

Let Me Tell You...

just finished an interesting conversation with
one of our readers. He’s an engineer with some

low-end embedded experience who has found himself
hunting for a job. To make himself more marketable, he

wants to become familiar with some of the more common development tools
and target processors on the market. What direction would I suggest he
take?

An admirable goal, but talk about an open-ended question! Another
common-and similar--question I get is, “I want to get into embedded
control. Can you suggest a book to get me started?”

How do I respond to these types of questions? I’ve been away from the
beginner end of this market far too long to offer first-hand suggestions. And
asking about the most useful processor or tool to learn is a bit like asking,
“Should I buy a minivan or a station wagon?” It depends. What are you
wanting to do?

The ultimate answer I end up giving to a lot of people is, “Log on to the
Circuit Cellar BBS and ask other users.” In the past, I’ve promoted the BBS
as a valuable source of technical knowledge, and I continue to do so. You,
the readers out in the trenches, are the best source of advice I can suggest
to other engineers.

Another great source is, of course, the articles found in these very
pages. We start off this Embedded Programming issue with a discussion by
lngo Cyliax on genetic algorithms and how they can be implemented on an
FPGA. Nature’s been at it for millions of years, so there must be something
to it.

Next, Jim Sibigtroth revisits a design technique long used in the 8-bit
world: bank switching to access more than 64 KB of memory. He gives some
good advice for both hardware and software developers.

Speaking of software development, Brian Millier presents a powerful
and easy-to-use development hardware/software combination for the
Motorola 68HC705. Perhaps the tools will finally catch up to the targets in
power and sophistication.

Finally, Gordon Dick presents an intelligent motion controller for DC
motors.

Moving on to Embedded PC, Ralph Birt and Khoi Hoang survey the
flat-panel display market. Edward Steinfeld examines the now ubiquitous
Web browser as an affordable, powerful, and standardized graphical front
end to embedded designs. On the PC/104 front, Richard Hopkins tells us
how to force video data through the PC/IO4 bottleneck. Finally, Fred hauls in
some water-meter data via an Internet appliance.

In our columns, Jan Axelson finishes up her MicroSeries on serial
memory, Jeff adds some ultrasonic transducers to his robot, and Tom

checks out some high-power serial flash memory.

editorQcircuitcellar.com

CIRCUIT
CELLM~

T H E C O M P U T E R A P P L I C A T I O N S J O U R N A L

EDITORIAL DIRECTOR/PUBLISHER
Steve Ciarcia

EDITOR-IN-CHIEF
Ken Davidson

MANAGING EDITOR
Janice Hughes

TECHNICAL EDITOR
Elizabeth LaurenGot

ENGINEERING STAFF
Jeff Bachiochi

WEST COAST EDITOR
Tom Cantrell

ASSOCIATE PUBLISHER
Sue Hodge

tmcuLATiot4 MANAGE R
Rose Mansella

CIRCULATION CONSULTANT
John S. Treworgy

BUSINESS MANAGER
Jeannette Walters

ADVERTISING COORDINATOR
Valerie Luster

CONTRIBUTING EDITORS
Rick Lehrbaum
Fred Eady

NEW PRODUCTS EDITOR
Hat-v Weiner

CIRCUIT CELLAR INK# THE COMPUTER APPLICA-
TIONS JOURNAL (ISSN 0696.6965) IS publlshed
monthly by C~rcurt Cellar Incorporated, 4 Park Street,
SuitePO. Vernon, CT06066(660)675-2751. Perlodlcal
rates paid at Vernon, CT and addlbonal offices. One-
year (12 issues) subscrlptlon rate U.S.A. and posses-

ART DIRECTOR
KC Zienka

PRODUCTION STAFF
John Gorsky
James Soussounis

sions $21.95. Canada/Mexico $31 95. all other coun-
tries $49.95. All subscrlpbon orders payable in U.S.
funds only, #a international postal money order or
check drawn on U.S bank.

VISIT OUR WEB SITE FOR SUBSCRIPTION
INFORMATION AT www.circuitcellar.com

Direct subscription orders and subscription related
questions to Circuit Cellar INK Subscriptions, P.O.
Box696,Holmes,PA19043-9613orca11(6+0)2646301.
POSTMASTER, Please send address changes to Cl,-
wtCellarlNK. Clrculabon Dept., P.O. Box696, Holmes,
PA 19043.9613.

Cover photograph Ron Meadows
PRINTED IN THE UNITED STATES

For information on authorized reprints of articles,
contact Jeannette Walters (860) 875-2199.

HAJAR ASSOCIATES NATIONAL ADVERTISING REPRESENTATIVES

NORTHEAST &

M I D - A T L A N T I C

Barbara (Best) Curley
(561) 694-2044

Fax: (561) 694-2051

B.Best-Ha]ar@woddnet.att.net

M I D W E S T & S O U T H E A S T

Christa Col l ins

(954) 966-3939
Fax: (954) 985-8457

Ha]arChnsta@worldnet.an.net

WEST COAST

Barbara Jones
&Shelley Rainey
(714) 540-3554

Fax: (714) 540-7103

shelley.hafar8worldnet.att.net

Circuit Cellar BBS-24 Hrs.. 2400/9600/14.4k bps, 6 bits, no parity 1 stop bit, (660) 671-1986. For Information.
mail to inlo@circuitcellar.com. World Wade Web: www.circuitcellar.com

All programs and schematics m Circuit Cellar fNI$ have been carefully revlewd to ensure thelr performance is
in accordance with the specrficatlons dewbed, and programs are posted on the Circuit Cellar BBS for electronic
transfer by subscnbers.

CircuifCellarlN~makesno warrantiesandassumesno responsibilityorllabllltyofanyklndforerrorsln these
programs or schemabcs or for the consequences of any such errors. Furthermore, because of powble variation
in the quallty and condition of materials and workmanship of reader-assembled projects, Circuit Ceflar INlcB
disclaims any responsiblity lor the safe and proper function of reader-assembled prefects based upon or from
p!ans, descnpbons. or mlormatlon publlshed in Circurt Cellar INP

Entire contents copyright 0 1997 by Circuit Cellar Incorporated. All nghts reserved CXcurt Cellar INKIS a
registered trademark of Circuit Cellar Inc. Reproducbon of this publrcation I” whole or in part without written
consent lrom Crrcult Cellar Inc. IS prohibited.

2 Issue 85 August 1997 Circuit Cellar INK@

12 Genetic Algorithms for FPGAs
lngo Cyliax

18 When 64 KB Isn’t Enough
[im Sib&troth

24 Windows-based Development System for the 68HC705C8
Brian Millier

62 Test Drive a Precision Motion Controller
Gordon Dick

70 q MicroSeries
Using Serial EEPROMs
Part 2: Putting It All Together
fan Axelson

Task Manager

76 q From the Bench Ken Davidson
It Can’t Be A Robot
Part 3: It’s Blind as a Bat

Let Me Tell Y-

/eff Bachiochi
Reader l/O

82 q Silicon Update
Serial Flash Busts Bit Barrier New Product News
Tom Can trell ditnd h\/ Hnrv Wninnr

Nouveau PC
edited by Harv Weiner

40 Flat Panels for Embedded PCs
Ralph Birt t9 Khoi Hoang

45 Web GUIs for Embedded Applications
Edward Steinfeld

49 PUJ PC/104 Quarter
Video on the PC/104 Bus
Richard Hopkins

5 5 IW Applied PCs
Internet Appliance Development
Part 2: Getting Flow-Meter Data
Fred Eady

www.circuitceIIar.cor

Circuit Cellar INKa Issue 95 August 1997 3

IMPROVING THE TIMING EDGE
I enjoyed Daniel Patten and Michael Miller’s article

(“A Universal IR Remote-Control Receiver,” INK 82).
One thing I want to point out, though, is that the

NEC-style data format shown in Figure 1 was not
complete. Each time it is activated, the NEC transmit-
ter/keyboard encoder chip sends out at least two
datastreams with 40.ms interval in between. The
customer and data codes of the two streams are the
same. The difference is in the leader code.

The first stream’s leader code consists of 9 ms high
followed by 4.5 ms low. The second stream’s leader code
consists of 9 ms high followed by 2.25 ms low. The data
format is shown below.

As you see, there is a 0.6-ms high after the 32.bit
datastream. Although NEC didn’t label this bit, it could
serve as a stop bit.

I like Circuit Cellar INK a lot. Keep up the good work!

Joe Zhu
Johnston. RI

NARROWING SEARCH PARAMETERS, CAPTAIN!
First, let me say that I love INK. I’ve been a sub-

scriber since June ‘92, and I find the magazine quite
enjoyable. I’ve learned a great deal from reading it and
even convinced several coworkers to subscribe as well!

I understand that creating an online comprehensive
index that enables readers to search by author, subject,
title, and so on takes a great deal of time and effort.
However, this index would be extremely valuable to
your subscribers, and I eagerly await its arrival.

I keep all my old issues of INK, but locating a specific
article is extremely difficult given some of the creative
titles, which scarcely indicate the article’s content.

Until the comprehensive index can be created, why
not give us access to a text version of the INK index so
we can search the titles using the search feature on our
word processors? Finding what we need in the 21-page
two-column PDF file is time consuming and frustrating.

Brad Claflin
Austin, TX

Flipping through 21 pages of hardcopy is a hassle.
Until we have an online search system up and running,
search the index PDF file on your computer via the find
feature in Adobe’s Acrobat Reader. It’s not so different
from the find feature on your favorite word processor.

INK’s index is available in PDF format on our Web site
at ~www.circuitcellar.com/publiclcclbackissues.html~.
There’s also a link to the Adobe site for downloading
the Acrobat tools you need to read the file.

Editor

DID EMILY POST INVENT E-MAIL?
I agree with everything Ken said in “Life’s Little

Mysteries” (INK 83) about voice phoning and more! I am
incensed when I’m cut off in a face-to-face transaction so
whoever I’m talking to can answer the phone. It’s even
worse when they spend my time conducting business
that’s obviously more important than mine.

E-mail has become my most efficient and pleasant
communications medium. No more telephone tag. I take
my turn along with anyone else whose message is queued
ahead of mine. And, I can look over a reply in its proper
order within my scheduled and unscheduled priorities!

Walt Boyd
wboyd@netdex.com

Contacting Circuit Cellar
We at Circuit Cellar INKencourage communication between

our readers and staff, so we have made every effort to make
contacting us easy. We prefer electronic communications, but
feel free to use any of the following:

Mail: Letters to the Editor may be sent to: Editor, Circuit Cellar INK,
4 Park St., Vernon, CT 06066.

Phone: Direct all subscription inquiries to (800) 269-6301.
Contact our editorial off ices at (860) 875-2199.

Fax: All faxes may be sent to (860) 871-0411.
BBS: Editors and regular authors are available to answer ques-

tions on the Circuit Cellar BBS. Call (860) 871-l 988 with
your modem or telnet to bbscircuitcellarcom.

Internet: Letters to the editor may be sent to editor@circuitcellar.
corn. Send new subscription orders, renewals, and ad-
dress changes to subscribe@circuitcellar.com. Include
your complete mailing and E-mail addresses in all corre-
spondence. Author E-mail addresses (when available) may
be found at the end of each article.

WWW: Point your browser to www.circuitcellar.com.
FTP: Access ftp.circuitcellar.com for article files.

6 Issue 85 August 1997 Circuit Cellar INK@

NEWS
Edited by Harv Weiner

DIGITAL MOTION CONTROL
Motorola’s two-board toolset (KITITC127/D and

KITITC122/D) simplifies the development of com-
puter-controlled motor drives. The boards can work
independently or together to create a motor-drive
system for fractional-horsepower DC motors.

A digital motion-control board, based on the
MC68HC705MC4 MCU, features all basic motor
functions with on/off and forward/reverse switches
as well as a speed-control potentiometer. The MCU
incorporates a 16-bit timer with an output compare
and two input captures, g-bit ADC with a six-chan-
nel input multiplexer, dual-channel pulse width
modulator (PWM), SCI, and COP watchdog timer.
The 4-KB memory map has 3584 bytes of user-pro-
grammable ROM/EPROM and 176 bytes of RAM.

A complete board kit (‘ITC127/D) includes the mo-
tion-control board coded with a basic turn-a-motor pro-
gram, user app note, key-device datasheets, and two
ribbon cables for connection to the power stage (drive
and feedback signals). Onboard terminals accommodate
Hall-sensor system connections.

The low-voltage power-stage board provides a direct
interface between microcomputer-based controllers
(e.g., the ‘ITC127) and fractional-horsepower brush and
brushless DC motors. It accepts six logic inputs that
control three complementary half-bridge outputs. The
board also offers current sense, temperature sense, and
bus voltage-feedback terminals. The kit (‘ITC122/D)

includes an app note and datasheets of key components.
Space is available onboard for breadboarding user system
modifications.

The ‘705MC4 motion-control development board sells
for $225. The low-voltage power-stage kit costs $145.

Motorola Customer Response Ctr.
426 N. 44th St., Ste. 150
Phoenix, AZ 85008
(602) 914-8070
Fax: (602) 914-8044
www.mot.com

#501

REMOTE-ACCESS POWER CENTER
PC OnCall is an innovative tool that enables users to with a heavy-duty 8’ power cord, five outlets, a static-

power up their computer from any touch-tone phone, to discharge plate, and full three-line AC protection rated
transfer files using remote software, or to run their PC at 850 J. The product is UL 1449 approved with a rating
remotely. It also detects and properly routes all incom- of 330 V. A $250 connected-equipment warranty is also
ing faxes. Working through a user’s phone line or an- offered.
swering machine, the unit monitors the fax, powers PC OnCall sells for $129 and comes bundled with
up the PC, and loads the fax software to receive CoSession Remote 7.0 by Artisoft.
the document. After transmission
is complete, PC OnCall powers Belkin Components
down to conserve energy. 01 W. Walnut St.

PC OnCall features pro- Compton, CA 90220-5030
grammable touch-tone codes
to prevent unwanted ac-
cess. The unit also in- www.belkin.com
eludes surge-protection
technology in a desk-
top power-manage-
ment center equipped

8 Issue 85 August 1997 Circuit Cellar INK?

LINEAR DISPLACEMENT TRANSDUCER
A microminiature linear MicroStrain, inc.

displacement transducer fea- 294 N. Winooski Ave.
turing a flexible nickel-titanium Burlington, VT 05401
core has been announced by Micro- (802) 862-6629
Strain. The differential variable reluc- Fax: (802) 863-4093
tance transducer (DVRT) is composed of info@microstrain.com
two-layer wound coils, each hermetically www.microstrain.com
sealed inside a 1 5mm-OD stainless-steel
housing with a body length only 2.6 times the
linear stroke length. The differential coil arrange-
ment cancels temperature effects and amplifies core
displacements. The standard DVRT features 1 S-pm

resolution with filter 3 dB down at 800 Hz, and non-
linearities of 0.30% over 3 mm of stroke.

The DVRT is available with a captive, spring-loaded
tip (for gauging); a smooth outer body; or a 400-series SS
4-40~size threaded outer body. Three linear strokes-3,
6, and 9 mm-are currently being produced, and custom
stroke lengths are available. Factory calibration and
nonlinearity data are shipped with each unit.

Touch The Future

LCD Touch Monitors
LCD Touch Screens
VGA LCD Displays
LCD Controllers

ISA, PC 104, Analog, Video E-Series
EPROM - FLASH - SRAM emulation and LIVE editing,

1 to 8Mbit, 70ns access time. Low voltage (3v)options.

S c a n l o n D e s i g n I n c .

27101 Aliso Creek Rd - # 154 - Aliso Viejo - CA - 92656
Ph: 714-448-9368 - Fax: 714-448-9316

Email: oemsales@flat-paneLcorn
FREE CATALOG available at http://www.flat-paneLcorn

Tel (902) 425 3938 Fax (902) 425 4098

S a l e s & Info (800) 3 5 2 9 7 7 0

Circuit Cellar INK8 Issue 85 August 1997 9

CAN-BUS ADAPTER CAN-bus V.2.0 are avail-
Distributed real-time able (e.g., block memory

control is simplified transfer, text string to
with the TDS2020CAN remote display, remote
CAN-Bus Adapter. This read, etc.). For users with-
multidrop RS-485 serial out CAN experience,
network, based on the high-level software meets
Controller Area Net- 95% of all application
work (CAN), can con- requirements for inter-
trol relays and lamps in rupt-driven, optoisolated
distant equipment, transmitting or receiving.
request temperature or The TDS2020CAN
other sensors, display sells for $240.
messages, synchronize
instruments, and query The Saelig Company
remote dataloggers. Up 1193 Moseley Rd.
to 110 nodes can be Victor, NY 14564
connected over two the serial bus at a 1-Mbps The unit attaches to a (716) 4253753
twisted-wire pairs (data, rate as far as 1000 m. Any ‘2020 or ‘9092 Forth control- Fax: (716) 425-3835
and power/ground). ‘2020CAN node can send to ler card to create an intelli- saelig@aol.com

Based on Intel’s 82527 up to 14 receivers, whose gent CAN interface. For www.memo.com/saelig
CAN-bus IC, the adapt- configuration may be altered users familiar with the CAN
er sends data frames on by software on-the-fly. protocol, all the facilities of #504

Issue 85 August 1997 Circuit Cellar INK@

SERVO MOTION CONTROLLER
The Model 51A Servo Motion Controller provides two axes

of control for IndustryPack-based brushless servo applications
that require low electrical noise and low torque ripple at lower
motor speeds. With its external sinusoidal commutation capa-
bilities, the Model 51A creates stable systems under conditions
that cause standard amplified external commutated systems
to fault.

Using PMD’s 1231A DSP chipset, the Model 51A provides
tighter control of motion by allowing the host PC to manage
onboard commutation. The 123 1 handles servo algorithms
using a PID with velocity feed-forward filtering for each axis
and also offers velocity phase advance capabilities. Board ini-
tialization can be Hall based or algorithmic.

Software libraries for the Model 51A are compatible with
most C, C++, Visual Basic, Visual C++, and Turbo Pascal
compilers. These libraries also include Windows DLLs. Soft-
ware is available which enables motion to be coordinated
between any two axes on identical boards sharing the same
backplane.

The Model 51A sells for $995. The Model 51A Develop-
ment Kit provides all hardware, manuals, and software librar-
ies for $495.

Technology 80, Inc.
658 Mendelssohn Ave. N
Minneapolis, MN 55247
(612) 542-9545
Fax: (612) 542-9785
www.tech80.com

TIRE0 OF YAITINO FOR THE PROWT ?

apsrcl up with c ROH DRIVE! eoo+D DOS IN ROM!005 q lld progrmms inetsntly. *I*0Yeed to rsplats mechsnicel driYCcomplstsly in controllsr* or-dis!Klsms *orka+~+io”e. The onlypsrfcm protaction From “irUO.s.Easy to install half-eize card.
MVOISKI 129k $ 7 5
MVDISK2 1 4 4 m $ 1 5 0
MVDISKB 5 76m $ 1 9 5 $75

Quantity discounts!

$95 EPROM
PROGRAMMER- Super Fast Programmtng

- Easier to use than otherspi - Does 2764/27080 (6 Meg1

Y106

ISBN 0-9650819-l-5
7

The
$39.95

Microcontroller
Idea Book
cLreults. pm&Tams h.Q&watlo*
‘rz.hxhlg ulc 8052-!?&3,~s!ngc-CNp compvter MICROCONTROLLERS!

UEW! “A focused book that
elivers what it promises: detailed
xhnical information on the parallel
art.” - Windows Developer’s Journal

t’s been a while since I’ve seen a
ook as practical as this one.”
Nuts & Volts

c

“An ideal introduction to low-end
embedded design.” - EDN
“The writing is a model of clarity
and conciseness.“- PCMagazine
ISBN o-965081 9-O- 7
273 pages. $3 I .9S

Order line: I-800-247-6553
)r more information or international orders:

i.........................
; Shipping:

lkeview Research Phone 608-241-5824 i $5.00
209 Winnebago St. Fax 608-241-5848 i (U.S. &
adison, WI 53704 Email jaxelson@lvr.com l Canada)

Circuit Cellar INK@ Issue 85 August 1997 11

FEATURES
Genetic Algorithms for
FPGAs

When 64 KB Isn’t Enouah

Windows-based
Development System for
the 68HC705C8

Test Drive a Precision
Motion Controller

Genetic
Algorithms
for FPGAs Ingo Cyl.i,ax

Q

1

hen I was first
V exposed to genetic

’ programming, I was
V working on robot control-

lers at Indiana University and was
skeptical about its merits.

Now that I’ve seen robot gaits gen-
erated with genetic programming, I’m
realizing that genetic programming has
some applications and that it’s not all
that mystical.

Genetic programming has been
around for more than three decades
and has solved problems in areas such
as economics, biochemistry, and engi-
neering.

Researchers at our lab are trying to
use genetic programming to program
behaviors such as walking gaits in six-
legged robots (see the Stiquito on the
cover of INK 81 as well as “Modular
Robot Controllers,” INK 73).

Genetic programming attempts to
emulate how biological organisms
evolve to adapt themselves to environ-
mental challenges. In evolution, ge-
netic information, which acts as the
blueprint for the organism, changes
from generation to generation in an
effort to find different ways to survive.

In biology, techniques for this are
fairly diverse. Luckily, genetic pro-
gramming is a simple abstraction.

Several different algorithms have
been developed to emulate or approxi-

I A : 0 1 2 3 4 5 . .
6: . .6789

Result: ii23456789

Figure 1-h this example, the crossover point was
chosen to be 6. The resultant genome contains bits
O-5 from genome A and bits 6-9 from genome 6.

12 Issue 85 August 1997 Circuit Cellar INK@

Member Fitness

1 10
2

4”
;
5

5 1

‘robability Distribution:
‘1111111111][2222222][33333][44444][5]

Table l--The selection process tries to pick an individual
from the population based on their fitness. Here, the
fitness values range from 1 (worst) to IO (besf) for each
member. Member 2 has a one-in-four chance of being
picked.

mate this process in software. In this
article, I describe one of the most com-
mon algorithms and discuss how it
might be adapted for more specific
applications.

In a nutshell, a genetic algorithm
(GA) operates on genomes-the basic
information carrier. The collection of
genomes is called the population.

In each step (called a generation), the
population is evaluated and a qualita-
tive index is assigned to each genome.
This index is called the fitness, and the
evaluation is called the fitness function.

The genomes are then ranked, and
pairs of genomes are selected to gener-
ate an offspring for the next generation.
This process repeats for many genera-
tions until the particular solution is
found or some fixed number of genera-
tions elapses.

Let’s look at the algorithm in detail.
The genome is the data structure

that contains the information neces-
sary to implement or solve a problem.
The encoding of the bits in the genome
is only important during evaluation of
the fitness function.

The rest of the GA treats the ge-
nome as a generic fixed-length stream
of bits. In practice, the length can vary
between tens of bits to over 1000,
depending on the problem.

By itself, a single genome (i.e., an
individual) is not very useful in a GA.
There’s no mechanism to quickly
change the contents of the genome.
We need to have several individuals
(i.e., a population).

Large populations are good because
they can contain much variety. How-
ever, they take longer to evaluate.

Each generation operates on one
population and evolves a new popula-

tion based on the old one. The old
generation is then forgotten.

The first population needs to be
initialized, which can be done in many
ways depending on the problem. The
most common method is to fill it with
random numbers.

If the programmers have some idea
of what the outcome may be, they can
try to initialize it with some a priori
knowledge to bootstrap it. In many
cases, however, it’s probably better to
start off random, since the solution
may not be obvious. And, a bad guess
may hurt the performance.

At the beginning of each generation,
all the genomes need to be evaluated.
Unless the genome actually represents
the information being searched for, a
simulation model for the system needs
to be run which uses the genome as
parameters.

For practical systems, the model may
be very complex and take most of the
GA’s computing resources. Some simu-
lations may run in several domains (e.g.,
thermo-electromechanical systems).
It’s these complex systems, which are
hard to solve using traditional engi-
neering techniques, that apply them-
selves well to genetic programming.

After each simulation runs, the
results are evaluated by a function that

estimates the quality of the genome
from the simulation. This quality,
called the fitness, is used to rank each
genome from best to worst. Typically,
the fitness function is complex, since
it may have to evaluate several merits
of the system to arrive a global “good-
ness” factor.

To generate the next generation, two
individuals from the current population
are selected. The members are chosen
randomly, but the probability has to be
relative to their fitness. Table 1 shows
an area distribution of the fitness.

Once two members are chosen, a
bit position for the crossover is selected
at random. The crossover point defines
how many bits are taken from each of
the parent members to generate the
offspring.

The crossover is what gives a GA
its dynamic features, and there are
many variants of the simple function I
present here. Figure 1 shows what the
crossover looks like.

In many cases, the GA may only be
able to find a local maxima in the
solution space and then get stuck.
Introducing a mutation (i.e., random
bit flips) forces the GA to consider
other solutions.

To best illustrate this algorithm,
let’s look at a trivial example of de-

10000

5000

0
0 100 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 6 0 0 9 0 0 1 0 0 0

Figure P--This figure shows the distribution of generations it took to evolve the mod-8 counter over 1000 trials. On
average, it was able to find fhe counter in -2500 generations. Even the worst trial, at -26,000 generations, was sfill
better than a brufe-force search of 224 entries.

Circuit Cellar INK@ Issue 85 August 1997 13

Original Population Fitness

01 01 1000 2

01 00 10 0111 11 1001 :,
10101100 0

Individuals Chosen Crossover Bit New Population (with Mutation)

01 01 1000 01 001001 7 01 01 1001
01 01 1000 01 01 1000 1 01 01 1000
01 01 1000 0101 1000 0101 1000
01 001001 01 001001

E
01 00 lO(l)l

New Population Fitness

01 01 100101 01 1000 :

01 01 100001001011 s

Table 2-One generation involves ranking individuals based on fitness and selecting two individuals for crossover
resulting in mufafion in the new populafion

signing a mod-4 counter. A mod-4 solution space is 224 (- 16 million), of
counter has 4 states and can be en- which only one solution is entirely
coded in 2 bits. correct.

Let’s represent the genome as a
string of four 2-bit digits which can
contain the state encoding at each of
the states. For the counter to work
properly, the state encoding must look
like: “00 01 10 11” (i.e., it counts 0, 1,
2,31

I wrote a program to try to find a
mod-8 counter using the GA described
here. Out of 1000 trial runs, it took
anywhere from 50 to 26,000 genera-
tions with a population of 16 genomes.
The average was 2300 generations (see
Figure 2 for a distribution).

The fitness function counts how
many of the 2-bit cells are in their
correct position. The correct solution
has a fitness of “4.”

Table 2 shows one generation of
this GA. A population of four genomes
is evaluated for fitness and ranked (2 1
0 0). Then, members are chosen based
on their fitness distribution.

The best member has a two-thirds
and the second a one-third chance of
being chosen. We also randomly select
four crossover points (7 1 2 5) and
perform the crossover function to gen-
erate four offspring genomes.

A one-bit mutation is indicated in
parentheses. When we evaluate the
fitnesses of the new generation, we
discover that even though we have lost
the best one (fitness of 3), the average
fitness has improved from 0.75 to 2.0.

This example was simple. There are
only %M correct choices, and doing a
brute-force search of the solution space
would have been easy.

However, if I increase the complex-
ity of the problem by implementing a
mod-8 counter, the genome is now
24 bits (eight 3-bit digits) long and the

This result is much better than
would be possible with a brute-force
search. In Figure 3, you can see the
dynamics of a single trial of about 250

In both examples, I assumed the
genome represents the information
I’m looking for. In real life, the genome
may represent a parameter that needs
to be decoded to be useful.

You may know what the appropri-
ate behavior of your system is, but the
relationship between the parameter
space and the system’s behavior is
most likely nonlinear and complex.
Otherwise, the solution would be easy.

Let’s look at some systems which
can be solved by letting the genome
represent a more complex parameter.

GAS can be used to find filter pa-
rameters for complex filters or even
systems of filters. In this case, the
genome may represent critical filter
coefficients, and the fitness function
would evaluate a filter based on the
desired performance.

The performance can be the phase/
gain relationship of the filter but can
also include things like heat dissipa-
tion, component tolerances, and so
forth.

In our lab, one graduate student
used a variant of GA called cyclic
genetic algorithm (CGA) to evolve
gaits for hexapod robots.

In a CGA, the genome consists of a
string of genes that represent the leg-
actuation pattern and a duration. These

generations. genes are strung together and, at some

I I

best vs. generations o
avg vs. generations +

Figure 3-This trial of 250 generafions shows an ideal case, where the genetic algorithm approaches the correct
answer rough/y asymptotically.

14 Issue 85 August 1997 Circuit Cellar INKa

Sets The Pace
In PC/104

Data Acquisition
Scan 16 Channels...

