
CELLAR
CIRCUIT
T H E C O M P U T E R A P P L I C A T I O N S J O U R N A L

®INK

$3.95 U.S.
$4.95 Canada

 # 9 0 J A N U A R Y 1 9 9 8

10th ANNIVERSARY SPECIAL
Ciarcia and Bachiochi
Look at Lightning

Heterogeneous
Statecharts

Embedded Development
Using Serial BDM

RF Telemetry and PCs

E
M

BEDDEDPC
M

ONTHLY SECTION

2 Issue 90 January 1998 Circuit Cellar INK®

T H E C O M P U T E R A P P L I C A T I O N S J O U R N A L

®INK

EDITORIAL DIRECTOR/PUBLISHER
Steve Ciarcia

EDITOR-IN-CHIEF
Ken Davidson

MANAGING EDITOR
Janice Hughes

TECHNICAL EDITOR
Elizabeth Laurençot

WEST COAST EDITOR
Tom Cantrell

CONTRIBUTING EDITORS
Rick Lehrbaum
Fred Eady

NEW PRODUCTS EDITOR
Harv Weiner

ASSOCIATE PUBLISHER
Sue (Hodge) Skolnick

CIRCULATION MANAGER
Rose Mansella

BUSINESS MANAGER
Jeannette Walters

ART DIRECTOR
KC Zienka

ADVERTISING COORDINATOR
Valerie Luster

ENGINEERING STAFF
Jeff Bachiochi

PRODUCTION STAFF
John Gorsky

James Soussounis

A Decade of Embedded
Applications

Cover photograph Ron Meadows – Meadows Marketing
Special thanks to Motorola for donating the MC68060 and MC68LC040 dies.

PRINTED IN THE UNITED STATES

NORTHEAST &
MID-ATLANTIC
Barbara (Best) Curley
(561) 694-2044
Fax: (561) 694-2051
b.curley-Hajar@worldnet.att.net

MIDWEST & SOUTHEAST
Christa Collins
(954) 966-3939
Fax: (954) 985-8457
HajarChrista@worldnet.att.net

WEST COAST
Barbara Jones
& Shelley Rainey
(714) 540-3554
Fax: (714) 540-7103
shelley.hajar@worldnet.att.net

HAJAR ASSOCIATES NATIONAL ADVERTISING REPRESENTATIVES

For information on authorized reprints of articles,
contact Jeannette Walters (860) 875-2199.

Circuit Cellar INK® makes no warranties and assumes no responsibility or liability of any kind for errors in these
programs or schematics or for the consequences of any such errors. Furthermore, because of possible variation in
the quality and condition of materials and workmanship of reader-assembled projects, Circuit Cellar INK® disclaims
any responsiblity for the safe and proper function of reader-assembled projects based upon or from plans, descriptions,
or information published in Circuit Cellar INK®.
Entire contents copyright © 1998 by Circuit Cellar Incorporated. All rights reserved. Circuit Cellar INK is a registered
trademark of Circuit Cellar Inc. Reproduction of this publication in whole or in part without written consent from Circuit
Cellar Inc. is prohibited.editor@circuitcellar.com

TASK MANAGER

i hadn’t intended to get involved. But when Steve
and company passed around a proof of Issue 1 of

Circuit Cellar INK for the engineers to look at, I made
more red marks in it than everybody else on the staff put

together. It was then that they decided I should have a hand in creating future
issues. That was ten years ago, and I’ve pored over every issue since.

We’ve seen a lot of changes in ten years, but I feel we’ve retained the
same basic philosophy we started with. Give readers something they can
take to the bench and apply to their next design. Tell them about your latest
project, the newest whiz-bang chip on the market (but it must be available; no
vaporware here), or a time-saving coding technique. Skip the advertorial
found in any free trade magazine.

Certainly technology has changed, often making it more difficult for
small business to afford the development tools. Integration has gone up, and
more tools have migrated to the desktop. Software plays an ever-increasing
role, and using off-the-shelf hardware can be more cost effective than rolling
your own. These changes are reality, no matter how you might resist them.

Someone wondered during a recent Usenet thread whether the
hardcore hardware experimenter has become a technodinosaur. I think if you
still do designs other than those that are either trivial or educational using
primarily discrete logic gates, you probably have become a technodinosaur.
When an eight-pin processor is cheaper and uses less power and board
space than a 555, two resistors, and a capacitor, it’s foolish not to use the
former to generate a waveform or do some kind of timing. By selecting an off-
the-shelf component such as a processor to replace a handful of discrete
parts, it quickly becomes a software problem instead of hardware.

Rather than software replacing hardware, though, today’s computer
engineer must be well versed in both hardware and software to most
efficiently implement a design. It is this mixture that we’ve tried to reflect in
our editorial coverage. No, we haven’t forgotten our roots. Our roots have
brought us to this point.

That said, I think it most appropriate that our tenth-anniversary issue
deals with embedded development. And to kick it off, Steve and Jeff team up
to update us on protecting against one of Steve’s biggest nemeses: lightning.
Gordon Doughman and Jim Sibigtroth show how processor designers are
making things easier for programmers by building simple yet powerful
debugging facilities right into the processor. Doron Drusinsky-Yoresh takes
state diagrams into the next dimension with statecharts to better model
complex real-time control problems. Finally, Avi Cohen looks at using not off-
the-shelf hardware, but configurable off-the-shelf device-driver software.

In our columns, Tom Napier finishes his series on applying direct digital
synthesis, Jeff moves to the front of the book with Steve, and Tom explores a
bit of Motorola’s reorganization by looking at their M•Core line.

In EPC, Scott Lehrbaum acknowledges the well-publicized year-2000
fiasco, but zeros in on how it may affect embedded designs. Raz Dan and
Stefanie Hein ponder the make-versus-buy issue when it comes to embedded
flash memory. Marc Guillemont kicks off EPC’s new Real-Time PC column
by covering RTOS basics, and Fred begins a look at RF telemetry.

CONTACTING CIRCUIT CELLAR INK
SUBSCRIPTIONS:

INFORMATION: www.circuitcellar.com or subscribe@circuitcellar.com
TO SUBSCRIBE: (800) 269-6301 or via our editorial offices: (860) 875-2199

GENERAL INFORMATION:
TELEPHONE: (860) 875-2199 FAX: (860) 871-0411
INTERNET: info@circuitcellar.com, editor@circuitcellar.com, or www.circuitcellar.com
EDITORIAL OFFICES: Editor, Circuit Cellar INK, 4 Park St., Vernon, CT 06066

AUTHOR CONTACT:
E-MAIL: Author addresses (when available) included at the end of each article.
ARTICLE FILES: ftp.circuitcellar.com

CIRCUIT CELLAR INK®, THE COMPUTER APPLICATIONS JOURNAL (ISSN 0896-8985) is published monthly by
Circuit Cellar Incorporated, 4 Park Street, Suite 20, Vernon, CT 06066 (860) 875-2751. Periodical rates paid at Vernon,
CT and additional offices. One-year (12 issues) subscription rate USA and possessions $21.95, Canada/Mexico
$31.95, all other countries $49.95. Two-year (24 issues) subscription rate USA and possessions $39, Canada/Mexico
$55, all other countries $85. All subscription orders payable in U.S. funds only via VISA, MasterCard, international
postal money order, or check drawn on U.S. bank.
Direct subscription orders and subscription-related questions to Circuit Cellar INK Subscriptions,
P.O. Box 698, Holmes, PA 19043-9613 or call (800) 269-6301.
Postmaster: Send address changes to Circuit Cellar INK, Circulation Dept., P.O. Box 698, Holmes, PA 19043-9613.

Circuit Cellar INK® Issue 90 January 1998 3

ISSUE
INSIDE

Ground Zero
A Real-World Look at Lightning
Steve Ciarcia & Jeff Bachiochi

’HC12 Development Using a Serial BDM
Gordon Doughman & Jim Sibigtroth

Heterogeneous State Machine Control
Doron Drusinsky-Yoresh

Building Advanced Device Drivers for the MPC860
Avi Cohen

I MicroSeries
Applying Direct Digital Synthesis
Part 2: Building and Testing an NCO Generator
Tom Napier

I Silicon Update
M•Core on the March
Tom Cantrell

2

7

65

 96

EM
BE

DD
ED

PC
11

20
26
30
68

78

40 Nouveau PC
edited by Harv Weiner

44 Year 2000 and Embedded PCs
 Scott Lehrbaum

49 Flash-Disk Building Blocks
 Tradeoffs in the Make vs. Buy Decision
 Raz Dan & Stefanie Hein

55 RPC Real-Time PC
Real-Time Operating Systems
Part 1: Fundamental Components
Marc Guillemont

61 APC Applied PCs
RF Telementry
Part 1: Theory and Implementation
Fred Eady www.c i rcu i tce l lar .com

9090

Task Manager
Ken Davidson

A Decade of Embedded
Applications

New Product News
edited by Harv Weiner

Advertiser’s Index

Priority Interrupt
Steve Ciarcia

After Ten Years, Inside the
Box Still Counts

Circuit Cellar INK® Issue 90 January 1998 7

68HC05 DEVELOPMENT SYSTEM
The HC05RTE provides a low-cost

means of debugging user code and eval-
uating target systems incorporating the
Motorola J, P, K, and C series ’HC05
microcontrollers. The system, based on
the MC68HC05C0 microcontroller, fea-
tures host-computer downloading (via RS-
232 communications port) directly to
EEPROM or MCU RAM, a 4-KB monitor
in 8-KB EPROM, an 8-KB EEPROM, and
an inherent EEPROM programmer. A
50-pin connector and wire-wrap area is
included for user interfacing, and a single
9–12-VDC supply is required.

The system includes an IBM-PC–com-
patible freeware cross-assembler, a flex-
ible monitor program for debugging user
code, 68HC05 manual, and 68HC05C0
datasheets.

Suggested retail price for the HC05RTE
is $168.05. This system is also distributed
by Active Components.

A.A.E. Systems
320 Yonge St., Ste. 116
Barrie, ON
Canada L4N 4C8
(705) 733-5611
Fax: (705) 733-1673
www.baradv.on.ca/aaesys

#501

NEW PRODUCT NEWS
Edited by Harv Weiner

OPTOISOLATION MODULE
The Telebyte Model 269 is a compact RS-232–to–RS-232

optoisolation module that complies with the IEC 601-1 require-
ment that medical electrical equipment withstand 4000 VAC for
1 min. This level of isolation is provided for the RS-232 signals
TD (Transmit Data), RD (Receive Data), and Ground. This capa-
bility is enhanced by the fact that the module does not require
any external AC or DC power. All operating power is derived
from the transmit data signals applied to each port.

The primary RS-232 port is a DB-25 male connector. In addi-
tion, the primary port may be configured, via switch selection, as
a DTE or DCE device. The secondary port is configured in an
RJ12 six-position modular jack with pins 3, 4, and 5 being Trans-
mit Data, Receive Data, and Isolated Ground, respectively.

The Model 269 also guarantees compliance with the IEC
specification for creepage and clearance. These terms refer to the
absolute minimum spacing allowed between components and
traces on the printed circuit board. In addition, each unit is 100%
tested to verify the dielectric voltage withstand capability.

The Model 269 is packaged in a 2″ × 4.1″ × 0.75″ plastic case
and sells for $120.

Telebyte Technology, Inc.
270 Pulaski Rd.
Greenlawn, NY 11740
(516) 423-3232
Fax: (516) 385-8184
sales@telebytetechnology.com
telebytetechnology.com

#502

8 Issue 90 January 1998 Circuit Cellar INK®

NEW PRODUCT NEWS
DIGITAL STORAGE SCOPE

The PC-MultiScope-2 from Mission Technology
transforms any PC into a multitude of test instru-
ments, including a full-function digital storage oscillo-
scope, frequency analyzer, digital voltmeter, adjustable
DC power supply, strip chart recorder, and with an
optional module, a function generator. The unit con-
nects to a PC through a parallel port and features a
Windows 3.1/95 graphical user interface.

The dual-channel unit features 1-MΩ input resis-
tance, a 10-MHz analog bandwidth, triggering with
AC or DC coupling, and an external trigger option
built in. It provides programmable sampling intervals
from 1 sample per 8 h to 20 megasamples per second,
and a programmable gain from 10 V/div to 1 mV/div.
It is auto-ranging in scope mode. Visual Basic source
code is available separately.

The PC-MultiScope-2 comes complete with Win-
dows-based software, an external AC power supply,
parallel printer cable, and two alligator-clip 1:1 BNC
probes. The unit sells for $399, and the Visual Basic
source code module is priced at $99.

DISTRIBUTED MEASUREMENT DEVICE
The KNM-DYN12 SmartLink can make laboratory-

grade measurements of force, acceleration, and dynamic
pressure from remote locations. Its small size (6.7″ ×
1.3″ × 1.1″) enables it to be located within inches of
signals and sensors, minimizing lead-length errors and
induced electrical noise. Measurements can be linked to
a remote PC or controller, or the user can display and
store results for local monitoring and debug via a digital
readout device or
palmtop PC.

The unit is equipped
with an onboard micro-
computer that provides
data-acquisition, signal-
processing, and commu-
nication capabilities.
This setup enables the
transfer of processed
(rather than raw) data to
a host computer.

Onboard memory
means data can be col-
lected and stored in the
field for later analysis,
eliminating the need to

Amaze Electronics Corp.
4575 Grimsby Dr.
San Jose, CA 95130
(408) 748-7551
Fax: (408) 374-1737
amaze@hooked.net
www.hooked.net/users/amaze #503

use a PC for data collection. Its ADC has a measure-
ment resolution of 16 bits, and an analog recorder out-
put, scaled from 0 to ±10 V, is provided.

Possible measurement configurations include eight
two-wire analog inputs of pressure, force, and accelera-
tion using low-impedance, voltage-mode piezoelectric
sensors. Or, it can accommodate up to four inputs of
very low frequency or static acceleration using capaci-

tive sensors. One chan-
nel is available for a
thermistor input, enabling
temperature-compen-
sated measurements.

