conforming segments are used for
programs, such as math libraries and
some kinds of exception handlers,
which support applications but do not
require access to protected system
facilities.” St r f Fmt Fu 1 1 is a classic
example of this. It refers only to
parameters on the caller’s stack,
doesn’t use any kernel data, and
doesn’t perform any I/O.

Kernel functions can have their
usual direct access to the St r f Fmt
F u 1 1 wrapper in a Level 0 conforming-
code segment. User tasks at Level 3
can also call it directly without using a
call gate. The wrapper runs at Level 0
for kernel callers and Level 3 for user
callers, giving both levels access to the
same code without special handling or
duplication.

Thelowercasefin StrfFmtFull
reminds us to use a FAR CALL. The
FAR procedure declaration in ST R I N G .
I NC enables assembly-time type
checking that can weed out mis-
matched CAL Ls and R ETs.  The code
this month isn’t entirely consistent

with this naming convention for
reasons having nothing at all to do
with my good intentions. Things
should improve next month.

Functions in conforming-code
segments may call kernel routines
using call gates as usual. There are no
restrictions on conforming segments
other than the simple and obvious fact
that the code must run correctly
regardless of the caller’s privilege level.

I’m deliberately glossing over the
effect of the RPL bits in the various
segment selectors and the slightly
different rules obeyed by J M P instruc-
tions. For now, it’s enough that you
know conforming segments exist and
why they’re useful. Check the Official
Intel Dot for grubby details before
you start your own conformation
hearings.

Listing 4 shows the conforming-
code segment’s selector and segment
definitions along with the set-up code
that creates the segment descriptor in
the GDT. Even though most of our
selectors are small integers, I set
GDT_CONFORM  to 4000h for a specific

Mono L.C.D.s
supported:
640X480
64ox2otl
320 x 200
480x128

ISA 8 BIT
f?C.  COMPATlBLE
WINDOWS DRIVERS
HARDWARE PANNING
RUNS VGA PROGRAMS

ON LOW RES LCDs
INCLUDES 10% OFF ANY

LCD PANEL DISCOUNT
LOW COST - $149

1 TmEarthVisionllSA  ’

ISA 16 BIT VGA
WINDOWS ACCELERATOR
512K  OR 1 M RAM
CHIPS 8 TECH 65545
FASTEST LCD CHIP
LOW COST $299

MONO REFLECTIVE
VGA 0.4’ [IN A CASEII] $40
VGA P $50

MONO BACKLIT
VGA Q.4.250 MS
vGAa.Ci5ohts g
C CGA840X200 $10

COLOR BACKLIT
VGA 9.4’SNGL  SCAN $0~
VGA 9.4’ DUAL SCAN CALL
VGA TFT 9.4” CALL

33 Mhz 488SX
I-32MB  Ram
SupeNGA
2 serial/ 1 Par.
3.5’ Floppy
3.5’ H.D.

101 KEYBOARD FOOTPRINT
FULLY PC AT COMPATIBLE
ONE 16 BIT ISA SLOT
512K FLASH DRIVE AVAIlABLE
ETHERNET DISKLESS FROM

$849 RETAIL!

Earth Computer Technologies, Inc.
P.O. Box 7069
Laguna Niguel,  CA 92607
Phone: (714) 448-9368
Fax:  (714) 448-9018

A Serious Imaging: Solution

IMPACT Professional IS a complete image analysts system that Includes a broad range  of CIOSS-
disclpllne  tools grouped mto etght separate processing enwonments.  These modules Include.

SYSTEM REQUIREMENTS: PC/AT orcompatlble,  386,466 01 Pentlum, with  at least
16 MB of RAM and a hard disk DOS 3.1 or higher. Uses a flat memory model wth  11s own extender and
Virtual  Memory Manager capable of addresslng 4 glgabyles  of memory A super VGA video card.

Los Alamos, NM 87544U.S.A. Technical Support: (505) 662-5623
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reason. That choice nearly blew the
deadline for this column..

SEGMENT NUMEROLOGY
You should now be quite familiar

with the notion of memory segment
descriptors in GDTs and LDTs.  Each
descriptor defines the extent of its
memory region through the base and
limit fields. The CPU may access only
those memory blocks covered by valid
descriptors. All other memory is
literally out of bounds.

Each descriptor has a correspond-
ing selector that identifies its location
in the GDT or LDT. Because the
selector has no numeric relation to
descriptor’s address fields, you cannot
compute the selector given a memory
address, nor can you derive an address
from the selector. All of the familiar
real-mode, segment-addressing tricks
are invalid in protected mode.

The table ID and RPL bits occupy
the low-order three bits of each
selector. Thus, if those three bits are
zero, the selector is numerically equal
to the descriptor’s offset from the start
of its table. CDT selectors are even
multiples of four (0, 8, 16) and LDT
selectors are odd multiples of four (4,
12, 20) when the RPL bits are zero.

The FFTS GDT memory selectors
tend to be small numbers: GDT_DATA
is 18h, GDT_CO D E is 30h,  and so forth.
The LDT selectors in each task are
even smaller: LDT_C OD E is OCh  and
LDT_DATA is 14h.  These are, of course,
entirely arbitrary values that could just
as easily be near FFOOh.

My choice of real-mode tools for
this protected-mode series makes
segment handling somewhat tricky, as
evidenced by the C a 11 F a r and
C a 11 Sy s macros. In each case, the
macro synthesizes a FAR CA L L
instruction with a specific selector
value instead of the normal real-mode
segment address corresponding to the
target’s location. The assembler,
linker, and Locate do not change the
selector value because it is not part of
a standard CAL L instruction and does
not trigger built-in helper routines.

Ah, but what happens if the
protected-mode selector is numerically
equal to the real-mode segment
address? After all, the selector is an

Listing 4--This  code creates the conforming-code segmenf holding the string-formatfing  functions. The
exact order and posifion  of the 5 EGMEN T statements furned  out to be crifical.  They appear after a//  the
other definitions in STARTUP. ASM. Locate copies the code from CONFORM to ROMCONFORM in the
binary disk image, and this code simp/y creafes  a segment descriptor covering that image. The segment
descriptor is numerically equal to the segment’s real-mode memory address.

GDT_CONFORM = (800h SHL 3) : 4000h

<<< other SEGMENT statements omitted >>>
SEGMENT _conform  PARA PUBLIC USE32 ‘CONFORM'
ASSUME CS:_conform
LABEL PMConformBase PROC
ENDS _conform

SEGMENT -romconform  PARA PUBLIC USE32 ‘ROMCONFORM'
ASSUME CS:_romconform
LABEL ROMConformBase PROC
ENDS _romconform

<<< other set-up code omitted >>>
MOV EDI,BASE_GDT+GDT_CONFORM ; conforming code
MOV EAX,(OFFSET PMConformLength)-1
MOV [GDT_PTR.SegLimitl.AX
MOV EAX,SEG  ROMConformBase : segment to linear
SHL EAX,4
ADD EAX,BASEpLOAD
MOV [GDT-PTR.SegBaseLow],AX
SHR EAX,16
MOV [GDT-PTR.SegBaseMidl,AL
MOV [GDT-PTR.SegBaseHighl,AH
MOV [GDT_PTR.Accessl,ACC_CONFORM
MOV [GDT_PTR,Attributes],ATTR_32BIT

arbitrary number-why not make it
useful?

Paradigm’s Locate (and other
similar utilities) makes this step easy
enough. Listing 5 shows the Locate
configuration file that places the
CONFORM class at address 4000:OOO0.
The linker combines code in the
_C o n f o r m segment from all the source
files into one block because the
segment definition contains the
P U B L I C combination keyword.

Ordinary FAR CA L L s to proce-
dures in _c o n f o r m contain segment
address 4000h after Locate finishes
fixing up all the segment references.
This is exactly the value we’d force
with the C a 1 1 F a r macro when the
protected-mode descriptor for the
segment occupies slot 4000h in the
GDT. In that case, GDT_CONFORM  is,
not at all by coincidence, 4000h.

Now, here’s the sneaky part. The
DU P directive copies the C 0 N FORM
segment class into ROMCONFORM. The
0 UT P UT directive puts that block of
code into the disk file. Our boot loader
reads the file, pops the whole works

into RAM at 1 MB, and passes control
to the start-up code that creates a
segment covering the _c o n f o r m code
with a selector of 4000h.

Got it?
This trick works as long as the

code doesn’t manipulate its segment
address. You cannot find the address of
a particular procedure in _c o n f o r m by
shifting the segment address left four
bits and adding the procedure’s offset.
The code is no longer at address
4000:0000 in storage. It’s wherever
Locate put it in the binary disk image.

You can apply this technique to
any segment with a known real-mode
address. For example, you might set up
a segment descriptor covering the
VGA’s graphic refresh buffer at
AOOO:OOOO  with GDT selector AOOOh.
If you have code in the FDB’s NVRAM
at COOO:OOOO, plunk a descriptor atop
it with selector COOOh. Sounds pretty
easy, doesn’t it?

Why not make all protected-mode
segment selectors match their real-
mode addresses? I’ll leave that as an
exercise for you. Hint: consider how
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you’d get the whole thing running
from address OOOO:OOOO. Not all
addresses map neatly into PM selec-
tors!

TRIALS 81 TRIBULATIONS
Nothing is ever simple. I’d

planned to present conforming code
segments, discuss the changes required
touseStrfFmtFull,introduceanew
St r f Fo r ma t with dynamic memory
allocation, and set up a hardware
interrupt. Instead, I ran into two
peculiar problems.

TheCallSysandCallFar
macros should work with an arbitrary
number of arguments. I generally
divide long function calls into several
lines with the backslash line continua-
tion character and expected that the
macros would follow the same pattern.

It turns out that, for whatever
reason, Borland’s TASM I D EA L mode
does not permit multiple-line macro
invocations. The backslash appears as
just another argument rather than
concatenating successive lines. That
confuses the macro and generates a
cascade of syntax errors as the assem-
bler attempts to digest the fragments.

I posted a question on Borland’s
CompuServe forum. Jim Mischel, who
literally wrote the book on macros
(Macro Magic with Turbo Assembler),
replied. It turns out that Microsoft
MASM accepts multiline macros or at
least it did at one time, while
Borland’s TASM does not. TASM
includes a variety of MASM compat-
ibility features, and Jim suggested
several ways to get what I wanted.

The Officially Documented
method, the V E RS I 0 N M 5 10 directive,
unleashes a torrent of errors unless it’s
issued immediately after the P ROC
directive in each routine and canceled
with VERSION T310 and IDEAL
directives before the END P. I consid-
ered replacing all P RO C and E ND P
directives with macros containing the
appropriate hocus-pocus.