Any Sequence...
Anv Gain...

DM6420 500 ktiz Analog I/O Module
with Channel-Gain Table and FIFO

With Companion
Am&86’” 133 MHz
PC/l 04 cpuModules

The CMV586DX133 offers
versatile embedded functonality

Our PC/104 and ISA Bus
Product Lines Feature

Intelligent DAS Cards With
Embedded PC and DSP,

Analog and Digital I/O, CPU,
Shared Memory, SVGA, PCMCIA,

CAN Bus and GPS Modules

&eal Time Devices USA Inc.
200 Innovation Boulevard’

State College, PA 16804-0906 USA
rel:1(814) 234-8087 - Fax:1(814) 234~521f

URL:www.rtdusa.‘com’
E-Mail:sales@rtdusa.com

RTD Scandinavia Oy
Helsinki, Finland

Tel:358-9-346-4538
Fax: 358-9-346-4539

RTD is a founder of the PC1104 Consortium

point, form a loop to cycle through
several leg-actuation patterns.

The CGA is an example of a vari-
able-length GA, since the number of
actuations can vary for genomes. The
CGA selects the leg-activation pattern
to use, the duration, how many actua-
tions there are, and at which point the
pattern starts repeating (looping).

The evolved genomes are imple-
mented as state machines which are
synthesized into a controller FPGA.
The FPGA then controls the actuators
of the robot directly.

In tests, the CGA was able to come
up with better (faster) gaits then my
hand-coded gaits. By the way, the stu-
dent is now working on evolving eight-
legged gaits for octopods, which is
interesting since octopods can have
several walking modes.

the computer does most of the work of
finding solutions to complex problems.

However, with the arrival of suitable
FPGAs, we’ll see GA applications that
use these devices to dynamically repro-
gram themselves to adapt to changes in
their environment or cope with failures.

I’m not ready to trust such systems
quite yet. Perhaps this has to do with
the mostly negative examples of such
systems in the science-fiction litera-
ture, where they tend evolve into evil
adversaries like HAL9000. I’m hoping
that real evolvable-hardware systems
will be more benign. q

You can also have the GA directly
generate FPGA configurations. This
task requires the use of special FPGAs,
since many of the common FPGAs use
internal tristate buffers that can cause
fights when not configured correctly.

Ingo Cyliax is a research engineer in
the Analog VLSI and Robotics Lab
and teaches hardware design in the
computer science department at Indi-
ana University. He also does software
and hardware development with Deri-
vation Systems, a San Diego-based
formal-synthesis company. You may
reach Ingo at cyliax@EZComm.com.

When doing genetic programming
for FPGA configurations, it’s a nice
feature not to have your FPGAs burn
up when the GA ends up trying a ge-
nome which should have just received
a low fitness ranking.

The genetic program to find the
mod-8 counter mentioned in the
article can be found at <ftp.cs.
indiana.edu/pub/goo/GA/gacnt.c>.

Up to now, I’ve assumed the GA
used to generate the genomes is imple-
mented as a program running on a
computer. The program performs the
fitness evaluation, crossover, and mu-
tation until a genome is found which
may be suitable for implementation in
system.

Another strategy is to implement
some-or maybe even all-of the func-
tions of the GA in hardware. The cross-
over and mutation functions are just
bit operations, and if the fitness func-
tion can also be implemented directly
in hardware, it will speed up the search
dramatically.

Internet
www.cs.indiana.edu/hyplan/

gaparker.html
www.cogs.susx.ac.uk/users/

adrianth/index.html
lslwww.epfl.ch/-mosheslfirefly.

html
splish.ee.byu.edu

Texts

Check out some of the Web re-
sources cited at the end of the article
to find out what’s being done with
GAS in hardware. This field is also
referred to as “evolvable hardware.”

D.E. Goldberg, Genetic Algorithms
in Search, Optimization, and
Machine Learning, Addison-
Wesley, Reading, MA, 1989.

J.H. Holland, Adaptation in Natural
and Artificial Systems, The Uni-
versity of Michigan Press, Ann
Arbor, MI, 1975.

I

INTO THE FUTURE 401 Very Useful

Traditional GAS are certainly an 402 Moderately Useful

interesting way of programming where 403 Not Useful

16

UlUl

Issue 85 August 1997 Circuit Cellar INK”

Jim Sibigtroth

When 64 KB Isn’t Enough

cessors were first

1974,64 KB of memory
seemed like more than anyone could
ever use. A full-blown development
system from a major IC manufacturer
had plug-in boards with only 4 KB of
dynamic RAM.

There were no commercial software
tools that could manage a 64-KB soft-
ware project-even if someone did
have the patience to write that much
assembly language. Needless to say,
times have changed.

Today, even a modest embedded
control application runs past the 64-KB
boundary. This is especially true if you
use a high-level language like C.

Typical midrange microprocessor
architectures have a 64-KB memory
space limit due to their 16-bit address
bus. In such a system, you have two
primary options. You can switch to a
different microprocessor with a wider
address bus, or you can implement a
bank-switching memory system.

On the surface, an MCU with a
wider address bus sounds pretty good.
But, consider the costs. Typically,
changing processors involves an expen-
sive learning curve to rework old soft-
ware for the new CPU.

Also consider that processors with
large linear address space take more

bits to address a particular location.
So, instructions-and ultimately, pro-
grams-take more memory space.

While bank-switching systems
typically take less program memory
space, they are not without their own
drawbacks. Programs need to be broken
into blocks no larger than a single bank
(e.g., 16 KB). Usually, extra program-
ming is needed to change from one
page to another.

In this article, I explain how you can
implement a bank-switching system
on almost any MCU.

However, the Motorola MC68HC-
812A4 includes a similar system with
some interesting enhancements that
greatly simplify the use of a bank-
switching system. So, I also explain
some limitations of traditional bank-
switching systems and show how the
‘HC 12 overcomes them.

If you’re not familiar with bank
switching, take a look at the sidebar,
“Common Bank-Switching Terms.”

BANK-SELECT MEMORY
Figure 1 shows the logic needed to

implement a bank-switching system
for a 4-MB physical-memory and 16-KB
expansion-window size. Its logic can
be implemented in a programmable
logic device, but for clarity, it’s imple-
mented here in simple HCMOS logic
devices.

Figure 1 helps explain the address
generation and multiplex logic needed
for bank-select memory. After seeing
how this logic works, you should be
able to extend the idea to other types
of memory, including RAM.

The MC68HC8 12A4 has a 16-KB
program expansion window that’s
functionally the same as this system,
except the ‘HC12 has a full 16-bit data
bus. In addition, the MC68HC812A4
has two other expansion windows-a
4-KB data-expansion window from
$7000 to $7FFF and a 1 -KB “extra”
expansion window that can be located
at $0400-$07FF or $OOOO-$03FF.

The block size in a bank-switching
system is typically some power of two
[e.g., lK, 4K, 8K, 16K, or32K). How-
ever, it isn’t normally 64K because
that leaves none of the 64-KB space for
unpaged memory (i.e., common or
resident memory space).

18 issue 85 August 1997 Circuit Cellar INK@

The banked portion of memory is
viewed by the processor, one bank at a
time. Some resources (e.g., on-chip
control registers, RAM for a stack, and
interrupt vectors) need to be accessible
by the CPU at all times (regardless of
which bank is currently selected).

If the banks take all 64K, vectors
need to be duplicated in every bank,
which isn’t an efficient use of memory.
If the banks are too small, you spend too
much time switching between them.

A 16.KB program window is rela-
tively large and doesn’t interfere with
the vector space or on-chip resources
(e.g., control registers and RAM). The
unpaged spaces also leave plenty of
room for a large contiguous block of
system RAM and a 16.KB block of
resident program memory at $COOO-
$FFFF, which includes the vectors.

In Figure 1, a 2-4-line decoder (%
‘HC139) divides the 64.KB memory
map into four 16-KB areas. Output Y2a
drives low whenever the CPU address
is in the area $8000-$BFFF, which is
the expansion window for the bank-
switched memory.

When the CPU address is outside
this window, the upper ‘HC244 is

enabled and CPU address lines Al5
and Al4 pass through to the external
memory system. The other six inputs
to the ‘HC244 are tied to V,, so expan-
sion address lines XA21-XA16 are
forced to 1s.

When the CPU address is within the
expansion window, the upper ‘HC244
is off and the lower one is enabled. The
lower ‘HC244 passes the current value
in the PPAGE latch (‘HC373) to the
expansion address lines XA21-XA14.

The PPAGE latch looks like an 8-bit
control register to software. Its value
determines which one of the 256 pages
the CPU sees in the $8000-$BFFF ad-
dress space. Although Figure 1 doesn’t
show how to read PPAGE, some code
in this article assumes it can be read.

Jumper Jl has two ways to enable
the external memory system. If the
jumper is shorted across pins 1 and 2,
the Y2a output of the ‘HC139 drives
the memory system’s chip select, caus-
ing the external memory to appear
only within the bank-select window
from $8000 to $BFFF.

When Jl has a short from pin 2 to 3,
inverted CPU address line Al 5 drives
the chip select for the memory system.

Figure l-This schematic is suitable for any 8-M microprocessor with a 16bif address bus (e.g., an MC68HCllFl).
The ‘HC373 holds the page number of the currently active bank. The ‘UC244 buffers form a 21 mux whose output
drives the high-order address lines XA[21:14]. Jl determines whether the memory system includes resident memory
at $COO&$FFFF as well as banked memory in a window at $BOOO-$BFFF or just banked memory.

Although this feature introduces an
addressing ambiguity, it’s useful since
it enables a single external memory
device to include the unpaged area
from $COOO-$FFFF (contains the reset
and interrupt vectors) and up to 256
banks of 16 KB each.

The addressing ambiguity arises
because two different logical CPU
addresses can access the highest 16-KB
block in the 4-MB physical memory.
The CPU address $FFFF is not within
the bank window, so the top ‘HC244 is
enabled, producing a physical address
of $3FFFFF at the memory system.

The address $BFFF in the last bank
(PPAGE = $FF) is in the bank window,
so the lower ‘HC244 passes the PPAGE
value ($FF) to XA21-XA14. This also
produces a physical address of $3FFFFF
at the memory system.

The result is an interesting tradeoff
possibility in the 256th 16-KB bank. You
can choose to allocate a portion of this
16.KB block for unpaged vectors and
routines that are always accessible to
the CPU. The remaining portion of
this last page can be used as a partial
banked page or as additional unpaged
space.

Just don’t try to fill the 256’h bank
and write other code that goes at
$COOO-$FFFF. There really is only
16 KB of physical memory. (The two
logical areas are the same 16-KB physi-
cal-memory location.)

In an ‘HC12 system, this ambiguity
is exploited to allow a single external
EPROM for vectors and unpaged mem-
ory at $COOO-$FFFF. And, the rest of
the EPROM can be used for several
16.KB banks (depending on the size of
the external EPROM).

This option is less expensive than
using separate devices for paged and
unpaged memory space.

Figure 2 shows the memory map for
the system shown in Figure 1. Logical
CPU addresses are shown on the left.

In an MC68HC11, on-chip RAM is
typically located at $1000 and the on-
chip registers are located at $0000.
The on-chip RAM and/or registers can
be remapped to any 4-KB boundary by
writing a value to a control register.

The usual purpose for this is to
enable the user to place the most fre-
quently accessed resource in direct

Circuit Cellar INK@ Issue 85 August 1997 19

memory space ($OOOO-$OOFF). But, you
can remap them to the WAGE window Listing I-Calling a tasksubrtiutine in a remote bank, the firstportion of thiscode maybe anywhere in

in this example system ($8000-$BFFF).
memory, including within a bank of extended memory. The second part must not be in paged memory space

On-chip resources have priority over
any external access, so if the on-chip

:code in mainline routine where the remote task is called from
LDAA dest_page ;destination page ii

RAM or registers are remapped to LDX dest-addr :destination address

$8000, they appear to be duplicated on JSR task-call ;common calling routine

all banked pages. Although this is ;common calling routine in unpaged memory
interesting, it isn’t normally done task-call:

because part of each bank of the exter- LDAB PPAGE ;old page i/

nal memory becomes inaccessible.
PSHB ;save on stack
STAA PPAGE :change to new bank

The external memory system is JSR 0.X ;call task

shown as a series of 256 banks or pages PULA :recover old bank ii

of 16 KB each. The physical address
STAA PPAGE ; change to old bank
RTS ;return to mainline

range for each page is shown along the
right edge.

The CPU always generates an ad-
dress in the $8000-$BFFF range for Dest_page is the bank number ($OO- possible exception. Some program seg-
every page of banked memory. The
current value (page number] in the
WAGE register at any given time
determines which page is accessed.

CPU address range $COOO-$FFFF
corresponds to expansion addresses
$3FCOOO-$3FFFFF. Notice that this
physical address range is the same as
page FF of the banked memory.

PROGRAMMING PAGED MEMORY
This code shows how you typically

jump to an arbitrary location in the
banked memory:

$FF) where the destination is located.
Des t-add r is a CPU address in $SOOO-
$BFFF where you want to jump.

But of course, things aren’t that
simple. For starters, this sequence
doesn’t work unless it’s located outside
the bank window. If you try this from
within one bank and try to jump to
another, the CPU gets confused between
the second and third instructions.

As soon as PPAGE is written to the
new value, the old bank is replaced by
another. So, JMP is gone when the CPU
tries to execute it. One solution is to

ments may be too large to fit in a single
bank. Then, you must jump to a page-
increment routine (in unpaged memory)
just before the end of the current bank.

The pa g e-a d v routine can be a
single common routine for going from
the end of any bank to the beginning of
the next consecutive bank:

page_adv:
INC PPAGE
JMP $8000

It must be located in unpaged mem-
ensure all page-changing operations are or-y (e.g., in the $COOO-$FFCO area).

LDAA dest_page located in resident (unpaged) memory. Even counting a JMP page_adv near
STAA PPAGE Fortunately, it isn’t common to jump the end of the previous page, this se-
JMP dest_addr from one bank to another-with one quence is still very small and fast.

Common Bank-Switching Terms
Bank (or Page)-a block of memory that can be accessed Logical Address-the address of a memory location from

by the CPU. In a bank-switched memory system, a the CPU’s point of view. For a typical midrange CPU,
large physical memory is conceptually broken into a such an address includes an address within the pro-
number of logical banks or pages that can be switched cessor’s 64-KB memory map and a bank number.
into the memory map of the microprocessor, one bank Address Multiplexer-circuitry that combines the CPU’s
at a time. The maximum size is limited only by the 64-KB address with the location’s bank number to
number of bits you choose to use in the bank-select form the physical address of a specific memory loca-
logic. An &bit page number allows for 256 banks. tion. Its output provides the highest order address

Page Register-a control register where the bank number lines to the memory system.
of the currently visible bank number is stored. To Expansion Window-a range of addresses in the memory
switch in a different bank, a different page number is map of the microprocessor system through which
written to the page register. banks are viewed by the CPU. At any particular time,

Physical Address-an address within a physical memory only one bank is accessible through this window.
chip or system. For example, a l-Mb EPROM has Common (or Resident) Memory-the portion of the 64-KB
128 KB, so physical addresses in this memory range memory space of the CPU that isn’t within any ex-
from $00000 through $lFFFF. A microprocessor with pansion window. Such memory is always accessible
16 address lines can only address 64 KB, so it can’t by the CPU regardless of which bank is selected.
directly address all of such a large EPROM.

20 lssue85August1997 Circuit Cellar INK@

The more common program struc-
ture in a banked-memory system places
the mainline program in unpaged mem-
ory and calls (using J S R instructions)
other task routines, which are each
completely contained within a single
bank. With this structure, you only
need to change pages at the start of
each major task.

J S R brings up another problem with
bank-switching systems. J S R tries to
remember the source address by saving
it on the stack.

But, PPAGE is also part of the physi-
cal address for the source. Therefore,
you should save the old PPAGE value
before J S R and restore it on return.

One way to code it into a single
calling subroutine is to load the desired
destination page number into an accu-
mulator and the destination CPU ad-
dress into an index register before
calling a task-switching routine (see
Listing 1).

The task-switching routine (located
in unpaged memory) then calls the
remote task. It only appears once in an
application, but LDAA and LDX are
needed for each call to a remote task.

In Listing 1, all PPAGE changes are
done using instructions located in
unpaged memory. This sequence also
uses up the A accumulator and an
index register.

While this creates significantly
more overhead than a simple J S R, it
still may be better than changing to a
more expensive processor. This extra
overhead to swap pages is the biggest
objection to bank-switched systems.

The MC68HC8 12A4 greatly simpli-
fies this process by including two new
instructions-CALL and RTC (return
from call). They work much like J S R
and RTS except that CALL also stacks
the old PPAGE value and changes
PPAGE to the desired destination
value, and RTC restores the old PPAGE
value as well as the program counter.

In the ‘HC12, you simply write:

CALL dest_addr,dest_page

CAL L instructions don’t have to be
located in unpaged memory. You can
CALL from one bank to another and
return using RT C with no undesirable
side effects.

It’s a ve y simple fomula.

Buy a PromICE from

Grammar Engine and

you’ll save money 3 ways.

First, PromICE is amazingly

it works with any micro,

allowing you to avoid high-

cost custom tools. Finally,

there is the investment

you’ve made in a tool that

is easily upgradeable as

your needs change. Call

us today and try PromICE

FREE for 30 days. It may

just be the best investment

you can make in firmware

development tools.

Grammar Engine. Inc.
921 Eashvind Dr., Suite 122 l Westerville, OH 43081
Phone 614899-7878 l Fax 614/899-7888 l Sales 800/776-6423
email: info@gei.com l Web: http://www,gei.com

Circuit Cellar INK@ Issue 85 August 1997 2 1

SFFFF -hid -$BFFFFF

igure 2--This memory map shows the CPU’S 64K
addresses along the leff side. The $8000-$BFFF space
is a window through which a large 4-MB space can be
viewed, one 16-KB page at a time.

All the information needed to com-
plete the entire PPAGE switch is in the
CPU before PPAGE actually changes.
This feature eliminates the danger of
disabling the source bank in the middle
of executing the code that performs
the switch sequence.

If the stack is in paged memory and
the bank page is changed, there needs
to be a mechanism to save the old page
number or the stack fails.

Routines called with J S R end with
RTS, and those called with CALL end
with RTC.You canuse CALL and RTC
even if the subroutine is in unpaged
memory or in the same bank as the
CALL instruction, but it’s less efficient
than using JSR and RTS.

One solution is to save the old stack
pointer and page number as the first
items in the new stack. When it’s time
to return to the old stack, the bank
page-select register and stack pointer
can be restored to these values.

If a subroutine is located in one bank
and sometimes called from another, it
must end with RTC. Therefore, it must
be called with a CALL instruction even
for calls from within the same page.

Be careful to block all interrupts
while changing the DPAGE bank.
Otherwise, an interrupt can occur
halfway through the sequence and
cause information to be stacked to
inappropriate physical locations.

PAGED MEMORY FOR DATA

Interrupts can also cause problems
for bank-switched systems. The con-
cept of an interrupt is that the preinter-
rupt context is saved on the stack so it
can be restored after the service routine
finishes.

The PPAGE register in a bank-
switched system is part of the context.
But, it isn’t a CPU register and therefore
is not automatically saved when an
interrupt occurs. In the bank-switched
system of Figure 1, the interrupt vectors
are in unpaged space, so they’re always
visible to the CPU.

Bank-switched memory systems can
also be useful for data. Bank switches
are much easier to manage when you’re
not trying to execute code from within
the bank window. For a large data
structure, set the page register to the
desired bank and then access the de-
sired data.

In such a system, you should avoid
defining data structures where a data
record can straddle bank boundaries.
That makes it messy to access all the
data in the record (i.e., you have to
change the page register in the middle
of the operation).

The start of the service routine A data logger is an application that
must also be in unpaged memory. This might use bank-switched memory to
way, the CPU can start executing it log data. When one bank becomes full,

22 Issue 85 August 1997 Circuit Cellar INK@

without first modifying the PPAGE
register.

The main body can be in some
other bank as long as the service rou-
tine saves and restores the original
PPAGE value (using instructions in
unpaged memory). This technique
allows code to resume properly after
the return from interrupt (RT I).

In the ‘HC12, CALL and RTC auto-
matically handle the page swap and
restore. So, an interrupt service routine
can consist of a CALL followed by an
RT I in unpaged memory. Such code
enables the bulk of the service routine
to be located in any bank of expansion
memory.

Stack memory is also normally
located in unpaged resident memory.
However, with a lot of extra care, a
separate paged memory (e.g., DPAGE
in the ‘HC12) can be used for the stack.

the program simply switches to the
next bank.

The MC68HC812A4 has a 16-KB
program window (PPAGE), a 4-KB data
window (DPAGE), and a l-KB extra
window (EPAGE). CALL and RTC only
work with PPAGE.

DPAGE and EPAGE are traditional
bank-switching systems intended
primarily for data. You can put pro-
grams in them, but you need to use
traditional bank-swapping techniques
instead of the more efficient CAL L and
RTC.

GET WITH THE PROGRAM
Bank-switched systems can cause

extra challenges for programmers. But,
they typically result in smaller pro-
gram size than systems with a wider
address bus.

Since programming is a one-time
engineering cost and a larger ROM
makes every end product more expen-
sive, the bank-switching system is
often a better choice. The CALL and
RTC instructions in the MC68HC
8 12A4 greatly reduce the problems
associated with bank switching by
incorporating the entire page-changing
operation within an uninterruptable
instruction.)&

Tim Sibigtroth is a system design engi-
neer working on advanced microcon-
trollers for Motorola. His latest project
was the ‘68HC12, where he was a
coarchitect for the CPU12 instruction
set. He devised the memory-expansion
system described in this article. You
may reach him at jims@seasick.sps.
mot.com.

MC68HC812A4
Motorola
MCU Information Line
P.O. Box 13026
Austin, TX 7871 l-3026
(512) 328-2268, x950
Fax: (512) 891-4465
freeware.aus.sps.mot.com

404 Very Useful
405 Moderately Useful
406 Not Useful

Brian Millier FINDING MR. RIGHT

Windows-based Development
System for the 68HC70568

1
m I alone in

thinking that elec-
and comuuters

’ are getting fancier and
faster but not necessarily easier to use?

I recently replaced a PC sound card,
and in the process, I went from a board
with a few jumpers and a short, func-
tional setup to one with no jumpers
and a setup that loaded a megabyte of
files onto my hard disk just for the
install!

The same trends seem to be occur-
ring in the microcontroller arena. After
25 years of technological change, we’ve
made little progress in simplifying
microcontroller development for the
small user.

I’m a big fan of
the Kl and JlA
devices in the

Photo l--The complete
development system, minus
the wall-wart power supply,
firs on a 4.5”x 6”proto-
board.

Motorola 68HC705 family. But while
their low-cost development boards are
helpful tools, they emulate the device
at about %O of real-time speeds.

In this article, I present a develop-
ment environment that addresses this
problem for the Motorola 68HC705C8.

Matching the best possible micro-
controller and development system for
a small user designing embedded con-
trollers requires some investigation.

While I’m familiar with the recent
popularity of PIC micros, there’s a lot
to be said for sticking with an architec-
ture you know. In my case, that means
Motorola microcontrollers-in particu-
lar, the ‘CS.

Its most attractive features are its
304 bytes of RAM and about 7 KB of
EPROM. They enable modest amounts
of data to be collected without exter-
nal memory devices.

More importantly, I can download
undebugged code into RAM. It’s more
efficient than burning EPROMs for
each iteration of the development
cycle. I supplement the relatively small
RAM program area with a monitor (in
‘C8 EPROM] that includes target appli-
cations which can be called by the
RAM program being debugged.

As well, development systems use
many of the same routines to provide
feedback, so I rely on the client-server
concept. Since the information is input
to and presented by the host PC, I parti-
tioned the software to maximize the
host’s work and minimize the micro’s,

24 Issue 85 August 1997 Circuit Cellar INK@

The result is very lean monitor
firmware, apart from general support
routines. There’s certainly room in the
‘C8 EPROM for the monitor and a
moderately complex target program to
coexist.

The final stage is programming the
device’s EPROM directly from the host
PC. This method replaces traditional
methods described in the ‘C8’s techni-
cal manual.

There, the PROM programming
circuit programs a 2764 EPROM in a
conventional programmer and trans-
fers it to the ‘C8 programmer board,
where a routine (in bootstrap ROM]
copies it into the ‘C8 EPROM. This
somewhat cumbersome method calls
for an EPROM programmer and ZIF
sockets for both the micro and 2764.

CIRCUIT DESCRIPTION
The circuit in Figure 1 is quite simi-

lar to the Motorola design. Since the
EPROM programming routine is
handled by the code in the ‘C8’s boot-
strap ROM, the wiring of the external
EEPROM device to the ‘C8 micro
must follow Motorola’s convention.

However, I replaced the 2764 with a
2864 EEPROM. Also, PC7 of the ‘C8
now controls either the l WR or l OE
signal of the EEPROM, depending on
the mode. Switch SlA allows read
access to the 2864 EEPROM during

verify and programming, and write
access the rest of the time (Load mode).

Sections B and C of Sl control the
application of V,_, programming voltage.
They also shift the voltage applied to
the l IRQ pin from V,, to the 9 V nec-
essary to place it into Bootstrap mode.

For some reason (probably EPROM
program pulse timing), Motorola speci-
fies a 2.0-MHz clock for the program-
mer circuit. I’m using the circuit for
real-time emulation, so I want the
normal 4.0-MHz clock available as well.

I used a ~-MHZ crystal in an oscilla-
tor composed of three sections of Ul (a

74LSO4) and added U2 (a 4013 divide-
by-2 circuit). Switch SlD selects which
clock signal is fed to the ‘C8’s OSCl
pin. You can also use two oscillator
modules-a ~-MHZ and a ~-MHZ one.

The link to the host PC is handled
by a MAX232 single-chip RS-232 trans-
ceiver/charge pump, eliminating the
need for a separate negative power
supply to handle the RS-232’s negative-
signal excursions.

A ubiquitous 12-V AC wall-wart
adapter supplies raw AC power. Since
the total current draw is only 125 mA,
the actual AC voltage from a nominal
12-V adapter is somewhat higher (usu-
ally 14 V).

Using a full-wave bridge rectifier
provides -18 V DC. The 14.75 V needed
for programming is provided by an

Photo 2-/n this screen display of fhe Windows program running on the host PC, fhere are independent windows
for RAM, variables, and registers.

LM317 three-terminal adjustable regu-
lator.

The actual Vp_p voltage is critical, so
adjust R20 to provide exactly 15.5 V at
the LM3 17’s output terminal before a
‘C8 device is placed in the ZIF socket.

The drop-out voltage of an LM3 17T
with normal programming current at
room temperature is 1.6 V. So, your
adapter must put out enough voltage
to obtain at least 17.1 V DC (14.75 V,_,
+0.75VD4diodedrop+ 1.6VLM317
dropout] across C7.

Hint: Since there’s so little room in
this circuit, make sure that the LM3 17
actually regulates by adjusting R20
through its range while ensuring that
the output voltage changes, and leave
it at 15.5 V when finished.

A 7805 regulator provides 5 V. The
9 V for the Bootstrap mode is tapped off
the 12-V supply provided by a lN4742
zener diode.

Rounding out the circuit is the 40-
pin target header connector. It con-
nects via a 40.conductor ribbon cable
and DIP socket to the target board.

I connected PORT A, B, C, most of
D, and l IRQ to this header. The ground
pin is connected, but V,,, clock, and
*RESET signals are not.

Since ports A, B, and C are also used
to interface to the EEPROM, the
EEPROM must be removed from its
socket. Photo 1 shows the develop-
ment board with the mode switch
connected up through a multiconduc-
tor cable.

HOST SOFTWARE
Writing the firmware took the most

time. The ‘C8 monitor was the hardest
to debug, but the host-PC software is
far and away the most complicated,
doing the bulk of the work.

The success of many good DOS-
based programs and development
boards stems from the fact that they
often contain a debugger, communica-
tion utility, and assembler (or com-
piler) in one integrated package.

I wrote a Windows-based program
that lets me use a shareware assembler
while still enabling me to switch rap-
idly between the assembler and devel-
opment-board software.

During debugging, you’re constantly
shifting among displays of RAM, vari-

Circuit Cellar INK@ issue 85 August 1997 25

ables, registers, symbol tables, and
source code. Windows programs are
ideally suited for that.

Although other programming lan-
guages can be used, given Windows, I

went with Microsoft Visual Basic. It
has many features that work well in
data collection and manipulation.

Photo 2 shows the main window of
the host program, C8MO N 1. The follow-
ing sections describe each window.

RAM WINDOW
The RAM list box displays the ‘C8’s

RAM contents. To change a RAM
location, click on the desired cell,
enter the two hex digits, and press the
space bar. The new data is immedi-
ately sent to the ‘CS.