The KNM-DYN12
SmartLink sells for $1880
in single quantities.

Keithley Instruments, Inc.
28775 Aurora Rd.
Cleveland, OH 44139-1891
(440) 248-0400
Fax: (440) 248-6168
www.keithley.com

#504

10 Issue 90 January 1998 Circuit Cellar INK®

NEW PRODUCT NEWS
8051 C COMPILER

Crossware has released an
ANSI C compiler for the 8051
family of microcontrollers that
supports all variants of the chip. It
also provides language extensions
that give a C programmer full
access to the underlying micro-
controller architecture.

The compiler generates fast in-
line instructions with a minimum
of library calls to produce high-
performance embedded programs.
When code size is an issue, the compiler uses a sophisti-
cated merging process to combine repeated code se-
quences into separate subroutines.

Floating-point arithmetic is supported with 32- and
64-bit precision. With all floating-point routines hand-
coded in 8051 assembler, complex floating-point algo-
rithms can be calculated with speed and precision.

Its unique “smart pointer technology” enables point-
ers to work out for themselves which memory spaces
they point to. The programmer is free to write ANSI-

compatible code and avoid the
inefficiencies of generic pointers.

The compiler is available for
both DOS and Windows 95/NT
4.0. The Windows version comes
complete with the Crossware
Embedded Development Studio,
which provides project manage-
ment, build and browsing sup-
port, as well as context-colored
drag-and-drop editing.

The DOS version costs $1000,
and the Windows 95/NT 4.0 version sells for $1300.
Exact U.S. prices depend on the exchange rate.

Crossware Products
St. John’s Innovation Ctr., Cowley Rd.
Cambridge CB4 4WS UK
+44 (0) 1223 421263
Fax: +44 (0) 1223 421006
sales@crossware.com
www.crossware.com #505

Circuit Cellar INK® Issue 90 January 1998 11

FROM THE
BENCH
Jeff Bachiochi

Living on a granite hill during a thunderstorm gives you a whole new respect for
Mother Nature. To guard against paranoia, Jeff and Steve figure out how to
automatically unhook their appliances before they become toast.

Ground Zero
A Real-World Look at Lightning

 know that some
day I’ll regret tell-

ing so many people
this, but you see, we’ve

had this little problem with thunder-
storms. I know, you think I’m kidding.
Isn’t tornado alley in Oklahoma? Out
west maybe, but Connecticut?

While storms are frequently pre-
dicted on hot summer afternoons
around here, the reality is that there
are very few severe storms and only
one or two tornado warnings a year.
That’s the good news.

When a big thunderstorm occurs in
Texas or Oklahoma, three vultures and
a mountain goat might be the only ones
who see the furious lightning display
or even know it’s happening. When it
drops a 200-MPH tornado funnel, a
few prairie dogs are often the only
ones who have to rebuild their homes.

The bad news is that Connecticut
is very small. Two traffic helicopters
on opposite ends of the state have to
be careful not to run into each other.

When a severe thunderstorm happens
around here, everyone knows about it.
When lightning strikes, it invariably
hits something valuable. And, when a

i

CIARCIA’S
CIRCUIT CELLAR

Steve Ciarcia

tornado funnel drops in a densely
populated area, it doesn’t miss.

Contrary to the paranoid description,
however, my problem is not tornadoes.
The infrequency and narrow path of a
tornado make the odds of getting hit
by one about the same as a 747 land-
ing in the driveway.

My problem is lightning. And,
location has everything to do with it.
I live in one of the higher areas of
Connecticut. By Colorado standards,
it’s barely a gopher mound, but 1000′
is high around here.

Unfortunately, underneath every-
thing in this part of the state is prob-
ably the biggest slab of granite ledge
east of the Mississippi. You can guess
a few obvious consequences. For ex-
ample, when my wife suggests I dig a
hole, I don’t even think about using a
shovel. Short of dynamite, the only
solution is the backhoe!

All that rock has an insidious con-
sequence—earth grounding. More
correctly, it’s the lack of an effective
earth ground that’s the problem. Zap!
Here’s comes the lightning bolt, and
where does it go? You guessed it—
everywhere but down!

As you might expect, rock is a lousy
electrical conductor. On my street, the
earth-neutral grounding point at the
electrical-service entrance is about as
functional as the ground rod the electric
company tries to drive into solid rock.

Prior to my all-out assault on the
problem, I had a half-dozen lightning
hits and over $20,000 in damages. My
neighbor has had an electric blanket
burned off his clothes line (it wasn’t
plugged in), seen flames coming from
his power outlets, and had appliances
blown off his counter. I’ve had TVs
barbecued, computer equipment inciner-
ated, and satellite systems destroyed.

The final straw was a few years
back. While my wife and I were sitting
on the front deck, we could hear a
storm in the distance. Just as I said it
would probably miss us, there was a
brilliant flash and a deafening KAPOW!

A lightning bolt slammed into some-
thing right next to us. “Next to us”
turned out to be my 15′ C-band satellite
dish. I jumped up in time to see a cloud
of steam rising from the recently melted
LNA and what looked like smoke bil-
lowing from the garage. I grabbed a fire
extinguisher and headed to the rescue.

&

12 Issue 90 January 1998 Circuit Cellar INK®

Much to the EPA’s chagrin, I’m sure,
the smoke turned out to be freon. The
lightning hit on the LNA had fed under-
ground to the garage. Where the coax
and control cables entered the house,
the path of least resistance was out of
the cable and into the central air con-
ditioning lines.

As you might expect with all that
power, it burned through the cables
and copper tubing. Pow! Instant smog.

It was only because of the 2″ packed
fiberglass insulation that I wasn’t at a
redwood-house–fueled wienie roast.
When I saw how close we came to hav-
ing everything torched, I got religion.

IT’S ALL IN THE GROUNDING
Scientists still don’t fully understand

lightning. Basically, it’s a big discharge

of static electricity that flashes toward
the earth along a pilot leader.

This leader rushes down from the
clouds in a series of discrete steps,
ionizing the air as it goes. The final
point is usually some elevated object on
the ground. The bright lightning dis-
charge we all see is the return stroke
flowing back up the ionized path.

Any protection scheme doesn’t pre-
vent lightning from striking. It merely
provides a low-resistance path for the
lightning energy to ground. This path
is the real issue.

A typical lightning bolt is 10–30 kA.
The big strikes are as much as 100 kA
(the power industry uses a 100-kA
stroke with a rise time of 1.2 µs as its
standard stroke).

Even if the path to ground were as
low as 1 Ω, E = I × R tells us the DC
voltage drop is 30 kV. If the resistance
to ground is greater, then the voltage
potentials are significantly higher.

Unfortunately, less technical discus-
sions on the subject don’t include the
disastrous effects of inductance in this
conduction path. Even with the massive

lightning conductor used in the typical
building lightning system, the induc-
tance is on the order of 15 µH per foot.

The inductive voltage drop on a 20′
run of straight conductor with the
industry stroke applied is on the order
of one million volts! A conductor with
lots of bends and twists has significantly
higher inductance.

If the ground rod has a resistance of
10 Ω to ground, that adds another mil-
lion volts along the path. Together, the
total voltage floating around the build-
ing during the lightning strike is two
million volts!

The voltage necessary to jump a
spark through air is ~13 kV per inch, or
156 kV per foot. During a one or two
million-volt strike on a building, you
have to be careful about side flashes to
any conductor that is grounded but not
connected to the lightning system.
That’s why conducting bodies like
equipment cabinets, machinery, metal
rain gutters, and the AC electrical sys-
tem have to be physically connected to
the building’s main grounding system.

When we casually speak of lightning
taking the course of least resistance,
we’re talking about the flash-over. When
lightning hits the cable TV line and
isn’t shunted to ground via a lightning
arrestor and surge protector, the next
stop is anybody’s guess.

Short of putting up a tower to provide
the proverbial zone of protection,
defense comes by providing a conduc-
tion path with a lower overall imped-
ance than alternative paths through
your computer and fax machine.

The techniques are limited. The
typical approach is to space lightning
rods on the top of the building and use
a heavy copper cable as a down conduc-
tor. Depending on the slope and area
of the roof, there are standards regard-
ing placement of the rods along the
ridge versus around the perimeter (flat
roofs are the most difficult).

If my house is any indication (part of
the roof is shown in Photo 1), overkill
is the typical installation choice. Count-
ing the outbuildings, I have more than
25 lightning rods. The stranded copper
cable is about a half inch in diameter,
and 100′ of it weighs 20 lbs.

The fact that this is far from an exact
science was illustrated by the profes-

Figure 1 —The telephone line can serve as a lightning
conduit. This circuit (shown in Photo 2) provides signi-
ficant protection for both the phone equipment and user.

Circuit Cellar INK® Issue 90 January 1998 13

sional installer’s response to my obser-
vations. I pointed out that I’ve seen
systems that employ sharp pointed rods
as well as those that use large spheres.
I’ve also seen light-gauge wire used as
much as the heavy cable. His explana-
tion was fascinating.

Apparently, there are two schools of
thought in the lightning business.
Most follow the convention that light-
ning hits the ground at a particular
point because of the charge built up in
that area of the ground.

By using very sharp points, the
charge density at the point becomes
high enough to leak off this accumu-
lated energy, and it never gets high
enough to attract a leader stroke.
Because this happens over a reasonable
period of time and at relatively low
current, it also reduces the need for
heavy stranded cable.

The other school of thought suggests
that fate can’t be deterred. If you’re
going to get hit, so be it. Just provide
a good path to ground, and you’ll be
all right.

Round spheres handle the high
energy density of a direct hit, and the
heavy wire channels the load to ground.
OK, so why is he installing heavy
copper conductor and pointed rods, I
ask? Insurance!

The points still supposedly reduce
the target potential, but the heavy cable
is there just in case that concept doesn’t
work quite as well as planned. I laughed.

The rods and down conductors are
only half the system. It’s the total
impedance to earth ground that deter-
mines the voltage drop.

The building ground should have a
resistance from 20 to 50 Ω. For most
applications, this level is achieved sim-
ply by driving an 8–10′ copper-plated
steel rod into the soil. Of course, the
more conductive the soil, the better
the ground.

But, my installation was at the other
end of the spectrum—nonconductive
rock without a lot of deep soil. The only
solution was to create an artificial
ground plane by burying cable around
the perimeter of every building, attach-
ing 25′ radial cables and ground rods
(wherever they could be driven) every so
many feet, and connecting all the build-
ing loops as one large grounding system.

Jeff’s a little luckier. His house
has a steeply sloped roof and he
only needs a few rods along the
ridge. He also lives a hundred feet
from a lake, so he also doesn’t have the
ledge or the grounding problems I have.

However, we both have a lot of
sensitive electronics.

TRANSIENT VOLTAGE SUPPRESSION
Lightning protection falls into two

broad categories—building protection
and circuit protection. When lightning
strikes, it creates an electromagnetic
flux that radiates from the point of
impact.

Like the windings of a transformer,
this flux impulse induces a voltage on

nearby conductors and electronic cir-
cuits. Depending on the proximity of
the stroke, this transient voltage can be
hundreds or even thousands of volts.

A number of techniques are available
to protect electronic circuitry from the
effects of voltage transients. These
include the use of passive components
(resistors and inductors) or devices with
specific conduction characteristics to
limit peak voltages.

The latter category includes gas dis-
charge tubes (GDTs), reverse voltage
breakdown diodes (TVSs), and zinc oxide
varistors (MOVs). We’ll just give you

#105

Figure 2 —An optically isolated pulse transmit-
ter is connected to a low-cost McCallie Manu-
facturing lightning sensor mounted on a
grounded pole on the roof.

Circuit Cellar INK® Issue 90 January 1998 15

an overview for now, but next month,
Joe DiBartolomeo starts a four-part
MicroSeries with an in-depth look at
surge suppression.

A GDT is a sealed tube containing
an inert gas and two electrodes. When
a high voltage appears across the termi-
nals, the gas ionizes and a spark bridges
the gap between the terminals, allow-
ing current to flow.

The gas tube is like a crowbar device
that short circuits the applied voltage
down to less than 20 V. GDTs have
very high surge capacity—on the order
of 20 kA.

When a GDT is used across the AC
power line, however, it must be com-
bined with a circuit breaker. Once trig-
gered by a transient, the GDT’s 20-V
clamping action effectively shorts out
the 120 VAC as well.

The only way to reset the GDT is by
blowing the breaker. GDTs are robust
and efficient devices, but resetting the
breaker from the crowbar action is a
nuisance.

Typically, GDTs are used as main-
power lightning arresters—often referred
to as primary transient protection.
Because their function involves a physi-
cal spark gap, they generally trigger at
higher voltages than other protection
devices. They can handle high current
surges repeatedly without degradation.

Unfortunately, since their operation
usually results in tripping the circuit
breaker, GDTs are typically reserved for
applications where a crowbar across

the power line is a benefit
rather than a nuisance.

Avalanche diodes are
called by many different
names (e.g., SAD, Tran-
sorb, TVS, etc). Basically,
they’re all just specialized
zeners.

Their large PN junction
blocks current flow until
the voltage reaches a
specific level when there
is an avalanche of current
flow. While considerably
faster than GDTs, ava-
lanche diodes are rela-
tively low-current devices
by comparison.

Their clamping char-
acteristics are repeatable
and do not degrade with
continuous use (unless
you exceed their surge-
current rating). Avalanche
diodes are ideal for low-
voltage logic protection.

While low-voltage avalanche diodes
have some application as secondary
surge protection, they are primarily used
to protect semiconductor circuits from
fast transients and ESD (electrostatic
discharge). Avalanche diodes are fre-
quently integrated within semiconduc-
tor components (e.g., communications
line drivers) as well as attached across
I/O lines and connecting wires.

Since they’re designed to instantly
clamp a transient and sacrifice them-

selves, avalanche diodes should be
thought of as final protection.