Jim pointed out that his code
places the (now unofficial) MASM51
directive immediately after the MODE L
statement in each source file. I tried it,
the files assemble correctly, and it
seems to work. I wonder what other
effects MASM5 1 might trigger, though?
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Listing 5-W Locate configuration file makes the CONFORM segment class e&e/y  separafe  from the
other FFJS  classes. Locate relocates the conforming code to 4OOO:OOOO  and then  copies the entire c/ass
infact fo the binary output file immediafely affer PRO TCONS  T. In protected mode, the code can execufe
without being copied back to ifs original location because the  real-mode segment equals fhe  protected-mode
selector.

hexfile  binary offset=OOOOOh size=16 // binary file for boot loade

listfile  segments

map 0x00000 to Oxlffff as rdonly // startup code normal code
map 0x20000 to OxPffff as rdwr // data segment
map 0x30000 to Ox3ffff as rdwr // dummy stack segment
map 0x40000 to Oxilffff  as rdwr // conforming code segment
map 0x50000 to Oxfffff as reserved // the rest is unused

class CODE = 0x0000 // Code (startup + normal)
class DATA = 0x2000 // Data
class STACK = 0x3000 // dummy stack
class CONFORM = 0x4000 // conforming code segment

dup DATA ROMOATA // copy initialized vars to image
dup FAR-DATA ROMFARPDATA // ditto for far data segments
dup CONFORM ROMCONFORM // conforming code to binary image

order DATA \ // RAM organization
BSS \
FAR-DATA \
FAR_BSS

order CODE \ // ROM organization
PROTCONST \
ROMCONFORM \
ROMDATA \
ROMFAR_DATA \
ENDROMFARPDATA

output CODE \ // Output classes
PROTCONST \
ROMCONFORM \
ROMDATA \
ROMFAR_DATA \
ENDROMFARPDATA

The code this month doesn’t use
this work-around. I decided to stick
with ideal mode’s restrictions rather
than complicate things further. The
monster-size lines hanging off the
right margin make the listings awk-
ward enough that I’ll insert MASM5 1
directives later on. For now, this
remains an annoying TASM gotcha.

Of course, I wanted a conforming
code segment so we could finally get

readable, formatted output from error
handlers in separate tasks with
separate code segments. It does,
however, point out the validity of
proceeding in small steps rather than
giant leaps. I knew pretty much where
the problem was, even if I didn’t know
what caused it. A few hints from the
FDB’s LEDs,  a search over the linker
and Locate maps, one smack upside
the head, and there it was.

The next problem occurred as I
tried to create the conforming code
segment at 4000:OOO0. Depending on
the exact placement and order of the
pconformand_romconform  segment
declarations in STARTUP. ASM, either
the linker or Locate got befuddled and
mislaid the segment. The symptoms
ranged from linker errors to baffling
run-time protection exceptions.

Paradigm’s tech support folks
offered several suggestions that
eventually straightened things out.
The ultimate cure was simply rear-
ranging the segment definitions until
everything worked. I hate it when code



Acronyms
CPL Current Privilege Level

DPL Descriptor Privilege Level

EOI End Of Interrupt (command)

FDB Firmware Development Board

FFTS Firmware Furnace Task Switcher

GDT Global Descriptor Table

GDTR GDT Register

IDT Interrupt Descriptor Table

IF Interrupt Flag

IOPL l/O Privilege Level

LDT Local Descriptor Table

LDTR LDT Register

NT Nested Task

P bit Present Bit (in a PM descriptor)

RF Resume Flag

RPL Requestor Privilege Level

T F Trap Flag

TR Task Register

TSS Task State Segment

“just works” without a good reason
because it may well fail after a small,
seemingly unrelated, change later on.
In this case, we just have to live with
it because I’m using Locate well
beyond the original specifications.

Although you might think a full-
bore hardware emulator would make
short work of finding such problems,
I’m not convinced. The outlandishly
clever debuggers we’ve grown accus-
tomed to can hide myriad assumptions
that, in turn, hide the real problem.
Better you should know what’s going
on down at the very lowest levels.

Tradesman, know thy tools!

RELEASE NOTES
The code this month builds a

conforming code segment for the
string-conversion routines, installs
several GDT call gates, and includes
various minor tweaks that make it all
work correctly. The three taskettes
and the task switcher now display
running counts on the video screen,
one taskette writes to the Graphic
LCD panel, and the kernel taskette
twiddles the FDB LEDs.

Several folks remarked that they’d
like to venture into the Protected Land
but lack a Firmware Development
Board. Although FFTS writes to the
FDB hardware, it can get along just

fine with a diskette drive and perhaps
a video display. The output-only bits
just fall into the bucket. I do recom-
mend building a pair of LED-and-
switch widgets to show trace outputs
on the parallel ports, though. INK 3 1
has the (trivial) schematic.

Next month, we’ll replace the
error handler with a separate task that
produces readable output, activate
some hardware interrupts, and see
what happens when an interrupt
causes a task switch. It’s starting to
look useful, isn’t it? g

Ed Nisley, as Nisley Micro Engineer-
ing, makes small computers do
amazing things. He’s also a member of
Circuit Cellar INK’s engineering staff.
YOU may reach him at ed.nisley@
circellar. corn or 74065.1363@
compuserve.com.

.

416 Very Useful
417 Moderately Useful
418 Not Useful

The BCC52 controller continues to be
Micromint’s best selling single-board com-
puter. Its cost-effective architecture needs
only a power supply and terminal to become
a complete development system or single-
board solution in an end-use system. The
BCC52 is programmable in BASIC-52, (a
fast, full floating point interpreted BASIC), or
assembly language.

The BCC52 contains five RAM/ROM
sockets, an “intelligent“ 27641128 EPROM
programmer, three 8-bit  parallel ports, an
auto-baud rate detect serial console port, a serial printer port, and much more.

PROCESSOR
* 8OC52  B-bit CMOS processor w/BASIC-52
*Three 16.bii  counierlnmers
-Six  interrupts
- Much morel

INpudouTpuT
. Console RS232 - autobaud detect
. L\ne printer W-232
*Three  &bit parallel parts
. EXPANDABLE’

*Compatible with 12 BCC expansion boards

B C C 5 2 Controller board wth BASIC-52 and BK RAM $1 69.00 Single  Ply
BCC52C Low-power CMOS vers~o”  of the BCC52 $ 1 9 9 . 0 0
BCC521 -40°C to +WC industrial  temperature version $ 2 9 4 . 0 0
BCC52CX Low-power CMOS, expanded WC52  w/32K RAM $ 2 5 9 . 0 0

CALL FOR OEM PRICING

n MlC,R OM I NT, 1 NC. 4 Park Street, Vernon, CT 06066
I” Europe (44) 028.5-658122.  m Canada: (514)  336.9426.  m Austral~aa:  (31467-7194
Distributor In~urrks  Welcome1

I Memory mapped variables

w In-line assembly language
option

n Compile time switch to select
805 l/803  1 or 8052/8032  CPUs

w Compatible with any RAM
or ROM memory mapping

w Runs up to 50 times faster than
the MCS BASIC-52 interpreter.

w includes Binary Technology’s
SXA51  cross-assembler
& hex file manip.  util.

w Extensive documentation

n Tutorial included

w Runs on IBM-PCLXT  or
compa tibile

H Compatible with all 805 1 variants

n BXC51  $295.

508-369-9556
FAX 508-369-9549

q
Binary Technology, Inc.
P.O. Box 541 l Carlisle, MA 0 1741

=@%?I
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Jeff Bachiochi

RF Panic Button
Commands Multiple
Automotive Functions

0 ‘m glad Novem-
ber elections are

over. There is only one
thing I hate worse than

political commercials, and that’s
political yard signs. I can overlook the
casual neighborhood sign staked into
the ground, but the vacant lots,

especially those corner lots, must have
vampires buried everywhere.

One night, while watching the
tube, one campaign ad caught my
wife’s attention. A lone female exits a
building at night, presumably finishing
her second shift. A rather large pair of
shoes enters from the shadows, and
the sound of footsteps is heard as the
woman realizes she is being stalked. A
bit distressed, she fumbles her keys,
dropping them next to her car’s door.
The scene changes to Candidate Joe
Schmo blasting his opponents’ soft
line on crime.

As we tune him out, Beverly says
to me, “I know that feeling. It’s spooky
when I get off after midnight. All I can
think about is getting to the car,
unlocking the door, getting in, and
locking it again.”

I guess it’s time to let her benefit
directly from technology. While we
don’t have an alarm system in our
family van, it does have power door
locks. This fact makes this project
possible.. .well, that and an RF trans-
mitter and receiver pair.

For the remote, I need a small key-
ring transmitter with multiple buttons
on it (see Photo 1). The button func-
tions include door lock and unlock,

Photo l--The key-ring transmitfer  easily  fits into a pocket or purse while the receiver fits near/y  under the car
dashboard.
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Fiaure l-Iwo  buttons must be messed  s~mulfaneouslv  on the transmitter. The first statis  the MAX680 switched-capacitor DC-DC converfer.  The second enables a dafa  stream
from the HT- 12E.

,

hatch unlock, and panic. The trans-
mission stream contains 4 bits of data
and an S-bit address modulated on an
RF carrier.

At the receiver, the address and
data must be received three times in a
row to be acknowledged as “good.”
After a good reception, a positive-
strobe pulse causes the four data bits
to be latched. The strobe turns on a
small relay with normally open
contacts. Three of the data bits control
power relays, which are powered only
while the strobe closes the relay.

These three data bits momentarily
pulse the power to one of three door
locks, which is just what the door
solenoids are looking for. The fourth
data bit latches a fourth power relay
enabling a continuous horn blast, a
function preferably reserved for the
panic or emergency situation. (If you
think intermittent blasts are more
effective, you could add a slow 1 -Hz
oscillator to control the horn.)

TRANSMITTER
Holtek makes convenient encoder

and decoder pairs which operate on 3-
12 VDC. Bear in mind that 12 V is
necessary to get maximum range from
the RF modulator. As well, I want the
remote to be as tiny as possible, so I
use a small lithium cell. Only 2 mA is
necessary at 12 V for the encoder-
transmitter circuitry. This means,
even at 75% efficiency, only about 12
mA will be needed from the coin cell
(well within reality].

To provide these requirements, I
could use a MAX632-an  inductive
step-up DC-DC converter-or I could
use a MAX680-a  switched-capacitor
DC-DC converter. The ‘680 has both
positive and negative voltage-doubling
outputs. Its outputs are not regulated,
but it can convert 3 V to f6 V (12-V
span) with no inductors. The ‘632 uses
a single inductor, but it has the
advantage of a regulated 12-V output.

The enclosure probably can be
found at a local discount stores. It
started life as one of those annoying
sound-effects gadgets-a tiny key-
chain dongle with eight buttons, each
with its own level of auditory pain.