The Test RAM button fills all RAM
with FFh and then OOh and verifies
each pattern. This function is also
useful for initializing all variables to
zero.

The only area it leaves untouched is
the area from FOh to FFh. The stack is
fixed at FFh after reset [or RS P), and I
leave 16 bytes untouched by the RAM
test routine to accommodate a modest
stack area.

The Load Prog . button loads a
program into RAM. At this stage, you
select the desired . S 19 format file.

I follow Motorola’s RAM bootstrap
load convention, which specifies that
RAM programs all start at 5Ih, leaving
the 30h-50h area free. I placed the ‘C8
monitor’s variables there.

reset, they are mapped by default to
internal EPROM in the ‘C8.

If the user writes a 1 to bit 7 of the
OPTION register (at lFDFh), RAM is
mapped into the 30h-4Fh region. Simi-
larly, writing a 1 to bit 6 maps RAM
into lOOh-15Fh.

At this point, I must bring up a beef
I have with Motorola on memory map-
ping. Clearly, 304 bytes of contiguous
RAM are available in the maximum
RAM configuration.

I use the term “contiguous” rather
loosely, since Motorola fixed its stack
area in the middle of this block (at
FFh). Since the 50h-FFh block is the
only area that is always RAM, it makes
sense that the stack resides there some-
where.

However, you cannot load a larger
RAM-based program, since it en-
croaches on the stack area. To get
around this problem, you can tailor the
source code to leave the stack region
alone.

First, watch the listing file produced
by the assembler as the program is
written. When the file approaches FOh,
place an 0 RG $10 0 directive in the
code to restart assembly at that loca-
tion, thereby jumping over the stack
region.

The RAM load routine (in the C8’s
monitor EPROM) skips over any refer-
ences to addresses in the FOh-FFh
range for stack overwrite protection.

Once the RAM is loaded, Run RAM
p r o g . starts program execution at 5 1 h

The RAM area is divided into three and enables the debug window. Now,
sections, starting at 30h. The sections you can interact directly with the
encompassing 30h-4Fh and IOOh- running ‘C8 program through the SC1
015Fh are optional RAM areas. At port.

Routine Address Description

Add16
Binasc
Binhex

$1 B91
$1833
$lA89

Byte
Delay

Getvalue
Keyscan
LCD_init
LCD_&

LCD-write
LCD_movcurs
LCD_writec

“,‘EF
SClin

SClout
Waitedge

1 g-bit add
Convert binary word into 4 ASCII
Convert byte in A into 2 hex digits

digits

Convert two ASCII hex digits to 8-bit binary value
Value in A determines delay in milliseconds
Read up to 3 keypad entries and convert to binary
Scan l&key pad connected to Ports A, B
Initialize LCD. LCD is connected for 4-bit transfers
Clear LCD screen and home cursor
Write char in A to LCD at current cursor location
Move cursor to position in A
Write BCD nibble as ASCII digit
Start up real-time clock (uses Timer 0)
16-bit subtract
Interrupt-driven SCI input with 1 -character buffer
Output value in A to SCI output
Measure time interval between two Input Captures

Table 1 --These useful routines as we// as their enty points are available in the CBMONI firmware

/

I THERMOELECTRIC COOLER
PELTIER JUNCTIONS I

Current applied lo the device will produce
lest on one side and cold on the other side, up
o 68” C difference between the two sides.
Wodules can be mounted I” parallel to increase
he heat transfer effect or can be stacked to
achieve high differential temperatures. 127 ther-
nocouples per device. Operates on 3-12 Vdc.
qequlres a heatsink to prevent overheatmg.

1.18” (30 mm) square X 0.15” (3.6 mm) thick.
CAT# PJT-1
5 for $75.00

1.57” (40 mm) square X 0.15” (3.8 mm) thick.

Quantity Pricing Available!

C.P. CLARE / Theta J # JTA.2405
Compact, lTL compatible, optical-
ly isolated solid state relay for
loads up to 5 amps @ 240 vat.
0.8” x 0.82” x 0.56” high epoxy block
with a 1.4” long metal mounting flange. 1.19”
mounting centers. 0.062” dia. x 0.175” high
pins. Pins can be pc mounted wrapped and
soldered UL and CSA Ilsted. Input: 4 8 Vdc
Load, 5 amos @ 240 Vat

CAT# SSRLY-2405

Nichicon LGQ2W471MHSC
1.375” diameter x 2” high. 0.4” lead
spacmg.

$&h ‘E

FAX or E-MAIL
for our FREE

96 Page
CATALol

Outside the U.S.A.
send $3.00 PoStWe.

Circuit Cellar INK@ Issue 85 August 1997 27

There are two methods for ending
program execution and returning to
monitor function. An SW I instruction
may be placed after the final instruc-
tion that is executed in the program
code.

Alternately, a breakpoint can be set
at that location, using the breakpoint
window. In either case, a breakpoint
message is displayed in the debug win-
dow when this instruction is reached.
The debug window remains active
until you select D i s a b 1 e.

The Load EEPROM button, while
part of the RAM window, is used in
programming the ‘C8’s EPROM and is
described later.

Re f r e s h updates the RAM list box
with the current values in the ‘C8’s
RAM. Since all data communication
between the ‘C8 and the PC host takes
place at a modest 9600 bps, it makes
sense to minimize traffic. So, rather
than constantly updating the RAM and
register list boxes, you can refresh the
display as necessary.

VARIABLE WINDOW
It’s convenient to be able to view

variables by name after a program ter-
minates. To select them, choose Vi ew
Symbol Table andpickthe .LST file
corresponding to the program you
loaded into RAM. (For this feature to
work with my code, use P&E’s IASM05
assembler, available on Motorola’s
freeware site.)

To add a variable to this window,
select it from the list box and then
click on the desired variable-name box.
Photo 3 shows the symbol window
after a few variables are chosen.

REGISTER WINDOW

To access a particular register, click
on the desired V a 1 cell and enter two
hex digits followed by the space bar.
That value is immediately sent to the

This window provides direct access
to the ‘C8’s hardware registers, which
is handy for setting Data Direction
registers as well as reading and setting
ports.

'C8, and its resulting value is read
back and displayed.

Note that if you write values to
registers with read-only bits or write to
ports that are defined as inputs, the
displayed value may differ from the
value you originally entered.

Access to SC1 registers is blocked
from this window to prevent a user
from inadvertently redefining any
aspect of the SC1 port, potentially
destroying the ‘C8-to-host data link
and crashing the monitor. However,
repeatedly pressing Re f r e s h while
viewing the timer registers displays
their constantly changing values.

BREAKPOINT WINDOW
This puny window lets you set or

clear a breakpoint at a chosen RAM
location. The opcode there is replaced
by an SW I instruction (but saved and
reinstated if a clear is performed).

Since RAM-based programs are
simple due to their limited size, a
more sophisticated breakpoint facility

Figure l--This schematic shows the entire 68HC705C8 development board.

Issue 95 August 1997 Circuit Cellar INK@

isn’t necessary. I considered providing
more support but was stymied when I
realized the ‘C8 has no stack-manipu-
lation instructions!

Thus, it seems impossible to deter-
mine where a program is when an SW I
(or any interrupt) occurs. If you have a
clever solution, I’d be pleased to hear
from you!

DEBUG WINDOW
When a RAM-based program is

running, it can be useful to send or
receive data to the ‘C8 SC1 port in an
unrestricted, free-form format. When
enabled, the debug window does ex-
actly that.

Say, for example, you wrote a pro-
gram to echo the SC1 port. When you
run a RAM program in this system,
the debug window is enabled as soon
as the ‘C8 program starts executing.

If you click inside the large data
window in the debug section, any
characters you type at the host PC are
sent to the ‘C8 SC1 port. Characters
received from the ‘C8 are also dis-
played.

To restore normal monitor opera-
tion, the ‘C8 and the host PC must be
returned to the monitor function and
any program executing on the ‘C8
must finish.

If your program doesn’t have an SW I
after the last instruction it executes or
if a breakpoint is not encountered,
press MONITOR break. Ashort sign-on
message appears in the debug data
area, followed by a prompt. D i s a b 1 e
exits Debug mode and returns to nor-
mal monitor operation.

This procedure should also be fol-
lowed if normal monitor operation
becomes disrupted, as indicated by a
time-out message on the host PC’s
screen.

OTHER FEATURES
Under the file menu is an entry to

select the default directory where the
‘C8 program files are located. The
default directory entry is stored in the
C8MONl.INI file.

View Program Code letsyouopen
a window containing source code of
the program you are working with (or

any other ‘C8 source code, for that
matter). Text in this window is limited
to 64 KB, which is a function of the VB
control.

You can choose either . ASM or . LST
files in the file dialog box. List files are
more useful since they reference actual
memory locations, but they’re much
larger. Size is no problem for RAM-
based programs but larger programs
meant for EPROM may be too big in
. LST format.

SYSTEM OPERATION
To implement this development

system, first download the code. The
firmware for the ‘C8 is C8MONl. S19,
and its source code is C8MONl. ASM.
The host PC software including the
Visual Basic run-time package and
necessary VBX files are in C8MONl. ZIP.

One advantage of my system over
Motorola’s programming circuit is its
ability to download code from the PC
directly, eliminating the need to burn
2764 EPROMs.

However, to program a ‘C8 with the
C8MO N 1 firmware, you need to get that

(410) 798-4038 voice, (410) 798-43b8 fax

e-mail: avt-inc@ari.net l home page: http://www2.ari.netlvt-inc/

- 32K RA‘M, EXP 644
-STANDARD PC BUS
-LCD, KBD PORT
- BATT. BACK. RTC
- IRQO-15 (8259 X2)
- 9237 DMA 8253 TMR
-BUILT-IN LED DISP.
-UPTOBMEGROM
-CMOS NVRAM

USE TURBO C,
BASIC, MASM

RUNS DOS AND
WINDOWS

EVAL KIT $295

UNMERSAL
PROGRAMMER
-DOES 0 MEG EPROMS
-CMOS, EE. FLASH, NVRAM
- EASIER TO USE THAN MOST
- POWERFUL SCRIPT ABILITY
- MICROCONT. ADAPTERS
- PLCC. MINI-DIP ADAPTERS
-SUPER FAST ALGORITHMS

OTHER PRODUCTS:
8088 SINGLE BOARD COMPUTER OEM $27... *95
PC FLASH/ROM DISKS
16 BIT 16 CHAN ADC-DA

128K-16M) 21 75
C CARD . 55...195

WATCHDOG (REBOOTS PC ON HANGUP) 27 ..a.. 95
‘EVAL KITS INCLUDE MANUAL

BRACKET AND SOFTWARE. v) MVS BOX 8 5 0
5 YR LIMITED WARRANTY

FREE SHIPPING
a

* MERRIMACK, NH
HRS: MON-FRI lOAM-6PM EST s. (508) 792 9507

Circuit Cellar INK@ Issue 85 August 1997 29

code into either a 2764 or 2864
EEPROM which will end up in the
circuit. Be sure to remove power from
the circuit before inserting or remov-
ing the ‘C8 in its ZIF socket.

With a blank ‘C8 and (E)EPROM
device (with C8MON 1 loaded) on the
development board, place the processor
in the Reset position using S2, select
Program mode using S 1, and release S2
from Reset.

The red LED lights for less than a
minute during programming. If all goes
well, the green LED indicates that
verification completed successfully.

Return Sl to the Load position.
Load is the normal operating mode for
the monitor, apart from EEPROM
verification and ‘C8 programming.

If you connect the unit to the host
PC and start C8MONl (from Windows),
the development system should be
functional. A quick click on RAM Test
or RAM Re f r e s h should display results.

ThefirstlineofC8MONl.INI isthe
comm port number that the develop-
ment system is hooked up to (the de-
fault is COMl). The second line is the
path to your ‘C8 assembly-language
programs (the default is c : \ i c s 0 5 c 8 \).

From this point on, programming
other ‘C8s is easier. Start with a ‘C8
containing C8MON 1 in the ZIF socket.
Run the monitor program and select
Load EEPROM andan. S19 file.The

CBl
CGRAYTABLE
CGRLDOP
CHlTARG
CHZTARG
CH3TARG
CHITARG
CHSTARG
CESTARG
CB’ITARG
CB8TARG
CHVTARG
CHPTB
CH1VU

194c
lAF3
lAE3
0030
0031
0032
0033
0034
0035
0036
0037
0038
003D
1917

file takes some time to load since it ware tasks, use the C8MO N 1 firmware
takes 10 ms per byte to write the 2864 utility routines to design some of the
EEPROM. basic building blocks of your program.

After loading, the program prompts
you to switch Sl to Verify mode. Make
sure to return Sl to the Load position
after verification is complete.

If your program uses the SC1 port,
use those routines. The firmware in-
cludes support for common LCDs,
keypad scanning, and a real-time clock.

Place S2 in the Reset position, and
power down the development board.
Replace the ‘C8 device containing the
monitor with the blank device to be
programmed.

Table 1 lists some of the monitor
utilities. Insert lines at the top of your
code defining entry points for the rou-
tinesyouuse(e.g., SCIOUT equ $lAB5).

Before restoring power, place Sl in
Program mode and power up. Release
S2 from Reset, and the blank ‘C8 de-
vice will be programmed. When the
green LED comes on, verification is
complete and the unit can be powered
down.

Write short RAM-based programs to
exercise all I/O functions. For example,
if you need to measure a pulse width
using Input Capture, call thatrou-
tine in the monitor, convert it to ASCII
via B i n A s c, and send it out the SC1
port or LCD.

Restore Sl to the Load position to
prepare for the next time the unit is
used. I’ve forgotten this important last
step and reprogrammed my monitor
‘C8 when I powered the board up the
next time in Program mode!

Test code fragments with short
RAM programs. Use either the SC1 or
LCD to output results, or leave the
results in RAM and examine those
variables from the monitor after the
program executes.

The RAM can only hold small pro-
grams, so at some point, you need to
integrate the routines into an EPROM
program. As well, be sure to integrate
the monitor functions you used into
your own assembly code.

APPLICATION CODE
Developing assembly code for a

small microcontroller is never easy.
Even if your program logic is flawless,
timing considerations or interrupt
complications often throw a monkey
wrench into the process.

Here’s my suggested plan of attack.
After defining the hardware and soft-

*

i

UallWZ Location

pGiKwq I’AF31 fT,eee 1

[“““I 119171 Erase 1

p-1 jlso3j Erato J

III

III
lo add a variable to the Variable Window:
Select MI item from the fist. end click
on the desired variable name box

Photo 34Mues for the variable window are selecfed from the symbol table, which is derived from information
present in the assembler’s listing file.

Since there is not a lot of RAM
available when the monitor runs
RAM-based programs, many monitor
routines use temporary variables. While
the monitor performs normal duties,
there’s no conflict with this sort of
variable sharing.

Once you migrate your program to
an EPROM-based one, check the de-
tails (e.g., define the vector table at
lFF4h, enable or disable interrupts as
needed, set the Option register for
proper memory mapping, etc. J.

If you’re using an “A” version of the
‘C8, some changes are necessary. In
particular, program MORl and MOR2
to OS to ensure, among other things,
that the nonprogrammable COP is
disabled. Check the technical manuals
and app notes for details.

ODDS AND ENDS
If your application software isn’t

too complex and you’ve used a lot of
the monitor utility routines, you may
wish to include C8MONl as part of your
target code. It takes up less than 2 KB
of the ‘C8’s available 7.7-KB EPROM.

30 Issue 85 August 1997 Circuit Cellar INK@

After Reset, C8MONl firmware makes
PORT C an output. It then initializes
the SC1 to 9600 bps, enables the re-
ceived-character interrupt (for inter-
rupt-driven SC1 input), and sets the
Option register to enable both optional
blocks of RAM.

The C8MONl firmware then turns on
both LEDs and raises PC7 to disable
the EEPROM from either read or write
access. It also enables interrupts.

At this point, it checks the state of
port line PD2. This line, as well as
PD3-5, is pulled low by the R13 resis-
tor pack. These lines must be low
when programming the ‘C8 EPROM
since they define the Bootstrap mode.

However, once the required pro-
gramming is done, if a jumper is placed
between PD2 and V,,, the CEMON 1
firmware detects this at startup, jumps
to EPROM location 0 16Oh, and runs
the user code loaded there.

To get your code there, ORG it at
16Oh, paste it into C8MONl. ASM, and
assemble the file.

As for other routines, a real-time
clock with 0.1 -s resolution is imple-
mented using the T i me r output com-
pare function/interrupt and is started
via RTCStart.

A 16-bit pulse counter routine is
implemented using the *IRQ line and
associated interrupt. Details are in the
monitor listing, but don’t try using the
l IRQ line for other purposes.

The SC1 input routine is interrupt
driven, so keep that in mind if you use
the SC1 without using my routines.

WRAP UP
I used this project in developing a

mini-network of pressure-monitoring
data stations for physical-chemistry
lab experiments.

The ‘C8 is ideal because it contains
enough RAM to hold the collected
data and enough ports to handle the
I/O.

After each experiment, the student
sends data to the host PC for process-
ing, recording, and printing. The data
stations use the ‘C8 SC1 port with a
modified RS-232 driver circuit, so
multiple stations can be connected on
one RS-232 line.

This setup lets you use the PC’s
built-in RS-232 port, eliminating any

need for a dedicated RS-422 or -485
board.

Even if you’re not particularly inter-
ested in the Motorola ‘C8, I hope you
can benefit from some of the concepts
in this design-especially the client-
server technique used in the monitor.

Also, there are many interesting
tools available in Visual Basic which
serve data acquisition and manipula-
tion applications well.

You’ll likely find fertile ground for
your own article as well. q

Brian Millier has worked as an instru-
mentation engineer for the last 15
years in the chemistry department of
Dalhousie University, Halifax, NS,
Canada. He also operates Computer
Interface Consultants. YOU may reach
him at brian.millierQdal,ca.

The C8MONl firmware and Visual
Basic host-program executable code
are available through the Circuit
Cellar Web site.

MC68HC705CS
Motorola
MCU Information Line
P.O. Box 13026
Austin, TX 7871 l-3026
(512) 328-2268
Fax: (512) 891-4465

MC68HC705CS Technical Data
manuals, AN1226

Motorola Literature Distribution
P.O. Box 20912
Phoenix, AZ 85036
design-net.com/CSIC/TECHDATA/

DATABOOK/datalist.htm

MAX232
Maxim Integrated Products
120 San Gabriel Dr.
Sunnyvale, CA 94086
(408) 737-7600
Fax: (408) 737-7194

407 Very Useful
408 Moderately Useful
409 Not Useful

RELAY INTERFACE (16 channel) $69.95
Two 8 channel (TTL level) outputs are provided for
connection to relay cards or other devices (expandable
to 128 rela of
&a!!~ carJ

s using EX-16 expansion cards). A variet
sand relays are stocked. Call for rnora inx1

AR-i RELAY INTERFACE (2 relays, 10 amp)....$4r1.%
M-6 REED RELAY CARD (6 relays, 10 VA) $49.95
RH-6 RELAY CARD (IO amp SPDT, 277 VAC)...S 69.95

A N A L O G TO
D I G I T A L

(CONNECTS ~0 ~~-232)
#@C-16 AID CONVERTER’ (16 channelll) bit)..$ %.%
M%MG AID CONVERTER’ (8 channel/l0 bit).S124.90
fnput voltage, amperage, preisure, energy’usa~e. light,
j+iiks and a wide variety of other types of analog
annals. RS-422/RS-465 avaIlable (lengths to 4,Mx)‘). _
Call for info on other A/D configurations and 12 bit
converters (terminal block and cable sold separately).
Includes Data Acquisition software for Windows 95 or 3.1
ADCBE TEMPERATURE INTERFACE’(6 ch)..S 139.96
includes term. block & 8 temp. sensors (-40’ to 146’ F).
STA-6 MGITAL INTERFACE’ (6 channel) $99.95
Input on/ofi status of relays, switches, HVAC equipment,
security devices, keypads, and other devices.
PB-4 PORT SELECTOR (4 channels RS-422)....$79.%
oonverts an RS-232 port into 4 selectable RS-422 ports.
CD-422 (RS-232 to RS-422 converter) $ 39.%
“EXPANDABLE...expand your interface to control and
monitor up to 512 relays, up to 576 digital inputs, up to
1% anal
the PS-4%X-16. ST-32 8 AD-16 exoansion cards.

inputs or up to 128 temperature inputs using

l FULL TECHNICAL SUPPORT...provided over the
, fe&$ne by our staff. Technical reference 8 disk

tneludrng test software 8 pr rammin examples in
QuickBasic, GW Basic, Visua Bawc.“9 ,#usual C++.
Twbo C, Assembly and others are provided.

RS-232, RS-422 or
ibles, Mac and mos

#115
Circuit Cellar INK@ Issue 85 August 1997 33

DISK-EMULATOR CHIP
The PROMDisk-Chip disk-emulator chip is Datalight VBF flash file system, Datalight ROM-DOSV.6.22, a user

designed to plug directly into any standard 32-pin manual, and utility diskette.

EPROM socket in the BIOS extension address space of

a PC-compatible computer. The Chip is bootable as a Micro Computer Specialists, Inc.
fixed disk ranging from 2 to 8 MB by using nonvolatile NOR 2598-G Fortune Way l Vista, CA 92083

flash memory. It includes an internal BIOS extension ROM that (760) 598-2177 l Fax: (760) 598-2450 #510
houses the Datalight VBF integrated flash file

system and ROM-DOS 6.22. It is fully DOS and

Windows compatible, enabling the user to copy

and erase files using standard DOS commands.

PROMDisk-Chip replaces mechanical disk

drives in systems operating in harsh environments

or where temperature, shock, vibration, or reli-

ability are concerns. In embedded or dedicated

applications, the Ch’up offers substantial benefits

in overall system cost, performance, and reliabil-

ity. Since it runs at bus speeds and is not encum-

bered by mechanical latency, the average read/

write throughput is dramatically increased over

that of a typical hard disk drive.
The 4-MB PROMDisk-Chip disk-emulator chip

sells for $150. Itcomescompletewith theonboard

USNet INTERNET ACCESS PACKAGE
U.S. Software hasannounced the InternetAccess Pack-

age (IAP) for embedded applications. It enhances USNet, the

company’s real-time embedded TCP/IP protocol stack, with

Web-enhanced technology and may be used on LANs and

WANs with an off-the-shelf Web browser.

Type of Requests

. . . addItiona Handlers

USNet IAP is a standard Internet/lntranet protocol technology

designed specifically for real-time embedded applications. It has a

small footprint, high performance, and APls designed for embedded

applications. In typical Web-enabled applications running an embed-

ded HTTP server on a 16-bit target (e.g., ‘x86), the USNet protocol stack

requires less than 25 KB for networking and 10 KB for the embedded

Web server. USNet IAP includes dial-up capabilities, DNS resolver,

E-mail protocols (SMTP, POP, and MIME), as well as an embedded HTTP

server that supports CGI scripts, Java applets, Server Meta Controls,

and ISMAP.

CGI scripts can easily be written by developers as C function calls

to be passed between the embedded HTTP server and a standard Web

browser. HTML forms and pages provide a de facto standard for

developing projects and presenting embedded information in a style

that includes graphics.

The IAP for USNet is priced at $1000.

U.S. Software
142 15 NW Science Park Dr.
Portland, 0R 97229
(503) 64 l-8446
Fax: (503) 644-24 13
www.ussw.com #511

hensive run-time

the Win32-API (Applica-

tion Program interface) isemu-

toted, supporting software

originally developed for DOS or
Win32. The C/C++ run-time sys-

tem is also supported, and addi-

CROSS-DEVELOPMENT SYSTEM

tional tunctions tor real-time

applications are provided.

Paradigm’s Debug-32 lets users debug applications running on
A software licensing agreement between On Time and Paradigm the target system with the familiar Turbo Debugger icterface.

Systems has produced a full-featured cross-development system. Enhancements include awareness of data system structures (e.g.,
Under this agreement, On Time will integrate an enhanced version CPU descriptor tables, I/O ports, etc.) and the ability to be used

of Paradigm’s Debug-32 product (based on Borland’s Turbo- with Borlcnd C/C++ and Delphi, Microsoft C/C++, and Watcom

Debugger-32) into its crossdevelopment system, RlTarget-32, C/C+. Other features include DLL support, data compression, and
V.2.0 and higher. an improved structure for third-party libraries.

RTTarget-32 is designed for 32-bit embedded systems on the

Intel ‘386 platform. It enables 32-bit programs developed for
Windows 95 or NT to run without an operating system on an Intel

‘386, ‘486, or Pentium Pro. Popular C/C++ compilers are sup-

ported, and DOS and Windows systems can be used as a host.

An RTTarget-32 2.0 developer’s license is priced at $1700.
Complete source code is available for an extra $1000. No
run-time royalties are charged.

Rllarget-32 provides boot code to start the target system from

floppy, hard, EPROM, or flash disks or directly from ROM. The

application program can then run directly from ROM or be loaded

from disk. Optionally, the application can be downloaded using a

serial link during the development phase.

On Time
88 Christian Ave.
Setauket, NY 11733
(5 1 6) 6 8 9 - 6 6 5 4
Fax: (5 16) 689- 1172
www.on-time.com #512

SINGLE-BOARD COMPUTER
Groupe Erim’s light Board 486 Features an Intel 486DX4

processor running at 100 MHz and supports up to 32 MB of 72-

pin SIMM DRAM. Its 5.75” x 8” size holds the PC/l 04 16-bit

bus, three RS-232 serial ports, one RS-232/-485 port, a printer

port, floppy controller, hard-disk interface, and mouse, key-

board, and 12C ports. Also included are a watchdog timer, 16

digital inputs, 8 digital outputs, VGA controller for CRT or LCD,

Ethernet controller for 1 OBase-T, and flash memory up to 4 MB.

For a disk application, DOS and software can be stored in
onboard flash memory.

The Light Board 486 priced at $700 is distributed in the U.S.

by Gespac. A Pentium + Bus PCI version is also available.

Gespac
50 W. Hoover Ave. l Mesa, AZ 852 10
(602) 962-5559 l Fax: (602) 962-5750
yves_bourdon@compuserve.com #513

ll3PJlOuveaukY
37

EMBEDDED-PC1 SVGA MODULE
Versalogic has introduced an SVGA display module for the Embedded-PC and PC/l 04-Plus expansion interface.

The EPM-SVGA-1 Display Module has been optimized for GUls and operating systems like DOS, Windows 3.1, and

Windows 95. Video drivers are included. As well, 1 MB of onboard video RAM allows color depth up to 16 million colors

and screen resolutions up to 1280 x 1024 pixels.

The Embedded-PC architecture (also known as PC/l O&Plus), combines

the high-speed capabilities of PCI with the small size and low cost of the

PC/l 04 bus. This new architecture allows both PC/l 04 and Embedded-PC1

modules to be stacked together in the same system.

The Embedded-PC1 architecture is useful for embedded applica-

tions requiring high-speed video capabilities. Its interface in-

creases the data transfer speed from the PC/l 04’s 5 MBps to

132 MBps.

The EPM-SVGA-1 sells for $245 in OEM quantities.

Versalogic Corp.
3888 Stewart Rd.
Eugene, OR 97402
(5 4 1) 4 8 5 - 8 5 7 5
Fax: (541) 485-5712
www.versalogic.com

FUNCTION GENERATOR
The Model ISA-104 Function Generator supplies sine-,

triangle-, and square-wave outputs over a bandwidth of 1 Hz to
16 MHz. The instrument is a half-length ISA bus card that combines

the features of a “box” function generator with the convenience of
a PC.

Amplitude can be adjusted over a range of 100 mV to

20 Vp-p in lOO-mV steps, with a maximum output of

20 Vp-p into a 50- load. A variable DC offset of *lO V

is available, and the duty cycle is variable over a range

of 1 O-90%. Operating modes include free running,

sweep, and crystal-controlled PLL-based modes. Square-

wave rise time is less than 40 ns.

The driver and programmer’s libraries included en-

able embedded control of the generator from user appli-

cations written in C, C++, or Visual Basic. Stand-alone

software for DOS and a Windows GUI are also included.

The Model ISA-1 04 sells for $395.

J-Works, Inc.
12328 Gladstone Ave., Ste. 4
Sylmar, CA 91342
(818) 361-0787
Fax: (818) 270-2413
jworksjm@gte.net

JVliuveauPC
CIKCIJIT CELIRR INK AUCUST 1997

Today, users demand full windowing capabili?/, even if it’s not “needed” in
their embedded system. Find out which flat-panel video controllers give users
what they’ve come to expect from any computer-desktop or embedded.