MOVs are made of grains of zinc
oxide bonded together in a disc form.
They exhibit basic PN-junction zener
characteristics. The typical 130-VRMS
MOV (170 Vpeak) has an initial conduc-
tion point of 205 V at 1 mA. Within
25 ns of reaching breakdown voltage,
the internal resistance reduces from
5 MΩ to a level where as much as 10 kA
can flow.

At this maximum current threshold,
however, the MOV’s clamping voltage
can go as high as 600 V. This clamping
threshold is determined by the MOV’s
grain density, and there is a wide range
of operating voltages. MOVs are ideal
for use both on the AC power line as
well as low-voltage logic.

Because gas-tube crowbars and
avalanche diodes need replacement
when they sacrifice themselves, MOVs
are used in 99% of power-protection
products. Quite often, they’re the only
protective component in the device.

The only real downside to MOVs is
that repeated high-current surges
degrade their performance over time. In
an application where a wide level of
transient and surges are expected, GDTs
are often used along with the MOVs.

Photo 1 —Any effective lightning system starts with a good array of
lightning rods spaced about every 20′ along the peak. The insert shows
one rod in a little closer detail.

Photo 2 —The four
phone lines entering the
house have both differen-
tial and common-mode
surge protection as
outlined in Figure 1.

16 Issue 90 January 1998 Circuit Cellar INK®

MODEM AND POWER-
LINE PROTECTION

Admittedly, I have a
unique situation when it
comes to lightning and
surge protection. A simple
lightning rod and single
buried ground rod (like
Jeff’s) are more typical.

Once you solve the
direct lightning threat,
protecting a building from
secondary invasions via
the phone, cable, and power
lines is the next order of
business. There are two
methodologies to this
second line of defense.

The first method is to
create a protective barrier
using suppression devices.
The second method is just a simple
equipment-usage rule. When not in
use, if the computer (or any piece of
equipment) isn’t plugged in, then
nothing can hurt it. You have to de-
cide which method is more practical
for you.

All the discussion about various
suppression components could lead
you to believe we should use all of
them. There are many exotic combi-
nations of these devices, but those are
generally intended for specialized
applications.

Typically, a liberal sprinkling of
MOVs provides a high level of protec-
tion at a reasonable price. The clamp-
ing voltage and physical placement of
the MOVs are the only real issues.

There are two basic types of surges—
common mode and differential mode.
Common mode is when the surge
potential is between the incoming
line and the earth ground. A differen-
tial-mode surge is between two in-
coming lines with no reference to
earth ground. All lines entering a
building are susceptible to both.

Figure 1 illustrates a typical tele-
phone/modem protection circuit.
Photo 2 shows how I installed this
circuit where my phone lines enter
(the phone and cable companies provide
the equivalent of a GDT connected
externally).

Given the currents usually associ-
ated with phone communications,

fusing might seem unnecessary. There
isn’t much that can help you in a
close or direct lightning hit. If such an
event occurs, the fuses are intended to
simply disconnect the phone lines.

Interestingly, a telephone line is an
isolated signal. Devices attached to it
only require differential-mode protec-
tion. The two common-mode con-
nected MOVs are there not to protect
the modem or phone, but to protect
the user.

While most phones use high dielec-
tric plastic, a 10-kV common-mode
surge could easily make the user be
the path of least resistance to ground.
The two common-mode connected
MOVs prevent this.

Protecting the AC power line uses
the same three-MOV configuration.
Large MOVs, affectionately called door-
knobs, are used at the power-line entry.
Smaller MOVs (e.g., the 130K20) are
used in the individual circuits or di-
rectly at the equipment power source.

UNPLUG THE COMPUTER!
The absolute best way to protect

equipment from power-line, phone,
and cable surges is to simply discon-
nect it when not in use. This seems
obvious, but it’s a nuisance having to
plug and unplug entertainment cen-
ters and computers. It’s only after
you’ve had major damage that such
inconvenience seems like a viable
alternative.

Jeff is aware of my situa-
tion. I suspect that the
reason he has lightning
rods installed at all is from
hearing my horror stories.

Unfortunately, while
the concept is sound,
implementation isn’t that
simple. Jeff has a big fam-
ily and just can’t unplug
everything when he leaves
for the office.

I have the luxury of
unplugging the simple stuff
like TVs and stereos, but
devices like time-lapse
recorders, auto-answering
computers, and fax ma-
chines can’t just be left
unplugged. The optimum
situation would be to

unplug the equipment automatically
only during dangerous conditions.
When the storm passes, connections
are restored.

We’re aware that commercial devices
exist to do this task. Unfortunately,
their lofty price leaves them in the
category of airport landing systems.

Without a source for a reasonably
priced “thunderstorm switch,” Jeff and I
decided to make one. Conceivably, all it
would take is a lightning sensor, deci-
sion logic, and a means to connect and
disconnect the attached equipment.

AUTOMATIC THUNDERSTORM
SWITCH

We can watch for rain, listen for
thunder, and count the seconds after
seeing the flash. These are the obvious
indications of a threatening situation.
There are many less obvious indicators
as well.

The energy propagated from the
current flow of a lightning strike con-
tains wideband energy. Everything
from 100 Hz to 100 MHz is produced.

Emissions below 100 kHz travel
along the wave guide formed by the
earth’s surface and the lower ionosphere.
With respect to the earth (ground), the
air around the strike becomes charged,
and there is a direct relationship be-
tween the amount of charge and the
distance from the strike.

We located a minimum-cost light-
ning sensor from McCallie Manufac-

Figure 3 —The optical pulses are received from the lightning sensor and converted to a
hits-per-minute LED indicator.

18 Issue 90 January 1998 Circuit Cellar INK®

turing. Of the two models available,
we chose the LSU2001, which is priced
around $50.

Simple circuits are also provided for
adding a meter or LEDs to monitor live
data, or you can connect the sensor
through an optocoupler to a PC. Op-
tional software lets you count and
graph storm data (providing you wish
to keep the PC on day and night).

The manufacturer suggests mount-
ing the LSU2001 on a well-grounded
metal pole. The higher above ground
it’s mounted, the farther away you’ll
be able to detect lightning strikes.

Sensitivity is related to the differen-
tial charge between the air and ground—
about 0.15 V/m. Put it twice as high,
and it will be twice as sensitive.

They suggest that setting it 5′ high
covers 15 miles, 10′ covers 50 miles,
and 25′ covers 150 miles. The latter is
enough to cover all of Connecticut,
Rhode Island, and Massachusetts from
our location.

Jeff wasn’t enthusiastic about erect-
ing a pole in his yard, and I wasn’t
volunteering to make like the Statue
of Liberty.

However, since both of our roof
peaks already had well-grounded light-
ning rods installed, attaching the
sensor there made the perfect compro-
mise location (see Photo 3).

The sensor has two wires leading
out of its plastic enclosure. A coaxial
connector would have made this a
much cleaner job.

The coax was soldered to the wires
and covered with tubing to make it
watertight. The coax needs to be earth
grounded so the sensor’s internal
circuitry can operate properly.

Interestingly, the sensor documen-
tation comes with more warnings
than any other piece of apparatus
we’ve seen lately. Perhaps rightly so.
If there’s one thing you don’t want,
it’s to provide a direct path for light-
ning into your house.

It’s strongly recommended, for this
reason, that the sensor’s signals be iso-
lated optically from your equipment
and powered by its own battery. This
setup also prevents line noise from
interfering with the sensor. Figure 2
shows how it’s done.

Battery longevity is essentially its
shelf life. Power is only consumed when
the air-to-ground potential rises above
~1.4 V. When this happens during a
lightning strike, the circuit produces a
pulse that flashes an infrared LED
(LED1).

The IR LED points at a phototran-
sistor directly or via a fiber-optic
connection. The LED and phototran-
sistor combination functions as an
optoisolator. The greater the distance
between them, the greater the isola-
tion protection.

BLACK BOX IT
The sample data distributed with

the sensor demonstrated that the
effective number of hits per minute

the sensor picked up during a thunder-
storm ranged from 30 to well over 300
(within a 100-mile radius, I suppose
this is acceptable).

Personally, I’d be heading for the
cellar if I saw an indication of a 300
hits-per-minute storm, but Jeff was
fascinated at knowing the actual quan-
tity. He included eight LEDs to provide
a visual display of the hits per minute
as a power of two.

Using this method, the first LED
indicates two hits; the second, four hits;
the third, eight hits; and so on. The
last LED indicates 256 or greater hits
per minute. The LEDs are off under
clear-sky conditions.

To count hits from the sensor, Jeff
used the T0CK1 input on a PIC16C54
microcontroller. Figure 3 shows the
circuitry for this simple display. Besides
the eight directly driven LEDs and
T0CK1, there are three bits for con-
figuration and a single-bit alarm
output. The configuration bits choose
how the alarm output functions.

The output can be a 250-ms momen-
tary pulse or continuously low during
an alarm condition. The alarm trigger
point is selected using the first two
configuration bits. The four combina-
tions select the hits-per-minute turn-
on point of any of the upper four LEDs
as its trigger level.

The software’s main loop contains
a 3-s counting period, followed by a
total of the last 20 periods (total over
the last 1 min.). The total counts are
transposed into a byte with the proper
bit high to enable an LED indicating
the appropriate range.

Because you want to know if the
storm is moving toward or away from
your location, it’s important to know
about the past. Therefore, the PEAK
count is displayed as a steady-state LED.

The PRESENT count is indicated by
XORing the present count with the
LEDs such that if PEAK and PRESENT
are the same (as in a storm moving
toward you), the LED flashes.

However, once PRESENT starts drop-
ping, the peak-count LED remains
steady and the present-count LED
flashes. Now, you can tell immediately
which direction the storm is heading.
The PEAK value can be reset by press-
ing the reset button.

Photo 3 —It will have to wait for next
summer to be tested, but Jeff has
attached the lightning sensor to the
greenhouse roof.

Circuit Cellar INK® Issue 90 January 1998 19

Although Jeff’s software only takes
up about a quarter of the 16C54’s avail-
able code space, all of its registers are
used. The majority are taken up by the
20 table entries doing the 3-s counting
samples.

Only five other registers are used by
the code for the rest of the functions.
When no LEDs are on, the circuit
requires only about 3 mA (add about
10 mA per LED).

Obviously, this whole circuit could
operate from three alkaline batteries,
but if it’s mounted where you plan to
view the thunderstorm’s progress,
trickle charging four NiCd batteries
would be better. After all, when you
need the information most to either pull
the plug or tell you that conditions are
all clear, you don’t want to depend on
a tired set of batteries.

Figure 4 is the switch’s connect/
disconnect section. This particular
configuration accommodates AC
power, coax, and phone lines.

The 16C54’s alarm output (set for
steady-state output mode) drives an
optoisolated triac switch controlling the
AC power relay. The circuit’s normal
condition is for the alarm output to be
high and the relays energized. A small
DC power supply, connected in paral-
lel with the AC power relay coil, con-
trols the coax and phone relays.

The switches’ output connections
are made to the normally closed con-
tacts. When the power is off or an

Steve Ciarcia is an electronics engi-
neer and computer consultant with
experience in process control, digital
design, and product development.
You may reach him at steve.ciarcia@
circuitcellar.com.

Jeff Bachiochi (pronounced“BAH-key-
AH-key”) is an electrical engineer on
Circuit Cellar INK’s engineering staff.
His background includes product design
and manufacturing. He may be reached
at jeff.bachiochi@circuitcellar.com.

I R S
401 Very Useful
402 Moderately Useful
403 Not Useful

SOURCES

Stormwise LSU-2001 lightning
sensor

McCallie Mfg. Corp.
P.O. Box 8631
Greenville, TX 75404-8631
(903) 383-7047

PIC16C54
Microchip Technology, Inc.
2355 W. Chandler Blvd.
Chandler, AZ 85224-6199
(602) 786-7200
Fax: (602) 786-7277
www.microchip.com

alarm condition exists, the relays are
deenergized. This connects the equip-
ment side of things to ground, where
it provides the greatest protection.

While the normal spacing of the relay
contacts is less than ¼″, should a high-
voltage surge enter the line side of the
switching unit, any place it arcs within
the relay will be at ground. Certainly, if
you incorporate MOV suppression in
addition, such voltage levels shouldn’t
even exit at the relays.

We didn’t include those MOVs and
surge-suppression components on the
schematic, but we indicated their proper
placement. If you’re already using pro-
tection devices on these lines, you may
not need to include them inside as well.

WAITING FOR SUMMER
Winter isn’t the best time to test

lightning-detection equipment in
Connecticut. We’ll have to wait a few
more months before the circuits get a
real workout. Jeff might have his set
to trigger on the 30 or more hits per
minute, but I suspect I’ll want to start
thinking of alternatives at 2!

Considering how many of you live
in southern states (or the Southern
Hemisphere, for that matter), we’re sure
a number of you will have the oppor-
tunity to thoroughly test all this under
ideal conditions long before we will.

We invite you to let us know about
your tales of discovery and what we
can expect. Perhaps by next fall, we’ll

Figure 4 —The hits-per-minute converter also generates a
“lightning alarm” output. This signal causes the circuit to
physically disconnect the AC power, cable, and phone-line
connections to the protected appliance.

have sufficient information for an
update to the design. I

20 Issue 90 January 1998 Circuit Cellar INK®

’HC12 Development
Using a Serial BDM

FEATURE
ARTICLE

Gordon Doughman &
Jim Sibigtroth

t
As the speed and
complexity of
embedded micros
increase, it’s more
difficult to build high-
speed in-circuit
emulators. As a
result, many offer on-
chip BDM interfaces.
Gordon and Jim show
how to debug using
these resources.

he MC68HC-
912B32 is one of

the newest members
of the MC68HC12 fam-

ily of 16-bit microcontrollers that
combines flash memory and byte-
erasable EEPROM on the same chip.
In addition to the considerable num-
ber of on-chip peripherals, the ’HC912
contains two powerful on-chip mod-
ules that enable nonintrusive debug-
ging of the user’s target system.