I quickly disabled the noisemaker
and found more than the plastic case
was useful. The back door of the case
exposed three tiny coin batteries.
These small cells are a fine source of
power. At the opposite end of the case
was a nice 1” speaker. (I never seem to

be able to find these. It’ll find its way
into a future project, I’m sure.)

The vacated space is just large
enough for the Holtek’s HT-12E and
an 8-position  slide switch. The center
section contains a circuit board with a
single COB [chip on board) and the
interwoven finger-contacts layout for a
rubber s-key  button pad. There should
be enough room behind this board for
the RF transmitter section.

I started by wiring the buttons to
be used in pairs. The first of each pair
applies power to the DC-DC converter
by connecting the battery ground. The
second button grounds the transmitter
and one of the four data inputs (note
the DC-DC converter’s +12-V output
is always connected to the transmit-
ter). As you can see in Figure 1, the
second button’s switch contacts
connect both a single data input and
the HT- 12E’s  ground when pressed-
simplicity using diodes.

data ‘0’ :
i------1

I
7 data’i’  i

;T:______I
1...................

1 bit time

Figure 2%The  Holtek  transmission sequence is
repeated four times. Each sequence contains a
pilot period  of silence followed by a code
period.
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R F

R e c e i v e r

S e c t i o n

a d d i t i o n a l  c i r c u i t r y

Figure 3-The receiver and decoder provides the strobe and data necessary to contra/  three solenoid controlled door locks and a startling horn blast.

Both buttons (of each pair) must
be held to start a transmission. This
not only prevents accidental transmis-
sions, but also assures that data
remains valid as long as the power is
applied to the transmitter.

The HT-12E has twelve inputs.
These are broken down into two
sections-the address and the data.
The address is 8 bits in length or 1 of
256 combinations. The data portion is
4 bits wide and a logic low on any bit
indicates a button is being pushed.

An external resister sets the
internal oscillator frequency in a range
of about 2-6 kHz  on the HT-12E. It
takes three of these oscillator cycles to
send one bit of data. The data format is
either low-low-high for a logic 1 data
bit or low-high-high for a logic 0 bit.

A single transmission consists of
36 oscillator periods at logic low and 1
period at logic high (the pilot period)
plus 12 (8 address and 4 data) 3-period
bits (the code period). A minimum of
four transmissions are sent each time
the transmitter is enabled. Since the
enable button is tied low, transmis-
sions are continuous while the buttons
are held.

As you can see in Figure 2, carrier
is produced when the output of the
HT-12E is at logic high. The pilot
period clears the air and indicates the
duration of a logic 1 time period. The
code period carries the actual address
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and data info. The RF transmitter is a
tank circuit connected at one end to

the previously stored 12 bits, the
counter is incremented. Once three

Vcc, but held off of ground at the other
end by the high-impedance off state of
a single transistor. When the HT-12E
outputs a logic 1, the drive transistor
shorts the tank to ground causing a
resonance at about 300 MHz.

RECEIVER
The HT- 12D is the companion

decoding device. Its internal oscillator
runs about 50 times faster than the
transmitter. This enables it to lock
onto the logic 1 bit of the pilot period
and accurately obtain a reference to
compare the following address and
data bits. Multiple transmitters, which
might be running at different frequen-
cies, work equally well since operation
is based on the pilot period of each’s
transmission.

The demodulated RF reception is
fed into the HT-12D,  and the address
portion of the code period is compared
to the eight address inputs on the
receiver. If a mismatch occurs on the
address bits, the valid transmission
(VT) output is lowered and the device
looks for more data. If a match occurs
on the address bits, which is different
from the previously stored 8 address
and 4 data bits, the new 12 bits are
stored and a counter cleared.

If a match occurs on the address
bits and it is the same code period as

identical receptions have occurred in a
row, the VT output is raised and the
four bits are valid at the HT-12D’s data
outputs.

ENTRY, CONVENIENCE,
SECURITY, AND EMERGENCY

These are the four functions I am
implementing at the touch of a button.
The first unlocks the doors, the second
locks them, the third pops the hatch
for easy access when your arms are full
of groceries, and the fourth sounds the
horn to discourage menacing behavior.

All can be easily controlled by
using automotive relays driven by
open-collector drivers. The HT-12D is
not capable of driving the relays
directly since it can only source or
sink about a milliamp. The VT output
signal is used to control the source
voltage for the first three relay drivers,
which act as momentary contact
closures. The fourth relay is used in a
latched mode to be a source of surprise
and constant irritation. It can be
turned off by simply pressing one of
the other functions (see Figure 3).

Next came installing the receiver/
controller in our Caravan. After
dismantling the doors and crawling
under the dash board, I managed to
locate the necessary wiring circuitry.
These points must be tapped to give



my receiver/controller parallel access
to each function. The circuitry is
housed in a plastic enclosure small
enough to fit behind the center console
right beneath the air-heat vents. The
four function connections are made
with clamp-type electrical taps. For
extra protection, ground is attached to
the chassis and tV to an unused fuse
on the fuse panel.

EXPANDING POSSIBILITIES
The Holtek line has a great

number of encoder and decoder chip
sets, which range in size from a Z8-
binary address up to a 3i3-trinary
address. That’s ah, urn, a lot of
combinations. They transmit from 1 to
8 bits of data in either a momentary or
latching configuration. (For more info
on using Holtek’s chips with RF and
IR, see Steve’s “Wireless Remote
Control of the AVMux”  INK 46.)

You may wish to experiment with
the Holtek chips using any RF or IR
transmitters and receivers you have
hanging around in one of your junk
boxes. An old set of walkie-talkies or
maybe some RC equipment can
provide you with a working platform.
If you have an HCS installed, RF
makes a great alternative to the line-
of-sight limitations of IR.

Well, I’ve discovered some
valuable information designing and
implementing this project. Specifi-
cally, I’m glad I don’t install car
stereos because today’s autos are
designed for specific equipment with
little or no room for extras. The
installation of this project was by far
the most difficult, but all for a good
cause.

Happy birthday, Beverly. q

/eff Bachiochi (pronounced “BAH-key-
AH-key”) is an electrical engineer on
Circuit Cellar INK’s engineering staff.

His background includes product
design and manufacturing. He may be
reached at jeff.bachiochi@circellar.
corn.

419 Very Useful
420 Moderately Useful
421 Not Useful

HUGE BUFFER
FAST SAMPLING

SCOPE AND LOGIC ANALYZER
C LIBRARY W/SOURCE AVAILABLE

POWERFUL FRONT PANEL SOFTWARE

$1799 - DSO-28204 (4K)
$2285 - DSO-28264 (64K)

DSO Channels
2 Ch. up to 100 MSa/s

1 Ch. at &O MSa/s
4K or 64K Sample&h
Cross Trigger with LA
125 MHz Bandwidth

Logic Analyzer Channels
8 Ch. up to 100 MHz
4K or 64K Samples/Ch
Cross Trigger with DSO

PAL e
SAL
EPROM
EEPROM _ .
FLASH
MICRO
‘IC
dc..

Free software updates on BBS
Powerful menu driven software

up to 128 Channels
up to 400 MHz
up to 16K Samples/Channel
Variable Threshold Levels
8 External Clocks
16 Level Triggering
Pattern Generator Option

$799 _ LA121 00 (100 MHz, 24 Ch)
$1299 _ LA32200 (200 MHz, 32 Ch)
$1800 - LA32400 (400 MHz, 32 Ch)
$2750 _ LA64400 (400 MHz, 64 Ch)

Call(201)808-8990

/46
Link Instruments
369 Passaic Ave, Suite 100, Fairfield, NJ 07004 fax: 808-8786

__
#132
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Plan ‘251
from Outer
Space!

Intel’s
8xC25  1 SB

Tom Cantrell

’ o doubt some of
ryou, including my

’ long-suffering editors,
’ are scratching your head

over the title. My only excuse is that it
wasn’t easy coming up with a varia-
tion on the UFO (Unidentified Fifty-
One) theme of my recent article “UFO
Alert” in INK 54.

For those of you who don’t know,
this title is a takeoff on Plan 9 From
Outer Space, a circa ’50s Hollywood
epic widely recognized (justly, I opine)
as one of the worst movies ever made.

I saw it on late-night TV a few
years back, and it was so bad I can’t
even remember what Plan 9 was or
why it was better than Plans 1-8. The
movie seemed to rely mainly on an
aging (not gracefully either) Bela
Lugosi,  who was shuffling to and fro
with a sickly grimace. Indeed, I think
poor old Bela actually died during the
filming, so the geniuses behind this
turkey pressed on with a stand-in.
Arguably, propping old Bela in the
corner would have worked just as well.

I figure about now the normally
mild-mannered Intel PR folks have my
name called up on their screens, with
fingers hovering over the Delete key.
So, I should quickly say that their Plan
‘251 is a heck of a lot better than the
ill-starred Plan 9.

PLUG-REPLACEMENT
Like old Bela, the aging 8051 was

facing an ignominious end at the
hands of more modern and agile
competitors. Intel, like everyone else,
has periodically tweaked the ‘5 1 by
adding a few snazzy peripheral features
and more memory. Unfortunately, this
approach has worn thin and by now

seems little more than the silicon
equivalent of putting a cape on the
nearest stagehand and shoving him in
front of the camera.

Needing a new star, not just a
stand-in, Intel has come up with the
8xC251SB  (see Photo 1).

Though a completely new design
internally, the ‘25 1 SB has a familiar
face. Taking a look at the pinout
(Figure l), any ‘5 1 old-timer feels right
at home with this familiar 40.pinner.
In fact, the pinout  is exactly the same
as the ‘51FX derivative, which itself is
plug compatible with the original ‘5 1
(the difference between the two is the
multiplexing of additional timer-
counter functions on port 1).

Given the duplicate pinout  and
the fact Intel invented the ‘51, it’s not
surprising that the new chip goes to
great lengths to handle existing ‘5 1
software. Though, “compatibility” is a
widely abused term, the ‘25 1 SB is the
real thing (i.e., it can actually execute
‘51 binaries). At the same time, it
offers a plethora of new features
demanded by finicky customers. More
on how the ‘251SB pulls off this tricky
balancing act later.

Not to say that sticking with the
‘51 pinout  doesn’t result in a gotcha or
two. For instance, though the new
architecture defines a true NM1 (i.e.,
one that can’t be disabled by errant

Figure l-Other  than the multiplexing of additional
timer-counter functions on port 1, the 25251.93  pinout is
exactly the same as the original ‘51.
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Photo l--The lntel’Z5fSB
is the latest in a recent
string of UFO (Unidentified
Fifty-One)  sightings.

software), there’s
no place to put it.
You’ll have to wait
for a future variant
of the ‘251SB for a
dedicated NM1 pin.

