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Edited by Harv Weiner

SERIAL EPROM EMULATOR
Softec Microsystems [the basic version in-

introduces a serial EPROM cludes a l-Mb emulation
emulator that doesn’t re- RAM). In addition to
quire removal of the system loading the object code ;
microprocessor. Unlike in- the rate of 115,200 bps,
circuit emulators that re- receives the traditional
place the microprocessor binary, Motorola-S, and
with a pod, the EMUR7 Intel hex formats. The
replaces and emulates the EMUR7 connects to a

PORTABLE DATA ACQUISITION SYSTEM
system EPROM. Designers PC-compatible compute
then use their own develop- through the serial port

Industrial Computer Source has announced ment tools [assembler, com- and does not need a
DAQBOOK/lOO,  a high-speed, multifunction, data- piler, and linker) to execute power supply. The unit
acquisition subsystem for notebook PCs. Power to the object code on the test board can be connected to a
unit may be supplied by a number of sources: a 12-V car as if a new EPROM had portable PC when elec-
battery, 120-VAC line power, or an optional rechargeable been programmed. This tric power is not avail-
NiCd battery. eliminates the need to re- able.

The unit combines the functionality of several plug- move, erase, reprogram, and The EMUR7 in-
in analog and digital data-acquisition boards in an reinsert the EPROM. eludes  a friendly user
external module the size of a notebook PC. Attaching This emulation ap- interface with working
directly to a portable PC’s parallel port, DAQBOOK/lOO preach has several advan- selections and options
provides 16 single-ended or 8 differential inputs with a tages. The emulator is truly clearly and efficiently
bidirectional data-transfer rate of up to 170 kBps. universal and the designer displayed. The unit offer
Acquired data can be stored real time in the PC’s may choose the family or full mouse support, a
memory and hard drive. processor satisfying indi- context-sensitive help

Software includes full-featured DOS and Windows vidual application require- feature, and a @-line
drivers for C, BASIC, and Visual Basic. As well, ments without buying ex- video mode. The inte-
DaqView, a Windows graphics application, enables the pensive in-circuit emulators grated ROM editor lets
user to set up an application to acquire and save data for different processors. users modify the emu-
directly to disk or to seamlessly transmit it to other Another advantage is that lated code.
Window applications. VISUALAB is another software the test circuit works under
option, offering a set of DLLs to extend the capabilities normal operating condi- Softec Microsystems
of Visual Basic and Snap-Master for Windows. This tions-the real microproces- 33082 Azzano Decimo (PN
advanced software package integrates data acquisition, sor guarantees that all elec- Italy
high-speed data streaming to disk, data retrieval, and trical  and time parameters +39434640113
analysis. comply to spec. Fax: t39 434 631598

In addition to portable testing, DAQBOOK/lOO  is EMUR7 supports
ideal for remote data-collection applications such as EPROM devices up to 8 Mb #501
automotive and aviation in-vehicle testing. An expan-
sion chassis (Model DBKlO) provides connection for
multiplexers, thermocouple cards, a strain-gauge
interface, and more digital channels.

DAQBOOK/lOO  sells for $1295 and includes an AC
adapter, parallel-port cable, DOS and Windows drivers,
and DaqView software. The expansion chassis sells for
$150.

Industrial Computer Source
3950 Barnes Canyon Rd.
San Diego, CA 92121
:619) 677-0877 l Fax: (619) 677-0898 #500
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‘386SX MODULE port, as well as standard keyboard and speaker interfaces.
Ampro Computers is offering a new ‘386SX PC/104 An onboard,  bootable solid-state disk assures reliable

CPU module. The CoreModule/386-II  is based on Intel’s operation in harsh operating environments. Watchdog
25MHz ‘386SX CPU and timer and power monitor
includes two serial ports, up functions are also included
to 16 MB of DRAM as well as to ensure maximum system
onboard  NVRAM or a flash integrity in critical applica-
memory, solid-state disk. tions. The module operates
CoreModule/386-II  complies with approximately 3 W
with the newly adopted PC/ (active mode) of power and is
104 (V. 2) standard. Typical designed for use in extended
applications include medical temperature environments of
instruments, vehicular data o-70°C.
acquisition and control The CoreModule/386-II
systems, and portable test sells for $359 in quantity.
equipment.

The CoreModule/386-II Ampro  Computers, Inc.
contains the equivalent of a 990 Almanor Ave.
complete PC/AT motherboard Sunnyvale, CA 94086
and several expansion cards. (408) 522-2100
Onboard  I/O functions Fax: (408) 720-l 305
include two RS-232 serial
ports, a bidirectional parallel #502

don’
tlki ewindows?

don’tCarefop r&do
sorry. -

Then we just can’t help you. But if you’re looking for
a high-capacity, user-friendly EDA  system, we’ve got
just what you need. Say “hi” to EDWin,  your new
companion in Electronics Design. EDWin  features
seamless integration between modules, so you can
finally kiss the tedious concept of front- and back
annotation goodbye. EDWin  gives you all the tools
you’ll need, and is so user-friendly you can even
compile your own custom toolboxes. So easy to learn,
you’ll be up and running in minutes, EDWin  also
features nice pricing, starting at just $495.
Make your appointment with us today for the =/=,

EDWin  evaluation package. Welcome.
zz

Vision EDA Corp. e
995 E Baseline Rd. Ste 2166,
Tempe, Arizona 85283-l 336

Phone: I-800-EDA-4-YOU, or (602) 730 8900 :

Fax: (602) 730 8927 LIvI’iIN

EDWin  is a trademark of Norlinvest Ltd. Windows is a trademark of Microsoft Corp.
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IN~JD D~D~~NEWS
ANSI-FORTH up to 512 KB of battery- for data logging, robotics, or
DATALOGGER AND

in solving control
backed RAM, EEPROM, or machine control. Up to 33 I/ problems. A PC library of

CONTROLLER flash memory. In addition, a 0 lines, two RS-232 serial ANSI-Forth software
Saelig Company 40.MB miniature hard drive lines, an PC bus, real-time makes stepper-motor

introduces a tailor-made is available and 32 digital clock, and watchdog timer control, interrupt
data-collection system inputs may be monitored. make an economical, handling, real-time
that can be read by a PC An onboard  S-channel, versatile controller for a multitasking, data
and features removable lo-bit  A/D converter and 3- wide range of applications. logging, serial I/O,
card memory. The channel, 8-bit D/A con- Although small, it is packed keyboard, and LCD
TDS2020 Data Logger verter make the 4” x 3” with important features driving easy. When
Module adheres to the board extremely versatile which make it easy to use logging data in standby
official Forth language mode, it will run on 500
definition. Forth is an uA, so a 9-V battery lasts
easily-learned, high-level
language ideal for fast The TDS2020 sells
control and well-suited for $499 for the starter
to real-time embedded pack, which includes a
systems. comprehensive manual

The TDS2020 is a and PC software.
16.bit control computer

The Saelig Company
532 CMOS microproces-
sor running at 20 MHz. It
is available with 16 KB of
ANSI-Forth kernel, a full Fax: (716) 425-3835
symbolic assembler, 45
KB of program space, and

FOUR-PORT SERIAL BOARD B&B Electronics Manufacturing Co.
A PC-compatible serial card, featuring four serial P.O. Box 1040

ports in a single slot, is available from B&B Electronics. Ottawa, IL 61350
Each of the 3PXCC4A’s ports can be independently (815) 434-0846
configured for any I/O address and IRQ as well as RS- Fax: (815) 434-7094
232, RS-422, or RS-485 data protocols, allowing it to fit Internet: catrqstebb-elec.com
any serial application. #507

TD, RD, RTS, CTS, DSR, DCD, and
DTR port lines are supported by the RS-232
mode with each port using a buffered, high-
speed 1655012  UART. The 3PXCC4A has
interrupt-sharing capabilities and an
interrupt status register to increase through-
put in shared IRQ applications and the
number of available interrupts in a system.

The card features eight-conductor RJ-45
connectors. Prewired adapter kits (Models
MDB9 and MDB25) are available to convert
the RJ-45 to DE9 or DB25 connectors.

The 3PXCC4A sells for $209.95 and the
cable adapters are $10.95 each.

1
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CHIPSET FEATURES
ELECTRONIC GEARING

velocity contouring) along
with high-resolution, 16-bit

The MC1401 family of DAC output signals. The
motion chipsets  from PMD chipset  provides closed-loop
now supports up to two axes control using either a ND
of servo-based electronic loop or a PI with velocity
gearing. Electronic gearing feed-forward feedback loop.
can be used in numerous The MC 140 1 -series of
applications including motion chipsets  are
robotics, medical automa- available in several ver-
tion, coil winding, and sions, including one that
electronic camming. supports incremental

The required elements encoder input. Another
for electronic gearing are a supports absolute digital
master input-axis encoder and resolver-based input
and a servo-controlled slave axis. The position of the and a third version supports sinusoidal commutation at
master axis is continuously monitored by the chipset up to 15 kHz.
and is used to drive the slave axis after going through a The chipset  is made up of two 6%pin PLCC pack-
programmable X&bit  gear ratio. A special feature is that ages and sells for $99 in quantity.
the master axis can itself be servo controlled, allowing
the user to create tightly coupled multiaxis systems. Performance Motion Devices, Inc.

Other standard features of the chipset  include three 11 Carriage Dr. l Chelmsford, MA 01824
user-selectable profiling modes (S-curve, trapezoidal, and (508) 256-l 913 l Fax: (508) 256-0206 #508

Proven Solutions for Embedded C/Ctt  Developers

Development tools alone aren’t sufficient to
make your ‘186 or V-Series design a success. Here
at Paradigm, we have the tools, experience and

1
commitment to see your design through to
completion.
Start with Paradigm LOCATE and Paradigm DEBUG._

1
If, along the way, you stumble or hit a brick wall,
call Team Paradigm for help:

I

l Toll-free technical support
l 24-hour BBS support
l Paradigms customer newsletter
After all, life is tough enough without worrying
about your development tools. Choose Paradigm
and enjoy sleeping again at night.

11 I-800-537-5043 I

1 01995  Paradigm Systems, Inc. All rights reserved
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A Ctt Proaramming Tutorial
u

0 his article
should probably

be entitled “C++ For
Those Who Already

Know C,” but I’ll try to be general
enough for everyone. C++ was born at
AT&T in the 1980s. It was a set of
object-oriented extensions to C, an
already popular language. The change
from C’s largely procedural view to
C++‘s  object view marks a fundamen-
tal paradigm shift-one that changes
how all programs and all programming
problems are viewed.

Listing 1 demonstrates this
sweeping claim. As you can see, this is
a simple and perfectly correct portion
of a C program. But, what is wrong
with it?

The code is typical of C which
publishes DATA L I B as a public struc-
ture. The logic that manipulates its
members is sprinkled throughout
many different application programs. If
the DATA L I B structure was changed,
every program using it would need to
be altered or at least recompiled. With
this procedural framework, knowledge
is said to be distributed.

With C++, programs do not know
or have direct access to members of a
data structure. Instead, they call a
function, specifically known as a
member function or method, to
retrieve members of the data structure.

12 Issue #57  April 1995 Circuit Cellar INK



Listing 1-A typical C program relies on distributed know/edge about data structures.

DATALIB Dataiib;

while (getData(&DataLib))  i
printf("\nData  Received at: %d:%d %d - %s",

DataLib.Hour, DataLib.Minute, DataLib.Pressure,
(DataLib.Pressure  > DataLib.PrevPressure)
? "RISING" : "FALLING");

Although this represents cost in the
number of instructions generated to
achieve data-structure independence,
it limits the dependencies to a few
well-defined interfaces. The interfaces
provide access functions to some of
the data in the private section.

It isn’t generally true that perfor-
mance degrades overall by the object
model. In some cases, the model
allows for code generation that
increases a program’s performance. I’ll
sprinkle advice about the type of code
C++ generates throughout this article.

Note: Data independence is not
limited to C++. The same effect can be

created using C or assembly language.
A text file, en c a p s c . t x t (available on
the Circuit Cellar BBS), describes how
to achieve the same effect in C.

Although I’ll talk about how the
switch to C++ represents a shift in
thinking, I cannot provide a thorough,
profound, and well-developed tutorial
of a language as complex as C++
within the confines of a single article.
At best, I can provide sufficient
examples of the salient points of C++.

I’ll begin with a practical example
emulating an answering machine’s
behavior. Because it is a system with
controls, inputs, and outputs, it offers

Listing 2-h  encapsulates data sfructure  and behavior as shown in fhis Da t e class.

class Date i
public:
Datecint m, int d, int y); // constructor
void DisplayO; // display function
boo1 SetDate(int m, int d, int y); // set date
-DateO; // destructor

private:
int month;
int day:
int year:
char holiday[301;

1 ;

Listing 34iere  are examples of how (and how not) to use the Da t e class.

void main0
i
Date startDate(7, 20, 1969); ii declare a Date
Date endDate(99,  999, 9999): // an invalid Date

startDate.month = 6: // this is illegal
startDate.SetDate(?,  20, 1994); // set a date

startDate.DisplayO;
endDate.DisplayO;

1

similar types of problems to those
found in most embedded applications.

However, let’s start with the
basics.

AN INTRODUCTION TO CLASSES
In C, a data structure would be

defined and used as:

struct Date 1
int month;
int day;
int year;

I ;

struct Date aDate;

aDate.month = 7;
aDate.day = 20;
aDate.year = 1969;

Just to review some basic C, memory
is allocated for a structure called
aDate, which is of type Date.

In C++, a programmer declares a
class, which has a similar appearance
(and to some extent, a similar func-
tion) to a data structure. A class
declares both data and the functions
that can access this class. These
function members are known techni-
cally as methods. Listing 2 shows how
a class is defined. Note that comments
in C++ begin with two slashes and end
with a carriage return.

The class definition shown in
Listing 2 contains public and private
sections. Anything listed publicly is
accessible from anywhere or any
program. The functions and variables
from a private section can only be
accessed from functions defined in the
Date class.

In this example, the variables
month, day, and year are private and
can only be accessed by the functions
declared in Da t e class. The functions
DisplayandSetDatearepublicand
may be called from anywhere. They
control access to objects in the class.

The functions Da t e and -Da t e are
known as constructors and destruc-
tors, respectively. They are called
automatically when an instance of the
class is created or destroyed. These
functions serve an invaluable purpose.
Because of the constructors, data in a
class can be initialized when created
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and allocated resources can be freed
when destroyed.

Listing 3 demonstrates how a
program uses a class. Two Da t. e
objects are instantiated (created):
startDate  and endDat.e.  Each
declaration causes the constructor, the
Da t. e function, for this class to be
called. The constructor initializes the
object. Unlike other functions,
constructors and destructors cannot
fail and cannot readily report errors
even if the parameters passed are
wrong! Contructors  have no way of
returning errors. Because of this, it is
imperative that constructors always
initialize an object to a safe state, even
when illegal parameters are passed.

Thestatement startDate.month
is illegal because month is a private
member of the Date class and cannot
be directly accessed. One solution is to
add a Set MO n t h method. As defined so
far, a date can be set or displayed by
using its public functions Set Da t e
and Display.

CONSTRUCTORS AND
DESTRUCTORS

Instantly, a C programmer can
recognize the value constructors and
destructors provide. With them, an
object always has the opportunity to
properly initialize prior to its use.
This, as with other C++ features, is far
more important when an object is
complex, containing linked lists and
substructures. Constructors and
destructors are part of the object model
and are enforced by the language itself.

A typical constructor appears in
Listing 4. The syntax Da t e : : Da t e
identifies this as a function belonging
to the Date class. The class name
appears to the left and is separated
from the function or method name by
double colons. Constructors always
have the same name as the class to
which they belong.

There can be, in fact, several
constructors defined, each supporting
different arguments types. This is a
feature of C++ functions and methods
and is not limited to just constructors.
C++ matches function calls based on
the argument list and not just on the
function name. This way different
member functions can be defined with

14 lssue#57April1995 Circuit Cellar INK

Listing 4-Conslructorsinitial~ze  data  but cannot explicitly return errors

// Constructor
Date::Date(int  m, int d, int y)l
if Cm < 1 1) m > 12) // if date is illegal

m = -1: // indicate by a -1 in month

month = m;
day = d;
year = y;

the same name, but have different for any argument. When the argument
arguments. Listing 5 offers an example is missing from a call, the default
of this capability. value is automatically inserted.

It is also possible to avoid having In Listing 6, the string argument
to declare functions for every permuta- in the Da t e constructor is defined to
tion of calling parameters because C++ take on a default value of null. If the
supports default parameter values as string argument is not passed during a
part of the calling convention. A call, a null value (the default value
default parameter value can be defined declared in the constructor’s defini-

Listing 5-A class may have many conskuctors,  depending on the arguments passed

class Date i
public:
DateO;
DateCint m, int d, int y);
Date(int m, int d, int y, const char *n);

private:
int month;
int day:
int year:
char holiday[301;

i;

// constructor with no arguments
Date::DateO {

month = day = 1;
year = 1994:

// constructor with mmlddlyy arguments
Date::Date(int  m, int d, int y) 1

month = m;
day = d;
year = y;

// constructor with holiday text argument
Date::Date(int  m, int d, int y, const char *n) (

DateCm,  d, y);
strcpy(holiday, n);

void main0

Date aDate:
Date bDate(7,  20, 1994);
Date cDate(l,  1, 1994, "New Year's Day");



tion) is supplied during the call.
Default parameters are not limited to
constructors.

Finally, you almost always need to
create this next special case of a
constructor for all of your objects. It
would be highly desirable to create a
new object by passing it a reference to
an already existing object. For ex-
ample, it is desirable to be able to
initialize a date object with the value
of another date object.

This type of constructor is called a
copy constructor because the result is
that the new object becomes a copy of
the referenced object [see Listing 7).

Constructors are optional. If no
constructor is defined, a dummy
constructor is automatically created by
the compiler. The dummy constructor
is called but does nothing, not even
initialize the data structure’s contents.
This dummy constructor’s function is
necessary for several reasons. How-
ever, it is mostly important for
maintaining consistency in calling
conventions when calling C++ func-
tions from C or assembly language.

A destructor is called when a
specific instance of a class is no longer
within scope (i.e., when it will no
longer be necessary, which is typically
when a function terminates). Destruc-
tors are also optional and a dummy
constructor is created by the compiler
when it is not declared. A destructor
has the same name as the class to
which it belongs and is preceded by
the - symbol, as in -Date.

CREATING CLASSES
DYNAMICALLY

As with any C program, when an
object is declared inside the scope of
braces, allocation for it is typically
made on the stack. The life of the
object is only within the execution of
the code in the braced section. Objects
can also be instantiated within a
program’s global section or declared
dynamically.

In C, dynamic allocation is
managed through use of the ma 11 o c
and free functions. Space is allocated
from the heap. These functions still
work in C++, but they will not call the
corresponding constructor and destruc-
tor. Instead, objects in C++ can be
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Listing 6-Optional  arguments may be omitfed on any Ctt  function.

Date::Date(int  m, int d, int y, const char *n = NULL) i
month = m;
day = d:
year = y;

if (n)
strcpy(holiday, n);

1

I void main0
I
Date bDate(7,  20, 1994); // NULL will be added
Date cDate(l,  1, 1994, "New Year's Day");

I

dynamically allocated using two new if the memory cannot be allocated.
operators-new and de1  ete. Listing 8 Because a pointer is returned, it must
demonstrates how these operators be used as a pointer. In C++, just as in
force the constructor and destructor to C, members of a data structure are
be called. accessed by the - > notation when

The new operator returns a referenced by a pointer. The de 1 et e
reference to an object after allocating operator calls the object’s destructor
memory and calling the object’s before it frees the memory to the free
constructor. A null pointer is returned store.

I Listing 7-Every Ctt class shouldalso  contain  a Copy  constructor.

class Date I
public:

Datecint  m, int d, int y. const char *n);

I Datecconst Date &someDate);
1 :

// copy constructor
Date::Date(const  Date &someDate) {
month = someDate.month;
day = someDate.day;
year = someDate.year;

I

I void main0
I
Date aDatei7,  20, 1969):
Date bDate(&aDate);

1

I Listing &new and de 1 e t e operators execute the constructors, but ma 1 1 o c doesn’t.

Date *mDate;
Date *pDate;

mDate  = (Date *)malloc(sizeof(Date)); // no constructor call

pDate  = new Date(7,  20, 1994);
pDate->  DisplayO;

// constructor call

delete pDate;



Listing 9-new and de 7 et e can be used with array definitions

void main0

Date anArray[ZOI;
Date * ap;

// constructor called 20 times

ap = new Date[lOl: // constructor called 10 times
ap[il.SetDate(l, 2, 94); // item 5 referenced

delete [I ap: // deletes entire array

The new operator is not limited to
allocating classes or objects. It can
allocate any defined type such as

int * pint;
pint = new int;
delete pint;

As you would expect, objects created
with n e w and de 1 et e operators are
persistent. They are not automatically
deleted at the end of a function or even
at the end of a program. (As a tangent,
the behavior at the end of a program
depends on the behavior of the
operating system. In DOS and UNIX,

conventional memory allocated by a
program is automatically freed when
the program terminates. In Windows,
global heap memory remains. ]

As Listing 9 illustrates, it is
possible to create an array of objects.
The constructor (and eventually the
destructor) is called once for each
element in the array of object defini-
tions regardless of whether an object
was created by a declaration or by the
new operator.

Notice that to free the entire array
you must use the symbol [ I in the
de 1 et e statement. On the surface, it
might seem logical to presume that

Listing 104% simplifies this type of C program. Special cases are handled by subclassing

struct Salaried j
float salary;

/ ;

struct Hourly j
float rate;
float hours:

I:

struct Employee 1
int paytype;
char employeeName[301:

union {
Hourly hourly_pay:
Salaried salaried-pay:

I u;
1 :

float ComputePay(struct  Employee *emp)

switch (emp->paytype) i
case HOURLY: i
Hourly *p = &(emp->u.hourly_pay);
return p->rate  * p->hours:
1

case SALARY:
return emp->u.salaried_pay.salary:

f (CONNECTS  ro fwb23$
ADC16 A/D CONVERTER* (16 channef/S bit)..$69.96  ;
ADCSG AID CONVERTER* (6 chsnneVl0  bH).$124.90  ’
Input voltage,  amperage, pressure, energy usage,
joysticks and a wide variety of other types of analog
signals. RS-422/RS-466  available (lengths to 4,000’).
Call for info on other AID configurations and 12 bit
converters (terminal block and cable sold separately).
ADGBE  TEMPERATURE INTERFACE’ (8 ch)..$l39.95
Includes term. block & 6 temp. sensors (-40’ to 146’ F).
STA-6 DIGITAL INTERFACE* (6 channel).........9  99.95
Input on/off status of relays, switches, HVAC equipment,
security devices, smoke detectors, and other devices.
STA-SD TOUCH TONE INTERFACE’................ $ 134.90

2 Allows callers to select control functions from any phone.
* PS-4 PORT SELECTOR (4 channels RS-422)....$79.95

Converts an RS-232 port into 4 selectable RS-422 ports.
CO-495 (RS-232 to RS-422lRS-485 converter)......$44.95

‘EXPANDABLE...expand  your interface to control and
monitor up to 512 relays. up to 576 digltal  inputs. up to

Y 126 analog inputs or up to 128 temperature inputs using
the PS-4. EX-16, ST-32 & AD-16 expansion cards.

. FULL TECHNICAL SUPPORT...provided  over the
telephone by our staff. Technical reference & disk
including  test software & programmlng  examples in
Basic, C and assembly are provided with each order.

HIGH RELIABILITY...engineered  for cont!nuous  24
hour industrial applications w&h 10 years of proven
performance in the energy management field

CONNECTS TO W-232, RS-422 or RS-485...use with
IBM and compatibles,  Mac and most computers All
standard baud rates and protocols (50 to 19,200 baud).
Use our 800 number to order FREE INFORMATION

PACKET. Technical Information (614) 464.4470.

24 HOUR ORDER LINE (800) 842-7714
Visa-Mastercard-Amerlcan Express-COD

lnternatlonal & Domestic FAX (614) 464-9656
Use for informatlon. techmcal support&orders

ELECTRONIC ENERGY CONTROL, INC.
360 South Fifth  Street, Suite 604

Columbus, Ohlo  43215.5436
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class Employee 1
public:

DisplayNameO;

private:
char employeeName[301;

1 :

class Hourly:public Employee I
public:

. .
float ComputePayO:

private:
float rate:
float hours:

I :

class Salaried:public Employee i
public:

.
float ComputePayO;

private:
float salary;

1 :
L

Listing 1 l--The C code in  Listing IO collapses info this much simplified Ctt  program.

would be confusion over whether a

the C++ would know that an array was

program was referencing the lead
object of an array or the entire array.

declared and would therefore auto-

The [ 1 syntax specifically states that
the entire array can be freed.

matically  remove the array. However,
the language designers felt that there

uncommon to find this type of code in

function must test for data types.

C (see Listing 10).

Adding a new type becomes a time-
consuming task of locating all cases
where the code is affected. It is not

Instead of using unions and adding
new data types, you should create
different objects. New salaried types
are supported by adding new object
definitions. See Listing 11 for how the
above listing would appear rewritten
in C++.

INHERITANCE AND
POLYMORPHISM

Inheritance and polymorphism are
areas where the power and elegant
beauty of C++ hold substantial advan-
tage. Used effectively, they can reduce
a program’s complexity, and with it,
the size of the code generated. Inherit-
ance is used to define an object’s be-
havior as a superset of another object.
Polymorphism takes advantage of
method naming to make dissimilar
objects behave logically alike. One
cannot fully appreciate the effect of
polymorphism without an example.

In C, the u n i on construct identi-
fies differing types of data that might
be carried within a data structure.
However, again, this is an example of
where knowledge about how to handle
this data structure is distributed. Each

The classes Sa 1 a r i ed and
HO u r 1 y both inherit the definitions of
the Emp 1 oyee class. That inheritance
is established by the syntax c 1 a s s
Hourly:public Employee.Notice
that each pay-type class has defined its
own compute-pay method. That
makes this code possible:

Salaried * s = new Salaried

( 1;. . .
Hourly * h = new Hourly

( 1;. . .

s-> ComputePayO;
h-> ComputePayO;

This example is not as powerful as
the example which follows. However,
it should be sufficient to convince you
of the potential of compartmentaliza-
tion. By relegating the code to specific
objects, there is no longer a necessity
for special-case code. Here is a more
powerful example of the same code:

1
int k;
Employee *Ptr[201;
Salaried sEmp("A1  Jones”);
Hourly hEmp("John  Doe");

Ptr[Ol = &sEmp;
PtrCll = &hEmp;

for (k = 0; k < max; ++k)
Ptr-> ComputePayO;

i

You can use a pointer to an
EmployeetopointtoaSalariedor
Ho u r 1 y employee. You can pass these
pointers to functions and/or save them
in data structures and arrays. Because
they are pointers, they may be created
dynamically. Once you have a pointer,
you no longer care about its type as
long as they share a common subset of
method references.

The ComputePay  methods would
appear as:

float Salaried::ComputePayO

i
return salary;

I

float Hourly::ComputePayO

1
return rate * hours;

I

The current object reference is
passed to ComputePay.  This reference,
known as the t h i s argument, is taken
from the object reference on call and is
useful in some instances. For example,
a method could return the current
object reference by using the pointer:

Employee &
Employee::SomeFunctionO

i
return *this;

i
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OPERATOR OVERLOADING
Operator overloading permits the

C++ compiler to change the behavior
of most operators to fit the semantics
of the objects on which they operate.
For example, we presume that the
addition operator works on integers
and real numbers. However, we could
define a F r a c t i on s class that would
behave as follows:

Fracti ons a(l, 2);
Fract ons b(1, 4);
Fract ons c ;

c = a + b; II answer: 3/4

I won’t go into greater detail on
operator overloading here. However, I
have posted samples of operator
overloading in the BBS files. Because
C++ permits overloading, it can
redirect output as is shown in the next
section.

tout  AND ci n
co u t and c i n are standard stream

controls for C++. cou t and c i n behave
much like pri ntf and scanf  do in C.
YOU could use it by:

tout << "Hello," << 2 <<
"the World! II

It prints “Hello, 2 the World!” on
the stream device, which is typically
the monitor. co u t is used prevalently
in C++, although pri ntf and fpri ntf
functions would work as do all of the
other C function library functions. The
advantage is that it is no longer
necessary to embed %s and %d in the
output statement. Someday, p r i n t f
will appear as arcane as punched cards.

c out is defined as an

Listing 12-Operator  overload redirects stream input or output.

ostream& operator<<(const  char *I;
ostream& operator<<(const  unsigned char *)
ostream& operator<<(const  signed char *);
ostream& operator<<(char):

ostream& operator<<(short);
ostream& operator<<(unsigned  short):
ostream& operator<<(int);
ostream& operator<<(unsigned  int):
ostream& operator<<(long);
ostream& operator<<(unsigned  long);
ostream& operator<<(float);
ostream& operator<<(double);
. . .

ostream& ostream::operator<<(double  4) 1
static char asciiL321;
gcvt(g,  15, ascii);
return ascii;

ostream& ostream::operator<<(signed  char c) i
return operator<<((unsigned  char) c);

consider the following. Presume that
an object is defined of type Log. It
should be possible to use overloading
to redirect output to this object:

Log logfile("abc");

logfile << "Hello," << 2 <<
"the World!\n"

Although device redirection
already exists, a Log object can be used
to record a great deal more state
information about your program.
Finally, consider the same effect with
a Ma i 1 object:

Mail mail("username",  "1-508.
555-1234");

mail << "Hello, Mike:\n\nHere
is my answer" << anytext <<
"signed: \n"

Having established some of the
basics, we need to move on to a more
real-world example.

A (MORE) REAL-WORLD
EXAMPLE

This example is not of a real
answering machine, but is a contrived
example demonstrating design prin-
ciples. Although everyone knows the
basic operation of a telephone answer-
ing machine, converting that knowl-
edge into C++ can prove to be a
challenge for beginners. Like learning
to drive a car, it’s different when you

object of class o s t r e am,
definedin ostream. h in
your favorite compiler. To
support this type of, function-
ality, the << operator must
be overloaded for each
acceptable data type. The
output stream code eventu-
ally calls some code that
converts the received data
type to ASCII (Listing 12).

Arcane and off the point
as all of this might seem, Figure I-Code on the BBS describes the behavior of this answering machine.
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have to navigate traffic.
A prototype diagram of

an answering machine is
shown in Figure 1. In
addition to the announce-
ment and recording tapes,
the system consists of a
volume slider and the
buttons: On/Off, Play/Pause,
Save, Erase, Record, and
forward/reverse arrows. A
message display shows the
number of messages re-
ceived.



Listing 13- 1 as t A c t ion is an object reference and can be used to call member functions.

Button * lastAction;
. .

lastAction  = &record;
.

if (playPause.IsButtonDownO)  i
lastAction->RewindO: // either tape
lastAction->PlayO; // either tape

problem. So, we’ll just assume that we

Although this is a hardware-
independent solution, it is only

can make a function call to either C or

because no hardware has been devel-

assembler that will execute require-

oped-mind you, the 8051 would

ments such as enable recording.

make an excellent chip to solve this
design. I hope this introduction to C++

t i on object reference. Listing I3

helps you understand some basic C++

demonstrates how this is handled.

principles that will eventually moti-

Well-crafted C++ programs give
you a much better sense of the coding

vate you to learn the language.

style and simplistic beauty of the

The code for the system consists
of one main loop waiting for some-
thing to happen such as the phone
ringing or the Play/Pause button being
pressed. An object is defined for a
generic Butt. o n. The purpose of this
object is to perform hardware-depen-
dent functions such as reading the
current button state.

Button is super classed by two
more refined buttons: Ho 1 d B u t t o n
and Toggl eButton. The presumption
is that the physical button has only an
up or down state. Toggl eButton
treats the button as if it toggles back to
the up position after its value is read.
It does this by ignoring its physical
state if it hasn’t changed since the last
read.

To read the value on an object
such as a button, you could ask for its
value. However, it may be smarter and
more removed from the physical
environment to ask whether the
button is up or down:

if (playPause.IsButtonDownO)
i . . . I

The product’s behavior demands
rewinding and replaying either the
greeting or recording tapes depending
on which buttons are pressed. This is
handled by maintaining the 1 a s t Ac

Finally, both Borland and Micro-
soft have excellent development
systems with integrated environments
that you can play with. But regardless
of what software package you have,
remember there is no better and
quicker way to learn than to just start
coding. 0

M i k e  Podanof fsky  has worked for  over

20 years in computers, specializing in
personal computers and database
systems. He is currently working at
Lotus Development on major data-
base products. He is author of Dissect-
ing DOS, published by Addison-
Wesley. He may be reached at
mikep@world.std.com.

Software for this article is avail-
able from the Circuit Cellar BBS
and on Software On Disk for this
issue. Please see the end of
“ConnecTime”  in this issue for
downloading and ordering
information.

401 Very Useful
402 Moderately Useful
403 Not Useful

8051 Family Emulator is
truly Low Cost!

The DrylCE Plus is a modular emulator
deslgned  to get maximum flexibility
and functtonality  for your hard earned
dollar. The common base unit
supports numerous 805 1 family
processor pods that are low in price.
Features include: Execute to
breakpoint, Line-by-Line Assembler,
Disassembler, SFR access, Fill, Set and
Dump Internal or External RAM and
Code, Dump Registers, and more.
The DrylCE Plus base unit is priced at
a meager $299, and most pods run
only an additional $149. Pods are
available to support the 8031/2.
8751/2,8OC154,8OC451,8OC535,
8OC537. 8OC550,  8OC552/62,
8OC652,  8OC851,  8OC320  a n d
more. Interface through your serial
port and a comm program. Call for a
brochure or use INTERNET. We’re at
info@hte.com or ftp at ftp.hte.com

Our $149 DrylCE model is what
you’re looking for. Not an evaluation
board - much more powerful. Same
features as the DrylCEPlus, but limited
to just the 803 l/32 processor.

jo, if you’re still doing the U V
Waltz (Burn-2-3, Erase-2-3). or
debugging  through the limited window
3OM emulators give, call us nowfor
-ellef! Our customers say our products
3re fl the best Performance/Price
‘mulators  available!

HiTech Equipment Carp

H_ ;;%z_z~Y*,

S ince  1983

- (619) 566-1892 -
,T pi

Internet e-mail: info@hte.com
Internet ftp: ftp.hte.com
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calling for the high precision and
dynamic range of floating-point
arithmetic, you could use software
emulation in place of an external math
coprocessor.

Software design issues also affect
the performance of the system. Choice
of language, compiler, and memory
model have a direct impact and must
certainly be considered. An even more
important consideration is how well
the software is designed. If it doesn’t
use the most efficient algorithms and
data structures, it could prove to be
one of those applications that brings
even the fastest computer to its knees.

To counteract the dearth of
relevant documentation, this article
offers a detailed look at the perfor-
mance tradeoffs of the Intel ‘186
microprocessor family. Specifically,
we’ll be looking at the Intel ‘186EB
and ‘188EB, which are used for all the
timing measurements. While most of
you likely use a different microproces-
sor family, many of the performance
issues cross architectural boundaries.
With a little imagination, you can
apply these findings to your own
design circumstances.

Rick Naro

Characterizing
Processor Performance

b

V

icroprocessor
vendors often

provide a great deal of
’ documentation for their

products. There are data sheets, user
manuals, application notes.. . . Con-
spicuously missing, however, is useful
information on optimizing processor
and system performance.

Even if you design your embedded
system hardware to run flat out and
optimized performance is not a
problem, there are still plenty of
software design issues to consider.
And, if you need to minimize the cost
of a design-who doesn’t in a high-
volume embedded application-
understanding the relationship
between the CPU bandwidth, memory,
peripherals, and software development
tools is key to success.

The choices of cutting perfor-
mance to achieve a lower design cost
are many. You might vary the size of
the microprocessor external bus paths
to eliminate devices. You could add
wait states and use slower memory

BUS BANDWIDTH
The Intel ‘186-family  consists of

16-bit microprocessors with 16.bit
internal data paths. However, when
the first family members were intro-
duced, Intel prepared two versions-
the 8086 and the 8088.

For those who remember back to
198 1 when IBM was designing the first
PC, you may recall that IBM made a
conscious choice to use the 8088. Its
use of an 8-bit  external bus reduced
hardware costs. Little has changed
since then. You still have a choice of
‘186 and ‘188 family members where
the only difference is the use of 16. or
8-bit external data paths.

As in 1981, a system designed
around the ‘188 is less expensive since

devices which cost less
than higher-speed
devices. You could run
the system clock at a
nonstandard frequency,
perhaps saving the need Table l--Even though the d-bit bus of the ‘188 is only half as wide as the

for an additional crystal
16-bit bus on fhe ‘186, the former achieves better than 60% of the /after’s

oscillator. In applications
performance. Both systems are idenfical  in a//  other aspects. A//  times are
in milliseconds.
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EPROM Wait States RAM Wait States Execution Time Relative Performance
0 0 17.965 1.000
0 1 i 8.748 0.958
1 0 20.157 0.891
1 1 20.968 0.857

Table 2--The high ratio of instruction fetches to data operafions  in a If?-bif system shows the EPROM address
space is more sensitive to waif states  than the RAM address space. Tests were performed on a If?-MHz  80Cf86EB
and a// times are in milliseconds.

only half the number of memory
devices (EPROM and RAM) are
required. Further savings are gained by
eliminating the extra data bus buffer.

If things were simple, we might
expect the ‘188 to be exactly one half
the speed of the ‘186 because of having
half the bus bandwidth. But even back
then, Intel built parallel CPU and bus
interface units into the devices,
complicating analysis. By running
some test code on both processors, we
can roughly determine the penalty of
designing with an S-bit  external data
bus (see Table 1).

eral device. Normally, you want to run
with zero wait states since this
maximizes the system performance.
But, in systems where excess band-
width is available, designing in slower
devices and inserting wait states is an
acceptable compromise to reduce the
cost of the system.

Since there are at least two
distinct address spaces, the question of
where to insert the wait states comes
up. We can use the EPROM address
space for code and

This result shows that the 8bit
external version has nearly two thirds
of the performance of the 16-bit
version, which is considerably more
than my initial speculation. Besides
the separate CPU and bus units, both
the ‘186 and ‘188 use an instruction
queue to prefetch instructions-six
bytes for the ‘186 and four bytes for
the ‘188. On the surface, this seems to
bias the results toward the ‘186
because of more instruction queue
hits.

constant data and
the RAM address
space for read/write
data and the stack.
To determine which ’
option is better, we

Table 3-Using the 80Ci86E5,  the effect of DRAM refresh on a 16-bit  system

need to know the
running at 16 MHz  is quite small.  Whether or not fhe DRAM is used in a system is
determined by the additional hardware cost of supporting lower-cost DRAMS.  A//

impact on through- times are in milliseconds.

put by inserting wait
states separately into each address
space and measuring the result.
Memory devices can then be chosen to
deliver a specific level of performance
while reducing the memory device
cost.

The solution to the problem lies
in the bus bandwidth used rather than
the available bandwidth. In the case of
the ‘186, the bus interface unit is
sitting idle more than 30% of the time
while the ‘188 is chugging away at

while theover 90% bus utilization. So,
‘186 bus unit is sitting idle,
the ‘188 is busy catching up.
Add more bus usage through
DRAM refresh cycles, DMA
cycles, and external bus
masters, and the 16-bit
external bus looks like a
much better solution for
higher-end systems.

From Table 2, it is clear that the
penalty for adding wait states to the
RAM address space is only half that for
EPROM address space. These findings
make sense since the processor is
constantly executing instructions, but
not every instruction makes a refer-

I
Operation Emulation 6OC167 Relative Performance perform refresh on a
Add float 226 17 13x
Add double 241 23 10x

frequent basis. For instance,

Multiply float 275 17 16x
typically, there are 256

Multiply double 292 23 13x refresh cycles every 4 ms.
Divide float 287 21 14x As you can see in Table

I sin(float) sqr-t(float)  Divide double 306 977 518 27 68 41

MEMORY WAIT STATES
Wait states are used to

match a fast processor with
a slower memory or periph-

ence to the data address space. With
this knowledge, it becomes possible to
optimize the wait states for each
address space in the system with the
cost and benefit known in advance.

DRAM REFRESH
We can also use dynamic RAM

since we know the cost per bit is
much less than for static RAM of the
same density. For this scenario, we
need to find the impact on perfor-
mance of adding the additional refresh
bus cycles to the normal mix and see
what effect this has on the system.

While DRAM refresh has a low
impact on the throughput, the lower
cost of DRAMS must also be weighed
against higher design costs associated
with the additional hardware needed
for RAS/CAS generation and timing.