A re you working on a compact or
portable design? Are you wondering how

you’re going to put the GUI for a modern

operating system on a small output display?
The cryptic PRNTR RDY message on a

l-line x 1 O-character mode LCD is no

longer socially acceptable. Today’s users
expect color, animated icons, point and

click, drag and drop,....

You can argue about whether this “ex-

tra” stuff is needed on an embedded sys-

tem, but it’s how things are going and it’s

tough to swim against the tide. Try getting

applications or support for a CP/M or DOS

2.1 machine. You’ll know what we mean.

Fortunately, manufacturers of flat pan-

els and flat-panel controllers have made it

fairly easy to incorporate these devices into

designs. Flat panels are bigger, brighter,

cheaper, and easier to use than ever be-

fore. With some careful planning, you can

wow users with the bellsand whistles they’ve

come to expect.

Our goal here is to provide some general

guidelines and heuristics you can use for

40

your own flat-panel design. To that end, we

discuss the advantages and disadvantages

of a myriad of flat panels on the market.

We cover some of the different flat-

panel video controllers produced by vari-

ous manufacturers, design considerations

regarding cabling and EMI, as well as the

software tools available to facilitate inter-

facing to flat panels.

In general, flat-panel displays (FPDs)

are electronic displays that are compact,

light weight, and low power (compared to

conventional CRTs).

Over the last several years, FPDs have

gained the attention of the computer indus-

try, especially in laptop and embedded
applications. They’re used in medical equip-

ment, mobile computers, POS terminals,

video lottery terminals, cockpit flight-dis-

play systems, and more.

Perhaps the hardest part in using this

technology, especially for the embedded

industry where only small quantities are

manufactured, is the lack of standards

(e.g., interface signals, connector, flat-panel

BIOS, etc.), which complicates things for

designers.

F L A T - P A N E L T Y P E S

Once you’ve decided to use a flat panel,

you must first choose the type you want.

Your choice depends on several factors,
including but not limited to price, size,

desired color, and power requirements.

So many different types of FPDs are
available-liquid crystal displays (LCDs),

light emitting diode displays (LEDDs), plas-

ma display panels (PDPs), electrolumines-

cent displays (ELs), vacuum fluorescent dis-

plays (VFDs), field emission displays (FEDS),

and so on.

Since LCDs are, far and away, the most
common type of FPD, we concentrate on

them in this article.

L I Q U I D C R Y S T A L D I S P L A Y S

LCDs are thin, lightweight, low-power,

and low-voltage devices. Besides all those

pluses, they’re readily available from a

variety of manufacturers.

LCDsaredividedintothreemaingroups-

passive, active, and active-addressed. Pas-

sive matrix LCDs are the twisted nematic

(TN) and super-twisted nematic (STN) dis-

plays you’re probably most familiar with.

Active matrix LCDs are the superior thin-

film transistortypes. Active-addressed LCDs

combine these two technologies. Figure 1

illustrates the differences.

LCDs work by modulating light intensity

from a CCFT (cold-cathode fluorescent tube)

backlight. This modulation varies the con-

trol voltage across a liquid crystal cell.

The modulated light goes through a

color (red, green, or blue) filter to produce

the corresponding color portion (color dot)

of a pixel. A pixel consists of adjacent red,

green, and blue dots.

A typical 640 x 480 color LCD consists

of an array of 640 x 480 x 3 color dots. In

TFT LCDs, transistors control the liquid crys-

tal voltage of these dots. LCDs now domi-

nate the FPD market, and we don’t expect

their role to change in the near future.

TFT LCDs are the most important, widely

used, and expensive member of the LCD

family. Their image quality is as good as a

CRT’s, and they can display 24-bit (16 MB)

color and generate no hazardous radiation.

Also, they have a relatively fast response

and low LCD supply voltage (5 V; 3.3 V is

coming).

These compact, very low-power devices

are widely available commercially. Recent

improvements in TFT technology have en-

abled larger, higher resolution TFT LCDs to

be manufactured at much lower prices.

The latest TFT LCDs on the market can

produce 200-250 nits (cd/m2). That’s 3-4

times better than a conventional TFT LCD.

Moreover, their low reflectance, higher

color saturation, wider viewing angle (70”

horizontal), higher resolution (up to XGAat

150 dpi), and bigger size (up to 15”) enable

them to display color graphics images even

in bright sunlight at a distance greater than
arm’s length.

Passive-matrix (mostly STN) LCDs once

enjoyed the biggest market share due to

their relatively low cost and acceptable

quality. Now, they’re being displaced from

the top position by TFT LCDs.

Present technology can produce XGA

15” 150-nit passive-matrix LCDs with 70”

horizontal viewing angle, over 240k colors

with frame-rate modulation, and lower con-

trast voltage control (under 2 V, compared

to about 30 V in a previous generation) at

a lower price. However, their slow response

and low contrast make them unsuitable for

applications using video animations.

Monochrome LCDs are disappearing

from the high-end-to-medium market because

of the highly competitive price of STN LCDs.

4 P o l a r i z i n g L t 8

I
Glass . . -

Substrate
(Color Filter

Common
, Transparent

, E l e c t r o d e

Alignment

ideo
gnal

b) What The
Viewer Sees Figure 1 a-TFT (thin film transistor) panels

Black White use an active matrix. Panels of TFTs on o
gloss substrate indirectly address each

Liquid pixel by polarizing the liquid crystal to
MOlXU izer

POlarI
produce the desired color at the addressed

SS location. b-A passive LCD pane/polarizes
the liquid crystal material by providing an
electropotential between two polarized

Molecules with
Polarizer off

ight
(Usually Electro-

Luminescent
Material)

pieces of glass. There are hvo basic types-
transmissive (light shines through the
panel) or transflective (light is reflected by
the panel).

EL DISPLAYS

The Et display consists

of a solid-state glass panel,

row-column control circuit, and

high-voltage driver (100-200 V). As

Figure 2 shows, the glass panel is doc-

tored with specific impurities (e.g., phos-

phor) to provide impurity states. Energizing

the pixel of an intersecting row and column

causes the light-emitting process to occur.

With their high brightness and contrast,

wide viewing angle, low power consump-

tion, fast response (< 1 ms), high resolution,

long life, and large size, Et displays are

suitable for a wide range of applications.

You find them in the space shuttle, medical

equipment, truck navigation terminals, cock-

pit display systems, and more.

Their maior disadvantage is the lack of

multicolor or fullcolor display capacity.

These days, Ets can display either yellow,

green, or red with a 16-level gray scale.

Thanks to strong market demand, thedevel-

opment and availability of full-color Ets is

anticipated in the near future.

F L A T - P A N E L M A N U F A C T U R E R S

Sharp, with its 22-year history of L C D

production, still gets the lion’s share in the

flat-panel market. Its LCD and Et flat panels

fill up a long list, ranging from mono-

chrome to large 15” XGA STN and 18-bit

14” XGA AM-TFT.

NEC, Toshiba, and FPD Company also

manufacture high-quality AM-TFT FPDs. Or,

to select an STN LCD, consider Sharp,

Toshiba, Hitachi, Sanyo, Optrex, and

Densitron.

Planar, with their Et ICEBrite family of

10.4”, 8.1”) and 6.4” VGA and quarter-

VGA, is a good choice for medical equip-

ment, vending machines, and car and cock-

pit navigation applications. These devices

haveexceptional brightness, wideviewing

angle, long life, and endurance to extreme

conditions (e.g., shock,vibration, tempera-
ture, and humidity).

F L A T - P A N E L C O N T R O L L E R S

While therearetwo main manufacturers

of FPD controller-Chips and Technologies

(C&T) and Cirrus Logic-newcomers such

as ATI and S3 have arrived with some

impressive products. Table 1 summarizes

some of the important characteristics of-

fered by these flat-panel controllers.

C&T supplies a OEM BIOS configuration

utility called BMP (BIOS Modification Pro-

4 1

r gram) that’sessential to

Interface with different flat

panels. All C&Tchips provide

’ direct interface to virtually all

’

existing monochrome and color

r STN, TFT, plasma, and Et flat panels.

The latest Cirrus Logic CRT/LCD con-

troller families are the CL-GD754xand CL-

GD755x.

The CL-GD7543 is a GUI-accelerated

SVGA CRT/LCD controller with MVA (mo-

tion video acceleration) for MPEG playback

and interface to an NTSC/PAL encoder.

It’s capable of running with either a 32-bit

up to 50-MHz VL bus or a 32-bit PCI bus,

and it supports color TFT and STN LCDs up

to SVGA resolution. Its maximum 2 MB of

video memory along with a high-perfor-

mance GUI accelerator suit it for graphics-

intensive applications.

The CL-GD7548 is the drop-in enhance-

ment for CL-GD7543 with XGA capability

and full MVA support for TFT and STN

LCDs. The CL-GD7555 offers much higher

video performance with its 64-bit GUI ac-

celerator, while supporting up to XGA

resolution. The latest CL-GD7556 is a low-

power version of CL-GD7555.

Cirrus Logic supplies a OEM BIOS con-

figuration utility called OEMSI to help inter-

face with different flat panels without ac-

cessing the source code. Also, drivers are

available for Windows 3.1 x, OS/2 Warp

V.4.0 (Merlin), Warp 3.0 and 2.1 x, Win-

dows 95, and Windows NT4.0 and 3.5x.

The Aurora64V+ Dual Display Accel-

erator is the first product from S3 to support

flat panels. This chip has a built-in NTSC/

PAL encoder to enable direct output to

NTSC/PAL TV monitors.

DESIGN CONSIDERATIONS

Figure 2-m an EL panel, potential is gener-
ated across the dielectric layers by a clocked
voltage signalgenerated through the column
and row electrodes, causing the desired pixel
to light up because of the electropotential
characteristics of the phosphor layer.

Theclock-synthesizing powercircuitmust

be well-isolated from digital noise. As well,

all decoupling capacitors should be placed

as close as possible to the video controller.

The traces from clock power pins must

be routed directly through the pads of the

decoupling capacitors, so don’t leave any

stub. And, don’t route any high-frequency

digital signals close to the analog sections.

Keep in mind that isolated analog Vc,/

GND islands are normally needed and

recommended by chip manufacturers.

Because there’s still no standard on how

FPD signals are located on the interface

connector-or even on the type of connector

used-making test cables for a new flat

panel is complex and time-consuming.

This challenge is especially evident in

embedded applications. Ordered quanti-

ties are usually small, and hundreds of

different types and models of FPDs from

many manufacturers have to be dealt with.
Doublecheck the cable before plugging

in the FPD end. The old STN FPDs use very

high positive-contrast voltage (15-30 V).

Monochrome FPDs normally use very high

negative-contrastvoltage (from-l 5 to3OV).

Always plug in the controller end of the

cable first, measure voltage at every pin of

at the other end, and verify against the

wiring diagram. Connecting high voltage to

a pin expecting low voltage can perma-

nentlydamage the controller and the expen-

sive flat panel.

In applications needing low EMI emis-

sions or long distances between the con-

troller and FPD, consider using LVDS from

National Semiconductor or Paneltink, a

technology licensed by C&T.

The transmitter convert/multiplex display

signals come from the video controller into

differentialsignalswith lowervoltageswing

and send them over 4-6 cable pairs. They

are then demultiplexed and restored at the

flat-panel end. Newer flat panels come with

built-in LVDS or Paneltink receivers.

IN THE LONG TERM
Unfortunately, too often, you spend six

months on a design only to find that the

designed-in controller has been discontin-

ued and is now difficult to obtain. The life-

time of any chipset can be extremely short.

It’s always prudent to try to ensure the

next generation of your controller will be a

drop-in enhancement for the current con-

troller.

BIOS CONSIDERATIONS
Given the complicated characteristics

of flat-panel interfacing, the BIOS should

be as easily configurable as possible. Ide-

ally, youwantsomeutilitysoftwarethatcan
modify and dump the video-controller reg-

isters, enabling you to see the effects of any

changes immediately on the display.

C&T’s ‘5xx DEBUG and CHIPEXT utili-

ties and Cirrus Logic’s PCLRegs utiiity have

proven helpful in developing BlOSs for new

flat panels. Available drivers supporting

different kinds of platforms are also an

The CRT/flat-panel controller is a high- the mating connector to the FPD’s connector important factor.

speed, mixed-signal chip that re-

quires special consideration for

PCB layouts. A multilayer PCB with Company Chip
separate Vcc, analog V,,, and

GND plane is a must.

Bus Max Memory GUI Power FP Package
support (MB) Acce!erator Sequencing Interface

Table T-Here’s a comparison of
several of the more popular SVGA
fkrfipanelcontroldevices. Note how
the features are becoming compa-
rable to those available on CRTcon-
trollers.

C&T 65530 ISA 0.5
65535 ISANL 0.5
65540 ISANL 1.0
65545 lSA/VUPCl 1.0
65548 VUPCI 1.0
65550 PCI 2.0
65554 PCI 2.0

Cirrus Logic CLGD7543 VUPCI 2.0
CLGD7548 VUPCI 2.0
CLGD7555 VUPCI 2.0
CLGD7556 VUPCI 2.0

53 Aurora64 + PCI 4.0

No
No
No
No
Yes

Yes I32 bit
Yes I64 bit

Yes
Yes

Yes I64 bit
Yes I64 bit

Yes I64 bit

Yes
Yes
Yes
Yes
Yes
Yes
Yes

Yes
Yes
Yes
Yes

Yes

18 bit
18 bit
24 bit
24 bit
;; ;;;

24 bit

24 bit
24 bit
24 bit
24 bit

24 bit

PQFP

::;:
PQFP
PQFP
PQFP
BGA

PQFP
PQFP

;:;:

PBGA

42 CIKCUITCELLAR INK AUGUST 1997

Edward Scetr&lcl

ve

E bm ec

1 GUI fs or

With the advent of the Web, we now have a universal display standard. In
Edward’s opinion, it’s just a matter of time until the manufacturing world also seeks
a standarci user interface, further boosting the embedded Web server market.

Qer the last few years, the Web browser

has become remarkably commonplace. You

can locate data in the company database,

find the namesand addresses of prospective

customers, and obtain current industry news.

At home, you can use it to read comics,

play games, search for a job, and find out

how many people in Iowa have your name.

Today, the Web browser is more com-

mon than typewriters were in the last de-

cade. It’s a de facto standard for acquiring

and presenting data.

The basis of Web data presentation is

the Hypertext Markup Language (HTML).

This markup language is a set of functions

or identifiers that define a document’s look.

You can determine font size, typeface,

color, and position of text. It also creates

tables and lists.

The HTML form is similar to some of the

functions used for page layout by maga-

zines and newspapers. Its format is similar

to that of XyWrite, VAX Document, and TeX.

Along with HTML, you find Graphics

Interchange Format (GIF) files, which con-

tain pictures and graphics. Many of the

formats were developed for UNIX worksta-

tions, but are now standards for the World

Wide Web and its browsers.

Many applications use the Web browser

to display HTML and GIF images. One

example is a kiosk in a museum that de-

scribes a display and links to other comput-

ers with additional information.

You’ll also find that workstations or dis-

plays for manufacturing process-control sys-

tems have the familiar browser as the

operator interface for process control and

monitoring. Over the next couple of years,

many-if not most-intell igent machines

will be accessed from a Web browser.

EMBEDDED SYSTEMS ON THE WEB

Manufacturing machinecontrollerswere

some of the earliest embedded systems to

be networked. But in the past, few had

graphical user interfaces. The processcon-

trol industry, also early to network, had a

wide variety of protocols to connect and

communicate with controllers.

Most of these have migrated to TCP/IP

and use coaxial cable, twisted pair, or

serial lines. Today, some are even wireless.

But, most process controllers still have

an old proprietary scheme to create the

user interface since the GUI wasn’t stan-

dardized like the network connection. So,

to transfer text and graphics between com-

puters, a number of standardized graphics

databases were tried.

However, the fragmentation of the in-

dustrial market kept anyone from dominat-

ing. Enter the Internet and World Wide

Web with support for personal computers.

Now, a manufacturer can build a com-

puter-controlled system, interconnectedvia

TCP/IP, and offer user access to the control-

ler from any connected Web browser. All

they need is an embedded kernel with an

embedded Web server inside the control-

lers scattered across the plant.

Only a few vendors offer embedded

Web servers. Most aim their product at the

set-top box and embed a Web browser in

the product.

45

Spyglass provides

embedded Web servers
for QNX, Phar Lap Software

offers the ETS MicroWeb Server,

and Agranat Systems has EmWeb

’ for Wind River Systems' Tornado. These
I . ._.

Thus any PC, network computer (NC),

workstation, or other computer with a Web

browser can access the data in an intelli-

gent machine, provided the machine has

an embedded Web server.

Award’s WWWAccess product is an
implementation of an NC or thin client using

the Phor Lap ETS kernel and TCP/IP stack.

The Spyglass browser that is included could

be replaced with the ETS embedded Web

server, thus transforming the thin client into

a thin or personal Web server.

Others have similar embedded Web
capabilities. In fact, if your preferred kernel

doesn’t have this capability, many compa-

nies provide add-ons.

Pacific Softworks offers a completeTCP/IP
stack for most embedded kernels, and with

thestackcomesanembedded Webserver.

Spyglass has marketing agreements with

most kernel vendors, and they too offer an

embedded Web server.

It seems that the embedded-systems
developer has many options. It’s just that

few vendors are promoting the end user’s

browser as the universal GUI.

Photo I-This screen is what a graphic artist sees on their local browser when they use the
Comments fields. At this point, the Comments fields are not converted into data fields.

ing the weather outside the office building.

The system consists of two PC/l 04 boards

(3.6”x3.8”) using a 486SLC-33 and 1 MB

of memory. It boots from a floppy drive and

can display a dozen different HTML pages.

The system runs Phar Lap’s Realtime ETS

Kernel, ETS MicroWeb Server, ETS HTML

On-The-Fly library, and a small application

that continually reads the instruments and

provides HTML pages with data on request.

E M B E D D E D W E B S E R V E R

To enable the Web server to provide
current data to the requesting browser, Phar

Lap developed a library of C functions. The

functions create an HTML page in memory,

and that page includes the current data.
An embedded Web server along with

hardware, kernel, and application-a so-

called Weblet-is a self-contained, dedi-

cated server that controls or monitors a

machine or instrument. It can communicate

on a TCP/IP network with any connected
Web browser.

The embedded server is small enough to
reside in ROM or use flash mem-

ory if more data or program

space is required. Often during

development, a floppy loads

programs.

The library, called HTML On-The-Fly, cre-

ates HTML pages in memory and recovers

the space once the page is sent to the

network. The functions look similar to C

p r i n t f statements with HTML tags or com-

mands along with text and C variables.

This library lets a C programmer create
a page using C language functions. The

S E R V E R - S I D E H T M L

Because of the need for graphic design,

Phar Lap developed another tool-Server-

Side HTML. This development aid mixes C

programming and HTML page layout.

Server-Side HTML permits a graphic

designer to completely create the look and

feel of the user interface and still be able to

insert real-time data on request. The de-

signer creates a page using all

the typical tools.

You don’t usually think of a

Web server as a ROM-or floppy-

based system. The morecommon
servers are Digital Alphas or Pen-

tium Pros running Windows NT.

But if the server is well-defined,

it needn’t be large or complex.

<P> A Table Containing Static Text and Real-time Data</P>
<Table Border>
<TR>

<TH>Temperature</TH>
<TH>Pressure</TH>
<TH>Location</TH/

</TR>

<TR>
<SD> <!\I- Field temp_deg-C >°C </TD>
<TD> <!/I- Field pressure-mb > mb </TD>
<TD> Westford, MA</TD>

</TR>
</Table>

Phar Lap Software has an
embedded Web server monitor-

Figure I-This HTML code includes real-time data using the special
Comments fields. The Comments are enclosed wifh brackets and
start with an exclamation mark.

46 CMUIT CELLAR INK AUGIJST 1997

H T M L O N - T H E - F L Y

page can contain tables, background col-

ors and textures, and even links to other

Web servers. When a requested page is

defined by HTML On-The-Fly, it is created

and transmitted.

If the page is undefined, the kernel looks

to whatever mass storage exists to retrieve

the page. This way, a developer can inter-

mix HTML On-The-Fly pages with those cre-

ated by more usual means (e.g., FrontPage).

There’s one drawback to using HTML
On-The-Fly as the only method of page

creation. C programmers usuallyaren’tgood

graphicdesigners. You need to mixgraphic

design and programming talents.

Except, where real-time data

is supposed to appear, the de-

signer inserts a Comment con-

taining the name of the C pro-

gram variable, as you see in

Figure 1 When this HTML page

is placed on the storage media

of the embedded Web server

and requested by a browser,
the HTML On-The-Fly functions

insert the current data stored in

the named variables.

Designers can see

what the page looks like

’

without data fields or they

’

can insert dummy values. The

HTML code in Figure 1 produces the

outputs shown in Photos 1 and 2.

These development tools let program-

mers build the application and control data

collection while graphic designers create

the GUI displaying the data.

BlDlRECTlONALCOMMUNlCATlONS
This isn’t a one-way street. Data can be

sent from the browser to control the process

connected to the embedded system.

All Web browsers let data be included

with the URL sent to the Web server. This

same function asks the Web server to search

for data or can selectwhich data to display.

The Phar tap weather station lets you

request data in metric or English units or

displays peak wind gusts and average

temperatures for the day.

Using the Web browser with a state-of-

the-art real-time embedded kernel, embed-

ded Web Server, and tools to automatically

format real-time data, the intelligent ma-

chine can be accessed by anyone on the
network with access privileges. Or, it can

be made available to the Web like the Phar

tap weather station.

NO PLUG-INS REQUIRED
Most Web servers, including embed-

ded Web servers, permit Java or ActiveX

plug-ins to display data dynamically. But,

they aren’t needed with the tools I described.

In fact, you may use H/PCs (hand-held

personal computers) or NCs and may not

have the memory to store a plug-in or the

connection to download one. Plug-ins are

nice and can be used in conjunction with

these HTML tools, but they’re unnecessary.

Dynamic HTML-a new way to display

HTML forms-is currently being defined

and seems to replace Java and ActiveX. It

runs only on the browser and cannot pull

data from the embedded system.

“FREE” DEVELOPMENT
Most new technologies come with a high

price tag. Not so if you use HTML. Nearly

everything needed to implement a Weblet

using a Web browser is already in place.

You need a development system with an

embedded real-time kernel and a TCP/IP

stackto networkembedded computer prod-

ucts. An embedded Web server is needed,

Photo 2-Here’s what the user sees on their browser when connected to a Weblet using the
Server-Side and HTML On-The-Fly technology. Unlike Photo 1, these dota elements contain__
real-time data fields.

but the Phar tap MicroWeb Server is free

with the Realtime ETS Kernel. (Somevendors

maychargefortheirembedded Webserver.)

The graphic artist most likely has Front-

Page or some other HTML editor, and the

customer hasorcan obtain the Web browser

free. No new purchases are required.

A Web browser is a natural user inter-

face to intelligent machines-not because

it’s easy to use but because it’s everywhere.

With tools such as HTML On-The-Fly and

Server-Side HTML, the development of the
machine’s look and feel is easy and easily

integrated into the product. E!‘C

Edward Steinfeld has more than 25 years’
experience in real-time and embedded

computing. He has marketed embedded
andreal-time products to OEMs and resellers
for Digital Equipment Corporation, Ventur-
Corn, and Phar lap Software. You may

reach him at stein@ma.ultranet.com.

SOURCES
EmWeb
Agranat Systems, Inc.
1345 Main St.
Waltham, MA 02 154
(617) 893.7868
Fax: (617) 893.5740
www.agranat.com

WWWAccess
Award Software Intl.
777 E. Middlefield Rd.
Mountain View, CA 94043
(415) 968.4433
Fax: (415) 526.2392
www.award.com

Axis Communications
4 Constitution Way, Ste. G
Woburn, MA 01801
(617) 938-l 188
Fax: (617) 938-6161
www.axisinc.com

Integrated Systems, Inc.
201 Moffett Park Dr.
Sunnyvale, CA 94089
(408) 542-l 500
Fax: (408) 542-l 956
www.isi.com

Microwore Systems Corp.
1900 NW 1 14th St.
(5 15) 223.8000
Fax: (5 15) 224-l 352
www.microware.com

TCP/IP stack
Pacific S&works
4000 Via Pescodor
Camorillo, CA 93012
(805) 484-2 128
Fax: (805) 484.3929
www.pocificsw.com

ETC MicroWeb Server, Real-time ETS Kernel,
HTML-On-The-Fly, Server-Side HTML

Phar Lap Software, Inc.
60 Aberdeen Ave.
Cambridge, MA 02 138
(617) 661.1510
Fax: (617) 876-2972
www.pharlap.com

QNX Software Systems
175 Terence Matthews Cres.
Kanata, ON
Canada K2M 1 W8
(613) 591-0931
Fax: (613) 591-3579
WWW.q”X.CORl

Embedded Web servers
Spyglass, Inc.
1240 E. Diehl Rd.
Natxrville. It 60563
(63b) SOS:1 010
Fax: (630) 5054944
www.spygloss.com

Tornado
Wind River Systems
1010 Atlantic Ave.
Alameda, CA 945 10
(5 10) 748-4 100
Fax: (5 10) 8 14.2010
www.wrs.conl

IRS
413 Very Useful

4 14 Moderately Useful

4 15 Not Useful

Vi&o on the K/l04 Bus
Capturing and displaying live video is an action-packed arena. It calls for high
processing speed and instant throughput. Richard reviews the basics of video,
offering suggestions of how to get video fhrough a very bottlenecked bus.

capturing and displaying live video

using a PC/l 04 board is similar to the old

saying about stuffing a camel through the

eye of a needle. The PC/104 bus just

doesn’t have the bandwidth to transfer live

video.

The normal transfer rate for the PC/l 04

bus isonly MBps. For monochromevideo,

the required transfer rate is 12.5 MBps. For
color, it’s 25 MBps.

However, there’s always someone who

won’t take no for an answer. If the video

rate is too fast for the PC/104 bus, there

are alternatives-slow down the video or

find an alternate bus.

In thisarticle, I discuss threeapproaches

that use these alternatives to work around

the relatively slow PC/l 04 bus:

live video is captured on a PC/104

board and transferred at a slower rate

over the PC/ 104 bus

when the conditions are just right, a

PC/l 04-Plusframegrabbercan transfer

the live video over the PCI bus

l live video is digitized by a PC/104

board and transferred over a separate
ribbon cable

But before I get into the advantages and

disadvantages of these approaches, I want

to define “live” video and provide a short

tutorial on digital video.

LIVE VIDEO
There are many types of video-NTSC,

PAI., SECAM, RS-170, S-Video, HDTV,

1024 line, noninterlaced, and line seen.

When a motherboard has a built-in VGA

controller, it’s also called video on the

motherboard. So, the word “video” can be

somewhat confusing.

In this article, video means one of the

commercial interlaced video formats, in-

cluding NTSC, PAL, SECAM, S-Video, and

RS-170. This type of video is used by a TV,

VCR, or black and white TV camera.

RS-170 is a monochrome video format,

while the others are color. They are all
considered live-video formats because the

field rate is fast enough (50 or 60 Hz] to

produce smooth motion.

Live-video formats are the most common

video formats for monitoring and control
applications that might require PC/l 04

boards. Although the line-scan video format

is supported by the new ImageNation

PC/l 04-P& board, I don’t discuss it here.

I focus on getting live video into a PC/ 104

computer and onto the VGA display.

VIDEO TUTORIAL
Since I live in the U.S., I’m most familiar

with NTSC, S-Video, and RS-170. So,

that’s what I use in the examples.

People ioke that NTSC stands for Never

The Same Color. But, it actually stands for

National Television System Committee.
The NTSC format combines color

(chroma) with brightness (luminance) in a

composite video signal which can be trans-

mitted using a single video cable.
It also reduces the maximum frequency

(bandwidth) of the video so that it can be

transmitted over commercial TV channels.

49

like all PC/
104 basic frame

grabbers, Image-
Nation’s does not

support live video.

Limiting the video signal’s

maximum frequency has two

results-reduced horizontal

resolution and color instability.

If you’ve seen high-resolu-
tion computer graphics dis-

played on a TV screen, you’re

familiar with the blurry edges,

halo effect, and chroma crawl

thathappenalong thesharp, high-frequency

edges of computer-generated text.

If your application requires better hori-

zontal resolution, you should use RS-170

for monochrome and S-Video for color.
RS-170 is just like NTSC, except that it’s

black and white rather than color. There’s

also a very subtle timing difference (a 30

sync rate for RS-170 vs. 29.97 for NTSC).

S-Video is similar to NTSC, except the

luminance and chroma signals aren’t com-

bined. Instead, S-Video uses two video

cables-one for luminance and one for

chroma.

A typical S-Video cable looks like only

one cable, but it actually contains two mini-

aturecoaxcables. BecauseS-Videodoesn’t

encode the luminance and chroma into

one signal, the luminance signal can have

a higher frequency, which translates into
better horizontal resolution.