The Background Debug Module
(BDM) consists of a single-wire hard-
ware interface that provides nonint-
rusive access to the target’s memory,
control of the target CPU execution,
and access to the CPU’s registers.

The Breakpoint Module provides
one or two hardware breakpoints that
enable easy debugging of software
contained in either on- or off-chip
nonvolatile memory.

In this article, we examine the
capabilities of these two on-chip de-
bugging aids and the development-
tool support provided by the ’HC912
evaluation board.

THE ’HC12 BDM
As the speed and complexity of

embedded microcontrollers increase,
it is more difficult to build the high-
speed in-circuit emulators required to

design and debug embedded systems.
This is especially true for systems
built around microcontrollers that
have large amounts of on-chip non-
volatile memory and are operated in
single-chip mode in the target system.

When attempting to design such an
emulator, the designer typically places
the single-chip microcontroller in
expanded mode and replaces the on-
chip nonvolatile memory with off-
chip RAM. In addition, a specially
designed ASIC or FPGA must replace
the port pins lost to the address and
data buses because the part is operated
in expanded mode.

These emulators provide sophisti-
cated debugging facilities like multiple
hardware breakpoints with complex
triggering capability and built-in bus
state analyzers. However, their high-
speed components make them quite
expensive.

To help combat the increasing cost
and complexity of emulating sophisti-
cated single-chip microcontrollers,
Motorola originally introduced a BDM
interface on its M68HC16 and M68300
families of 16- and 32-bit microcontrol-
lers. A BDM system enables simple,
low-cost debugger hardware to con-
nect to a target system through a
dedicated high-speed serial interface.

While the BDM system greatly
increases the capabilities of low-cost
development tools for these product
families, it has one major drawback.
Because these systems are part of the
CPU cores, the BDM can’t be used
unless the CPU halts execution of the
target-system software.

The ’HC12 BDM module reduces
the physical interface to a single pin
(BKGD), so the target system can be
accessed with two connections—a
common ground and the single back-
ground interface pin.

Also, because the ’HC12 BDM
module isn’t part of the CPU12 core, it
allows reading and writing of target
memory without disturbing a running
application.

Other BDM commands (e.g., exam-
ining and/or changing CPU registers
and executing single instructions)
require that the application program
be stopped and the BDM system be
placed in active mode, but the back-

Circuit Cellar INK® Issue 90 January 1998 21

ground-debug system is usable in any
operating mode.

While the minimum required physi-
cal interface to the ’HC12 BDM is the
BKGD pin and ground, Motorola defined
a six-pin BDM header for the ’HC12
family that includes several other con-
nections. The header, shown in Figure 1,
also contains connections to the target
system’s VDD, MCU reset, and VPP.

The VDD connection enables the
target to be powered by the BDM debug
pod or vice versa.

Connecting the MCU reset pin to the
BDM pod lets the pod gain control of
the target system by asserting the MCU
reset line. This capability is useful if
target-system software becomes stuck
in a loop and won’t respond to any
target-system stimulus.

In addition, resetting the target
system in special single-chip mode (by
holding the BKGD, MODA, and MODB
pins low during reset) places the target
system in active background mode.
This situation lets the BDM pod gain
control of any ’HC12-based system
before software is placed in the target
memory.

The VPP pin on the BDM header can
optionally connect to the Vfp pin of
the target ’HC12 MCU. This connec-
tion means the flash programming
voltage can be supplied by the BDM
pod rather than duplicating the Vfp-
generating circuitry on each target
board. It also allows a single-point
connection during the debug/repro-
gram cycle.

For a detailed description of the
’HC12’s BDM, including a complete
explanation of its custom serial com-
munication protocol, see Jim’s article,
“A Single-Wire Development Inter-
face” (INK 72).

THE ’HC12 BREAKPOINT MODULE
The hardware breakpoint module

in the ’HC912 is a large 34-bit com-

parator that can be configured to oper-
ate in one of three modes.

In BDM full-address/data mode, the
comparators look for a match on the
16-bit address, 16-bit data, and R/W
signal. Address low byte, data high
byte, data low byte, and R/W can be
separately configured for don’t care.

When a match is detected, an inter-
rupt causes the MCU to enter active
background mode at the next instruc-
tion boundary. A typical trigger condi-
tion using this mode is “trigger when
a specific data value is read from the
address of the SCI receive data register.”

In BDM dual-address mode, the
comparator is split into two separate
17-bit sections to allow triggering on
either of two user-specified addresses.
The BKPM control bit lets these break-
points use either an interrupt or a
tagging mechanism to respond to trigger
matches. In this mode, the address
low byte and/or the R/W signal can be
set for don’t care. (R/W is ignored
when the tagging mechanism is used.)

The interrupt mechanism causes
the MCU to go to active background
mode at the next instruction bound-
ary after a match. The tagging mecha-
nism produces a tag when the address
matches.

This tag follows along in the instruc-
tion pipe until the tagged instruction
would execute. This mechanism causes
the breakpoint to enter active back-
ground mode just before the instruction
at the selected breakpoint address
where it would have executed. This
mode corresponds most closely to
what traditional debuggers call break-
points.

In the third mode—SWI dual ad-
dress—the comparator is split into
two separate 16-bit sections to allow
two program address breakpoints.
Each address low byte can optionally be
set for don’t care to allow triggering
within a 256-byte area of memory.

This mode uses the tagging mecha-
nism to cause an SWI instruction to
be executed instead of the instruc-
tions at the two selected addresses.
Given some simple planning, you can
use this mode to perform code patches
in flash memory or ROM.

The SWI vector needs to use an
indirect pointer in RAM or EEPROM
so the service routine can be added at
a later date without erasing the flash
or changing the masked ROM.

D-Bug12 uses the BDM dual-address
mode for breakpoints after USEHBR
executes. Versions earlier than V.2.0.2
didn’t support hardware breakpoints,
but anyone with an EVB912B32 evalu-
ation board can get a simple S-record
upgrade file from the Motorola or
Circuit Cellar Web sites.

EVALUATION BOARD
The EVB912B32 is a small, economi-

cal evaluation and debugging tool that
uses the specialized debugging mod-
ules on the ’HC912 MCU.

As you see in Figure 2, the design
is extremely simple. The board con-
tains only three active components—
the ’HC912 microcontroller, an RS-232
level translator, and an undervoltage-
sensing circuit.

Access to the ’HC912’s powerful
debugging features comes from the
firmware located in the HC912’s on-
chip flash memory and two 6-pin
connectors—BDM IN and BDM OUT.

The D-Bug12 monitor program can
operate in two different modes. In
EVB mode (see Figure 3), the firmware
operates as a flash-resident debugger.
While this mode provides a stable
environment for evaluating the ’HC12
architecture, testing new algorithms,

Figure 1 —Motorola defines a standard six-pin (2 × 3)
0.025″ square post header as a target-system BDM
connector.

1 2

3 4

5 6

BKGD

N/C

VPP

GND

*RESET

VDD

MC34064-3

*RESET

BDM
In

BDM
Out

RS-232

DE-9 MAX562 MC68HC912B32

BKGD
TX

RX

I/O

Figure 2 —The M68EVB912B32 evaluation
board/debug pod has only three active ICs. A
DE-9 connector allows connection to a host PC.
BDM IN and BDM OUT are six-pin headers
enabling the EVB to act as a target system or
debug pod, respectively.

22 Issue 90 January 1998 Circuit Cellar INK®

in SWI dual-address mode to provide
two program-only hardware breakpoints.

Using hardware breakpoints in EVB
mode provides two advantages over
using software breakpoints. Because the
’HC912 CPU can’t perform single-step
instruction tracing, executing a single
instruction is performed using tempo-
rary breakpoints.

Using software breakpoints with
this method works fine for programs
located in the 512 bytes of RAM avail-
able for user programs. However, it
can pose a potential problem for de-
bugging programs located in the on-
chip byte-erasable EEPROM.

Because D-Bug12’s memory-access
routines transparently (re)program the
on-chip byte-erasable EEPROM for
writes to the EEPROM address range,
at least one EEPROM location (two for
branch instructions) will be erased and
programmed twice each time an in-
struction is traced.

Repeatedly erasing and programming
the EEPROM can lead to its eventual
failure. Using the hardware breakpoints
avoids this behavior when tracing
instructions. Using hardware break-
points in EVB mode also allows tracing
through D-Bug12’s user-accessible
routines located in the on-chip flash
memory [1].

SOLVING A REAL-WORLD PROBLEM
Although the ’HC912 BDM and

hardware breakpoint modules are
extremely useful during embedded-
application development and debugging,
they recently proved invaluable in
helping track down a customer prob-
lem with the ’HC912’s Byte Data
Link Controller (BDLC) communica-
tions module.

The problem involved an occasional
failure of the ’HC912’s on-chip BDLC
module that couldn’t be traced to a
particular event or series of events that
occurred in the customer’s system.

or conducting performance benchmarks,
it has some limitations.

Because D-Bug12 executes out of
’HC912’s internal flash memory, the
flash, half of the RAM, and the SCI
serial port are not available to the devel-
oper. In EVB mode, D-Bug12 can’t sup-
port true emulation of a target system.

When D-Bug12 operates in Pod mode,
the low-level interface routines access-
ing the EVB912B32’s on-chip resources
are replaced by routines that implement
the custom serial protocol of the ’HC12
BDM interface. These low-level soft-
ware drivers communicate with the
target through the BDM OUT connec-
tor, as shown in Figure 4, to nonintru-
sively access the ’HC12 target system.

D-Bug12 uses a simple command-line
interface to accept user-entered com-
mands and display requested data. When
operating in EVB mode, D-Bug12 displays
the single-character > prompt when
waiting for a user command. In Pod
mode, it displays one of two prompts
depending on the target system’s state.

When the target system is in active
background mode (not running a user
program), the two-character prompt S>
is displayed to indicate that the target
microcontroller is stopped. The two-
character prompt R> indicates the target
is running a user program.

Because the ’HC12 BDM interface
allows reading and writing of target-
system memory even when running a
user program, D-Bug12 is always avail-
able for command entry when operating
in Pod mode. Any D-Bug12 commands
that alter or display target memory
may be entered when either prompt is
displayed. Table 1 lists the D-Bug12
commands and indicates when they
may be used.

DEBUGGING IN FLASH
In addition to using the EVB912B32

with D-Bug12 as a simple evaluation

or BDM debugging tool, the
EVB912B32 may also be
used as a target system.
Using two EVBs, the BDM
OUT of one can be con-
nected to BDM IN of the
second.

This setup enables one
EVB to be used as a nonin-
trusive BDM debugger

while the other functions as a target
board operating in single-chip mode.
Because D-Bug12 uses the hardware
instruction tracing capability of the
BDM module and supports the hardware
breakpoint module, applications can be
developed and debugged directly out of
the ’HC912’s 32-KB on-chip flash.

At powerup or reset, D-Bug12 sup-
ports ten software breakpoints in either
mode. Software breakpoints are imple-
mented by replacing the opcode of an
instruction to be executed with either
a Software Interrupt (SWI) instruction
when operating in EVB mode or a
Background (BGND) instruction when
operating in Pod mode.

Using this method to implement
breakpoints enables D-Bug12 to sup-
port ’HC12 family members that lack
a hardware breakpoint module. When
developing programs with such devices,
target program storage memory would
have to be replaced with RAM to use
D-Bug12’s breakpoint functions.

The D-Bug12 command USEHBR lets
the program developer switch from
using software breakpoints to using the
hardware breakpoint module of the
target microcontroller. In Pod mode, the
D-Bug12 uses the target’s hardware
breakpoint module in BDM dual-address
mode to substitute two program-only
hardware breakpoints for the 10 soft-
ware breakpoints.

Hardware breakpoints may also be
used when operating in EVB mode. In
this case, D-Bug12 operates the resident
’HC912’s hardware breakpoint module

User Terminal
RS-232

M68HC912B32

D-Bug12
Low-Level
Interface
Routines

Target
System

M68HC12
Microcontroller

Background Debug
Connection

User Terminal
RS-232

M68HC912B32

D-Bug12
Low-Level
Interface
Routines

Target
System

Figure 3 —In EVB mode, a terminal emulator in the host PC interfaces
via RS-232 to the evaluation board. D-Bug12 (in the flash memory)
interfaces with on-chip memory and peripherals through a set of low-
level interface routines.

Figure 4 —In Pod mode, D-Bug12
communicates with the target
system through an alternate set of
low-level interface routines. The
target system is now a separate
’HC12 system connected to the
BDMOUT header.

24 Issue 90 January 1998 Circuit Cellar INK®

Tracking down the exact problem and
finding a solution took several weeks,
but the EVB912B32’s support of the
’HC912’s on-chip hardware breakpoint
and BDM module helped us discover
the underlying problem.

Because of the occasional and ap-
parent random failure of the ’HC912
BDLC, there was initially very little
data to work with. Since the problem
had been isolated to a particular system
that used the module containing the
’HC912, we didn’t suspect the BDLC
initialization or driver software. How-
ever, the customer’s software was thor-
oughly reviewed and found to be correct.

The next step was observing the
failure of the module in the customer’s
system while it ran under actual oper-
ating conditions. Because the site was
40 miles away from the engineering
location, we didn’t have the luxury of
working with the software develop-
ment engineer or the module’s source
code. We were armed only with an
EVB912B32, oscilloscope, and J1850
bus-analysis tool.

Using the J1850 bus-analysis tool, we
observed an unusually high number of
errors during message transmission and

reception. To get a better idea of the
type and frequency of the received-
message errors, we needed to observe
the activity of the customer’s code
when servicing BDLC interrupts.

We decided to use the target system’s
hardware breakpoint module operating
in SWI dual-address mode to patch into
the customer’s BDLC interrupt service
routine. The patch routine would
identify the type of the BDLC error
interrupt, increment a 16-bit counter,
and return to the customer’s BDLC
interrupt handler. Once the customer’s
target system was running, we used the
D-Bug12 Memory Display (MD) com-
mand to nonintrusively examine the
16-bit counters.