Processor Execution Time Relative Performance
Refresh enabled i a.085 0.988
Refresh disabled 17.867 1.000

Some microprocessor vendors have
recognized this and have optimized the
external bus for a direct DRAM
connection (e.g., NEC V35).

From my experience with bus
utilization, I expect a 16.bit bus to be
affected less than an 8-bit  bus. A 16-bit
bus has more idle bus bandwidth that
can be handed over to the refresh
controller without any impact on
performance.

Still, there will be some impact
since DRAM-refresh bus cycles have

priority over other bus
1 cycles and we need to

I

3, the penalty for DRAM is
not bad, but there is one

I caveat to consider. The

Table 4-Here are common floating-point operations executed using an 80C187 math
refresh overhead is fixed by

coprocesser and Borland’s Ctt  4.5 mafh coprocessor emulation. While hardware wins the DRAM memory devices
hands down, applications performing limited floafing-point  arithmetic can be we//- and is independent of the
served by fhe emulafed  variety. All times in microseconds. microprocessor. As you
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slow the processor down or
reduce the available bus
bandwidth, the same
number of refresh cycles
must be performed in the
same refresh interval. So, if

/

YOU cut vour bus band- Table B-These are the most common Id-bit  real-mode memow models encountered,
width, expect to see the in a real-mode IBM  PC or compatible. Tiny and huge memory models are left out as

overhead of DRAM refresh
being unnecessary for the typical embedded system.

increase.

FLOATING-POINT
PERFORMANCE

Although the cost of floating-point
hardware continues to drop, the
decision to add a hardware math
coprocessor is still an expensive
proposition in any design. The alterna-
tive is software emulation of the math
coprocessor. While this is more cost
effective, it requires the availability of
excess CPU throughput to take over
from the missing hardware.

On the surface, the high floating-
point penalty may appear insurmount-
able, but in the real world, an embed-
ded controller doesn’t spend anything
close to 100% of its time on floating-
point calculations. To decide if a
software coprocessor can meet the
system requirements, we need to

The penalty for having
a large code address space is
insignificant. But, the large
data address space costs 5%
of the total bandwidth.

The moral of the story
is to stick to the small or
medium memory models.

outside this article’s scope, let’s look
at what we can control.

The Intel 80x86 microprocessors
are famous (or infamous) for their use
of segmented address space. Compil-
ers, such as Borland C++, support a
variety of memory models depending
on the need to access 64 KB or 1 MB of
the code and data address spaces. For
those not familiar with the Intel
architecture, four memory models are
common. As you can see from Table 5,
there are differences a design can
exploit.

Use far pointers selectively when
access to more than 64 KB of data is
required.

UNDERSTANDING
INTERRUPT LATENCY

Recall in the section on memory
wait states, we saw that the EPROM
address space was more sensitive to
wait states than the RAM address
space. But, unlike wait states, the
overhead for a 1 -MB code address space
is only limited to the CALL and RET

Interrupt latency involves the
delay in responding to an event and
has several components-the time to
complete the current instruction, the
time to save the processor state on the
stack, and the time to get to applica-
tion code where the interrupt is finally
serviced. The balance of the time spent
servicing the interrupt is the interrupt
service time.

Although the first two delays are
out of our hands, the time it takes to
get in and out of the interrupt service
routine is ripe for optimization. It is
important to know just what the

Memory Model
Small

Medium

interrupt latency of a high-
level language is so you can

Execution Time Relative Performance
16.807 1.000 decide if an assembly lan-
16.905 0.994 guage routine improves

reflect this additional
overhead.

know the difference in
performance between the two
implementations using the
most common floating-point
operations.

In addition to the
comparisons between the
floating-point operations in
Table 4, it would help to
know how much slack CPU

Compact 17.735 0.948
Large 17.869 0.941

Table 5-Comparing  the relative performance of the same application in each
memory mode/ on a S-bit  system, the largest performance penalty comes from
the use of far data pointers. A//  times are in milliseconds.

performance.
Modern compilers like

Borland C++ and Microsoft
Visual C++ perform a great
deal of optimization. But both
compilers always push the

entire processor state on the stack,
even if only a fraction is actually used.

is available. A system running near
full capacity is not a candidate for a
software emulation. However, some-
times spending money on a faster CPU
and more memory to increase the
available throughput to handle the
software emulation can be the winning
strategy that results in overall system-
cost reduction.

COMPILER MEMORY MODEL
Enough on hardware! What about

software design decisions that affect
application performance?

Of course, the biggest contributors
to efficient software are algorithms
and design. Since these issues exist

instructions using the longer segment
and offset formats. However, predict-
ing the behavior of the data address
space is another matter and is ham-
pered by complexity.

Local variables allocated in
registers or on the stack are always
accessed without penalty as is most
statically allocated data. The penalty
arises when far pointers are used. Not
only are more pushes and pops
required to pass parameters, the actual
accessing of the data also takes longer
with the need to load a segment
register. From Table 6, we can see that
the results of running the same
application in each memory model

On the test ‘186EB system, a C++
interrupt handler with a single I/O
command takes a total of 15.4 us to
execute. If the same code is rewritten
in assembly language, the time can be
reduced to just 7.7 us. It is worth
noting that the assembly language
advantage is temporary. More complex
interrupt handlers require you to save
more of the processor state, which
eventually equalizes the overhead.

Still, in my opinion, great assem-
bly language programmers have an
edge over the compiler in writing
optimized code.
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HEAP PERFORMANCE
Many embedded-system

developers try not to think about
heaps. They avoid them as much
as possible due to their nondeter-
ministic  run-time requirements.
While fixed-size allocation speeds
up the time required to allocate
and deallocate memory, the
hottest trend toward object-
oriented programming in embedded
systems is likely to force programmers
to consider the effects of heaps.

Unlike C, C++ includes dynamic
memory allocation in the language
specification, so it is difficult to avoid.
While it is possible to create a C++
application using only statically
allocated objects or objects created on
the stack, knowing that the new and
delete operators are available solves
some thorny development issues. If
you plan to use these functions, it is
best to know in advance what the best,
worst, and average times for heap-
based objects is.

For a simple test, you can allocate
and delete array objects from the heap
in a random fashion, measuring the
overhead over a period of time. Based
on this information, the software
design optimizes performance by
preallocating  time-sensitive memory
and lets the noncritical code take
advantage of the efficiency of dynami-
cally allocated memory. To test
system performance, 500 blocks of
random size are randomly allocated
and released.

From the results in Table 7, it
appears that freeing up dynamically
allocated memory is more efficient.
This is as it should be since the block
size plays no role, unlike when the
block is first allocated. While the new
operator’s average behavior is not far
from the best-case behavior, its worst
case sticks out like a sore thumb.

While one may not be able to
avoid a heap, it certainly is possible to
live with one. Third-party replace-
ments for the Borland and Microsoft
dynamic memory management
packages are available with options for
fixed-size allocation, multiple heaps,
and the ability to catch heap errors.
Even the C++ language recognizes that
you might not be able to live with the

enough that they can benefit any
hardware designer or software

Table 7--Heap-based  dynamic memory allocation is not exact or
predictable due to the use of/inked lists. Shown here are the best, components inside and out be-
worst, and average execution times  to allocafe  and free memory in a
Ctt application which randomly allocates and frees objects from the

fore making any design assump-
tions. That way, both wild and

heap. All times are in microsecbnds. educated guesses can be trans-
formed into sure bets. And, the

resulting design will certainly be a
success. q

default memory allocators, so they
offer a custom memory allocator more
suitable for a real-time system. As a
last resort, you can simply avoid the
use of the new and de1 et e operators.

PUTTING IT ALL TOGETHER
I covered many of the most

accessible hardware and software
optimizations that impact system
performance. Unfortunately, the
specific data provided may be of little
use unless you’re one of those lucky
souls designing with Intel and AMD
‘186-family  processors or the NEC V-
series microprocessors.

Nonetheless, the design optimiza-
tion techniques are general purpose

Rick Naro is president of Paradigm
Systems, a developer of embedded
system development tools for the
Intel/AMD 186 and NEC V-series
microprocessors. In the past, he
designed hardware and wrote applica-
tions for embedded 80x86 systems. He
may be reached at 73047.3031@
compuserve.com.

404 Very Useful
405 Moderately Useful
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#lUY

OUR SMALLEST
EPROM EMULATOR

Eliminate the need to burn and learn
all in a package about the size of a 9 volt battery

-1 l Super small (about 2”~ 1 “xl “)

T
2”

1

I---- 1”+

411 Washington Street,
Otsego, Michigan 49076

TEL: 616-694-4920 FAX: 616-692-265
Since  ,985

l Uses Surface Mount Design
l Fits in EPROM socket
l Downloads in less than 7 seconds
l Emulates 2764,27  128,27256,  275 12
l Access time < 1 OONS
l Plug and Play: Plug cable into computer

and download. Once power is supplied to
circuit, cable can be removed

l Includes software for IBM compatable PC’s

1

Loads Intel Hex and Binary files
Includes Serial Cable & Battery Backup
Nearly same footprint as EPROM

CALL  NO Wfor Your Special
Introductory Price of $194.95

phs $5.00 shipping and handling

VISA  G ntASTERolRD  ACCEPTED
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Designing
with PC/l 04

Rick Lehrbaum

ver the past ten
years, the IBM PC-

compatible architec-
ture has become an

increasingly popular platform. In
addition to their typical use as dedi-
cated desktop computers, they’ve
reached into the embedded world.
They’re now being used in embedded
microcomputer applications such as
vending machines, laboratory instru-
ments, communications devices, and
medical equipment. PCs are beginning
to be found everywhere!

THE TREND TOWARD
EMBEDDED PCS

From a computer architect’s
perspective, the PC architecture with
its 808%based origins and inherently
segmented world view is hardly
something to get excited about.

Why, then, turn the world’s
favorite desktop system into an
embedded microcomputer standard?
Why not just keep using a Z80,
68HC11,  or 80512

Regardless of its particular
implementation-from 4- and g-bit
single-chip microcontrollers to high-
performance, %-bit  RISC processors-
embedded microprocessors are simply
a means to an end-not an end in
themselves. After all, the purpose of an
embedded microcomputer is to run the
application software. It’s the software,
not the embedded computer, that
makes the application what it is. As
long as it can run the application
software acceptably, the ideal embed-
ded computer is one that minimizes
risks, costs, and development time.

Development cost is the major
reason for shying away from a multi-
plicity of microprocessors since their
architectures vary greatly. Each
requires new development tools,
including emulators, compilers, and
debuggers. And, every time you use a
different microprocessor in a system
design, you’ll invest thousands of
dollars and weeks of time putting the
development environment in place.
No wonder system developers seek
alternatives to using the latest new
microprocessor in every new project.

Also, it’s common for old projects,
based on older microprocessors, to

Photo i-PC/104  modules are compact, rugged, and self-stacking. This  three module stack measures just 3.6”~
3.8”~  Y, yet it contains fhe equivalent functions of a complete desktop PC: a PC/AT motherboard, up to 16 MB  of
sysfem  DRAM, seriaial  and parallel interfaces, ffhemet  LAN controller, SVGA  display contro//er,  and a bootable solid-
stafe  disk drive.
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become difficult or even impossible to
maintain, as familiarity with the older
architectures and their development
tools fades.

All this has stimulated a desire for
hardware and software standards. On
the software side, this means using C,
C++, and object-oriented programming
methods. Programmers increasingly
rely on familiar software environments
such as UNIX, DOS, or Windows, and
interface standards like TCl?/IP,  GUIs,
and so on.

But what about hardware stan-

With over 200 million desktop PCs in
use worldwide and nearly a million
new ones sold each week, the PC
architecture has been dubbed the
Industry Standard Architecture (ISA).

This is why the PC architecture is
gaining increasing acceptance as an
embedded microcomputer standard.
Using an embedded-PC architecture
leads to significant savings in develop-
ment time and money. PC develop-
ment tools are plentiful, cost-effective,
and easy to use. PC-compatible
chipsets  and peripherals are abundant.

Figure l--A dimension
drawing, extracted from fhe PC/
104 specifications, shows the
detailed mechanical dimensions
of the 16-bit PC/l 04 module
format. The PZ/JZ connector is
not required on d-bit modules,
but may be included as an
option to provide “pass through”
of a full Id-bit bus.

documented. PC-
oriented software
components are
readily available and
include real-time OSs,
drivers, function
libraries, and applica-
tion programs.
Hardware engineers
know the PC’s bus
and programmers, its
software.

THE “IT% PRINCIPLE”
In short, the reason so many

embedded system developers are
migrating to the PC architecture lies
not in the hardware, but in the
software. This trend has inspired the
ITSS principle, a new “law” of embed-
ded system engineering, which stands
for It’s the software, stupid!

MAKING THE PC FIT
One potential problem with using

the PC architecture in an embedded
system is that standard PC subsystems

dards? Unfortunately, the tremendous Their functions are familiar and well don’t meet the more stringent size,
diversity of microprocessor architec-
tures, from the lowly 8051 to the high-
end RISC CPUs, has prevented the
emergence of any real standards for

Stackthrough
8-bit module

embedded-system hardware. Only the
industrial computer buses such as
VME, Multibus, and STD provide a
measure of consistency. However,
their use is limited to systems which
are larger and more complex (and

Stackthrough
16-bit module

therefore less cost-sensitive) than most
typical embedded systems.

On the other hand, the highly
multisourced PC-compatible ‘386/‘486
CPUs, chipsets, and associated
peripherals have made the PC architec-
ture attractive as a cost-effective
hardware platform for low- and
medium-performance applications.

Non-stackthrough
1 g-bit module

0

Figure 2--Multiple  PC/104  modules sfack  direcf/y  on top of each other using self-sfacking  pin-and-socket bus
connectors. Four spacers rigid/y attach each module to the one above and below it.
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power, ruggedness, and reliability
requirements of most embedded
applications. This is natural since PCs
are optimized for the highly price-
sensitive desktop personal-computing
market.

But, you can avoid this problem by
designing a custom, chip-level embed-
ded PC directly into the embedded
system’s hardware. This way you can
take advantage of PC chipsets, compo-
nents, and software in an embedded
environment.

The trouble with this approach is
that it doesn’t eliminate many of the
costs and risks you want to avoid by
using an off-the-shelf PC architecture.
You still end up designing and debug-
ging a CPU subsystem, licensing and
porting a BIOS, and in many other
ways needlessly reinventing the
wheel.

Although PC/l 04 modules have
been around since 1987 (in the form of
Ampro’s MiniModules),  it was not
until Ampro released a formal specifi-
cation to the public domain in 1992
that interest in PC/104  skyrocketed.
Since then, hundreds of PC/l04
modules have been announced by the
more than 140 members of the
nonprofit PC/ 104 Consortium. In
1994, PC/l04  achieved a significant
milestone when Intel endorsed it as a
recommended way to expand designs
based on Intel’s new embedded ‘386
CPUS.

In 1992, a working group of the
IEEE embarked on a project to stan-
dardize a small form-factor version of
the PC/AT bus, which was also based
on PC/104.  The new IEEE “P996.1”
draft standard, which conforms closely

Since standard PC
subsystems aren’t well-
suited to the targeted
environments, the desire
to use PC architecture in
embedded systems thus
contains an inherent
contradiction. This is
what inspired the
creation and rapid
acceptance of the PC/
104 embedded-PC
modules standard (see
Photo 1).

WHAT IS PC/104?
PC/104 offers full

hardware and software
compatibility with the
standard desktop PC
(and PC/AT) architec-
ture, but in an ultra-
compact (3.6” x 3.8”),
self-stacking, modular
form. PC/l04 defines a
standard way to repack-
age desktop PC func-
tions for the ruggedness
and reliability con-
straints of embedded
systems. Consequently,
PC/104  offers an
attractive PC-compatible
alternative to traditional
microprocessor-based
embedded systems.

to PC/104’s specification, is now
approaching IEEE approval.

WHAT’S IN THE PC/104
STANDARD?

As mentioned above, the key
differences between PC/104 and the
normal PC hardware standard are
mainly mechanical. Instead of the
usual PC or PC/AT expansion card
form-factor (12.5” x 4.8”),  each
module’s size is reduced to approxi-
mately 3.6” x 3.8”.

Two bus formats for 8- and 16-bit
modules are provided. However,
unlike the 8- and 16-bit  versions of the
normal PC bus, 8 and 16-bit PC/104
modules are the same size. Figure 1
shows the detailed mechanical
dimensions of the 16.bit PC/104
module format. An g-bit module has

Pin Jl/Pl
Number Row A

Jl/Pl
Row B

J2/P2
Row C’

J2/P2
Row D’

0 - - o v o v
1 IOCHCHK* o v SBHE* MEMCSl6*
2 SD7 RESETDRV LA23 lOCSl6*
3 SD6 +5 v LA22 IRQlO
4 SD5 IRQ9 LA21 IRQll
5 SD4 -5 v LA20 IRQ12
6 SD3 DRQ2 LA19 IRQ15
7 SD2 -12 v LA18 IRQ14
8 SD1 ENDXFR* LA17 DACKO*
9 SD0 +12v MEMR’ DRQO
10 IOCHRDY (KEY)* MEMW* DACK5*
11 AEN SMEMW SD8 DRQ5
12 SAl9 SMEMR* SD9 DACKG*
13 SA18 low* SD10 DRQ6
14 SA17 IOR* SD1 1 DACK7*
15 SA16 DACK3* SD12 DRQ7
16 SA15 DRQ3 SD13 +5 v
17 SA14 DACKl* SD14 MASTER*
18 SA13 DRQl SD15 o v
19 SA12 REFRESH* (KEY)* o v
20 SAl 1 SYSCLK -
21 SAlO IRQ7 -
22 SA9 IRQ6 - -
23 SA8 IRQ5 -
24 SA7 IRQ4 -
25 SA6 IRQ3 - -
26 SA5 DACK2* - -
27 SA4 TC - -
28 SA3 BALE -
29 SA2 +5 v - -
30 SAl o s c -
31 SAO o v -
32 o v o v - -

NOTES:
1. Rows C and D are not required on 8-bit modules, but may be included.
2. BlO and Cl9 are key locations.

Table l--The PC/104  names comes from the use of 104 bus signals. Each PC/104  bus signalis
equivalent to a corresponding signal of the normal PC/AT bus.

no P2/J2 bus connector.
To eliminate the

complexity, cost, and
bulk of conventional
motherboards, back-
planes, and card cages,
PC/104  modules
implement a self-
stacking (also referred to
as stackthrough) bus
connector. Multiple
modules are stacked
directly on top of each
other without additional
bussing or mounting
components. Four nylon
or metal spacers (0.b” in
length] are normally
used to rigidly attach
the PC/104 modules to
each other as shown in
Figure 2.

Rugged and reliable
64. and 40.position
male/female header
connectors replace the
standard PC’s 62. and
36-position (Pl and P2)
edge-card bus connec-
tors. The PC/104 bus
connectors feature two
pin-and-socket rows on
0.1” centers and nor-
mally have gold-plated
contacts. Both Samtec
and Astron, two
connector companies,
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currently offer alternate
sourcing of the approved bus
connectors.

PC/IO4 bus signals are
functionally identical to their
counterparts on the PC/AT
bus. Their assignments to the
104 positions on the PC/104
header-bus are listed in Table
1.

To reduce power con-
sumption to around l-2 W per
module and minimize chip
count, the bus drive was
reduced from the normal PC’s
24 mA to 4 mA. This permits

74HC126  or equivalent

Figure 3-This  schematic shows a fypical  means of implementing the PC/104
bus interrupt-sharing option. While interrupt sharing is not required, if is frequently
provided by B-bit  PC/104  modules that implemenf communications and
nefworking functions.

an option, as well. If
you plan to terminate a
PC/104 bus, be sure to
use the AC method of
termination defined in
the PC/104  specifica-
tion rather than pure
resistive termination.

Plain resistive
termination, usually
2201330  R between
each signal and ground,
exceeds available bus
current. On the other

7 1 kc2

Remove jumper Install jumper +
for normal P996 on one device

bus operation per IRQ

HCT logic and many VLSI ICs to
directly drive the bus without addi-
tional buffer chips.

Many developers wonder how
many modules can be used on a single
PC/104  bus. The answer is not simply
related to K/104’s  reduced bus drive
current. Actually, the low 4-mA drive
does not result in a small number of
permissible bus modules. For most
embedded systems, there is plenty of
bus drive. In fact, since the maximum
input load spec is 0.4 mA per bus
signal, a 4-mA bus drive current can
theoretically handle ten bus loads!

In practice, factors such as signal
trace lengths and connector impedance
transitions limit the number of
modules you can reliably use to
between six and eight. The actual
limit, for a particular system, depends
on total bus length, number of stacked
connectors, environmental issues, and
the specific modules used. Also don’t
forget to consider voltage drops on the
bus power signals due to multiple
stacked modules.

Bus termination is
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hand, the recommended AC termina-
tion consists of a series R/C network
between each signal and ground. This
approach draws no static current and
provides a better impedance match for
the bus.

If you’re not sure whether or not
termination is needed in your system,
it’s best to provide a way to add it
later. A number of PC/104  vendors
offer special plug-in PC/104 termina-
tors, which provide the method of AC
termination recommended by the
PC/104 spec. These terminators can be
added at any PC/104 bus stacking
location. You can also include posi-
tions for tiny SIP termination net-
works directly on PC/ 104 modules or
interfacing boards you design.

When you use the PC architecture
in embedded applications, it’s not
uncommon to run out of bus interrupt
channels. This is especially true of
byte-oriented (Shit)  interfaces such as
serial ports because the 8-bit  subset of
the PC bus contains six interrupt lines,

standardized system func-
tions. Unfortunately, since
the bus interrupt lines are
active high, the common
technique of wire-ORing
multiple interrupt requests
on a single-interrupt input
line (used with other buses) is
not possible.

To circumvent this
problem, the PC/IO~ spec
includes a recommended
means for multiple interrupt-
ing sources (on one or more
modules) to share a single bus
interrupt. A sample interrupt-

sharing circuit appears in Figure 3.

PC/104 IN REAL APPLICATIONS
Although configuration and

application possibilities for PC/104
modules are practically limitless, there
are a few ways the modules tend to be
used in actual embedded systems.

l Stand-alone module stacks
As illustrated in Figure 4, stacks of

PC/l 04 modules can be used like
ultracompact bus boards, but without
the usual requirement for backplanes
or card cages. Often, a PC/104  module
stack is bolted somewhere inside the
embedded system’s enclosure in a
convenient location that would
otherwise simply be dead space. In this
manner, an entire PC can be embedded
directly within a system that would
otherwise require an external PC.

There are also a variety of off-the-
shelf PC/ 104 stack enclosures that
host from three to six PC/104  mod-
ules. Enclosed PC/104 stacks like

L

most of which are dedicated to these can be self-contained systems or
can be used as sub-
systems within larger
systems. These PC/104
system enclosures are
designed for a variety
of environments
(commercial, indus-
trial, and vehicular)
and are available with
options like PC/104
form-factor power
supplies (for 8-80-V
AC/DC inputs), shock
mounts, and quick-
release mechanisms.

Figure 4-PC/104  modules can be usedas  stand-alone sfacks  with all required system functions
provided by PC/l04 modules stacked together. In fhis approach, the modules function like a
miniaturized backplane bus.



l Macrocomponent applications
In Figure 5, another common

method of using PC/104 is shown.
Here it is used as macrocomponents
that plug into a custom, application-
specific baseboard. The PC/104
baseboard typically contains all
interfaces and logic that aren’t avail-
able (or desirable) on the PC/104
modules. Typically, the baseboard
includes power supply components,
signal conditioning, external I/O
connectors, and so on.

What’s interesting about the
macrocomponent approach is instead
of plugging the I/O into the computer,
you plug the computer into the I/O!
It’s a new embedded-system paradigm.
This approach lets you focus more
energy on the application’s unique
requirements, and less on (re)inventing
a basic (micro) computer architecture.
With this approach, the system
becomes a hybrid of out-sourced
modules (the PC/104 modules) plus a
custom-designed board (the baseboard).

Often, the baseboard provides
multiple PC/104 stack locations. This
means that the modules can be
distributed horizontally, thereby
keeping a low profile so there’s room
for upgrades and expansion in the
future. Whenever possible, leave extra
vertical space (at least 0.6”) so the
PC/IO~ module’s self-stacking bus can
be used for future upgrades and
options. This space also provides room
for temporary addition of modules for
system debug, test, and service.

The shape and size of the base-
board is completely arbitrary. The
baseboard typically takes the shape of
the desired end system, so its shape
can be anything-square, round,
rectangular, customized.

l Mezzanine bus applications
A third and increasingly common

way for PC/IO~ modules to be used is
as I/O expansion daughter modules on
PC-compatible single-board computers
(SBCs).  This approach, known as a PC/
104  mezzanine bus, is now found on
nearly every new PC-compatible SBC,
including both stand-alone (proprietary
form-factor) SBCs and passive back-
plane (PC-expansion-card form-factor)
industrial PCs.

PIG1 6C5xll6Cxx Real-time Emulators
introducing RICE16 and RICExx-Juniors,  real-time in-circuit
emulators for the PIC16C5x and PIClGCxx  family microcontrollers:

affordable, feature-filled development systems from
’ Suqgeeted Retail for U.S. only $599 *

RICE16 Features:
Real-time Emulation to 2OMHz for
16C5x and 1OMHz  for 16&x

PC-Hosted via Parallel Port
Support all oscillator type5

0K Program Memory
8K by 24-bit real-time Trace Buffer

Source Level Debugging

Unlimited Breakpoints Emulators for 16C71184/64
External Trigger Break with either

“AND/OR” with Breakpoints
Trigger Outputs on any Address Range
12 External Logic Probes

User-Selectable Internal Clock from
40 frequencies or External Clock
Single Step, Multiple Step, To Cursor,

Step over Call, Return to Caller, etc.
On-line Assembler for patch instruction

Easy-to-use windowed &ware

available now!
n Support 16C71,16CE54 and 16C64  with

Optional Probe Cards
n Comes Complete with TASMIG Macro

Assembler, Emulation Software, Power
Adapter, Parallel Adapter Cable and

User’s Guide
m 30-day Money Back Guarantee

n Made in the U.S.A.

RICE-xx Junior series
RICE-xx “Junior” series emulators support; PIC16C5x  family, PlC16C71,  PlC16C04

or PIC16C64. They offer the same real-time features of RICE16 with the
respective probe cards less real-time trace capture. Price starts at $599.

PIC Gang Programmers
Advanced Transdata Corp. aI50 offers PRODUCTION QUALITY
gang programmers for the different PIC microcontrollers.

n Sand-alone COPY mode from a master device n PC-hosted mode
for single unit programming m High throughput w Checksum verification
on master device w Code protection m Verify at 4.5V and 5.5V w Each
program cycle includes blank check, program and verify eight devices
n Price5 start at $599

PGMlGG: for 1X5x family PGM47:  for 16Ci’1/04 PGM17G:  for 17C42

Call (214) 980-2960 today for our new catalog.
ForRICEl6.ZlP  and other product  demos, call our BBS at (214) 980-0067.

Advanced Transdata Corporation Tel (214)  980.2980
14330 Midway Road. Suite 128. Dallas, Texas  75244 Fax (214) 900-2937
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OBJECT-ORIENTED
HARDWARE

Using PC/104
modules as macrocom-
ponents parallels the
object-oriented software
methods of most of
today’s programmers. In
object-oriented soft-
ware, the program is
broken into building
blocks which are
separately specified,
developed, tested, and
maintained. Object-
oriented software
greatly reduces the risks
and complexity of

r 1 .

Power
connector  4 Rear-panel connectors

4
Front-panel controls

l

users or rww4  moaules freaf  fnem /Ike  macrocomponents,
plugged into an application baseboard. In fhis  approach, the baseboard usual/y contains a//,sottware development

and accelerates project
schedules while

functions  that  are unique  fo the specific application, and the PC/104  modules provide standard
PC system functions such as CPU, mass storage, networking, communications, and display
interface.

based approach to
embedded system design
that can help you make
the most of using ~/lo4
modules.

Make the PC archi-
tecture a macrocompon-
ent. The entire embedded-
PC architecture can be a
single plug-in component,
including all motherboard
functions, system RAM,
memory, and BIOS. You
shouldn’t need to be
concerned with licensing
or modifying a PC BIOS.
Your PC/l 04 CPU
module can include a
solid-state disk, so you
also don’t have to worry
about ROMing  your

producing more powerful, feature-rich,
and maintainable application software.

are completed faster, at lower budgets, embedded application’s code.

Similar benefits are realized when
with enhanced features, and are Let variable performance work to

PC/104  CPU and I/O macrocompon-
considerably easier to maintain. your advantage. Projects frequently

ents are used as the building blocks of MAKING THE MOST OF IT
end up needing more CPU perfor-

object-oriented hardware. And, you
mance  than originally anticipated.

experience similar rewards-projects
There are some techniques of When this happens, be prepared to

exploiting an object-oriented, module- unplug the PC/ 104 CPU module

+ Connect via ROM Socket; DIP; PLCC; SMT
9 Emulate ROMs up to 16MBit  in Size
0% Fastest Downloads Available:

Parallel; Serial; Ethernet
0% Run Industry Standard Debuggers
l :* Target Processor Independent
0 Support 3Volt Targets
+ Host Software Sources Included
0 Shielded Cables for Reliable Operation
0 30-day  Money-Back Guarantee;

1 Year Warranty!
Q Unlimited Phone Support; 24hr BBS

Call Today I-8001PROMICE
(I -800-776-6423)

Grammar Engine Inc.
921 Eastwind Dr., Suite 122 * Westerville,  OH 43081

614/899-7878 l Fax 614/899-7888

rs and eriginf$eiWeady  to
tricky engineering prob-
an on-h solution for a

#112 See us at Embedded Systems East booth #510
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you’re using and replace it with a broad range of CPU types and perfor-
faster one. Can you imagine doing this mantes.
with an 8051, 68HCl1,  or a discrete Allow for performance and feature
80386SX? options and upgrades. No doubt,

Also, keep in mind the option of you’ve been in the position of having
kick-starting a project by initially to provide both high performance and
using a faster PC/104 CPU module low cost within one design. Now, you
than required to get the application up can provide both by offering multiple
and running quickly. Later, you can price and performance options. In a
cost reduce by optimizing the software PC/I04-based  system, a single base
and substituting a slower (and less design supports multiple feature or
expensive) CPU module. cost configurations. You can offer ‘486

To anticipate these possibilities, performance at the high end and 8088
select PC/104 CPU modules that are economy at the low end. You can
members of a CPU family offering a provide a wide variety of communica-

by Jean J. Labrosse -
Embedded Systems Building Blocks, Complete and
Ready-to-Use Modules in C contains software modules
you can use to design embedded systems and explains
how to use these modules and modify them as needed.
Labrosse orovides hiahlv oortable. fullv functionina code
for many common p&esses:  keyboard scanning,
display interfaces, timers and clocks, discrete I/O,
analog I/O, and serial communications. Labrosse
provides basic building blocks for all these processes
freeing you to work on the fun and unique parts of your
designs.
R&D Publications, 1995, 620 pp. ISBN O-13-359779-2
V74 with disk. . . . .$49.95

PC/OS by Jean J. Labrosse
This book explains the design and implementation of the
Micro-Controller Operating System, a portable,
ROMable, preemptive, real-time, multitasking kernel for
microprocessors. The system is written in C with
assembly language code for the target microprocessor
kept to a minimum. It can be ported to any
microprocessor that provides a stack pointer and allows
the CPU registers to be pushed onto and popped from
the stack. The system can manage up to 63 tasks, with
performance comparable to many commercially
available kernels. The text explains the fundamentals of
multitasking real-time systems, details the design
decisions of this kernel, and includes a user’s manual for
the system.
R&D Publications, 1992, 266 pp. ISBN 0-13-031352-l
W62 with disk. . . . . $54.90

tions options based on PC/104  serial,
modem, Ethernet, or even wireless
LAN plug-in modules.

Take advantage of sophisticated
PC functions. In contrast to traditional
microcontroller-based designs, your
PC/104-based system design can draw
on a rich set of PC technologies. Your
designs need not be limited by what
you can do yourself!

Here are some readily available
options:

l user-friendly graphical user inter-
faces (GUIs) instead of character or
LED displays

l popular mass storage devices (floppy,
IDE hard disks, SCSI drives, or
PCMCIA cards with flash-file-
system support software ) instead of
ROM or battery-backed RAM

l full-function LANs  (Ethernet,
Arcnet,  Token Ring) instead of
slower RS-232 or RS-485 multidrop
interfaces

l various SCSI or PCMCIA devices
l a wide range of off-the-shelf, applica-

tion-oriented PC/104  modules
(digital and analog I/O, motion
control, etc.) complete with ready-
to-use PC-compatible software
drivers

Maximize system life expectancy.
A system based on PC/104  modules
has a longer life span than that of a
traditional monolithic embedded
system. Some of this longevity stems
from the fact that when a monolithic
system design no longer meets the
requirements of its users, you may be
faced with a redesign.

On the other hand, with a module-
based system, it is often possible to
upgrade the system to a higher
performance CPU, faster or alternative
peripheral interfaces, and enhanced
software. Thus, a PC/104-based
system design might survive two or
three times longer than a monolithic
one.

If you must replicate or service a
particular design over several years,
the risk of component obsolescence
becomes an important issue. Mono-
lithic designs are in trouble when one
of the chips used in the system is no
longer offered by its manufacturer.
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Beware! This problem is especially
nasty when the system contains PC-
compatible chipsets  due to the
extremely rapid evolution of desktop
PC technology! The half-life of a PC
chipset  is about 3 Comdexes, where 1
Comdex = 6 months.

In a modular, PC/IO4-based
system, you are buffered from having
to struggle with individual IC obsoles-
cence problems. When a particular IC
on a PC/104 module is unavailable,
your module supplier should provide
you with an equivalent substitute
module. If not, you always have the
option of locating an alternate module
somewhere else that performs a
similar function. Hopefully, an
obsolete IC will never force you to a
board-level redesign.

KEEP YOUR OPTIONS OPEN!
If you want to take full advantage

of the flexibility that a PC/104-based
system design can offer for future
options, upgrades, and substitutions,
you must treat each PC/I04  module as
a generic function block.

Why?
This modularity ensures that you

can substitute equivalent modules for
the ones you must replace (rest
assured, you will need to replace some
eventually!). However, there are some
specific guidelines for increasing
modularity.

Avoid using the chip-specific
features of PC chipsets. Unless a
particular function in a PC chipset  is
part of the PC standard (or at least part
of a well-defined and multiple-sourced
superset), fight the temptation to use
it! By building your application on

generic functionality, the system you
design is protected from component
obsolescence through module-level
substitution. Only a system based on
generic PC/104  function blocks readily
offers alternate sourcing of modules,
high- and low-performance substitu-
tions, and future backwards-compat-
ible migration paths.

Wrap software drivers around
nonstandard functions. Despite the
desire to keep things generic, there are
times when you need to use functions
that aren’t part of the normal PC
standard. In these situations, it’s
important to keep a software layer
between the application program and
the nonstandard hardware.

With this object-oriented hard-
ware and software approach, you have
the flexibility of being able to alter
hardware without rewriting the main
application code. This is true as long
as .the hardware differences are
adequately masked by an intervening
software layer.

For this reason, try to select PC/
104 modules that come with BIOS or
software drivers for all nonstandard
hardware functions. This assures your
ability to maintain a common function
set despite future hardware changes
that may be required or desired.

CONCLUSION
PC/104 embedded-PC modules

offer highly efficient building blocks
for designing embedded systems using
the popular and user-friendly IBM-PC
architecture. With more than 140
vendors offering off-the-shelf PC/104
modules and additional hardware and
software vendors announcing PC/104

ABOUT THE PC/104 CONSORTIUM
February 1991, the nonprofit PC/104 Consortium was formed with the

objective of maintaining and distributing the PC/104 Specification and
publishing listings of PC/104 products and vendors. Its membership now
numbers over I35 companies, all of which offer PC/IO4 modules and
related goods and services.

There are no licenses or fees required to use PC/104.  Users and
manufacturers of PC/104 modules do not need to be members of the PC/
104 Consortium. However, Consortium members gain the use of the PC/
104 logo and are included in the PC/104 Resource Guide as well as other
company and product listings.

For further information on PC/104, see the contact information above.
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products nearly every week, we can
expect to see PC/104 in an increasing
number of embedded systems for at
least another decade.

Consider using PC/IO4 modules to
create a flexible object-oriented
hardware architecture for your next
embedded system project, as an
alternative to the traditional embedded
microcontroller approach in which you
completely “reinvent the wheel” for
each project! q

Rick Lehrbaum cofounded Ampro
Computers where he served as vice
president of engineering from 1983-
1991. Now, in addition to his duties as
Ampro’s  vice president of strategic
programs, Rick chairs the PC/104
Consortium and the IEEEP996.1
working group, which is developing an
IEEE version of K/104.  He may be
reached at rickl@ampro. corn.

PC/l 04 Specification, PC/l 04
Resource Guide, and PC/l 04
Product Index
PC/104  Consortium
P.O. Box 4303
Mountain View, CA 94040
(415) 9038304
Fax: (415) 967-0995
Fax on demand: (408) 720-0515

IEEEP996 Draft Specification
IEEE Publications
(908) 981-1393

Using the PC Architecture in
Embedded Applications
Ampro Computers, Inc.
990 Almanor  Ave.
Sunnyvale, CA 94086
(408) 522-2100
Fax: (408) 720-1305

The XT/AT Handbook
Annabooks
(619) 673-0870
Fax: (619) 693-1432

.

407 Very Useful
408 Moderately Useful
409 Not Useful



An LCD and
Keypad
Module for
the SPI

Brian Millier

0 he other day,
while placing an

order for 74C922
keyboard encoder ICs, I

thought back to the early ’70s when
Popular Electronics featured a con-
struction article entitled “The Cosmac
Elf.” The article described an early
personal computer based on RCA’s
1802 CMOS microprocessor.

I built and used one of these
computers at the time. While the RCA

designed a simple circuit to replace the
74C922,  which offered a simple
interconnection of both a keypad and
an LCD module to commercial
microprocessor boards. While it is not
difficult to interface a keypad and LCD
module to a micro, there are a few
pesky design problems to overcome:

l Using the 74C922  encoder requires
access to the data bus as well as a
device-select signal and input port or
interrupt pin for the data available
signal. Alternatively, a spare parallel
port may be used if one is available.

l The LCD module requires an
ENABLE signal. Since device-select
signals may be hard to come by on a
small board totally populated with
RAM and EPROM, you may need an

1802 microprocessor never became additional 74LSl38  decoder IC.
popular, the 74C922 keyboard decoder Since the LCD needs an active-high
used in this project is still alive and select and most chip-select signals
kicking. Although I was intrigued with are low, toss in an extra 74LSO4
the CMOS chip at the time, I am inverter.

Figure l--The  PI-based  LCD/keypad circuit is based on a 68HC705 microcontroller and LM052L  LCD display
module. Most any matrix keypad can be used.
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Listing l-Code to set up fhe SW on a 68HC11  and make use of fhe LCD/keypad module is minimal. This
code was assembled using the freeware AS1 1 assembler.

DDRD equ $1009
SPCR equ $1028
SPSR equ $1029
SPDR equ $lOZA

sci_rec equ $FFCD * BUFFALO 3.4 monitor SC1 routines
sci_send  equ $FFAF

erg
start

jsr
ldaa
jsr

ldaa 11127 * Set KBDLCD module to COMMAND mode
jsr SPItrans
ldaa i/o01 * Send an "LCD Clear" command
jsr SPItrans

$2000

initSP1 * Initialize the SPI port
11127
SPItrans * This command is sent twice, as 1st

* byte received after power up may
* be misread

* LCD needs more time to process the CLEAR command
* than for displaying chars to the LCD screen

ldx i/l000
al dex

bne al

ldaa #126 * Set KBDLCD module to DATA mode
jsr SPItrans

Sl

ldx #message * Point to the ASCIIZ message string
ldaa 0,x
beq SO
inx
jsr SPItrans * Send out string, 1 char at a time
bra sl

* LOOP: take a char from SC1 in, send it to KBDLCD, and
* send the KBDLCD key pressed code back to host via SC1
so jsr sci_ret

jsr SPItrans
jsr sci_send
bra SO

message fee 'This is a test!'
fcb 0

* Send a byte in A out SPI, and return with rcvd SPI byte in A
SPItrans

staa SPDR
s2 ldaa SPSR

bita #$80
beq s2
ldaa SPDR
anda #$7f * Take binary keycode  O-16
adda #$30 * and bias it into ASCII range

* Allow a short delay time for KBDLCD module
* to process the character to the LCD

ldab 1120
s3 decb

bne s3
rts

* Initialize the SPI at slowest rate: 62.5 kbps
initSP1

ldaa #$5f (continued)

l The typical bus-cycle time of most
common microcontrollers is shorter
than that called for by the LCD
manufacturer. I have generally found
them to work, but there are no
guarantees.