The relative difference is 350 visible

line pairs for NTSC, compared to 550
for S-Video. RS-170 resolution is similar

to S-Video. The increased resolution can be

important for image processing in ma-

chine-vision applications, interactive align-

ment, and focusing.

Now that you’re sold on RS-170 and

S-Video, let’s talk about the video digitizer.

RS-170 and the S-Video luminance signals

are analog video signals, with a higher

voltage for bright areas and a lower volt-

age for dark areas.
An 8-bit video digitizer converts the

analog voltage into a number between 0

(black) and 255 (white). A &bit digitizer

converts the video into a number between

0 and 63, while a 1 O-bit digitizer converts

it into a number between 0 and 1023.

50

The 8-bit digitizers are the most common.

Usually, 256 intensity levels are enough for

a human operator and for image process-

ing. When there aren’t enough intensity

levels, the image starts to look postarized

(like a paint-by-numbers painting).

The difference between neighboring

shades of gray is clearly visible if there are

too few intensity levels. You usually need

256 gray-scale steps for smooth gray scale.
In an NTSC video signal, color is en-

coded into a high-frequency signal that is

mixedwith the luminancesignal. The NTSC

video format is very different from how

color video starts out.

Inside a color video camera, there are

separate red, green, and blue signals. Like

an artist’s palette, the three primary colors

represent all the visible colors. Similarly, a

color monitor has red, green, and blue dots
on the screen.

During transmission from the color cam-

era to the color monitor, the video is usually
converted to the YUV format. A straightfor-

ward transformation converts RGB (Red,

Green, Blue) into YUV.

The conversion is necessary because

YUVseparatesluminanceandchroma. While

RGB is a mixture of color and intensity, the

Y element of YUV is just intensity. The UV

elements represent only color information.

YUV’s advantage is that video band-

width can be reduced by reducing color

quality alone, without affecting luminance.

The quality of YUV encoding can have

the values 4:4:4, 4:2:2, or 4:l: 1. The

4:4:4 encoding scheme is the best, and

4: 1 : 1 is the worst.

The 4:4:4 designation means that for

every four Y values, there are four U values

and four V values. The 4:2:2 designation

means that for every four Y values, there

are two U values and two Vvalues, provid-

ing half the original color resolution.

And, you guessed it. The4: 1: 1 designa-

tion gives one U and one V value for every

four Y values, giving only a quarter of the

color resolution.

I N T E R L A C I N G A N D S Y N C

The video digitizer outputs a series of

digital values, where each value is a pixel

on the scan line. The RS-170 video frame

has 525 horizontal lines of video.

Only about 480 of these lines have

active video, however. The others are used
for synchronization.

The vertical sync pulse occurs during the

inactive video lines and marks the start of

a frame. Each frame has two fields-odd

(lines 1,3,5 ,...) and even (lines 0,2,4,. ..).

The even field is transmitted, then the odd,

then the even, and so on.

There is a sync pulse for each field, and

the field rate is 60 Hz. Since it takes two

fields to get all the lines for a complete

video frame, the frame time

is 30 Hz.

The even/odd field

method fortransmitting video

PC/104 Board

PC/104 Board

cl

. .._ ___ 1
PC/l 04 Board

Figure la-The frame grab-
ber captures a video frame,
then slow/y transfers it over
the PC/104 bus to computer
memory. b-The frame grab-
ber sends live video over the
PC/lO4-Plus bus to the VGA
frame buffer of computer
memory. c-The frame grab-
ber sends live video over a
ribbon cable directly to the
VGA frame buffer.

#119

52

Photo 2-PC/lO4-Plus frame gmb-
bers attempt to transfer live video
over the PCI bus, but it’s not a sure
thing.

is called interlacing. By contrast,

noninterlaced video transmits

lines 1, 2, 3 ,....

Noninterlaced video is sim-

pler and easier to control than

interlaced video. So, why use the
more complicated interlaced

video in NTSC, RS-170, S-Video,

PAL, SECAM,...?

The answer: our sensitivity to

flicker. If the screen updates at 30 Hz, the

human eye can see the update rate. At

30 Hz, moving objects appear to move in
a series of small ierks.

On the other hand, if the screen updates

at 60 Hz, our eyes can’t detect the update

rate and objects appear to move smoothly.

Interlaced video gives the smooth motion of

a 60-Hz update rate, while only updating

the entire screen at 30 Hz.

SQUARE PIXELS
Why should you care about square

pixels? For image processing and graphics,

square pixels are much easier to process.

When you draw a circle using square

pixels, thecircle looks likea circleonscreen.

If the pixels aren’t square (i.e., they’re

rectangular), thecircle looks likean ellipse.

What’s the big deal? Well, if you cap-
ture an image and the pixels aren’t square,

when you display the image on a computer

monitor, the image looks squished in one
direction. Also, image-processing library

functions usually assume square pixels.

Let’s talk briefly about how we get

square pixels. By definition, a square pixel

takes up the same distance horizontally

and vertically onscreen.

TV screens and computer monitors are

usually wider than they are tall, yielding a

4 x 3 aspect ratio. If there are 480 lines

vertically, you need 640 square pixels

horizontally.

Common examples of square-pixel for-

mats are the standard computer VGA reso-

lutions and MPEG. The standard VGA

resolutions are 640 x 480, 800 x 600,

1024 x 768, and 1280 x 1024. All have

an aspect ratio of 4:3.

The MPEG and MPEG2 formats are

also square-pixel formats. MPEG is a 320-

X 240-pixel image format, and MPEG2

has 640 x 480 pixels per image.

Two pixel rates are commonly used by
video digitizers. One is an international

standard, and the other creates square
pixels.

A digitizer compatible with the CCIR

601 standard converts NTSC analog video

to digital numbers at a 14.7-MHz rate,

which equals 720 pixels along each line.

In other words, 720 pixels per active line is

the CCIR 601 standard.

However, the pixels aren’t square. A

digitizer mustconvertthem atthe 12.5MHz

rate to produce 640 square pixels per line.

When you buy a video digitizer, a square-

pixel digitizer is best if your application

requires image processing or if you intend

to display the image on your computer.

Now that you’re caught up on video

standards, let’s discuss the three possible
solutions to the original problem-the fact

that the data rate for live video is higher

than the PC/l 04 bus can handle.

PC/l 04 FRAME GRABBER
The PC/l 04 frame grabber approach

depicted in Figure 1 a solves the bottleneck

problem by slowing down the live-video

data rate to a level that can be handled by
the PC/l 04 bus.

This technique has several advantages.
Installation is simple since it uses only the

PC/l 04 bus. It’s also a low-cost solution.

Its disadvantages include slow, ierky

image updates on the computer monitor.

During the time it takes to transfer the image

over the bus, the digitizer is inactive, so

SetVideoWindowSize SelectVideoSource
SetVideoWindowPosition SetVideoFormat
FreezeVideo
UnFreezeVideo

SetColorKey
SetZoomFactor

SetHue
SetBrightness

Savelmage

SetContrast
Loadlmage

Table I-These typicairot%vare library
functions are basics in almost any im-
aging library.

several frames are skipped. As well, the

slow image-transfer rate adds latency to

the image-processing time, which can be

critical in real-time process control.

In addition to PC/l 04 boards from

ImageNation (see Photo l), devices like

Snappy from Play Inc. and QuickCam from

Connectix are in this category.

The Snappy module captures the image

in pieces, so it can take several frames to

grab the entire image. The Snappy video-

capture module and QuickCam plug into

the parallel part and operate similar to the

PC/l 04 frame grabber.

Their image update rate is slow (several

times per second), but their cost is low.

Snappy and QuickCam sell for less than
$200.

PC/ 104~PLUS FRAME GRABBER
If the PC/ 104 bus is too slow, try the

new, wonderful, high-performance PCI bus.

You just need to repackage it to make it

more rugged and then give it a new name,
like PC/l 04-Plus or CompactPCI.

If I seem insincere about the wonderful

PCI bus, it’s because I’ve built products that

use the PCI bus for live video. It can be

done, it just isn’t easy or reliable.

It does have its advantages, however.

Installation is simple, since it uses only

PC/104-Plus (see Figure 1 b). It provides

fast, real-time image transfer to the host

memory or VGA frame buffer. And, its low

transfer latency speeds up image-process-
ing time.

However, the PC/l 04&s bus is not

always fast enough to transfer live video,

and bus contention can corrupt image data.

Live image transfer bandwidth can re-

duce the performance of other peripherals,

like disk drives, VGA controller, and Ether-

net. And, it costs more than other solutions.
Shown in Photo 2, ImageNation’s

PC/l 04+%/s frame grabber is a sophisti-

cated product that supports other video

formats besides live video. However, its

performance depends on the PCI bus.

Not all PCI buses are the same. For

example, the early PCI bus on the Intel

Neptunemotherboardcouldn’tsupportlive

video transfer rates. Before committing to a

design, test the PCI-bus performance under

the maximum anticipated load.

Let me get on my soapbox about the PCI

bus. And since the PC/104-Plus and

CompactPCl bus are just different physical

implementations of the PCI bus, my tirade

also applies to them.

I think the PCI bus is a great design for

a multitasking operating system with mul-

tiple bus masters. Its arbitration scheme

guarantees that each bus master has its

chance to transfer data over the PCI bus.

This system is great when you have

several devices all trying to use the PCI bus.

The devices may include the disk control-

ler, Ethernet, and the CPU writing to the

VGA controller.

The PCCbusarbiter is usually programmed

to let each device perform four consecutive

long-word transfers (i.e., four transfers of

four bytes each, totalling 16 bytes).

After four transfers, a bus master is

kicked off the bus, and a different bus master

is allowed to access the PCI bus. This feature

isgreatfor multitasking but bad for transfer-

ring video.

Each image is a large block of consecu-

tive data. It would be better if the PCI frame

grabber took control of the PCI bus and

transferred at least several thousand bytes

of data before releasing the bus.

The overhead required to reacquire

control of the PCI bus after only four trans-

fers reduces the average transfer rate. In

spite of the 132-MBps maximum burst trans-

fer rate, four cycle bursts make the PCI bus

marginal for transferring live video.

Another problem with the PCI bus is

contention with other devices. Since the

frame grabber is releasing the PCI bus after

four cycles, other devices can use a signifi-

cant amount of the PCI bandwidth, causing

an incomplete image transfer.

In a typical PCI frame grabber, the

video is digitized and sent through a FIFO

to the PCI-bus interface. The FIFO is a small

buffer that ailows the frame grabber to wait

for its turn on the PCI bus.

A

IF YOU DO

FUNcTlONAL

YOU NEED

HOTsF4tW!PMG
ELECTRONIC
EXTENDERS

Electronic ISA Extender !

Electronic PCI Extenderl
PCI Mini Extender

Insert/Remove Cards With PC Power On!

Save Time Testing And Developing Cards

Save Wear On Your PC From Rebooting

Adjustable Overcurrent Sensing Circuitr)

NO Fuses, All Electronic For Reliability

Single Switch Operation W/Auto RESET

Optional Software Control Of All Feature!

Breadboard Area For Custom Circuitry

And More...

24-Hour Fax on Demand:
510-947-1000 Ext.7

EMail* seles@sz-com.com

Vl%iJRHOMEPAGEAT:
http://az-com.coml

;

!3

53

This PC/ 104
frame grabber

from Hopkins Im-
aging Systems trans-

fers live video over a
ribbon-cable video bus.

When the frame grabber

is kicked off the bus, image

data starts to accumulate in

the FIFO. When the frame

grabber regains control of the

bus, ithastoquicklyemptythe

FIFO by sending data over the

PCI bus. IF it doesn’t have

enough time, the FIFO overflowsand image

data is lost.

When a PCI frame grabber is using
most of the PCI bandwidth, other devices

(e.g., the disk drive, Ethernet, and the VGA

controller) have reduced access to the PCI

bus, which can noticeably reduce perfor-

mance.

R I B B O N - C A B L E V I D E O B U S

Thethirdapproach tothePC/lO4 bottle-

neck is to design a ribbon-cable video bus

as illustrated in Figure 1 c. While this solution

sounds a bit crazy, it’s worked so well that

it has become an international standard.

Its advantages include guaranteed real-

time image transfer to VGA frame buffer.

As well, its low transfer latency speeds up

image processing time. It’s also low cost.

The only disadvantage is that an addi-

tional ribbon cable is required for installa-

tion.

The ribbon-cable video bus includes

both old and new video buses-the PC

Video and Zoom video buses, respectively.

The Zoom video bus is expected to replace

the PC Video bus and is included in most

new Toshiba portable computers.
There are PCMCIA cards available from

Toshiba and Margi Systems that enable a

Toshiba portable computer to capture and

display live video-in-a-window on the flat-

panel display.
PCVideoframegrabbercardsareavail-

able for the Ampro, Octagon, and Adastra

SBCs. Adastra makes a PC Video frame

grabber for their SBC, and Hopkins Imag-

ing Systems [see Photo 3) builds PC Video

54

frame grabbers for the Adastra, Ampro,

and Octagon SBCs.
PC Video frame grabbers are more

expensive than the new Zoom video frame

grabbers (about $700, compared to less

than $300). A Zoom video frame grabber

is currently available from Hopkins Imag-

ing Systems for the Octagon SBC and will

soon be available for the Ampro SBC and

PC/l 04 VGA controller.

D O N ’ T F O R G E T T H E S O F T W A R E
Software libraries make it easy to inte-

grate the frame-grabber and image-pro-

cessing functions into an embedded

PC/104 computer system. Some typical

functions are listed in Table 1.

Adastra, Hopkins Imaging Systems, and

ImageNation provide software libraries

with their products. Snappy and QuickCam

include software libraries only on special

request.

MAKING CHOICES
It’s funny that the phrase “pie in the sky”

rhymes with PCI. The PCI bus is a wonderful,

high-performance bus that can solve all your

problems-unless you need live video.

Even a monochrome image is a large

(300 KB) block of data, and the PCI bus

isn’t the best design for transferring large

blocks of data. The problems with the PCI

bus apply to the PC/ 104~Plus, CompactPCI,

and other PCI-bus incarnations as well.

So, if you don’t need fast image trans-

fers, get a low-cost PC/ 104 frame grabber

or one of the low-cost parallel port devices.

If you need reliable live video-in-a-window

or fast image capture, a low-cost Zoom

video board may be your answer. PQ.EIY~

Special thanks to Thomas W. Hinckley of
Studio 150 I Photography for the cover
photo for the Embedded PC section and
Photo 3.

Richard Hopkins is a programmer, system
engineer, andpresidentof Hopkins imaging
Systems. He has worked with flight simu-
lators for the military, developed image
processing software for the special-effects
industry, and designed embedded-PC sys-
tems for production-line inspection and x-

ray imaging. You may readh Richard at
rhopkins@hopkinsimg.com.

SOURCES
PC Video boards
Adastra Systems
26232 Executive PI
Hayward, CA 94545
(5 10) 732-6900
Fax: (5 10) 732.7655

PC/lO4-Plus
Ampro Computers, Inc
990 Almanor Ave.
Sunnyvale, CA 94086
(408) 522-2 100
Fax: (408) 720-l 305

QuickCam
Connectix Cam.
2655 Campus’Dr.
San Mateo, CA 94403
(415) 571.5100
Fax: (415) 5715195

Zoom video board, PC Video boards
Hopkins Imaging Systems
18 12 Flower Ave.
Duarte, CA 91010
(8 18) 305-8833
Fox: (818) 305.8838

PC/104 frame grabber
ImageNation Corp.
P.O. Box 276
Beaverton, OR 97075-0276
(503) 64 l-7408
Fax: (503) 643.2458

Frame grabber
Margi Systems, Inc.
3 155 Kearney St., Ste. 170
Fremont, CA 94538
(5 10) 657.4435
Fax: (5 10) 657.4430

SBC
Octagon Systems
6510 West 91 Ave
Westminster, CO 80030
(303) 430-l 500
Fax: (303) 429-8 126

Sww
Play Inc.
2890 Kilaore Rd
Rancho &rdova, CA 95670
(916) 851-0800
Fax: (916) 851.0801

IRS
4 16 Very Useful

4 17 Moderately Useful

418 Not Useful

In

&?I?~iance Development

ternet

Part 2: Getting Flow-Meter Data

Fred uses Photon, SLANG, and EXPIRZ to remote/y collect flow-meter data.
After looking at the flow meter’s encoding method, you learn how to read,
process, and transform fhe cfatcr for month-end invoices-all via the Internet.

1 ‘II never be lonely. As long as I live here, priority in the project is procuring a suit- high voltages. So, I won’t need an electri-

I’ll welcome at least three visitors a month. able sensor (i.e., meter). cal watt-hour meter, either.

One reads the gas meter. Another reads When I find myself in an engineering Getting wet doesn’t bother me too much,

the electrical meter, and the third collects tight spot, it’s process-of-elimination time. and besides, it’s safer working with cold

the water digits. Depending on your geo- First of all, I don’t have a natural gas water than explosive gases and lethal volt-

graphical location and the budgets your port in the shop. So, I won’t need to find a ages. So, ladies and gentlemen, a water-

utility companies live on, you may also get cubic-feet flow meter. I hate working with meter project it is!

a monthly visit from my three

friends.

On the other hand, some

of you may be forever without

a meter-reading pal. The hu-

man touch of the utility-meter-

reading trade is gradually

being replaced by-you

guessed it-embedded com-

puter technology.

TOOLS OF THE TRADE
In Part 1, I detailed what

my embedded platform is (see

Photo I), what it can do, and

what software is available in

the context of this applica-

tion. At this point, the highest
Photo I--The EXPL2 footPrint is larger than most of the evaluation boards I’ve
used, but there’s lots of hardware on that chunk of circuit board....

AUGUST 1997 -PC

As it turns out, the water

choice works out great. Gee,

I just happen to have a water-

flow meter on the bench.

Where’d that come from?

N E P T U N E ARE V

Does that name exude wet-

ness or what? The Neptune

AR6 V is designed for com-

mercial water-flow measure-

ment environments.
The ARE V allows auto-

mated remote reading, en-

abling the billing process to

be automated as well. As you

see in Photo 2, it’s a sturdy,

well-engineered piece of

5 5

ARB Vuses spe-
cial register elec-

tronics to replace the
older 14-wire technol-

equipment that’s designed to be

put somewhere you and I wouldn’t

wanna be and left there alone for

a very long time.

In its native implementation,

the ARB V is coupled with a re-

mote receptacle that provides location and

identification information. The remote re-

ceptacle is an intelligent device capable of

storing customer ID records and ARB con-

figuration data.

This receptacle can also temporarily

store ARB-generated data for later retrieval.

I don’t plan to install an ARB in every home

on my block, so my “remote receptacle” and

accompanying data will be replaced by

the EXPLR2 embedded PC and SLANG.

In normal day-today operation, meter

data from the ARB V is collected by special-

ized reading equipment and stored in

some sort of memory device. After all the

daily readings are done, the collected data

is offloaded into a central computing de-

vice for processing.

Traditionally, data collection is done

via human hands with special probes or

automatically via RF or telephone facilities.

I’m going to break tradition and add an-
other means of viewing the ARB V’s data-

the Web page.

LET’S GET WET
My ARB V has a six-wheel encoding

option for very precise readings. For my

model, the least significant digit (LSD) rep-

resents 50 gal. Similar model four-wheel

ARBs are available, with LSD readings

equaling 1000 gal.

Each wheel implies a readable digit.

Thus, four-wheel meters display and trans-

mit four-digit readings, while six-wheel

meters produce readings with two addi-

tional LSDs.

Synchronizing the inside and outside

registers is accomplished by the ARB V

“reading itself” and then transmitting the

reading displayed on the outside register

odometer. A three-wire data transfer con-

Register Diglt Lines
Electronics

tive remote receptacle. Using 22 AWG,

the ARB V can be positioned up to 300

away from its remote receptacle.

Three-wire reading is a relatively new

technology that replaces 14-wire reading.

Electronics were added to the ARB V inter-

nal register to provide a scanning function

OF the number wheels. Figure 1 depicts the
internal register electronics.

The three wires connected to the register

are Clock/Power, Ground, and Data. Pro-
viding a clock signal to the register and

reading the synchronous serial data from

the register performs register data acquisi-

tion. Power for the internal register reads is
supplied via the clock/power pin.

Basically, a capacitor captures enough
charge from the incoming clock to power the

internal register’s electronics. The maxi-

mum applied clock frequency cannot ex-

ceed 5 kHz for proper operation.

NEPTUNE’S TRITON
Each bit of data retrieved from the ARB

V comprises four clock phases. Thus, each

data byte read from the ARB V is the result

of 32 clock cycles.

As Figure 2 shows, each bit is a unique

set of levels with respect to the clock phases.

Notably, the least significant bit (LSB) phases

of each character differ from the remaining

most significant bit (MSB) phases.

This scheme lets the receptacle pro-

grammer sync to the beginning of a meter

digit. Once the sync point is established,

256 clocks are applied that result in the

gathering of 16 data nibbles containing

the meter reading. These 16 nibbles com-

pose the ARB V data word.

The ARB V data-bit sync point is found

by toggling the ARB Vclock line high to low

and reading the data line. This continues

until the data line is found to be low

following the high-to-low clock transition.

Once this low-clock/low-data condition

is met, the clock is toggled high. As a result,

the data line should go high as well. This

sequence is represented in Figure 2 as the

short pulse occurring just prior to phase 1.
Note that, during phase 1, the LSB level

patterns are both high and the MSB pat-

terns are both low. This level pattern is

unique to phase 1.

The receptacle programmer simply loops

the pulse-pattern routine until the phase-l

condition is met. This method establishes a

beginning sync point regardless of where

you enter into the internal-register data-

phase patterns.

Once the sync point is established, the

entire data word (16 nibbles) is read.

Figure 3 illustrates the entire ARB V data

word.

For the six- and four-wheel ARB Vs, the

meter reading begins at the seventh nibble

nection links the ARB V meter and a respec- Photo ~-AS if this device wasn’t sturdy enough, it’s filled with oil for long-term reliability.

56 (:llI(:f’IT CLLLj\H INK t\f!(;flST 1 9 9 7

The PC/l 04
Motion Control
Experts

N eed motion control within your
PC/104 application?

Overwhelmed by the number of
products & vendors out there? Looking
for a motion control specialist instead
of just another PC/104 vendor with

Encoder Interface customers, Tech
SO’s family of

PC/104 modules can meet the encoder
interfacing and servo & stepper control
demands of your embedded

Model 5928 environment.

Servo Controller
AND if your needs

extend beyond the PC1104 realm, Tech
80 has the industry’s most extensive
line of board-level motion control
products for IP, PC, STD and VME-

Model 5936 sales engineer

Stepper Controller regarding your
current project,

please contact us at 800/545-2980 or
visit us at:

www.techSO.com/cc/pclO4.html

lhe People in Centd of Mofion ‘@

Minneapolis, Minnesotu USA
8W545.2980 l 6121542-9545 l 6121542.9785 (fax)

www.teth80.com l info@tech80.com

listing I-Here’s how you can employ SLANG to implement o PPP connection.

#!/usr/cogent/bin/slang /* Talk to serial port */
defvar (modem, "/dev/ser2");
defvar (baudrate, 57600):
defvar (verbose, nil):
defvar (phone, "4169554350");
defvar (logprompt, "login:"):
defvar (passprompt, "password:");
defvar (timeout, 60):
defvar (pppdummy, "dummy.company.com");
defvar (logname, "Pname");
defvar (password, "passworddhere"):

function do_login (fd, phone, logprompt, logname, passprompt,
password, timeout) 1

local status:
dev_write (fd, "atzL3\r"I;
if (waitfor (fd, "OK", timeout, verbose)) 1

dev_write (fd, string ("atdt", phone, "\r")):
if (waitfor (fd, logprompt, timeout, verbose)) i

dev_write (fd, string (logname, "\r"));
if (waitfor (fd, passprompt, timeout, verbose)) 1
dev_write (fd, string (password, "\r")):
status = t; 1 1 I

status: i

function waitfor (fd, chars, timeout, echo) I
local len, buf, inch, done, newlen, status;
len = strlen (chars);
buf = "";
for (; !done: 1 i

inch = dev_read (fd, 1, 1, 0, timeout * 10);
if (inch != ""I i

if (echo) i
print (inch);
flush (stdout); I

buf = string (buf, inch);
if (strstr (buf, chars) < 0) 1

newlen = strlen (buf);
if (newlen > len + 32)
buf = substr (buf, strlen (buf) - len - 32, -1); I

else done = status = t: I
else done = not (status = nil); I

status: 1

function read-to (fd, char, timeout) i
local inch, buf, done:
f o r (buf="": !done; 1 1

inch = dev_read (fd, 1, 1, 0, timeout * 10);
buf = string (buf, inch);
if (inch == char)

done = t;
else if (inch == ""I i

done = t;
buf = nil: 1 I

buf: 1

function get_ip_address (fd) i
local buf, buf2:
if (buf = read-to (fd,)1 ’ 20)) i

if (strchr (buf, "("1 ;='O)
buf2 = read-to (fd, "I". 20);

else
buf2 = read-to (fd, ' (1, 20);

if (bufii)
buf = car (strinq-split (string (buf, buf2). "0 ", 1));

else
buf = nil;)

buf: 1

function main 0 [
local fd, gateway-ip, local_ip, have-modem, have_login:
for (i=cdr(argv): i: i=cdr(i)) j (continuedj

Listing 1 -continued

if (car(i) == "-v")
verbose = t;

else if (!have_modem) i
modem = car (i):
have-modem = t; I

else if (!have_login) i
logname = car (i);
have_login = t; 1

else
password = car (i); I

fd = dev_open (modem, 0);
dev_setup (fd, baudrate, 8, 'none", 1, 0, 0);
if (do_login (fd, phone, logprompt, logname, passprompt,

password, timeout)) 1
system (string ("stty +hupcl < ', modem));
system (string ("pppd defaultroute",modem,"",baudrate. ’ &“)I;
sleep (5); 1

else
print ("Login attempt timed out\n"): I

as illegal characters. Usually, reading the extended to a 66% duty cycle. The result
ARB V while a digit is transitioning causes

an illegal character. To avoid this kind of

error, the ARB V should be read until two
consecutive readings are identical.

The first reading is taken with a 50%

duty-cycle 3.2-kHzclock. The second read-

ing is taken with a stretched clock.
The period of the low portion of the

clock is retained, while the high portion is

ing clock for the second read is 2.133 kHz.

A no-data situation indicates that the inter-

nal electronic register is malfunctioning or
the meter being read is a 14-wire type.

TROUBLED WATERS
OK, time to put the spurs to the ARB and

get some data. The EXPLR2 parallel port is

a perfect candidate for our ARB I/O-not!

Listing 2-Looks and feels a lot like C, huh?

#!/usr/cogent/bin/slang
mkdir("/tmp",Oo777): //make sure there is a /tmp dir:
read-data = make-array(l):
function read-pit 0 1

local read-data,i;
read-data = make-array(O);
for(i=O;i<Z;i++) I

// port/PIG handshake code goes here I I

function write-data-to-file 0 i
local fp,i:
if (fp=open("/tmp/water_data.html","w")) f
writec(fp,"<HTML><HEAD>HZO Meter Readings</HEAD>");
writec(fp,"<BODY><Hl>Latest Water Meter Readings</Hl>");
writec(fp,"Last Updated: ",dateO."<PRE>"):
writec(fp,"Meter Reading\n");
writec(fp,"---- __-----\n");
for(i=O;i<Z;i++) 1

writec(fp,format("%-5d %-7d\n",i,read-data[il)); 1
writec(fp,"</PRE></BODY></HTML>"):
terpricfp);
close(fp);
spawn-ftp0; I I

every(360,#read-pic0):
every(3600,#write-data-to-file()):
while (t) {

next-eventO; I

function spawn-ftp 0 i
qnx-spawn-process(ni1, 0, -1. -1,
_SPAWN_BGROUND & _SPAWN_NOZOMBIE,
"lusrlbinlftp",
list("webhost.domain.com"),nil. -1); I

AUGUST 1997 B:

#126

ENHANCED SOLID STATE
DRIVE - $89.00

5 Flavors: 2 or 3 Drives, 2M, 4M,
32M, 2M with Post LEDs

Either Drive Boots, FFS included
112 Card, XT Height, Customs too

AULTI PORT I/O BOARD -
$ 9 0 . 0 0

4 Serial Ports, 2 Bi-Parallel Ports,
2 Drive IDE, 2 Floppy Interface,
16 Bit Standard, 8 Bit Adaptable,
Low Profile 4.2”, Full Cable Set

386 66MHz SINGLE CARD
COMPUTER - $335”
Up to 2.5Meg Flash/Sram drive

Compact-XT height ‘/z card size
Industry Standard PC-l 04 port

.2 cache to 64K-DRAM to 16Meg
Dual IDE/Floppy connectors

All Tempustech VMAXB products are
F’C Bus Compatible. Made m the

U.S.A., 30 Day Money Back Guarantee
*Qty 1, Qty breaks start at 5 pieces.