In our first attempt to observe the
software’s actions, we attached the
EVB912B32 to the BDM connector on
the customer’s module and executed
D-Bug12’s STOP command to place the
target CPU in the active background
mode.

This action immediately caused a
target-system reset because the cus-
tomer’s software had enabled the COP
watchdog-timer system. Resetting the
module via RESET placed the target in

Command Description Use with S>? Use with R>?

ASM Single-line assembler/disassembler Yes Yes
BAUD Set the SCI communications baud rate Yes Yes
BF Block fill user memory with data Yes Yes
BR Set/Display user breakpoints Yes No
BULK Bulk erase target EEPROM Yes Yes
CALL Execute a user subroutine Yes No
DEVICE Select/define a new target MCU device Yes No
EEBASE Define target’s EEPROM base address Yes No
FBULK Erase target’s on-chip flash memory Yes No
FLOAD Program target’s on-chip flash memory Yes No
G Begin execution of user program Yes No
GT Set a temporary breakpoint and Go Yes No
HELP Display D-Bug12 command summary Yes Yes
LOAD Load user program in S-record format Yes Yes
MD Display memory in hex/ASCII format Yes Yes
MDW Display memory in hex/ASCII word format Yes Yes
MM Interactively examine/change memory Yes Yes
MMW Interactively examine/change memory words Yes Yes
MOVE Move a block of memory Yes Yes
NOBR Remove one/all user breakpoints Yes No
RD Display target CPU registers Yes No
REGBASE Define the target’s I/O Register base address Yes No
RESET Reset the target CPU Yes Yes
RM Interactively examine/change CPU registers Yes No
STOP Stop the execution of user code No Yes
T Trace instruction execution Yes No
UPLOAD Display memory contents in S-record format Yes Yes
USEHBR Use EVB/target hardware breakpoints Yes No
VERF Verify memory contents against S-records Yes Yes

Table 1—All D-Bug12 commands are available from the S> prompt except STOP (target is already stopped). The
last column shows which commands are available from the R> prompt when the target system is running.

Circuit Cellar INK® Issue 90 January 1998 25

I R S
404 Very Useful
405 Moderately Useful
406 Not Useful

SOURCE

MC68HC912B32TS/D, EVB912-
B32, D-Bug12, CPU12RM/AD,
AN1280A/D

Motorola
MCU Information Line
P.O. Box 13026
Austin, TX 78711-3026
(512) 328-2268
Fax: (800) 765-9753
www.mcu.motsps.com

the active background mode, enabling
us to gain control of the target CPU.

Using the D-Bug12 trace command,
we analyzed the start-up code to deter-
mine where the watchdog timer, RAM,
and other peripherals were initialized.
Once these addresses were determined,
the system was reset and two hardware
breakpoints were set using D-Bug12’s
BR command.

The first breakpoint halted execution
just before the watchdog timer was
initialized. The second breakpoint
stopped program execution just after
the on-chip RAM was initialized.

This sequence let us skip over the
watchdog-timer initialization sequence
at the first breakpoint and then down-
load the small BDLC interrupt service
routine patch into an unused area of
RAM after the second breakpoint.

As we mentioned, some advanced
planning is required to use the Break-
point Module in SWI mode to patch
code in flash memory or ROM. Fortu-
nately, the interrupt service routines
in the customer’s software were ac-
cessed through a jump table located in
the on-chip RAM. When the software
patch was downloaded into the unused
area of the on-chip RAM, it also modi-
fied the SWI table entry to point to
our code patch.

Finally, after continuing execution
of the customer’s software, we used
D-Bug12’s memory-modify command
to initialize the hardware breakpoint
address and control registers to use the
SWI dual-address mode.

As soon as the control register was
written, enabling the hardware break-
point, we could examine the 16-bit
counters being incremented by our code
patch each time the BDLC received an
invalid message. This information gave
us the details we needed to determine
the cause of the problem and was
extremely helpful for finding a software
workaround.

FINISH THE JOB
Working on this solution, one thing

became very clear to us. As embedded
systems become more complex, it’s
increasingly important for microcontrol-
ler manufacturers to provide advanced,
nonintrusive debugging hardware as
part of their microcontroller designs.

Jim Sibigtroth is a system design
engineer working on advanced micro-
controllers for Motorola. He defined
the CPU12 instruction set and sev-
eral of the ’HC12 systems including
the background debug system and
memory expansion system. You can
reach Jim at RFTP70@email.mot.com.

SOFTWARE

The S-record upgrade file for the
EVB912B32 can be found on the
Circuit Cellar Web site and at
www.mcu.motsps.com/freeweb/
mcu12_ndx.html.

REFERENCE

[1] G. Doughman, Using the Call-
able Routines in D-Bug12, App.
Note AN1280A, Motorola, Aus-
tin, TX, 1997.

The nonintrusive BDM found on
the ’HC12 family and the Breakpoint
Module on the ’HC912 proved invalu-
able in solving a particularly difficult
customer problem. I

Gordon Doughman is a senior field
applications engineer working on
automotive and industrial systems
software for Motorola Semiconductor.
He wrote D-Bug12 and BASIC11, a
BASIC interpreter for the M68HC11, as
well as authoring several application
notes for ’68HC11 and ’HC12 micro-
controller families. You may reach
Gordon at RTNR30@email.mot.com.

26 Issue 90 January 1998 Circuit Cellar INK®

Heterogeneous State
Machine Control

FEATURE
ARTICLE

Doron Drusinsky-Yoresh

c
Automotive
electronics have
taken on a life of their
own. Their complex
interprocessing
requires engineers to
mix classic control
with continuous
modeling tasks.
Doron shows how
statecharts ease the
difficulties.

learly, automo-
tive electronics

have gone through a
major evolution within

the last decade. Processors now perform
dozens of tasks that are completely new
or were previously managed using
analog or mechanical technologies.

The well-known advantages of digital
control and computation include flex-
ibility, diversity, low cost, and rapid
development. With the proliferation of
digital processors in vehicles, new
challenges are emerging, like manage-
ment, synchronization, and scheduling
of heterogeneous computational tasks.

In this article, I describe how com-
plex state-machine control tasks, classi-
cal control tasks, and continuous
modeling tasks combine to achieve
the heterogeneous solution necessary
in practical automotive applications.

STATE-MACHINE CONTROL
State machines describe the reactive

nature of many applications, including
automotive. In particular, they describe
the progression of the system with time,
as inputs keep arriving into the system
and outputs need to be produced by it.

For example, the state diagram in
Figure 1 depicts a simple cruise-control
machine, which changes states as
inputs from other parts of the car are
accepted.

Such state diagrams are well-known,
well-accepted, highly visual, and intui-
tive. Their ability to describe finite and
infinite sequences, combined with
their visual appeal, has made them one
of the most commonly accepted for-
malisms in the electronics industry.

State diagrams are easier to design,
comprehend, modify, and document
than a textual approach. But, they
haven’t changed much over the last 30
years, and they’re limited when applied
to modern reactive applications.

One problem is that state diagrams
are flat. They can’t handle modern top-
down design and information hiding.
Top-down design concepts require inter-
active software so the user can manipu-
late and browse complex designs.

Another disadvantage is that state
diagrams are purely sequential, whereas
applications are not. Modern state-
machine controllers need to react to
signals going to and coming from a
plurality of entities in their environ-
ment. Also, a single state-machine
controller might be responsible for
many independent or partially inde-
pendent conceptual tasks, thereby
performing “conceptual concurrence.”

Compensating for these limitations
are statecharts, designed by David Harel
[1]. While addressing the hierarchy and
concurrence problems of state diagrams,
statecharts retain the visual and intui-
tive appeal inherent to state diagrams.

The statechart in Figure 2 describes
a more advanced cruise-control design
than the state diagram of Figure 1. Note
how the CruiseControlOn state encap-
sulates lower level states, thereby
creating state hierarchy.

An important property of such hierar-
chical representation is that the high-
level transition (labeled !bOn) from
CruiseControlOn to CruiseControlOff

CruiseControlOff

Disengaged

SetSpeed
Regulate

D

?

!bOn

bBreak
bResume

bSetSpe

!bSetSpe

bSetSpe

!bOn

bOn

?
?

?
?

?

?

?

Figure 1 —In a conventional cruise-control state
diagram, there is no state nesting. The cruise-control
state machine maps input to output sequences.

Circuit Cellar INK® Issue 90 January 1998 27

fires regardless of the
actual present state
within CruiseCon-
trolOn and its de-
scendants.

In fact, if the design
is enhanced with more
states within Cruise-
ControlOn later in
the design process, the
high-level transition
automatically encap-
sulates these newly
added states, without
any other explicit
change to the design.

Note how the contents of the Regu-
late state are pushed onto a separate
design page to provide more design space
as we dive into lower levels of hierar-
chy. I’ll discuss concurrence—the ability
to describe multiple, simultaneous, or
independent substatecharts—later when
I extend the cruise-control example.

A HETEROGENEOUS EXAMPLE
Automotive applications often

require that complex statechart designs
be integrated with other types of com-
putations, thereby creating heteroge-
neous (or hybrid) systems.

In my example, the cruise-control
statechart of Figure 2 is extended to
account for an event in the transmis-
sion box where the gear shifts from D
(drive) to N (neutral), while cruise con-
trol is regulating (i.e., is in the Regulate
state) the speed.

This event forces the statechart to
change state to Disengaged. Indeed,
it’s a common problem in cruise-con-
trol–equipped vehicles that when the
gear changes to N, the cruise-control
logic attempts to accelerate, even
though the transmission is not engaged.
This action sharply increases the
engine RPM.

Figure 3 includes a simple modifica-
tion to Figure 2, where the Transmis-
sion_is_N event causes a transition from
the Active to HasMemory state. This
transition disengages the cruise-control
operation when the gear is set to N.

As illustrated in Figure 4, the Trans-
mission_is_N event is generated from
a continuous model, where the event
occurs on a zero-crossing of the con-
tinuous signal. The interesting—and
potentially difficult—aspect of this
enhancement occurs with the real-world
implementation of a statechart as a
block of code and the progression of
time.

Whether the statechart is imple-
mented in C, C++, Java, or some other
form of code, it will be invoked (i.e.,
called or activated) repeatedly in the
real world. Each time it is invoked, it
computes its new state or states (if the
statechart has hierarchy or concurrence)
given the previous state(s).

This repeated calling scheme can be
periodic, as illustrated by the shorter
arrows in Figure 5, or based on an event
(e.g., every time a certain interrupt
occurs).

There will always be periods of time
between successive invocations of the
statechart block of code in the real
world. More often than not, the change
in gear event (i.e., the gear shifting from
D to N) occurs in some time slot be-
tween two successive invocations of the
statechart code, as pictured in Figure 5.

There will be some period of time
between the gear event and the next
closest invocation of the statechart code
that can use this information and disen-
gage the cruise control. Let’s denote this
time period as an “unstable period.”

Clearly, it’s important
that an event generated
from the continuous rep-
resentation of the trans-
mission box trigger an
invocation of the state-
chart code. Otherwise,
the statechart of Figure 4
behaves improperly during
its unstable period. This
ability is the essence of a
heterogeneous design, for
simulation and implemen-
tation purposes alike.

The statechart in
Figure 6 introduces concurrence. In this
modified cruise-control example, there
are two separate threads (depicted as
dashed boxes)—the original CruiseCntl
statechart and, simultaneously, the
Transmission thread, which is entirely
event based. Transmission changes

states as events from the continuous
transmission model of Figure 4 occur.

Transmission constrains the allow-
able state changes in the transmission
box. This thread performs a task that is
mostly independent of the CruiseCntl
thread, so it is described as concurrent.

However, some dependencies exist,
such as the Transmission thread forcing
CruiseCntl into the Disengaged/Has-
Memory state when the transmission’s
state becomes N. Visual synchroniza-
tion—the ability to visually show de-
pendencies between threads—is another
powerful feature of statecharts.

HETEROGENEOUS DESIGN
As I mentioned, designing critical

automotive control systems requires a

CruiseControlOff

Disengaged
Regulate

D

bSetSpe

?

?

bOn

? ?

!bOn

bSetSpe
bResume

!bSetSpe

??

bBreak

CruiseControlOn
D

D

NoMemory

HasMemory SetSpeed

Regulation Mode

D

SpeedTooHigh

?

bSpeedOk

?
bSpeedOk

?
SpeedTooLow

?

SpeedTooHigh SpeedTooLow

a) b)

CruiseControlOff

Disengaged
Regulate

D

bSetSpe

?

?

bOn

?

?

!bOn

bSetSpe
bResume

!bSetSpe

?
?

bBreak

CruiseControlOn
D

D

NoMemory

HasMemory SetSpeed

?

Active

Transmission_is_N

?

Figure 3— This is the top-level enhanced cruise-control
statechart. Note the Transmission_is_N transition from
the Active state to the HasMemory state. The condition
Transmission_is_N is generated by a continuous model.

N

P

R

D1

D2

D3

Time

Zero crossing event in continuous
space defines the event Transition_is_N

Figure 4— This diagram illustrates a continuous wave-
form for the transmission box, from which the Transmis-
sion_is_N condition is generated.

Figure 2a— In this cruise-control statechart, state nesting exists within the CruiseControlOn, Active,
Disengaged, and Regulate states. The Regulate state has nested states that are currently hidden
from view. b—The contents of the Regulate state provide yet another example of state nesting.

28 Issue 90 January 1998 Circuit Cellar INK®

and modification, which leaves time for
verification and validation. This phase
is first performed using the MATRIXx

SystemBuild simulator.
The controller model can be tested

against a process behavioral model also
designed in MATRIXx. Interactive ani-
mation tools can debug and interact
with the design. Once the simulations
execute satisfactorily, the automatic
code generation can be performed.

The automatic implementation
makes optimized code both from Sys-
temBuild and BetterState. Concurrence
and hierarchy describe a conceptually
huge Cartesian product state space rep-
resenting all combinations of states
within concurrent threads anywhere in
the state hierarchy.