Of course, the
only chip that is
truly plug-compat-
ible with the one
you’re using is the
one you’re using.
Since the ‘25 1 SB is
much faster than
the ‘51, be on the lookout for timing suspects-(EP)ROM (16 KB), RAM (1
loops and other real-time routines that KB), timers, UARTs,  and so on. As
need tuning. mentioned earlier, most of this stuff is

INVASION OF THE LOGIC
SNATCHERS

unchanged from the ‘5 1. For those of
you who aren’t familiar with the
original, let’s take a few moments to

Taking a look inside the ‘25 1 SB ’review the peripherals and highlight
(Figure 21, you can see the usual the changes.

Memory data

Memory address

Bus interface

16,
/

. 0, I
A A ’ 1

8, ,
’ ‘24

SRC2 8 , Data Data/
bus address

DST 16,

Register D a t a  m e m o r y -
file interface

MCS 251 Microcontroller Core

IB

E_1_tl Serial l/O !

1________1

Peripheral signals
& I/O ports

rlgure z- me zs 7x1 comDfnes  fam~~r  ‘5 7 perfpheral funcffons  wfh  extra  memory and a braand  new CPU core.

There’s not a heck of a lot to say
about the clock and reset unit, which
connects a crystal or oscillator via
XTALl  and XTAL2. Eschewing the
“more MHz is better” trend, the
maximum clock rate is a leisurely 16

MHz. As you’ll see, the ‘25 1 SB gets its
speed by doing things in fewer
clocks-not hard since the ‘5 1 takes a
whopping 12 clocks per instruction-
rather than simply cranking the clock.
Fewer MHz eases interfacing, reduces
power consumption, and keeps the
FCC at bay.

Note that the ‘25 1 SB is a fully
static design. The clock can run at an
arbitrarily slow rate or even be
stopped to reduce power from the 60
mA (@ 5 V flO%)  required for full
speed (16 MHz) operation. In IDLE
mode (12 mA),  the clock to the
peripherals, but not CPU, is stopped
while POWERDOWN mode (20 PA)
freezes everything until an interrupt or
RESET. A handy feature for the latter
case is the addition of a POF (Power
Off) flag that detects the difference
between a cold and warm RESET.

As for the interrupt logic, the ‘5 l’s
original two-level priority scheme is
cleverly (and software transparently)
extended to four levels by the addition
of a second interrupt-priority register
(see Figure 3). For compatibility’s sake,
the ‘25 1 SB interrupt sources have the
same priority and vector addresses as
their ‘51 counterparts. What’s new is
the addition of a TRAP instruction,
which is given highest priority, and
the previously mentioned needs-an-
extra-pin NMI, which has second
highest priority).

The ‘25 1 SB has plenty of timers, a
grand total of nine compared to the
two (TO and Tl ) on the original ‘5 1.
Like many earlier derivatives, the
‘25 1SB adds a third timer (T2) similar
in form and function to the other two.
Note the decision to retain the historic
time base (Fosc/lZ),  thereby favoring
compatibility at the expense of
resolution. However, when configured
as a baud-rate generator, T2 can run at
Fosc/2 to handle speedy serial links.

Next up is the watchdog timer
(WDT), a I4-bit  counter, which also
increments at Fosc/12  and RESETS the
CPU if it overflows. Note that the
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IEO

Address=OA8H  IE0.7 IE0.6 IE0.5 IE0.4 IE0.3 IEq.1 IEO.l IEO.0

c
IPHO

Address = OB7H
IPH0.7 IPH0.6 IPH0.5 IPH0.4 IPH0.3 IPH0.2 IPHO.1 IPHO.0

/
IPLO

Address  = OB8H  I P L 0 . 7  I P L 0 . 6  I P L 0 . 5  IPLO.4/  lPLO.3,LLO.2  IPLO.1 IPLO.0
/ /

3). differentiate between address and data
For those not familiar with the

Reset value = OOH

transfers, cutting overhead on a shared

Enable bit = 1 enables the interrupt

ninth data bit, it’s kind of a 9Nl

I

bus since nonaddressed micros need

Bit addressable

format in which the extra bit can be

Enable bit = 0 disables the interrupt

not be bothered with data destined for
set or reset by the programmer (for others. Since many other popular
transmission) and mask the normal micros (‘180, ‘HCll, etc.) support the
receive interrupt upon reception.

Reset value = OOH

ninth data bit, it’s possible to lash a

Bit addressable
JJ

1 1PHn.x  11 1PLn.x  )
U U Level of priority

0 0 0 (lowest)
0 1 1
1 0 2
1 1 3 (highest)

Register bit Interrupt source
X = E, PH, PL

INT#O
Timer 0Qxj0.l

1(X)0.2 INT#i
1(X)0.3 Timer 1
1(X)0.4 Serial port
I(X)05 Timer 2
1(X)0.6 PCA

Figure 3-The  ’51s two-/eve/, interrupt-priorify  scheme is extended to four levels  in the ‘251SB. Though the
architecture makes provision for NM, it isn’t included for lack of an extra pin.

“ninth data bit” modes (Modes 2 and Typically, the ninth bit is used to

WDT continues operating in IDLE
mode and stops in POWERDOWN
mode, either or both of which may be
problematic depending on your
situation. Keeping the WDT at bay
during IDLE can be accomplished by
dedicating a timer interrupt to servic-
ing it. If your concern is a POWER-
DOWN-induced coma, consider an
external power-monitor chip that
drives INTO, INTl,  or RESET. The
WDT powers up disabled, should you
prefer not to be bothered. Once you
enable it, it remains ever vigilant and
can’t be shut off.

The last five timers are packed
into the PCA (Programmable Counter
Array), a unit seen on the earlier ‘FX
derivative of the ‘5 1. The PCA,
pictured in Figure 4, consists of a
counter module that feeds a common
clock to five 16-bit register and
compare modules, which are in turn
connected to the CEXO-4 pins. Each of
the five channels can be configured as
input capture, output compare, PWM,
or software timer. The last channel
(module 4) can also be configured as a
watchdog timer, which resets the CPU
on overflow. But, unlike the fixed 14.
bit WDT, it lets you decide the watch
period.

The decision to keep the ‘5 l’s
leisurely clocking for TO-T2 is made
more palatable by the programmability

the somewhat homely, but
quite serviceable ‘5 1 unit.
One welcome addition is

of the PCA clock. Besides the Fosc/l2

framing-error detection,
though the continued lack
of parity support seems a

used for the older timers, the PCA also

little miserly. Also, if T2 is
used for the baud-rate
generator, the transmitter

offers Fosc/4,  an overflow from TO, or

and receiver can run at
different baud rates (on the
‘5 1, they must be the

an external clock input (ECI) as time-

same). Otherwise, the
‘25 1 SB UART supports, as
in the original, shift

base alternatives.

register (Mode 0), 8Nl
(Mode l), and the so-called

The UART is little changed from

CEX4 V REGlCOM  module 4

CEX3 - REG/COM  module 3

t
CEX2 - REG/COM  module 2

Fosc/l2  -
+q-““““““‘”  I (ccoN,6)

surprisingly powerful, yet
low cost, network to-
gether. One company,
Cimetrics Technology,
even offers 9-bit-solution
software that can network
up to 250 micros of half a
dozen types with no muss
and no fuss.

Fosc/4  - Counter module a m  (CCON.7)

TO overflow ---W ( m (CMOD.7)
Input select

ECI w lcpsxl  (CMOD.1)
(CMOD.0)

Figure 4-First appearing on the ‘51FX  derivative, the PCA (Programmable Counter
Array) features five capture and compare registers driven by a programmable fimebase

Having peeled away
the layers of normalcy, we
finally arrive at the CPU
core. It’s here that the
‘251SB earns a place in the
X-Files (file under
“Processor” right after
“Pod People”).
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v 8 bytes B

Registers  56-63 {

Word registers

Byte registers

Data pointer  (DPX) Stack pointer (SPX)

pp=E&j
DWORD registers

Data pointer  (DPX) Stack pointer (SPX)

Figure 5-Working  wifhin  a//ocaticm
consfrainfs,  the '25251% programmergets  fo
choose the ideal mix of byte, word, and
double-word regisfers. Example of mixed usage

ALIEN OPCODES
It’s not hard to jot down a UFO

wish list. First, there’s the simple
question of speed (or lack of in the case
of the ‘5 1). As mentioned earlier,
binary compatibility dictates that old
code must be decipherable. At the
same time, pressure from competitors,
the trend towards C, and a moral
obligation to overworked programmers
calls for an instruction-set makeover.
As for all g-bit upgrade chips, the 64-
KB question, like Bela, lurks waiting to
bite.

All in all, it’s a tall order, but one I
say Intel has carried off with great
panache.

The speed issue is addressed by a
three-stage pipeline design (fetch and
decode, address and read, execute and
write) that boosts performance while
remaining programmer friendly (i.e.,
no visible pipe hazards).

Though the ALU and external bus
remain g-bit,  the ‘25 1 SB keeps the
pipeline fed by fetching instructions,
16 bits at a time, from on-chip
EPROM.

While the ‘5 1 executes the bulk of
its instructions at the same rate (12
clocks), ‘25 1 SB instructions are of

variable duration. After all, it doesn’t
make sense that an on-chip register op
should have to take as long as a
memory move. Overall, the ‘25 1 SB
probably executes existing ‘5 1 instruc-
tions on the order of three to five
times faster than the original.

While supporting ‘5 1 instructions,
the ‘25 1 SB surrounds them with a
bunch of new opcodes, addressing
modes, and registers that together
attack the program friendliness and 64.
KB concerns.

As expected, the first task is to
eliminate the '51's infamous accumu-
lator bottleneck by adopting a general-
purpose register architecture. Besides
32 bytes replicating the ‘5 l's registers,
an additional 32 s-bit registers are
available for use as bytes, words (16
bits), or even double words (32 bits].
The latter, when used as pointers, are
the magic bullet for the 64.KB prob-
lem.

The allocation and naming rules
may seem a little odd at first, but do
offer the flexibility to divvy things up
just the way you want (see Figure 5).
Registers O-15 can be addressed as
either byte, word, or double word;
registers 16-3 1 as either word or

875-2199
872-2204

OUR AD REP
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ConfigO  (Address 80H)

Symbol - 1 - WSa XALE 1 Rdl 1 RdO 1 PSwap Src

Configl (Address 81 H)

Symbol - - lntr WSb - - EMap

Bit 7 6 5 4 3 2 1 0

Symbol Function

Src

0

PSwap

0

RdO-1

1 1 Rd# strobes for address < 80:OOOOH
1 0 P3.7 only
0 1 Rd# is Al 6
0 0 Reserved

XALE ALE extension configuration
Does not extend ALE

0

WSa

0

EMap

0

WSb

0

lntr

0

Reserved

Source/binary mode configuration
Device is only source-code compatible
Device is also binary-code compatible

Swaps the Data bus from Port0 to Port2 and implements a page-mode functionality
The Data bus is set to Port0
The Data bus is swapped from Port0 to Port2 and implements the page-mode functionality

Configures Rd# and PSEN#  to alternate functions
Rd# function

Extends the ALE pulse from Telel  to 3 Telels,  which adds 1 wait state

Main external wait state configuration
Does not generate any extra wait states
Generates 1 extra wait state for all pages except the 01 : page

EPROM mapping configuration
Does not map the external code memory
Maps the upper 8 KB of the 16 KB internal code memory into addresses OO:EOOOH-OO:FFFFH.