I decided to make use of the SPI
port, which exists on most microcon-
trollers and is often unused. Using this
high-speed serial link and a Motorola
68HC705KlP  microcontroller, I have
designed a very simple LCD and
keypad interface which uses only the
three SPI signals from the host
controller. The serial port is also
handy if the operator’s panel is far
away from the microcontroller circuit
board itself.

The cost of the circuit is little
more than the 74C922  which it
replaces. I chose the Motorola micro-
controller since I’ve had their nifty $50
evaluation board and software for a
year or so now, and finally the
68HC705KlP  is available. I expect that
the 16C54  PIC family chips would also
serve my low-cost purpose, but I have
more experience programming the
Motorola family.

MAKING THE CONNECTION
For this circuit to be generally

useful, it must offer fast data transfers
to the LCD display and require very
little code support in the host
microcontroller. The Serial Peripheral
Interface (SPI) available on the
68HCl1,  TMS370, and some of the
8031 derivatives, satisfies both these
criteria. If you are not familiar with
this functional block, refer to the SPI
sidebar  for a brief overview of
Motorola’s implementation of it.

Readers familiar with the Motor-
ola 68HC705Kl  family are likely
saying, “Whoa-there is no SPI circuit
block in that chip”-which is correct,
of course. The trick used in this design
implements the SPI in software. I
wanted this circuit to work with SPI
ports on at least the two microcontrol-
lers that I commonly use-the
68HCll  and the TMS370.

Of the two, the 68HCll  is much
less programmable in terms of bit rate.
Its slowest SPI bit rate (with a ~-MHZ
E clock) is 62.5 kbps or 16 us per bit.
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Getting that timing right is a critical
aspect of the code for the 68HC05KI
(as I will cover fully later).

It takes 128 us to transfer a data
byte to the LCD over the SIX Since
the LCD needs about 50 us between
each character it receives, this circuit
doesn’t slow things down too much.
Reasonably rapid LCD screen updates
are possible. As well, the keypad data
is returned to the host at the same
625kbps  rate, although since the
keyboard-input functions are slow,
this is not a concern.

Code overhead on the host micro
is minimal. Listing 1 presents the
short routine for initializing the
68HCll  SPI. It is important to note
that the 68HCll  SPI block is set up foi
a clock phase and polarity of 1 since
this is the only way this circuit will
work! The code to send a message to
the LCD plus perform other functions
is also shown in Listing 1. Since the
BUSY signal of the LCD is not read by
the KBDLCD module, software loop
delays are built into the routines so
the KBDLCD module can keep up.

Although it is not shown in the
program code, it is very important to
remember to tie the 68HCl  l’s -SS line
to Vcc to make the 68HCll  the master
device. If you’re using a microcontrol-
ler without an SPI port, it would not
be too hard to write a bit-banging
routine to implement the SPI using
three I/O port lines. It would, how-
ever, have a slower data transfer rate
unless the processor was very fast.

THE HARDWARE
The entire circuit is detailed in

Figure 1. Apart from the crystal and its
capacitors, the 68HC705KlP  needs
nothing else other than 5 V to run. The
reset function is looked after internally
by the chip’s timer subsystem. How-
ever, this internal reset circuit releases
the processor from reset after 4064
clock cycles. VDO  must be stable by
this time or correct operation will be
uncertain. If your power supply does
not come up to spec quickly enough,
connect the 68HC705  -RESET line to
the host -RESET line.

The 16-button keypad can be any
4 x 4 matrix such as a Grayhill  83BBl-
001 or the DMC DSl6 membrane

38 Issue #57  April 1995 Circuit Cellar INK

Listing l-continued

staa SPCR * Enable SPI as Master CPOL,CPHASE=l,
elk/32

ldaa i/$18
staa DDRD * MOSI,SCK made outputs
ldaa SPSR * Clear flags
ldaa SPDR
rts

Listing P-The  SF’/  dafa-fransfer  interrupt-service routine for 68HC705K1  uses sfraight-line  code in fhe
interest of speed.. It was assembled using fhe f&E IASM05Kassembler.

erg RAM
rxchar rmb 1
txchar rmb 1
flag rmb 1

org ROM

* Mainline program code here

* SPI data transfer Interrupt Service Routine
IROISR

isrl
isr2

isr3

isr4

isr5

isr6

isr7

isr8

isr9

isrl0

isrll

isrl2

isr13

clr rxchar
bil isrl
bih isr2
lda txchar
sta prtb
lsr txchar
bil isr3
brclr l,prtb,isr4
bset 6,rxchar
bih isr4
Ida txchar
sta prtb
lsr txchar
bil isr5
brclr l,prtb,isr6
bset 5,rxchar
bih isr6
Ida txchar
sta prtb
lsr txchar
bil isr7
brclr l,prtb,isr8
bset 4,rxchar
bih isr8
Ida txchar
sta prtb
lsr txchar
bil isr9
brclr l.prtb,isrlO
bset 3,rxchar
bih isrl0
Ida txchar
sta prtb
lsr txchar
bil isrll
brclr l,prtb,isrlZ
bset P,rxchar
bih isrl2
Ida txchar
sta prtb
lsr txchar
bil isr13

; Ignore first MSB for lack of time

; Wait until next falling edge

; Send out bit 7
: Shift for next time
: Wait until rising edge

: Wait for falling edge

: Send out bit 6
: Shift for next time
; Wait until rising edge

; Wait for falling edge

; Send out bit 5
; Shift for next time
: Wait until rising edge

; Wait for falling edge

; Send out bit 4
; Shift for next time
: Wait until rising edge

; Wait for falling edge

; Send out bit 3
; Shift for next time
; Wait until rising edge

; Wait for falling edge

: Send out bit 2
; Shift for next time
; Wait until rising edge

(continued)



Listing P-continued

isr14

isrl5

isrl6

brclr
bset
bih
Ida
sta
bil
brclr
bset
Ida
sta

clr txchar

l,prtb,isrl4
1,rxchar
isrl4 ; Wait for falling edge
txchar
prtb ; Send out bit 1
isrl5 : Wait until rising edge
l,prtb,isrl6
0,rxchar
1/82h
ISCR : Clear IRQ flag since IRQ latch will

; be set from 7 SPI clocks following
; the initial one which caused this
: ISR to be invoked
; Zero out txchar

: Additional code to send byte to the
; LCD display, in two 4-bit  nybbles

rti
***************************************************

org vectors ; Vectors begin at $03F8
dw rom
dw IRQISR ; -1RQ vector
dw rom
dw start ; Reset vector

keypad that I used (see Photo 1). The
columns are scanned by sequentially
placing a high level on PAO-PA3. The
rows are sensed by sending four binary
combinations to PA4 and PA5, which
are connected to the address inputs of
the 4051 multiplexer chip.

The chip then routes each row in
sequence to the PA7 port, configured

as the sense input. The A port has
programmable pull-down circuitry for
any port bits configured as inputs, so
no additional resistor is needed.
Diodes D l-D4 prevent the possible
shorting of two PAO-PA4 data lines
should the operator hold two keys
pressed at one time. This would only
be a problem if the LCD was being

Photo l--The  cornplefe  SPI  LCD/keypad circuit is built on a smallperfboard  and uses a CJMC  DS16  membrane
keypad.

REDUCE THE STACK!
Use fully integrated

PC/104  CPU and DAS
modules from

odule size: 90 x 96 x 15mm

PC/104 Compliant PC-AT SBC
CMi386SX-1:  $578 iv.?0  pieces

2MB  DRAM & SSD software included

5 PC/XT/AT Single Board cpuklodules’“:
W 486SLC,  386SX,  F8680, V41& VG230 DOS C?Us
n 80387SX  math coprocessor socket on-board
N 512K6, 1 MB, 2MB or 4MB DRAM installed
W Two 32-pin  SSD sockets & support software
n IDE, floppy & CGA controllers
n Rs-23214221485  serial ports
n Bidirectional parallel, keyboard & speaker ports
n Keypad scanning & PCMCIA support
n Power management & single +5V supply

7 utilityModules’“:
n Super VGA controller & I/O modules
n PCMCIA carriers for Types I, II & Ill cards

PC/l04 Compliant 200 kHz Analog 110  Module
DM5406-2:  $498,,00 pieces

17 DAS dataModules@:
W 12 & 14-bit  A/D  conversion up to 200 kHz
n Gap free, high speed sampling under

WindowsTM  & DOS
n Programmable scan, burst & multiburst
n Pre, post & about triggers
n 1 K channel-gain scan memory with skip bit
n 1024 sample AJD buffer
n 12-bit  analog outputs
n Bit programmable digital l/O  with Advanced

Digital Interrupt modes
n Incremental encoder interfaces
w 4-20 mA current loop source
n opto-22 compatibility
n Low power & single +5V power supply

For technical specific&m-  and data skeets on K/104,
1SA bus and Ewocard  products, call

RTD USA Technical FaxBack:  1 (814) 235-1260
RTD USA BBS: 1@14) 234-9427

&Real Time Devices USA
200 Innovation Boulevard l P.O. Box 906

State College, PA 16804-0906 USA
Tel: 1 (814) 234-8087  l Fax: 1 (814) 234-5218

RTD Europa RTD Scandinavia
Fax: (36) 1 212-0260 Fax: (356) 0 346-4539

RTD is a founder of the PC/104 Consortium and the
/orId’s  leading supplier of PC/l04  CPU and DAS modules
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updated at the same time, but it is a
possibility. The necessary debounce of
the switches is done in software.

The LCD module can be any one
of many inexpensive LCD modules
available on the surplus market that
use the Hitachi HD44780 LCD
controller driver. I am using the
Hitachi LM052L,  a 16-character by 2-
line module. With so few port lines
available on the 68HC705K1,  I had to
use the 4-bit transfer mode. From the
host micro’s standpoint, the LCD is
sent data as if it were an g-bit device.

Port bits PAO-PA3 serve double
duty as the data bus for the LCD and
as the keypad-scan function described
earlier. Port PA4 also serves double
duty as the register-select signal for
the LCD and keypad column-multi-
plex address. PA6 is the LCD ENABLE
strobe signal. During the key scan,
ENABLE remains low so the LCD does
not receive extraneous data.

SPI data comes in to PBl and is
sent out on PBO. The SPI clock signal
is connected to the -1RQ input. Note
that the -1RQ line is pulled high by a
lo-kn resistor. This ensures the
68HC705Kl  is not stuck in an ex-
tended interrupt prior to the host
micro’s proper initialization of the SPI
port pins. The power consumption of
the entire circuit, using a 16 x 2 LCD,
is 26.5 mW.

THE FIRMWARE
Steve Ciarcia has stated, “My

favorite programming language is
solder.” And, like him, I love building
circuits.

At times in the past, I have
happily wired complicated micropro-
cessor circuits, assuming that I could
write the necessary software later.
When I reach the software and firm-
ware stage, I am sometimes dashed by
the realization that I neglected to
investigate software considerations
such as critical timing.

In this case, I knew from the
outset that getting the 68HC705Kl  to
handle the SPI data transfers at 62.5
kbps was going to be tricky. I was also
concerned whether 496 bytes of
EPROM was going to be enough,
although I haven’t yet written an
assembly language program that was
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Listing 3-The 4bit  LCD routines for the SPI LCD/keypad module are written for the 68HC705K1
microcontroller.

* lcd_clr-clears display without regs
* led_init-initializes  LCD device. Invoke first.
* lcd_writeewrites  char in A at current cursor position

temp
led_init

lcd&clr

led_wait

lcdwl

led_write

rmb
lda
sta
bset
bclr
jsr
lda
sta
bset
bclr
jsr
Ida
sta
bset
bclr
jsr
Ida
sta
bset
bclr
jsr
Ida
jsr
jsr
Ida
jsr
jsr
rts

Ida
jsr
jsr

sta
Ida
deca
bne
Ida
rts

jsr
jsr
rts

* 5 ms delay
lcd_dlay sta

clra
lcddl inca

deca
inca
deca
inca
deca
inca
deca
inca
deca
deca
bne
Ida
rts

8$03
prta
6,prta
6,prta
lcd_dlay
i/$03
prta
6,prta
6,prta
lcd_dlay
//SO3
prta
6,prta
6,prta
lcd_dlay
#SO2
prta
6,prta
6,prta
lcd_dlay
i/$28
lwritec
lcd_dlay
i/BOe
lwritec
led_dlay

i/B01
lwritec
led_dlay

temp
#$60

lcdwl
temp

lwrited
lcd&wait

temp

lcddl
temp

wait 50 ids for LCD to finish

256*36* 112 = 4.6 ms



Listing 3-continued

* write a byte to LCD command register
lwritec sta temp

lsra
lsra
lsra
lsra
sta prta ; RS line low
bset 6,prta ; strobe ENABLE
bclr 6,prta
Ida temp
sta prta
bset 6,prta ; strobe ENABLE
bclr 6,prta
rts

* write a byte to LCD data register
lwrited sta temp

lsra
lsra
lsra
lsra
ora i/%10 ; RS line high
sta prta
bset 6,prta ; strobe ENABLE
bclr 6,prta
Ida temp
ora i/s10 ; RS line high
sta prta
bset 6,prta ; strobe ENABLE
bclr 6,prta
rts

too big for the EPROM space I had some housekeeping, then enters a
available. polling loop to wait for the next SPI

Therefore, I first designed the WI clock. The first WI data bit (MSB) is
transfer part of the program, calculated
its timing, and when satisfied it would
work, built the circuit. I am hoping
that some of this methodology rubs off
onto future projects!

Listing 2 shows the SPI interrupt
service routine. The SPI data handling
is performed using a pseudointerrupt
technique. That is, the SPI clock (from
the host micro), connected to the -1RQ
line, generates an interrupt for the first
clock (of an SPI transfer) received. This
interrupt is necessary to ensure that
the 68HC705  is always ready to
receive a byte of SPI data.

However, the interrupt latency is
10 cycles plus the time it takes to
finish the instruction being executed.
This is too long a period for the
68HC705  to send and receive a bit.

The trick is to settle for 7-bit
transfers, which are suitable for the
LCD. The keypad-data output needs
only 4 bits. The first SPI clock invokes
the interrupt-service routine, does

simply ignored. The 68HC705 has B I H
and B I L instructions for tightly polling
the IRQ pin level. Using these instruc-
tions and tight, replicated, inline  code,
the program can both send and receive
the SPI data with no problems.

Since SPI data is sent MSB first,
the transmitted byte (keypad data)
must be bit reversed before being sent.
There is plenty of time to do this bit
reversal during the keyboard-scan
routine using a 16-entry lookup table.

I should note that it is critical that
the IRQ flag-clearing instruction be
included at the end of the ISR. During
the execution of this ISR, seven
additional falling clock edges have
been applied to the -1RQ line, and its
latch will definitely be set. Without
the flag-clearing instruction, the ISR
would be reentered even though the
SPI data byte has been fully sent and
received.

The circuit returns values of 1-16
to the host for the 16 different keys. A

American Eagle Technology

Data acquisition rates from
1OOkHz to 1 MHz.
Newest designs incorporate
the latest technology: FIFO
buffers, dual-DMA, REP INSW
data transfers, programma-
ble gains, etc.
Simultaneous sampling
option for all boards.
Lowest prices on the market
for comparable performance.
Digital I/O w/ on-board relays.
16-bit analog output (D/A).
Large inventory of popular
items for next day delivery.
Also available: signal condi-
tioning, multi-port serial
boards, device programmers,
logic analyzers, & much more.

Amer ican

Eagle Technology
526 Durham Rd
Madison, CT 06443

Call: (203) 245-6133
Fax: (203) 245-6233
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value of zero is sent when no keys Cursor mode (125)-the  next byte(s)
have been pressed since the last sent move the cursor to the re-
inquiry from the host. quested position

Remember that the 96-character
ASCII set can be transmitted to the
LCD using seven bits. To send data to
the command register for such opera-
tions as display clearing, I have
“stolen” three seldom-used character
values (125-127) for that purpose. The
definitions of these three commands
are as follows:

Data mode ( 126 J-the next bytej s) sent
go to the data register of the LCD

Command mode (127)-the  next
byte(s) sent go to the command
register of the LCD

All necessary commands to the
LCD are seven bits long with the
exception of the cursor-movement

command, which has an additional
mode assigned to it. All values passed
to the LCD while in this mode have
DB7 set high as required for cursor
movement.

The necessary code (with atten-
dant timing constraints) to set up the
LCD display properly in 4-bit mode
executes when the 68HC705  is
powered up. The host micro need not
worry about this other than to wait 15
ms or so after reset before sending any

Serial Peripheral Interface
The Serial Peripheral Interface (SPI) is a high-speed, The CLOCK signal needs further explanation. The

TTL-compatible, full-duplex, synchronous, data-transfer rate of data transfer depends on the CLOCK rate. In the
protocol. It has been implemented as a functional block 68HC11,  the clock rate is based on the processor clock
on many modern microcontrollers including the divided by the constants 2, 4, 16, or 32. The standard
68HCl1,  TMS370, and some derivatives of the 8051 processor clock rate for the 68HCll  is 2 MHz. This
family. While they’re not all that common, there are project uses the /32 option, as the 68HC705Kl  in the
peripheral ICs designed for this serial bus. keyboard and LCD module cannot respond to higher

For instance, Maxim and Linear Technology make rates. This selection provides a transfer rate of 62.5 kbps.
multichannel 12-bit ADCs.  Texas Instruments makes Incidentally, the TMS370 provides a much more pro-
ADCs and power driver ICs (these make excellent grammable SPI clock-rate selection with a divisor ratio
stepper motor drivers). Motorola’s LCD driver ICs use a of up to 1024 on its internal clock.
serial interface, which can be driven by the SPI. These The 68HCll  SPI block offers both the clock polarity
are just a few examples of available devices. and phase to be programmed. Through this, the SPI

The SE’1  functional block, which I outline, is works with peripheral ICs made by many manufacturers.
implemented by Motorola in their 68HCll  family. Due to the way in which the 68HC705Kl  firmware
There are slight differences in the implementation of works, it is important that both the clock phase and
this protocol in other manufacturers’ products, but the polarity be set to 1 for this project.
principle is the same. The SPI is a full-duplex protocol

Data transfer is serial and, unlike the more com- . Unlike other common, full-duplex protocols such
mon RS-232 standard, is synchronous. Since this bus as the RS-232 where there is not necessarily a 1: 1
was originally intended to provide communication relationship between the amount of data sent and that
among microcontrollers in a multiprocessor environ- received, the SPI does impose this constraint. For every
ment, the concept of a master and slave is used. byte sent out by the master, a byte is simultaneously

In environments, where both devices on the bus are clocked in to the master. Whether the slave actually
“intelligent” and therefore capable of originating sends back data is immaterial. The master assembles a
messages on their own, the protocol allows only one of byte of data from the signal seen on its MIS0 line during
the devices to be the master. So, only the master can the time its data byte is being sent out.
initiate messages; the slave receives and responds to For the purpose of sending data from the master to
these messages. In a project such as this one, the host an output-only peripheral such as a DAC, this incoming
microcontroller must be programmed as the master; the byte would be ignored. In the case of an SPI device such
keyboard and LCD module is the slave. (Program code as an ADC, which must be triggered and then read, the
and implementation are detailed in the article.) common method is for the ADC to return the last

The SPI uses three signals to transfer the data: reading it took at the time that it is receiving its trigger
MOSI (Master Out Slave In), MIS0 (Master In Slave command for the new conversion. ln this project, the
Out), and CLOCK. Since the 68HCll  is the host or module returns the last key pressed whenever it receives
Master processor, the MOSI line carries data to the LCD an incoming LCD data byte.
and the MIS0 carries data from the keypad to the host The 68HCll  SPI block, while very flexible, has a
[they would be reversed if the 68HCll  were the slave). fixed 8-bit  word length. The TMS370 SPI block has a

The i n i t S P I procedure in Listing 1 gives the fully programmable word length of l-8 bits. While the
correct sequence of 68HCll  instructions for setting the SPI is certainly not as flexible as the PC bus, it is much
SPI properly. Note also that the -SS line of the 68HCll easier to use when only a small number of devices need
must be tied to VCC to enable it as the master. to be connected together.
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data to the LCD and keypad circuit.
For those who want to use these LCD
modules in 4-bit mode in their own
applications, I have shown the re-
quired code in Listing 3. The Hitachi
HC44780 data manual is a comprehen-
sive source of information on program-
ming these modules.

So the builder can see if the circuit
is working properly prior to being
connected to a host WI port, the
68HC705  sends out the sign-on
message “CIC WI LCDKBD” after it
initializes the LCD module. Once
connected to a host, the first LCD
command should be to clear the LCD
of the sign-on message.

To read the keypad, the host sends
a byte to the SPI. The key code is
returned in the WI data register with a
zero indicating no key presses since
the last poll. If you want to read the
keypad without also writing to the
LCD, send code 126, which sets up
data mode (the mode most commonly
used). Note that this circuit “remem-
bers” the last key pressed since the
last host polling. This feature ensures

that if critical timing sequences are
performed, the host is able to check
the keypad less frequently.

WRAP-UP
I hope this article prompts anyone

who hasn’t bothered to make use of
the SPI to give this simple, yet useful,
circuit a try. It can be breadboarded in
about an hour or so. q

Brian Millier has worked as an
instrumentation engineer for the last
12 years in the Chemistry Department
of Dalhousie University, Halifax, NS,
Canada. In his leisure time, he
operates Computer Interface Consult-
ants and has a full electronic music
studio in his basement. He may be
reached at brian.millier@dal.ca.

LCD module
Timeline  Inc.
23650 Telo Ave.
Torrence,  CA 90505
(3 10) 7845488

MC68HC705KlP
Jameco Ltd.
1355 Shoreway Rd.
Belmont, CA 94002-4100
(415) 592-8097

Motorola Technical Manuals
Motorola Literature Distribution
P.O. Box 20912
Phoenix, AZ 85036.
(602) 244-6900

A programmed 68HC705KlP  is
available for $15 plus $3 postage
and handling (U.S. currency) from:

Brian Millier
Computer Interface Consulting
P.O. Box 65, Site 17, R.R. 3
Armdale,  NS
Canada B3L  4J3
(902) 876-8645
E-mail: brian.millier@dal.ca

410 Very Useful
411 Moderately Useful
412 Not Useful

Odds are that some time during the day you
will stop for a traffic signal, look at a message
display or listen to a recorded announcement
controlled by a Micromint RTCl80.  We’ve
shipped thousands of RTCl8Os  to OEMs.
Check out why they chose the RTCl80 by
calling us for a data sheet and price list now.

MICROMINT, INC.
4 Park Street, Vernon, CT 06066
(203) 871-6170*Fax  (203) 872-2204

in Europe: (44) 0285-658122ain  Canada: (514) 336.9426*in Australia: (3) 467-7194mDistributor Inquiries Welcome
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PLUG-IN FREEDOM
FOR THE DIGITAL
HOME

An affordable, home-wiring
system that fulfills consumers’
immediate demands for home
networking of computers,
security systems, and other
electronic products also offers a
convenient on and off ramp to
the coming information
superhighway.

The new TecSystem from
U.S.Tec is the backbone to an
easy-to-use home LAN.
Consisting of a wall plate
(TecPlate),  a central electronic
server, and special networked
cabling, the TecSystem allows
homeowners to access cable TV,
telephone, and electricity from a
single, convenient wall source.
Installed in multiple locations,
the TecSystem enables plug-
and-play flexibility with other
electronic devices in the home.
TecSystem is CEBus  compliant.

The system’s use of higher-
bandwidth-capacity wiring
prepares homeowners both for
in-home automation of elec-
tronic products and appliances,
and two-way access on the high-
speed, high-volume digital
superhighways. The TecSystem
allows you to view VCR and
security camera pictures on
multiple TVs, network comput-
ers to printers, and send stereo
audio from room to room. Home
LAN is well-positioned for
problem-free communication

with global computing networks,
programmable news and
information, video on demand,
multiple TV channels, and other
multimedia services.

TecSystem comes in
multiple configurations. An
entry-level, four-TecPlate
network can be installed for as
little as $500. An eight-TecPlate
network is priced at $1500. A
complete network accommo-
dates up to 32 TecPlates.

U.S.Tec
470 South Pearl St.
Canandaigua, NY 14424
(716) 396-9680
Fax: (716) 394-7095
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HIGH-POWER, PERMANENTLY WIRED
X-10 LIGHTING MODULE

The PCS lighting control modules, LMl-800,  LMl-1200,  and
LMl-1800,  finally offer an economical solution to controlling more
than 500 W of incandescent lighting using X- 10 signalling. These
modules are mounted on a flat, vertical surface and are permanently
attached to the residence wiring system. Two ‘Yz”  knockouts and a
terminal block are provided for simple connection.

All controllers offer the same advanced features available on all
PCS multimodules. These features are not available on any conven-
tional lighting modules.

Lights can be brightened from full off without having to come
to full on first. They also can dim down from full on. If dimmed past
the lowest dim level, the module enters the full-off state, allowing it
to go to full on with the next on command.

Another feature is that the current dim level is not lost if the
module is turned off or if power fails. Each time the module receives
an on command, it returns to the preset dim level, allowing the user
to preset various indoor and outdoor lighting levels.

All versions of LMl are thoroughly overdesigned with heavy-
duty triacs, more than adequate heat sinking, EM1 protection, and all-
metal enclosures. Modules are in the process of being UL listed.

All lighting modules
can be optionally turned on
and off by an external
switch in series with the
load, typically a standard
wall switch. This is a
convenient method of
providing external manual
control to every lighting
circuit.

Powerline
Control Systems

9031 Rathburn Ave.
Northridge, CA 91325
(818) 701-9831
Fax: (818) 701-1506
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X-10 SOFTWARE FOR THE REST OF US
Wilmington Computer Applications has released a simple,

nongraphics, menu-driven X-10 software package for use on most
IBM PC, XT, or AT and Apple II computers. XTen-Utilities  requires
only one floppy, a serial port, 256 KB memory, and MS-DOS 2.0 (or
newer) for IBMs.  The Apple II version requires one floppy, super
serial card (or equivalent), 64 KB memory, and includes ProDOS  8.
Both versions require the CP290  X-10 home control interface.

XTen-Utilities  offers file-based editing and reporting. A CP290
does not have to be connected while editing an event file or produc-
ing reports. Modified event files can later be uploaded to the CP290.
The Reports command details house and unit usage. A countdown
Timer function allows delayed X-10 device control. An adjustable
Oscillate function can be used to cycle X- 10 controlled devices,
including Power Horns, on and off.

Both versions include XTen-Menus.  XTen-Menus allows easy

two-keystroke control of any X-10 device and is easy to set up. You
can even use your own descriptions on menus. Up to 16 submenus
can be selected from the main menu. Any menu item can turn any
one house code or multiple-unit combination on, off, dim, or flash.

XTen-Utilities  is priced at $39.95.

Wilmington Computer Applications
P.O. Box 429 l Wilmington, MA 01887-0429
(SOS) 658-9950 #512

LOW-COST TOOL
FOR DEVELOPING
INTELLIGENT DEVICES

Echelon Corporation intro-
duces NodeBuilder, a new
development tool that makes it
easy and inexpensive for manu-
facturers to design devices that
can be integrated into automa-
tion and control networks. In-
stalled LONWORKS  nodes today
range from valves in chemical
plants, to alarms in telephone
central offices, to sensors for
automated toll booths, to smart
thermostats for homes.

LONWORKS  NodeBuilder
includes everything developers
need to create and test products
for LONWORKS-based control
networks. It uses a familiar
Windows-based development
environment with easy-to-use,
on-line help. NodeBuilder  in-
cludes the LONWORKS  Wizard, a
tool which generates software
for an interoperable LONWORKS
device.

NodeBuilder  complements
the development capabilities of
the LonBuilder Developers
Workbench, a tool with sys-
tems-level capabilities. System
developers can use one or more
LonBuilders  for network devel-
opment while simultaneously
developing individual nodes for
the system using LONWORKS
NodeBuilder.

The NodeBuilder  is avail-
able for $3,995. For more infor-
mation on LonBuilder Develop-
ers Workbench, call Echelon.

Echelon Corporation
4015 Miranda Ave.
Palo Alto, CA 94304
(415) 855-7400
Fax: (415) 856-6153 #513
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1
oday, the market for
home automation
seems to be divided
between whole-
house automation
systems costing
tens of thousands of
dollars and the low-

cost, do-it-yourself market. What’s
missing is a systems-level approach
providing the features of a whole-
home system that is simple to install,
is reliable, and comes at a low-cost.

LONWORKS  technology is
Echelon’s answer for that gap. It
provides a method of communicating
between devices using several types
of media primarily for control.
Although initially used mostly in
industrial and commercial building
control settings. LONWORKS  has
become sufficiently popular that its
prices have been driven down. It is
now positioned for the low-cost home
automation market.

Special codes embedded in each
LONWORKS  device (e.g., a heater,
thermostat, home theater center) are
transmitted via the home’s power
lines (the technology is also available
for twisted-pair, RF, infrared, coax,
and fiber-optic media). To meet the
desire for plug-and-play products.
LONWORKS  provides a basic configu-
ration which requires no installation
or programming. For more custom-

Developing Home
Automation
Devices with
LONWORKS

ized automation, L~NWORKS  devices can be
programmed or integrated with other
professional control systems.

After a brief introduction of LONWORKS,

this article will focus on the NodeBuilder, a
development tool which enables engineers to
create LONWORKS  devices.

WHAT IS LONWORKS?

LONWORKS  technology is a system of
sensors, actuators, displays, and logging
devices (referred to as nodes) linked together
to monitor and control electrical devices.
Control functions are typically handled
automatically, except for faults which the
system cannot correct. In home automation

RICH BLOMSETH

Rich believes LONWORKS  technology

fills the gap between whole-house

automation systems costing tens

of thousands and the low-cost, do-

it-yourself market. It provides a

common device control scheme

and communicates over media

often already installed in the home.

Photo 1: The prototype IR dimmer hardware was easily constructed using standardproto

board and an IR receiver  from Radio Shack.
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applications, a control network may provide
safety (e.g., monitoring security, fire alarms,
and pool and spa areas), control (e.g., reg-
ulating room temperature, lighting, draper-
ies, and irrigation systems), and entertain-
ment (e.g., managing A/V equipment).

Neuron chips, the heart of LONWORKS
technology, contain the protocol (LONTALK)
that enables them to communicate with other
Neuron chips. Since Neuron chips can be
connected directly to the sensors and outputs
they supervise, a single Neuron chip handles
processing of sensor and output status,
execution of control programs, and commu-
nications with other Neuron chips.

For nodes requiring more processing or
I/O power, the Neuron chip can also be used
as a communications coprocessor for any
other processor. The Neuron chip therefore
provides a scalable solution that can be used
even on complex nodes which include a host
computer and network interface.

LONWORKS  also provides interoper-
ability with other control systems. Network
management software, tools for installing
complex networks, and routers enable
communications between the different
communications media.

RIDING THE POWER LINES
Power-line signaling is ideal for home-

automation communications because it
requires no new wires. As well, power
wiring already reaches every device that
needs to be controlled.

Although power-line signaling devices
have been available for years, they have two
significant drawbacks-they are unreliable
and lack two-way communication. Intermit-
tent noise sources, impedance changes, and
attenuation conspire to make the power line
a hostile path for power-line signaling.

To counteract these problems, LON-
WORKS combines narrowband signaling with
signal processing and error correction
algorithms in its transceivers. The trans-
ceiver features include:

l low-overhead error correction to enable the
system to receive corrupted packets while
maintaining a high throughput

l adaptive carrier-detect algorithm that
automatically tracks changes in power-
line noise levels

l impulse-rejection technology to improve
performance in the presence of impulsive
noise sources such as triac-controlled
dimmers

ktillg  1: By declaring LONMARK  objects and network variables for an IR dimmer, any device

on the same network con communicate with the dimmer.

#pragma set_node_sd_string  “El.  I R  D i m m e r  C o n t r o l l e r ”
n e t w o r k  o u t p u t  sd_string (“@Oil.“)  SNVT_switch  nvoSwitch;
n e t w o r k  o u t p u t  sd_string  (“@013.“)  SNVT_count  nvoRawHwData;

l/O Device Name and Direction
Bit, nybble, byte input and output
Bitshift input and output
Dual slope input
Edgedivide output
Edgelog input
Frequency output
1% input and output
Infrared input
Leveldetect input
Magcard and Magtrackl input
Muxbus input and output
Neurowire input and output
Pulsecount output
Pulsewidth output
Oneshot  output
Ontime  and Period input
Parallel input and output
Pulsecount and Totalcount input
Quadrature input
Serial input and output
Touch input and output
Triac output
Triggeredcount output
Wiegand input

Descrhtion
Direct binary I/O
Up to 16 bits of clocked serial data
Comparitor input for 16-bit dual-slope A/D
Waveform equal to fraction of input
Edge to edge timing of an input stream
Square wave output of specified frequency
Philips K-compatible serial I/O
Encoded input from an IR demodulator
Detect logic zero level
IS0781 1 track 1 and 2 magnetic card readers
Multiplexed address and data bus
SPI and Microwire compatible serial I/O
Output specified number of pulses
Output specified frequency and duty cycle
Single output pulse of specified period
Pulsewidth and period measurement
8-bit bidirectional I/O
Transition count over fixed or total interval
Shaft encoder rotary position input
8-bit asynchronous serial I/O
Dallas Touch 1 -wire bus I/O
Pulse delayed with respect to input edge
Pulse controlled by counting input edges
Wiegand card reader input

Table 1: Built-in Neuron C I/O objects simplifjr interfaces to most common I/O devices.

ktillg 2: IR dimmer software declarations for I/O objects configure the Neuron chip’s

internal hardware for the IR dimmer I/O devices.

IO-0 o u t p u t  b i t ioLED =  1:
IO_4  i n p u t  q u a d r a t u r e ioDia1  ;
IO_6  i n p u t  i n f r a r e d  i n v e r t  clack(7) ioIRData:
IO-6 i n p u t  b i t ioIRDataLeve1  :
IO_7 i n p u t  1  e v e l d e t e c t ioButton;

LiStillg a: The complete IR dimmer software listing shows how little code is requiredfor a

complex application.

// I R D I M M E R . N C - D i m m e r  c o n t r o l l e r  w i t h  m a n u a l  a n d
// i n p u t s .  C o m p a t i b l e  w i t h  t h e  S o n y  RM-V10  r e m o t e
// T h i s  r e m o t e  p u t s  o u t  t h r e e  (3) i d e n t i c a l  c o d e s
// c l o s u r e .

n f r a r e d
c o n t r o l .
f o r  e a c h  k e y

// max_period  =  2 . 6  m s ;  l o w  b i t =  1 . 1  m s ;  h i g h  b i t . =  1 . 9  m s
/I
// O b j e c t  I D Type
II 0 0 S w i t c h  s e n s o r  o b j e c t ,  SNVT_switch

i i p r a g m a  set_node_sd_string  “@l.  I R  D i m m e r  C o n t r o l l e r ”
iipragma enabl e_io_pull  ups
i i p r a g m a  num_addr_table_entries  3 continued

IA&
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listing 8: continued

// Open-Loop Sensor LonMark  Object, ID ii0
network output sd_string ("@011.") SNVT_switch nvoswitch;
network output sd_string ("@O/3.") SNVT_count nvoRawHwData;
network input sd_string i"@O16.")  config  SNVT_count nciGain=5;

IO-0 output bit ioLED = 1;
IO_4 input quadrature ioDia1;
IO_6 input infrared invert clack(7) ioIRData;
IO_6 input bit ioIRDataLeve1;
IO_7 input leveldetect ioButton;

// IR controller values
#define IR_ON_OFF 149
#define IR_VOL_lJP 146
#define IR_VOL_DN  147

// ToggleSwitchStateOFToggle  the state of the switch output.
void ToggleSwitchState(void1  i

nvoSwitch.state = !nvoSwitch.state;
io_out(ioLED, nvoSwitch.state ? 0 : 1):

// ChangeSwitchLevelO-Change  the switch level by a specified
// amount. Turn on the switch if the new level is not zero
// and the switch is off.

void ChangeSwitchLevel(long int deltavalue) 1
long int tempvalue; // switch temporary update value

tempvalue = nvoSwitch.value + (deltavalue * nciGain1;
nvoSwitch.value = (unsigned) (tempValue  < 0 ?

0 : ((tempvalue > 200) ? ZOOIJ : tempvalue));
if (nvoSwitch.value  && !nvoSwitch.state)
ToggleSwitchStateO;

// Infrared data input task-Read data from infrared remote.
priority when(io_changes(ioIRDataLevel)  to 0) i

unsigned int irData[Zl; /I IR data

if (io_in(ioIRData. irData,
12) i

nvoRawHwData = (unsigned
switch (irData[Ol)  1
case IR_ON_OFF:
ToggleSwitchStateO;
break;

case IR_VOL_UP:
ChangeSwitchLevel(2);
break:

case IR_VOL_DN:
ChangeSwitchLevel(-2);
break;

12, 65424UL,  65424UL + 59UL) ==

lonq) *irData;

ii On/off control. Invert
li state of switch and
// control LED.
// Volume up control.
// Increase brightness.

// Volume down control.
// Decrease brightness.

delay(12000); // Ignore the other two outputs

// Quadrature dial input task-Read data from shaft encoder.
when(io_update_occurs(ioDial))  i

ChangeSwitchLevel(input_value);

// Push button input task-Read data from on/off push button.
when(io_changes(ioButton)  to 1) 1

ToqqleSwitchStateO;
deiay(500); II Debounce

t

#201

#202

#203

Add a recorded  nafh  voice to your system. Voice
libraries of up to 255 words or phrases (2 min total
max)-record your own using our optlonal SDS-1000
development system and yourlBM  compatible, orwe’ll
prerecord your messages for you. Eprom voice storage
means your lhbraty  IS unaffected by power loss.

l Repeater identifiers l ATM’s
l Site alarms l Multiple languages
*ANI l Emergency
l Remote telemetry announcements

Several different models avallable

Palomar Telecom, Inc.
1201 Simpson Way * Escondldo, CA * 92029

619-746-7996 * FM 619-746-1610

-

X-10,LEVITON
Complete line in stock

TW523 kit (DOS)
ZfG65,00

+
TW523 kit (Windows)

~90_00

6-3s:  WI
$31_00

Baran-Harper Group Inc.
Voice: (905) 946-2451 l Fax: (905) 479-0455

BBS: (905) 479-0469

Home
Automation

Worthington
Distribution

NOMINIMUMS
NO HANDLING FEES

TRUE DEALERPRiCING
16 Gumbletown Road, Paupack, PA 18451
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Since the technology complies with
signaling regulations in North America and
Europe, developers are able to expand their
potential market significantly.

DEVELOPING AN
INTEROPERABLE IR DIMMER

To give you an idea of how to take
advantage of this technology, I will work
through a simple example. You will see how
NodeBuilder  can be used to develop an
interoperable, remote-controlled dimmer for
the home.

The IR dimmer is a wall-mount dimmer
controller with a quadrature dial and push
button for manual input. An infrared receiver
offers input from a hand-held remote
controller. A single LED output is used as an
on/off indicator.

FIRST THE SOFTWARE
Applications for the Neuron chip are

written in the Neuron C programming
language. Neuron C is based on ANSI C,
with extensions for network communica-
tions, I/O, and event-driven task manage-
ment.

Network communications for interoper-
able LONWORKS  devices are performed using
LONMARK objects. These objects define
standard formats and semantics for how

Photo 2:  The LTM-IO  module is usedforprotoQping  andproduction. It includes a Neuron 3150

chip, 32.KBjlash  memory, and  32.KB RAM.

information is exchanged between devices
on a network. The most common objects are
LONMARK  sensors and LONMARK actuators.
A sensor object corresponds to a physical
device which can be monitored, whereas an
actuator object corresponds to a physical
device which can be controlled. For the IR

*I t.mVhrks  NodeEktildci - IRDIMMERDEV .*

Eile E d i t  view Build Manage Browse  Options Window Help

Photo & This device definition specifies the

application code and hardware device template to

be used.for  the IR dimmer.
I#

&
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dimmer, there is a single LONMARK
sensor object.