TEMPUSTECH, INC.
TEL: (800) 634-0701
FAX: (941) 643-4981

E-Mail: cpusales@tempustech.com
I-Net: www.tempustech.com

Fax for
fast response!

295 Airport Road
Naples, FL 34104

It seems

‘s a slight

I. No, the

s fine. No,
fare, either.

on of hard-
‘or a “stan-

dard” Web application is great.

Problem is, this ain’t no standard

Web application.

Represents Binary 1
for LSB of each Character

1 : I:

Represents Binary 0
for 3 MSBs of each Character

Think back. Rememberthatone

of SLANG’s claims to fame is _

Represents Binary 1
for 3 MSBs of each Character

bumpless updating of executing
figure 2-This took some thought. Notice the unique J

SLANG code? By mixing SLANG
patterns in phase 1.

with specially compiled modules from other First, trash the EXPLR2 demo system.

languages, we severely complicate and This means, if you don’t own a full-blown

possibly impair this application. QNX license, go directly to jail and don’t

:: 2 : 3 : 4

AR6 Clock

Represents Binary 0
for LSB of each Character

What if I want to update the elapsed

In other words, yes] &e can use SLANG

time between readings or change the way

and other hardware. But, that defeats our

the bits from the parallel port are read? In

this hardware environment, SLANG can

purpose. Can we do this with SLANG and

do partone, but parttwo is a different story.

the EXPLR28
some mechanical drives for now. No reason

to develop an application without a full set

pass Go. Fortunately, I happen to have one.

of resources if you have them.

There is some good news. The SLANG

that comes with the demo is usable as is.

Trashing the demo system implies adding

Once I modify the original EXPLR2 hard-

ware layout and load QNX, I still can’t bit-

bang with the ARB.The problem doesn’t lie in SLANG, and

I can’t put down the Intel ‘386EX, either.

Thetruth is, coding exclusivelywith SLANG,

the EXPLR2’s 33-MHz clock speed is too

slow to accommodate the minimum clock

frequency needed by the ARB V. That’s
without factoring in the time required to

read and store the ARB phase patterns.

I generated the clock code with SLANG

on a QNX-equipped ‘586 133-MHz PCI

system. The loop argument was 28 decimal

to obtain the 2.133-kHz 50% duty-cycle

clock without reading the incoming bits.

In that it’s not prudent to equate mega-

hertz with processor cycles, we can be

assured that dividing the 28 and multiply-

ing accordingly by 33 MHz soon puts us

out of business (intuitively and

as far as ARB V timing loops

are concerned.

phykically)

I know you’re thinking, “Why don’t you

just do this with C and a fast, embedded

‘4862” Well, if money’s no object and you

have the software on hand, go for it! If you

don’t think you’ll ever have to maintain this

system, go for it!

On the other hand, if you want to keep

the cost of the project down, minimize main-

tenance time, and be creative in the pro-

cess, shove a PIC in front of this operation.

Any PIC with the appropriate quantity

of I/O pins can handle all the ARB-clock-

ing, data-buffering, and data-conversion

chores. These tasks aren’t likely to change

often-if ever.

be totally programmed in SLANG. By ;im-

This leaves the EXPLR2 with the ability to

If that’s not enough to snuff

this project, the evaluation sys-
tem isn’t a full implementation

of QNX. There’s just enough

QNX and SLANG on the

EXPLR2 to run the demos.

.

: Each Character
B~naty 14

Word Interval ,’

Meter
Reading j15

Digits Each Character Binary : (End-of-

0_9,11,or14 Binary 14 Word j Indication)

D O W A T E R S P I D E R S

S P I N W E B S ?

If we’re gonna get the read-

ings to a Web page, here’s

what’s gotta happen.

Meter DIgIt

Figure 3-Dafa in the fifth and sixth character positions determines the I had no trouble obtaining a copy

actual register size. from the folks at Cogent.

6 0 CIRCUIT CELLAR INK Al MST 1997

ply employing a $3 part, I get a

workable and bumpless-update-

capable Internet appliance.

The PIC interfaces directly to

the ARB’s clock/power and data

lines. In that PlCs are capable of

operating with cycle times in the

nanoseconds, it’s second nature for

these parts to produce the periods

and duty cycles the ARB wants.

Once the data-collection cycle

lyncing
completes, the PIC can convert and

store the ARB phases so they’re

ready to be processed immediately

by the EXPLR2/SLANG Internet appliance.

The task is simple binary-to-ASCII con-

version. The PIC looks after the ARB read-

ing so no sorting or shifting is necessary at

the SLANG end. The PIG’s iob is to deliver

an ASCII reading identical to the external

register of the ARB V.

The EXPLR2 serial port can be used to

transfer the data between the ARB PIC and
the EXPLR2. If a PIC with no internal UART

is chosen, that entails extra PIC serial I/O

code and thus more complexity.
Since ARB readings will more than likely

be taken hours apart, there’s plenty of time

to transfer the readings via a couple paral-
lel-port lines. This offload to the PIC leaves

the EXPLR2 free to do what it does best-

interface to the Web.

A Q U A W E B

Although the PIC saved the day on the

ARB end, I’m still in deep water on the

. ,

SLANG end. Unlike DOS-based systems, the

attached to the parallel port and insert the

typical C?NX/SLANG programmerdoesn’t

just go in and write directly to I/O devices.

This task is usually accomplished through

specialized device drivers. But in this in-

stance, writing a device driver is overkill.
I simply need to handshake with the PIC

received ASCII meter reading into

an HTML file. How can I do this if

I can’t do simple I/O to the paral-

lel port?

The answer lies in something

called privity. In theworld ofQNX,

privity implies privilege.

To speak directly to the parallel

port at address 0x378, my execut-

able must possess a privity of 1.

The privity executable isn’t in-

cluded with the EXPLR2 demo, but

Having the executable and logging in mnemonic enables the Internet appliance

as root, I set the privity for SLANG to 1 to read the PIC every hour and transmit a

with the command: reading every 10 h.

pri vi ty 1 /usr/cogent/bi n/s1 ang

That one command puts us on the grav-

ity-induced side of the waterfall, only three

functions away from our goal. Reference

the listings as I count them off.

The first task is to init the modem and

dial the ISP (assuming it’s not you). As you

see in Listing 1, the dev_read and

dev_wri teSLANGcommandsmakeeasy

work of the modem setup.

Once all the data is assimilated, the

w r i t e - d a t a - t o - f i l e f u n c t i o n b u i l d s

an HTML file with the embedded ASCII

reading. Before exiting, an ftp background

function is spawned from within w r i te -

data- to- f i le , asshown in Listing 2.

The ftp program looks for a. net r c file

in the home directory of the user who

started it. This filecontainsall the necessary

information to automatically log on and

transfer the HTML image.

The only thing left to do is define the

data-collection intervals. SLANG’s every

That’s it. Water on the Web.

WANNA WALK ON WATER?
Right now, designing Internet appli-

ances is a big thing. If you decide to get

your feetwetwith the EXPLR2 demo system,

you have 30 days to use the software

licenses included with the board.

In other words, if you’re serious about

designing an Internet appliance using the

tools offered in the EXPLR2 demo kit, be

ready to purchase some software.

On the other hand, if you just need a

worthyembedded platform for your Internet

project, consider the EXPLR2. Internet ap-

pliances don’t have to be complicated, just
embedded. AW.WC

Fred Eady has over 20 years‘ experience
as a systems engineer. He has worked with
computers and communication systems
large and small, simple and complex. His

forte is embedded-systems design and com-

munications. Fred may be reached at

fred@edtp.com.

SOURCES
Neptune ARB V
Schlumberger Water
Hwv. 229.
Toll&see, AL
(334) 283.6555
Fax: (334) 283-7299

QNX OS
QNX
175 Terrence Matthews Cres.
Kanoto, O N
Canada K2M 1 W8
(613) 591.0931
Fox: (613) 591-3579
LVWW.Cj”X.0XTl

SIANG
Cogent Real-Time Systems, Inc.
168 Queen St. S, Ste. 205
Mississauga, ON
Canada L5M 1 K8
(905) 8 12.9628
Fox: (510) 472-6958
infoOcogent.ca
www.io.org/-cogent

EXPLR2
Intel Corp.
2200 Mission College Blvd.
Santa Clara, California 95052.8 1 19
(408) 765.8080
Fax: (408) 765-9904
www.intel.com

IRS
4 19 Very Useful

420 Moderately Useful

42 1 Not Useful

Hoer Peppy
Robot Kit
l Changes course when

comes in contact or
hears a loud sound

Part No. Description Price
140863

1 and 3 Axis Accelerometer
lilodules and Interface Card
l For

motion
sensing,
vibration
analysis 141575 141533
and other acceleration applications

Part No. Description Price
141591 1 axis accelerometer$89.95
141575 3 axis accelerometeri59.95
141583 Diaital interface card199.95

F~@R@@ POSTPIus
Solution Card

141170 Micro2 processor brd. ..$17.95
139272 MicroPerf proto b r d . 1 1 . 9 5
141188 Par ts k i t f o r M ic ro2 9 .95

EDWin NC CAD/CAE Software
l Three-digit display

provides solution
codes, and works
even If the PC sys-^^^_ ..,

*The first truly seamlessly
integrated suite of software

running in all Windows”
formats...simulation,

nor schematics and PC8 design.

MicroPlug” PIG” li
Prototyping System
l With this flexible design 11

system, the perf area can I
be detached from the lZ0

microcontroller area allow-L
ing changes without scrap-
ping the board

l 141170: Micro2 orocessor
board for 2%oin DIPS

l 139272: perf ‘board
for use with Micro2
processor board

l 141188: parts kit
for Micro2 board

Part No. Description
141133

Price

i5 Shoreway Road Carl for your
_ Belmont, CA 94002-4100
?Zf%f?Z FAX: 1*800*237*8948 (Domestic)

nm”‘UCTS FAX: 415*592*2503 (International)
Drder Toil Free 244io1~rs E-mail: info@jameco.com

‘I-flays a Week! http://www.iameco.com

Z-World’s versatile PK2300 programmable controller
adapts to your application. You can configure I/O as
digital inputs, high current outputs, RS-485, or a
resistance measurement input.
* 19 total I/O * DIN rail mounting
* 11 user-configurable l Rugged ABS enclosure

digital I/O lines * RS-232 and RS-485

Z-World offers cost-effective solutions for your control
applications. Call today for a free catalog and more
information on the new PK2300!

Z-World, 1724 Picasso Avenue, Davis, CA 95616 USA
Telephone916-757-3737 l FAX916-753-5141
To place aa order call l-88%EMBEDUS (USA) i
For immediate information, use our L4 hour
AutoFax916-753-0(,1X

#127

i\lJGUST 1997

Gordon Dick

Test Drive a Precision
Motion Controller

What is a precision
motion controller, or

It’s a chip that performs the inten-
sive real-time computational tasks of
implementing a high-performance
digital motion-control system.

Feedback for such systems is usually
from quadrature incremental optical
encoders. Support circuitry and code
are required to produce a functional
intelligent motion-control system.

Many companies produce easy-to-
use, intelligent motion-control cards
that enable a system to be up and run-
ning quickly. These cards essentially
stand alone, using a PC for communi-
cation and sometimes for power.

Motion-control code for subsequent
execution is sent as a text file to the
controller in its specified language.

Figure 1-A lot of
number crunching
is required for
profile generation,
the P/D filter, and
position decoding.

This code is created in a text editor, or
in more advanced situations, CAD
drawings are translated into motion
code. (I described building a complete,
intelligent-card-based motion-control
system in “Designing an Industrial-
Grade XYZ Router Table,” INK 62.)

The PMC I’ll describe here-the
National Semiconductor LM628-is
the heart of a custom intelligent mo-
tion-control card (although to the host,
it’s just another I/O device). Com-
mands and data are passed to the PMC
over the host data bus.

Code for the PMC is no longer sim-
ply created in a text editor. Now, it
must be assembled and linked as part
of some executable micro code.

If you’ve built digital filters, you
can appreciate how computationally
intensive they are and how execution
time grows.

The ~-MHZ LM628, shown in Fig-
ure 1, can do the digital-filter calcula-
tions and all its other tasks once every
256 ps.

To make a functional intelligent
motion-control system, you need a
PMC (e.g., the LM628), host, DAC, DC
servo motor, and incremental optical
encoder. Figure 2 shows this intercon-
nected collection of components.

IT’S TOOL TIME
So, let’s get the necessary compo-

nents and build an intelligent motion-
control system! As it happened, I had a
DC servo motor removed from a surplus
printer, and it had an encoder already
mounted on the back.

Although I had a servo amp re-
moved from a surplus mag-tape unit, I
didn’t want to use it here. I’ll eventu-
ally build about I2 of these systems, so
I needed a servo amp for the prototype

Digital
output

k, [e(n’) - e(n’-l)]

Decoder for
Position Encoder

Encoder
’ Input

62 Issue 85 August 1997 Circuit Cellar INK@

that could be built in small production
quantities later.

A power op-amp makes a decent
servo amp, but the price is usually
scary. So, I settled on a modification of
an audio amplifier using a National
Semiconductor driver chip I’d been
meaning to try for ages.

I didn’t have a DAC removed from a
surplus widget, so I used an off-the-
shelf part. Getting parts in Edmonton
is often a real challenge, so I wasn’t all
that picky about the DAC. It was 8 bit
and in my hand!

Since these units are for a training
course, I didn’t need to build a power
supply. It would be part of the test
equipment at the bench. The schematic
of the intelligent motion-control sys-
tem prototype is presented in Figure 3.

Time to get out the wire-wrap tool
and soldering iron and put these parts
together. As usual, building proceeded
quickly and I soon needed a “smoke
test.” The result of a capable summer
student’s wire wrapping and soldering
is shown on the left side of Photo 1.

THE HARD PART

the first time? Long ago, I discovered
Have you ever had anything work

that the “power it up and see if it

.

works” routine produced more smoke
than a systematic checkout of each
system block. Let’s see how many
problems I find as I examine the proto-
type block by block.

Optical Encoder

DC
Motor

4

.-___ _

=

Figure 2-Adda DAC, a servo amp, a servo motor, and an optical encoder to the LM628, and you have a working
system.

With no ICs in place other than the
power-stage driver, does the servo amp
work! Oddly enough, yes. Tweak the
compensation capacitors to stop that
tendency to oscillate, adjust the output
offset voltage to zero, and trim the idle
current in the power stage. Now, it’s
fine.

Next, I need to make the DAC feed
a signal to the servo amp. After estab-
lishing logic levels at the digital inputs,
I should have a related output volt-
age-but no. How did that active-low
Latch Enable line get tied high? Fix
that, adjust the reference voltage, and
the DAC works fine, too!

NAIT, we developed a microprocessor
board as teaching tool. It’s an 8OC88-
based system that’s partly PCB and
partly wire-wrapped. It’s not state of
the art, nor is it lightning fast, but it’s
an excellent vehicle for learning micro-
processor basics.

It’s time to install the LM628 and
hook up the host. Many years ago at

Figure 3-Aside from an amplifier a/ways wanting to be an oscillator, there’s nothing crifical here, excepf for the
LM628.

Photo 1 shows the board with the
LM628 connected to the host micro
board. You can also see the servo.mo-
tor and wiring to it.

Before anything else, communica-
tion between the host and the LM628
must be verified. I can partly test this
by attempting to read the LM628 Sta-
tus Byte, which can be read anytime.

Almost everything else on the
LM628 has to be done by first check-
ing to see if the device is busy or not.
A read of the Status Byte shows it is a
C4h-which is what it’s supposed to
be after a hardware reset. Therefore,
the data-bus and control-line connec-
tions are correct.

National Semiconductor recom-
mends a functionality test at this point
that resets all the Interrupt flags and
checks the Status Byte again. It should
now read COh or 80h, but instead it
continued to read C4h.

Eventually, I discovered the LM628
active-low Reset was permanently
wired high. After correcting that prob-
lem, the functionality test went as
expected.

Now, I’m getting into the nitty
gritty. Can I read position data from
the encoder via the LM628 over the
host data bus?

The testing up to this point was
conducted without generating new
code for the host. Part of the 8OC88
micro board’s firmware is a feature
allowing data to be sent to or read
from a particular I/O address. Until
now, that’s how the Status Byte was
read.

However, the Busy Bit has to be
checked, and multiple data bytes have
to read from the LM628. A short as-
sembler program is required to proceed
with testing to verify the encoder is
working and being read correctly.

Circuit Cellar INK@’ Issue 85 August 1997 63

Photo l-k’s almost a functional system. For communication to be up and running, add servo-amp power, 5 V for
the host, and the serial connection from the host to a PC.

This is curious. The test program is
getting data from the LM628, but it
doesn’t change when the shaft is ro-
tated. Checking with a scope shows
the encoder is functional. But, the pin
on the LM628 for the Index pulse is
open.

The encoder I’m using has no Index
line, so the Index line on the LM628
should be tied high. When that’s done,
voila! I have 32-bit position numbers
that track the shaft rotation.

To make the LM628 close the loop
(i.e., start running the digital filter and
produce an output proportional to
position error, also called “servoing”), I
need to assign values to a number of
parameters. At the moment, most of
the digital-filter coefficients are set to
zero due to the hardware reset.

Establishing the digital filter param-
eters is a multistep process. The L F I L

(load filter) command sequence begins
with the L F I L command (1Eh) sent to
the PMC command register. The filter
control word follows and is sent to the
PMC data register.

The first byte of the filter control
word programs the derivative sampling
interval, which is initially set the

same as the system sampling interval.
So, this first byte is OOh.

The second byte indicates which
filter coefficients follow. This process
is explained well in the LM628 Pro-
gramming Guide. For initial testing,
it’s wise not to get too fancy with the
digital filter, so I used only a propor-

The expected data should follow. In
this case, two bytes--OOh and 28h-set

tional gain, indicated by sending 08h

the proportional gain to 4Od, as you see
in the first part of Listing 1.

as the second byte.

I’m not quite finished with the
filter. The data just sent to the LM628
for the filter is held in a buffer. No
data is actually written to the digital
filter until a U D F (update filter) com-
mand (04h) is sent to the PMC com-
mand register.

Before the LM628 will servo, it must
have information about the upcoming
move. This information is sent via the
LTRJ (load trajectory) command (1Fh)
to the PMC command register, followed
by a number of words to the PMC data
register.

The result is similar to what was
done for the filter. The first word fol-

lowing LT RJ is the trajectory control
word, indicating whether to execute a
position or velocity move.

The second byte indicates which of
the three trajectory parameters will be
loaded. Since, for the moment, I don’t
want to move but only want to servo,
the second byte is OOh. That value
indicates no acceleration, velocity, or
position data is coming.

Similar to LF I L, the data for LTRJ

is held in buffers until the motion
(STT) command (Olh) is sent to the
PMC command register. Listing 1
shows the code associated with LT R J

and STT.

The motor is still not connected to
the servo amp, but the encoder is con-
nected to the PMC. So, I’ll execute the
code in Listing 2 to send the necessary
data to the PMC and connect a DVM
to the servo-amp output terminals.

Rotating the motor shaft a small
amount should produce a voltage at
the servo-amp output terminals. Ro-
tating the motor the other direction
reverses the sign of the voltage mea-
sured. If this happens, the LM628 is
running the digital filter and trying to
servo. Good news!

At this point, if you connect the
motor, you have a SO/50 chance of
having a negative feedback system. If
your luck is as bad as mine, then you
have a 100% chance of being wrong,
and arbitrarily connecting the motor
will result in an unstable system that
runs away.

To be sure the motor is connected
correctly, try this simple phasing proce-
dure. If you rotate the motor CW and
the PMC produces a positive voltage at
the servo-amp output terminals, con-
nect the motor so the voltage on these
terminals produces a CCW rotation.

This change makes the servo amp
drive the motor in a direction that
minimizes the position error. This
phasing procedure is described in more
detail in Chuck Raskin’s book [11.

When you’re confident about how
to connect the motor, power down and
connect it. Power up again, and run
the code to servo. If things go right,
trying to rotate the motor shaft now
should be met with resistance.

Typically, you’d start off with low
gains here until you think things are

66 Issue 85 August 1997 Circuit Cellar INK@

right and then gradually increase the
gain until you had a tight loop. Even-
tually, you want to incorporate some
integral and derivative control as well.
This may lead to some instability and
require some tuning, but that’s to be
expected.

Getting the loop to servo is the last
hard part. Once the negative feedback
system is well-behaved, the rest is
easy. Just sit at your terminal and
generate code.

MAKING A MOVE
Some interesting applications are

possible with an intelligent motion-
control system. The host’s ability to
make decisions, read I/O bits repre-
senting process conditions, loop, and
control I/O bits operating process ele-
ments enables you to produce some
pretty sophisticated automation.

But, let’s just do one simple posi-
tion move, and then I’ll point out a
few of the other commands with inter-
esting possibilities.

This example demonstrates the
trapezoidal velocity move profile, so I

intentionally chose a small value for
acceleration. It’s also worthwhile spend-
ing some time finding out the system’s
capabilities. Attainable speed is limited
by the available motor voltage, and
attainable acceleration is limited by
how much current the servo amp can
supply to the motor.

The arbitrarily imposed move condi-
tions in this example are well within
the system’s capabilities. Let’s go over
the calculations for a move of 30 revs
at a velocity of 1.5 rev/s using an ac-
celeration of 1 rev/s/s.

In this case, the encoder is 1000
lines, and I’m using a ~-MHZ LM628.

Listing l--Make the controller “control” by running the digital control algorithm.

PMC_CMD equ 60h :
PMC_DATA equ 61h :
LFIL equ 1Eh ;
UDF equ 04h ;
LTRJ equ 1Fh :
STT equ Olh ;

PMC command register
PMC data register
Load filter parameters opcode
Update filter parameters opcode
Load trajectory parameters opcode
Start motion-control opcode

.model tiny
code

erg 1OOh

Start:
: Reset LM628 before
; The BUSY procedure
: code available online.

:ode is run the first time,
s not shown here, but is included in the

; Load digital filter
Mov al, LFIL
Call BUSY
Out PMC_CMD, al ;
Mov ax. 0800h ;
Call BUSY
Out PMC_DATA, al\,, 1xcng al, an
Out PMC_DATA, al :
Mov ax, 2800h ;
Call BUSY
Out PMC_DATA, al :
Xchg al, ah .
Out PMC_DATA, al I
Mov al, UDF
Call BUSY
Out PMC_CMD, al ;

; (ZC;sealservFTd;op.

Call BUSY
Out PMC-CMD, al ;
Mov al, OOh
Call BUSY
Out PMCCDATA, al t
Out PMC_DATA, al ;
Mov al, STT
Call BUSY
Out PMC_CMD, al ‘:
Ret

END Start

parameters.
Load load filter parameters opcode
Wait until LM628 is ready
Send opcode
Filter control word is 0008h. which sets
derivative sampling interval to 2048/fclk
and indicates that only Kp follows

Sets KD to 40d

Load update filter opcode
Wait until LM628 is ready
Load new filter parameters

Load load trajectory opcode
Wait until LM628 is ready
Send opcode
Trajectory control word of OOOOh

indicates to LM628 that no
acceleration, velocity, or position
data is to follow

Run digital filter to close feedback loop

Return to monitor program

By watching for encoder pulse edges on
the quadrature encoder signals, the
PMC can improve resolution by four
times.

The LM628 requires its move pa-
rameters in units of scaled counts per
sample as follows. For velocity:

1.5~x4000~x341-=22.046~s sample sample

Multiply by 65,536 to scale:

2.046-x65,536= 134,086.656=sample sample

Then, truncate the fractional part and
convert it to hexadecimal. Velocity to
load is:

134086d s or 2OBCXh s

For acceleration:

129 x4000 wx($$i’ =0.000465Gm%
52

Multiply by 65,536 to scale.

rev0.0004657
sample

x 65,536 =30.474-+
sample

Then, truncate the fractional part and
convert it to hexadecimal:

30 rev = 1Eh rev
sample ’ sample’

For position:

30revx4000* = 120,OOOcount

Finally, convert it to hexadecimal, but
don’t scale this time:

120,OOOd count = lD4COh count

Load these move parameters into
the PMC, and execute the move (see
Listing 2). You should clearly see the
motor shaft gradually accelerate up to
speed, run at a constant speed, and
gradually slow to a stop at the desired
position.

A check of the actual position at the
end of the move shows some error. An
error of lo-20 counts is possible, de-
pending on the Kp loaded into the
filter and on the gain of the servo amp.

Introducing some integral gain (Ki)
can reduce this small positioning error
to zero, but it also destabilizes the
system. Adding some derivative gain

Circuit Cellar INK@ Issue 85 August 1997 67

With Cimetrics’ g-Bit PLAN you can link together up to 250 of the most popular 8- and
16-bit microcontrollers (8051, 8OC196, 8OC186EB/EC, 68HC11168HC1 6,68332, I
PlCl6C74).

The 9-W &AN is:
. Fast- A high speed (62.5k baud) multidrop

master/ slave RS-485 network

b Flexible- Compatible with your
microcontrollers

F Relialrle- Robust 16-bit CRC and sequence
number error checking

. Efficient- Low microcontroller resource
requirements (uses your chip’s built-in serial
Port)

b Friendly- Simple-to-use C and assembly
language software libraries, with demonstration
programs

. Complete- Includes network software,
network monitor, and RS-485 hardware

. Standard-The g-Bit PlAN is an asynchronous
adaptation of IEEE 1118

55 Temple Place l Boston, MA 02111-1300 l Ph 617.350.7550 l Fx 617.350.7552

#131

“We’re impressed by the
documentation and the readability

of the code. ” - M. Ryan

“We are very pleased with the
General Software BIOS and look

forward to working with you to bring
ourproduct to market. ‘I-R. Levaro

Embedded BIOS is well-structured
and documented, and technical
support at General Sof?are is

excellent. - 1

decision to buy our BIOSfrom
 ” R

&t for embedded PC designs.
You were absolutely right. I’ - Jesse

Why You Should Choose Embedded BIOS, Too

0 BIOS, DOS, Flash Disk With One Low Royalty
Q Instant Boot, Console Redirection, & Much More

a Expert Support with Guaranteed Response Time

0 We Work Closely With Acer, AMO, Intel, & RadiSys
to Deliver you a Proven, Tested, Feature-Packed BIOS

0 Millions of Units Already Licensed

BIOS Adaptation Kit Includes:
u Complete Source Code
Q Binary Configuration Program

Lf Guick Start + Over 600 Pages of Printed Documentation

General Software, Inc.
3 2 0 108th Ave. N .E . . Su i te 400 - Bellevue. W A 9 8 0 0 4
T e l : ‘206.454.5755 - Fax : 206 .454.5744 * S a l e s : 8 0 0 . 8 5 0 . 5 7 5 5
http://www.gensw.com/generol - E - M a i l : general@gensw.com

(Kd) helps stabilize the system, but I’ll
leave that for you to experiment with.

OTHER NEAT FEATURES
Being able to divide one motor revo-

lution into 4000 parts and then move
the motor shaft to a position accurate
to a few of those 4000 parts is pretty
impressive. But, the LM628 also offers
additional sophistication, as far as
move programming is concerned.

Until now, I’ve only used the PMC
commands necessary to get the system
working. The LM628 has 23 com-
mands, and I’ll briefly discuss a few of
them here.

l L P E I (load position error for inter-
rupt)-allows a level to be estab-
lished beyond which an interrupt
signal is sent to the host to an-
nounce an excessive error condition.
Something may be stopping the
motor from turning, for example, or
the velocity of a move may be set
higher than the motor can achieve.
The host must handle the error
condition.

l L P ES (load position error for stop-
ping)-is similar to L P E I, except
the PMC takes corrective action by
stopping the motor

l S B PA (set breakpoint position abso-
lute)-produces an interrupt when a
specific absolute position is reached.
The host can then initiate some
activity at various points along a
motion (e.g., turning a tool on or
off).

l S B P R (set breakpoint position rela-
tive)-is similar to S B PA , but the
position is measured relative

l RDS I GS (read signals register)-allows
a handful of status-type information
to be transferred to the host.

A PRODUCTION RUN
After it was clear that the prototype

worked correctly, the next step was to
make production quantities. For us at
the NAIT, that means enough for 12
pairs of students plus a spare or two.

I passed the prototype and working
schematics to the technical services
group for PCB layout and production-
prototype construction. After a couple
of small corrections, we were ready for
production.