Page 01 : external wait state configuration
Does not generate any extra wait state
Generates 1 extra wait state for the 01 : page

MCS25l/MCS51  interrupt mode configuration
Interrupts push 4 bytes on the stach  (3 bytes of PC & PSWl)
Interrupts push 2 bytes of the stack ala the MCS51  (64 KB execution restriction)

Figure 6-The ‘251SB  is a switch hitter when it comes to binary versus source compatibility with the choice made by the Src and
lntr configuration bits.

Similarly, the Intr bit
decides whether the CPU
acts like a 64-KB or 16-MB
address-space machine. In
64-KB mode, it mimics a ‘51
by stacking only 16 bits of

double word; and registers 56-63 are
double word only.

Thus, the architecture supports 16
possible byte registers (RO-R15 J, 16
possible word registers (WRO-WR30),
and 10 possible double-word registers
(DRO-DR28, DR56-60).  Note that the
numbering scheme points a register at
the first byte (i.e., R4, WR4, and DR4
all start at the fourth byte). The flip
side of this is that sequential register
addresses increment by one for bytes
(i.e., RO, Rl, R2),  two for words (i.e.,
WRO, WR2, WR4), and four for doubles
(i.e., DR4, DR8, DR16).

tininess and inaccessibility are legend,
is finally replaced with something a C
compiler can learn to love.

Without going into all the detail,
suffice to say that the new instruc-
tions, addressing modes, registers, and
so on make up a relatively clean
architecture that can deal with l-, 8-,
16-, and 32-bit work. There are some
restrictions about mixing old and new
(e.g., old instruction with new address-
ing mode and vice versa), but they
seem neither illogical or especially
painful.

the PC during an interrupt.
In 16-MB mode, 24 bits of PC and the
PSW are stacked. Note that the CPU
maintains two PSWs: one that’s
exactly the same as the ‘5 1 and one
supporting the new instruction set.

As you can see in Figure 7, the
other configuration bits are mainly
responsible for tuning the external bus
interface. Note the minimum cycle
time differs for read and write (four
and six clocks, respectively). If you
prefer, you can set it up with wait
states to act just like a ‘5 1 and take
advantage of other neat options.

Note how DR56 and DR60 map to
extended versions of the ‘5 l’s DPTR
and SP. Yes, the ‘5 l’s stack, whose

The original ‘5 1 design-
ers were kind enough to
leave one spare opcode (ASh).
The only way to keep binary
compatibility is to map the
new instructions using the
spare opcode as an escape
prefix. The problem, of
course, is that your shiny
new instruction set carries
extra baggage on every I-
fetch, so code density suffers.

For those who are
writing new programs (or at
least can recompile their old
ones), it makes more sense
to remap the opcodes, giving
priority to the new and
improved instructions, while
hanging the prefix on some
of the older, less useful ones.

Which way is best? The
answer-depending on the
circumstances, both. Figure
6 shows the key configura-
tion info that determines the
‘25 1SB’s  personality. The Src
bit chooses between the
binary and source-compat-
ible modes. Note that these
bits are programmed into the
‘25 1 SB EPROM for auto-
matic loading at RESET.

The ‘25 1 SB cleverly deals with the
tradeoff between code compatibility
and optimizing the new instruction
set. How? By letting you deal with it.

One option is to swap the multi-
plexed data from the low to high
address byte, which simultaneously
implements a page-mode function. As
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a) XTALI I*\ b) XTALI

ALE

PSEN#/RD#

PO

ALE

PO

Figure 7-Here are the nonpage modes for the data/instruction  read cyc/e  (a) and fhe write cycle (6).  Tne  25158  bus cycle  can be extended by up to four clocks, two during
ALE and two during fhe read or write strobe. When the page-mode option is chosen, ALE cycles are on/y issued when the high address changes.

you might guess, this scheme offers
speedy (no-ALE) accesses within a
page (until the high address changes).

Being able to assign the function
of the RD * and PSEN * (Program Space
Enable) pins is a nice touch. Naturally,
you can make them work the same as
a ‘51 (i.e., RD’ is for data and PSEN*
for instructions). Another choice
duplicates the common practice of
overlapping them (using PSEN* only),
which frees a pin (RD*)  for use as
either a port bit or an address line.

LOW BUDGET THRILLER
Admittedly, the ‘251SB  can’t offer

the IC equivalent of the big names or
grandiose sets of Hollywood’s latest
epics. Just remember, most of the
rough edges (no NM1 pin, limited
memory space, etc.) are an unavoidable
byproduct of the reasonable decision to
deliver binary and plug compatibility.

No doubt bigger-budget sequels
with more pins and transistors are
already in the works. Unlike Plan 10
From Outer Space, I am certainly
looking forward to Plan 252. In the
meantime, with the ‘25 1 SB price
projected at $6 (ROM) in high volume,
you’ll have plenty of change for
popcorn. q

Tom Cantrell has been an engineer in
Silicon Valley for more than ten years
working on chip, board, and systems
design and marketing. He may be
reached at (510) 657-0264 or by fax at
(510) 657-5441.

Intel Corporation

Boston, MA 0211 l-1300
(617) 350-7550

5000 West Chandler Blvd.
Chandler, AZ 85226
(916) 356-3551 422 Very Useful

423 Moderately Useful
424 Not Useful

Cimetrics Technology
55 Temple Place

the CXlOtprecision  video frame 1
m Monochrome, 8 Bit, Real Time Frame Grabs

grabber for OEM, industrial and scientic
n Graphics Overlay on Live or Still Images**

applications. With sampling jitter of only +-3 nS
. External Trigger  Input

and video noise less than one ISB,  ImageNation
. RGB or B&W, 30 Hz Interlaced Display

breaks new ground in imaging price/perfor-
. NTSUPAL  Auto Detect, Auto Switch

mance. The CXlOO  is a rugged, low power, ISA . VCR and Resettable Camera Compatible

board featuring rock solid, crystal controlled . Power Down Capability

timing and all digital video synchronization. . BNC or RCA Connectors
A Software developers will appreciate the simple . Built-In Software Protection**
software interface, extensive C library and clear .63 Function C Library with Source Code
documentation. The CXIOO  is a software com- n Text &Graphic Libraq with Source Code
patible, drop-in replacement for our very
popular Cortex I frame grabber. A Call today

. Windows DLL, Examples and Utilities

for complete specfications  and volume pricing.
. Software also available free on our BBS
n Image File Formats: GIF, TIFF, BMI? PIG,

ImageNation  Corporation PCX,TGA  and WPG
Vision Requires Imagination ** THW OPnOUS  IUIMUB,.~  AT F.xTM  COST

800-366-9131 * $495 IS DOMESTIC, OEM SINGLE [IKIT  PRICE.

\ p.0.  BOX 276 BEAVBKTON,  OR 97075 USA PHONE (503) 641-7408  FAX (503) 643-2458  BBS (503) 626-7763 ,

/ PRECISION FRAME GRABBER ’
FOR ONLY $495*
- CXlOO FEATURES -

. Crystal Controlled Image Accuracy
n Memory Mapped, Dual-Ported Video RAM
. Programmable Offset and Gain
. Input, Output and Overlay LLTs
. Resolution of 5 12x486  or Four Images

of 256x243 (CCIR 512x512 8; 256x256)
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John Dybowski

Embedded Development

complexity. In fact, they have no
single discernible characteristic. It
might be simpler to explain these
systems by what they don’t possess
and can’t do.

In many cases, these systems are
so specialized and of such dedicated
purpose that it may be impossible to
pick them out of the background.
Sometimes, they have no user inter-
face, produce no perceptible output,
and have no power switch. As a result,
it’s not surprising that at times it’s
impossible to tell if they’re running.

These attributes (or more accu-
rately, lack of attributes) make design-

ing and debugging such equipment
extremely difficult. Obviously, devel-
opers of such systems need some out-
side help since the amount of informa-
tion they can glean from an unaided
examination of this type of equipment
is sparse indeed.

Engineers use a variety of tools
when developing microprocessor- and
microcontroller-based systems. Not
unexpectedly, the cost of these tools
increases as more features and more
capabilities are added. What comes as
a surprise is how much the cost of a
truly deluxe development system ex-
ceeds that of a merely adequate one.

This disproportional phenomenon
predominates in all facets of the engi-
neering discipline: 10% of the code
runs 90% of the time, 30% of the pro-
gram delivers 95 % of the functional-
ity, and the last 2% of the project
takes considerably longer than 2% of
the overall time. The numbers vary, of
course, but it always boils down to the
same imbalance.

A lot of different tools can be
applied to microprocessor-based devel-
opment. These run the gamut from
EPROM emulators to full-blown in-
circuit emulators. The right choice
depends on what you’re trying to do,
how much time you have, and perhaps
most importantly your budget.

The fact is, even with a full-fea-
tured development system, you’ll
probably use only a fraction of its capa-
bility most of the time. It’s only those
(hopefully rare) times when you have a
really tricky problem that you tap the
full potential of the system. But at
these times, you don’t mind its price

Mode R P P P P P P
S 3 3 3 3 3 1

(1) T 2 3 4 5 7 0
I
7

l/O

1 Write code data 1 12 V 0.1 ms L H H H DI 1

Read code data IH H LLHH DO]

Write lock bit-l 12 v 0.1 ms H H H H FF (Hex)
bit-2 1 12 V 0.1 ms H H L L FF (Hex)

Chip erase 12v IOms H L L L

Read Atmel  code H H L L L L D O
Read device code H H L L L L D O 1

Table l-Various f/ash and configuration functions can be invoked by
manipulating fhe /IO pins on the A T89C2051

tag either.
A special set of

problems arises when
working with very small
processors. The situation
is exacerbated when the
degree of integration
reaches that of a system
on chip (i.e., a microcon-
troller). Needless to say,
it creates rather awk-
ward debugging sce-
narios.

In most cases, you
debug out of the micro-
controller’s EPROM.
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You change the
source file, com-
pile and link,
burn the EPROM,
plug into the
target system,

apply power,
and-nothing!

Obviously,
you don’t want to
repeat such un-
productive steps
too many times.

SMALL PROCESSORS
In addition to these difficulties,

small processors are often cursed with
“weird architecture.” Mind you, what
we consider weird today may be per-
ceived entirely differently with time.