However, the compact code gener-
ated by the code generator doesn’t blow
up state space at all. Rather, its size
grows linearly with the number of tran-
sitions in the statechart. Time saved in
code generation lets developers focus on
software architecture and unit testing.

BENEFITS
Using such an heterogeneous envi-

ronment for automotive control system
design and implementation creates a
work environment that facilitates work-
group communication, code reusability,
and code-error reduction, while main-
taining compact and efficient code.

More attention can be given to criti-
cal aspects of embedded software design
such as software architecture and test-
ing, which results in better quality and
helps meet time-to-market agendas.

CODE GENERATION FOR RTOS
Many, if not most, real-time applica-

tions contain a reactive component that
deals with sequences of inputs from and
outputs to the environment surrounding
the application. For example, a cell-
phone application requires a reactive
component that deals with sequences of
push-button events made by the user
or with sequences of network com-
mands received over the channel.

Such reactive components are almost
always designed using a state-machine
approach. Statechart and state-diagram
code generation for a real-time OS needs
to be robust in the presence of interrupts
and other forms of reentrancy.

heterogeneous environment. It’s nec-
essary to support high-fidelity process
behavioral modeling, graphical soft-
ware programming, design verifica-
tion via simulation, and software
specification and implementation via
automatic code generation.

One helpful tool is BetterState,
which aids in statechart design, code
generation, and visual debugging. It
supports all features of Harel state-
charts, plus some extra capabilities like
visual synchronization, visual priorities,
critical regions, and mixing flowcharts
and statecharts.

BetterState’s automatic code genera-
tor produces code in C, C++, Java, Perl,
Visual Basic, VHDL, Verilog HDL,
Delphi, and special real-time OS (RTOS)
code for embedded controllers.

As well, developers can use certain
features to customize their code genera-
tor to write special-style code or code in
another language. For example, a code
generator that makes assembly code for
the Motorola 68k processor is available.

Visual-debugging tools enable you to
observe the statecharts’ behavior in run

time using state animation. This anima-
tion works even when the generated
code is on a target embedded CPU.

To achieve the support goals men-
tioned above, I interfaced BetterState
with MATRIXx—a visual modeling,
design, simulation, and implementation
tool for large-scale control systems.

Each algorithm is described in
MATRIXx and then automatically coded
in C. The set of generated procedures is
introduced in BetterState and activated
as defined by the statechart. The com-
bination of the MATRIXx algorithm and
the statechart design creates the com-
plete controller logic.

With the integrated environment, the
design can be shared among team mem-
bers without requiring any transfer

Repeated
calls to the
statechart
block of code

Potentially
unstable period

Time

Change of gear event:
Transmission shifted to N

Figure 5 —A change-of-gear event happens in a
potentially unstable period.

#110

Circuit Cellar INK® Issue 90 January 1998 29

Typical code generators, whether for
statecharts or conventional state dia-
grams, assume that the generated code
(typically wrapped inside a function)
completes executing before being called
again.

This assumption is valid for simula-
tion purposes. However, it doesn’t hold
when the generated code is invoked by
interrupts or some other preemptive
mechanism, where the current execu-
tion might be interrupted by another
call due to a subsequent interrupt.

CruiseControlOff

Disengaged
Regulate

D

CruiseControlOn
D

D

NoMemory

HasMemory SetSpeed

Engine

CruiseCntl Transmission

Transmission_is_

?

D

R D3

P
D2

D1

N

Figure 6— This time, the Cruise Control statechart is augmented with
concurrence (condition names are omitted for clarity). Note how Cruise-
Cntl and Transmission are independent substatecharts in their own right.

I R S
407 Very Useful
408 Moderately Useful
409 Not Useful

Doron Drusinsky-Yoresh received his
Ph.D. from the Weizmann Institute,
Rehovot, Israel. He developed statechart
CAD tools and DSP applications for
Sony, and in 1993, he founded R-Active
Concepts and developed BetterState.
You may reach him at doron@isi.com.

REFERENCE

[1] D. Harel, “Statecharts: A Visual
Approach to Complex Systems,”
Science of Computer Program-
ming, 8, 231–274, 1987.

To address such con-
cerns, BetterState offers a
robust code generator tai-
lored for pSOS and other
RTOSs.

AN EMERGING
STANDARD

Statecharts have been
chosen as the de facto and
de jure standards in many
industries (e.g., SEMI,
CASE/OOD, aerospace, and
EDA). And recently, state-
charts have been emerging

as an important language in the auto-
motive market as well.

In this article, I’ve shown how state-
charts can be used in a heterogeneous
design environment that combines
statecharts and state-machine control
with continuous-time control simula-
tions and code generation.

It lets designers describe, simulate,
and implement automotive applications
such as engine control and antilock
braking as well as complex cruise-con-
trol and body-logic applications. I

SOURCE

BetterState, MATRIXx

Integrated Systems, Inc.
201 Moffett Park Dr.
Sunnyvale, CA 94089
(408) 542-1500
Fax: (408) 542-1955
www.isi.com

30 Issue 90 January 1998 Circuit Cellar INK®

Building Advanced Device
Drivers for the MPC860

FEATURE
ARTICLE

Avi Cohen

m
A new breed of 32-bit
micros has arrived.
Their complexity
exponentially
increases the
demand on
programmers. Using
the MPC860 and
DriveWay, Avi shows
how to simplify the
task of creating a
tailored board.

ore and more,
we’re seeing a new

breed of 32-bit micro-
processors for embedded

applications. By adding, altering, and
refining complex on-chip peripherals,
vendors can provide cost-effective,
high-performance derivatives for mar-
ket niches.

Pushing functions like specialized
telecommunications data management
or LCD systems onto peripherals lets
the embedded microprocessor manage
them without tying up the core micro-
processor or requiring extra silicon.

Combining multiple capabilities on a
single chip greatly simplifies the final
system. But, without proper micropro-
cessor programming, you can’t take
full advantage of their functionality.

On-chip peripherals can consume
up to 50% of the total silicon area and
require hundreds of registers containing
thousands of bits to be initialized. As
complexity grows, interfacing applica-
tion code to hardware becomes more
time consuming and error prone.

As an example, consider the Motor-
ola MPC860. It combines a PowerPC
core capable of running at 40 MHz
(upcoming versions will operate at
50 MHz) with an on-chip peripheral
set handling everything from a design’s
DRAM interface to sophisticated
serial devices that support protocols

like Ethernet, HDLC, and T1/E1 time-
division-multiplexed channels.

Numerous variants of the MPC860
offer a wide range of peripheral con-
figurations. But, they all share a com-
mon set of logic external to the core
PowerPC-based CPU.

This logic set includes an MMU,
instruction and data caches, an interrupt
controller for managing and prioritizing
asynchronous events, and eight memory
controllers that can interface to every-
thing from the simplest ROM device to
DRAM devices not even available yet.

Besides the core peripherals, variants
contain combinations of SCCs (serial
communications controllers) supporting
many protocols (e.g. Ethernet, HDLC,
and synchronous and asynchronous
UARTs). There are also ports for I2C,
SPI, and PCMCIA, and most variants
also contain two SMC (serial manage-
ment channel) devices supporting less
sophisticated serial protocols.

PERIPHERAL PROGRAMMING
The MPC860 is a complex, highly

integrated embedded micro that places a
significant burden on the developer to
configure and control the peripherals
without taking months to complete the
task. Figure 1 shows how the peripherals
interact with the core processor.

There’s a basic set of peripherals that
must be configured—the system setup,
memory controller, timers, and boot
code. As well, some peripherals are
normally set up (e.g., SCC and SMC),
and a host of them are sometimes set
up (e.g., I2C and SPI).

At a minimum, an application needs
code to handle reset conditions and
some external memory (ROM for pro-
gram storage and RAM for data storage).
As well, all applications need initializa-
tion of the on-chip interrupt controller.

Some global control parameters
need to be defined (e.g., the location
of the on-chip dual-port RAM shared
between the PowerPC core and CPM),
and so do the operation of some global
clock signals.

To date, the most common solution
for developing the appropriate software
to interface the application code to the
microprocessor’s capabilities has been
for in-house engineers to handcraft code.
Some development teams take the “bet-

Circuit Cellar INK® Issue 90 January 1998 31

PowerPC
Core

I_MMU I_CACHE

D_MMU D_CACHE

Extended Core

Interrupt
Controller

4 Timers

Parallel I/O

BRGs

Dual-Ported
RAM

Communication Processor

SLAVE I/F Master I/F

CPM Local Bus

SCC1 SCC2 SCC3 SCC4 SMC1 SMC2 SPI1 I2C

Serial Interface and TSA

RISC
Sequencer ROM

REG File

ALU MAC CRC

SIU

MEMC

PCMCIA I/F

BIU

System Functions

Peripheral Bus

E_BU

ter to borrow than build” approach and
integrate low-level control code pro-
vided by third parties or RTOS vendors.

A recently emerging option is to use
development tools that automatically
generate the device-driver code of this
interface. In this article, I look at how
one such tool, DriveWay-MPC860,
simplifies the task of building and inte-
grating a tailored board support package
for a Motorola MPC860-based system.

DRIVEWAY
DriveWay-MPC860 is a Windows-

hosted tool that, through an intuitive
point-and-click interface, enables the
user to configure the entire MPC860 to
specific design requirements and then
generate C and assembly source code
that can link with the application.

This generated source code contains
all the functions necessary to take the
processor out of reset, initialize the
entire device (including any OS param-
eters used by the application), and pro-
vide the application with a robust and
well-documented API for accessing
peripheral functions.

To shield the developer from the
implementation details, the DriveWay
configuration process works at the
functional level, as opposed to the
register level.

For example, the user interface
doesn’t ask whether to set the CRC bits
in the PSMR register when configuring a
channel for HDLC operation. Instead,
the user can set a 16- or a 32-bit CRC
calculation for HDLC messages, which
DriveWay-MPC860 translates to the
correct register mapping.

By generating the hardware and appli-
cation code interface with DriveWay,
the designer can concentrate on func-
tionality and not implementation.
While using DriveWay doesn’t preempt
the need to thoroughly understand the
’860, it eases device programming.

It can also warn the user about con-
tradictions among MPC860 resources.
For example, most MPC860 I/O ports
can be configured as general-purpose I/O
or dedicated peripheral pins. Port C I/O
pin 15 can be used for DMA request
(DREQ), serial-port request to send
(RTS), or general-purpose I/O.

One group of device-driver software
engineers might write the DMA devices

driver and use that pin, while another
group uses the same pin for a serial-
port device driver. DriveWay prevents
such mistakes.

The whole rationale of automating
this step is that configuring and con-
trolling the peripherals doesn’t add
value to the end product. It just en-
ables the system to work. So, by re-
ducing time spent on this phase,
designers can focus on features that
increase system value.

Two complex peripherals that
must be configured are the memory
controller and serial communication
channel. These flexible peripherals
support a wide range of options. Con-
figuring them is key for optimal use
of the embedded microprocessor.

One powerful feature of the
MPC860 is its User Programmable
Machine (UPM) support for external
DRAM. Through a common program-
ming approach, the microprocessor
can support any DRAM that might be
part of an embedded design.

An array of values can be loaded
into on-chip dual-port memory, com-
pletely controlling the timing of the
external RAS/CAS signals necessary
to provide the refresh logic for exter-
nal DRAM.

DriveWay makes programming
this aspect of the MPC860 straightfor-
ward (see Photo 1), especially when
used with Motorola’s UPM860 tool

for determining the values necessary
to support a specific refresh behavior
of an external DRAM device.

The designer can use UPM860 to
map a refresh timing diagram onto an
array of values to be loaded into the
UPM and then use DriveWay-MPC860
to configure the boot code. Once code
is generated, the software needed to
glue the external DRAM to the MPC860
is complete.

DriveWay includes a library of UPM
array of values for popular DRAM chips.
When you select the chip’s name, the
generated code includes the UPM array
of values for that chip. Listing 1 shows
some of the boot assembly code needed
to configure the UPM for a DRAM
chip on Motorola’s ADS860 board.

Due to the complexity of the proto-
cols supported by the SCC channels,
programming these devices is often
the most difficult aspect of configur-
ing an MPC860. The MPC860’s CPM
manages a set of buffer descriptors
that must be configured properly by
the initialization code.

There is also a set of registers for
each SCC that is common to all of the
protocols supported, as well as protocol-
specific sets. All of these must be
properly configured for optimal use of
the microprocessor.

The issues that generally must be
addressed when building a driver for an
SCC channel include determining the

Figure 1 —The Motorola MPC860
is a complex microprocessor with
a wide range of peripheral
configurations. The task of
configuring and controlling these
peripherals can take as long as
nine months when done by hand.

32 Issue 90 January 1998 Circuit Cellar INK®

from, most share some common char-
acteristics, including (apparent) concur-
rent task execution, a mechanism for
prioritization, and primitives for passing
messages and synchronizing tasks.

Most RTOSs are designed with a
certain amount of hardware indepen-
dence in mind. That is, the hardware
on which the application and RTOS
will execute has been abstracted.

For example, most require a periodic
heartbeat timer that notifies the OS
when a specified time interval (typically
~10 ms) has expired. Thus, certain OS
services can be sensitive to elapsed time.
Waking up a task at a specific time or
letting certain blocking system calls
time out are two reasons why an RTOS
must know about the passage of time.

Once the driver’s code is developed,
it has to be integrated with the operating
system. The combination of drivers

operation mode to be established by the
initialization sequence, defining an
interface that enables application code
to transmit and receive messages, and
establishing the behavior of the system
when asynchronous external events
occur (e.g., a packet arrives along the
communications port).

A number of parameters must be
defined to ensure the correct operation
of an SCC. A few months ago, Simon
Napper discussed setting up an AMD
186 UART (“Writing Device Drivers for
Embedded PCs,” INK 86). Here, I exam-
ine how DriveWay documents and
implements the selection.