Each object is defined by a
unique object type number and a
defined collection of network
variables. To a Neuron C application,
each network variable looks like a
standard C variable. Unlike the
standard C variable, however,
network variables can be connected
between devices. Therefore, updates
to a network variable on one device
automatically update the connected
network variables on other devices,

Network variables have types
like C variables, but a predefined set
of Standard Network Variable Types
(SNVTs;  pronounced “snivits”) go
beyond C types by also defining
standard units and ranges. For
example, SNVTs  are defined for
temperature, pressure, and velocity.

Another difference from standard
C variables is that network variables
have a direction. Output network
variables automatically send their
values to other devices when updated.
Input network variables are automati-
cally updated when they receive
updates from other devices.

For the IR dimmer, there are two
output network variables: n v o Sw i t c h
and nvoRawHwData.  The nvoSwitch
output reports the on/off state and



level of the dimmer. This
output can be connected to
network lamp modules which
control their level. However,
the output can be connected to
other devices as well. For
example, by connecting a
networked amplifier device,
you could control the on/off
state and volume of the
amplifier output.

ThenvoRawHwData
output reports valid infrared
commands and could imple-
ment other types of IR control.
You could connect this output
to a central controller to invoke

7 106 GND 2o

control applications for the home new value to the IR dimmer sensor output
network. value:

Listing 1 contains Neuron C
statements which specify that the IR
dimmer has a single LONMARK sensor
(object type 1) and declares the two
network variable outputs.

nvoSwitch.state =!nvoSwitch.state;

Once declared, output network
variables are updated with a simple C
assignment statement. For example,
the following C statement assigns a

Interfacing to I/O devices is as simple
as network variables. Table 1 lists the 33
built-in device types that Neuron C includes.
These types provide built-in support
for the most commonly used I/O
devices in home control.

figure 1: The schematic for the IR-dimmer prototype  shows  how most

of the I/O inter&e  is implemented internally in the Neuron chip.

Interfacing to any of these types
is done by declaring an I/O object
and then reading or writing it with a
function call. For example, Listing 2
declares the five I/O objects for the
IR dimmer.

The following statement reads
the IR sensor:

io_in(ioIRData, irData,  12,
65424UL,  65424UL + 59UL)

The input parameters to the i o-i n ( 1
call define the number of bits (i.e.,
12) per command and the threshold
period to distinguish between the one
and zero input. These parameters are

selected for a Sony RM-VlO remote control.
Other remote controls can be used by
changing the timing parameters. For this
project, all testing was done with a Sony
remote control and a Sony-compatible
universal remote control.

Processing for network variables and
I/O objects is accomplished within tasks.
Neuron C tasks are independently scheduled
statement sequences. Each task is defined by
one or more when statements that specify the

:,,.,, / Energy Mkagement
,,‘i. ,‘P.,. .“’ Secur i ty  k-wi A larm

-,TjIIT.  ,:,5,  ,, ..,
CoorGnated tJ< ’

/f1 *’ / Home Theater
_ .“~p” + I v.x -7*

Coordinatid  Lighting
_* -”in”~n.“q~,q.~::.  .&...~.j nj;  ““:_,_(ni”nL/_i~~:d8”*_elgb i 1 ,.. . ,- 6 ,.,i Monitorin;  and Data

,- Collection
0

Get all these capabilities and y
more with the Circuit Cellar jL

HCS II. Call, write, or FAX us
*for a brochure. Available as-

’ sembled or as a kit.
Tel: (203) 875-2751,. Fax: (203) 872-2204 i I :.
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PhOtO  4: This device template defines the hardware conq‘igumtionfor  the IR dimmer.

events that must be true before the task can
be scheduled.

The complete code for the IR dimmer is

quadrature input dial is moved, and one that
executes when the on/off button is pressed.

shown in Listing 3. There are three tasks: DESIGNING THE HARDWARE
one that executes when an IR input is LONWORKS  applications can be

received, one that executes when the designed around any of the three Neuron

3 120~~  chips (for description of the
chips, see the Neuron Chip sidebar),
the Neuron 3 150 chip with 2 KB of
on-chip RAM and up to 58 KB of
external memory, or any other
microcontroller as long as the Neuron
chip is used as a communications
coprocessor. Because of the extensive
support provided by the Neuron chip
firmware, the IR dimmer application
requires only 486 bytes of memory
and easily fits in a Neuron 3 120 chip.

The IR dimmer was prototyped
using the NodeBuilder  hardware. The
LTM-10 node included with Node-
Builder provides a complete prototype
node. The infrared decoder, quadra-
ture dial, input button, and output
LED were constructed on a prototyp-
ing board shown in Photo 1. This
board was plugged into the Node-
Builder hardware. The schematic for
the prototype I/O board is shown in
Figure I.

Prototypes may also be easily
constructed using the LTM- 10 module
(see Photo 2). The LTM-10 module
includes a Neuron 3 1.50, a IO-MHz

The Neuron Chip
The Neuron chip (see Photo I) uses advanced

CMOS VLSI technology to implement low-cost control
networks. Included in each Neuron chip are all the
functions required to acquire and process information,
make decisions, generate outputs, and propagate control
information via a standard protocol. Communication
takes place across a wide variety of network media such
as twisted-pair cable, power line, infrared, radio
frequency, or coaxial cable.

Neuron chips are manufactured and distributed by
Motorola and Toshiba. They are available in four
versions: the 3120,3120El, 3120E2,  and 3150 chips.
All versions are highly integrated, require a minimal
number of external components, and include three 8-bit CPUs.

One CPU executes user applications, which could include
measuring input parameters, timing events, making logical
decisions. and driving outputs.

c Neuron ChiD

The second CPU executes the LONTALK  protocol.
Messages are properly encoded and decoded for distribution
over the network. This protocol supports distributed, peer-to-
peer communication that enables individual nodes, such as

actuators and sensors, to communicate directly with one
another.

EEPROM bytesRAM bytes

ROM bvtes

3120--3120El  3126E2 3150 The third CPU controls the Network Communication
512 1024 2048 5121024 1024 2048 2048 Port, which physically and packets.sends receives the

10.240 10.240 10.240 0
I

There is onboard EEPROM and RAM, and either onboard
Ext. Me&my Interface No

Table I: Neuron chip memory configurations

provide a range of options for memory size and

inteamtion.

ROM (Neuron 3 120~~ chip) or an external memory port
(Neuron 3 150 chip) to support the three CPUs.

Table I summarizes the memory configurations of
the four Neuron chips.
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Photo 5: The  network variuble  browser

makes it easy to obsenv  and manipulate

the IR dimmer over the nutwork.

crystal, 32-KB flash memory, and 32.
KB RAM. The I/O and communica-
tions pins are all 0. I” centers for easy
prototyping.

DEFINING THE DEVICE
A device in NodeBuilder  is

defined using a device file. The
device file defines the device’s
hardware characteristics and specifies
which Neuron C application the
device needs. The screen shot in
Photo 3 shows the device definition
for the IR dimmer.

The IR dimmer device is defined
by specifying the application program
tobethe IRDIMMER.NCfiledescribed
earlier. For prototyping, the device
template is defined to as LTMFLASH to
specify that the hardware will be
based on the LTM- IO LONTALK
module with the application stored in
the LTM-I 0 flash memory.

When the device is ready for high-
volume production, the device template can
be changed to the 3 120 template. The default
device templates simplify hardware
definition, but a custom template can be
defined for any hardware configuration. The
device template is easily modified by
clicking on the Edit button next to
the template name. Photo 4 shows
the memory tab of the device
template for the LTM-IO module.

PROGRAMMING THE DEVICE
With the Neuron C application written

and the IR dimmer device defined, you are
ready to compile the program and program
the device. You do this by simply clicking
the Build/Load button in the Device window
shown in Photo 3. This automatically installs
the device hardware, invokes the compiler
and linker with the parameters specified in
the device file, downloads the new applica-
tion to the device, and starts the new

Let’s Work Together.
Networking provides access to a world of resources, and Home
Systems Network offers a world of resources to those who are
interested in home automation. Check it out.

+ Are you looking for information?
Obtain unbiased information about how to install and
use all types of home automation systems from our
books and Intelligent Home video tape series.

+ Are you looking to identify sources?
Call our toll free number for a list of sources for any
type of home automation dealers, products, or
services.

+ Are you looking for marketing assistance?
List your products and services in the Home Systems
Network database and let us tell the world about them
through our books, video tapes, television shows and
referral services.

HOME SYSTEMS NETWORK p.0, BOX 3006 EDMOND, OK 73083 (800) 808-07 ‘18
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Neuron chip Low-voltage,
link-power,

twisted-pair network

6 105
x

5 104
Link Power X

7 106 CPO-2 Transceiver
LPT-10

X
CLKl CLK2

n

X

FiglIt%  2: The 1R dimmer device with a link-power twisted-pair transceiverprovides  the simplest implemen-

tation since no local power supply is required. The LPT-10 transceiver supplies sufficient powerfor the

entire IR dimmer device. Other transceivers can be used in place of the LPT-10 to communicate on other

media without having to change the core of the design

application. The downloading occurs over
the network during development.

Again, when a device is ready for
production, the programming can be done
using a Neuron 3 120 programmer for
Neuron 3 120xX-based  devices or using a
standard PROM programmer for Neuron
3 150-based  devices.

TESTING THE DEVICE
The IR dimmer device is tested over the

network, exercising it using the same
interface that will be used by other LON-
WORKS devices when it is installed in the
network. Clicking on the Browse button in
the Device Window opens the Network
Variable Browser window shown in Photo 5.

By default, all the network variables on
the device are displayed in the left column,
followed by the type, size, and current value
of the network variables. The browser
automatically polls all the network variables
on the device and updates their values.

The operation of the IR dimmer device
is tested by sending infrared commands,
rotating the quadrature dial, pressing the
push button, and observing the resulting
network variable changes. If the network
variables change as expected, the application
is working and ready to go to production.

If developers are not sure about the
remote controller command numbers, they

can observe the nvoRawHwData output

network variable and determine their values.
If the application doesn’t work as expected,
the developer modifies the Neuron C
application, reruns Build/Load, and tests
again.

A source-level debugger ships in
summer ‘9.5 as a free upgrade for all
NodeBuilder  1.0 customers. Until then, the
network variable browser can be used for
debugging and testing LONWORKS  devices.

PRODUCING THE DEVICE
Once the design is verified with the

prototype hardware, a production version of
the hardware can be built using control
modules for quicker time to market or using
a full custom design.

Figures 2 shows a complete custom
design for the IR dimmer. It uses an LPT-10
link-power twisted-pair transceiver for a
hard-wired implementation with link power.
The transceiver supplies all the power
required by the device, so a separate power
supply is not required. Another alternative is
to use an FTT- 10 free-topology twisted-pair
transceiver (in place of the LPT-IO) for an
isolated twisted-pair design requiring local
power. A third alternative is to use a PLT-20

power-line transceiver for easy
installation into the home (a
separate power supply is required in

this case). In each case, the core of the
design stays the same while just the
transceiver changes.

INSTALLING LONWORKS
DEVICES

Typically, one node of a
LONWORKS  network installs all the
other nodes on the network. This
installation tool can be integrated into
a home computer or set-top box
connected to the network. Developers
can also build this tool themselves or
use an existing tool for home
networks such as Windows-based
tools from IBM in Germany or
Control Plus in the U.S.

CONCLUSION
With the availability of Node-

Builder ($3995 at the time of this
writing), every device developer in
the home automation market can start
building LoNWoRKs-based products.
The availability of low-cost Neuron
chips, OEM modules, and software
makes the development of easy-to-
install, reliable, and low-cost
LONWORKS  devices a reality.

Rich Blomseth is Echelon’s product
marketing manager  for development
and network services products. He
has been involved with the design and
development of control networks since

1978, and has been at Echelon since
1989. Rich has an MS. in Computer
Science from the University of
California, Berkeley. He may be
reached at richardb@netcom.com.

SOURCES

Echelon Corporation
40 15 Miranda Ave.
Palo Alto, CA 94304
(415) 855-7400
LonLink BBS: (415) 856-7538
telnet:Nlonlink.echelon.com
ftp:Nlonworks.echelon.com

I R S
413 Very Useful
414 Moderately Useful
415 Not Useful
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EBus  is the
Electronic Industries
Association’s (EIA)
open standard IS-60
describing a method
of communication
between electronic
products in the

home using five different media:
power line, twisted pair, coax,
broadcast RF, and infrared. A sixth
medium, fiber optic, has a section left
open and is undefined at this time.

CEBus is a complete, packet-
oriented, peer-to-peer network using a
Carrier Sense Multiple Access with
Collision Detection and Collision
Resolution (CSMAKDCR)  protocol.
The CEBus standard defines every-
thing needed up to and including the
language used for application-to-
application communication called the
CEBus Common Application
Language (CAL).

In this article, I’ll introduce you
to packet construction and show you
how to create CAL messages that
control a CEBus light switch. Hang
on-or the details may swamp you!

CEBUS AND CAL
The CEBus protocol is described

using the OWISO seven-layer model.
CEBus uses four of those layers:
application, network, data link, and
physical. Note the actual application
function (e.g., a light switch) is dis-
tinct from application layer protocol.

WHY CAL?
The CEBus application language

is a set of common language and data
constructs created to enable

Mr. Lightswitch
25 House St., Unit 19

&* Boca Raton,  FL 01011

*&
k

CEBus for
the Masses

interoperability between products used in
residential automation. This interoperability
is available between different manufacturers’
products even without prior knowledge of
the products.

For example, information to control
Company X’s light module or stereo is
published by the EIA or the CEBus Industry
Council (CIC). This information is known to
the world without having to know anything
specific regarding Company X’s design
implementation of how they use a class A
amplifier to control a vacuum-encased,
electrothermal photon emitter-otherwise
known as a light bulb.

PACKET STRUCTURE
A CEBus packet frame can be broken

down into several parts: the Link Protocol
Data Unit (LPDU), the Network Protocol
Data Unit (NPDU), the Application Protocol
Data Unit (APDU), and the CAL message. I
describe these different parts using a mailed

letter (see Figure 1) as an example.
Figure 2 shows a breakdown of a packet
structure illustrating the different parts.

LPDUHEADER
The LPDU header contains the

control field and the source and destina-
tion addresses. In the letter mailing
scenario, the control field represents the
postal service used to send the letter. The
control field specifies the packet type,

PETER HOUSE

Picking up where other CEBus

articles in /lVKleft off, Peter

introduces us to packet construc-

tion and CAL messages. By the end,

you’ll be able to control a real-live

CEBus light switch!
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Packet structure
CPL  and RF onlv1

Preamble Control Destination Source NPDU APDU CAL CRC
field address address header header statement(s)
1 byte 4 bytes 4 bytes 1 -n bytes 1 -n bytes

I I I+APDU-4  1

packet priority, and service
class to the Data Link Layer
(DLL). Figure 3 shows a bit-
oriented breakdown of the
control field.

The packet type is used to
select the form of DLL ; LPD;p;;der  ,,,.. bytes  j j

maximum 41 bytesservice. This method roughly
corresponds to sending a letter
normal mail or with a return FiglID?  2: The elements of a CEBus  packet are broken down into logical groups with size information

receipt requested. The DLL
handles all channel acquisi-
tion, timing, and packet-receipt verification.

There are two classes of DLL service:
acknowledged and unacknowledged.
Acknowledged services expect a response
from the receiving nodes DLL and unac-
knowledged services do not. DLL packet
types include immediate acknowledge
(IACK), acknowledged data (ACK_DATA),
unacknowledged data (UNACK_DATA),
failure (FAILURE), addressed acknowl-
edged data (ADDR_ACK_DATA),
addressed immediate acknowledge (ADDR_
IACK), and addressed unacknowledged data
(ADDR_UNACK_DATA).

Once a node acquires the channel, the
response from the receiving node is
considered part of the acquisition. The
acknowledge packet must start within 200 ps
after the end of receiving a packet from the
requesting node. After the DLL receives the
transmit request from the application, the
DLL automatically handles all of the retries
and channel acquisition.

fields must be null. IACK signifies to the

The ACK_DATA services’ acknowl-
edge is an ultrashort packet with only an
NPDU header and a null information field.
The acknowledge packet’s control field
contains either FAILURE or IACK packet
type. The destination and source address

transmitting DLL the proper receipt of the
packet. FAILURE signifies that the receiv-
ing node’s DLL is operational but could not
pass the packet to its network layer.

The source address is optional in the
ACK_DATA packet and can be omitted to

reduce channel-access duration. If the
transmitting node’s DLL does not receive an
IACK, a retry must begin within 600 ps. If
the retry does not receive an IACK, the DLL
passes an error back up the protocol stack.

ADDR_ACK_DATA  service supports
additional capabilities and enhances
reliability. A one-bit sequence number is
used by the receiving node to ignore
duplicate packets from the transmitting node
during a predetermined time interval defined
in the CEBus  specification. Because of this
added feature, the DLL accesses the channel
multiple times to make sure a packet using
ADDR_ACK_DATA  service is transmitted.

receive an IACK, a retry must begin within

With the ADDR_ACK_DATA,  the
receipt packet includes the ADDR_IACK
type in the control field. As well, the
destination addresses must be present-
which means that the source and destination
address must also be present in the request-
ing ADDR_ACK_DATA  packet.

If the transmitting node’s DLL does not

bit 7 bit 6
Sequence Service
number class

bit 5 bit 4 1 bit 3 bit 2 1 bit 1 1 bit 0
Reserved Packet Packet

pnority type

Packet type (bit 2,1 and 0)
000 IACK
001 ACKPDATA
010 UNACKPDATA
011 *
100 FAILURE
101 ADDR_ACK_DATA
110 ADDR_IACK
111 ADDR_UNACK-DATA

Packet priority (bit 4 and 3)
00 High
01 Standard
10 Deferred
11 *
Service class (bit 6)
0 Basic
1 Extended (undefined at this time)
Sequence number (bit 7)
Alternates each time a new packet is sent to a destination address

FigIN?  3: The LPDU header sets  the Data Link

Layer services and chooses the media access

priority.

600 p. If the retry does not receive an
IACK, the DLL relinquishes the
channel. It may reaccess the channel
and attempt to repeat the transmit
process without passing an error up
the stack. Only if the DLL exhausts
all of the predetermined channel-
access attempts is an error reported.

ADDR_UNACK_DATA  has
similar capabilities to ADDR_ACK_
DATA service without acknowledg-
ment packets or immediate retries. For
ADDR_UNACK_DATA,  the DLL
transmits multiple copies of the pack-
et using multiple channel accesses.

Packets using a broadcast
address must use unacknowledged
services (either UNACK_DATA or
ADDR_UNACK_DATA)  since the
acknowledgments from the many
receiving nodes would collide and
result in unreceivable  noise. ADDR_
UNACK_DATA is the preferred
service for broadcast packets since
multiple packets using multiple
channel accesses are possible and
result in higher reliability.

Packet priority is used by the
DLL to determine the channel-access
priority timing. To gain access to the
channel, a node first listens for
channel activity (carrier sense). If
there is activity, the node waits until it
is finished. After a fixed amount of
time (based on priority) plus a random
amount of time, the node can attempt
to gain channel access by sending a
random-number packet preamble used
for contention resolution. If no
contention is detected, the packet is
sent. If contention is detected, the
node must wait for a new channel
access and transmission attempt.

The earliest a packet with the
highest priority can start is 1 ms after
the previous packet ends. The only
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bit 7 bit 6 1 bit5 bit 4 bit 3 bit 2 bit 1 1 bit 0
Privilege Routing Packet Extended Allowed Brouter

flag services medra subfield

Privilege Extended services
0 Unprivileged 0 No extended services
1 Privileged 1 Extended services octet to follow
Routing Allowed media
00 Request_lD 0 This media only
0 1  ID-packet 1 Allowed media octet to follow
10 Directory route Brouter
11 Flooddroute 00 No brouter address
Packet flag 01 First brouter address presence
0 First packet 10 Second brouter address presence
1 Only packet 11 First and Second brouter address presence

FigIll??  4: The NPDU header describes network inf~vmation  including allowed media and how the packet is

routed.

two exceptions to this are for a packet
retry and acknowledgment. An
acknowledgment must start within
200 ps after the end of the packet to
be acknowledged. A packet retry is
sent approximately 600 us after the
previous packet ends.

The sequence number is a single
bit field and is alternated for each
packet sent to a destination address.
This enables the DLL to distinguish a
received packet which is a copy and
not pass it up the stack to the
application layer. A packet could be a
copy due to a transmitting node using
ADDR_UNACK_DATA  with
duplicate packets or using ADDR_
ACK_DATA, in which a sending
node does not hear the acknowledg-
ment and sends a retry.

DESTINATION AND SOURCE
ADDRESS

The destination address is four
bytes long giving CEBus  a potential
of four giganodes. The address is
divided equally into two logical
portions: system address and Media
Access Control (MAC) address-
usually called the house and unit
codes since most people are already
familiar with these terms.

If the unit code is zero, it is
considered a house broadcast
address-all nodes respond regardless
of their unit code. If the house and
unit codes are both zero, then all
nodes respond because this is
considered a global address. The
destination address has the same
formatting as the source address and
is transmitted in the same order.

The address is placed in the packet
from the unit code’s least-significant bit of
the least-significant byte to the house code’s
most-significant bit of the most-significant
byte. This seemingly reverse ordering offers
protection.

For instance, when the bits are actually
transmitted over the channel, the DLL
suppresses leading zeros to reduce the
transmitted time of the packet and improve
network throughput. Suppression of leading
zeros is possible because end-of-field
separator tokens are inserted by the DLL
before the packet is transmitted.

NPDUHEADER
The NPDU header specifies how the

packet is sent. Using the mail analogy, it
corresponds to using air mail, normal
delivery, or “in care of’ when a router
transfers a packet from one medium to
another (e.g., twisted pair to power line).
The NPDU header consists of six fields:
privilege, routing, packet flag, extended

services, allowed media, and brouter.
Figure 4 shows a bit-oriented
breakdown of the NPDU header.

The privilege field is restricted to
packets related to system management.

The routing field sends an ID
packet, request for the recipient to
send an ID packet, and selects
directory or flood routing from a
router. An ID packet is sent out by a
configured device whenever it is
powered on as a sign-on message or
when requested by a router. A router
uses the ID packet to keep a list of
nodes for each supported medium.

The packet flag field specifies if
this is the only packet or the first packet of a
multipacket message. Long messages can be
segmented into several packets since the
maximum packet length is 41 bytes, with
nine used for control and addressing. This
leaves 32 bytes for the complete NPDU
including any CAL statements.

The extended services field specifies
that additional NPDU bytes follow with
additional NPDU services.

The allowed media field tells routers
and brouters if they should route the message
to another medium. If you had a PL-to-IR
brouter, you probably would not want to
route the messages to IR because IR is
typically used for hand-held remotes or
portable devices. If the allowed media field
specifies other media, an additional NPDU
byte specifies the allowed media.

The brouter field is used to control
routing of packets originating or terminating
on wireless media. A brouter is a device used
to cross between wireless and wired media.
For instance, you may want a hand-held IR

brt 7 1 bit 6 1 bit 5
Reserved ) Mode t Type
Reserved
1 Must be 1
Mode
0 W-Basic variable length
1 BF-Basic one byte fixed
Type
000 Not used
001 Reject
010 Result
011 Receipt acknowledge
100 lmpkcit  invoke
101 Explicit invoke
110 Conditional invoke
111 Explicit retry

1 bit 4 1 bit 3 1 bit 2 1 bit 1 1 bit 0
1 Invoke ID

Invoke ID
000 A three bit increment identifier used for packet tracking
001
010
011
100
101
110
111

FigIll?? 5: The APDU header specifies how the

receiving application layer  should respond to the

packet.
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remote control to send
commands. Your TV could act
as a brouter to the VCR and
stereo via the power line.

APDU HEADER Table 1: Whether a response is generated,for  the SetValue  and  GetValue  methods address, is used by the
The APDU header

specifies how and if the
receiving application layer
should respond to the packet. There are three
fields in the APDU: mode, type, and invoke
ID. In our mail analogy, the APDU is like an
RSVP at the bottom of the CAL message
letter. It tells the CAL interpreter on the
receiving end if it should respond (also
called end-to-end confirmation) or if there
are enclosures or a follow-up letter. Figure 5
shows a bit-oriented breakdown of the
APDU header.

The mode field tells you whether the
APDU uses multiple bytes. Most messages
use the basic fixed-length APDU mode.
Additional bytes are used for services such
as authentication or encryption.

Authentication is used by the receiving
node to verify the sending node’s authority
before the application layer passes the rest of
the APDU to the CAL interpreter. Encryp-
tion sends packets with the message secured.

The type field has seven values: reject,
result, receipt acknowledge, implicit invoke,
explicit invoke, conditional invoke, and

NODE A

“Sending”

NODE B

“Receiving”

Application layer-Implicit invoke
DLL-Acknowledged service

NODE A

“Sendina”

NODE B

“Receivina”
u

User App/CAL Explicit User App/CAL

Application

Network

explicit retry. Reject is sent from the
receiving node’s application layer which
rejects the packet for some reason. Result
and receipt acknowledge are sent from the
receiving node’s CAL interpreter to tell the
sending node’s CAL interpreter that the
CAL command has been completed or
initiated with a complete response to follow.

Implicit invoke tells the receiving node
an application level response is not neces-
sary. Explicit invoke tells the receiving node
to respond with a CAL result response.
Explicit retry expects acknowledgment from
the receiving node’s application layer within
a predetermined amount of time-acknowl-
edgment could be either result or receipt
acknowledge. If none is received, the
application layer (not the application)
automatically retries the message.

Conditional invoke enables a device to
send a response only if it has a nonempty
result to return. If there is a result to return,
the response packet contains a result type in

the APDU header type field.
Conditional invoke could be used
with a broadcast address. A
response result would only be
initiated by a node matching the
conditional criteria since there
would be a result only if the
condition was true.

A SetVal  ue CAL method
does not normally have a response.
If the transmitting node wants to
make sure the SetValue method
was handled properly by the
receiving application’s CAL
interpreter, an explicit invoke can
be used. Table 1 demonstrates the
differences between the invokes
and their set and get values.

Invoke ID is a 3-bit field
incremented (and rolled over) for
each new transmitted message to a
destination address. The application

4 I I I I ,

l ’ UACK_DATA

Application layer-Explicit invoke
DLL-Unacknowledged service

sending node so when
the results come back,
the sending node

matches the result application packet
to the proper command.

A transmitting node cannot stack
or send more than one command to a
receiving node until the receiving
node responds to the first packet. A
transmitting node sends packets to
multiple destinations and uses invoke
ID and the destination address to sort
out the result responses.

Let me take a moment to clarify
the distinction between the LPDU
packet type and the APDU type. The
DLL acknowledgment, if requested in
the LPDU packet type field, takes
place regardless of the APDU type
and without the application’s
knowledge if the application requests
acknowledged service.

As far as the application layer is
concerned, it is communicating with
the application layer of the receiving
node. The application layer is
unaware of any retries at the DLL
layer and the application is unaware
of any retries by the application layer.

Figure 6 shows two nodes-one
node is sending an implicit invoke in
the top example and the other is
sending an explicit invoke to the
bottom example. In the top example,
the application requests ACK_DATA
DLL service, and in the bottom
example, UNACK_DATA DLL
service is requested.

The application passes the packet
to the DLL. If the DLL cannot get an
IACK, only then does the DLL notify
the application of an error. When the
application layer calls for a response
from the receiving-node application
layer using the explicit invoke APDU
type, the receiving node returns a
result response packet to the original
sending node. This activity is separate

&UU?! 6: Herr’s  a breakdown qf the OSI layers slmving  the difference betweerz  CEBus

Application Layer and  CEBm Data Link Layer services.
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from the lower level DLL acknowl-
edgment services and can be used
regardless of the DLL service.

CAL DEVICE MODEL
CEBus uses a hierarchical model

to describe each node. Each node
includes two or more contexts, each
made up of two or more objects. Each
object contains one or more Instance
Variables (IVs).

UNIVERSAL CONTEXT
The first context in every node is

called the universal context and has
nothing to do with normal operation
of the actual device. The universal
context is numbered 00 and controls
the device’s presence on the CEBus
network.

The universal context consists of
two objects: the node-control object
(object 0) and the context-control
object (object I). The node control

object has IVs to hold universal
device information such as the device
addresses, manufacturer name, and
other device management informa-
tion, while the context control object
has a single IV called object_list,

which holds a list of object IDS for
this context. Every context contains

Value Name
01 Node Control
02 Context Control
03 Data Channel Receiver
04 Data Channel Transmitter
05 Binary Switch
06 Binary Sensor
07 Analog Control
08 Analog Sensor
09 Multiposition Switch
OA Multistate Sensor
06 Matrix Switch
o c Multiplane Switch
OD Ganged Analog Control
OF Meter
10 Display
11 Medium Transport
13 Dialer
14 Keypad
15 List Memory
16 Data Memory
17 Motor
19 Synthesizer/Tuner
1A Tone Generator
1c Counter
1D Clock

Table 2: The CAL objects published  hy the CEBus

Industry  Council are combined together  to model

any real-world device.

one or more IVs, which control or publish
some aspect of the device. The universal
context is required in every CEBus-
compatible product.

Value Mnemonic Basic Svntax Data Tvnes
40 nw
41 setOFF IV 6
42 setON IV B
43 getvalue  I V BNC
44 getArray IV [, [<offset>], <count>] D
45 setValue I V BNC
46 setArray IV [, [<offset>], <data>] D
47 add IVl, IV2, [IV31 N
48 increment IV [, <number>] N
49 subtract IVl, IV2, [IV31 N
4A decrement IV [, <number>] N
40 compare IVl, IV2 BNCD
4 C  comparei IV1 , <data> BNCD
4D copyvalue IV1 , IV2 [, <context>,  <object>] BNCD
4E swap IVl, IV2 BNCD
52 exit [<error number>]
53 alias <alias ID> [<string>]
54 inherit IV, <value> D
55 disinherit IV, <value> D
56 if <boolean> BEGIN <msg list> [else clause] END
57 do <boolean> BEGIN <msg list> END
58 while <boolean> BEGIN <msg list> END
59 repeat <boolean> BEGIN <msg list> END
5A build <macro ID> BEGIN <message list> END

Methods in bold are required for minimum CEBus implementation; “,‘I is F5 delimiter

Table 3: CAL merhods  perform operations on CAL inskznce  variables.
E

&

b
.I

Text to Speech Board serial I/O

Temperature boards: w/16  sensors
w/8 sensors plus 8 analog inputs

0th  boards: - 40’ to 1467, serial I/O
Digital l/O ISA cards: 46 I/O ports

96 I/O ports
192 I/O ports

I-Porf  ISA Serial Board w/l  6550s
oml-8&irq’s2,3,4,5,10,11,12,15
I-Servo controller board serial l/O

Windows NT TelcomFAX  Personal
4otomatic  Drapery Controller

:all fur our complete catalog1
support 3 I5*455.1003

08 E. Molloy Rd Fax 315.455.5838
~vracuse.  NY 13211 BBS 315.45508728

Home Automation
Two wav  IR 8 Two wav  X-IO
Serial H&t Commun&tions

Standalone Operation
Hardwire  connect options

Control hundreds of items with
CompCo’s  RlDlREBlRlB  system!

Corndo Enqineerinq,  Inc.
For on-line information call our BBS

(615)-436-6333  evenings/nights/weekends
Information line 16151-436-5189  voice I FAX

Don’t pay ‘big S$$ any longer!
Get professional automation on a hobby budget.

CompCo means Computer Control!
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OTHER CONTEXTS DATA TYPES
CEBus defines contexts which

can be grouped together to define
just about every device imaginable.
For instance, the lighting-control
context includes parameters for
defining a light switch. For a more
complex device like a stereo receiver
or a TV, several contexts containing
various objects can be combined.
For this article, I will focus on a light
switch available in a 500-W dimmer
version or a 15-A relay version.
Refer to the CAL model for the light
switch shown in Figure 6 and the
CAL object list in Table 2.

Name &y&
DO 57
WHILE 58
R E P E A T  5 9
BUILD 5A
AND EO
OR El
NOT E2
XOR E3
GT E4
GTE E5
LT E6
LTE E7
EQ E8
NEQ E9
ELSIF EA
ELSE EB
LITERAL EC

Name &&&s
DELTA ED
P A R A M E T E R  E E
NULL FO (reserved)
MINIMUM Fl (reserved)
MAXIMUM F2 (reserved)
DEFAULT F3 (reserved)
DATA F4
DELIMITER F5
ESCAPE F6
BEGIN F7
END F8
END_OF_CMD  F9
END_OF_LIST  F A
END_OF_MSG  F B
END-OF-FILE FC (reserved)
Error FD
Completed FE

There are four data types
used in CAL: string, data,
numeric, and Boolean.
Strings are delimited by CAL
tokens or are at the end of a
packet. Data can be thought
of as array oriented. Numeric
is usually represented by a
string of ASCII numbers
(e.g., 3 1 h 30h 30h for the
number 100). Boolean is
always true or false. The byte
Olh is true and OOh is false.

PACKET BUILDING
The lighting context has two

objects. The context control object is Table 4: The CAL tokens are unique symbols  rn the CAL message,  which

are used as delimiters and to create programming constructs.required to be the first object in

There are many things
you can do to a CEBus light
switch by sending it packets.
In this example, we turn it onevery context with the exception of

the universal context. The context control
objecthasoneIVcalledobject_list,
which holds a list of the objects in this

context. Here, it would be 02 01 07 02,
showing this context has a CEBus object
type of 02 for the first (01) object and an
object type of 07 for the second (02) object.
Thecurrent-ValueIVisrequiredinthe
light-control object to be CEBus compatible.

The CAL object 07 is an analog-control
object and has 14 IVs as published by the
EIA. A manufacturer can choose to
implement only those IVs which make sense
for a particular product or add nonstandard
IVs. Unfortunately, there is no way for
anyone to know what nonstandard IVs are if

Value DescriDtion
0 Unknown Context ID
1 Unknown Object ID
2 Unknown Method ID
3 Unknown IV Label
4 Malformed Expression
5 Macro not defined
6 Alias not defined
7 Syntax error
8 Resource in use
9 Command too Complex
10 Inherit Disabled
11 Value out of Range
12 Bad Argument Type
13 Power Off
14 Invalid Argument
15 IV Read Only
16 No Default
17 Cannot Inherit Resource
18 Precondition Complete
19 Application Busy

Table 5: CAL error  codes are used to indicate

various application-layer error conditions.

they wanted to use them since the IVs are
not readily available until after the manufac-
turer chooses to publish them.

Only five IVs are implemented in this
light switch. The c LI r rent-v a 1 ue stores the
current dim value in percent (o-100). The
s a v e d-v a 1 u e temporarily saves the
current_val ue. The step-rate a n d
s t e p-s i L e set the ramp rate of the
current_valueIVusedfordimmingand
feature-se1 ect manipulates the

current~val ue IV and controls the light.

METHODS, TOKENS, AND
ERROR CODES

CAL methods are used to perform
operations on CAL instance variables.
SetVal ue and GetVal  ue are probably the
most used and are shown in the example
packets later in the article. Table 3 shows a
list of the CAL methods.

CAL tokens are used to create program-
ming constructs and for delimiting data. The
Data (F4), Delimiter (F5), and Li tera l

(EC) tokens are the most common tokens
found in CAL messages. The Data token is
used as a starting delimiter to separate array
data from the preceding information. The
De 1 i m i t e r token separates portions of a
CAL message. The L i t e r a 1 token precedes
string data. Table 4 shows a list of the CAL
tokens and their hexadecimal values.

Table 5 lists the error codes returned
from a CAL interpreter. These error codes
appear following an APDU with a type equal

to reject. In a multiple-part com-
mand, each part has a correspond-
ing APDU header and error code.

and off, set a dim level, ramp to a
level, read the serial number, and
change the device address based on
the serial number.

In the LPDU, we set the packet
priority to STANDARD and the
packet type to ADDR_UNACK_
DATA. All other fields are zero for a
control byte of OFh.  Remember the
sequence number is set by the DLL-
we don’t actually have control of it.

For this demonstration, we
assume the light switch has a house
code of 5 and a unit code of 1. The
controller (us) has a house code of 2
and a unit code of 1.

The NPDU byte has a value of
50h. This value calls for unprivileged,
directory-routed service on this
medium only.

The APDU is a single byte with
a value between E8h and EFh. This
specifies a mode of basic one-byte
fixed and a type of explicit invoke.
The invoke ID increments for each
packet sent.

CAL MESSAGES
In the following examples, the

first 11 bytes of each packet are the
same with the exception of byte 1 I,
where the invoke ID field is incre-
mented. The first 1 I bytes (hex) are:

0F010005000100020050E0.

As you recall, the first byte is the
control byte and the next four bytes
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are the destination-address informa-
tion in right-to-left order, followed by
the source address, also in right-to-left
order. The next two bytes are the
NPDU and APDU headers.

ON, OFF, OR DIM
The on command uses the

Set V a 1 LI e method to send a value of
37htothe feature-select IV.This
sets the current value to 100  by the
definitionof feature-select. The
bytes (hex) then are:

21 02 45 66 F5 37. The LPDU (50) shows a standard

The 21 is the ID of the lighting context, 02 is
the object number of the analog control, 45
is the SetVal ue method, 66 is the
feature-se1  ect IV (i.e., ASCII “f’), F5 is
a delimiter, and 37 is an ASCII “7”. The
complete packet is:

OF01 00050001 00020050E821  0245
66 F5 37.

The response to this packet is:

OF010002000100050050DOFE.

Let Your Development Fly!
Choose Hitex pmfessional twls  for your
embedded  microprccessof design and get
your prcject  Off the ground ahead  of
schedule. Hit@  builds  all  types of micro-
pmcessw  development twts,  from

Call Hitex for your free demo
package and learn  how smooth
and efficient development with
professional tcois  really can be!

sophisticated in-circuit emulators to remote
debuggers, monitors and simulators.

HiTOOLS  Inc.

Complete solutions are available for:
‘2055 Gateway Place
suite  400

tithe  complete 6051 family San Jose, CA 95110
~80C66/88,60C186/166EAIEB/ECiXl.,  P

60266, v2ON30/v40N60
(406) 451-3965

0 l -KG46HITEX
r’8038BDX/SxICX/EX
~6OC166/166/167

Fax (406) 441-9486

fwnity
630x.  6633x. 66340

packet priority and a packet type of ADDR_
UNACK_DATA, which does not require a
response from the DLL to acknowledge
packet receipt. The source and destination
addresses are reversed since the device is
now sending to the controller instead of
receiving from it. The NPDU (EO) is the
same as transmitted. The APDU has the
same mode, but the type field shows that it is
a result packet with the result of FE, which is
the completed CAL token.

Whew! I think I’ll have someone get up
and turn the switch on next time.

The packet to turn the light off is
identical, except the value for the feat u rep
se 1 ec t IV changes to 33h and the invoke
ID field for the APDU is incremented by
one. Setting the feature-se1  ect to 33h
alsosavesthecurrent_valueinthe
s a v e d-v a 1 u e IV before setting the
c u r r e n t_v a 1 u e to 0. This offers the feature
of having the light later restore to the
previous dim setting.

The result packet is the same, except
the invoke ID matches the invoke ID we
sent, which is what the invoke ID is intended
for. We could issue several commands to
this light switch. Since the result packets are
all identical, except for the invoke ID, we
can use this field to track the responses to the
packets sent. The complete sent packet is:

0F010005000100020050E9210245
66 FS 33

and the response is:

OF01 00020001 00050050Dl  FE.

To dim the light, we set the c u r re n t_
va 1 ue IV to the dim level desired. In this
example, we’ll use 50%. With a packet of 21
02 45 43 FS 35 30, the 21 is the ID of the
lighting context, 02 is the object number of
the analog control. 45 is the SetVal  ue
method, 43 is the current-value IV
(ASClI “C”),  F5 is a delimiter, and 35 30 is
ASCII for “5” and “0” or 50%. The complete
packet is:

0F0l0001001400150050EA210245
43 F5 35 30.

The result packet is once again identical,
except for the invoke ID:

OF01 00020001 00050050D2FE.
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GETTING THE
SERIAL NUMBER

The serial-ii instance
variable “s"can  be found in
the node control object of the
universal context in object I.
The packet reading the
se ri al_# has the same first
11 bytes as above and the
additional CAL command 00
01 43 73. The CAL command
is in the universal context
(00), object one (0 I ), get the
value (43) of instance variable
“s” (73). The complete send
packet is:

0F010002001400150070
EB 00 01 43 73.

The result packet is:

8F010002000100050050
D3 FE EC 54 30 30 30 30 30
303030303539.