Since I delight in the AT89C-
205 l’s rigorous adherence to the 805 1
standard, the story comes full circle.
Surely no one would dispute that the
805 1 is mighty weird in its own right.
However, engineers have been working
with this processor so long they no
longer notice!

obvious to anyone who’s used other
small 805 1 spinoffs with only 64 bytes.
This extra memory spells the differ-
ence between using a language com-
piler or working entirely in assembler.

Certainly, modern computers
make the edit, compile, and link itera-
tion fast and painless. Unfortunately,
the problem with developing out of an
EPROM-based system is the amount of
effort required to put the program into
the chip. This development method is
therefore usually prohibitive unless
the application is very simple or
you’ve got a lot of time.

Since the AT89C205 1 uses flash
technology for its program storage, the
resulting flexibility can be put to good
use during program development. For
simpler applications, this chip with a
programmer may be all that’s needed.

In any event, working with certain
small processors presents unsavory
problems. A proprietary architecture
could leave you essentially debugging
out of EPROM for lack of any afford-
able support equipment. Worse, you
might find yourself hostage to the chip
manufacturer’s idea of a tool set.

However, there are mitigating
circumstances that favor a more flex-
ible design environment regardless of
project size. Despite what might be
considered “correct” design proce-
dures, developing embedded applica-
tions is an iterative process. The
method of implementing features,
eradicating bugs, and enhancing perfor-
mance is interactive by nature.

This is especially true in the realm
of small system development. Here,

Port 1

Luckily, the situation changes
significantly when con-
sidering a “standard”
architecture. Things look
even better with “sub-
set” processors provided
they retain and give up
the right features of their
predecessors.

DATA IN DATA OUT

PZ
(PROG) \ /

As a full 8051 imple-
mentation, the Atmel
AT89C205 1 (see Photo 1 J
gives up some I/O and
comes with 2 KB of flash
program memory instead
of the usual 4-KB
EPROM. Despite its 20.
pin package, the 89C-
205 1 retains the major
8051 SFRs and 128 bytes
of internal RAM. The
importance of the full

RST
VPP) LOGIC 0

P3.1
(ROY/=)

P3.4
(ENABLE)

address)

BUSY READY

A REASONABLE APPROACH
As I’ve shown with some of the

other systems, combining a PC-hosted
debugger with a resident kernel run-
ning on a small RAM-based computer
can result in a potent, low-cost devel-
opment environment. As luck would
have it, the architectural compatibility
between the small Atmel  processor
and its larger predecessors makes this
approach feasible.

It’s relatively straightforward to
use an 805 1 with external program
RAM to emulate the smaller deriva-
tive. How much you monkey with
your code for the final transition to the
ultimate target processor depends a lot

on how much license the
chip designers took with
the derivative’s resources.

These resources are in
effect what the processor
is made of-the timers,
interrupts, SFRs, program
and data memory, and the
external I/O ports. In all
these respects, the 89C-
2051 is “really close” to
the original 805 1.

But, it’s more than
just a hardware compat-
ibility issue. As is so often
the case, the software is
the system. Since this is
essentially an embedded
project, it boils down to a
matter of software and
firmware.

XTALl n
(mcrement

Figure l--The AT89C2051’s  flash  memory prograamming  cycle is self-fimedand is confrolled
using several port 3 pins.

the existence of the many interdepen-
dencies and entanglements that exist
in a typical application program inevi-
tably leads the programmer to one of
the fundamental tenets of the small-
system codesmith: “Change only one
thing at a time. Regardless of what
they tell you.” Experience shows that
this is the prudent course of action.
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Figure Pa-Emulatinq the AT89C2051  is
eaiy  with the 8051 -compatible  A T89C51.

First off, to support a flexible processing on the PC where the power move to full target emulation. The
debugger, the executable program is results in a friendly windowed envi- final step is to burn the program into
loads and executes from RAM. This ronment from which you can wage flash and run entirely from the 89C-
permits quickly downloading pro- your debug session with minimal tar- 2051.
grams, setting breakpoints, single get impact. These steps let you start develop-
stepping, and manually modifying Of course, there’s more to being ment in the safety of your PC and
program memory. Additional debugger
functions provide a gateway to internal
workings of the processor. It should be
easy to display and manipulate all
SFRs, internal memory, and I/O ports.

Of course, a good debugger should
be as unobtrusive as possible. To
achieve this goal, my development
system runs under the Dunfield  debug-
ger system with various Mid-Tech
extensions. The tiny (less than 2 KB)
firmware debug kernel off-loads the
actual data processing tasks to the PC-
resident debug monitor. It simply
performs the lowest-level tasks as
directed by the PC control program.

This distributed processing is
absolutely necessary since the goal is
to stay out of the way of the system
under development. Putting the real

unobtrusive than just keeping the
kernel small. Consider this: the Dun-
field kernel uses zero internal mem-
ory, zero stack, and has no effect on
any internal processor registers or
SFRs. How’s that for unobtrusive?

The PC-hosted monitor provides
the interface into the target processor
and therefore the system under devel-
opment. This interface is identical to
that of the compatible, stand-alone
AT89C2051 simulator. Together, these
tools let you bring your application up
gradually.

The simulator lets you dry-run
your algorithms using your PC. If you
desire, you can run your code simula-
tion on the PC while using your target
system’s real I/O via the development
system interface. Eventually, you can

move your application gradually to the
Spartan realm of the single-chip con-
troller. This greatly increases the
chances of a functional 89C205  1 when
you get around to programming it.

PROGRAM MEMORY IN A FLASH
The AT89C205 1 contains 2 KB of

flash memory. Atmel  calls this mem-
ory array PER OM (Programmable Eras-
able Read Only Memory).

The flash-memory array is sec-
tored into one monolithic 2-KB block.
The memory is programmed byte-by-
byte by raising the RST/VPP pin to 12
V and presenting parallel data on the 8
bits of Pl. P3.2 functions as the pro-
gramming strobe by pulsing low, and
data can be read for verification pur-
poses by pulling P3.4 low as a data-
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enable signal. The progress of the self-
timed programming cycle can be inter-
rogated using data polling, or alterna-
tively P3.1  can be used as an active-
low, program-busy indicator.

In combination with these control
lines, pins ~3.3, P3.5, and P3.7 set the
various modes of operation. These
modes include programming the two
internal lock bits, reading the device
code ID, and programming, reading,
and erasing the memory.

We’ve washed up most of the I/O
pins and haven’t even considered ad-
dressing the memory array yet. Evi-
dently, there must be a way to effi-
ciently handle address generation. The
89C205  1 contains a built-in address
generator that sequences the internal
address using an external clock input.

Here’s how it works. When RST/
VPP is initially held at logic 0, the
internal address generator is reset to
000. The address is advanced by apply-
ing a positive pulse on the XTALl  pin.
This address is now stable and the
specified location can be accessed for
programming and verification.

The byte programming cycle is
self-timed. There are two methods that
can be used to determine when the
cycle completes. While a program
cycle is executing, an attempt to read
the last byte programmed results in
the complement of the programmed
data on P1.7.

Once the program cycle has com-
pleted, the actual data is available on
all outputs. The program cycle pro-
gress can also be monitored directly
using P3.1. This pin indicates a busy
condition while it is low. It goes high
when the programming cycle is com-
plete and the next location can be
programmed.

These steps are fairly straightfor-
ward, but prior to programming any
nonblank  memory bytes, you need to
perform a bulk-erase operation. That
is, the entire memory array must be
set to FFs before any individual bits are
programmed to 0.

This erasure is performed electri-
cally by setting the proper combina-
tion of control signals and pulsing P3.2
(the programming strobe) while RST/
VPP is held at 12 V. The bulk-erase
operation is self-timed and takes about
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RST

Figure Pb-The PC interface provides full control of the development system.

10 ms. Table 1 depicts the way the
control lines are manipulated to per-
form the erase, program, verification,
and configuration functions. Figure 1
shows the waveforms for a typical
program and verify cycle.

A REAL DEVELOPMENT SYSTEM
The AT89C205 1 development

system consists of several hardware,
firmware, and software components.
These include a development card
with a RAM-based 89C205 1 emulator
and flash programmer, the firmware-
resident debug kernel and flash utili-
ties, and a PC-hosted simulator, debug-
ger and assembler.

Although the development card
could be powered by a standard 805 1
(or 803 1 with EPROM), I decided to
use the Atmel  AT89C5 1. This is es-
sentially a CMOS flash-based 8051,
which maintains strict compatibility
with generic 805 1 architecture.

To those experienced in the devel-
opment of very small embedded sys-
tems, the problems associated with
such an undertaking are well under-

stood. It makes little sense making
things more difficult than necessary.
Building on the foundation you have
can cut time out of your design phase.

The close architectural association
of the 89C2051  and the standard 8051
makes migrating 805 1 applications to
the new small processor fairly easy.
Since a microprocessor development
system is nothing more than a special-
ized embedded system, it follows that
similar benefits can be realized by
porting an existing tool set to support
a new processor.

The system components include
the main development card with flash
programmer and a small, general-pur-
pose target card that can be used with
the development system or with a real
89C205 1 processor. The main develop-
ment card is depicted schematically in
Figure 2.

As you can see, this system is
built around Atmel’s  flash-based
89C5I  and follows the lines of the
more conventional 805 1 design with
external RAM. The close and noncon-
flicting correspondence between the



89C205  1 and 805 1 results in minimal
extraneous hardware. All of the I?1 and
most of the P3 lines directly carry
through to the emulation header.

The analog comparator contained
within the 89C205  1 is simulated using
the externally located TLC371. On the
89C205  1, the output of the built-in
analog comparator internally ties to
P3.6. Neither the comparator’s output
nor P3.6 is externally accessible. On
the 89C51,  P3.6 is a general-purpose
port pin and also functions as the ex-
ternal RAM \WR strobe. Using discrete
logic, the comparator is degated from
P3.6 when the host downloads or in
any way manipulates the external
RAM. During these operations, the
89C51  uses P3.6 as a write strobe.

The host PC signals the develop-
ment card that it is seizing system
memory by asserting its DTR. This
action illustrates the close coupling
between the host PC and the develop-
ment card. But, make no mistake
about who’s in control. Using RTS, the
PC can exercise ultimate control and
yank the development system (and
therefore, the target) back to square
one really fast-RTS directly controls

The development card lets you use
Pl .O and P 1.1 as general-purpose I/O
bits or as high-impedance inputs to the
analog comparator. To preserve the
high-impedance characteristic of the
analog inputs, two shorting jumpers
disconnect the Pl .O and PI .l header
signals from the 89C5  1’s respective
I/O lines. Rather than emulating the
89C205  l’s electrical I/O characteris-
tics completely, the jumpers let you
simulate the functionality of the
89C205  1 without complicating the
hardware design.