To fully configure a UART using an
MPC860 UART, the user must:

• define clock sources used by the SCC
(the sources’ clock rate is set in
another function)

• define general-purpose I/O pins as
dedicated SCC1 peripheral pins—
TX (transmit), RX (receive), RTS
(ready to send), CTS (clear to send),
and DTR (data terminal ready)

• set SCC general-purpose mode regis-
ter to operate in UART protocol

• set UART protocol-specific parameters
(e.g., parity, data length, stop bits, etc.)

• set MPC860 internal RAM param-
eters of SCC1

• set buffer descriptors mechanism for
reception and transmission

• reset UART protocol error counters
• initialize control characters and

multidrop address tables (only when
working in multidrop mode)

• set up general-events monitoring
system and clear all previous event
indications

• insert SCC1 interrupt service routine
to the CPM handlers table

The code fragment in Listing 2 imple-
ments the second step—setting up the
pins.

As you see, the documentation tells
the user which signals will be applied to
which pins. This information comes
from the dialog selections made when
configuring the UART. The code then
sets the registers to meet the require-
ments. If the user wants to use the CTS
signal, the code is modified to add it.

In this case, the mode of operation
is NMSI (nonmultiplexed serial input).

It’s possible to multiplex several SCCs
using the time-slot assigner supported
by the ’860. Ethernet and HDLC have
different pins and transfer protocols, but
they follow the same approach.

DriveWay abstracts the user away
from coding details and focuses the
design effort on what is required—not
how to achieve it. Nevertheless, the
code is documented thoroughly enough
for you to walk through it and find
out what was implemented and why.

RTOS AND COMPILER TOOLS
After the hardware interface is

configured, the drivers must be con-
figured to the run-time and develop-
ment environments.

RTOSs are now common, and in-
creasingly, commercial packages are
being used rather than proprietary code.
While there are many RTOSs to choose

Listing 1 —This section of the boot code configures the memory controller for the DRAM on the Motorola
ADS evaluation board.

; Set up User Programmable Machine
lis r5,UPM_Initialize_Values@h
ori r5,r5,UPM_Initialize_Values@l

; User-Programmable Machine A�RAM Array
li r6,0x0000
li r7,0x0040

Write_UPMA_Loop:
lwz r8,0(r5)
stw r8,MDR(r3)
stw r6,MCR(r3)
addi r5,r5,4
addi r6,r6,1
cmp r6,r7
blt Write_UPMA_Loop

�
; UPM register array of values used for ADS860 board DRAM
; Single Read (Offset 0x0)

.long 0xFFFFFF24, 0x0FF3CC24, 0x0FF3CC04, 0x0CF3CC04

.long 0x00F3CC04, 0x00F3CC00, 0x37F7CC47, 0xffffffff
; Burst Read (Offset 0x8)

.long 0xFFFEFF24, 0x0FF3CC24, 0x0FF3CC04, 0x08F3CC04

.long 0x00F3CC00, 0x00F3CC0C, 0x0CF3CC44, 0x00F3EC08

.long 0x03F3EC04, 0x00F3EC40, 0x00F3CC0C, 0x0CF3CC44

.long 0x00F3EC00, 0x00F3EC04, 0x3FF7EC47, 0xffffffff
; Single Write (Offset 0x18)

.long 0xFFFFFF24, 0x0fafcc24, 0x0FAFCC04, 0x08AFCC04

.long 0x00AFCC00, 0x37FFCC47, 0xffffffff, 0xffffffff
; Burst Write (Offset 0x20)

.long 0xFFFFFF24, 0x0FAFCC24, 0x0FAFCC04, 0x08AFCC00

.long 0x07AFCC4C, 0x08AFCC00, 0x07AFCC4C, 0x08AFCC00

.long 0x07AFCC4C, 0x08AFCC00, 0x372FCC47, 0xffffffff

.long 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff
; Refresh (Offset 0x30)

.long 0xE0FFCC84, 0x00FFCC04, 0x00FFCC04, 0x0FFFCC04

.long 0x7FFFCC04, 0xFFFFCC86, 0xFFFFCC05, 0xffffffff

.long 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff
; Exception (Offset 0x3c)

.long 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff

Circuit Cellar INK® Issue 90 January 1998 35

and initialization code integrated with
the RTOS is the board support pack-
age (BSP).

Along with the standard services for
each peripheral, the BSP developer cre-
ates code that initializes each device and
installs an interrupt service routine
that notifies the RTOS when an event
occurs. When integrating driver code
with an RTOS, the BSP developer must
keep a number of issues in mind:

• how does the boot code initialize
the operating system?

• what RTOS services must be avail-
able when initializing the devices?

• where is control of the interrupt vec-
tors based—the driver or the RTOS?

• how are the device drivers glued to
any I/O services provided by the
RTOS?

Using an automation tool to configure
and build a BSP shields the developer
from many of these issues.

Boot code that not only initializes
the microprocessor but also invokes the
proper sequence for bringing up the
RTOS can be automatically generated.
It’s possible for the RTOS to maintain
control of the entire interrupt system if
the proper API has the RTOS install
the interrupt service routines required
by the device drivers.

The MPC860 has a complex interrupt
system structure. For example, SCC2
requests an interrupt when a data buffer
is received. This request is sent to the
MPC860 CPM interrupt controller.

If the priority of SCC1 is high enough
and SCC1 interrupts are not masked,
then the interrupt request is sent to the
MPC860 SIU (system interface unit). If
the CPM interrupt priority is high
enough and the CPM interrupt request
is not masked, then the interrupt re-
quest goes to the MPC860 core as an
external interrupt request. If the inter-
rupts are not masked in MPC860’s core,
the interrupt request will be served.

Most RTOSs include support for
this complex structure via setting up
the interrupt table and resolving the
interrupt source, as well as the peripher-
als’ interrupt handlers and general
interrupt services (e.g., insert an inter-
rupt handler in the interrupt table,
enable and disable interrupts, etc.).

The MPC860 includes an event and
error report system that can be used for
interrupt handling. Different applica-
tions need to be notified about different
events or errors, and this task is accom-
plished during the interrupt-handling
process and using the MPC860 buffer
descriptor (BD) mechanism.

For each peripheral, mode, or pro-
tocol, a set of bits located in the BD
reports an error or event.

Most RTOSs supply BSPs that
include a few functions to enable the
user to get the RTOS running and to
aid the debugging process. For example,
the MPC860 SMC1 is used by most of
the RTOS as a debug channel.

However, this package is incomplete.
The reset of the MPC860 peripherals’
interrupt handlers, for example, is not
supplied. Some RTOSs don’t include
any part of the interrupt system, so it
becomes the designer’s responsibility.

Some applications don’t need any
RTOS environment (e.g., a testing
system or diagnostic program). For
these cases, the user must provide a
stand-alone system that includes all
the necessary boot code, interrupt
system, memory management, make
files, and peripheral device drivers.

In addition to the OS environment, a
code-generation tool must be aware of
the compiler environment in which the
code will be built. For optimal driver
performance, it’s often necessary to take
advantage of some of the extensions to
ANSI C provided in most toolkits for
embedded software development.

Extensions such as inline assembly
code and use of a “packed” qualifier for
structure definitions are common-place
in most embedded tools. But, all use a
slightly different syntax.

For example, the Diab Data
#pragma pure_function promises
that the function does not modify or use
any global or static data. This informa-
tion helps the compiler make a few
assumptions on the nature of the code

Listing 2 —This code fragment, generated by DriveWay, configures pins 14 and 15 for RXD (Receive Data)
and TXD (Transmit Data), respectively, and sets up BRG1 to be TCLK (Transmit Clock) and RCLK (Receive
Clock).

/* SCC activation sequence:
* Initialize SCC1 in Uart mode: Scc1UartInit();
* Enable SCC1: SccEnable();
* Transmit data: SccTxBuffer() or SccTxFrame()
* Disable SCC1: SccDisable(); */
void Scc1UartInit(void)
{
SCC_P SccPtr; /* Pointer to SCC Configuration Registers */
SCC_UART_P SccUartPtr; /* Pointer to SCC UART Protocol Config

 Registers */
SCC_PARAM_P SccParamPtr; /* Pointer to SCC Parameters RAM

Registers */
BD_P BdPtr; /* Pointer to Buffer Descriptor */
U16 * AddrTbl; /* Pointer to Address Table */
U16 * CtrlCharTbl; /* Pointer to Control Characters Table */
register int i; /* General index */

 /* SCC 1 is connected directly to the NMSI pins
- RXD signal supported by Port A pin 15
- TXD signal supported by Port A pin 14
- RTS signal not supported
- CTS signal not supported
- CD signal not supported
- DTR signal supported by Port D PIN15
- Both TCLK and RCLK signals supported by BRG1 */

 Quicc->Sicr |= ((SCC_NO_GRANT_SUPPORT |
 SCC_NMSI_INTERFACE |
 (BRG1_CLK_SRC<<3) |
 BRG1_CLK_SRC));
 /* Set TXD/RXD signals (Port A pins 14-15) */
 Quicc->PortA.Ppar |= (HALF_WORD_BIT14 | HALF_WORD_BIT15);
 /* Set DTR signal (Port D pin 15) */
 Quicc->PortD.Pdir |= (U16)PIN15;
 Quicc->PortD.Pdat |= (U16)PIN15;
}

36 Issue 90 January 1998 Circuit Cellar INK®

and generate better and
faster code.

The inline keyword
provides a way to replace
a function call with an
inline copy of the function
body, reducing the time
needed to save registers and
set up the stack before
and after the function call.

All these details must
be correctly set. The pos-
sible combination of com-
piler tools, RTOS, and the
functional requirement of
the system means that no
prepared driver set will
ever be optimal.

DriveWay 3DE enables
users to specify what they
want using dialog selec-
tions. Users must understand which
options are required, but they don’t
need to understand the coding details.

DEBUGGING CHALLENGES
The design and coding of device

drivers for these advanced processors

is always a challenge. But, debugging
them is usually the most difficult task.

There are many source-level debug-
gers (SLDs) used in embedded software
development that make use of a “moni-
tor” on the target board to interface with
a host-based tool. But, a monitor is

worthless unless there is
already boot code to per-
form minimal initializa-
tion of the board and a
device driver in place for
communication between
the monitor and SLD.

To solve this problem,
the MPC860 includes a
new system called Devel-
opment System Interface.
This system uses a dedi-
cated development serial
port, which is a relatively
inexpensive port that
doesn’t need the usual
system interfaces, mem-
ory, boot code, and so on.

Hardware assist solu-
tions (e.g., emulators and
logic analyzers) can pro-

vide the debugging tools necessary to
troubleshoot these sorts of problems.
But such solutions tend to be expensive,
and they’re not always available. Often,
the only hardware aid a developer has
are onboard LEDs that can be toggled
to indicate where a problem might be.

Photo 1 —DriveWay presents the user with dialog boxes to configure the memory controller
on the MPC860. DriveWay uses the selections made in the dialog boxes to generate the
code desired.

Circuit Cellar INK® Issue 90 January 1998 37

Avi Cohen is manager of the Embed-
ded Systems group at Aisys. Prior to
joining Aisys, he was a software engi-
neer with R.N.D. Switches and Rout-

I R S
410 Very Useful
411 Moderately Useful
412 Not Useful

SOURCES

DriveWay
Aisys, Inc.
4633 Old Ironsides Dr., Ste. 105
Santa Clara, CA 95054
(408) 327-8820
Fax: (408) 327-8830
mkt@aisysinc.com
www.aisysinc.com

MPC860
Motorola
MD: OE216
6501 William Cannon Dr. W
Austin, TX 78735-8598
(512) 895-3823
Fax: (512) 895-8807
michael_shoemake@risc.sps.mot.com
www.mot.com/SPS/RISC/netcomm

/prod/eppc/MPC860.html

ers. You may reach him at avi_cohen
@aisys.co.il.

With a complex microprocessor like
the MPC860, extra debugging problems
can arise due to subtle interactions
among the peripherals. When so many
devices share the limited dual-port
memory that channels communications
between the PowerPC core and the
CPM, it’s easy to create code that results
in the driver for one device corrupting
the operation of another device.

Of course, debugging can absorb
enormous amounts of time. Although
using DriveWay doesn’t preclude the
need for debugging, the fact that the
drivers are already thoroughly tested and
the application-code interface is well-
documented eliminates two sources for
bugs and reduces the time needed to get
through this difficult phase.

OVERCOMING OBSTACLES
New, complex 32-bit microprocessors

for embedded applications have created
both opportunities and obstacles for
today’s embedded-system designers.

The opportunity comes from the
breadth of solutions offered in a single-
chip package. Power management,

memory control logic, a powerful
CPU, and sophisticated I/O control-
lers on a single device offer great ad-
vantages.

But, managing this complexity is
probably the most difficult issue fac-
ing the embedded-system developers.
Design tools help address these issues.

There is growing interest and activ-
ity in the embedded market, demon-
strated by increased attendance at
embedded conferences and the grow-
ing number of embedded microproces-
sors and tools available.

New tools and technologies are
arriving on the market to increase the
leverage of the design engineer devel-
oping embedded systems.

As complexity continues to esca-
late rapidly, designers must select
their tools carefully because the tools
will increasingly dictate what can be
achieved on any given project. I

Photo courtesy of
Ampro Computers, Inc.

40 Nouveau PC

44 Year 2000 and Embedded PCs
Scott Lehrbaum

49 Flash-Disk Building Blocks
Tradeoffs in the Make vs. Buy Decision
Raz Dan & Stefanie Hein

55 Real-Time PC
Real-Time Operating Systems
Part 1: Fundamental Components
Marc Guillemont

61 Applied PCs
RF Telemetry
Part 1: Theory and Implementation
Fred Eady

CIRCUIT CELLAR INK JANUARY 199840

N
PC

PCNouveau
edited by Harv Weiner

PC/104 CPU MODULE
The AT/3I Communication Engine is a low-power,

PC/104-compliant CPU module based on a ’386SX processor
running at 33 MHz. Its integrated Ethernet, PCMCIA, and serial ports

make it an ideal choice for a low-cost system with connectivity features.
The AT/3I features two RS-232 serial ports (one could be configured as

RS-422/-485), a bidirectional parallel port, and AUI NE2000 Ethernet. It also
has a PCMCIA slot, AT keyboard slot, watchdog timer, real-time clock,
embedded FlashBIOS, and 15 general-purpose DIO lines. The module supports
different operating systems like DOS, Windows, QNX, pSOS, and other RTOSs.