Note the incremented invoke
ID in the sent packet and the
matching invoke ID in the
result packet. After the
complete token, there is a
delimiter token (EC) and the
serial number follows

CONTEXT
JNIVERSAL I
NO
31

Iable 1 RNV  1 Boolean

obiect  list
1 PS 1 TYPE 1

data

_. . . . _
ohiect  list0 --1---  ..--

, data

32 ANALOG CONTROL (LIGHT LEVEL CONTROL) 07
,” 1 kIdME ’ DE ’ TYPE
c I “UIIIIII_“UIYI ,.,.. , numeric

value I R/w I numeric

Figure  6: A typical light-control module would have two contexts,
four objects, and twenty-jive Instance Variables.

“T000000000059,” which actually matches 0F000000000100050050F0000156

the serial number printed on the side of the 73 EC EC 54 30 30 30 30 30 30 30 30 30 35

switch! 39 F7 44 68 F8.

USING THE SERIAL NUMBER
Since the serial number is known from

the manufacturer’s label on the device, it
provides a good way to exclusively commu-
nicate with this unit for set-up purposes.
Normal communication uses the device
address after it is set and the device is
configured.

However, we will send a broadcast
message using the conditional invoke APDU
type and ask for the house code in return if
the serial number condition is met. The
packet this time is a little longer due to the
I %-character serial number and the extra
bytes required to form the conditional
expression. Note the house code is an array
value and must be dealt with using the
methods and delimiters for handling arrays.

The control byte is the same as before

(OF), the destination address is the system
broadcast address (00 00 00 00) and the
source address is our address (01 00 05 00).
The NPDU header (50) is the same, the
APDU header is now the conditional invoke
type (FO), and we are dealing with the
universal context (00) and node control
object (01). The CAL message begins with
the IF token (56),  the se r i a 1 _I/ IV (73 “s”),
the Equal token (ES), a literal token (EC),
and the serial number. The begin token (F7),
the Get A r ray method (44),  the house code
IV (68 “h”), and finally the end token (F8)
wraps it up. Simplified-if the universal
context object I, se r i a 1 -iI is equal to
“T00000000059,” then get the array value of
the house code. The response packet is:

The packet to get the house code from
the module with the serial number equal to
“T00000000059” is:

OF01 0002000100050050D4
FE F4 32 F6 00 05.

We actually played a sneaky trick on
the module. We asked for the house
code, which it dutifully sent, but we
then ignore the CAL portion of the
packet and get the source address,
which additionally gives us the unit
code without sending another packet!

SUMMARY
I have known about CEBus for

the past five years and about six
months ago began developing a
CEBus product. It was difficult at first
because of the broad base of informa-
tion necessary before you can actually
do anything. This article includes a
healthy mix of the things that gave me
trouble or were hard to find and
decipher from reading IS-60.

Good luck on your CEBus
project.

Peter House is an applications
engineer with Intellon Corporation, a
mangfacturer of the spread-spectrum
carrier components used to implement
CEBus on RF and PL media. He may

be reached at 71773.2775@
compuserve.com.

SOURCES

The EIA CEBus Standard IS-60
is available from:

Global Engineering Documents
1990 M St. N.W., Ste. 400
Washington, DC 20036
(202) 429-2860
Fax: (202) 33 l-0960

The CEBus dimmer module,
relay module, serial computer
interface, and the module’s
technical reference manual are
available from:

Home Automation Labs
I05 Hembree Park Dr., Ste. H
Roswell, GA 30076
(404) 442-0240
Fax: (404) 4 lo- 1122

I R S
416 Very Useful
417 Moderately Useful
416 Not Useful
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id you ever wish
you could control
the light blazing
through your
skylights on a
summer afternoon?
That collimated
beam sears the

plants, nullifies the air conditioning,
and slices anything that passes
through it like a carbon-dioxide laser.
Wouldn’t it be nice to have the same
command of your home’s natural
lighting that you have of its artificial
lighting?

This project was conceived from
just such need.

My wife Kim loves interior
designing and, as a result, things get
moved around from time to time. She
decided the entertainment Ctagere
should be moved from its old location
and centered on the large window in
our living room. She claimed it would
balance the room and back light the
figurines in the cubbyholes.

The rearrangement did exactly
that as well as creating a magnificent
light sculpture! Unfortunately, it
introduced a contrast problem for
daytime TV viewing and rendered the
window’s two miniblinds nearly
inaccessible.

Operating the blinds became a
dreaded task which involved scaling
the furniture. To solve this problem,
one option was a commercial blind
motor. Rocker-switch operated, it
offered little more than manual
control and sold for around $300.

The Blind Robot
An X-10 Miniblind
Automation Syste

Our other option of leaving the blinds
permanently closed solved the problem of
scaling furniture, but left us without our
recently acquired backlighting and light
sculpture.

Dissatisfied with those choices, I
pondered a “techno-cure” that would address
all problems involving the blinds, including
those throughout the rest of our home. At
this point in time, we were making rounds
twice a day to open and close them all.

My efforts to eliminate this chore,
ultimately coalesced in the X- 10 Miniblind
Automation System or. if you’d rather,
XMAS, the blind robot. Photo I shows the
final prototype and Figure 1 illustrates the
simplicity of the system.

XMAS has control circuits and a drive
motor which fit within the blind’s header
assembly. An adapter unit connects to an

HERBERT MCKINNEY,  JR.

For Herb, home automation in-

cludes not only control of artificial

lighting, but also control of natural

lighting. The X-l 0 Miniblind Auto-

mation System offers individuals

the possibility to reach beyond the

confines of their home and stop the

impact of a blistering summer day.

Power *upply Ek
Power  Une Intwface s a

Adapter

HOME AUTOMATION Ip BUILDING CONTROL APRIL 1 BB5 69



X- 10 interface module
(TW523) and power
supply. A modular cable
connects the adapter and
blind units. The cable may
be concealed in a tradi-
tional installation manner
along baseboards or run
through walls to outlets in
the window sills for a more
professional installation.
Up to 256 units may be
connected with each unit
having a unique address or
up to eight units may be
grouped into one unique
address.

XMAS operates
almost as a lamp module. It
interprets X- 10 on, off,
bright, and dim commands
as open, close, up step, and
down step, respectively.
There are 16 stages
between full up and full
down. Additionally, the
closed position (i.e., off) is
jumper selected between up
or down. Control and
programming of XMAS units can be
supplied by virtually any controller capable
of transmitting X- 10 commands.

12 VDC, 1 A

, \

FigUre  1: The basic system consists

of a motor drive, TW523,  cln

adapter, and a power supply

A set screw, which secures the coupler to the
motor shaft, also actuates the limit switches.

The motor is a 16-mm, 6-V, 15,200-
RPM, i/8-W unit with an extended rear shaft.
To this shaft, I attach a photo-reflective disk
and sensing PCB to count revolutions.
Coupled to the front shaft is a 1670: 1
gearhead. The complete assembly develops
an intermittent torque of 14.2 oz.-in. and a
continuous torque of 7 oz.-in. This easily

The main PCB is
sized to 3” x 0.94”.
This form-factor just
squeaks in an installa-
tion of the smallest of
the headers I could find
from manufacturers’
data, which included 18
popular blinds from
many manufacturers.
The 3” length fits all
but custom-made
headers. Many
manufactures have
standardized on 1 w
header width or a
metric approximation,
but I found a lot of
variation here.

By using minia-
ture, SOP, and surface-
mount devices, the
board accommodates
all the parts and still
offers axial alignment
between the motor shaft

and actuator rod in the smallest
header. The motor and RJ-I 1 jack
placements are relatively fixed and
occupy 52% of the board space. So,
the remaining components are placed
for the tightest fit that routes without
DRC errors.

THE DEMON SEED
The humble beginning of XMAS was

as elementary as a surplus motor and a VCR
load-motor driver. Life was easy.

XMAS evolved from my knack for
taking something that is extremely simple
and making it much more complicated.
XMAS needed to be X- 10 controlled and
considerably smaller. It also had to be totally
manufactured in my workshop.

I have tested (60” x
72”) coupled together
end to end.

I managed to keep all compo-
nents on grid, albeit a small one. The
mounting tabs of the RJ- 11 connector

exceeds the load of two of the largest blinds and forward motor support provide

After some thinking, I concluded that Reflective disc &
IR source/sensor

Actuator rod

the primary goals for XMAS were that it be
cost effective, easily installed, universal, and
retrofittable. Twice, I completely designed it
in my mind-ach time allowing ample time
for the idea to pass as,a silly notion. But,
after the code was about half done, I finally
pulled out the stops and put it to the drawing
board. Kim wanted it next week. Sound
familiar?

THE MECHANICS
As Figure 2 demonstrates, the drive

Standard 1 m header assembly

FiglIt??  2: First, the worm and sector (drive) must be removedfrom the stock header. This

motor attaches to the blind’s actuator rod

EY

is usually a pop-in plastic assembly in newer blinds. The XMAS unit then slides into the

with a coupler suitable to the model of blind. & header and mates with the actuator rod.
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Adapter  Module
:

IN4BB3
DI

L--

Figure 8: Thanks to small outline packaging, this circuit (excluding the adapter module)fits  onto a 2.8 square inch PCB

stand-off for the bottom-layer THE ELECTRONICS
components. There is a 5-mil Lexan The processor is a Microchip
sheet beneath for additional protec- PIC l6C84 clocked by a ~-MHZ ceramic
tion. I use 0.03 1” or 0.062” FR-4 resonator. Since the PIC16C84  has been
material in larger headers that may covered in prior issues of INK, I’ll go
need motor alignment. straight into the details of this application.

LiStill!  1: CFG_PINS  determines which pins are ZX and DATA.

The design takes advantage of the PIG’s
in-circuit programmability. The applicable
pins may be accessed after assembly through
a jumper header. The EEPROM lets me
program the controller and revise firmware
on a completed unit without having to
remove the chip. This convenience, coupled
with the small footprint of the SO- 18
package, makes the PIC16C84  the perfect
controller for the job.

CFG_PINS call LILY-10 KS
sb PIN17 ;Wait for a quiet cycle
snb PIN17 ;with positive going ZX
sb PIN18 ;(i.e., both HI)
jmp CFGGPINS

chk_lo
I

nap
jnb PIN17,hav-lo ;wait for 1st low to
nap
jnb PIN18,hav-lo ;come along (either pin)
call DLY_lO  ps
jmp chk_lo

hav_lo mov count,#lO ;wait - 5 ms longer to insure
:loop call DLYK500  ks :data bit time has past in case

djnz count,:loop :data is coincident with ZX
:(the spec. could allow this).

j n b PIN17,:pinl7 :The one that's still
nap
jnb PIN18,:pinl8 :low is LX.
jmp CFGGPINS

Figure 3 provides a schematic. The RA
port accommodates the ZERO CROSSING,
DATA IN, the revolution counter (RTCC),
and CLOSE option signals. The specific
house and unit codes are set by an &bit  DIP
switch (see Table 1) and read serially
through a 74LS166  shift register by RA3.

The 74LS 166 (SO- 16) occupies Park
Place real estate, but it liberates five I/O pins
for needed functions. RB 0: 1 and 2:3 are
motor control bits paralleled to increase
drive current for future motor driver
improvements. (Note: The original driver
was a BAL6686, available only in small
quantities. It’s a 9-pin, SIP, SOP IC used in
RC servo motors.)

:pinl7 mov ZX_mask,#Olb ;Zero Crossing = Pin 17
mov Din-mask,#lOb  :Din = Pin 18
ret

I’m pleased to say the board has already
been updated to accommodate two Siliconix
“Little Foot,” dual-complementary, power
MOSFETs. This switch involved only minor
layout changes on one end of the PCB and
greatly improved performance.

:pinl8 mov ZX_mask,#lOb ;Zero Crossing = Pin 18
mov Din_mask,#Olb  ;Din = Pin 17
ret

E!
&
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ISTART

lnitialaze  regs, vars.
Determine: Input pin config,
step size, local address.

I-c>bit HI?

+lSet RA dir

f-lRead RA, And
with ZX_mask

0NFG

save in TEMP

0NFG

Wait 3 cycles
silence9A

Set ENABLED Flag
.straightforward  interpretation qf the

X-IOprotocol  as outlined in the

TW523 data sheet.

Bits 4 and 5 are CLK and LOAD,
respectively, for the shift register. Bits 6 and
7 read the LIMIT switches (normally open)
and are connected to the programming
header as well. NCLR is jumped to VCC
through the programming header. I had to
forego the recommended ESD protection on
/MCLR due to lack of board space. How-
ever, with an awareness of this, in concert

with reasonable handling, it presents no
problem. All rebukes acknowledged!

Overall power for the system is
supplied by a 9-16-VDC  wall module. Input
power to XMAS is wired to the outside
terminals of the RJ-I I connector. A bridge

was added to allow for polarity

U

reversal after which it is further
& regulated by a simple 7805 circuit.
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The ZX and TX pins are rerouted to
the inside pins on the XMAS RJ- I I
connector. Diodes are placed in these
lines to match the signal levels to the
elevated ground.

A software routine determines
which inner RJ-11 terminals are ZX
and D-in. This scheme allows for
straight- or reverse-wired modular
cables and a variety of AC/DC
converter options. However, it
requires a properly wired adapter for
the TW.523  and DC converter. This
seemed to be a worthwhile tradeoff.

To pacify the inspectors, I
specify a maximum of eight units
sharing a unique address. This
restriction is due to a limitation of the
wiring. Even though the recom-
mended supply is a power-limited
source, it can be easily replaced with a
heftier one. Considering a 100%
demand factor for these common
units, the number should be limited so
that the ampacity of the branch wiring
is not exceeded.

For a permanent installation in or
near a window, 22-24-AWG
telephone hook-up wire is highly
recommended. This standard allows
up to eight units to share a unique
address. When using only 26.AWG
modular cable, the maximum number
of common address units is reduced to
four.

One XMAS unit draws 62 mA
under a normal load and 220 mA
under a maximum, stall-condition
load. Fortunately, about the only way
to stall this hummer is on the motor
shaft itself through a bearing seizure
or such. Stalling from the gearhead
end produces gear failure. This test is
unnecessary. However, it yields about
$40 worth of catastrophic failure data
for those who feel they absolutely
need it!

THE SOFTWARE
To begin, let me confess I’ve

never been accused of generating tight
code. I welcome any criticism that
advances my capabilities.

Because of having primarily a
hardware background, I expected that
coding would be more difficult,
especially since this was my first PIC
project. I chose the Parallax tools to



take advantage of my residual 80.~
assembler experience, which
expedited the task.

As the flowchart in Figure 4
indicates, the software consists of a
main loop which lies in wait for a start
code from the TW523. It then snares
and interprets house, unit, and
function codes, and subsequently
directs calls to peripheral control
routines. A multifunction interrupt
routine initially calculates step sizes,
then monitors motor movement and
effects limit stops.

The I N IT routine is a little more
involved than the flow diagram
indicates. After initializing INTCON,
OPTION, port direction registers, and
the variables, the I NIT routine calls
CONFIG-PINS  (Listing 1). CONFIG-
P I N S determines which of pins 17 and
18 are the ZX and D-in signals for
later use in the B I T-FETCH routine.

BIT-FETCHistheroutinethat
reads the TW523. A call to GET-ADD R
reads the local HC/UC  serially from
the shift register into Paddr. It is later
compared with the TW523 received

code. I N IT then runs the motor between the
high and low limits while accumulating the
number of revolutions betwixt the twain with
the RTCC using the RT interrupt (the
revolutions accumulate in the SVC-I NT
routine).

RTCC rollovers are stored in the upper
byte of Ra n g e while RTCC leftovers are
placed in the lower byte of Range. Range is
then divided by 16 to obtain St p S i z, which
is later loaded back into the RTCC to
generate the interrupt that stops the motor
after each step of bright or dim.

I N I T has already read the JP 1 jumper
to decide which way to drive the motor to
the first (open) limit. After reversing the
motor, it leaves the blind in the closed
position when the second limit has been
found. Notably, the routines MTR-I_  P and
MTR_DN  always correspond to bright and
dim, respectively, but on and off depend on
the JPI condition. On is the center, open
position and off is selected between the up or
down position with JPI.

CAVIAR & CAVEATS
From the start, I searched for a IAn

small-outline motor driver since

board space was so limited. My eventual
discovery of the Si9942DY  MOSFET
drivers was as appetizing as a tin of fine
Russian roe-the Siliconix chips aren’t as
expensive, but they’re almost as rare in
quantities under 500.

I finally obtained some samples and
performed the upgrade. The pair of SO-%
significantly reduce motor run-on after
removing the drive signal. The free-wheeling
diodes, coupled with the fact that the low-
side MOSFETs can conduct during the
motor’s off state, effectively produce
automatic braking.

The improvement was so dramatic that
I removed a call to the BRAKE routine that
previously terminated the STEP function.
This enabled the main loop to run nearly 200
ms faster in the STEP mode. The result was
more clearly defined steps and almost a
three-fold increase in the continuous step
rate.

I chose not to incorporate the X- 10 all-
units-off and -on commands into my
personal units. I may include those com-
mands in the future strictly for compatibility.
When CEBus  technology stabilizes and
miniaturizes (hopefully), I will then

Get Your Copy of The
Best Source of Home
Automation Products
Absolutely Free.

Largest Selection of Home Automation products in the World

Call 24hrs  for Free 64 page Color Catalog

(800-762-7846)

Hundreds of hard-to-find home automation and wireless control
products. Computer control of your home, security systems, sur-
veillance cameras, infra red audio/video control, HVAC, pet care
automation, wiring supplies and much more

H O M E  AUTOMATiON  SY S T E M S, IN C.
151 Kalmus  Dr. Ste M6 Costa Mesa CA 92626
Questions 7141708-0610  Fax 7141708-0614

____________________~~_~~~~~~~~~~~~~~~~_~_____

What Do You Need
To Be a

WINNER
In the Fast-Growing

Home Automation Industry?

Find out when you join the
Home Automation Association (HAA)!

Clip and fax today for more information.

Name
Title
Company
Address
City
State/Zip
Phone
Fax

Home Automation Association
Fax: 202/223-9569

E-mail:
75250.1274@?compuserve.com

Voice: 202/223-9669
cc1295

____________________~__~~~~~~~~~~~~~~~~~~~~~~~.
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endeavor to make this now-simple affair yet
more complicated.

Although I have not actually tested 256
of these units connected to x miles of cable, I
suspect that the system succumbs to the
same pitfalls as many distribution schemes.
No doubt, cable capacitance eventually wins
over rise times. Therefore, the number of
units that can be connected to the same
TW523 is not guaranteed.

Last, but not least, what can I say?
When the power goes off, you’re just plain
outta luck!

AND TO ALL A GOOD NIGHT...
I initially tried doggedly to dismiss this

XMAS idea as cornier than The Clapper, but
climbing speakers to close the blinds had
become untenable. After contemplating other
possible arenas for XMAS such as office
buildings, schools, passive solar control,
green houses, hospitals, and homes of
handicapped individuals, I continued my
quest. At approximately $120 per blind
(excluding power and control), we consider
our dilemma totally resolved.

Perhaps, The Clapper isn’t so corny
after all!

For now, I’ll rest well knowing that
XMAS defends our privacy “as visions of
sugar plums dance in my head.. .”

Herb McKinney is a former Hewlett-Packard
service engineer who currently owns Multi-

Technics, a small service consulting and
engineering business. He enjoys working
with all forms of automation and process
control. He may be reached at 75227.2753@
compuserve.com.
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PIC16C84,  PIC16C84  Reference
Manual, and DS30081B
Microchip Technology, Inc.
2355 West Chandler Blvd.
Chandler, AZ 85224
(602) 786-7200
Fax: (602) 899-9210

PIC16Cxx  Development Tools
Parallax, Inc.
3805 Atherton Rd., #102
Rocklin, CA 95765
(916) 624-8333
Fax: (9 16) 624-8003
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Switch settings

HC 1 2 3 4 5 6 7 a UC

A ON OFF OFF
B ON OFF OFF
C ON OFF ON
D ON OFF ON
E OFF ON ON
F OFF ON ON
G OFF ON OFF
H OFF ON OFF
I OFF OFF OFF
J OFF O F F  O F F
K OFF OFF ON
L OFF OFF ON
M ON ON ON
N ON ON ON
0 ON ON OFF
P ON ON OFF

ON = UP = INACTIVE

ON
OFF
ON

OFF
ON
OFF
ON
OFF
ON
OFF
ON

OFF
ON
OFF
ON
OFF

ON OFF OFF ON 1
ON OFF OFF OFF 2
ON OFF ON ON 3
ON OFF ON OFF 4
OFF ON ON ON 5
OFF ON ON OFF 6
OFF ON OFF ON 7
OFF ON OFF OFF 8
OFF OFF OFF ON 9
OFF OFF OFF OFF 10
OFF OFF ON ON 11
OFF OFF ON OFF 12
ON ON ON ON 13
ON ON ON OFF 14
ON ON OFF ON 15
ON ON OFF OFF 16

OFF = DOWN = ACTIVE

Table 1: Cost considerations  and layout construints  made a DIP switch and negative logic

compulsory  for address setting. The address is encoded by the switch settings. After serializing, it
assumes the correct order,for direct comparison with the received code. This eliminates the need

for a software  conversion table.

X-10 Technical Note: Two-Way,
Power-Line Interface Model #S23
X- 10 (USA), Inc.
185A LeGrand Ave.
Northvale, NJ 07647
(201) 784-9700

SOURCES

D&-Key  Corp.
701 Brooks Ave.
P.O. Box 677
Thief River Falls, MN 56701.0677
(800) 344-4539
Fax: (218) 681-3380

1616E006ST123/16A1670:1
gearhead  motor
Micro Moe
742 Second Avenue South

St. Petersburg, FL 33701
(8 13) 822-2529
Fax: (8 13) 82 l-6220

Mouser Electronics, Inc.
12 Emery Ave.
Randolph, NJ 07869
(800) 346-6873
Fax: (201) 328-7120

Siliconix Si9942DY
Rep, Inc.
Temic Group
P.O. Box 728
Jefferson City, TN 37760
(615) 475-9012
Fax: (6 15) 475-6340

BAL 6686 (#T39900)
Futuba Corp.
4 Stedebaker
Irvine, CA 927 18
(714) 455-9888

I R S
419 Very Useful
420 Moderately Useful
421 Not Useful
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he Remote
Controlled Speaker
Selector (RCSS)
addresses the
challenge of
creating a conve-
nient, multiroom
listening environ-

ment for the home. Most stereo
systems have manual A/B speaker
selection which provides music to one
of two rooms or both rooms simulta-
neously (A+B). If that’s not enough,
an external speaker selector can be
added easily.

But what if you’re outside in the
pool and the urge to swim laps to
“Born in the USA” suddenly grabs
you? In this scenario, you must go
inside, negotiate a polished kitchen
floor with wet feet, and switch the
stereo to play over the pool speak-
ers-not exactly the dream of home
automation.

Some high-end systems address
the problem of multiroom listening by
using proprietary modulation
schemes. These schemes multiplex
audio and two-way data over user-
installed coax to each room. The
problem with this solution is that a
perfectly good stereo system has to be
replaced.

Alternatively, a few add-on
devices can be used with existing
stereo systems in one way or
another-some use X- 10, infrared, or
combinations thereof. However, these
systems are fairly expensive, often
compromise amplifier safety by
switching only one side of the output,
or lack user feedback, which is
essential in remote switching.

DEVICE DESCRIPTION
The RCSS is an add-on home-

stereo component designed for loud-
speaker selection from virtually any
infrared (IR) remote c,ontroller.  An
innovative learning algorithm and
high-integration microcontroller make
the RCSS “smart” as well as inexpen-
sive with its low parts count.

The RCSS can be used with off-
the-shelf IR repeater systems for
separate room-speaker selection. This
lets a listener select speakers from
whatever room they are in without

A Learning
Remote-Controlled
Speaker Selector

having to physically make a selection at the
amplifier or receiver location. Since most
existing stereo systems can already be
remotely controlled with an off-the-shelf IR
repeater, the RCSS adds the speaker-select
function that most stereo systems lack. With
the RCSS, the user obtains multiroom
listening convenience while retaining their
existing audio equipment. A diagram of the
RCSS is provided in Figure 1.

SYSTEM OVERVIEW
Specific highlights of the RCSS

include:

l Learning algorithm-The RCSS offers
maximum flexibility. It can be controlled
by virtually any IR remote controller,
regardless of manufacturer. Low-cost
generic IR remotes can be used for
selection control.

l Four speaker pairs-Four independent
speaker pairs can be selected with the
RCSS.

l Manual operation-A front-panel push
button provides manual selection of
individual speaker pairs as well as dual-
pair combinations for two-room listening.

l Indicator lights-Four green LEDs  give
visual status of speaker selection(s). A red
LED marks learn status (on = learn
mode). The red LED flutters on initial
powerup to show that the RCSS needs
programming.

l Confirmation tone-A dual-frequency
confirmation tone is sent to the
selected speaker pair before the
music source is switched in. The

SCOTT HEISERMAN  & CLARK ODEN

Scott and Clark set out to find

remote-speaker selection without

replacing their current stereo

system or spending too much

money. The ultimate solution: an

add-on component with an innova-

tive intrared learning algorithm

and a highly integrated

microcontroller.
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confirmation tone provides an
audible indication that the
correct speaker pair has been
selected.

9 Program retention-RCSS
remembers the commands it has
learned when power is
interrupted or the unit is
unplugged. A replaceable IO-
year lithium coin cell provides
power backup.

9 Low cost-The cost for the
electronic portion of the
prototype was under $50.

DEVELOPMENT
OBJECTIVES

A major design goal in the
development of the RCSS was to
make it compatible with most
hand-held IR remote controllers-
no one needs another remote to
add to their collection. And, most
controllers have extra, never-used
buttons. Thus, developing a
device capable of learning and
recognizing existing IR controller
codes was central. Although a
simple sampling method could
work, the memory requirements
for even a single IR code are
relatively large, even with the
application of rudimentary
compression techniques (INK 29).

IR CONTROLLER CODES
When you push a button on a

remote controller, the remote
emits a series of infrared bursts.
The bursts, which amount to
switching a pulse carrier on or off,

Speaker set:
1 2 3 4

T L-J T

I I I I

-a Stereo system

nd-held IR
controller

FigW?  1: This conceptual diagram shows how the RCSS can be used in a home

environment. Low-cost IR repeater transmitters are located with each speaker

pair.

carry the code corresponding to the button.
Pulse-carrier frequencies range from 25

kHz to 60 kHz, with the most common
around 38 kHz. The carrier bursts usually
last from 0.5 to 2 ms in duration and
correspond to a bit in the function code. An
entire code sequence may have 12 to 32 bits
(or bursts), so the code frame time would be
on the order of tens of milliseconds.

Most remotes also have a common
sequence marking the start of all the codes
they transmit. It essentially acts as a wake up
preamble. The modulated information sent
by the remote is demodulated by the
receiving device into an asynchronous
stream of binary highs and lows which
generally contains a preamble sequence,

manufacturer and device information, and
the specific function command.

Manufacturers can and do use different
schemes for embedding information in the
infrared flashes-there are no industry
standards for encoding. Most use some form
of pulse-width modulation which conveys
bit information according to carrier-burst
duration. The bits can be represented by the
actual bursts or by the time between them.

Manufacturers also have unique
schemes for repeat functions. Say you want
to crank up the TV volume. You hold down
the Volume+ button. One manufacturer’s

remote transmits the entire
Volume+ command repeatedly,
while another sends the Volume+

command once
followed by a shorter
repeat sequence for as
long as you hold down
the button. Figure 2
shows the start of a few
typical received IR
codes.

Though there are
undoubtedly countless
control codes, with a
learning device, it does
not matter. For the
RCSS, the only thing
that matters is that it
recognizes a learned
button when it is
pushed again. To do
this, the RCSS has to
pick apart and store the
necessary elements of a
button’s code sequence.
In general, the code
sequences follow these
criteria:

l Code sequences
always follow the
format: preamble,
space, code informa-
tion

l The preamble is at
least three times
longer than a space

l Space defines the
duration for a binary
0 (arbitrarily
assigned)

l Space is always the
inverse polarity of
binary 1s and OS.

That is, when bits (1 s and OS) are
represented during the times the LED
is modulated on, the space between
bits occurs when the LED is off.
Conversely, if the bits are represented
during the times that the LED is off,
then the space between bits occurs
when the LED is on.

These generalizations hold true
for the vast majority of infrared codes.
In the simplest terms, the RCSS
algorithm measures the duration from
one transition to the next, producing a
count. The count represents both the
time that the LED is modulated with a
burst and the time between bursts.
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The count is stored,
another event is timed, and
the new count is subtracted
from the previous count.
From this result, the
program determines
whether the bit of code
information is a 1 or a 0,
and the process repeats for
succeeding bits.

The algorithm has
been developed based
upon the following
protocol generalizations:

IR code with Information in high pulses:
42ms 16rnS 16rnS  05ms

1 1
84rnE

JPR..!+’  Q$

as many as 32 bits

IR code with information in low pulses:
OSrnS

24ms 1 1

12ms 12rn5 OE.lnS

+-PREAMBLE
SPACE

l The first and second
counts, essentially the
preamble, don’t matter
and can be discarded

Figure  2: The typical IR code sequence contains  pulse-width modulated data  in

either the low or high portion of the pulse train. Binary  bit information is

encoded in the pulse-width variations. Fixed-width pulses correspond to

spaces between bit information.

l The absolute difference between a
low and high count following the
preamble is significantly greater
than 0 for a binary 1 and near zero
for a binary 0.

Using these assumptions, the RCSS
algorithm produces a compact binary
representation of the incoming remote

code, regardless of the carrier frequency, the
bit rate, or the format for 1 s and OS.

In the program, each absolute differ-
ence is checked against a tolerance value for
translation into either a 1 or a 0. The bit is
then packed into a four-byte holding
location. Each IR remote button
learned is represented in 32 bits IMn
(whether it needs that much room or &

IM

not) to keep the algorithm simple.
Occasionally, more than 32 bits
are required, but the majority of
controllers operate at 32 bits or
fewer.

FIRMWARE
The general development

approach of the RCSS was to do
as much as possible in firmware
including switch debouncing, IR
signal recognition, confirmation-
tone output, and front-panel
indication. This approach not
only minimizes cost by reducing
parts count and circuit-board real
estate, but also facilitates the
development of an intuitive user
interface. The interface is

important because most of the time the user
would not be within sight of the RCSS.
Additionally, the intuitive interface bolsters
user confidence in the training process and
front-panel operation.

FIRMWARE OPERATION
Figure 3 is an overall flow diagram of

the RCSS software. The program starts at the



beginning of ROM (location
$0200) with a series of
qualified initializations. The
ports are defined, then port A
is read. If the lower four bits
of port A are cleared-a
normally illegal state-thenthe
T E M P 2 register is loaded with
$FF as a first-time powerup
flag for use later in the
program. Other qualified
initializations include clearing
the IR code storage locations
(C 0 DE), common registers, and
count variables. This portion
of the program is recycled by
different routines to conserve

Flutter Learn LED
Yes

program memory.
After qualified I I

initializations, the computer
operating properly (COP)
register is reset. This paves the
way for a series of bit-level
interrogations. First, port A,
bit 4 is checked for manual
switch closure. If the switch is
closed, control is transferred to
the MANSW routine.

I

4
NO

Next, the Learn switch,
bit 1 of port B, is checked for
closure. If it has been pushed,
both the first LED (speaker set
1) and the Learn LED are lit.
The program then monitors for
IR input. If the Learn switch
has not been pushed, T EM P 2 is
checked for $FF and the Learn
LED is toggled if it is $FF.

Finally, bit 0 of port B is
checked for IR input. If none
is present, the program returns
to reset the COP register. It
continues this loop until IR is
detected at bit 0 of port B.

When port B, bit 0 finally
goes low-signaling IR
input-program control is

Figure 8: A modular approach was used in the development of RCSSfirmware  when

possible. This overall  flow  diagram shows that some routines are recycled to make

best use of the 68HC705’s  tiny 0.5 KB of ROM and 32 bytes of RAM.

transferred to the READ routine. The IR data
is serially sampled at a 0.1 -ms rate and
stored in indexed code RAM locations. After
input, control is transferred to the ST0 RE

4
STORE

Move CODE to
storage location, light

next LED

SWOUT

Switch in selected
swakers  and outwt --+’

confirmation tone

routine.
STORE first checks for learn mode. If

the learn register, TEMP2, is set to 1, 2, 3, or
4, code bytes are transferred to the appropri-
ate storage locations. If not in the learn
mode, program control is transferred to the
RECOG routine.

R EC 0 G sequentially compares stored
bytes with the code read in. If there is no
match, the program returns to the beginning
where sequential checks are performed
again. If there is a match, control is
transferred to the SWOUT routine.

SW 0 UT performs speaker and source
relay switching and debouncing, and output

confirmation-tone generation. After
the switching is complete, the
program returns to ST ART

The program fully
utilizes the 68HC705
microcontroller to
provide IR code
learning and recognition
as well as an intuitive
user interface. All RAM
and most of the ROM is
used. Real-time
interrupts are not used
because of RAM
limitations and they
simply are not needed.
The microcontroller
operates in the
microsecond world,
whereas IR codes are in
the millisecond domain.

HARDWARE
The hardware

components and layout
are designed for a high
degree of integration,
low parts count, and
short wiring runs. All
components are
available from several
sources.

The RCSS is
designed so that all
wiring connections are
made at the rear panel,
with the front panel of
the aluminum enclosure
reserved for operating
controls and indicators.
Construction is by hard
wiring, but the circuit
board may be removed
from the case by
unfastening the front
and rear panels. This
design provides for high
reliability while using
commonly available
components. Figure 4

shows the schematic layout.

POWER SUPPLY
Power enters the RCSS at rear-

panel power connector Jl, a 3.5mm
phone jack. A 1 N4004 diode protects
the circuitry from reverse voltage
should a power source of opposite
polarity be plugged into the rear
panel. A I-pF ceramic capacitor filters
the power input, and a MOV provides
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surge protection for voltage spikes
over 33 V to the voltage regulator
(U5). U5 is a 5-V linear regulator in a
TO220 package. The 5-V output of
the regulator is bypassed by both a
0. I -pF  and a 0.01 -p_F  capacitor.

Battery backup and switchover is
accomplished by U4, a Maxim
MAX704 supervisory circuit designed
for use with microprocessors. During
normal operation, U4 simply passes
the 5-V supply to the Ul
microcontroller V,,  pin. However, if
the 5-V supply drops below 4.4 V, U4
holds the microcontroller reset pin
low and switches the V,,  supply to a
3-V lithium battery.

This scheme provides backup
power for the microcontroller RAM.
Thus, the microcontroller RAM is
nonvolatile and its contents are
retained in the event of a power
outage. Even frequent, short-duration
power interruptions do not signifi-
cantly reduce the battery’s life below
its expected shelf life.

All other power connections are
made to the 5-V regulator output.

MICROCONTROLLER
U I is a Motorola MC68HC705Kl

microcontroller. Ul receives data from the
infrared module at port PBO. The Select and
Learn switches are read at ports PA4 and
PB I, respectively. A 4.000-MHz crystal
clocks the microcontroller. Port PA6 is
configured as an output to control the input
audio-source relay driver. Output ports PA0
through PA3 control the four speaker audio-
output relay drivers. Output port PA5
generates a confirmation tone, which is sent
to one of four speaker outputs. Output port
PA7 drives an LED driver for learn-mode
indication. The IRQ line is pulled up
(disabled).

Under software control, the
microcontroller reads and learns infrared
codes, or reads IR codes and selects speaker-
pair outputs. Ul also disconnects the audio-
source input, generates a confirmation tone,
and reconnects the audio-source input when
a new output is selected.

RELAYS AND LEDS
Relays Kl-K6 are all Aromat

JW-series relays, which can switch
up to 5 A. Kl and K2 are input

I#
&

relays that have two form-C contacts each,
thereby enabling the hot and ground signals
from both channels of a stereo amplifier to
be disconnected during confirmation-tone
generation. During tone generation, Kl and
K2 select local ground and tone from Ul
port PA5 to be sent to the output relays.

K3 through K6 all have two form-A
contacts, which switch only the hot (+)
signal from each channel input, either on or
off. All relay drivers are PNP transistors
contained within U2 and U3 transistor
packages. The PNP relay drivers are
protected from inductive kickback by lN914
diodes across the relay coils. The output
relay driver U2 also drives four green, front-
panel LEDs for indicating front-panel output
selection. One of the U3 transistors drives
the red LED for front-panel indication of the
learn mode.

SWITCHES, HARDWARE,
AND IR MODULE

The front-panel, momentary push-
button switch Select is read by Ul to
sequentially select the speaker output from
the front panel. The rear-panel Learn switch
is read by Ul to put the unit in learn mode.

3’hDIGIT LCD PANEL METER
-Available now at an unheard of

priceof$l5pluss&h
N e w !  N o t  s u r p l u s !

Specifications:
Maximum input: k199.9 mV

additional ranges provided through
external resistor dividers

Display: 3%digit LCD, 0.5 in. figure height,
jumper-selectable decimal point

Conversion: Dual slope conversion, 2-3
readings per sec.

Input Impedance: z 100M ohm
Power: 9-l 2 VDC @ 1 mA DC

Circuit Cellar, Inc.
4 Park Street, Suite 12, Vernon, CT 06066
Tel: (203) 8752751 Fax: (203) 872-2204

X-IO SALE THIS MONTH ONLY
LAMP WALL SWITCH 8 APPLIANCE MODULES$129IDZ  ; AUTOMATK  DRAPERY OPENER
RC6500 KEYCHAIN  REMOTE&BASE $ 1 9 COMPLETE SYSTEM K,T  5349

PR511 FLOOD  LIGHT  MOTION  DETECTOR $38 ~ s* &h
SD533 SUNOOWNER $12 1 lNCRED,BLE  SOFTWARE UPGRADE FOR
PA5800 PERSONAL ASSISTANCE CONSOLE$% ; x-10 CPZWP  S49  95

MC460 MINI  CONTROLLERS (Box 014, $?9 ; EASIER TO EDIT 8 SUNRiSEiSUNSET

STARTER KITS Get ready for Spring
Drip watering landscape kit
Container drip watering kit

28.99 ~These kits are expandable
14.99 Complete catalogs and prrces

Drip soaker vegetable kit 28.99 ‘are sent with kits or send $5
24.volt  314’ automatic  anti-syphon valve 24.24 #for catalog and plannmg  guide
UM506 to control valve w/X-IO 19.97 iredeemable on first order

BOOKS. LITERATURE AND SOFTWARE
“A PRACTICAL GUIDE TO HOME AUTOMATION’ 518 99 “THE HOME AUTOMATION NETWORV $1 C
‘VILEPHONE WIRING  SYSTEM9 52 50
“HOW TO TROUBLESHOOT PREMISE WlRlNG  SYSTEMS FASTER AND MORE EFFICIENTLY $3 95
“DECORA  HOME CONTROL TECHNICAL MANUAL 5.3 99 “3D LANDSCAPING’ (WINDOWS) 579 95
“GET WIRED”‘PC BASED BOOK ON HOME WlRiNG $29 9!“30  OEC,?  (WINDOWS) 579 95~~~____  _~~_._~__

NEW
KX-TQ500 QOOMHz CORDLESS TELEPHONE $199
20053 I-BUTTON REMOTE CAR STARTER $255

BECAUSE OF THE WEIGHT THE IRRIGATION CATALOGS ARE
ONLY SENT TO EITHER PEOPLE PURCHASING A STARTER KIT OF

THOSE SENDING IN $5 FOR POSTAGE AND HANDLING
TO BE PLACED ON OUR MAILING LIST JUST PLACE ONE ORDER

DEALERS WRITE OR FAX ON COMPANY LETTERHEAD
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Figllri? 4: Hardware,for the RCSS WLIS kept to an absolute minimum by performing most tasks infirmware.

An infrared receiver/demodulator (Sharp
GPIUS)  on the front panel filters and
demodulates the incoming infrared code to
bereadbyul.

The rear panel has spring-terminal
connectors for four speaker pairs (I 6
terminals). All connections from the rear
panel to the perfboard are made with
stranded 20-AWG wire. A rear-panel, 4-
position, polarized interlocking connector
provides connection to the source amplifier.
Power is supplied through a 3.5mm  phone
jack on the rear panel. The case is black,
anodized, extruded aluminum with an
integrated card guide for the board.

OPERATION
The RCSS is operated with an IR

remote control. To use the RCSS, it must be
installed and programmed for the particular
system it is to be used with. Up to four
speaker sets may be connected. Speaker
wiring should be installed before the RCSS
is set up. The following sections address
installation, setup, and operation.

INSTALLATION
Before making any connections to the

RCSS, the lithium backup battery should be
installed. Although the backup battery is not
required for operation, it enables RAM data

retention when normal power is disrupted.

layout on the rear panel. The easiest way to
get the RCSS up and running is to first make
connections to the speaker sets and source

This means that the RCSS does not have to

amplifier on the rear panel, then position the
RCSS where it can receive infrared signals.

be reprogrammed after a power interruption.