No attempt is made to directly
simulate the high-current-carrying
capability of the 89C205  1 general-
purpose port pins. Many applications
do not use this special capability. If it’s
desirable or necessary to provide
heavier current sinking directly under
emulation, it can be handled on a
need-to-do basis. Using external cir-
cuitry, any line requiring extra sink
capability can easily be equipped with
an outboard driver.

Although the flash-programming
subsection could have been designed
using the same 89C5  1 port pins that
emulate the target 89C2051,  a dedi-

is used for this function. This gives
greater control and imposes fewer
constraints than is feasible if the
89C5  l’s I/O ports are shared between
the programming fixture and the target
system.

The main I/O signals are derived
from an 82C55  programmable periph-
eral interface. Here port A is used as
an &bit parallel-input port for reading
the 89C205  1. Port B drives the logic-
level control signals to the program-
ming site. Finally, port C handles the
main system controls, including en-
abling VCC to the chip, driving 0, 5, or
12 V into the RST/VPP  pin, and en-
abling the 74HC374  octal flip-flop.
The flip-flop serves as the memory-
mapped, tristate, parallel-data output
port.

When the 82C55  emerges out of
reset, all ports default to inputs. Once
the chip is programmed to its desired
operating mode, any ports selected for
output immediately begin emitting
zeros. To avoid glitching any outputs,
the control logic driven by these out-
puts is set up to live with the chip’s
idiosyncracies  (i.e., the idle state of all
important outputs is defined as a logic

the master reset to the system. cated  set of memory-mapped I/O ports low).

Hgure  PC- /he  flash  progmammer  IS structured around memory-mapped I/U
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ment system in program
mode, all lines to the ZIF
flash fixture are placed
into a quiescent state.
The interface is prima- GN’,
rily composed of direct R

connections between the
89C2051,  82C55, and
74HC374,  which consti-
tutes a logic-level inter-
face. Additionally, a
processor-switched VCC
connection is provided
along with the ground return.

Figure 3-The  AT89C2051  sing/e-board computer includes a power sup&,  line-powered RS-232 interface, 8 K by 8 EPROM, and a
12.bif ADC

Pull-down resistors
on these outputs ensure
that these pins are held
low from reset through
the subsequent chip
initialization steps. Be-
cause of the way the
82C55  resets its outputs
each time it is repro-
grammed, I elected to
add an external output
port rather than “turning
around” port A for both
input and output.
There’s no sense getting
overly clever and closing
the door on flexibility.

With the develop-

The only “special” voltage on the
programming fixture is brought out to
the RST/VPP pin. The trilevel signal
on this pin can be pulled to 0 V during
chip initialization, set to 5 V for read
and verify operations, or driven to 12 V
for byte programming and bulk-erasure
modes.

To accomplish this, a MAX666
micropower pass regulator is config-
ured to deliver either 0, 5, or 12 V.
Pulling the SET pin to ground pro-
grams the regulator for a fixed 5-V
output. Releasing the ground connec-
tion effectively enables the resistor
divider that selects a 12-V output
level. The regulator can be disabled by
driving SHDN high. In this case, the
output is resistively pulled to ground
to establish the logic 0 level.

The MAX666, although an older
design, serves this application well
since a minimum number of external
components and control lines establish
the required voltage levels. Being a
low-dropout regulator, the MAX666 is
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capable of maintaining proper regula- itself until I present a real embedded
tion with only a 200-mV  input/output application for the system. And, at 1”
differential. And, unlike some low- by 3”, it can get real embedded. 0
dropout designs, only a very small
output capacitor is required. This fohn Dybowski is an engineer in-

_ _ _ _
speeds up switching speed consider-
ably.

REAL EMBEDDABLE
Figure 3 shows the AT89C205 1

single-board computer. This stand-
alone system includes a power supply,
line-powered RS-232 interface, 8 K by
8 EEPROM, and a I2-bit ADC. Expan-
sion is available in the way of the 12C
peripheral set I presented last month.
A subsystem card attaches directly to
the SBC, which includes an RTC,
RAM, battery backup, EEPROM, and
digital and analog I/O. An outboard
LCD and keypad module provides an
avenue for a user interface panel.

Obviously, the attraction of such a
system is not so much what it is or
even what it can do as much as where
you can put it. For this reason, there’s
not much I can say about the system

volved in the design and manufacture
of embedded controllers and commu-
nications equipment with a special
focus on portable and battery-oper-
ated instruments. He is also owner of
Mid-Tech Computing Devices. \ohn
may be reached at (203) 684-2442 or
at john,dybowski@circellar,com.

For elements of this project, contact:

Mid-Tech Computing Devices
P.O. Box 218
Stafford Springs, CT 06075-0218
(203) 684-2442
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mmTIM Econclucted  by Ken Davidson

The Circuit Cellar BBS
300/l  2001240019600114.4k  bps
24 hours/7 days a week
(203) 871~1988-Four  incoming lines
Internet E-mail: sysop@circellar.com

I’m short on space this month, so 1’11 limit things to one thread and
one followup  message.

In the message thread, we fake a look at NiCd batteries and
some myfhs and truths  surrounding their use and care. I really wish
someone would come up with a low-maintenance, long-lasting,
inexpensive rechargeable battery.

In the followup message, a “ConnecTime” reader responds to
last month’s thread on three-phase motors with his own experiences
and suggestions.

Cellular NiCcls

Msg#:l8940
From: GEORGE COHN To: ALL USERS

I’m sure this subject has been beaten to death, but I’m
curious about so-called memory in NiCd batteries. I’ve
noticed that the NiCd battery on my cellular phone only
lasts about 6 hours now in standby mode. When it was new
(about 16 months ago) it lasted 14 to 18 hours.

What prompts the question is Hello Direct has a
cellular phone battery recharger/conditioner that suppos-
edly strips away the bubbles that form on the plates using a
negative pulse. They claim that this will bring the old
battery back to its original capacity. The cost of this gadget
is $99.95. A replacement battery for my phone is $59.95.
Obviously it would be advantageous to make the old
batteries last longer for both cost and ecological reasons.
Has anyone had experience with this type of charger?

Msg#:  19336
From: RANDY RIDLEY To: GEORGE COHN

You’re right. It has been beat to death! <g> But It has
been several months since I’ve seen a posting on it so I’ll
give you a quick explanation of how a NiCd works.

First, the “memory effect” is a misnomer created by GE
in the early years of NiCd technology. It was a political
move to stall the competition’s edge while they caught up.
Memory effect is only reproducible under strict lab condi-
tions and the average NiCd user will never see it.

What you do see is an effect called “voltage depres-
sion.” The NiCd’s electrolyte is a random fill of packed
powder. It must stay in a random orientation to produce the
electrical potential. If a NiCd battery is left charging

continuously, two things can happen. First, the electrolyte
can begin to crystallize and form conductive “chunks” in
the battery. Since the total energy stored by the battery is
dependent partly upon the separation between the elec-
trodes, the conductive chunk of electrolyte effectively
shortens the life of a battery. This is usually a recoverable
condition as I will explain later. Second, conductive
whiskers tend to grow from the electrodes through the
electrolyte. We call these “tin whiskers” but they are
generally made up of impurities in the electrolyte or from
the electrodes themselves. As the battery is used, the
electrodes become pitted with material leaching into the
electrolyte. This material can reform in a conductive
whisker similar to the old “slat crystal” that you probably
made in high school chemistry.

The “voltage depression” effect is caused by leaving a
battery in one state for too long of a period. This state can
be completely discharged, completely charged, or anywhere
in between. It is a result of too little use of the battery.
Studies by Motorola Energy Products have shown that a
battery (even in a severe state of voltage depression) can be
revived by about three complete discharge/charge cycles. By
leaving your phone plugged into a charger all of the time,
you usually end up suffering from this condition. (Person-
ally, I would rate this as the number one cause of discarded
NiCds, but I don’t have figures to back that up).

You have seen the industry attempt to combat this
with better chargers on the market in the last two years.
“Smart” chargers will completely discharge the battery for
you and then charge it back up. This type of charger is
probably good for the man who has everything or the
company that has too many batteries to deal with any other
way, but is really unnecessary for the average user. An
effective treatment is to use your phone as is comfortable to
you. When you see the battery is beginning to deteriorate in
performance, charge it up and then leave the phone on until
it completely discharges. Perform that two or three times
and you will probably see your battery recover just fine. The
batteries will never recover to full “new” potential, but
they will get close.

If the battery does not respond to that treatment, it
most likely has severely pitted electrodes and is toward the
end of its useful life. A quality battery under optimum
conditions can see 1000 to 5000 complete discharge cycles.
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Cheaper batteries will not last as long. Obviously, you can
see that a battery charger that discharges the battery every
time you use it can really shorten the useful life of your
battery. If your battery is in this condition, it may have the
“tin whiskers” forming on the inside and you may be able
to recover some useful life by shocking the battery.

The idea is to send a high-current pulse through the
battery to treat the whiskers as a fuse. You have to have a
pulse high enough to burn the whiskers, but low enough so
the battery can absorb it without exploding. It’s sort of a by-
guess-and-by-golly process. If you attempt this, make sure
that if the battery explodes, you are protected by some sort
of physical shield. Also, never shock batteries in series. You
must disassemble the individual cells and treat each one
independently. This treatment will only give you a slightly
longer life and is very dangerous. It may not be worth it.

Msg#:20257
From: LEE STOLLER To: GEORGE COHN

There’s something else that happens, and I think it’s
more common than the other things you hear. People tend
to use their phones for a while, then put them in the
charger until the next day. Once the battery charges up, the
current going through it in the charger produces heat,
which tends to dry out the cells. You can observe this for
yourself by taking the phone out of the charger after an
hour or so, then feeling the battery with your hand. Then
put the phone back, and do the same thing after 12 or 16
hours. You’ll feel the heat.

The thing to do is check the phone periodically when
it’s on charge, and when the LCD display indicates “full,”
take it out of the charger and leave it out until you’ve used
the phone and are ready for recharge. Don’t let the new
battery that you buy get hot and it will last much longer.

3-phase motor followup

Msgk31099
From: WALDO BOYD To: PETE CHOMAK

Your message 36086 mentioned in Circuit Cellar INK
issue 55, plus discussions, was of much nostalgic interest to
me. Some years ago I was confronted with the same
problem and made many inquiries. Here are three sources
for data on the subject of single-to-three-phase conversion
sans rotary converters:

U.S. Dept. Agriculture, Farmers Bulletin No 2252,
March 1972, via Supt of Documents, Washington D.C.,
entitled “Phase Converters for Operation of Three-Phase
Motors from Single-Phase Power.”
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Conference Paper, “Phase Converters, Their Applica-
tion and Current Demand,” by G Huber. Paper No. 34.
CP65-356  of the IEEE Rural Electrification Committee
presented 9th annual IEEE Rural Elec. Conf., San Francisco,
May 24-25 1965.