68 Issue 85 August 1997 Circuit Cellar INK@

WRAPPING IT UP students are also exposed to an intelli-
At NAIT, we use this lab unit as an gent motion card (a Galil DMC-620).

integral part of our Intelligent Motion Giving students the opportunity to
Control course. The LM628 proved an see how easy motion tasks can be
excellent vehicle for exploring intelli- implemented using an intelligent card
gent motion, particularly since the and how significant the software task

Listing P---The first move requires a long series of commands and data to be sent. Subsequenf moves can
be made with fewer commands and data if velocity, acceleration, and ofher parameters are unchanged.

. The equates from Listing 1 are required.
Imodel tiny
.code
erg 1OOh

Start:
: Make sure LM628 is Reset before code is run the first time.
; BUSY procedure is not repeated here but IS required.
; Load the digital filter parameters.
Mov al, LFIL
Call BUSY

; load load filter parameters opcode

Out PMCCCMD, al
; wait until LM628 is ready

Mov ax, 0800h
; send opcode
; filter control word is 0008h, which sets

Call BUSY
Out PMC_DATA, al

: derivative sampling interval to 2048/fclk

Xchs al. ah
; and indicates that only Kp follows

Out" PMC_DATA, al ;
Mov ax, 2800h
Call BUSY

; sets Kp to 40d

Out PMC_DATA, al :
Xchg al, ah
Out PMC_DATA, al I
Mov al, UDF
Call BUSY

; load update filter opcode

Out PMC_CMD, al
; wait until LM628 is ready
; load new filter parameters

; Set up for relative position move of +120.000 counts.
Mov al, LTRJ
Call BUSY
Out PMCCCMD, al
Mov ax, 2BOOh
Call BUSY
Out PMCCDATA, al
Xchg al, ah
Out PMC_DATA, al
Mov al, Oh
Call BUSY
Out PMC_DATA, al
Out PMC_DATA, al
Mov ax, lEOOh
Call BUSY
Out PMC_DATA, al
Xchg al, ah
Out PMCDATA, al
Mov ax, 0200h
Call BUSY
Out PMCCDATA. al
Xchg al, ah
Out PMC_DATA, al
Mov ax, OC6OBh
Call BUSY
Out PMC_DATA, al
Xchg al, ah
Out PMC_DATA, al
Mov ax, OlOOh
Call BUSY
Out PMCCDATA, al
Xchg al, ah
Out PMC_DATA, al
Mov ax, OCOD4h
Call BUSY
Out PMC_DATA, al
Xchg al, ah
Out PMC_DATA, al
Mov al, STT
Call BUSY
Out PMC_CMD, al
Ret

END Start

f load load trajectory op code
; wait until LM628 is ready
; send opcode
; trajectory control word of 002Bh

i indicates al 1 3 move
at posi

larameters are coming
ion will be relative; nexlz and t,hi

; send hi part
; doubl e word i

of acce
e OOOOh

eration

; send

; doub

lo part of acce eration

e word ie OOlEh

; send

: doub

hi part of velocity

e word ie 0002h

; send lo part of velocity

; double word ie OBCGh

; send hi part of position

; double word ie OOOlh

I send lo part of position

; double word ie D4COh
; load move parameters and start motion

I return to Monitor program

becomes when you use a device like
the LM628 helps them appreciate the
bigger picture.

The LM628 was a good choice for
this application for several reasons.
Because it’s a “mature” part, helpful
application information was available.
And, even though this chip is rather
expensive (about $47), National pro-
vided evaluation samples. So, I had the
prototype up and running without
spending any money.

Also, this chip is relatively easy to
use. I’ve looked at others with far
more intimidatingly thick manuals.

I’m in the process of examining
other intelligent motion devices for
use in the course. The next system I’ll
include is an intelligent stepper motor
controller which communicates to a
PC via the printer port. q

Gordon Dick is an instructor in elec-
tronics at the Northern Alberta Insti-
tute of Technology, Edmonton, AB,
Canada. He has been involved in
intelligent motion both as a consultant
and an educator. The project presented
here supported a training course on
intelligent motion. You may reach
Gordon at gordond@nait.ab.ca.

[l] C. Raskin, Designing With Mo-
tion Handbook II, Technology
80, 1994.

National Semiconductor, LM628/
629 Precision Motion Controller,
Datasheet, 1994.

National Semiconductor, LM628
Programming Guide, App. Note
AN-693, 1990.

National Semiconductor, LM628/
629 User Guide, App. Note AN-
706, 1990.

LM628
National Semiconductor
P.O. Box 58090
Santa Clara, CA 95052-8090
(408) 721-5000

422 Very Useful
423 Moderately Useful
424 Not Useful

Circuit Cellar INK@ Issue 85 August 1997 69

DEPARTMENTS

From the Bench

Jan Axelson

Using Serial EEPROMs

Putting It All Together

erial EEPROMs
are popular devices

for storing user set-
v tings, measurement data,

and other changeable, nonvolatile
information.

In a typical use, a microcontroller
acts as a master that controls commu-
nications with the EEPROM. Many
microcontrollers have built-in ports
that are compatible with the EEPROMs’
synchronous serial interfaces.

But, a controller isn’t the only way
to communicate with these devices.

A PC’s parallel printer port is an
inexpensive and flexible interface you
can use for programming and reading
serial EEPROMs. With a parallel-port
interface, you only need to add some
generic buffers and drivers and a cable.

And on the programming side, you
can use any language that enables you
to read and write to ports. Software
can emulate all three of the popular
synchronous interfaces, and the code
can be easily modified to handle device
variations.

In this installment, I describe the
circuits and Visual Basic code for a
parallel-port programmer for serial
EEPROMs of the three interface types-
Microwire, SPI, and X-introduced in
Part 1.

I tested the programmer with a 4-Kb
device of each type. With minimal

70 Issue 85 August 1997 Circuit Cellar INK@

modifications, you can use the inter-
faces and program code to communicate
with just about any serial EEPROM.
You can also use the code and circuits
as a starting point for talking to other
chips that use similar interfaces.

ABOUT THE PROGRAMMER
One drawback of using the parallel

port is that it’s software intensive. If
you use a microcontroller or expansion
card with a built-in interface, the hard-
ware handles most of the details of
generating the clock and chip-select
signals at appropriate times, dividing
each byte to send into bits, and com-
bining received bits back into bytes.

The DO and SO outputs aren’t
intended for driving long cables. They
are guaranteed to sink at most a couple
milliamps at 0.4 V, so I added a driver
for each. But, in the other direction,
again due to cable length, I used ‘244
buffers to add some hysteresis at the
EEPROM’s inputs.

The ORG, HOLD, and Write-Pro-
tect inputs are all tied inactive. If you
want to control these in software, you
can connect them to the unused Con-
trol-port outputs.

12C INTERFACE

But, if you use the standard parallel
port (or any generic I/O port], you have
to do all this in software.

There’s a variety of ways to connect
the EEPROMs to the paral-
lel port. Although many
ports now include features
for high-speed bidirectional
communications, every
PC’s parallel port can emu-
late the original port’s de-
sign with all bits under
software control.

The pullup at the Microwire’s DO
output is required only if you try to
read the chip’s Busy status after a pro-
gramming operation completes. You
don’t need it if you read the status
during a programming cycle or if you
skip the Busy check entirely and just
wait 10 ms to access the chip after
programming it.

PC Parallel Port
D-sub

74LS244 93LC66
Buffer/Driver Microwire +5 V

DO 2 2 18 3 DI VCCfl

The signals are eight
Data outputs (bits O-7) at
the port’s base address, five
Status inputs (bits 3-7) at
base address + 1, and four
Control outputs (bits O-3) at
base address + 2.

The 1% interface differs because it
uses a single bidirectional data line
(SDA). The EEPROM’s SDA output is
open drain, and the master’s SDA out-
put must be open drain or open collec-
tor as well, so either the master or the
EEPROM can pull the SDA line low.

The 1% standard also specifies that
SCL’s output should be open drain to

enable multiple masters
to take turns providing
the clock signal. With a
single master, you can
use other output types.

One way to connect
the SDA line to a PC’s
parallel port is to use a bit
from the parallel port’s
Control port. On the
original PC and most of
its descendants, the Con-
trol bits are open collec-
tor with 4.7-kR pullups
typical.

I 74LS244 NM25C04

I tried several hardware
configurations for the pro-
grammer. Figure 1 shows the
interface I settled on be-
cause it was straightforward
and usable on any PC’s port.

Each EEPROM uses two
or three of the Data outputs
and one Status input. The
Control port and two Status
bits are unused. The eight
ground returns in a standard
25-wire parallel cable all
connect to signal ground in
the EEPROM circuit.

GND 18-25
=

Circuit construction and
cable design aren’t critical
concerns. I used an ordinary
10 ribbon cable with the
circuits on a solderless
breadboard.

Figure l--The PC’s pm//e/port provides a simple interface for communicating with
serial EPROMs.

MICROWIRE AND SPI INTERFACES
The interfaces to Microwire and SPI

EEPROMs are similar. Each line uses
one of a 74LS244’s buffer/drivers.

The choice of buffers and drivers
isn’t critical. A 74HCT244 or similar
works well. And, if your cable is very
short, you may get by without any
added buffers or drivers at all.

For faster switching on
many of the newer ports,
the Control outputs
switch to push-pull type
when the port is config-
ured for a high-speed (EPP
or ECP) mode. When
emulating the original
port, however, they revert
to open drain.

But, a few ports don’t
have the open-collector/
-drain outputs, so I didn’t
assume they’d be avail-
able. Instead, as with the
other interfaces, I used a
Data output and Status
input.

SDA’s input buffer is a
7407 open-collector driver
with a 4.7-kQ pullup.
When the PC is writing

Circuit Cellar INKm Issue 85 August 1997 71

Lowest Cost

D a t a A c q u i s i t i o n

ADAC’s new Value-line has

uncompromising design features

and high quality components at

prices below the low cost guys!

Just check out the specs:

Lowe5t Cost
5500MF
8 channels 12-bit A/D, $p

16 digital I/O, Counter/Timer

High Speed
5506LC
8 channels 12-bit A/D,
100KHz. DMA

M u l t i - F u n c t i o n OMA
5516DMA
16 channels 12-bit A/D,
DMA, 16 digital I/O

High Remolution
5500HR
16 channels 16-bit A/D,
DMA, 8 digital I/O

learn more:
voice 600-648-6589
fax 617~?38-6553

web www.adac.com
email info@adac.com

American Data Acquisition Corporation
70 Tower Office Par&, Woburn, MA 01801 USA

Listing l--Each serial-EEPROM fype uses a differenf protocol for sending and receiving bits. When using the
PC’s parallel porf to communicate with the EEPROM, the software has to provide the clock transitions at
appropriate times. These routines write bits to the EPROMs.

'Bit numbers of output signals at parallel port's Data port.
'MW (Microwire):
Const Din = 0
Const CLK = 1
Const CS = 2
'SPI:
Const SI = 3
Const SCK = 4
Const nCS = 5
'IZC (no hardware chip select):
Const SDAout = 6
Const SCL = 7

'Bit numbers of input signals at parallel por
'MW:
Const DOut = 3
'SPI:
Const SO = 4
'IZC:
Const SDAIn = 5

Private Sub IZCWriteBit(BitToWrite%)

,t's Status port

'Write bit with SCL=O and bring SCL high to latch bit into EEPROM
DataToWrite = fncBitWrite(DataToWrite, SCL, 0)
Out OutputPortAddress, DataToWrite
DataToWrite = fncBitWrite(DataToWrite, SDAIn, BitToWrite)
Out OutputPortAddress, DataToWrite
DataToWrite = fncBitWrite(DataToWrite, SCL, 1)
Out OutputPortAddress, DataToWrite

End Sub

Private Sub MWWriteBit(BitToWrite%)
'Write bit on CLK's falling edge
'and bring CLK high to latch data into EEPROM.
DataToWrite = fncBitWrite(DataToWrite, Din, BitToWrite)
DataToWrite = fncBitWrite(DataToWrite, CLK, 0)
Out OutputPortAddress, DataToWrite
DataToWrite = fncBitWrite(DataToWrite, CLK, 1)
Out OutputPortAddress, DataToWrite

End Sub

Private Sub SPIWriteBit(BitToWrite%)
'Write bit on SCK's rising edge
'and bring SCK low to latch data into EEPROM.
DataToWrite = fncBitWrite(DataToWrite, SI, BitToWrite)
DataToWrite = fncBitWrite(DataToWrite, SCK, 1)
Out OutputPortAddress, DataToWrite
DataToWrite = fncBitWrite(DataToWrite, SCK, 0)
Out OutputPortAddress, DataToWrite

End Sub

data, addresses, or instructions to the If you use one of the parallel port’s
EEPROM, SDA’s output is off and SDA Control bits to communicate with
follows bit D6. During Read operations, SDA, be aware that bits 0, 1, and 3 in
D6 must be high to enable SDA to
control S5.

You can use just about any LSTTL
or HCTMOS buffer/drivers at S5 and
D7 (SCL). I used the 7407s only be-
cause I was already using the chip and
had the extra drivers. And of course, if
you don’t use open-collector or open-
drain devices for these, you don’t need
the pullups.

the parallel port’s Control register read
the inverse of the logic state at the
connector. So, with them, remember
to use inverting buffer/drivers or invert
the bit in software.

USING THE PROGRAMMER
Photo 1 shows the user screen for

the programmer application. I created
the software with Visual Basic 4, and it

72

#133

Issue 95 August 1997 Circuit Cellar INK@

loads and runs in either the 16- or
32-bit edition under Windows 3.1 or

Windows 95.
The software won’t run under NT,

which requires a kernel-mode driver
for port accesses. If you have a driver
for port I/O under NT, you can modify
this program’s routines.

A drop-down list box lets you select
any of the three most common base
addresses for parallel ports (i.e., 37811,
278h,3BCh). You can use other ad-
dresses by adding them to the list
box’s code.

The application can program and
read individual bytes or files. To pro-
gram a byte, select the EEPROM type,
enter the byte and an address in the
text boxes, and click on the corre-
sponding program command button.

After programming, the software
reads the EEPROM’s status, waiting
for it to return a “not busy.” The text
box at the bottom of the window tells
when the programming operation is
completed or that the programming
operation has timed out without re-
ceiving the expected response from the

If it’s an 1% interface and
the software doesn’t receive
the expected Acknowledge
signals, the read operation
times out and displays a
message. The Microwire and
SPI interfaces have no time-EEPROM. If the file to program is

longer than 5 I2 bytes, the software out for read operations because the
programs the first 5 I2 bytes. EEPROMs don’t send Acknowledges.

To read a byte from an EEPROM, To program a file’s contents into an
select the EEPROM type, enter an EEPROM or to write the contents of

Photo l--With this Visual Basic program
and Figure I's circuit, you can read and
program Microwire, SPI, and I% serial
EEPROMs.

address in the text box, and
click on the corresponding
Read command button. The
program reads the requested
byte and displays it in the
text box.

develwment
CAD PAK Windows-$199, DOS - $159
Ideal for New Users, Hobbyists, & Small Businesses!
Provides everthing for PCB Layout & Schematic Drawing

PROTELJ S Startsat$425
Most Powerful EDS System on the market!!!
l Schematic Capature * Circuit Simulation
l PCB Layout with Rip-Up & Reky Autorouting

R4 SYSTEMS INC.
1100 GOR?iAM ST. Suite llB-332 TRY OUR

NEWMARKET ONTARIO FREE DEMO
CANADA L3Y 7Vl WRITE OR CALL

905 898.0665 FAX 905 898.0683 TO DAY

BBS 905 898.0508 l96OO,B,N, 1) 0
Circuit Cellar INK@ Issue 85 August 1997 7 3

an EEPROM into a file, use F i 1 e Pro -
gramandFile Read.Eachbringsup
a common dialog box that lets you
select a file to read from or write to.

A completed programming operation
doesn’t guarantee success. To verify,
read the byte(s) back and compare with
the original.

ACCESSING PORTS
The first challenge to accessing the

parallel port in Visual Basic is that VB
doesn’t include BASIC’s usual I n p and
Out for accessing I/O ports.

A solution is to use an “Inpout” DLL
that adds these routines to VB. The
DLL reads and writes directly to the
selected port.

The EEPROM programmer uses
either of two DLLs, depending on if the
program is running under the 16- or
32-bit edition of VB. As with all DLLs,
the DLL itself must be on the system
running the program and the program
must declare the routines it calls.

The syntax for using the DLL’s I n p
and 0 LI t is the same as in QuickBasic:

ByteRead = Inp(PortAddress)
Out PortAddress, ByteToWrite

VB also allows this alternate syntax
for Out:

Call Out (PortAddress,
ByteToWrite)

Another option for accessing ports
under Windows 3.x or 95 is via a virtual
device driver (VxD), which enables an
application to block port accesses from
unauthorized sources. A VxD has other
benefits as well, such as the ability to
respond more quickly and use system
features like DMA.

However, both Windows 3.x and 95
allow direct port reads and writes as
long as another driver hasn’t blocked
access to the port. If other applications
don’t need to use the port and if you
don’t need a VxD for other reasons,
direct I/O is a quick and inexpensive
solution.

INSIDE THE SOFTWARE
The program itself consists of many

short routines. One set handles the
user interface, including reading the

option buttons and text boxes and individual bits in a byte without hav-
responding to button clicks. ing to track the states of all the others.

Other routines handle tasks com-
mon to all three EEPROM types (e.g.,
extracting a bit from a byte and dis-
playing time-out messages). And for
each EEPROM type, a set of routines
sends instructions, addresses, and data,
and reads data in the required format.

A form variable (Da t a 0 u t) holds the
last value written to the Data port, and
a B i t W r i t e function sets or clears a
selected bit in a byte. To toggle a bit at
the Data port, the code first sets or
clears the desired bit in Da t a 0 u t and
then writes the result to the port.

I designed the program to work
with an example 5 I2-byte EEPROM of
each type. With modifications, you can
use it with EEPROMs of other capaci-
ties or make other changes required by
a specific device.

Listing 1 shows the routines for
writing and reading one bit with each
type of EEPROM. For each EEPROM
signal, I defined a constant equal to the
signal’s bit number at the parallel port.
If you want to use different bit assign-
ments, change the constants to match.

A challenge in getting this software
working was that the serial links don’t
provide much in the way of feedback.
The only way to know if a byte pro-
grammed successfully is to write the
byte and read it back.

If it doesn’t verify, there’s no way to
know if the problem was in the pro-
gramming or read operation. A single
missing or extra clock pulse or a mis-
take in an instruction or address means
the intended operation won’t complete.

PC sends an Acknowledge to let the
To keep the software as flexible and master know when the EEPROM re-

easy to understand as possible, I de- ceives something. Even here, the mas-
signed the code so you can change ter may read (logic low) Acks when

Listing 2--Each EEPROM type responds to a small instruction set. These routines senda Read instruction
to the EEPROM, followed by the address to read. The EPROM responds with the requested data. The PC
and SPI instructions include address bif 8, while the Microwire instruction sends a// nine bits fo//owing the
insfrucfion.

Private Sub IZCSendReadInstruction(A8%)
'Read instruction consists of device identifier (1010).
'two don't cares, address bit 8, and 1 (Read).
Call IZCIssueStartCondition
Call IPCWriteBit (1)
Call 12CWriteBit (0)
Call IZCWriteBit (1)
Call 12CWriteBit (0)
Call 12CWriteBit (0)
Call IPCWriteBit (0)
Call 12CWriteBit (A81
Call 12CWriteBit (1)
Call IPCWaitForAck

End Sub

Private Sub MWSendReadInstructionO
'Sends Start bit (1) and Read instruction (1.0):
Call MWWriteBit(1)
Call MWWriteBit(1)
Call MWWriteBit(0)

End Sub

Private Sub SPISendReadInstruction(A8%)
'Sends Read Instruction:
Call SPIWriteBit(0)
Call SPIWriteBit(0)
Call SPIWriteBit(0)
Call SPIWriteBit(0)
Call SPIWriteBit(A8)
Call SPIWriteBit(0)
Call SPIWriteBit(1)
Call SPIWriteBit(1)

End Sub

74 Issue 85 August 1997 Circuit Cellar INK@

none have been sent (e.g., if the circuits
aren’t powered up). So only a successful
verify, not the lack of an error message,
indicates a success.

Fortunately, with all three interfaces,
you can toggle the clock as slowly as
you want. To troubleshoot, single-step
through the routines and verify that
each signal behaves correctly each time.

Listing 2 shows routines for writing
Read instructions to each EEPROM
type. Again, nothing is automatic.
Software provides all the clock transi-
tions and writes each bit of the instruc-
tions and data at appropriate times.

ENHANCEMENTS
Although the program is functional

as it stands, chances are that you’ll
want to make changes and enhance-
ments, such as the ability to use other
EEPROM sizes or the addition of in-
structions such as E r a s e A 1 1.

Other enhancements might include
saving program settings such as default
EEPROM types and file directories as
well as more robust error checking. q

/an Axelson is the author of Parallel
Port Complete and The Microcon-
troller Idea Book. You may reach her
by E-mail at jaxelson@lvr.com or via
her Web site at www.lvr.com.

The complete program code is avail-
able at www.lvr.com and on the
Circuit Cellar Web site.

68HCll
Motorola
MCU Information Line
P.O. Box 13026
Austin, TX 7871 l-3026
(512) 328-2268
Fax: (512) 891-4465
www.mcu.motsps.com/mc.html

8x028
Philips Semiconductor
8 11 E. Arques Ave.
Sunnyvale, CA 94088-3409
(408) 991-5207
Fax: (408) 991-3773
www.semiconductors.philips.com

Serial EEPROMs
Digi-Key Corp.
701 Brooks Ave. S
Thief Falls, MN 56701-0677
(218) 681-6674
Fax: (218) 681-3380

93LC66,93C76,24LCO4
Microchip Technology, Inc.
2355 W. Chandler Blvd.
Chandler, AZ 85224-6199
(602) 786-7200
Fax: (602) 786-7277
www.microchip2.com/appnotes/

appnotes.htm

COP888, NM25C04, NM24C04,
NM24C03

National Semiconductor
P.O. Box 58090
Santa Clara, CA 95052-8090
(408) 721-5000
Fax: (408) 739-9803
www.national.com/design

425 Very Useful
426 Moderately Useful
427 Not Useful

LOGICAL

s tart programming devices today with the lowest cost and highest per-

TSOP, QPF, PLCC, DIP.... programming heads. Evaluate a unit today
with 100% satisfaction guaranteed orYOUR MONEY BACK!

(no penalties or restocking fees if unit is returned).

Call Today in USA 800-331-7766
Fax: 303-733-6868 or Visit our Home Page:

www.logicaldevices.com

Circuit Cellar INK@ Issue 85 August 1997 7 5

It Can’t Be
A Robot

Jeff Bachiochi

Part 3:
It’s Blind as a Bat 4!b ,

ou may recall a

V
r project I did a few
years ago using Polar-

V oid ultrasonic transducers
mounted on the rear of my motorcycle
(“Probing the Dark Side,” INK 50).

Five transducers kept watch for
vehicular movement to my rear, cor-
ners, and sides. A display of colored
LEDs indicated where the transducers
saw objects. I used the full range of
transducers.

Receiving long-distance (> 10’) ech-
oes is based on two factors. First, the
objects reflecting the ultrasonic bursts
must be of sufficient size to create a
sizable echo.

As well, the voltage used to fire the
transducers must be sufficiently high.
A lot of energy is required to produce a
powerful signal so there’s enough of
that signal to be reflected and an echo
heard.

Signal strength is reduced by the

Large robots might need to know
about objects 30’ or more away, but
the little guy I’ve been working on
won’t have much use for that kind of
information. Instead, his universe
consists of knowing about only those
things located within a few feet.

Since the distances will be consider-
ably smaller than those associated
with the Polaroid system I developed
for my bike, I may be able to get away
with a much less sophisticated device.
Let’s see what else is available for
transducers.

My first experience with ultrasonics
was from Heathkit. Behind the camou-
flage of a classic hardcover book was
one of the first motion sensors I re-
member seeing.

The transducer and receiver were
aimed through the false binding. A
disturbance in what the circuitry saw
as the normal echo pattern tripped a
relay and could be used to perform any
alarm-type function. Real cloak and
dagger for a time when no one even
thought of locking their front door.

The ultrasonic transducers in that
kit were much different than my half-
dollar-sized Polaroid ones. I located
some similar units in the Mouser cata-
log. (Digi-Key has discontinued their
transducers. I

REACH OUT AND DON’T TOUCH
The ultimate distance sensor would

cover an area exactly the width of the
object (i.e., the robot). Perfect coverage
would show distance to any object that

square of the distance. And, the bit of falls directly in the path of-motion.
signal that is reflected is also reduced It’s difficult for a single sensor to
by the square of the distance for the know, however, where in its field of
return trip. view the object resides (see Figure la).

Figure la-Sy measuring fhe distance from the source to an objecf and the echo back, posifion is indeterminate
using a sing/e transducer. b-A much better view is obtained using two transducers.

76 Issue 85 August 1997 Circuit Cellar INK@

Listing 1-A call to _UL TRA produces 10 cycles of40-kHz ultrasonic transmission. A 100~ps loop is per-
formed 255 times. This loop checks the four ultrasonic receivers and saves the loop count when an echo is
firsf heard. These counts are returned and are used to calculafe the distance.

ASM
-ULTRA clrf _BO

clrf _Bl
clrf _B2
clrf _B3
movlw _CYC
movwf pB5

_UO bsf PORTB.5
movlw 3
movwf pB4

_Ul decfsz -84
got0 _Ul
nop
nop
bcf PORTB.5
movlw 2
movwf -84

_U2 decfsz -84
got0 _U2
nap
nap
decfsz -85
got0 _UO

_CNT clrf -85
movlw 21
movwf -84

-co d e c f s z -84
got0 -CO
nap
incf -85
movlw OFFh
subwf B5,W
btfss STATUS,2
got0 _TSTO
got0 done

_TSTO movf PORTB,W
nlovwf B6
btfsc _B6,0
got0 PTSTOO
movf -80
btfss STATUS,2
got0 PTSTOl
movf -85.W
movwf _BO
got0 _TSTl

_TSTOO nop
nap
w

_TSTOl nop
nop
nap

_TSTl btfsc _B6,1
got0 _TSTlO
movf -81
btfss STATUS,2
got0 _TSTll
movf _B5,W
movwf _Bl
got0 _TST2

_TSTlO nop
nop
nop

_TSTll nop
nap
nap

_TST2 btfsc pB6.2
got0 _TST20
movf _B2
btfss STATUS.2
got0 _TST21
movf B5,W
movwf -82
got0 pTST3

-TST20 nop

: 111
: [21
: 131
; c41 [67/671
: 15/61
: 1691
; [701

; E;;;
: [731
: [74/751

: [ll
; [21
: [31 [3/41
; 14151
: 151
: C61 16/71
; [7/a]
: 181
: r91
: 110/111
: [61
: [71
; [81
: [91
; [lOI
: 1111
; [VI 112/131
: 113/141
: Cl41
; 1151 115/161
: 116/171
; [171
: 1181
; [19/201
: [I51
: [I61
: 1171
; [181
; [I91
; [201
: 1211 c21/221
: C22/231
: 1231
: 1241 [24/251
; [25/261
: 1261
; [271
[28/291
I [241 (continued)

Although ultrasonic sensors are
more akin to our ears than our eyes,
when used in pairs, object distance
can be triangulated similar to the way
our brains estimate distance. Relevant
position is determined by the distance
difference to the same (assumed) target,
as depicted in Figure lb.

Similar positioning information
can be acquired via a single sensor if
it’s moved (either by turning the robot
or the sensor). Since fewer sensors
mean not only less expense but also a
much simpler system, I’ll try this
approach.

Let’s begin with one sensor for each
direction (front, rear, left, and right).
In this fashion, the front and rear
sensors can point out impending doom
while moving forward or backward.

The side sensors can help navigate
a safe distance from a wall by keeping
the motion parallel to it. If motion is
not kept parallel, the robot may get
stuck by grazing the wall without the
forward sensor seeing it.

HELLO...HELLO
In this situation, we’re dealing with

distances relative to the size of the
robot, not the size of objects across
the room. Since I’ve been using the
PicStic micro thus far with the robotic
platform, continuing to use the same
inexpensive brain will keep this multi-
processor system simple.

The PicStic can easily produce a
40-kHz transmission burst via a
BASIC command and directly drive
the transmitting transducer. However,
I also want the PicStic to count the
time it takes any echo to return to its
receiver.

Since sound travels about 12.5 in./
ms, I need to count in increments of
less than a millisecond to get resolu-
tion down to about an inch. Counting
in tics of 100 us, I get a resolution of
1.25” per tic round trip (out and back]
or 0.625” per tic (out to the object).