Speaker sets are wired to the rear panel using
16 spring-release terminals. Red is positive

Refer to Figure 5 for the connection

and black is negative for the four sets of
terminals with the right channel located
along the top row. The source amplifier is
connected through the interlocking connec-
tor (Molex) with pigtails.

Virtually any common IR remote
control works. The idea is to pick four

front-panel red LED when it has not

buttons on a remote (or remotes) to

been programmed. The first step in

select among the four speaker set
outputs. In many cases, there are some
buttons on an existing remote control

setup is to decide which remote

that are unused or operate a compo-

control operates the RCSS.

nent not used in the your system.
An example of this might be a

receiver remote that includes buttons
for controlling a same-brand CD
player when the CD player owned is a
different brand. In this case, the CD
buttons can be used to operate the
RCSS from the receiver remote. You
could also purchase an inexpensive
replacement remote for TV or VCR or
use four buttons on a remote from a
remote-controlled component or TV
not being used. Again, most remotes
work. Just pick four buttons on any
remote.

Power is supplied through a wall
transformer. Plug the 3.5mm  phone plug
from the wall transformer into the power
jack on the RCSS rear panel, and plug the
transformer into a 1 IO-VAC outlet. There is
no power switch so the RCSS normally
remains on. When power is connected for
the first time, the front-panel Learn indicator
(red) blinks. The RCSS is now installed and
ready for setup programming.

SETUP PROGRAMMING
Figure 5 shows the front panel

H during the setup programming
a! discussion. The RCSS blinks the

To program the RCSS, push the
rear-panel Learn switch down. This
puts the RCSS into learn mode
(indicated by the steady illumination
of the red LED on the front panel).
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Stand several feet away from the unit,
point the remote control at the unit,
and push and release the four buttons
on the remote corresponding to each
speaker set in sequence 1, 2, 3, and 4.

Each time a button is pressed, the
green LED corresponding to the next
speaker set to be programmed
illuminates. When all four buttons
have been pressed, all front-panel
indicators go out. When the red Learn
indicator turns out, the unit is in
recognize mode. When all green
indicators turn off, no speaker sets are
selected. By pressing any of the four
buttons just programmed, the RCSS
selects the corresponding speaker set
output. The RCSS will not respond to
other IR remotes or buttons.

Note that programming the
RCSS must be done under optically
quiet conditions. This means that any
IR repeaters should be covered or
otherwise disabled and no other IR
remotes are in use. Also, during
programming, if the remote buttons
are held down too long, then several
speaker sets will be programmed to
the same remote button. If this
happens, simply reprogram the RCSS
by depressing the rear-panel Learn
switch and pressing the appropriate
remote-control buttons again.

USING THE RCSS
When the RCSS has been

programmed, it is ready for use. The
RCSS works with commonly
available IR remote repeater sets.
These sets usually have a transmitter
and receiver. They convert the remote
control’s IR signals to an RF signal,
transmit them to a receiver, which
then converts the signal back to IR to
control the component.

Some repeaters are hard wired.
But, regardless of the technology
used, the result is the same. A repeater
can be placed in any room where
secondary speakers are located,
enabling remote-control selection of
that set of speakers from that room.

When a particular set of speakers
is selected by remote control, a
confirmation tone is sent to the
speaker set. This confirms that the
correct selection was made since the
user typically cannot view the front-

Speaker set

Learn 1 2 3 4

Set 1 Set 2 Set 3 Set 4
Elo!Ilrz 8

Learn
q EIEIO

:PoQer

to amplifier

panel indicators on the RCSS. Each time the
selection is made by remote, a confirmation
tone is sent.

The Select button on the front panel
enables a local speaker-set selection. Each
time Select is pressed, another speaker set is
selected as indicated by the front-panel
indicators. The Select button also enables the
user to select any two speaker sets at once.
The Select button follows this sequence: 1,
2,3,4;  1 and 2; 2 and 3; 3 and 4; 1 and 3; 2
and 4; 1 and 4. The pattern then repeats.
There is no confirmation tone when Select is
used to select speaker sets.

The infrared detector in the RCSS is
quite sensitive and is typically able to read
infrared codes from 30’ or more. This means
remotes or IR repeaters can be conveniently
and aesthetically located. The only require-
ment is that there must be a clear line of
sight from the repeater receiver to the RCSS
IR detector on the front panel.

CONCLUSION
The RCSS switches four speaker pairs

from one stereo source by recognizing
unique IR codes from common IR remote
controls. Combining the RCSS with an IR
repeater enables remote-controlled speaker
selection from any location within the
repeaters range.

Relay-switching capacity during audio
peaks is 5 A, which corresponds to 200 W
into 8 Q. The peak current capacity of closed
contacts is much higher, so virtually any
power level can be accommodated with no
interference to sound quality (low-resistance
contacts).

The unit has optional front-
panel manual controls and indica-

Figure 5: The front panel  has LEDS  for speaker

selection and learn status  and a switchfor

manual selection of speaker pair(s). Rear-

panel push terminals are for speaker

connection and a molex  connector is for the

source amplifier. The switch is a momentary,

center-off switch. Down invokes the learn

mode and up resets the microcontroller.

tors and an internal tone-signal genera-
tion to provide user feedback of
successful remote switching. A very
efficient code-recognition algorithm
means a small and inexpensive
microcontroller can be used. No exotic
parts are necessary for construction, so
cost is reasonable.

Scott Heiserman holds an MS in electrical
engineering. He currently develops analog
and digital modiJications  and embedded
solutions for the FAA. He may be reached at
70671.2773@  compuserve.com.

Clark Oden holds a BS in electrical
engineering and designs precision time and
frequency equipment. He also works with
RF, analog, hardware, and software for FAA
applications.

SOFTWARE

Software for this article is available
from the Circuit Cellar BBS and on
Software On Disk for this issue. Please
see the end of “ConnecTime” in this
issue for downloading and ordering
information.

SOURCE

A preprogrammed 68HC705  may be
ordered for $25 postpaid from:

RCSS Project
10104 St. Helens Dr.
Yukon, OK 73099

I R S
422 Very Useful
423 Moderately Useful
424 Not Useful
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DEPARTMENTS
Firmware Furnace

From the Bench

Silicon Update

a Embedded Techniaues

ConnecTime

Ed Nisley

Journey to the Protected Land:
With Interrupts, 1 ImIng
is Everything

n my time line,
it’s mid-December

r and the Pentium FPU
‘firestorm threatens to

consume Intel’s credibility, if not their
future. On your time line, it’s late
March and you know how the story
ends. All I can say now is that I’m glad
for my plain old 486DX2. Sometimes
the thick edge of the wedge is the
place to be!

Just as all programs have bugs, all
hardware has quirks. If you never
stumble upon the circumstances that
trigger a quirk, its presence doesn’t
matter to you. Knowing that a quirk
exists can either help you avoid it or
justify buying something else. That
may explain why it’s so difficult to get
errata lists-if a bug isn’t mentioned,
does it really exist?

This month, we’ll reinforce the
error handlers that catch our own
bugs, then measure a hardware
interrupt’s response time when it
triggers a task switch. The venerable
8259 Programmable Interrupt Control-
ler and all its LSI progeny have an
interesting, well-documented quirk
that most folks have never encoun-
tered; you’ll get the story here!

IN CASE OF EMERGENCY...
Ever since we first flipped into 32-

bit protected mode, a simple error
handler has watched for protection
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Listing l--The unexpected error handler deals with interrupfs  that are not caught by any other handler. The
error handler sefup  code fills the IDT wifh  256 inferrupf gates aimed at these 256 stub routines. Each stub
pushes the Interrupt ID on the sfack  and fask  switches info the handler by execufing  a FAR CA L L
containing its ES selecfor.  Although fhe stubs include an /RET fo return control to the failing fask, the FFTS
error handler simply displays an error dump and halts  the system.

NUM_TASK_VECTORS  = 256 ; all possible interrupts

CODESEG
ALIGN 2 ; get a nice offset
PROC ErrTaskVectors

@ID = 0
REPT NUM_TASK_VECTORS
DB 06Ah ; PUSH immediate byte, MSB = OOh
06 @@@ID
DB 09Ah ; FAR CALL with imm seg:offset
DD 0 ; offset is not used here
DW TSSERRORS  ; seg causes task switch
IRET ; return from interrupt (ha!)

@@ID = @ID+1
ENDM

ENDP ErrTaskVectors

TASK_VECT_SIZE  = $ ErrTaskVectors total length of all stubs
TASK_VECT_STEP  = TASK_VECT_SIZEINUM_TASK_VECTORS ; stub size

violations. Without the support of the
CPU’s multitasking hardware, how-
ever, it’s difficult to write an error
handler that doesn’t mess things up
while attempting to display an error
message.

As a result, the only indication of
an error was a cryptic pattern on the
Firmware Development Board and
parallel port LEDs  identifying the
failing instruction. While that may be
better than real-mode pinball panic or
a system freeze, we can do much
better using separate tasks for the error
handlers. You knew multitasking was
going to come in handy for something,
didn’t you2

Figure 1 shows the sequence of
events after the CPU detects an error
in protected mode while running a
task. If the IDT entry corresponding to
that error contains an interrupt or trap
gate (the other choice is a task gate,
which we’ll discuss shortly), the CPU
pushes the current EFLAGS, CS, and
EIP registers onto the stack. Some
errors also produce an error code to
help identify the problem, which the
CPU pushes atop EIP, rendering a
simple I RET impossible. Figure 3 in
INK 50 tabulates the predefined
interrupts, their types, and whether

they produce an error code. (Note that
there is a table of acronyms at the end
of the article for those who didn’t
quite follow the past few sentences.)

Failing instruction

, Interrupt gate

The interrupt or trap gate directs
the CPU to a stub routine that pushes
the interrupt ID number. Without that
value on the stack, the handler cannot
tell which interrupt activated it. The
alternative is 256 separate interrupt
handlers, which seems excessive even
to me. Listing 1 shows the macro that
generates 256 stubs leading to our new
error handler.

Each stub includes a synthetic FAR
CALL withthe TSS_ERRORS  selectorin
the segment position. That selector
corresponds to the TSS of the error-
handler task. The CPU reacts to this
FAR CALL by storing the failed task’s
state in its TSS and task switching to
the error handler. As always, the CPU
loads a new state from the incoming
TSS, ensuring that all the registers are
safe from harm and the new stack is
entirely separate from the old one.

If you thought task switching was
complex last month, hold onto your
keyboards. Figure 2 shows the situa-
tion just after the task switch. The
stub’s FAR CALL triggers two new
actions during the task switch: the
CPU stores the failed task’s TSS
selector in the error handler’s TSS

Stub code
I
4 PUSH Int ID

CALL Error Handler

Figure l-When an error occurs in
a protected-mode instruction the
CPU pushes the current flags and
fhe CSEIP  registers before passing
fhrougb  an IDT interrupt gafe. Some
errors also generate an error code
that identifies the failing segment.
The stub  code shown in Listing 1
pushes the intern@  ID and
executes a FAR CALL task
switch to  the error handler.

.

.

.
Stack TSS

- Failing task - I Error Handler task I

CS:EIP

-
+---- Back Link

I I TSS

Figure 2-The  error handler’s TSS Backlink  field holds the failed task’s JSS selector. The error handler accesses
fhe stacked values using the SSESP  values from that TSS.  Note that the sfacked  CSEIP  points to the failed
instruction and the CS:E/P  in the TSS points to the instruction after the FAR CA L L in fhe stub routine.
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Figure 3-The  error handler displays values from fhe
failed task’s stack, dumps fields from ifs ES and LDT,
then halts  fhe system. Demo Task 1 causes a variefy  of
(deliberate!) errors based on the LPTI  DIP  switches.
This dump occurred after a floating-point op in a ‘386SX
system without a numeric coprocessor. As shown on
the second line, the CPU defected the error in the
insfrucfion  af 000C:0000013Fin  Demo Task 1. Isn’t  this
better than pinball panic or no error indication at all?

Backlink  field and sets the NT bit in
EFLAGS.

Unlike task switches through FAR
J M Ps, nested tasks can return to the
previous task using an I RET instruc-
tion. A normal I RET restores CS:EIP
and EFLAGS from the current task’s
stack. If the NT bit is set, however, the
CPU treats an I RET as a task switch
using the TSS selector in the Backlink
field. As we’ll see, this lets an inter-
rupt trigger a task switch, perform a
function in complete isolation from
the interrupted task, and return
directly without executing any special
code.

A more complex operating system
than FFTS might attempt to fix up the
condition causing the error and retry
the failing instruction. For example,
the CPU triggers I n t 0 6 (“Segment
Not Present”) when an instruction
uses a descriptor that is not present (P
bit = 0). The error handler can reach
back through the nested TSS, find the
offending descriptor, make it present
(perhaps by allocating a block of
memory and reading a code segment
from disk), then restart the failed
instruction. This is obviously not for
the faint of heart!

Our error handlers, on the con-
trary, display the values from the
failed task’s stack, dump fields from
its TSS and LDT, and halt the system.
Demo Task 1 can now cause a variety
of (deliberate!) errors depending on the
settings of the DIP switches on LPTl.
Figure 3 shows a screen dump result-
ing from executing a floating-point op
without a coprocessor.

The second line in Figure 3 shows
the interrupt number and the address
of the instruction that caused the
problem. The CS:EIP values in the TSS
dump point to the FAR CALL instruc-
tion that switched into the error
handler. The remainder of the registers
have the same values they did when

84 Issue #57 April 1995 Circuit Cellar INK

*** Fatal error detected...
Int 07 at 000C:0000013F, flags 00010087, error code not used
Coprocessor not available

TSS Dump of [Demo Task 11 Sel=1050 Base=00130AOO
Backlink=OOOO  LDT Sel=1058
CS:EIP=0030:00000561  EFLAGS=00000087  CR3=00000000
SS:ESP=0024:00000FEC  EBP=00000000 IOMapBase=OOOO Trap=0000

DS=0014  ES=0000 FS=OOZO  GS=OOlC
EAX=00000007 EBX=0000013F ECX=00000000 EDX=00000378
EDI= ESI=00000000

SS:ESP  O/OOOO:OOOOOOOO 1/0000:00000000  2/0000:00000000
LDT Dump of [Demo Task 11 LDT Sel=1058
0004: 00302380 00008COO
OOOC: 37300178 00409810
0014: OOZOOOlB 00409314
OOlC: 7BCOO103 0040934A
0024: 6B800FFF 0040934A

*** The system is stopped

:he error occurred. Reconstructing the handler extracts the Backlink  field
problem is much easier when you can from its own TSS to identify the failed
see what went wrong! TSS. Next, it recovers the SS:ESP

Fetching data from the failing registers in use at the time of the
task’s stack is a three-step process as failure and copies the corresponding
shown in Listing 2. First, the error stack descriptor to a temporary GDT

Listing 2-This  error handler code reads the Back/ink  field from the error handler’s ES, locates the failed
task’s  TSS,  and copies the task’s LDT stack descriptor info a temporary GDT descriptor. The error handler
can fhen copy the task’s stacked values info local variables using ES:ESf.  The FFTS  handler includes
additional code to hand/e errors when the kernel’s GDT  stack descriptor is in use.

--- fetch backlink  from our TSS to the task with the error
move ESP into ES1 so we can read the stack

LEA EAX,[(TSS PTR O).BackLink]
CallSys CGT_TASK_GETFIELD,[TaskID],EAX
MOV [ErrTSSl,EAX

LEA
CallSys
MOV
MOV

EAX,[(TSS PTR O).ESPl
CGT_TASK_GETFIELD,[ErrTSS],EAX
ESI,EAX
[ErrStackPtr.Offl,EAX

;--- set up
CallSys
MOV

temp descriptor for stack
CGT_MEM_FINDEMPTY,GDT_TEMP_BASE,GDTGDT_ALIAS
[TempStackSell,EAX

LEA
CallSys
MOV

EAX,[(TSS PTR O).SSl : get failing SS desc
CGT_TASK_GETFIELD,[ErrTSSI,EAX
[ErrStackPtr.Segl,AX

;--- copy stack descriptor from LDT to GDT
LEA EBX,[(TSS PTR O).TaskLDTl
MOVZX EAX,[ErrStackPtr.Seg]
AND EAX,OFFF8h ; convert SS descriptor to offset
ADD EBX,EAX ; add to LDT base offset
CallSys CGT_TASK_GETFIELD,[ErrTSSl,EBX
MOV EDX,EAX ; save for later

ADD EBX.4 ; fetch second dword from LDT
CallSys CGT_TASK_GETFIELD,[ErrTSSl,EBX

CallSys CGT_MEM_PUTDESC,[TempStackSell,GDTGDT_ALIAS,\
EDX,EAX ; set temp descriptor to stack

:--- fetch values from that stack and sort out error codes
(continued)



Listing Z-continued

MOV ES,[WORD PTR TempStackSell  ; aim ES at stack desc

MOV
MOV
ADD

EAX,[ES:ESIl ; interrupt number pushed by stub
[ErrIntl,EAX
ESI,4

XOR
XOR
CMP
JBE
CMP
JAE
CMP
JE
INC
MOV
ADD

EBX,EBX ; assume no error code
ECX,ECX ; . . . zero if not used
EAX,07h : decide if we have an error code
@NoCode
EAX,lOh
@NoCode
EAX,09h
@NoCode
EBX : we do, so flag it
ECX,[ES:ESII : and fetch it
ESI,4

@NoCode:
MOV
MOV

IErrHaveCodel,EBX
LErrCodel,ECX

MOV
MOV

EAX,[ES:ESIl ; fetch EIP
[ErrEIPl.EAX

MOV
MOV

EAX,[ES:ESI+4] ; fetch CS
IErrCSl,EAX

MOV
MOV

EAX,[ES:ESI+8] ; fetch EFLAGS
[ErrEFLAGSl,EAX

entry. Finally, with ESESI aimed at
the stack, it can copy the values into
local variables.

The error handler produces the
output display using the string-
formatting routines in the conforming-
code segment we set up last month.
Those routines work with values from
the caller’s stack and do not affect any
other system values, making them
ideal for an error handler that may get
control at any time.

WHEN ALL ELSE FAILS...
The error handler is a task much

like the demo taskettes, except that it
runs only twice: once during the initial
task setup and once when an error
occurs. After displaying the error
information, it halts the system,
effectively eliminating the need to
unwind the stacks and return to the
failing task.

The TaskDispatchable bitin
the dispatching array is set when the
task-initialization code creates the
error-handler task. After the handler
finishes preparing for the first error, it
turnsoffits TaskDispatchable bit

and returns to the dispatcher, leaving
the context of the dispatching proce-
dure on its stack. The only way it will
regain control is through one of the
stub routines after an error, not
through the dispatcher’s loop.

When an error occurs, the CPU
restores the handler’s registers from its
TSS and the code finally returns from
the task-dispatcher procedure. It
should not call the dispatcher when it
finishes handling the error because the
dispatcher is not expecting a return
from a task it hasn’t dispatched.

The Intel System Software
Writer’s Guide describes a moderately
complex way to integrate software-
and hardware-dispatched tasks. I have
not used their technique because the
FFTS error handlers are quite simple. If
you are building a system that must
recover from errors with a bit more
grace, pay attention to those sugges-
tions!

The handler I just described can
deal with all but three of the CPU’s
error conditions. The Intel manuals
recommend that stack, double-fault,

-PRECISION FRAME GRABBER ’

Tntroducing

1the CXlOO-precision  video frame 1
grabber for OEM, industrial and scientic

applications. With sampling jitter of only *3  nS
and video noise less than one ISB,  ImageNation
breaks new ground in imaging price/perfor-
mance. The CXlOO  is a rugged, low power, ISA
board featuring rock solid, crystal controlled
timing and all digital video synchronization.
A Software developers will appreciate the simple
software interface, extensive C library and clear
documentation. The CXlOO is a software com-
patible, drop-m replacement for our very
popular Cortex I frame grabber. A Call today
for complete specifications and volume pricing.

ImageNation  Corporation
Vision Requires Imagination

800-366-9131

FOR ONLY $495*
- CXlOO FEATURES -

. Crystal Controlled Image Accuracy
m Memory Mapped, Dual-Ported Video RAM
n Programmable Offset and Gain
n Input, Output and Overlay LUTs
n Resolution of 5 12x486 or Four Images

of 256x243 (CCIR 512x512 & 256x256)
n Monochrome, 8 Bit, Real Tie Frame Grabs
n Graphics Overlay on Live or Still Images**
m External Trigger Input
m RGB or B&W, 30 Hz Interlaced Display
n NTSUPAI  Auto Detect, Auto Switch
m VCR and Resettable Camera Compatible
n Power Down Capability
. BNC or RCA  Connectors
n Built-In Software Protection**
n 63 Function C Library with Source Code
l Text & Graphic Libraq with Source Code
m Windows DLL, Examples and Utilities
n Software also available free on our BBS
n Image File Formats: GIF, TIFF, BMP PIC,

PCX,TGA and WPG
** IIJFSE oi’rlo~s  ,+v%l!91MBLE  Ar  FXI’IU  COST.

* 5495 ISDOMESTIC,OEMSINGLELlhlTPRICE.

#121

Ro. BOX 276 BEAVERTON, OR 97075 USA PHONE (503) 641.7408 FAX (503) 643-2458 BBS (503) 626-7763
/
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and invalid TSS error handlers use IDT
task gates rather than interrupt or trap
gates. In each of these cases, the
currently active stack may not be valid
or may not have enough room for the
error handler’s use. Any attempt to
push data onto a bad stack causes
further errors and may force the CPU
into shutdown.

Listing 3-The  system task-switches to this interrupf  handler whenever an interrupt occurs on either IRQ  5
or /RQ  7. Timer 0 on the Firmware Development Board produces a 1-ms square wave on IRQ 5. The 8259
interrupt controller produces a default IRQ  7 interrupt when the IRQ 5 input goes low during fhe CPU’S
interrupt acknowledge sequence. The two cases are distinguishable by reading the 8259’s /n-Service
Register. The handler must not send an EOI to fhe 8259 when a default IRQ  7 occurs.

UseTaskCS

PROC TaskProcInt
A task gate is Yet Another

Descriptor that specifies a TSS selector
in place of the usual code-segment
selector. When an error occurs, the
CPU uses the corresponding IDT task
gate to switch tasks without pushing
any information on the failed task’s
stack, thus ensuring no further errors
occur. The error handler’s Backlink
field points to the failed task and the
handler may return using an I RET
after resolving the problem.

If the error condition produces an
error code, as is true for these three
errors, the CPU pushes it onto the
error handler’s stack. Because the task
switch occurs at the failing instruc-
tion, the TSS fields contain all of the
information required to locate the
problem. There is no need to find the
failed task’s stack and exhume values
from it.

Tasks activated by an IDT task
gate cannot use the FFTS task dis-
patcher because the CPU plops the
error code atop the stack contents
defined by the SS:ESP fields in the
handler’s TSS. This disturbs the
previous return context and results in
a protection error when the CPU
attempts to resume execution with a
“bad” stack. Not a pretty sight.

@@Again:
MOV EDX,SYNC_ADDR
IN AL,DX ; raise the blip
OR AL,40h
OUT DX,AL

MOV AL,00001011b ; OCW3 with read ISR set
OUT 18259A,AL ; tell the 8259
IN AL,I8259A ; read the ISR
TEST AL,00100000b ; is IRQ 5 active?
JNZ @@Normal ; yes, so do a normal interrupt

MOV EDX,SYNC_ADDR  ; no, mark a default interrupt
IN AL,DX
OR AL,ZOh
OUT DX,AL
AND AL,NOT 20h
OUT DX,AL

INC iInt7CounterI : no, we have a default IRQ 7
JMP @@Done : do not send EOI for this one

@@Normal:
INC [Int5Counterl ; record a normal interrupt
MOV AL,NS_EOI ; send EOI to controller
OUT 18259A,AL

@Done:
MOV EDX,SYNC_ADDR
IN AL,DX ; lower the blip
AND AL,NOT  40h
OUT DX,AL

IRET ; return to previous task

JMP @@Again ; and repeat!

ENDP TaskProcInt

I defined three separate tasks for
Int 08, Int OA, and Int OC that expect
to find an error code on their stacks.
The main error handler installs these
three task gates after preparing the rest
of the IDT interrupt gates. The task
dispatcher resets the Ta s k D i s pa t c h
a b 1 e bit for these tasks when it
creates them, thus preventing any
execution except when an error occurs.

EndTaskCS

stacks and one task for the remaining I plan to favor simplicity over capabil-
253 cases with stub routines to save ity. Download the code and spend a
the interrupt ID. You may prefer a while thinking it over-you’re sure to
separate task for each of the CPU error find ways to improve it!
conditions, plus one more for all the
other cases that “can’t  happen here.”

Because a task gets control Once again, remember that
immediately, you cannot aim multiple writing comprehensive error handlers
task gates at the same TSS if you must is exceedingly difficult. The code I’ve
know which interrupt caused the described and implemented is barely
switch. That’s why FFTS has four error the beginning of a real operating
handlers: three separate tasks for the system’s features. Even though FFTS
three errors that may have corrupt needs additional ruffles and flourishes,

If you think all this is too complex
for words, compare Figure 3 with the
results of a similar goof in real mode.
Maybe this protected-mode stuff is
worthwhile?

TICKING A TASK
In INK 50, we found that a 33.

MHz ‘386SX responds to an external
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Photo l--The  response to an external interrupt can be rather slow when the interrupt handler is a separate task
invoked through an IDT  task gate. RI5  Timer 0 generates IRQ 5 on the top trace and the interrupt handler produces
the blio on the lower trace. The 19.&s  1680  w/es  at 33 MHz)  response time shown here is rough/y25  times
longer than the delay through an intem& gak

interrupt in about 7 us when the
handler uses an IDT interrupt gate.
Now that we can set up and use
separate tasks, it’s reasonable to ask
what the response time for a complete
context switch might be. The CPU is

I modified Demo Task 2 to set up

obviously performing more work on

the machinery required to produce an
interrupt and then display the results
on the VGA. This gives you a real-time

our behalf while switching from one

view of what’s happening down at the
grubby hardware level. Because we’ve

task to another. So, how long does it

used protected-mode interrupts before,
I’ll skip the detailed listings and cover

take?

the new stuff.
Timer 0 in the Firmware Develop-

ment Board’s 82C54 chip produces a
1-ms square wave on the IRQ 5 ISA
bus line. The demo tasks require
several milliseconds to update the
VGA and LCD display and thus allow
several timer interrupts while they
are executing. If you don’t have an
FDB in your system, you can modify
the code to use the system-board
timer.

88 Issue #57 April 1995 Circuit Cellar INK

I remapped the system’s two 8259
interrupt controllers (or, more pre-
cisely, the LSI slivers that emulate
8259s) to produce Int 50-57 and Int
70-77 (hex), respectively. Because we

The interrupt handler shown in

are interested only in IRQ 5 on Int 55,

Listing 3 is a separate task that cannot
use the normal FFTS dispatcher
procedure. A task gate, much like the

I cleared just one bit in the primary

gates used for the CPU’s error han-
dlers, contains the IRQ 5 handler’s TSS

controller’s Interrupt Mask Register.

selector. When an IRQ 5 interrupt
occurs, the CPU reads the interrupt

All other external interrupts remain

number from the 8259, locates the
task gate in the IDT, and switches to

masked off.

the handler task.
After all the setup is complete, the

Demo Task 2 code executes an ST I
instruction to set the CPU’s IF and
enable external interrupts. Up to this
point, the FFTS kernel has been an
external-interrupt-free zone.

Photo 1 shows the results. The
rising edge on IRQ 5 in the top trace
triggers the interrupt. About 20 us

later, the second trace rises to show
that the interrupt handler is in control.
The ‘386SX CPU runs at 33 MHz, so
you are looking at about 650 clock
cycles of delay. A few microseconds
vanish while producing the output
pulse, but this is about as good as it
gets.

Dig out your back issues. Photo 1

in INK 50 shows a 7-us  response
through an interrupt gate (the cap-
tion’s “7 ms” is a typo). Photo 1 in
INK 54 shows that a task switch
requires about 15 us. It shouldn’t be
surprising that an interrupt plus a task
switch requires somewhat more time
than a task switch alone, but less than
both together.

Protected mode offers a variety of
ways to respond to interrupts. YOU can
use an interrupt gate for handlers that
perform relatively simple actions or
task gates that switch the entire CPU
context. You may also, of course,
perform your own task switch in
firmware at the risk of taking more
time to accomplish less while evading
the CPU’s hardware protection. Unlike
running code in real mode, you’ve got
choices for your handlers.

SWITCHED SUPPRESSION
During each task switch, the CPU

reloads all of its registers from a TSS.
Although we haven’t covered all the
implications yet, that means the
EFLAGS register is unique to each
task. Bit 9 of EFLAGS is more com-
monly known as IF (Interrupt Flag).

Get it?
The IRQ 5 handler produces the

upper trace of Photo 2. Although
Timer 0 runs continuously, interrupts
are enabled only when Demo Task 2 is
active, as shown in the lower trace.
External interrupts occurring while IF
is zero are not recognized, just as in
real mode.

Moral of the story: in a multitask-
ing system, you must enable interrupts
in every task if you want consistent
response times. If any task disables
interrupts, you will get gaps while
interrupts receive no attention at all.

Because user tasks should not
have that much influence over the
system’s operation, the two-bit I/O
Privilege Level in EFLAGS affects the



ST I and C L I instructions. If the
current task is less privileged than the
IOPL setting, the CPU invokes the
general-protection handler. This is an
effective way to prevent Level 3 user
tasks from clobbering the whole
system.

Normally, you change EFLAGS by
pushing it onto the stack, popping it
into EAX, altering a few bits, pushing
EAX onto the stack, and popping the
new value back into EFLAGS. In
protected mode, the CPU will not
change the IOPL field unless the task
is already running at Level 0, thus
preventing user tasks from changing
their own IOPL and gaining access to
sensitive system resources.

There are other complications that
we’ll explore in due time. For now,
just remember that interrupts are no
longer a private thing.

sheet:

CAP’N QUIRK TO THE BRIDGE!
You must cultivate the ability to

read hardware data sheets completely
and accurately if you intend to write
good firmware. It also helps if you can
read between the lines, because that’s
where the quirks are hidden. Consider
this excerpt from the Intel 8259 data

In both the edge- and level-
triggered modes, the IR inputs
must remain high until after the
falling edge of the first INTA. If
the IR input goes low before this
time, a DEFAULT IR7 will occur
when the CPU acknowledges the
interrupt.

Novices skip over this stuff
because it doesn’t make much sense.
An engineer with more experience
sticks a red Post-It note on the page
and scrawls timing diagrams in the
margin. The Perfect Master perceives
the implications without further
effort.

Me, I just sort of muddle along.
The Original PC used edge-

triggered interrupts, creating compat-
ibility barnacles that force all ISA bus
systems into the same mode. EISA
systems may (and Micro Channel
systems always) use level-triggered
interrupts with cards built to share
interrupts. You can actually use level-
triggered interrupts in an ISA bus
system, although I’ll leave that as an
exercise for you.

line must have a rising edge, it must

There are three requirements for a
valid edge-triggered interrupt: the IRQ

i .i.,., j. I.,.
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Photo 24nferrupfs  are active only when the  CPU’s  lnferrupf  Flag is set Demo Task  2 exe&es  an S TI instruction
affer  preparing for interrupts, resulfing  in a system fhaf  responds to interrupts only  when that task  is active. The  IRQ
5 handler task produces the clusters of pulses in the fop trace. Demo Task  2 produces the blips in the lower trace
when if is active.

remain high until the CPU acknowl-
edges the interrupt, and (obviously) it
must go low to prepare for the next
interrupt. The 8259 holds its INT
output high whenever it has an
interrupt pending.

Contrary to popular assumption,
however, the 8259 does not “remem-
ber” an interrupt that Goes Away
before the CPU detects it, even in
edge-triggered mode. If the IRQ input
goes low, the 8259 lowers its INT
output. The CPU will not detect an
interrupt.

The data sheet description applies
only to IRQ inputs that Go Away in
the short interval when the 8259 is
processing the CPU’s first INTA pulse.
In that situation, the CPU detects a
pending interrupt, starts an interrupt-
acknowledgment cycle, and then
suddenly discovers that it doesn’t have
a valid IRQ input. What to do?

You could argue that the 8259
should issue an interrupt for the now-
vanished IRQ. However, that could
cause system problems if the inter-
rupting hardware no longer needs
service. Worse, the interrupt could
have been a brief glitch on the line
rather than a valid signal.

What the 8259 actually does is
generate an IRQ 7 interrupt with ISR
bit 7 set to zero. Thus, the IRQ 7
interrupt handler must distinguish
between valid IRQ 7 hardware inter-
rupts and default interrupts. Invalid
timing on any interrupt line, including
IRQ 7, causes a default IRQ 7.

When the interrupt handler
detects a default IRQ 7 event, it must
not send an EOI command to the 8259.
An EOI resets the highest-priority ISR
bit and may discard a valid interrupt if
the 8259 recognizes a new IRQ signal
while the CPU is busy with the default
IRQ 7.

Because Timer 0 is not synchro-
nized with the CPU’s clock, we can be
sure that it will eventually violate the
(unspecified) timing specs causing a
default IRQ 7 interrupt. All we have to
do is sit back and watch.. .

Demo Task 2 installs task gates at
both Int 55 and Int 57 to invoke the
handler task in Listing 3. The handler
determines which interrupt invoked it
by reading the 8259’s ISR. If bit 5 is
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clear, meaning that a valid IRQ 5 did
not occur, then the interrupt must be a
default IRQ 7. The code pulses parallel

The main loop of Demo Task 2

port bits 6 and 5 to give us a real-time

displays the two interrupt counters
and their ratio, scaled by a factor of

picture of what’s happening.

one million, on the VGA display each
time it runs. The interrupt handler
task simply increments the counters
and returns because we don’t have
nearly enough time between interrupts
to update the screen.

Photo 3 catches a default IRQ 7 in
action. The bottom trace goes high
when Demo Task 2 is active. External
interrupts are enabled a few microsec-
onds before the rising edge of that
pulse when the CPU exits from the
task switch instruction. The Timer 0
pulse on IRQ 5 shown in the top trace
falls just before that key event.

The blip on Trace 2 marks a
default IRQ 7 interrupt. Trace 3 shows
two interrupt handler task activations:
first for the default interrupt and then
as a valid IRQ 5 after the rising edge of
Timer 0.

After about 64 hours of continu-
ous execution, the program recorded

68.3 million IRQ 5 and 11,815 default
IRQ 7 interrupts. That works out to
172 parts per million-infrequent

Don’t get too nervous about this
condition, though. It only occurs when
the interrupt source Goes Away

enough that you’d never see one if you

precisely when the CPU is acknowl-

weren’t looking directly at it.

edging the interrupt. If your interrupts
are enabled all the time and the pulse
stays high longer than the maximum
CPU response time, you’ll never see a
default IRQ 7.

In any case, build a test into your
IRQ 7 and IRQ 15 handlers just in
case you get a glitch. Always accumu-
late a counter, then examine it once in
a while. Who knows? You might see
a one part-per-million blip occasion-
ally!

RELEASE NOTES
The demo taskettes include test

code for the error and interrupt
handlers. Demo Task 1 monitors LPTl
and triggers a variety of (deliberate!)
errors to verify that the handler tasks
work correctly. Demo Task 2 installs
an interrupt handler task, activates
Timer 0 on the Firmware Develop-
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Photo 3-The 8259 interrupt controller generates a default IRQ 7 if an interrupt request inpuf becomes inactive
during the CPUb hardware response. The falling edge of /Xl  5 in Trace 1 triggers the default /FlQ 7 shown in Trace
2 because if occurs just as the CPU becomes enabled for interrupts in Demo Task 2. Trace 3 goes high when the
system responds to either IRQ 5 or If?0 inferrupts.  Trace 4 shows the start of Demo Task  2. The  interrupt handler
counts IRQ 5 and IRQ 7 events. In this system, there are about 170 RQ 7 inferrupfs  per million RQ 5 inferrupfs.

Acronyms
CPL Current Privilege Level

DPL Descriptor Privilege Level

EOI End Of Interrupt (command)

FDB Firmware Development Board

FFTS Firmware Furnace Task Switcher

GDT Global Descriptor Table

GDTR GDT Register

IDT Interrupt Descriptor Table

IF Interrupt Flag

IOPL I/O Privilege Level

LDT Local Descriptor Table

LDTR LDT Register

NT Nested Task

P bit Present Bit (in a PM descriptor)

RF Resume Flag

RPL Requestor Privilege Level

TF Trap Flag

TR Task Register

TSS Task State Segment

ment Board, counts the number of IRQ
5 and IRQ 7 interrupts, and displays
running totals on the system’s VGA.
Demo Task 3 simply ticks a count on
the VGA and graphic LCD panel.

Next month, we’ll fire up the
system board’s real-time clock inter-
rupts, twiddle a watchdog, read a serial
number, put some characters on the
FDB’s character LCD, and look at
memory allocation. q

Ed Nisley, as Nisley Micro Engineer-
ing, makes small computers do
amazing things. He’s also a member of
Circuit Cellar INK’s engineering staff.
You may reach him at ed.nisley@
circellar.com.  or 74065.1363@
compuserve.com.

Software for this article is avail-
able from the Circuit Cellar BBS
and on Software On Disk for this
issue. Please see the end of
“ConnecTime” in this issue for
downloading and ordering
information.

425 Very Useful
426 Moderately Useful
427 Not Useful
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Jeff Bachiochi

Vaporwear:
Revealing Your Humidity

ou’ve probably
heard someone

comment about

from an ache or pain. What they are
actually feeling is the change in
humidity as their bones and joints
swell or shrink from a change in the
air’s moisture content. We live
somewhere between the extremes of a
desert’s lack of moisture and a sauna’s
abundance of it.

Take those muggy summer days
(please); they can be brutal. The air
seems so heavy. And, for good rea-
son-it actually is. Humid air is
saturated with water vapor. In this
gaseous state, the water heeds the
same rules as the other gases which
combine to make air.

The relationship between air’s
pressure, volume, and temperature are
defined in the Ideal Gas Law:

pv-
T  -K

where P is pressure, V is volume, T is
temperature, K is the gas constant
times the number of moles of gas. In
other words, pressure and volume are
inversely proportional, whereas
temperature is proportional to both
pressure and volume.

Water is in a significant part of our
lives. It’s in our bodies, what we eat,
and the air we breathe. The moisture

content of air can be measured by
weighing all the water-vapor mol-
ecules with respect to other gas
molecules-not an easy task for
tweezers, a magnifying glass, and a
postage scale.

However, it can be calculated
from knowing the dew/frost point
(DFP) of the air. The DFP temperature
represents the temperature that the
water in the air becomes saturated and
condenses into water or ice. The
warm, moist air we exhale on a cool
morning is chilled to dew point and
instantly condenses into water
droplets or fog. Measuring the exact
temperature at which the condensa-
tion takes place lets the relative
humidity (RH) be calculated.

Humidity affects us on a personal
level within our own comfort zone. It
is important to note here that humid-
ity is just as important to other
activities that operate in severe
environments. Industrial furnaces or
upper atmospheric experiments pose
special problems to the measurement
of humidity and require specially
designed sensors and/or sampling
equipment.

But, let’s try to remain within our
comfort zone here for the remainder of
this discussion.

COMFORT ZONE
MEASUREMENTS

For most of us, while the outside
temperature varies within a range of O-
lOO”F,  our artificial living environ-
ment stays within 6575°F.  Those of
us with base-board heat don’t have
much control over humidity. We
might keep a kettle of water on the
wood stove or run a humidifier to keep
a bit of humidity in the air, but in
general most of us don’t have a
hygrometer on the wall next to the
thermostat.

Before we added on to our cottage
here in New England, it was heated by
a hot-air system. This old system,
antiquated as it was, did have a
humidistat located within the central
air duct. Whenever hot air was moving
through the duct, a fine mist of water
vapor was introduced in an attempt to
control the humidity. I never actually
felt the effects of the humidistat
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Still there are some firms willing
to make their sensor technology
available for a price, although it is by
no means small. Table 1 offers a
sample of available humidity sensor
characteristics.

IT’S ALL RELATIVE
Although I could have chosen a

offset stage to adjust 0% RH to 0 V and
a gain stage to allow 100% RH to be
measured as 5 V. The O-5-V signal can
be used directly by most A/D convert-
ers. The op-amp needs a bit of head
room on the power supply, so I used a
MAX680 to produce 29 V from the +5-
V circuit input.

number of different sensors, I will be
using Panametrics’ Humidicap-2. This
sensor is one of the smallest available.
It comes in a T018-type can with the
top open to the atmosphere. A small
plastic sleeve prevents even the
clumsiest enthusiast from harming the
delicate wire bonds to the sensor.