“Variable-phase Polyphase from Single-Phase Supply,”
by John J. Vithayathil, Electronics, October 19, 1964, pp.
56-57.

Of the three, the latter is the most detailed, with vector
diagrams, schematics, and component values for a given
use. Briefly, the heart of the system is a center-tapped or
autotransformer secondary. This is no problem for most
junk boxes, as two identical nontapped units can be
connected with their primaries in parallel or secondaries in
series, or if both are 120-volt  units, primary and secondary
windings can be connected in series and the secondary
series connection will become the center-tap, to give you
your 220-V in and out totals. Or, you can leave the
primaryjies) open and connect the 220-V single-phase power
to the outer legs of the secondary(ies) to run as an au-
totransformer. An obvious advantage of the primary is the
capability to use a 230-V motor on a 115-V service supply
line, should this be desired.

The advantage of the following setup is that the output
can be 120”  phase-shifted between each two legs, just what
you’re looking for. The disadvantage is the larger number of
components required.

0 0 6
0 Pl P2 P3

Obviously, your motor will connect to Pl, P2, and P3.
If it runs backwards, reverse any two connections at your
binding posts. If you are running a delta-connected motor
(usually marked 208 V), you don’t need the neutral connec-
tion and you may eliminate R2 and R3 from the circuit. A
star-connected motor (usually marked 240 V) should have
the neutral connected for best results.

Now for component values: here you will have to
experiment if you don’t have charts and graphs and vector
algebra. The resistor across the autotransformer secondary
(with cap in series) can be a variable resistor (rheostat). The
reason for variability is to get all your values; switch to a
fixed resistor of value determined during testing when



UPTIME
everything is running to satisfaction. Suitable voltage and
power ratings are assumed, so for your total 4-amp power
draw, my guess is you’ll need something under 100 ohms
for each resistor, perhaps that much to start, and you may
end up with under 10 ohms for one or more, and around 20
for others. AC motor-run caps will likely be 100 uF (very
approximately), 400 V for cool running. Let air circulate
around them, but enclose everything electrically “hot” for
safety. Don’t use starting caps as they are usually too
underrated for constant use; use cap-run caps.

By the way, ordinary electrolytic DC capacitors can
function fairly well by placing two identical DC-caps back-
to-back where each capacitor in the schematic is called for.
They will malfunction in short order if not back-to-back
(positive to positive or negative to negative). But if you
want a permanent installation, go for cap-run AC units. If
underrated and/or overheated, caps may explode, so be sure
to enclose the works in a suitable air-circulating box.

I realize that all this is quite likely more grief than you
feel is worth the hassle, but the circuit, with proper compo-
nents, gives a beautiful, equal voltage per phase under
power. It is also fairly broad in retaining that equality over

variations in load on your motor. By the way, you can
substitute four reactances  (such as simple saturable reac-
tors) for the caps. I just happen to have three 50-amp jobs
(very, very weighty!) that I used way back then instead of
caps. Beautiful, because all I had to do was vary the reactor
control voltages and measure the voltages across each phase
leg to eventually come out with the correct resistor values.
You can make these from ordinary power transformers with
120.volt  primaries in series and the secondaries bucking-
connected as control windings. The efficiency of ordinary
transformers in saturating service is very poor, however,
due to their normally nonsaturating hysteresis curves.

My approach those many years ago was to make a
bench-type setup using small caps and approximately 10k
resistors to start, and then cut and try using a variable lOOO-
ohm resistor and lo-uF  cap at Rl/Cl, if memory serves me
better than usual in my late years. I was interested in a 90”
variable phase-shifter at the time, but for a fixed job such as
yours, you can use fixed components. I eventually ran a
quarterhorse 3-phase induction motor with this setup.

The “hum” you mentioned can come from a motor
trying to start but not yet running, but also can indicate

8OC52-BASIC CHIPS IN VOLUME
Micromint’s 80(X2-BASIC  chip is

an upgraded replacement for the

venerable Intel 8052AH-BASIC

8OC52-BASIC

chip $19.00
chip. Ours is designed for indus-

trial use and operates over the OEM 100 qy. $12.00
entire industrial temperature

range (-40°C to t85”C).  Available

in 40-pin  DIP or PLCC.

BASIC-52

Cali (203) 871-6170 or 1-800-635-3355  to order
MICROMINT, INC. 4 PARK STREET, VERNON, CT 06066
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out-of-phase (should be 120”)  in one or more of the legs, in 1988. Set your modem for 8 data bits, 1 stop bit, no parity,
running motors. This causes greater than necessary current and 300, 2200,  2400, 9600, or 14.4k  bps. For information on
draw, and can burn up a motor if you aren’t careful. The obtaining article software through the Internet, send E-
system described starts by itself, runs great. No starting mail to info@circellar.com.
caps needed for only one horsepower. Besides, both resistor

need starting resistors as well to do the job well.
Another little gimmick I used was to wire three 15

watt light bulbs into the circuit, each across two legs of the
3-phase output. Your eyes can sense the varying light
intensity quickly when you are younger, so this setup is
quite rough, but for us older fellows with slower reaction
times, it works better. When all three bulbs seem to be of
equal brightness, you are close to the component sizes you
need. In short, the bulbs and the motor are wired in parallel.

Software for the articles in this and past issues of
The Computer Applications lournal may be downloaded
from the Circuit Cellar BBS free of charge. For those
unable to download files, the software is also available
on one 360 KB IBM PC-format disk for only $12.

To order Software on Disk, send check or money
order to: The Computer Applications Journal, Software
On Disk, P.O. Box 772, Vernon, CT 06066, or use your
VISA or Mastercard and call (203) 8752199. Be sure to
specify the issue number of each disk you order. Please
add $3 for shipping outside the U.S.

available 24 hours a day and may be reached at (203) 871- 428 Very Useful 429 Moderately Useful 430 Not Useful

Then you need:

Poc-it
Power-On Cycler  - Intermittent Tester-

The circuits, boards, and systemswe design today are complex.
We are using more complex components to create these
designs. Thus, we must test these components over a wide
range of scenarios. For example, we have found VLSI chips,
software librariesand hardwaredesignsthat intermittently  fail to
power up properly. To minimize costly re-work and embarrassing
failures, we must test these designs across a large number and
wide variety of power-up scenarios. Will your design power up
every time?

Pot-it is designed specifically to help you test your design
for just these scenarios. Featuring:

l 10 amp 120 VAC receptacle l One IO-30VDC sense input
l IO amp relay l Outputs easily programmable
l Two 5 VDC high speed inputs from 0.01 set  to 100 min.

714 Hopmeadow St., P.O. Box 624, Simsbury, CT 06070
(600) 651-6170 FAX: (203) 651-0019

NEW! UNIVERSAL DALLAS
DEVELOPMENT SYSTEM from $199!

It’s a complete 8051-family single board computer!
One board accommodates any 40 DIP DS5000,40  SIMM
DS2250,40  SIMM DS2252, or 72 SIMM DS2251, 8051
superset processor! Snap one out, snap another in.
Programs via PC serial port. Program lock & encrypt.
LCD interface, keypad decoder, RS232 serial port, 8-bit
ADC, four relay driver outputs, four buffered inputs.
Power with 5VDC regulated or 6-13 VDC unregulated
Large prototyping area, processor pins routed to headers
Optional enclosures, keypads, LCDs, everything you need
BCl51 Pro BASIC Compiler w/50+ Dallas keywords $399
SYSTRONIX@ TEL: 801.534.1017 FAX: 801.534.1019

555 South 300 East, Salt Lake City, UT, USA 84111

#135 #136
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Necessity: the Mother of Invention

e all go through these phases in life when certain desires transcend logic. For the vast majority of us, it

sually  manifests itself as a craving for an unachievable goal like a Vi 2 Ferrari or our own personal

f course, the degree of eccentricity in these’phases is what separates the dreamers from the pragmatists.

Dreamers are often content merely formulating fantasies while pure pragmatists often lose the entertainment value of the fantasy

in an ardent quest for the goal. Somewhere in between is the person who concocts an idea and assembles the resources to

achieve it. If you can understand that, you can comprehend my latest escapade.

First, I don’t smoke and never have smoked. I work in a smoke-free office filled with former cigarette smokers, who could

instruct religious zealots. I live in a smoke-free home and ride only in smoke-free vehicles. I hate the smell of yesterday’s butts

and choke when I walk into a smoky room.

Unfortunately, every once in a while I do like having a good Partagas or Royal Jamaican cigar (though I don’t inhale) with a

snifter of Napoleon brandy. For years, I’ve spent 2 months on the deck having at most a half dozen cigars and 10 months

thumbing through old issues of Cigar Aficionado, pining for my next 2 months on the deck.

While not elucidating all the gory details, let me just say that during one of my recent phases I filled a lot of real estate

around the house with specific-use buildings. The justification for one of these structures was that it contained an area where I

could go have a leisurely cigar.

Of course, this being New England, the building had to be insulated and heated if I didn’t want brandy served with an ice

pick. And, if I wanted to enjoy actually being there with a cigar, then it needed certain accoutrements-a projection TV, surround-

sound stereo, plush rugs, a sofa, air conditioning, and a nice lounging chair. The only problem was that the first time I sat in there

and pulled out a cigar, I couldn’t bring myself to light it. The place was too much like the living room. Since I wouldn’t light a cigar

in my living room, why would I light one here?

The only solution was to move my daydream and the cigars into the workshop. Now, instead of a stereo I have the sound of

a pair of charcoal air filters simulating a jet taking off. Instead of a Mitsubishi projection TV, I watch a Fisher cast off with broken

IR remote. instead of a leather easy chair, I now use a plastic lawn chair. Instead of the living room, I’m now in a grungy

workshop. But, hallelujah, I can light a cigar without guilt.

Unfortunately, this has created a new problem. When I merely fantasized about cigars, I didn’t have to buy or store them.

Now that I might go through a box or two a year, I am very concerned about their proper care and feeding. Typical storage

methods involve using a boxed humidor (nothing more than a pretty $250-$500  wooden box with a wet sponge), which is

basically useless, up to a commercial walk-in humidor, which has HVAC and humidity controls. Typical prices start at about

$15,000. There doesn’t seem to be much in between.

It bothers me that there is no choice between something useless and something so expensive. Sounds like a project here

folks. Let’s see. If I take a small refrigerator, add a heating element and a fan, throw in a little saturable surface area and a water

pump, screw in a couple of temperature and humidity sensors, instrument it all to an easy to use little controller like Domino (or

perhaps a Blackjack telecontroller so it could phone me at the office and tell me that my Partagas were getting brittle [grin]), add

some spectacularly performing PID software, and I’m in business. Of course, I could just build a room that was a little plushier,

with a nice TV, a little humidity control.. .Argh!. Stay tuned.
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