An &bit register can hold 255 tics,
which is equivalent to well over lO’-
much farther than will be necessary.
Therefore, the maximum time spent
sending out a transmission burst and
testing at each tic for a echo will be
about SO ms (maximum tic count of
255).

Circuit Cellar INK@ Issue 85 August 1997 7 7

You heard right. A quality C
compiler designed for the 8051
microcontroller family, just $200,
including the Intel compatible
assembler and linker. A great
companion to our fine Single
Board Computers, like those
below. CALL NOW!

8OC552 a ‘5 1 Compatible Micro
40 Bits of Digital I/O
8 Channels of 10 Bit A/D
3 Serial Ports (RS-232 or 42214851
2 Pulse Width Modulation Outputs
6 Capture/Compare Inputs
1 Real Time Clock
64K bytes Static RAM
1 + UVPROM Socket
5 12 bytes of Serial EEPROM
1 Watchdog
1 Power Fail Interrupt
1 On-Board Power Regulation

Priced at just $299 in single
quantities. Call about our 552SBC
C Development Kit, just !$448.

Other venions of the 8031SBC have processors
with onxhip capture registers, EEPROM, IIC, A/D
ond more. Coil or emoil for a list!

S ince 1983

- (619) 566-1892-

Internet e-mail: info&hte.com
World Wide Web: www.hte.com

Listing 1-coniinued

nap
w

_TSTZl n o p
nap
nap

pTST3 b t f s c _B6,3
got0 _TST30
movf -63
btfss STATUS,2
got0 _TST31
movf pB5.W
movwf _B3
got0 PCNTl

_TST30 nop
nap
nop

_TST31 nop
nap
nap

PCNTl movlw 18
movwf -84

-Cl decfsz -84
got0 -CO
nop
nop
got0 _TSTO

endasm

; [251
; [261
: 1271
; C281
: [291
; c301 [30/311
; [31/321
: C321
: [331 1331341
; [34/351
; [351
: 1361
; [37/381
: [331
; 1341
: [351
; 1361
; c371
; 1381
; c391
: [401
; [411 [95/961
: [42/431
; 1971
: 1981
; 199/1001

BASIC is a bit slow for counting in
the microsecond range. Luckily, it’s
easy to use assembly language with
the PicStic. In fact, it can reside in the
BASIC listing, which keeps all the
code in a single file and is great for
keeping revisions straight.

The receive transducer by itself
produces small (millivolt) voltage
swings even at only short ranges. It
needs to be highly amplified to pro-
duce a usable signal.

Rather than build this special ana-
log front end, I decided to cheat by
using circuitry you may already be
familiar with.

What frequency comes to mind
when I mention the words “IR trans-
mission”?

It’d have to be 40 kHz, right?
I took the Sharp GPlU5 IR receiver

and replaced the IR sensor with an
ultrasonic transducer and got a high-
gain amplifier and 40-kHz demodula-
tor in a COB (chip onboard) circuit
giving a TTL output. The circuit dia-
gram in Figure 2 gives a more com-
plete picture.

The metal shield surrounding the
device can be easily removed. It just
snaps on and off. I mounted the trans-
ducer right to the little PCB inside, as
you see in Photo 1.

Only the code for the transmission
and reception is done in assembly. It is
called directly from the BASIC code.

This setup lets me use BASIC for
the main program loop (including
communications). I didn’t have to get
bogged down with a total assembly-
language program because speed is not
required here, except for the transmis-
sion and tic counting.

IR
~pt~s Metal IR receiver replaced with
:------'Shield an Ultrasonic Transducer

3eceiver~ 110

C h i p bnboa;dPins mv

Side View

Figure 2--The Pi&tic micro becomes the network
master and takes care of transmitting 400-kHz ultrasonic
bursts while a/so listening for echoes in f o u r d i r e c t i o n s .

78

Rld3

Issue 85 August 1997 Circuit Cellar INK@

Listing 1 shows the assembly-lan-
guage routine called from BASIC.

WORKING TOGETHER

Of course, there is a small matter of
task. Without even the simplest of
tasks, the platform will just sit there
and do nothing.

How can this measurement system To get the ball (er, robot) rolling, I
be used with the motor-control system chose the task of roaming an area and
introduced in INK 83! avoiding any obstacles it comes across.

Since both systems are designed for When the robot finds an obstacle, it
network use, this measurement sys- must avoid collision by keeping its
tem can become the master processor distance and maneuvering around it.
and provide commands to the slave This task is broken down into two
motor-drive processor. levels-moving and collision avoidance.

Listing 2-The BA5’lC portion of Pi&tic’s program rakes care of network communication and respoqds to
ultrasonic range input from four discrete receivers positioned fo the front, rear, left, and right of the robot.

Start: peek 881,BO
BO = BO & $7F
poke 881,BO
output 5
output 4
high 4
pause 1000

Lev_l: Serout SO,N9600,("MF0",13.10)
Lev_la: CALL ULTRA

If FWD<SAFMAX or RGT<SAFMAX or BWD<SAFMAX or LFT<SAFMAX
then E-STOP

got0 Lev la
E-STOP: iow 4

Serin SIN,N9600,("MFO")
high 4

Lev_2: CALL ULTRA
If FWD<SAFMAX then Lev_2f
If RGT<SAFMAX then Lev_2r
If LFT<SAFMAX then Lev 21
got0 Lev_l

Lev_Pr: if RGT<SAFMIN then lev 2rl
Lev_2rr:gosub RIGHT

gosub FORWARD
got0 Lev_E

Lev_Prl:gosub LEFT
gosub FORWARD
got0 Lev_P

Lev_21: if LFT<SAFMIN then lev-2rr
got0 Lev_Prl

Lev_2f: If RGT<SAFMAX then Lev_2fr
If LFT<SAFMAX then Lev_Pfl
gosub RIGHT
got0 Lev_2

Lev_Pfr:gosub LEFT
got0 Lev_2

Lev_Pfl:gosub RIGHT
got0 Lev_2

RIGHT: Serout SO,N9600,("MR5".13,10)
Serin SIN,N9600,("MR5")
return

FORWARD:Serout SO,N9600,("MF5",13,10)
Serin SIN,N9600,("MF5")
return

LEFT: Serout SO,N9600,("ML5",13,10)
Serin SIN,N9600,("ML5")
return

Symbol so = 7 ' Serial Output Channel
Symbol SIN = 6 ’ Serial Input Channel
Symbol CYC = 10 ’ number of 40.kHz cycles to send
Symbol SAFMAX = 12
Symbol SAFMIN = 10
Symbol FWD = BO
Symbol BWD = B3
Symbol RGT = 82
Symbol LFT = 61

issue 85 August 1997 Circuit Cellar INK@

Photo l--The top ulfrasonic
transmitters are all pulsed together.
Echoes are caught by the lower
receivers and the time difference
becomes a function of echo
distance travelled.

The first level-moving-is simple.
The robot just turns on both platform
treads and moves forward until told to
do otherwise.

If you remember back to the motor-
controller discussion (INK 83), the four
commands were Fx, Bx, Lx, and Rx.

That’s forward, backward, left, and
right, with x equaling the number of
decoder counts to perform (O-255,
where 0 has no count limit). The pro-
cess continues until interrupted by an
emergency stop input to the processor.

The master PicStic watches the
sensors for an object to come within
an unsafe distance. It immediately
outputs an emergency stop to the slave
PicStic, and the forward movement is
halted. Now, the master processor
drops into level-two mode-collision
avoidance.

In level-two mode, movement is
based on the sensor readings. If the
forward sensor and/or either of the side
sensors shows an obstacle at an unsafe
distance, a small turn is implemented
away from the obstacle until the for-
ward sensor is clear.

If only a side sensor indicates an
unsafe condition, small changes in
direction are added to the forward
motion in an attempt to maintain a
safe yet parallel condition with the
object. The main loop of Listing 2 has
the particulars.

ON ITS OWN
The robotic platform is now free of

the RF link demonstrated in Part 2.
The next phase will be to come up
with some more complex tasks for the

robotic platform. But, that’s a task I
leave for you.

Meanwhile, I’ll let this little guy
roam the office so I can further refine
my simple and most likely imperfect
behavioral assumptions. q

Jeff Bachiochi (pronounced “BAH-key-
AH-key”) is an electrical engineer on
Circuit Cellar INK’s engineering stuff.
His background includes product design
and manufacturing. He may be reached
at jeff. bachiochi@circuitcelIar.com.

Ultrasonic transducers
Mouser Electronics
11433 Woodside Ave.
Santee, CA 92071
(619) 449-2222
Fax: (619) 449-6041

GPlU5 IR receiver/demodulator
Sharp Electronics Corp.
Microelectronics Group
5700 NW Pacific Rim Blvd., Ste. 20
Camas, WA 98607
(360) 834-2500
Fax: (360) 834-8903

PicStic 1
Micromint, Inc.
4 Park St.
Vernon, CT 06066
(860) 871-6170
Fax: (860) 872-2204
www.micromint.com

428 Very Useful
429 Moderately Useful
430 Not Useful

COMM-DRVIVxD

Built-in Multidrop
protocol.

Built-in g-Bit
Protocol.

Supports all tools
that can call DLLs.

Bauds up to 460k.

Supports Windows
95 & Windows 3.x.

Any # of ports.

11 COMM-DRVILib

Supports Windows
NT, 95, 3.x, and
MS-DOS with
same API.

Supports Visual
C/C++, Borland,
etc.

Supports all tools
that can call DLLs.

Any # of ports.

We put all this
DAS capability in a

tiny 2&pin package,
and it still talks in

simple English.

In-Circuit Emulators

SUPport
PowerPC series, ColdFire series,
251 series, I96 series,
80(3186/188 series, Am186EX series,
68302 series, 68306,
68307, PIC 16F series,

. Real-time In-Circuit LkbuBgipB and
Developmeln

#138

Circuit Cellar INK” Issue 85 August 1997 81

Tom Cantrell

Serial Flash Busts
Bit Barrier

0 n this era of
specialization, IC

suppliers are constantly
searching for new product

prospects. Once an idea is narrowed
down to a specific class of products, it’s
helpful to make a table that cross-refer-
ences key features with competitors’
offerings, and then look for a hole to fill.

Of course, many times, this mecha-
nistic approach spits out losers. In
other words, don’t bother trying to sell
your boss on your bright idea for a x3
RAM chip.

Nevertheless, it’s a good way to spin
lots of ideas and encourages thinking
outside the box. Hmm.. .3 does divide
into 9, 18, and 36, which are com-
monly used memory widths.

people will salute an idea until you
run it up the flagpole.

Case in point is the ever-more-
popular nonvolatile memory, which
comes in a variety of forms including
flash, EEPROM, FRAM, and battery-
(or capacitor-J backed SRAM. Heck, for
all I know, someone somewhere is still
using bubble memory.

Anyway, a list of the key features
starts with the most important ones
(e.g., speed, power, density, and price)
and proceeds to more detailed require-
ments such as byte versus block orga-
nization, write speed and endurance,
interface, packaging, and so on.

Cross-referencing with all the avail-
able parts, one missing link leaps off
the page. Yes, there are plenty of low-
density (e.g., less than 64 Kb) chips
with serial interfaces. Yes, there are
plenty of high-density (e.g., greater
than 1 Mb) chips with parallel inter-
faces. But, you guessed it, there aren’t
any high-density chips with serial
interfaces.

Voila, instant new product idea.
Does it make sense? Nexcom Technol-
ogy thinks so and is willing to ante up
their NX25Fxxx chips to prove it. Read
on, and you be the judge of whether
they’ve got a winning hand.

MORE FLASH, LESS EEPROM
Since Nexcom’s NexFlash chips are

based on a single-transistor EEPROM
cell, I’m not sure the traditional cir-
cuit-oriented nomenclature has much

meaning anymore.
Tn ml, n111 A.LI dwn mind,

if it’s byte or word
erasable, it’s an
EEPROM. If it’s

block or chip eras-

You just never know
whether

To muddy the waters even fur-
ther, Nexcom throws in a couple
chunks of SRAM. The only way to
figure out what the chip is is to see
what it does. Let’s take a look.

As shown in Figure 1,

corn part starts with the ah
the Nex-

.eady men-

Photo l--The Nexcom serial f/ash mot
advantage of minima/pin count to /owe
while boosting ease of use.

Me takes
r size and cost

82 issue 95 August 1997 Circuit Cellar

8

0 Ready/Busy Output (Open Drain)

Table l-The dual-function Hold and Ready/Busypin is
programmed as a Ready/Busy output. Totem-pole and
open-collector options are available.

tioned single-transistor EEPROM array,
which is 4 or 8 Mb in the case of the
NX25F040A and NX25F080A ($7.79
and $12.65 in IOk quantities). The
company has announced plans for l- ,
2- and 16-Mb versions as well.

Because the chips are organized into
512 (‘040) or 1024 (‘080) 536-byte sec-
tors, “K” means 1072 in Nexcom’s
case. Bargain bit shoppers should keep
the -5% (i.e., 1072 vs. 1024) advantage
in mind when comparing against other
less “K”apable chips. The extra 24 bytes
per sector are useful for tagging, time-
stamping, error detection and correc-
tion, and the like.

The array is double buffered with
twin 0.5-K (er, 536 byte) SRAMs. As
you’ll see later, they cache transactions,
hide the EEPROM access time, and
eliminate software machinations.

Fairly elaborate write protection
helps keep your system from shooting
itself in the foot. It starts with the * WP
(Write Protect) pin, which disables all
EEPROM writes. Even if writes are pin
enabled, the device automatically
powers up with writes disabled.

Assuming writes get past the first
security checkpoints, they encounter
on-chip logic that breaks the EEPROM
into 16 blocks (i.e., 512 and 1024 sec-
tors for the ‘040 and ‘080, respectively)
which can be write protected in a top-
down or bottom-up fashion.

The serial interface uses Motorola’s
SPI standard comprising a chip-select
line (l CS), serial clock (SCK), and sepa-
rate data-in (SI) and -out (SO) lines.
Though data is normally shifted on the
falling edge of SCK, there is a configu-

ration bit shown in Figure 2 to use the
rising edge instead. The three speed
grades offered don’t refer to memory-
access time but rather a SCK frequency
of 8, 16, or 20 MHz.

ACCESS-ONES
Table 2 details the command set

that puts the chip through its paces
broken into three categories-configu-
ration and status, SRAM, and flash.

Two more configuration bits define After powerup, the first thing your
the function of the *Hold/*RB pin as software should do is a reality check
you see in Table 1. As a Ready/Busy using Read Device Information.
output (either totem pole or open This command returns a read-only
collector], the pin signals whether the sector that includes part number, den-
EEPROM array is busy or not and is sity, voltage, temp range, and other
handy to connect to a CPU interrupt options. It’s also a good idea to confirm
or status input.

As a Hold input, the pin allows the
CPU to temporarily suspend a com-
mand, rather than can-
celing it and having to
start over. This feature
is of most use when a
higher priority task ‘WPw+

needs to perform a
transaction to another
IC over a multichip SPI
bus.

*HOLD ++
or WB

Power-wise, the

or reset the previously described con-
figuration register [which is writable,
and thus suspect) using the Re a d.and

1 Device Information 1
I 38clor

1024 or 2046
byte-addressable

chips have a lot of bases
covered, coming in 5-,
3.3-, and 3-V variants
(all flO%), not to men-
tion a 2.7-3.6-V selec-
tion well-suited for
battery operation. An
on-chip charge pump
generates the EEPROM
programming voltage.
Notice the unique AF
bit in the configuration
register that selects
between nonharmonic
charge-pump oscillator

Register

I * High-Voltage _
Generators

IP (536 bvtes)

SCK-
*cs-

SI-
so+

frequencies to mini-
mize interference.

Figure l-The Nexcom serial f/ash chips hide a big memolybehinda small
infedace.

Write Configuration Register
commands.

Active power seems reasonably low
at 15 and 5 mA for 5- and 3-V versions,
respectively. For reading, a special low-
frequency command variant cuts power
to a third if you limit SCK to 1 MHz or
less. Of course, when the chip is dese-
lected (and inputs aren’t floating), power
use falls into the few microamps range.

The chips also include a read-only
status register (shown in Figure 3)
accessedwiththe Read Status com-
mand. The Busy bit mimics the same-
named pin function (i.e., it reflects the
EEPROM array status). The TR (Trans-
fer) bit performs a similar Ready/Busy
function for the SRAM-related com-
mands.

Direction 1
Read Data
Clock Edge

Figure 2-The configuration
register is programmed with
operating options using the Read
andWrite Configura-
tion Reqistercommands.

The WE (Write Enable) bit is manip-
ulatedwith Write Enable and Write
D i s a b 1 e commands to provide yet
another tier of write protection. The
CNE (Compare Not Equal) bit reflects

Circuit Cellar INK@ Issue 95 August 1997 8 3

Jse Your PC Development Took
No MORE CRASH & BURN EPROM

Technology

DOS Single Board Computer
with 572 k FLASH Memory disk drive
(10 Mhz/8 Mhz CPU d 2 Timers
@ 512 k bytes RAM J 4 Interrupt Lines
’ 512 k/256 k FLASH J 8 Analog Inputs
(2 Serial Ports a* X-Modem File
p 24 Parallel I/O Lines Transfer

INCLUDES DOS & Utilities

/ 8 Channels, 12 bits
t 6 p.s.. Conversion Time
p Clock/Calendar Option
f Includes Drivers & Apps.

L/I 8 Opto-Isolated Inputs

JK micros
Cost Effective Y

stems
Control ers for Mustfy

TO ORDER (510) 2364151
FAX (510) 236.2999-email: jkmicro@dsp.com
Gsit our WEB site-www.dsp.com/jkmicro
1275 Yuba Ave., San Pablo, C4 94806

Figure 3--The status regisfer discloses
whether the EEPROM (Busy) or SRAM (TR)
are current/y preoccupied, the status of
software write prootecfion, and the result of the
C o m p a r e S e c t o r T o SRAMcommand. Ready/Busy

I
Sector-SRAM

SRAM and Program Compare Not Equal

Buffer Transfer

Flash Array Write
Enable/Disable

theresultofthe Compare Sector which the 5 ms (V,, = 5 V) or 10 ms
W i t h S RAM command and is cleared
with Clear Compare Status.

The SRAM commands access the
dual buffers (SRAM and program buffer)
and transfer data between them. Even
though the program buffer can’t be
written directly, it’s possible to shuffle
data around (via T r a n s f e r commands)
to coerce both 0.5.KB buffers into
mimicking 1 KB of RAM when other-
wise not being used for EEPROM trans-
fers. Note that the Read and W r i t e
commands can start at any byte ad-
dress and be of any length between
1 byte and the entire buffer length.

The flash commands are where the
rubber meets the road. Like the RAM
commands, both byte (i.e., Read and
Write) andbuffer (Transfer) variants
are supported.

The double-buffering scheme comes
into play for write commands (W r i t e
To SectorandTransfer SRAM to
Sector). The contents of the SRAM
are moved to the Program Buffer from

(V,, = 3 V) EEPROM write is staged. In
the meantime, the SRAM can set up
the next write or revert to general-
purpose use.

All the commands offer lots of flex-
ibility, and choosing the best strategy
depends on application characteristics,
notably SCK frequency and whether
transfers are byte or sector oriented.

For example, start with an EEPROM
array write speed of 5 ms (V,, = 5 V).
Getting a an entire sector into the chip
takes a bit less than 5000 clocks [i.e.,
536 x 8 + overhead).

Thus, if SCK is only 1 MHz or so,
there’s little gain from fancy buffering
schemes since the bus is the limit. But,
if you’re doing lots of partial sector- or
byte-level manipulation or your SPI
clock is much faster, clever optimiza-
tion of the memory can help a lot.

INFO KEY
I must admit, I was well into writ-

ing the article before I noticed some-

Command Name byte 0 bytel-2 byte 34 n-bytes

ConfIguration and Status Commands

Read Configuration Rqster 88 0000 0000 0000 read/busy configuration

Write Configuration Register SA conflguratlon 0000

Read Status Register 83 0000 0000 0000 read/busy StatUS

Clear Compare Status 89 0000

Read Device Information 15 0000 byte addr 0000 readibusy read data

Sewl SRAM and Program-Suffer Commands

Wnte to SRAM 82

Read from SRAM 81

Transfer SRAM to Prog. Suffer 92

Transfer Prog Suffer to SRAM 55

Read from Program Suffer 91

0000 byte addr

0000 byte addr

0000 0000

0000 0000

0000 byte addr

wrote data 00

0000 K?&bUSy read data

0000

0000

0000 read/busy read data

Table 2-There are 18 commands that access the configuration andsfafus registers, RAM (SRAM and program
buffer), and EEPROM. All values are in hex, and italics indicate device output.

84
#139

Issue 85 August 1997 Circuit Cellar INK@

vcc 4 25
N/C 5 24
N/C 6 TSOP 23

25FO40
N/C
N/C
‘CS
‘WP

SI
GND I - - - - - l 1 4 1 5

9 AND 20
10 25FO80 19
11 16
12 17
13 16

N/C

v c c d4 25 b

N/C 3 5 24
N/C 6 SO 23
N/C 7 22 E

N/C

Figure 4-Mysfev of the
month: Why aoes an “Spin”
interface need a 24 or B-pin
package?

thing rather odd-namely, the packag-
ing. See it for yourself in Figure 4.

Can’t say I’ve ever seen a chip with
more No Connects than signals, but
there’s always a first time. Having
elaborated the premise that a pin-miser
serial interface makes sense, some-
body’s got some explaining to do.

unit) makes even recently downsized
flash cards like CompactFlash and
MiniCard (see “Flash Fight Flares,”
INK 76) seem bulky.

Sputtering x8 strategy retro-mar-
keted with SPI! Top-secret double-die
(one on each side) upgrade plan? Speedy
test port? Somebody’s brother-in-law
having a 24-/28-pin fire sale?

If there’s any bad news, it’s that the
module is small enough to end up with
all the pens, lighters, and pocket knives
in the black hole for the chronically
misplaced detritus. Thoughtfully, the
gadget includes a slot for a safety leash.

Turns out to be nothing that excit-
ing-just the simple fact that the die is
too big to fit in the tiniest g-pin pack-
ages. Not really a problem since all the
N/Cs don’t crimp your PCB layout.

Notice the interesting pad layout in
Figure %--in particular, the dual-func-
tion WP/DT (Write Protect, Card De-
tect). On the host side, the WP/DT
connection should be pulled up.

I suppose you could even mount the
chip on edge and leave ‘em hanging in
the breeze. Nexcom says they may
offer downsized 16-pin versions of
upcoming l- and 2-Mb chips.

Then, card insertion can be detected
by a low-going edge as the DT (and
ground) connection is made. The card
detect phase ends as the module slides
past the DT land.

Subsequently, the WP/DT connec-
tion is interpreted as hardware write
protect. If it’s grounded on the module,
write protection is enforced. Otherwise,
it remains pulled up, signaling that
host writes are allowed.

In fact, the IC packaging issue may
be somewhat moot. Turns out, Nexcom
is also offering the intriguing serial
flash module shown in Photo 1. It
takes advantage of a new &pin connec-
tor pioneered by ITT Cannon for GSM
cellular-phone apps. nature. The skill required of the fum-

I must say the Nexcom module blefingered is minimal, and there’s a
($13.50 in IOk quantities for the 8-Mb satisfying detent-like tactile and au-

I did have a chance to fiddle with a
module/connector combo and was
especially pleased with its user-friendly

Figure G-The serial flash module
connecfor cleverly multiplexes card-
detect and write-protect signals on a I

SCK .
so
SI

Card& WPDetect *
: (12)

Detect Control 6
” ’ ,

10k : WPIDT
: 4 W’B -

c5 :
GND Hold

(14) (1)

Micro I ’
Controller - /

(DSP or WC) :
I

k% Hm%T
r SCKm ISO

c s o m ISIsing/e pin. I

dible (clicking sound) feedback that
minimizes ambiguity about whether
the module is fully inserted or not.

Although insertion and removal
force are low, the module seems to be
gripped tightly enough to overcome
the typical daily turbulence hand-held
gadgets encounter. Like a Porsche
shifter (I’ve heard), the arrangement
just has “a good feel.”

NICE NICHE
While many applications are well

served by the traditional choices (i.e.,
low-density serial EEPROM or high-
density parallel flash), I’m sure there
are situations where the Nexcom chips
and modules make sense-everything
from cellular answering machines and
wireless fax to downsized data loggers.

Serial buses continue to gain popu-
larity, and the high-speed capability of
the Nexcom SPI port goes a long way
towards defusing performance com-
plaints. The cost of connecting to the
chip is low, maybe close to zero if your
system already has other serial-bus
peripherals.

Contrast the SPI interface with the
dozens of connections required for a
parallel chip, not to mention the many
more required by PCMCIA and its
latest descendants. For those who need
a bunch of bits in a small package, the
Nexcom chips and modules may be
just the ticket. q

Tom Cantrell has been working on
chip, board, and systems design and
marketing in Silicon Valley for more
than ten years. You may reach him by
E-mail at tom.cantrell@circuitcellar.
corn, by telephone at (510) 657-0264,
or by fax at (510) 657-5441.

NX25Fxxx, NexFlash
Nexcom Technology, Inc.
532 Mercury Dr.
Sunnyvale, CA 94086
(408) 730-3690
Fax: (408) 720-9258

431 Very Useful
432 Moderately Useful
433 Not Useful

Circuit Cellar INK@ Issue 85 August 1997 8 5

The Fast Track

0

had an interesting experience last weekend. I was invited to Watkins Glen, NY, for the Lysol 2

National NASCAR auto race. Even though I consider myself a sports-car buff, ratified by the fact tl

owned a few exotic cars, I’ve never felt a driving ambition to have my hearing shattered at a racetrack.

00 EBusch Grar

iat I have ever

Per,haps if I

nd

1

F regularly tuned in to TNN instead of CNN, I might be more acclimated.

I went for two reasons. First, the invitation came from the primary sponsor of one of the racecars. When a guy throws a million dollars on

the table so he can get up close and personal with burned rubber and gasoline, I figure he must have a screw loose or there really is something

to all this. The second reason was curiosity. Given the super-integrated fly-by-wire metal-skinned rolling computer that I drive to the office daily, I

could only speculate at the technical wizardry built into a racecar costing ten times as much.

As a sponsors guest, I was given a Hot Pass identification card, which afforded me the same access level as the pit crew and driver! It

meant that I could go virtually anywhere before or during the race. I could watch events unfold on TV from an air-conditioned conference room

aboard the race-team truck, or I could be so close to that action that I’d have to be careful not to get my shoe size shortened by a passing race

car.

I actually expected my curiosity to be anticlimactic, As an engineer, I looked at racecar efficiency as simply another closed-loop process

control problem. I wasn’t prepared for a situation described with more oxymorons than a government agency.

A racing team, especially like the one I was with, has both engineers and mechanics. When I was introduced as an “electronics guy,” I was

immediately invited to view the racecar’s onboard telemetry system that constantly transmits important data such as pressures, temperatures,

speed, and biomedical information back to the truck. With it, you could watch the drivers pulse rate increase as he approached a particularly

dangerous curve. You could also see how really lousy gas mileage is at 140 mph.

“It’s neat to see all this transmitted back here for analysis. I suppose the onboard computer takes care of all the real-time corrections and

fuel injection?” I said, almost knowingly.

“Nope and nope. There’s no onboard computer,” he stated matter-of-factly. Realizing my shock, he smiled as he continued, “We look at

the data, and then we get a wrench.”

In actuality, it’s a little more complicated than that, Most of these racecars have telemetry data systems and pit-to-driver radio intercoms.

As I understand it, however, the telemetry data is for “informational purposes only.” As a strict means of providing an even playing field, the rules

allow only NASCAR-approved items on the car. These do not include fuel injection or closed-loop computer control. While the telemetry data

may be used during practice sessions to determine the effects of tweaking specific systems, only the radio intercom can be used during the race

itself.

The demanding rules seem to eliminate engine performance as the primary variable. Winning ultimately results from the team’s ability to

manually tune dynamic stuff like suspension and tire pressure, combined with an experienced driver who can keep it on the road.

One entertaining side note. Whichever network is broadcasting a race, it seems that the latest toy is the in-car TV camera. With it, TV

watchers get a drivers eye view from specifically selected cars. It’s not an altogether altruistic choice, mind you. Having the network mount one

of these cameras in the car requires a substantial donation to their accounts-receivable department. When I announced plans to attend the race,

one of the people at the office suggested that I specifically check out one of these in-car cameras. It seems that Ken, Jeff, and I designed the

controller board used in the camera system.

In the end, it was a weekend of earsplitting noise. I went to Watkins Glen to satisfy my curiosity and check out the computers. It’s ironic to

discover that perhaps the only computer on the car during the race is something I had a hand in designing.

steve.ciarciaQcircuitcellar.com

96 Issue 85 August 1997 Circuit Cellar INKm