Although physically delicate, the
sensor is rated to operate from -40 to
+5O”C with negligible temperature
dependence above freezing. Bulk
capacitance at 33% RH is 207 pF t31
pF (15%). Capacitance change from 10
to 90% RH is typically 12% of bulk.
The linearity is f 1% over that range,
which means no algorithm is neces-
sary to correct for nonlinearities.

Calibration techniques usually
call for special salt solutions to create
accurate humidity levels in closed
containers. The sensor is inserted into
the chambers and allowed to stabilize.
Each salt solution maintains a particu-
lar humidity level. The circuit mea-
surements taken in two humidity
environments indicate the slope of the
sensor’s output in relation to the
humidity level.

My humidity chamber consists of
the upstairs bathroom with a portable
humidifier. Prior to taking the first
reading I let the sensor, circuitry,
hygrometer, and humidifier stand for
an hour to let all the apparatus get
climatized to the present environment.
An initial measurement shows 0.136 V
for a humidity level of 15%. After
three hours with the humidifier on, a
second measurement shows 0.147 V
for a humidity level of 70%.

Figure 1 shows a basic circuit for
converting capacitance to pulse width
and voltage. The actual board is
pictured in Photo 1. Here, a MAX7556
(a low-voltage version of the dual 555
timer) is used. The first
stage is connected to
form a constant-
frequency pulse genera-
tor. The second stage,
triggered from the first,
creates a varying pulse
width proportional to its
RC time constant.

Since the resistance :-: ..,: : : :: : : :
is fixed, the change in : : :L

1BBkHZ

To reduce the calibration costs to
a reasonable level, I was prepared to
create my own humidity chamber
once I had a way to measure it. On a
trip to the local hardware store, I
browsed the thermometer section.
With a couple of thermometers, I
could rig up a Sling Psychrometer and
measure wet- versus dry-bulb tempera-
ture differences and thus relative
humidity. Then, I noticed the combi-
nation thermometer/hygrometers.
They ranged in price from $4.99 to

Obviously, the voltage readings
can be used to calculate a percentage
of humidity. Assuming linearity, we
can calculate the sensor’s output for
the extremes of 0% RH and 100% RH.
To do this, we first of all have to find
the slope of the line between the
initial and subsequent voltage read-
ings:

%b - Ynit
A = RHsUb  - RH ,nit

= O.l47V-0.136V
70% - 15%

0.2 uv
RH%

capacitance is directly
proportional to the pulse
width. This pulse width
could be measured
digitally through a
microprocessor’s timer
input and converted to
the corresponding
humidity level. Alter-
natively, the PWM
signal can be fed into a
low-pass filter and
measured as a voltage.

I used an additional
dual op-amp for an

Figure 1-A stable oscillator triggers a one-shot circuit where P WM is proportional lo the humidity sensor, CZ. A voltage from the filtered
PWM  is offset and multiplied to approximate a C-5-V output equivalent to C-UN%  relative humidity.

$32.95. After comparing the humidity
readings and display scales, I found the
least expensive and most expensive
models to be comparable.
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SOLID STATE DISK - $135”
% Card 2 Disk Emulator

EPROM, FLASH and/or SRAM
Program/Erase FLASH On-Board
1M Total, Either Drive Bootable

25MHZ 386DX CPU - $695*
Compact AT/Bus or Stand Alone

In-Board SVGA,  IDE, FDC, 2 Ser/Bi-Par
FLASH/SRAM  Drives to 2.5M

Cache to 128K,  DRAM to 48M

TURBO XT
w/FLASH DISK - $266*
To 2 FLASH Drives, 1M Total

DRAM to 2M
Pgm/Erase  FLASH On-Board

CMOS Surface Mount, 4.2” x 6.7”
2 Ser/l  Par, Watchdog Timer

{II Tempustech VMAX. products are
PC Bus Compatible. Made in the

J.S.A., 30 Day Money Back Guarantee
‘QTY 1, Qty breaks start at 5 pieces.

TEMPUSTECH,  INC.
TEL:(800)634-0701
FAX:(813)643-4981

:ax  for 295 Airport Road
ast response! Naples, FL 33942
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Photo l--The profotyped circuit is mounted on perf board for easy experimentation. The Humidicap sensor wifh this
circuit/y enables humidify to be read as pulse width or volfage.

With the slope of the line, we can
now find the voltage at 0% RH:

V @ 0% RH = yni, - AV x RH,,,,
=O.l36V-0.0002Vx  15%
=O.l33V

and the voltage at 100% RH:

V@ lOO%RH=V,,,+AVx  lOO-RH,,,

=0.147V+O.O002Vx(  100-70)

=O.l53V

Knowing the voltage readings at 0
and 100% RH, we are able to set the
op-amp’s offset and gain. For the offset,
apply the voltage calculated at 0% RH
to the input of the op-amp and adjust
the offset to 0 V out. Similarly, for the
gain, apply the voltage calculated at
100% RH to the input and adjust the
gain to 5 V out. Since these adjust-
ments interact, they should be done
more than once.

Even though an 8-bit ADC may
not seem like overkill in this case, the
O-5-V input converts the percentage of
RH at about 0.2% RH per bit, an
amount which no one will even
notice. q

/eff Bachiochi (pronounced “BAH-key-
AH-key”) is an electrical engineer on
Circuit Cellar INK’s engineering staff.

His background includes product
design and manufacturing. He may be
reachedatjeff.bachiochi@circellar.com.

Relative humidity products:
General Eastern Instruments
High Voltage Engineering Division
20 Commerce Way
Woburn, MA 0 180 1
(617) 938-7070

Phys-Chem  Scientific Corp.
36 West 20th St.
New York, NY 10011
(212) 924-2070
Fax: (212) 243-7352

Panametrics
221 Crescent St.
Waltham,  MA 02154-3497
(800) 833-9438

Humidity transmitters and
moisture analyzers:
EG&G Environmental Equipment
217 Middlesex Tpk.
Burlington, MA 01803
(617) 270-9100

Humidity, temperature, barometric
pressure instruments:
Rotronic Instrument Corp.
7 High St., Ste. 207
Huntington, NY 11743
(516) 427-3994

428 Very Useful
429 Moderately Useful
430 Not Useful



A Saab
Story

Tom Cantrell
Whether it’s the flight-deck

interior (Saab makes well-respected
commercial and military aircraft), the
stubborn reliance on front-wheel drive
and 4-cylinder  turbocharged engines,
or quirky mysteries like why the
ignition key is between the front seats,
Saabs have a unique personality.

once read a That’s rare in these days of look-alike
review in a car jelly beans when all cars seem to be

magazine that opened designed by the same computer.
with “You know those There’s no denying I’m a

Saabaholic. I got hooked in 1983 and
corrupted my wife with a 1986 model.
In fact, I’m a card carrying member of
the local Saab club (Saabs Anony-
mous?). The club’s monthly meetings
are a good chance to shoot the breeze
and swap stories with fellow travelers.
Everyone claims their new setup,
whether a hot box, sticky tires, or 96-
octane fuel, is just the ticket.

Saab owners, the ones who go to
foreign movies and build airplanes in
their basement.. .” Ho, ho, ho.

The pundits use the same “Saab
Story” title as an oh-so-clever way to
get in a few digs-perhaps a story
about a breakdown in the boonies and
an encounter with a grizzled pump
jockey. Claims he can fix “them furren
jobs” are rendered suspect by his
struggle with the hood (it flips forward)
followed by his pronouncement,
“You’ve got big troubles, my boy, the
motor’s in backwards.” Ho, ho, ho.

Yes, Saabs are weird-and that’s
exactly why I like them. What other

A Tale of
Speed and
Acceleration

car company introduces a model like
the venerable 900 and leaves it largely
unchanged for more than a decade!
Heck, everyone knows the thing to do
is fiddle with the styling, change the
name every couple of years, keep those
showrooms hopping.

This automotive equivalent of fish
stories brings us to the silicon part of
this story. My goal was to come up
with an instrumentation setup which
gives “no lie” comparisons of speed
and handling tips and tricks. Photo 1

Photo l-The “Speed Trap”system consists of a data logger (LCD t SC),  modified cigaretie-lighter power  supply
and an accelerometer.
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Figure l--The Silicon Microstructures 7130 feafures  a
simple 3wire interface: power (9-20 V), ground, and a
500-mV/g  output.

shows the resulting and aptly named
“Speed Trap” system. It consists of an
LCD display and small SBC (in the box
with the LCD) driven by one of those
cigarette lighter DC power supplies (I
modified the 4.5-V switch setting to
produce 5 V by changing a resistor).

The key to the whole shebang  is a
gadget known as an accelerometer (the
small black cube], specifically the
7130-002 from Silicon Microstruc-
tures. Before hitting the road, let’s
check under the 7130’s hood.

NEWTON NABBER
An accelerometer measures that

Accelerometers work on the same
F = MA principle (i.e., a mass subject
to an acceleration generates-thanks
to inertia-a deflection force). By
knowing the mass and measuring the
force, acceleration can be determined.

Modern solid-state designs exploit
silicon IC process techniques to
micromachine tiny pendulums-truly
amazing stuff! However, there are
different techniques for measuring the
deflection force that lead to a variety
of subtle operational differences.

The simplest devices are piezo-
electronic. Long-time readers may
remember my article “Kynar to the
Rescue” about piezo sensors (INK 22),
which covers the wondrous properties
of piezo material, best described as the
molecular equivalent of a motor or
generator. Like a motor, it can trans-
form electrical input into physical
work (e.g., piezo tweeters and our
beloved quartz crystals). Of relevance
in the current discussion, piezo
materials also generate electrical
output from work input, much as a
motor can act as a generator.

the inherent weakness of a simple
piezoelectronic design-it can’t handle
DC (i.e., constant acceleration). For
instance, you may remember the
ACH04 from AMP (interestingly, they
acquired the technology from the

Perhaps you’ve already guessed

0

~

6 e

g
gcos0

g sin 0

Figure Pa-An accelerometer can also  be used as an
inclinomefer  if you apply some trigonometric
relationships.

Kynar folks) I mentioned in another
article (INK  49). A close look at the
data sheet shows that the output is
only guaranteed down to 25 Hz.

tive units usually offer low sensitivity

To achieve DC frequency re-
sponse, a variation on the theme is

(i.e., millivolts or microvolts per g),

piezoresistive designs, which connect
the mass to the package with the

limiting them to high-g (loos, 1000s)

equivalent of strain gauges. However,
there are a couple of problems to
watch out for including temperature
sensitivity (i.e., a thermistor) and the

shock detection. That’s fine for

fact that external package-mounting
forces tend to migrate inside and bias
the response. Furthermore, though

applications such as airbag  sensors, but

there are some exceptions, piezoresis-

definitely overkill for my test-drive
gravity exists and where it

mysterious force called gravity,

came from even as many of
Newton’s concepts have
been replaced by relativity

understanding of which came to Sir

on a cosmic scale. Never-
theless, at earthly veloci-

Isaac Newton (probably along with a

ties, the old F = MA (Force
= Mass x Acceleration) still
works fine for reality

headache) in an errant, apple-induced

checking car enthusiasts’
hypes and hopes.

epiphany.
Philosophers still debate why

plans.
Enter the latest

technology-variable
capacitance-of which the
Silicon Microstructures
unit is an example. These
designs consist of a sus-
pended mass and plate,
with the gap between them
changed by deflection of the
mass-varying capacitance
(see Photo 2).Despite the common

saying, gravity is an
acceleration rather than a
force. The unit of accelera-
tion is known as g which,
on Earth, happens to be
about 32 feet per secondI.
In other words, an object in
free fall travels at 32 feet
per second after one second,
64 feet per second after two
seconds, and so on.

Figure Pb-Knowing  the effect of gravity on an inclined object (Figure 2a),  the angle of
incline is easily determined as a function of Vout for both horizontal (upper curve) and
vertical (lower curve) mounting.

The main claim to
fame for variable-capaci-
tance units like the 7130 is
high sensitivity. As shown
in Photo 3 and Figure l’s
block diagram, the unit
combines a micromachined
variable capacitor with
support ICs (i.e., voltage
regulator, calibration
memory, signal condi-
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tioner, etc.) to deliver a whopping 500
mV/g  across a +2 g range. The inter-
face is blessedly simple, consisting of
power (it’s not fussy-anything within
9-20 V will do) and an output that
varies from 1.5 to 3.5 V, with 0 g
centered at 2.5 V.

The high-level output enables the
logger to capture meaningful data,
even with a lowly 8-bit O-5-V A/D
converter. You might think more bits
or some amplification (to expand the
2-V 7130 full-scale output to the A/D
converter’s S-V range) is called for, but
in fact it works fine as is. The 8-bit A/
D converter resolves down to about
0.04 g, which is a good match with the
7130’s accuracy spec of 0.03 g.

This high-tech wizardry comes at
a price-$225 for singles. However, in
high volume [e.g., lOk), the chip [along
with f10, 50, 100, and 300 g cousins)
approaches a more reasonable $50.

As an aside, note that an acceler-
ometer that handles DC can work as
an inclinometer in certain applica-
tions. As shown in Figure 2a, the
acceleration vectors, acting on an
inclined 7130, are easily derived with a
little trig:

Angle-  Arccos( “T + 1)

where the angle and output of the arc
cosine function are in degrees, and Vr
is either 2.5 V or 3 V depending on
whether the unit is mounted horizon-
tally or vertically (i.e. 1 g or 0 g at
rest-see Figure 2b).

The main restriction is that an
accelerometer is only useful as an
inclinometer when stationary-lest
real acceleration get mixed in with the
incline component. However, an
accelerometer-based solution is ideal
for harsh environments (i.e., shock or
temperature extremes) in comparison
to traditional floating-ball inclinom-
eters.

AUTOMOTIVE BASICS
Listing 1 shows the main part of

DRAG. B DT that runs the Speed Trap
system. There is a second program,
S H 0 K . B DT, but it’s largely the same as
the first part of DRAG (i.e., it captures
the accelerometer data and graphs the
g curve) and is thus not shown.
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Listing l-The D RA G . 5 D T program records and displays acceleration, speed, and distance.

PROGRAM drag 'accleration.  speed, distance'
INTEGER

accel_data(2400),
idx,
sample-time,
sample-count,
scale,
speed_flag,dist_flag,
X,Y,Xl,Yl,
i,j

REAL
volts,
gs,prev_gs,
speed,prev_speed,
zero_to_sx,
dx_time,
dx_speed,
mph,
dist.
t

CONST
calOg=-130-,
offset=-114-.
gain=-8-,
sample-rate=-30-,
dx=-660-,
sx=-88-,
max_mph=-loo-.

'max 80 sets at 30 hz'
'index into accel_data'
'i/sets  to sample-8,16,24,40,48,80'
'#samples to take'
'#samples per pixel scale factor'
'flag O-speed, distance times'
'line start (x,y) and end (xl,yl)'
'int temp (for/next counters.etc.1'

'a/d reading'
'volts m> g'
'velocity in fps'
'O-to-speed time'
'time to distance'
'speed at distance'
'fps -> mph'
'distance traveled'
'temp'

'Og (virtual 2.5V) calibration'
'centering factor'
'amplification factor'
'30 Hz'
'0-dx feet (ex:1320  ft=1/4  mile)'
'0-sx fps (ex:88fps=60mph)'
'to scale vertical axis'

screen-size=-240-,
adc=-$9003-,

'240 horiz. pixels'
'a/d converter port addr'

samples=-l-, 'name for sampling task'
at_thirty_hz=-,2-, 'name for 30 Hz constant'
BEEP=-?CHRS(7);- 'ring PC bell'

BEGIN 'drag'
DO
?"Sample time (8,16,24.40,48,80  sets.)?  "; :INPUT i

UNTIL i=8 OR i=16 OR i=24 OR i=40 OR i=48 OR i=80

sample_time=i
scale=sample_time/8 'compute #samples/pixel'
sample_count=sample_time*sample_rate  'compute #samples'

GOSUB  init 'init a/d and led'
idx=O 'init pointer to log data'
?"Press  a key to start logging...";
i=KEY
DO

i=KEY
UNTIL i<>O

RUN samples at_thirty_hz
BEEP

'dispatch sampler'

idle: 'and wait until done'
IF idx>=sample_count  then GOT0 ahead
GOT0 idle

ahead:
BEEP

all samples taken'

CANCEL samples
x=7

'so stop sampler task'
'start g curve at 8th dot'

FOR i=O TO screen-size-l 'for each pixel'
yl=O
FOR j=O TO scale-l 'for each sample within pixel'
yl=yl+accel_data((scale*i)+j)

NEXT j
yl=yllscale 'compute average accel'

(continued)



Listing l-continued

yl=ylmoffset
yl=yl*gain
yl=y1/4
yl=63myl
IF i=O THEN y=yl
x1=x+1
GOSUB  line
x=x1: y=yl

NEXT i

remove offset'
amplify signal'
and scale to fit on led'
flip vertical so +g at top'
start point for first line'
move to next pixel'
draw g curve on led'
set next line start'

'Now compute distance and plot speed'
speed_flag=O: distLflag=O: speed=O:  dist=O
zero_to_sx=O: dx_time=O:  dx_speed=O: prev_gs=O:  prev_speed=O

x=8: y=63 'start speed curve at 0 mph'
FOR i=O TO screen-size-l 'for each pixel'

FOR j=O TO scale-l 'for each sample within pixel'
volts=accel_data((i*scale)+j) * 0.0195 'a/d -> volts'
volts = volts - (calOg*O.O195)'adjust  volts'
gs = volts * 2 'volts -> gs'

'compute velocity by integrating g curve (in fps)'
speed = speed + (((prev_gs+gs)/2)*32.17405)/samplerate
prev_gs=gs
IF speed-flag = 0 THEN BEGIN 'if not sx fps yet'

IF speed >= sx THEN BEGIN 'then check for sx fps'
zero_to_sx = (i*scale)+j 'if sx fps, log time'
speed-flag=1 'and close log'

END
END (continued)

The programs are written using
BDT (BASIC Developers Tool), which
is a high-level preprocessor for the
SBC’s built-in HD64180 BASIC-180.
For a complete description of BDT,
BASIC- 180, and the logger hardware
and software (including the LCD
drawing routines), refer back to “LCD
Lineup-Getting Graphic With the
LM213B”  (INK 30).

Designing a data logger from
scratch calls for a detailed signal-
processing analysis, a fancy user
interface with scrolling, zooming,
scaling, and so on, and massive storage
capability via hardware (e.g., flash
card) and software (for data compres-
sion).

Then, there’s the how you do it if
you’ve only got a few days.. . .

Starting with the need for an
accurate timebase  quickly leads to the
decision to rely on BASIC- 180’s built-
in multitasking. The tic rate is 60 Hz
and the minimal multitasking program
consists of a background program and
a single task. Why, 30 Hz sounds grand
to me-next question!

n Memory mapped variables

n in-line assembly language
option

w Compile time switch to select
805 l/803  1 or 8052/8032  CPlJs

H Compatible with any RAM
or ROM memory mapping

n Runs up to 50 times faster than
the MCS BASIC-52 interpreter.

w includes Binary Technology’s
SXA51  cross-assembler
& hex file manip.  util.

n Extensive documentation

n Tutorial included

w Runs on IBM-PC/XT or
compatibile

w Compatible with all 805 1 variants

n BXC51 $295.

508-369-9556
FAX 508-369-9549

q
Binary Technology, Inc.
P.O.Box541  l Carlisle.MA01741

+ Fast--A  high speed (62.5k  baud)
multidrop master/slave RS-485
network

. F/exib/+  compatible with your
microcontrollers

. Reliable-robust 16.bit CRC and
sequence number error checking

b Efficient-low microcontroller
resource requirements (uses
your chip’s built-in serial port)

. Friend/y- Simple to use C and
assembly language software
libraries, with demonstration
programs

. Complete-includes network
software, network monitor and
RS-485 hardware

F Practical- applications

Process Control

include data acquis
distributed control

Cimetrics  Technoloov~55Tem~lePlace~Bosron.  MAO2111.1300*Ph617.350.7550~Fx617350.7552

#130
Circuit Cellar INK Issue #57 April 1995 101



Designing a scrolling, zooming,
and scaling GUI would be neat-some
day. Instead, I simply cram everything
on a single screen and empirically
hardwire  the scaling for a pleasing
display. Deciding to use 240 of the
LCD’s 256 horizontal pixels, along
with the 30-Hz spec suggests a
minimum 8-s log time. With deadline
looming, I’m quite open to suggestion.

The maximum logging interval
required was scientifically determined
to be 80 s since:

a] that’s more than enough time to end
up in the weeds and

b) 2400 elements is all that would fit
in memory.

Of course, those who are committed
(or should be) can pack the 8-bit A/D
converter readings into a character
string (rather than wasting the upper 8
bits of 16-bit integers) and use data
compression (RLL is good and
ADPCM, better) to boost storage.

The rather odd sequence of logging
intervals (16, 24, 40, and 48 s) is the
result of these decisions and the desire
for a nicely spaced horizontal axis.
Thus, all the logging intervals are
integral divisors of 240.

I must remind you that as smart
as the 7130 is, it is still analog and
subject to analog’s foibles. For in-
stance, at first I fabricated a short
adapter cable using phone wire. Firing
everything up and running a few short
tests showed a distressing amount of
noise, perhaps f50 mV-far  worse than
the 7130 accuracy spec.

A beginner would likely blame a
bad sensor, A/D converter, or what-
ever. Being an old-timer, I quickly
moved on to “what did I goof up this
time?” Sure enough, connecting a
known good power source quickly
proved the noise wasn’t coming from
the 7130. Dispatching with the
external wire in favor of an internal
connection cleaned everything up.

Another set of concerns surrounds
the issue of calibration. First of all, the
logger and 7130 run on separate
supplies (the former +5 V vs. unregu-
lated +12 V for the 7130). It’s not wise
to assume that each unit has the same
idea of what a volt is. Furthermore, the

Listing 1-confinued

'compute dist by integrating velocity curve'
dist = dist + ((prev-speed+speed)/Z)/samplerate
prev_speed=speed
IF dist-flag=0 THEN BEGIN 'if not dx feet yet'

IF dist >= dx THEN BEGIN 'then check for dx feet'
dx_time = (i*scale)+j 'if dx feet then log time'
dx_speed = speed 'and speed'
dist_flag=l 'and close log'

END
END

NEXT j
x1=x+1 'set next line start'
mph = (speed * 3600)/5280 'fps -> mph'
t = (mphlmax_mph)*63 'scale to fit on led'
yl = 63-t 'flip vert. so hi-speed at top'
GOSUB  line 'draw speed curve on led'
x=x1: y=yl

NEXT I
?:?"O-";:? sx;:?"fps  sets, "..?dx..?'  ft. s,";:?dx;:?" ft. mph"
?zero_to_sx/30, dx_time/30,';dx~;peed*3600)/5280

?"Press  a key to dump accel_data..."
DO

i=KEY 'wait for keypress'
UNTIL i<>O
?sample_time
?sample-rate
FOR i=O TO sample_count-1

?accel_data(i)

2”’ i
i=KEY

UNTIL i<>O
STOP

TASK samples
accel_data(idx)=INP(adc) 'read a/d'
OUT adc,O 'start next conversion'
idx=idx+l 'next sample pointer'

EXIT
END 'drag'

7 130 isn’t totally impervious to
temperature variations. There’s a 2%
drift in offset and span across 0-50°C.

-104=52and52x0.195V=1.014V)
that I didn’t bother.

So, I wrote a simple calibration
program to repeatedly sample the ADC
and average the results. Then, while
running the program, I flipped the
7130 back and forth (i.e., label up, label
down) expecting differences of 2 g (i.e.,
+l g to -1 g). The results read from the
A/D converter were (in decimal) +l g =
156 and -1 g = 104. Dividing the
difference by two yielded a virtual 2.5
V reading of 130 (versus the expected
127 or 128),  which I plugged into the
subsequent programs.

SHOCKING DISCOVERY
Over the years, I’ve added the bits

and pieces (stabilizer bars, shocks, and
springs) to my car that make up what
Saab calls the SPG (Special Perfor-
mance Group) handling package.

At fish story time, describing the
handling differences between SPG and
stock is limited to vague hand waving
about “faster steering response,” “less
body roll, ” “not so floaty,” and so on.
The first tests were to document the
SPG ride.

In principle, a calibration factor As mentioned, SHOK. BDT is
should be provided for the span, but essentially the same as the first part of
my observed difference between + 1 g DRAG. B DT so keep referring to Listing
and -1 g was so close to ideal (i.e., 156 1. Both programs start by enquiring for
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the desired log interval (i.e.,
between 8 and 80 s) and then
prompt for a keypress  to start.

At that point, the s a mp 1 es
task is dispatched with the Run
statement. If you look near the
end of the listing, you’ll see that
the s amp 1 es task takes an A/D
converter reading, stores it in the
a cc e 1 _d a t a array, and incre-
ments the sample count (i dx).
Meanwhile, the background task
sits in a loop, waiting for i dx to
reach the desired s a m p 1 e-co u n t .

Once sampling is done, the
s amp 1 es task is canceled and
plotting of the results begin. For
each pixel (remember, we’ve got
240 of them), I compute a result by
averaging across the number of
samples that compose that pixel. For
instance, an 8-s log consists of 240
samples, so each reading is mapped
directly. Longer intervals average a
number of readings for each pixel (i.e.,
the total number of readings divided
by 240). An 80-s log has 2400 readings,
so 10 are averaged for each pixel.

Once the average is computed, a
string of y 1= statements mutates it
into a y-axis pixel location between 0
and63. offset andgain  are the
empirically determined constants that
make for a pleasing display (i.e., full
scale and centered). Taking care to
handle the special case of the first
pixel ( I F i =O.. .), a line is drawn
between each pixel. Finally, the end of
the current line makes the start of the
next line in preparation for the next
pass through the loop.

For a comparison, I pirated my
wife’s ‘86 with the stock suspension.
Lest she worry needlessly, I adopted a
minor subterfuge: “I think your
fribblewumpus valve is making noise,
dear. I’ll check it for you.”

The results show that the han-
dling differences are real (Photos 4a-d).
Seconds are notched along the horizon-
tal access while the full vertical scale
of the display (depending on the offset
and gain constants) is about f0.5  g.

Since these are only simple
vertical g measurements, there isn’t
much to brag about. My wife summed
it up in her own pithy way, “So you
spent a bunch of money to make your

Photo 2-The  7130-002s onboard  supporl  circuits help the variable
capacitance g-sensor (silver package) deliver an accurate &X5%
typical), high sensitivity (500 M/g)  output.

car ride like a truck?” Testing the true
benefits of the SPG package (loo-MPH
sweepers, skid pad, etc.) will only
happen if headquarters agrees to cough
up bucks for a set of tires and extra life
insurance.

DAY AT THE RACES
DRAG. BDT continues on where

SHOK. BDT leaves off. Remount the

*Dallas  Semiconductor’s DS80C320
*3Cc%  “lore effiwnt  than the a051
*Three 16bh ~mer/Caunters
l 13 Interrupts (6 Ext. 7 Int)
*A second 1 E&ii  Data Pointer
,384 ‘+tes  of Internal RAM
*Programmable Watchdog
l amwnout Protection
*Powerfail  Reset/Interrupt
*PowerOn  Reset
*Fully supported by Franklin  CSI

accelerometer with the label
facing forward, lest you waste a
run like I did. Unlike S H 0 K, DRAG
computes actual gs, so take care
to level the accelerometer rela-
tive to the road and not the car. I
mounted the 7130 on a short-
angle bracket that I could bend to
account for a few degrees of rake.

Much as before, the remain-
ing portion of DRAG. B DT steps
through each pixel and each
reading within the pixel. How-
ever, this time the result is
converted to volts, adjusted with
the 2.5-V calibration factor and
turned into gs.

Knowing acceleration and
time, it’s simple to determine speed by
multiplying the two and accumulating
the result (in mathspeak, integrate
using Simpson’s rule). Knowing speed
and time, a second integration yields
distance. Along the way, the program
tracks time to speed, time to distance,
and speed at distance.

Next, the speed curve is plotted,
with scaling determined by the ma x_

Semiconductor’s  n e w  aOSl-compatible  OSaOC320
With i ts 2X clock speed [25MHz]  and 3X cycle eff iciency, an
inswction  can execute in 160”s:  en 8051  e q u i v a l e n t  s p e e d

of 62.5MHz!!!  Equally ~mpreswe  is the T-128’s  h i g h - s p e e d  N V R A M
interface.  Any of the 12aK  R A M  m a y  b e  p r o g r a m m e d  d i r e c t l y  f r o m  a  P C  fde  t h r o u g h  t h e  c o n s o l e :
e l i m i n a t i n g  E P R O M s  a n d  a s s o c i a t e d  t o o l s . P r o g r a m  D e v e l o p m e n t  h a s  n e v e r  b e e n  faster  o r  m o r e
c o n v e n i e n t ,  e v e n  w i t h  t h e  f i n e s t  E P R O M  emulator.The  T-128 features PORT 0 bias and EA-select for
OSf37C520  upgrade.

BASIC520
*Modified BASIC52 lnteroreter  IBASIC-5201

l Entre  12aK Memory Map
populated with fast NVRAM
(64K  OATAt64K  CODE1

*All  memory pmgrammed  an&ard
*Partltlonable  as
a3oE/DATA/UvERU!4l
l Gxie Space is WrirePmCedable
l satmf~~OataPmtecbo”

Now Fast Enough for New  Applications
*Stack  BASIC Programs and Autorun
*CALL ASM Rotines  for Maximum Speed

M
*Three  a-bit Parallel Ports
l Twa Ful!-Ouplex RS232 Serial Parts
‘Decoded Deuce  I/O Strobes
*SOPin Bus  Connector

UPGRADE
‘DS87C520  processor [33MHzl
‘l”strUCtI0”  cycle: 12 1 ns
-8.25 MIPS
‘8051  eqwalenc  82.5 MHz
*Internal  16K ROM/l K SRAM

Comes Ready to Run
with powerrdrptar/cabla  assembly.

Includss utility diskette  with
DETNLED  TECHNICAL MANUAl

$199 in WV.
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mph constant (I used 100 so
each of the 8 tics on the y-axis
represents 12.5 MPH), and the
run’s results displayed.

Finally, the program
waits for you to hit a key. It
thendumps accel_data so
you can capture it for plotting,
printing, or further analysis.
Iust remember, “Any data
logged can be used against you
in court! ”

Photos Sa and 5b compare
the results of the S-speed
turbo and nonturbo  auto-
matic. If you look closely, you
can see the turbo run was

Photo 3-The  7130 uses state-of-the-art micromachine techniques to fabricate
the deflected mass.

marked by an exciting launch and a the half second it took to screw up my

flattish g curve-the normal tendency courage and it’s remarkably close to

for it to drop off is countered by the the 10 s reported in the car mags.

turbo kicking in. The program reported By contrast, the nonturbo  run is,

a 0-60-MPH time of 10.4 s. Subtract to put it politely, sedate with only the

4

b)

d)

three-speed slushbox’s valiant
(but ultimately futile) lunge
from first to second providing
any excitement. Furthermore,
it doesn’t even live up to the
official O-60 claims, indicat-
ing some maintenance is
called for (when was the last
time I checked that
fribblewumpus valve?).

TICKET TO RIDE
Scene: Before dawn, a

deserted thoroughfare in
suburban Silicon Valley.
Officer Speed has a Saab
pulled over..

Officer Speed: You were exceeding the
speed limit and having trouble
staying in your lane.

Hapless Hacker: This may sound hard
to believe, but I’m just gathering
data on my car’s performance. See, I
write for this computer magazine
called-heck, there’s a copy in the
glove box, so I’ll just show..

Officer Speed: Keep your hands where I
can see them. How much have you
had to drink tonight?

Hapless Hacker: Oh heavens, I would
never drive under the influence. I
have enough trouble programming
as it is. I can’t even remember if
ma i n or the squiggly bracket is
supposed to come fir.. .

Officer Speed: What’s all that elec-
tronic equipment on the floor? You
have receipts for that stuff?

Hapless Hacker: Well, er, uh, no..
Officer Speed: Step out of the car..

Fortunately, it didn’t happen to
me, but it could happen to you. Worse,
you might get hurt. Really worse, you
might hurt someone else and that
would truly be a “sob” story.

My four-foot stepladder has a total
of eight (count ‘em!) warning labels.
Those cardboard sunscreens you stick
in your windshield have fine-print
warning “Do Not Drive With Sun-
screen In Place.” Somebody sued
because their hot coffee was hot. [I

Photo 4-Driving over speeds bumps wifh the stock
suspension (a) and the SPG (b) and driving along a
rough road with the stock  suspension (c) and the SPG
(d) c/ear/y document that the  latter  is much stiffer.
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wish I could sue for all the times I got
“hot” coffee that wasn’t.)

Thus, I feel obligated to issue the
warning:

Don’t debug and drive. Always
remember to buckle up and backup.

That’s it for now, gotta run.
Tonight’s the opening of the One-

World Film Festival, and before that, I
want to spend a few minutes down-
stairs with my new landing gear. q

Tom Cantrell has been an engineer in
Silicon Valley for more than ten years
working on chip, board, and systems
design and marketing. He can be
reached at (510) 657-0264  or by fax at
(510) 657-5441.

Photo 5-The  turbo has plenty of power,  but calls for
skilled launch technique to exploit it (a) while the regular
900 seems to need a tuneup (b).

Software for this article is avail-
able from the Circuit Cellar BBS
and on Software On Disk for this
issue. Please see the end of
“ConnecTime”  in this issue for
downloading and ordering
information.

Silicon Microstructures, Inc.
46725 Fremont Blvd.
Fremont, CA 94538
Attn: Jim Knell
(510) 490-5010
Fax: (510) 490-l 119

431 Very Useful
432 Moderately Useful
433 Not Useful

The BCC52 controller continues to be
Micromint’s best selling single-board com-
puter. Its cost-effective architecture needs
only a power supply and terminal to become
a complete development system or single-
board solution in an end-use system. The
BCC52 is programmable in BASIC-52, (a
fast, full floating point interpreted BASIC), or
assembly language.

The BCC52 contains five RAM/ROM
sockets, an “intelligent” 2764/128 EPROM - -
programmer, three 8-bit  parallel ports, an
auto-baud rate detect serial console port, a serial printer port, and much more.

PROCESSOR
.8OC52  S-bit  CMOS processor w/BASIC-52
-Three  16.bii  counter/timers
*Six interrupts
*Much  morel

INpUT/OUTpUT
l Console RS232 - autobaud detect
8 Line printer RS-232
*Three  S-bit  parallel ports
* EXPANDABLE!

- Compabbk  with 12 BCC evpanwn boards

B C C 5 2 Controller board irilh BASIC-52 and SK RAM $1 89.00 slngleaty.
BCC52C Low-power CMOS verwn of the SCC52 $199 .00
BCC521 -40°C lo t&5%  tndustrial temperature version $ 2 9 4 . 0 0
BCC52CX Low-power CMOS, expanded SCC52 wi32K RAM $ 2 5 9 . 0 0

CALL FOR OEM PRICING

MICROMINT, INC. 4Park~treet,Vernon,~~06066

#119 132

- 3 PAR (32 BITS MAX)
- 32K RAM, EXP 64M
-STANDARD PC BUS
- LCD, KBD PORT
- BATT. BACK. RTC
- IRQO-15 (8259 X2)
- 0237 DMA 0253 TMR
-BUILT-IN  LED DISP.
-UP TO 8 MEG ROM
-CMOS NVRAM

USE TURBO C,
BASIC, MASM

RUNS DOS AND
WINDOWS

EVAL KIT $295

“NmRSAL

PROGRAMMER  ‘:.;
-DOES 8 MEG EPROMS
-CMOS, EE, FLASH, NVRAM
-EASIER  TO USE THAN MOST
- POWERFUL SCRIPT ABILITY
- MICROCONT. ADAPTERS
- PLCC, MINI-DIP ADAPTERS
-SUPER  FAST ALGORITHMS

OTHER PRODUCTS:
8088 SINGLE BOARD COMPUTER . . . . . . . OEM $279.. “95
PC FLASH/ROM DISKS
16 BIT 16 CHAN ADC-D6,

128K-16M)  . . . . . . . . . . . . . . . . . . 21 . . . . . 75
C CARD . . . . . . . . . . . . . . . . . . . . . 55...195

WATCHDOG (REBOOTS PC ON HANGUP) . . . . . 27 . . . . . 95
l EVAL KITS INCLUDE MANUAL

BRACKET AND SOFTWARE. v) MVS BOX 850
5 YR LIMITED WARRANTY

FREE SHIPPING
HRS: MON-FRI IOAM-BPM  EST a

$ MERRlMACK,iVH
. (508) 792 9507

J
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John Dybowski

Using Keyboard l/O as an
Embedded Interface

ngineers are
often charged with

the task of making
existing products do

what they were never intended to do.
This may be the natural consequence
of a product’s evolution or the result of
taking the most expeditious path to
developing something new.

When old designs become building
blocks for another technology, it’s
effective to reuse as much of an
existing design as possible. Under
certain circumstance, there may be no
other choice. This is certainly the case
when using someone else’s product as
a component of a larger system.

In using other companies’ prod-
ucts, the preferred course of action is,
not unexpectedly, the one of least
resistance. Faced with the task of
hooking a new peripheral to an
existing system, you might consider
structuring the new device’s support
code to look like the one it’s replacing.

The attraction of this common
programming trick is that it disturbs
the functioning code as little as
possible. This sort of deceptive
programming is really what device
drivers are all about.

DECEPTIVE DESIGN
Consider a thoughtfully designed

display driver as an example. With a
defined method of passing input and
output arguments and generic func-

tions for standard operations such as
device initialization, the main program
could care less if the actual output
device was an LCD, vacuum fluores-
cent panel, CRT terminal, or anything
else with a similar set of features.

At the other extreme, the conse-
quences of embedding device depen-
dencies directly into your process code
can prove to be intolerably restrictive
should a change be ultimately re-
quired. The fact is, even if you are
content to specify a specific peripheral
for a given application, who’s to say
the manufacturer will be able to
deliver a year from now. Stuff happens.

This is not to say that incorporat-
ing device-specific functions in your
code is necessarily bad. Certainly,
there are cases where efficiency
dictates that we stray from the ideal-
a system processor doesn’t have the
required throughput for a heavily
layered device-support structure.
However, be aware of the tradeoffs.
Simply put, it’s okay to write bad code
if there’s no other way to do it.

This may seem to be quite a
foolish statement. But realize that
there are definitely a number of very
popular processors that make writing
good code very difficult, if not impos-
sible. This is especially true of some of
the very low-end controllers that
present a varied and unending assort-
ment of ways to cramp your style-a
meager and irregular instruction set,
bizarre program-memory paging
schemes, or diabolically restricted
addressing modes. Sound familiar?

Device drivers essentially offer a
stylized means of defining parameter-
passing conventions between program
modules. The inherent benefits,
however, shouldn’t be limited to
modules with a formally defined
interface specification.

It’s often equally advantageous to
use this programming technique
within the depths of your program for
changing the way calls and inline
functions operate. When faced with
the prospect of replacing major
function blocks, I go out of my way to
make the new code imitate the
original’s I/O conventions. The goal:
don’t let the main program know
there’s a difference.



This type of imitation, applied to
hardware devices, is commonly
referred to as emulation.

EMULATE THIS
A standard device that can be

emulated advantageously is the IBM
keyboard. By knowing how the IBM
keyboard electronics and communica-
tion protocol are structured, a wide
variety of equipment can be compelled
to function as either a sending or a
receiving device.

The wide availability of very small
IBM-compatible computers designed
for embedded applications extends the
potential for this standard interface. It
would be an advantage to use the BIOS
keyboard-support services regardless of
the form your keypad took. Alterna-
tively, although unquestionably of less
utility, you might connect your
proprietary embedded controller to a
standard PC keyboard.

Another possible use for keyboard
emulation may not have anything to
do with a keyboard at all. Consider an
application where you have to enter
data collected by an embedded instru-
ment into a spreadsheet or some other
program running on your desktop PC.
Since most data collection devices
have some sort of serial interface, you
might be tempted to first obtain a
printout and enter it into your com-
puter manually. Although requiring
the least upfront work, this approach
has the disadvantage of being time
consuming and error prone.

A step toward automating the
procedure may involve capturing the
serial data to a file for later processing.
Or, you might feel creative and write a
little TSR that intercepts data from the
serial port and deposits it into the PC’s
keyboard buffer. This back-door
approach could save you the interme-
diate steps otherwise required in
preparing your filed data for input into
your PC program.

A more direct approach simply
makes the data look like it’s coming
from a keyboard in the first place,
bringing it through the keyboard port.

Obviously, this method can only
be applied to a limited number of data-
collection tasks. If it is suitable for the
volume and the nature of the data
you’re manipulating, there are several
distinct advantages. Not to be underes-
timated is the fact that all your
alterations are made far away from the
stuff that’s already running!

STANDARDKEYBOARDS
The IBM-compatible keyboard has

gone through two transformations: the
PC/XT and the AT keyboards. As
you’d expect, both designs use built-in
microcontrollers to manage the matrix
scanning and handle communications
to the computer. The original PC/XT
computer used nothing more than a
shift register and flip-flops to receive
data transmitted by the keyboard.

Starting with the AT, the com-
puter interface consists of a slave
microcontroller that acts as an

Figure l--The circuitry inside the PCIXJ’s keyboard (shown here) is very similar to that in an AT keyboard. The main
differences are in the firmware.

intermediary for all bidirectional
communications to and from the
keyboard. The added capability of the
AT’s keyboard-communication
processor opens up the potential for
managing a lot more complexity in the
keyboard-communication protocol.

Although the PC/XT-style
keyboard has deficiencies, it also has
(of necessity) the virtue of simplicity.
With this in mind, let’s see what the
two types have in common before
examining the older design and how it
was transformed into the ubiquitous
AT configuration.

The concept common to both
PC/XT and AT keyboards is that
physical key scanning is carried out
under control of an onboard  microcon-
troller. The controller detects when a
key is pressed and released and sends
this information to the computer.

Rather than outputting standard
ASCII codes, IBM keyboards attain
greater flexibility by transmitting
make and break scan codes as keys are
pressed and released. These scan codes
are assigned by numbering the physi-
cal keys on the original PC/XT
keyboard from left to right, top to
bottom. It’s up to the computer’s BIOS
to convert these unique codes into
ASCII codes when possible. Special
keys that don’t have corresponding
ASCII symbols are given a null value
followed by the scan code. This null
causes the computer to properly
interpret the following code as a scan
code rather than an ASCII code.

Communication between
the keyboard and computer is
accomplished over a data line
and a clock line. These lines
are driven by open-collector
devices with their associated
pull-up resistors at either end.
A typical keyboard line
interface is depicted sche-
matically in Figure 1.

THE PC/XT KEYBOARD
Figure 2 shows the

original PC/XT computer’s
keyboard interface. As you
can see, this hardware
implementation centers
around a shift register and
several flip-flops. Data bits
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Figure 2-The  original IBM PC’s keyboard porl  consisted of just a shift register and some glue logic and could only receive data from the keyboard.

are shifted in on falling edges of the
keyboard-generated clock and are valid
from before this falling clock edge
until after the rising edge of the clock.

The data line registers a high start
bit and eight data bits for each trans-
mitted code. Looking again to Figure 2,
you see that initially a reset signal
clears the shift register and its associ-
ated flip-flop. As data bits are clocked
in, the high start bit propagates
through the shift register and appears
at the ninth-bit flip-flop. This asserts
an interrupt on the CPU.

At the same time this flip-flop
pulls the clock line low. This signals a
busy state to the keyboard, which is
held until the received character has
been processed by the computer. Once
this busy status clears, the clock line
is released and is pulled high by the
pull-up resistor. This indicates to the
keyboard that the interface is available
for further transmissions.

Curiously, with the interface in its
idle state, the keyboard lets the clock

108 Issue #57 April 1995 Circuit Cellar INK

line pull high, but drives the data line
low. This turns out to be an unfortu-
nate decision on the part of the design
engineers for it essentially jams the
data line, making bidirectional
communication impossible.

As a result, it’s not possible to
have multiple transmitting devices on
the line without adding extra circuitry
to minimally disconnect the
keyboard’s data line from the rest of
the interface. Because of the way make
and break codes are represented, the
PC/XT keyboard is capable of encoding
128 different key codes. A byte with a
value of O-127 is a make code. Adding
80 hex to this basic code creates a
break code. For example, if Olh is the
make code, 81h is the break code.

THE AT KEYBOARD
The AT keyboard rectifies some

shortcomings of the PC/XT keyboard
while introducing a level of complex-
ity that seems a bit out of place in a
keyboard. Remember that the AT

computer’s keyboard port uses a
dedicated microcontroller to manage
all communications with the key-
board. This explains why things get
complicated. Simply put, with the aid
of this additional processing power,
getting complicated is easy to do.

The AT interface is defined as
bidirectional. The data line is now left
pulled up while no data is being
transmitted or received so either the
keyboard or the computer can take
control of the interface during idle
times. As I’ll show later, this also
leaves the possibility of adding other
external devices that can easily seize
control of the interface.

Bidirectional data communication
between the keyboard and computer
consists of 1 l-bit datastreams com-
posed of a low start bit, eight data bits,
an odd parity bit, and a high stop bit.
The clock and data relationship
remains similar to that of the PC/XT.
A fairly comprehensive [for a key-
board) protocol is defined that provides



for error detection and retransmission,
abort timing, and a line-contention
recovery. Additionally, a relatively
complete command set is specified
that describes a number of useful (and
not so useful) functions that the
keyboard and computer can initiate.

As with the PC/XT keyboard, all
keys are handled on a make/break
basis. The difference is that to handle
more than 128 keys, a different
method of denoting break codes is
used. Break codes are transmitted as
FOh followed by the hex make code.
Now a make and break sequence for
scan code 1 appears as Olh,  FOh, Olh.

The AT’s keyboard-interface
electronics are very similar to those
used in the PC/XT. The computer’s
interface is implemented in firmware
running on a microcontroller, so it’s
pointless to try to depict it schemati-
cally. It’s just your typical black box.

NEGOTIATING THE WIRE
With both the PC/XT- and AT-

style keyboards, all communications
are carried out using open-collector
drivers on the clock and data lines.
With the PC/XT, there’s not much
more to a typical transaction than
what I’ve already said. This is partially
due to the fact that the interface is
capable of unidirectional traffic only
and in part because you can only get
into so much trouble with a shift
register and some glue.

The situation is a little more
interesting with the AT. I’ll elaborate
more fully on how the keyboard and
computer negotiate for control of the
line and what happens if there’s a
conflict. As stated, when no communi.
cation is occurring, the data and clock
lines are held at a high level through
pull-up resistors. The use of open-
collector drivers allows either end to
assert a logic low on either of the
interface lines.

If the computer is doing some-
thing, it may elect to hold off a
keyboard transmission by pulling the
clock line to a low level (inhibit
status). In a similar fashion, the
computer signals its intention to begin
transmitting by asserting a low level
on the data line while leaving the
clock line at a high level (RTS status).

If either condition is in effect, the
keyboard will not attempt to transmit.
Note that when the computer asserts
request-to-send (data line low), it puts
its start bit on the line. On recognition
of this event, the keyboard proceeds by
emitting 11 clocks. The first 10 strobe
in the start bit, eight data bits, and the
parity bit. After the tenth bit, the
keyboard pulls the data line low and
issues one final clock pulse. This
keyboard-generated stop bit signals the
computer that the keyboard has
received the transmission. The
computer returns to a ready state or
puts the interface into inhibit status.

The keyboard checks for inhibit
status and request-to-send status prior
to starting any data transmission.
Once a transmission has been initi-
ated, the keyboard must continuously
check the clock. Should the computer
lower the clock line while the key-
board is transmitting, the interface
enters a state called line contention.

What happens now depends on
how far into the sequence the key-
board is. If this contending state is
recognized before the rising edge of the
tenth clock (the parity bit), the
keyboard releases the clock and data
lines and retains the pending data for
later retransmission. If line contention
occurs after the tenth bit, the trans-
mission is assumed to have “gone
through” and the transfer concludes
normally. On receipt of the keyboard’s
data, the computer puts the interface
into inhibit status if it needs extra
processing time or a response request
is to be issued.

US VERSUS THEM
When IBM developed the AT

computer, it’s obvious they had the
resources to put together a design team
just to handle the keyboard design. For
those of us with lesser means, it’s
important to separate the essential
from the superfluous. That is, we have
to cut through the fluff. Through
empirical observation, some generali-
zations about the operation of the AT
keyboard can be made.

For example, for most keys, only
their respective make codes are
significant. The complementary break
codes are unessential and make no

.
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Add these numbers up:
8OC552  a ‘51 Compatible Micro
40 Bits of Digital I/O
8 Channels of 10 Bit A/D
3 Serial Ports (RS-232 or 422/485)
2 Pulse Width Modulation Outputs
6 Capture/Compare Inputs
1 Real Time Clock
64K bytes Static RAM
1 + UVPROM Socket
512 bytes of Serial EEPROM
1 Watchdog
1 Power Fail Interrupt
1 On-Board Power Regulation
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Jsing our Development Kit: The
552SBC-50  Development board
Nith ROM Monitor, and an 8051 C
compiler for just $449.
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shipped with your favorite 8051
family processor. Models include
8OC51 FA, DS8OC320, 8OC550,
BOC652, 8OC154,  8OC851  and
more.  Call for pricing today!

The DrylCE  Plus is a low-cost
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lroducts. Load, single step,
nterrogate, disasm, execute to
3reakpoint.  Only $448 with a pod.
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‘hilips and Siemens derivatives.
SalI  for brochure!

HiTech Equipment Corp.
9400 Activity Road
San Diego, CA 92126
(Fax: (6 19) 530-l 4581

S ince  1983

- (619) 566-l 892 -
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Internet e-mail: info@hte.com

Internet ftp: ftp.hte.com
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difference to the computer. It appears
the PC BIOS only uses the break codes
for keys such as Alt, Shift, and Ctrl.
This may not be particularly signifi-
cant if all you’re doing is developing a
compatible keyboard. If, on the other
hand, you are translating ASCII data to
emulate a data stream that merely has
to look like it’s coming from a key-
board then this knowledge can save a
lot of unnecessary line traffic, not to
mention wasted code.

And speaking of traffic, a lot of the
protocol’s intricacy exists to handle
data errors, count abort times, and sort
out line contentions. Somewhat
associated to this is the command set
that defines a multitude of functions
the keyboard and computer are to
support. Adherence to the rigors of the
specification depends on what you’re
trying to accomplish. Experience
shows that just clocking your data
across the interface yields satisfactory
results for a wide range of applications.

Regardless of the degree to which
you’re intending to emulate a real
keyboard, there are several issues you
should carefully consider. For instance,
there are a number of pitfalls if your
emulation device must operate in
conjunction with a “live” keyboard.
Keeping track of the state of the
keyboard/computer interface is not
something you want to take lightly.
Recall that certain key codes are
capable of causing the system BIOS to
effectively redefine the attributes of
the majority of the keys.

For example, consider that your
emulation device inadvertently seizes
the interface after a Ctrl make code is
sent by the keyboard. Obviously, the
data ultimately seen by the PC
application differs substantially from
what you intended.

It would perhaps be even more
disturbing to corrupt the Ctrl break
because of a data collision. Here,
hopefully the communication protocol
would bail you out.

You might consider providing
special lockout circuitry on your
interface that disconnects the key-
board from the computer when your
device is sending data. Here again, you
could potentially get in trouble if
certain make/break sequences were
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Listing l--A rudimenfary  AT keyboard driver performs fine for programs that use B/OS  keyboard /IO.

;PUBLIC  ENTRY POINT
PUBLIC ATpXMIl

;EXTERNAL  REFERENCES

EXTRN BIT (KEYPCLK)
EXTRN BIT (KEY-DATA)
EXTRN BIT (SENDDEXT)

;CONSTANTS

SHIFT EQU 12H
CONTROL EOU 14H

BREAK EQU OFOH

:ASSEMBLE  INTO CODE SEGMENT

FROG SEGMENT CODE
RSEG PROG

;ROUTINE  TO SEND DATA STRING TO AT VIA KEY PORT
;INPUT: RO=BYTE COUNT

Rl=POINTER FOR IRAM SOURCE (IF SENDDEXT=O)
DPTR=POINTER FOR XRAM SOURCE (IF SENDDEXT=l)

AT_xMIT:
MOV A,RO
JNZ ATXO
RET

;MAIN TRANSMIT LOOP

ATXO:
JB
MOV
INC
SJMP

ATXl:
MOVX
INC

ATXZ:
MOV
CALL
JZ
CJNE
SJMP

SEND_EXT,ATXI
A,BRl
Rl
ATX2

A,BDPTR
DPTR

B,A
XCHAR
ATX5
A,#OFFH,ATX3
ATX4

;NOT SHIFTED CHARACTER

ATX3:
CALL XMIT
DJNZ RO,ATXO
RET

;SHIFTED  CHARACTER

ATX4:
MOV
CALL
MOV
CALL
CALL
MOV
CALL
MOV
CALL

A,#SHIFT
XMIT
A,0
XSHFT
XMIT
A,#BREAK
XMIT
A.#SHIFT
XMIT

;NOTHING  TO SEND?

:EXTERNAL  SOURCE?
:GET ASCII

;GET ASCII

;SAVE ASCII
;TRANSLATE
;CONTROL?
;SHIFTED?

:SEND
:DONE?

;SHIFT  ON

;RETRIEVE  ASCII
;TRANSLATE
;SEND CODE
;RELEASE

;SHIFT  OFF

(continued)



Listing l-continued

DJNZ RO,ATXO ;DONE?
RET

;CONTROL  CHARCTER

iTX5:
MOV A,#CONTROL :CONTROL  ON
CALL XMIT
MOV A,B :RETRIEVE  ASCII
CALL XSHFT ;TRANSLATE
CALL XMIT ;SEND CODE
MOV A.//BREAK ;RELEASE
CALL XMIT
MOV A,#CONTROL ;CONTROL  OFF
CALL XMIT
DJNZ RO,ATXO ;DONE
RET

IROUTINE  To S END A CHA R AC TER ~0 AT KEY PORT
;LOCAL  REGISTER USAGE: RZ/R4=DELAY LOOP COUNTER

;MIT:
R3=BIT  COUNTER

;INTERCHARACTER DELAY FIRST

CALL DELAY

;START  BIT

(continued)

disassociated. In such a situation, an
undetected, lost keyboard transmis-
sion would be even more likely.

With a little extra hardware you
could hold off the keyboard while you
are transmitting by asserting an inhibit
status on the [now isolated) keyboard
interface. In such a scenario, constant
line monitoring of all transmissions
from the keyboard and computer
would be necessary.

What all this boils down to is that
you require a little smarts of the
person operating the equipment or you
can put a lot of smarts in your equip-
ment. Sometimes, the former consti-
tutes an unreasonable assumption.
Then again, you have to give realistic
consideration to the system’s operat-
ing conditions. The fact might be that
in some cases a persoti would really
have to work to break it.

Putting things into perspective,
the situation I described is not nearly
as much of a problem in a typical
system implementation as would seem
at first. However, looking at things on
a detailed level flags the hazards of a
particular approach. Walking the line

between too much and too little is
always difficult and often involves
subjective judgment calls. Sure, you
can render a design to handle all
eventualities, but you might price your
product right out of the market.

KEY CODE AND
UNEXPECTED APPLICATIONS

In keeping with my usual premise
of starting simple, I’ll present a
rudimentary transmit-only AT-
keyboard emulation driver. For
flexibility, the code includes an ASCII-
to-scan-code translator.

As an interesting side note, this
code is similar to something I devel-
oped several years ago as part of a
remote computer-control center. It
turns out that some of the most
intriguing applications may be totally
unexpected and unforeseen, which is
exactly what happened. Through a
fortunate sequence of events, one of
my systems eventually found its way
into the hands of some rather inven-
tive software developers. It was just
the thing they were looking for.

#l
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Listing l-continued

CLR KEY-DATA
NOP
CLR KEY_CLK
MOV R2,#5
DJNZ R2.B
SETB KEYPCLK

~SETUP  FOR LOOP

MOV R3,#9
MOV C,P
CPL C

;MAIN BIT BANGING LOOP

iXI:
RRC
MOV
NOP
CLR
MOV
DJNZ
SETB
DJNZ

;SEND STOP BIT

SETB
NOP
CLR
MOV
DJNZ
SETB
RET

A
KEY_DATA,C

KEYPCLK
R2,#5
R2.8
KEYPCLK
R3,CXl

KEY-DATA

KEY_CLK
R2,#5
RZ,$
KEYPCLK

:DATA LOW

;CLOCK  LOW

;CLOCK  HIGH

;BIT COUNTER
:ODD PARITY

:SETUP  DATA

;CLOCK  LOW

;CLOCK  HIGH
;DONE?

:DATA HIGH

;CLOCK  LOW

;CLOCK  HIGH

;lO-mS  INTER-CHARACTER DELAY ROUTINE

AELAY:
MOV R4,#20

DELAYl:
MOV RZ,#OF8H
DJNZ R2,$
DJNZ R4,DELAYl
RET

:PRIMARY  TRANSLATE ROUTINE

~CHAR:
INC A
MOVC A,@A+PC
RET

:PRIMARY  LOOKUP TABLE
;O=CONTROL CHARACTER, FF=SHIFTED

DB oooH,oooH,oooH,OOOH,OOOH,OOOH.OOOH,OOOH
DB o66H,ooDH,oooH,OOOH,OOOH,O5AH,OOOH,OOOH
DB oooH.oOOH,OOOH,OOOH,OOOH,OOOH,OOOH,OOOH
DB ~~~H~OOOH,OOOH,OOOH,OOOH,OOOH,OOOH,OOOH
DB 029H,OFFH,oFFH,OFFH,OFFH,OFFH,OFFH,052H
DB oFFH,oFFH,OFFH,OFFH,O4lH,04EH.049H,O4AH
DB o45H~o16H,01EH,026H,025H,02EH,036H,03DH
DB o3EH,o46H,OFFH,04CH,OFFH,O55H,OFFH,OFFH
DB oFFH,OFFH,OFFH,OFFH,OFFH,OFFH,OFFH,OFFH
DB OFFH,OFFH,OFFH,OFFH,OFFH,OFFH,OFFH,OFFH
DB OFFH,OFFH,OFFH,OFFH,OFFH,OFFH,OFFH,OFFH
DB OFFH,oFFH,oFFH,054H,05DH,05BH,OFFH,oFFH

(continued)



These people had written a rather
complex PC application and were
adamant about testing it thoroughly
before permitting even a beta release.
Manually testing from the keyboard
was not deemed feasible due to the
number of input permutations and the
likelihood of operator error.

At the same time, they were
skeptical about the possibly disruptive
effect of performing the final testing
using the special TSR they had used
during the initial check out. In short
order, they had written a special
program designed to run on a dedicated
computer that operated the remote
computer-control system as a robot
typist. The test sequence ran at
maximum speed for 24 hours a day
over a period of three weeks! Due in
great part to this test plan, when the
software shipped, it was remarkably
bug free.

Anyway, back to the code. Listing
1 is the AT-keyboard emulation driver
presented in its entirety. The program
includes both an ASCII-to-scan-code
translation algorithm and a bit-banged
scan-code transmission routine. This
803 1 assembly-language code can
accept its input string in either
internal or external RAM. The charac-
ter count is passed in register RO, the
internal RAM data pointer uses Rl,
and the external RAM data pointer
uses DPTR. The bit variable S END_
E XT determines whether the input
string resides in internal or external
RAM.

On entry, RO is checked. If it does
not contain 0, (an errant null string),
the code falls through to the main
data-transmission loop. Now a data
byte is picked out of the appropriate
data area in accordance with the
SEND_EXT  bit flag.

The initial ASCII translation is
performed by XC HA R, which returns
either the actual scan code or a special
indicator. If the returned value is
neither OOh  nor FFh,  then no further
processing is required. The scan code
is dispatched to XM I T and is clocked
out to the computer. A returned value
of FFh indicates the ASCII character
requires a shift operation whereas a
OOh  means the ASCII character
involves a control operation.
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Listing 1-confinued

DB 00EH,01CH,032H,021H,023H,024H,02BH,034H
DB 033H,043H,03BH,042H,04BH,03AH,031H,044H
DB o4DH,o15H,O2DH,01BH,02CH,03CH,02AH,OlDH
DB o22H,O35H,01AH,OFFH,OFFH,OFFH,OFFH,o7lH

;SECONDARY  CHARCTER TRANSLATE ROUTINE

~SHFT:
INC A
MOVC A,@A+PC
RET

ISECONDARY  LOOKUP  TABLE

DB
DB
DB
DB
DB
D8
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB

END

The shift code is handled by first
outputting a shift make code. A
secondary lookup using X S H FT trans-
lates the original ASCII code to a scan
code. This code is transmitted, fol-
lowed by a break code and a shift code
(shift break sequence). The procedure
for a control code is similar, except the
sequence is framed with a control scan
code. These basic steps repeat until the
character count in RO is exhausted.

The code works okay, but is not
without its problems. No attempt is
made to determine the actual opera-
tional status of the keyboard-to-
computer interface. The rather flagrant
assumption is made that the interface
is in normal mode-that is, not in a
state such as Shift, Ctrl, Alt, Caps
Lock, and so on.

Also, note that strings involving a
lot of shifted sequences suffer a
significant performance penalty since
each ASCII character results in the
transmission of three codes in addition
to the translated scan code: a shift,
break, and shift. Obviously, if I were to

improve this program, keeping track of
my own shift status would be one of
the first areas I’d address.

Next month, I’ll wrap up with a
discussion of the AT-keyboard com-
mand set, scan-code tables, and a few
other details I was forced to omit this
month because of space constraints.
I’ll conclude with a demonstration of a
real application based on the material
presented. l&

/ohn  Dybowski is an engineer in-
volved in the design and manufacture
of embedded controllers and commu-
nications equipment with a special
focus on portable and battery-oper-
ated instruments. He is also owner of
Mid-Tech Computing Devices. Iohn
may be reached at (203) 684-2442 or
at john.dybowski@circellar,com.

434 Very Useful
435 Moderately Useful
436 Not Useful



The Circuit Cellar BBS
300/l 2001240019600114.4k  bps
24 hours/7 days a week
(203) 871-1988-Four incoming lines
Internet E-mail: sysop@circellar.com

It’s been a busy month of upgrades on the BBS. We received a new
version of the BBS software that completely replaces the file section
interface with one that allows full-screen selection of files for batch
downloads. There are lots of other small improvements as well.

Our Internet provider also upgraded their pipeline from a 56k
line to a Tl. We should see an improvement in mail and newsgroup
delivery times as a result.

In this month’s threads, I start with a discussion of the proper
way to measure an RS-422 line. Since it’s a differential signal, it’s not
as easy as touching a single scope probe to the line.

Next, we look at decoding a low-speed datastream coming
through a trunked radio system. There is more to this thread than
would fit within these pages, so if it sparks your interest, give the
BBS a call and read the whole thing.

Finally, if’s time to cut some foam with a heated wire, but how
do you design the drive electronics for such a wire?

Measuring RS-422 signals

Msg#:l2291
From: Dan Walker To: All Users

What is the proper way to measure RS-422 if you want
to check the amplitude and the condition of the waveform?
I have been measuring from the positive terminal to ground
with a Fluke Scopemeter. I have heard some people say you
should measure from the positive terminal to the negative
terminal with the scope.

Msg#:l2926
From: James Meyer To: Dan Walker

I’d measure first one side with respect to ground and
then the other. In most cases, they will be mirror images of
each other. If they aren’t, then something’s not quite right
somewhere.

If you take only *one* measurement, either side to
ground or differentially between sides, you could miss
something important.

Msg#:13133
From: John Wettroth  To: Dan Walker

Gosh, you’ve got an isolated scope-just measure from
positive to negative. It is a differential standard and looks at
the difference between positive and negative. The idea is to

by Ken Davidson

reject all the common-mode crud that is present on both
wires. Your Fluke Scopemeter is the ideal instrument to
make these types of measurements. If you measure one
wire or one wire at a time, you really can’t tell anything
unless there is no common-mode noise and there is a path
to ground somewhere. Theoretically, the signals have no
relation to ground, in practice there is a *7-volt  common-
mode limit.

Msg#:l7242
From: Pellervo Kaskinen To: Dan Walker

As is so often, it depends.. .
If you have limited facilities, you measure what you

can. If that does not appear to adequately cover your
information needs about the waveforms, you take the next
more complicated approach.

I personally prefer always making two measurements
on the differential signals, maybe three. The two measure-
ments can be any combination of the actual difference
signal and one polarity versus common or the two signals
against common at the same time. In the last case, I can
mentally process the difference.

But most of the time it is just so simple to turn the two
channels of the scope into a quasidifferential mode. If I have
the two signal lines attached and a difference displayed,
then I can turn one input selector to grounded position and
I see the individual signal of the other line. I can flip this
over as many times as I want with minimal effort.

The reason I want to see the individual signal(s) is that
there can be a common-mode level in excess of the receiver
or transmitter capability. The differential display may or
may not reveal that possibility. On the other hand, it is the
differential signal that is supposed to carry the information.
If I do not measure that, I’m assuming too much. 8-)

Low-speed data

Msg#:l7234
From: Ben Stedman To: All Users

I’m looking for suggestions on how to decode some
low-speed data that’s used in a trunked radio system. The
data is used to steer mobile radios to the proper repeater and
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to identify them to the system to provide a small measure
of privacy. The particulars are:

Bit rate: 300 bps
Message length: 40 bits
Repetition rate: continuous

As far as I know, there is no framing on the individual
parts of the message, however there is a sync pattern
consisting of 101011000 (9 bits) at the start of each message.

The entire message looks like this:

9 bits sync
1 bit area
5 bits goto  repeater
5 bits home repeater
8 bits id code
5 bits free repeater
7 bits checksum

Should I monitor the incoming bits until a match is
found with the sync pattern and then save the next 31 bits?
Or should I read 40 bits into a buffer and then scan the
buffer for the sync pattern? Or is there some other good
method?

I plan on using a PIC or an 803 1 to do the processing
and then display the information an a LCD. Thanks in
advance for any ideas and comments.

Msgkl7252
From: Russ Reiss To: Ben Stedman

As they say, Ben, there are many ways to skin a cat.
Any method that gets the job done is usually OK, but it
would seem to me that it is simpler to just keep monitoring
the input until you see the sync code, then grab the follow-
ing 3 1 bits and use them. Otherwise, you need to feed
everything into a circular buffer, mark the location of the
sync (when you find it), and keep everything else in sync
with that position. It certainly can be done, but sounds
more complex than the first approach, and I can’t see what’s
gained by it. Just be sure that the sync pattern is truly
unique and cannot appear as some combination of data in
other fields (presumably the designer of the encoding
technique thought of this!) :)

Sounds like an ideal project for a PIC chip. You might
check out my June ‘94 article in INK for how simple
development would be with a PIC16C84. Their EEPROM
capability makes them ideal for “interactive” development
of a project like this. Seldom does the code work right the
first time, and once you get it running, you always think of
new things to add. You typically end up unplugging, UV
erasing, and reinstalling many, many chips in this process.
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That’s why I so much enjoy onboard  reprogrammable
micros like the ‘84.

Msgkl9588
From: James Meyer To: Ben Stedman

I would start out by putting the pulse string into my
desktop PC first. A little bit of fiddling around with various
methods of detection there would be *much* easier than
the compile.. .burn..  .crash..  .recompile..  .erase..  .burn..  .crash
method of starting out directly on the microcontroller.

Either that, or I would use a simulator program for the
target micro that I could run on the PC.

Meyer’s Maxim #42:  “A peek at the answer is worth a
thousand guesses.”

At least it worked for me during high school.. :-)

Msg#:21006
From: Dave Tweed To: Ben Stedman

What you have is called a “framed” data stream, and
the Y-bit pattern is called the “frame pattern.” Finding and
maintaining frame alignment in a potentially noisy (i.e., full
of bit errors) channel is nontrivial, but not terribly difficult,
either.

First of all, you cannot assume that the frame pattern
will not appear elsewhere in the data stream. The only way
to confirm that you have the correct frame alignment is to
check that it repeats at the expected 40-bit frame period.
False frame patterns will not.

The general technique is to have two states in the
software: in-frame and out-of-frame. When you are out-of-
frame, you search the incoming data bit-by-bit until you
find a valid frame pattern, then go in-frame. When you are
in-frame, you split out the individual data fields, and then
check for another frame pattern.

Here’s where things get tricky-if you don’t find
another frame pattern, you do not necessarily want to go
out-of-frame immediately. You may want to see if only one
or two bits are wrong and stay in-frame if so. You may
simply want to wait for another frame period and only go
out of frame if you fail to see the frame pattern two or three
times in a row.

Note that you do not necessarily need to buffer the
incoming data; you can do all of this on the fly as the bits
come in.

By the way, 300 bps sounds easy-the systems I build
normally do this sort of thing at I.544 Mbps and up. I also
have some experience with trunking radio systems.

Also, the 7-bit “checksum” on a 40-bit message sounds
more like an error-correcting code-you can use it both to
verify frame alignment and to greatly improve the overall
reliability of the data. In a *really* noisy environment, you
could even go so far as to apply the error-correction algo-



rithm at every possible frame alignment when out-of-frame.
In this case, you’d need the 40-bit buffer.

Msg#:21608
From: Ben Stedman To: Dave Tweed

Thanks for the info concerning framed data streams. I
think it will be relatively straightforward to code the
technique you suggest.

As far as the 7-bit error-correcting code at the end of
each packet goes, I have no definitive information as to how
it is calculated, but since this is an “educational experi-
ence” project, I can just ignore it for now.

However, the next step is to attempt to *encode* this
information as well, and I guess I’ll need to study those last
7 bits carefully.

Msg#:23757
From: Michael Millard To: Ben Stedman

From your description and my knowledge of trunking
formats, it looks like you are describing an EF Johnson LTR
format. This comes in Uniden, Kenwood,  Trident, Zetron,
and other flavors, but for the sake of backward compatibil-

ity, none change the actual repeater data bus. At least not at
the tower site location. Mobile formats may differ slightly
depending upon signaling options.

LTR is an open-system architecture. You can save
yourself a lot of headache by just asking for the specifica-
tion from the respective manufacturers or see the EF
Johnson Trunking System Specification Literature.

Wire heating

Msg#:34799
From: Andrew Dignan  To: All Users

I am trying to find a way to keep a wire at a constant
temperature. The wire is cutting through a foam insulating
material, the ends being a foam core wing for aircraft. At
present I am using an AC variable transformer to control
the temperature but am looking for something a little more
controlled and automatic. I would guess that a constant-
current power supply would be the answer? Are there
circuits out there that can handle this? The power demands

P C S  A N D  S C H E M A T I C  T O O L S
2 for the price of 1

** features comparable to packages costing thousands!
** must be tried to,be believed
**“easiest product to use for designing PCBs”

** customers call it “the 8th wonder of the world!”

! !REDUCED!  !
R4 SYSTEMS INC,
I 1 DO GORHAM  ST. SUITE 1 1 B-332
NEWMARKET ONTARIO
CANADA L3Y 7Vl

9 0 5  8 9 8 - 0 6 6 5 F A X

F R E E  D E M O
W R I T E  O R  CALI

T O  D A Y
7

9 0 5  8 9 8 - 0 6 8 3

NEW! UNIVERSAL DALLAS
DEVELOPMENT SYSTEM from $199!

It’s a complete 8051-family single board computer!
One board accommodates any 40 DIP DS5000,40  SIMM
DS2250,40  SIMM DS2252, or 72 SIMM DS2251, 8051
superset processor! Snap one out, snap another in.
Programs via PC serial port. Program lock & encrypt.
LCD interface, keypad decoder, RS232 serial port, a-bit
ADC, four relay driver outputs, four buffered inputs.
Power with 5VDC regulated or 6-13 VDC unregulated
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BCl51 Pro BASIC Compiler w/50+ Dallas keywords $399
SYSTRONIX@ T E L :  801.534.1017 F A X :  801.534.1019

555 South 300 East, Salt Lake City, UT, USA 84111
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are from 50 to 100 watts. Any suggestions? Thanks ahead of
time.

Msg#:34824
From: James Keenan  To: Andrew Dignan

I have made my own foam cutter using a variable
transformer and a transformer salvaged from a microwave
oven. The variable transformer feeds the primary side of the
microwave transformer. The microwave transformer has
had the secondary winding removed and replaced with 12
wraps of lo-AWG insulated wire. This whole mess heats a
30”  length of 0.032” wire made of 304 stainless steel (Acft.
safety wire). This circuit is not automatic, but it works very
well and keeps the “zap”  factor in the safe range. Experi-
ment with the number of wraps around the microwave
transformer so you have the desired temperature of the wire
at midrange on the variable transformer.

I think a constant-current power supply will not do you
any good because it has no control of how fast the wire
loses heat.

Did you consider some sort of motorized drive for your
wire bow to achieve a constant cutting rate?

Msg#:35476
From: Andrew Dignan  To: James Keenan

James, thanks for the input. I do have something in
mind for controlling the bow. I have written a program that
generates airfoils on the screen. I am working on creating a
stepper motor drive. It involves driving two x-y axis tables
at each end of the wing. I am doing it for the fun of it! You
can spend $2000 to $3000 and get a system to do this, but
you can’t say, “I built that.”

As for the wire heating, there is a box out there that is
made for this purpose. It will hold the temperature of a wire
fairly constant (with in 5”). I don’t know what they are
doing to get this done, so the challenge continues.. .

Msg#:34928
From: Lee Staller To: Andrew Dignan

If you truly want to keep the wire temperature con-
stant, you must design a circuit that feeds current to the
wire such that the wire’s resistance stays constant. This
means you must measure both the current through the wire
and the voltage across it, and juggle things to keep the ratio
constant.

Your best bet is probably to use AC to power the wire,
and maybe an SCR or triac to control the current. The
difficulty that you face is the need to find sensors that will
respond to the true RMS values of the voltage across the
wire and the current through it. Then you need a system
(maybe a microcomputer?) that will calculate the product of
the two measurements. Only then are you in a position to
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change the thyristor’s firing angle to compensate for
changes. This is a standard, but not trivial, control system
problem. You may need the full PID treatment for satisfac-
tory operation.

Msg#:36731
Dignan  T o :  L e e  Staller

I

Msg#:3?282
Dignan

Msg#:42935
Dignan

you should see the reason for that choice.



Of course, different materials  and different  cutting
speeds may cause a need to adjust the base line (the supply
voltage). But as Lee mentioned, you would only riced a
simple variac to feed the primary of the main transformer.
Or YOU could try to use some triac circuits for the same
because of price concerns.

A triac circuit has a bad tendency of pumping DC
through the transformer. Most “sloppy” transformers can
adapt to it, but some “designed to the limit” transformers
might develop severe convulsions.

Speaking of DC through a transformer, here is a story I
just heard and explained to the people who told it to me.

It appears there was a defective welding power source
that blewup  the utility transformer next to the customer’s
plant. The local distributors sent it back to the manufac-
turer for repair. In due time it came back and was delivered
to the customer, installed and tested. In 10 minutes, there
was a big bang outside and all the lights went out. The
utility transformer on the pole had more or less exploded.
No fuses or circuit breakers inside the building had opened.
What was the cause?

In my theory, the primary rectifier of the switching
power supply was defective. One leg of the full wave
rectifier was open. The unit started pumping DC through
the AC circuit. Since there was no main transformer inside
the welder before the inverter, no local saturation took
place. Also, the RMS current through the loop was not too
high to open any fuses or breakers. But the utility trans-
former core saturated and its primary current became
enormous. BANG!

I don’t mention the brand of the welder, as this kind of
thing can happen to anybody. Luckily it was not us, though!

Msg#:44145
From: Lee Staller  To: Pellervo Kaskinen

I can’t resist breaking in here to mention something I
saw in an old GE manual: a neat way of varying the AC
voltage to a transformer without any of the DC problems
that you mentioned. You put the primary of the step-down
transformer in series with the primary of the transformer to
be controlled. The secondary feeds a bridge rectifier, which
is connected to the collector and emitter of a power transis-
tor. This provides a nice, simple, and isolated connection
(the BE junction) for your control electronics. By varying the
base current, you vary the equivalent resistance of the
transformer primary in series with the load. Neat?

Wt. invite you to call the Circuit Cellar BBS and exchange
messages and files with other Circuit Cellar readers, It is
available 24 hours a day and may be reached at (203) 871.

1988. Set your modem for 8 data bits, I stop bit, no parity,
and 300, 1200, 2400, 9600, or 14.4k  bps. For information on
obtaining article software through the Internet, send E-
mail to infoQcircellar.com.

Software for the articles in this and past issues of
Circuit Cellar INK may be downloaded from the Circuit
Cellar BBS free of charge. For those unable to download
files, the software is also available on one 360 KB IBM
PC-format disk for only $12.

To order Software on Disk, send check or money
order to: Circuit Cellar INK, Software On Disk, P.O.
Box 772, Vernon, CT 06066, or use your Visa or
Mastercard and call (203) 875-2199.  Be sure to specify
the issue number of each disk you order. Please add $3
for shipping outside the U.S.

-
437 Very Useful 438 Moderately Useful 439 Not Useful

8OC52-BASICCHIPSINVOLUME
Micromint’s 80C52-BASIC  chip is

an upgraded replacement for the

venerable Intel 8052AH-BASIC

8OC52-BASIC

chip $19.00
chip. Ours is designed for indus-

trial use and operates over the

entire industrial temperature

range (-40°C to t85”C). Available

in 40-pin  DIP or PLCC.

OEM 100 qt)! $12.00

BASIC-52

prog. manual $15.00

CaIt(203)871-6170orl-SOO-6353355to  order-
MICROMINT, INC. 4 PARK STREET, VERNON, CT 06066
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One of Those Days

fter all these years, I think I’m finally losrng  it.

This morning, I got ready for work and forgot breakfast on the way out. I had to return to the house to get

the truck keys. But, of course, the alarm was already triggered and, when I pressed the garage-door button. I

nearly pulled it off the tracks because it was still locked. As I skidded out the driveway from what must be the only still-

snow-covered spot in the whole state, I blasted by a neighbor and nearly suffocated him in a cloud of sand.

Ordinarily, I don’t have to be any place in particular. but I knew Ken would be looking for me. Guilt about my long overdue

editorial swirled in my head as I pulled into the Xtra Mart for coffee. I was so distracted that I hardly noticed the little old lady who

thought I wanted to play chicken for the one remaining parking place. She nearly became my new hood ornament.

Getting the self-serve coffee was my next experience. As an engineer, I usually approach even that in a logical manner. I put the

sugar in the cup, I put the cream on top of that, and then I add the coffee. whrch mixes everything. I have to grit my teeth as I watch

others whip up water spouts, which slop coffee all over the place. This morning the cream container needed refilling, the first cup I

picked leaked, they had to search for more of the right-size covers, and somehow I inadvertently got Columbian Raspberry Walnut-

something coffee. Ugh.

When I finally got thti coffee, I got in line behind someone whose idea of breakfast was an extra-large, red-hot, beef and bean

burrito, two hot dogs with chili and sauerkraut, three chocolate-covered doughnuts with sprinkles, and a quart of Coke. The fragrances

wafting from the guy in line behind me convinced me that turning to see his mornrng selection would only add insult to injury.

The two mile trip to the office was mostly uneventful, but arrival presented yet another problem. I’m generally a nice guy and

generous to a fault, The one minor, insignificant, frivolous, negligible, trivial event that really frosts my cookies, however, is pulling into

the parking lot and finding my parking space occupied. The mere fact that a person ignores not one, but two sets of signs announcing

a variety of dire consequences if they park there only suggests that a challenge has been advanced.

Do I call a wrecker and have this bloke unceremoniously dragged off on a hook? Do I push a few levers and leave tire tracks

across the guy’s roof? Or, do I resort to vigilante tactics?

To my knowledge, I’m the only guy in Connecticut with a permanently mounted, 8000~lb.  winch on the front of his 4-wheeler.  To

date, the only time I used the winch was the last time someone parked in my spot. I reeled out the cable, looped it around the bumper

hitch, and, with a grin that only a Cheshire cat could appreciate, I pressed the control button and bodily removed the offender.

These past thoughts flashed through my mind as I swung into the parking lot. Would this be a personal or professional tow?

Unfortunately, this morning I had neither the will nor the endurance for yet another crisis. Instead, I instantly redirected my aim

and made a perfect 4-point slide into the General Managers parking spot. Knowing her, she’d have the guy’s car ground into little

pieces.

As I opened the building door, I felt I was finally in a place of safety. With a properly placed “Meeting in Progress” sign on my

office door I might yet resurrect the day. That was, until I entered the hallway and came face to face with Ken, “You’re going to have

an editorial for me today. Right, Steve?”
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