The PCMCIA interface is intended as a general-purpose communication port
for high-speed V80 modem, ISDN, Token Ring, IBM 3270/5250 terminal
emulation, and video-capture cards. In addition to its 2 MB of DRAM, the module
integrates a solid-state disk that can be used to store the operating system, user
program, and data files with a maximum capacity of 24 MB.

The AT/31 sells for $595 in 1–10 quantities.

EuroTech srl
Via Linussio 1 • 33020 Amaro (UD) Italy
+39 433 486258 • Fax: +39 (0) 433 486263
pc104@eurotech.it • www.eurotech.it #510

EMBEDDED DEVELOPMENT TOOL
POWERplant EDE provides an integrated development

environment by combining leading embedded development tools
with Microsoft’s Developer Studio. The capabilities of Developer
Studio are extended to compile, link, and debug embedded
applications using the best cross-development tools. These capa-
bilities, combined with Nucleus MNT (a Windows NT-based
prototyping environment), provide a full-featured embedded
development environment.

The concept behind POWERplant EDE is simple. First, build
and prototype a system using Nucleus MNT. This allows the use

of Microsoft Visual C++ and supporting tools to develop and test
the code before cross development. Once the prototype applica-
tion is refined, by changing projects, the user can build, down-
load, and debug an application within the Developer Studio
environment using cross-development tools.

In addition to Developer Studio’s edit, build, and test features,
project-management, class-manager, and browser features are
available. Code management and development tools can also be
added.

POWERplant EDE is preconfigured with an initialization file
that is read into a configuration program. This file contains the
common directories and paths for the toolset being used, as well
as all the compiler, assembler, librarian, linker, and locator
command lines and switches that were used when Nucleus was
built. For a different configuration, the user enters the configura-
tion tool and makes the necessary changes (e.g., add or remove
switches, add libraries, relocate directories, etc.).

Licenses for POWERplant EDE are $1295 per seat.

Accelerated Technology, Inc.
720 Oak Circle Dr. E.
Mobile, AL 36609
(334) 661-5770 • Fax: (334) 661-5788
sales@atinucleus.com • www.atinucleus.com

#511

 JANUARY 1998 EMBEDDEDPC 41

N
PC

100-MHz EMBEDDED CONTROLLER
AMD has introduced a 100-MHz version of its Élan micro-

controller family. The 32-bit ÉlanSC400 combines the Am486
CPU with an integrated memory controller, PC/AT system logic,
and essential mobile computing peripherals. Virtually all the
peripheral logic required for a PC/AT-compatible system is on a
single chip, and DOS, Windows CE, and other major ’x86-
compatible RTOSs are supported.

In addition to the CPU, the ÉlanSC400 microcontroller features
an integrated power management unit (PMU), five phase-locked
loops that generate all system clocks from a 32-kHz watch crystal,
and fully static design for maximum battery life. In addition to
power management, the chip contains an LCD graphics control-
ler, dual PC Card controller (PCMCIA 2.1 and ExCA compliant),
16C550-compatible UART, EPP-compatible parallel port, and an
IrDA infrared port.

The chip’s complete memory controller supports 64-MB EDO
and FPM DRAM. A complete ROM controller supports ROM and
flash memory. A 16-bit ISA-bus controller and CPU Local-bus
access (VL type) are also provided.

The ÉlanSC400 is priced at $55.65 in quantity.

AMD
One AMD Pl.
Sunnyvale, CA 94088-3453
(408) 732-2400
Fax: (408) 732-7216
www.amd.com #512

PC/104 DATA-ACQUISITION
CARD

The AIM16-2/104 is a
high-speed (200 kHz) 16-bit
data-acquisition card that fea-
tures 16 single-ended or 8 dif-
ferential analog input channels,
16 lines of digital I/O, flexible
triggering options, direct
memory access (DMA), and
interrupt operation with a stan-
dard 4K × 16 FIFO. Applica-
tions for the card include medi-
cal imaging, spectroscopy,
guidance systems, and auto-
mated test equipment.

The AIM16-2/104 provides
85 dB of spurious-free dynamic
range (SFDR) with user-select-
able inputs of 10, 5, 2.5, and
1.25 V, and it offers factory-
installed bipolar and unipolar
options. The board incorpo-
rates proven high-frequency
layout techniques, including
short, guarded signal paths and
separate power and ground

planes to ensure
noise immunity. An
onboard DC-DC con-
verter powered by a single
+5-V supply provides noise
isolation from the system switch-
ing power supply.

The PC/104-compliant card
is priced at $625.

Analogic Corp.
8 Centennial Dr.
Peabody, MA 01960
(978) 977-3000
Fax: (617) 245-1274
www.analogic.com

#513

PCNouveau

CIRCUIT CELLAR INK JANUARY 199842

N
PC

PCNouveau

’586 CPU CARD
The VL-586-1 is a DOS-compatible computer that com-

bines standard DOS/Windows hardware with customized BIOS
firmware and an STD/STD32 Bus interface. Its PC/104-Plus expan-

sion site enables a PC/104 or PC/104-Plus module to be stacked directly
onboard. This setup enables the use of high-speed video modules and

“local” I/O expansion in systems using multiple processor cards.
The board features a 133-MHz AMD 5x86 processor that does not require an

on-chip fan or special cooling. It accommodates 4–32 MB of DRAM, 2.5 MB of
flash memory, and 512 KB of battery-backed SRAM, enabling infinite read/write
cycling (unlike flash memory) with full power-fail protection. The board includes
floppy, IDE, and AT keyboard interfaces, PC-compatible LPT port, two COM ports,
real-time clock with CMOS RAM, interrupt controller, DOS counter/timer
channels, and DMA controller. Built-in multiprocessor arbitration and a watchdog
timer/reset circuit are also featured.

The VL-586-1 sells for $676 in quantity.

VersaLogic Corp.
3888 Stewart Rd. • Eugene, OR 97402
(541) 485-8575 • Fax: (541) 485-5712
www.versalogic.com #514

CIRCUIT CELLAR INK JANUARY 199844

EP
C

Scott Lehrbaum

Year 2000 and

Embedded PCs

The rapid proliferation of computers in
the last thirty or more years has been
largely driven by an increasing level of
performance and sophistication in both
business and home systems.

Yet, the astonishing pace of the com-
puter revolution could not have been
achieved without a strong vendor commit-
ment to the idea of backward compatibil-
ity. This enables customers to leverage off
their previous investments in hardware
and software but still make immediate use
of the latest in computer technology.

While this strategy has accelerated
both the takeover of computers and the
development of advanced computer tech-
nologies, it has occasionally produced
some unfortunate side effects. By far, the
most infamous of these is the year-2000
problem, also known as the millennium
bug or Y2K.

At first glance, the issue seems fairly
innocuous. The year is represented in
hardware and processed in software as a
two-digit value.

But, the year-2000 problem poses a
real threat to many of our most critical
electronic systems. Everything from power
plants, air-traffic control, and communica-
tions systems to health care, financial
institutions, and government agencies could
experience catastrophic system failures as
a direct result of the year-2000 problem.

How could modern society be brought
to its knees by two lousy digits?

First, the systems controlling most of
these critical applications are old-style
mainframe computers. They can�t be up-
graded with new hardware, and they
require extensive and extremely costly
software changes to eliminate flaws.

Secondly, in many cases, the applica-
tion software relies heavily on time and
date information to schedule critical sys-
tem events. A bad date can cause these
events to be initiated out of sequence or at
the wrong times, potentially with disas-
trous consequences.

A lot of other application programs
may simply quit working, shutting down or

crashing the systems they control. If that
happens to a mainframe system running a
power-plant, phone-company, or air-traf-
fic control system, the effects of the year-
2000 problem could be devastating.

MILLENNIUM BUG UNMASKED
The year-2000 problem is rooted in the

use of a two-digit value to store and
process the year. Early mainframe design-
ers had a good reason for building in such
an obvious limitation�dropping two dig-
its meant valuable savings in component
size and manufacturing costs.

In the intervening years, new computer
systems have been designed with the
same limitation, for the equally good rea-
son of maintaining compatibility with ear-
lier software. Despite the fact that the
original rationale has long been obsolete,
the tenets of backward compatibility have
consistently won out over alternative, more
advanced clock designs.

Let�s look at how the year is repre-
sented on systems that support only a two-

The year-2000 phenomenon incites many hyped predictions of people trapped
in elevators, loss of infrastructure, never mind millions of dollars. According to
Scott, though, all embedded PCs need is a software patch. Read how it�s done.

 JANUARY 1998 EMBEDDEDPC 45

EPCdigit year. For example, the year 1972 is
stored as 72, and 1999 is 99.

But, what happens when the year rolls
over to the next century? The obvious
answer is that it reverts to 00, but how does
software interpret that value?

In theory, if the software was aware of
the two-digit year limitation, it could calcu-
late dates correctly for 100 years by using
a particular year as a baseline�logically,
the year the software was written. Lower
numbered years could then be interpreted
as occurring after the century rollover, as
illustrated in Figure 1.

This simple approach to managing the
century issue in software is now being
used in some year-2000�aware BIOSs
and application programs. But from a
practical standpoint, there�s a lot more to
this problem than how software interprets
two-digit years.

THE PROBLEM IN PCs
Two missing digits might seem easy

enough to cope with, but the question of
year-2000 susceptibility in PCs is surpris-
ingly complex.

In fact, several different design errors
and limitations compose the year-2000
problem. They have accumulated over the
nearly twenty-year history of PC hardware
and software design and are all related to
the original issue of a two-digit year.

In the following sections, I outline four
key elements to the problem
in the same order that they
might come into play during
system startup and operation
(see Figure 2).

REAL-TIME CLOCK
The first desktop PCs in-

troduced by IBM�the PC
and PC/XT�didn�t include
an onboard real-time clock.
It wasn�t until the first AT
that battery-backed time-
keeping became standard.

The device chosen by
IBM�the Motorola MC-
146818�maintained the
long-held tradition of storing
the date as a two-digit value.
Thus, with the decision to
use the Motorola device, IBM
designed in the millennium
bug as a standard feature
on its desktop systems.

Vendors of IBM-compatible clones have
historically duplicated the IBM designs with
few architectural changes. This decision makes
sense for the same reason that using two-
digit real-time clocks in new computer
designs did. Maintaining 100% compatibility
with existing platforms maximizes the value
and benefit of new hardware purchases.

Unfortunately, it also means clone ven-
dors hopped right on the millennium-bug
bandwagon, incorporating the same or
equivalent time-keeping devices in their
own desktop designs.

BIOS
To account for the lack of a century

indicator in the real-time clock, an IBM
firmware engineer came up with the idea
of reserving an unused byte in the real-time
clock�s memory (also used for CMOS set-
up data) to store the current century value.

This clever trick could have saved a lot
of future heartache if it had worked as
intended. However, the idea fell flat be-
cause there wasn�t the capability to either
detect a century rollover or increment the
century counter at the start of a centesimal
year. And as with the real-time clock
design, clone manufacturers essentially
duplicated the BIOS code, flaws and all.

WHAT DOS DOES
When DOS is first loaded into memory

and executed, it requests the time and

date from the BIOS to
initialize its own internal
clock. The DOS clock is auto-
mated via the system-timer tick
function and is independent of the
hardware real-time clock.

To maintain platform independence,
DOS never accesses the real-time clock
directly, relying on the BIOS to provide
this service. Unfortunately, this technique
ensures any errors not caught by the BIOS
directly affect the DOS time and date.

The problem with DOS is in the way it
handles�or more pointedly, fails to
handle�a bad year value returned by
defective BIOS code. If the year rolls to 00
on a system whose BIOS is not year-2000
enhanced, the year is returned as 1900.

But as far as DOS is concerned, Janu-
ary 4, 1980 (a date that probably has
some significance in the history of DOS) is
effectively the beginning of time. If it gets
an earlier date, DOS discards it as invalid
and resets to 01-04-1980.

DOS doesn�t know about the century
limitations of the BIOS or real-time clock.
Therefore, it has no reason to try to distin-
guish a century rollover from an actual
bad date, which might result from a real-
time clock failure or dead back-up battery.

And, there are similar problems with
other commercial OSs, including Windows
3.1, Windows 95, and Unix derivatives.

APPLICATION
SOFTWARE

Commercial applica-
tions and user-designed
software can be the most
unpredictable factors in
assessing system vulner-
ability to year-2000�re-
lated problems.

The BIOS and operat-
ing system generally take
a passive role in manag-
ing system time- and date-
keeping services. In
contrast, application soft-
ware depends heavily on
accurate time and date
information and uses it in
many calculations and de-
cision-making processes.

For example, applica-
tion software in a bank-
ing system calculates and
charges interest on a loan

User enters current
year into system

Computer stores year
as two-digit value

Software reads
system date

Current
year less than
baseline year?

Software extrapolates
four-digit year

Year =
20/05

= 2005

Software
written in

1994

Century =
Baseline century +1

19 + 1
= 20

Software assumes
century is 19xx

when extrapolating
year

Year =
19/05
1905

2005

05

05

Yes

No

Figure 1a�Many systems have histori-
cally made incorrect assumptions about
the missing century and have been un-
able to calculate the proper four-digit
year. b�A simple change in the way
software interprets two-digit years can
eliminate century-rollover problems for
more than 100 years.

a) b)

CIRCUIT CELLAR INK JANUARY 199846

EP
C

balance based on how
much time has passed since

the last charge was assessed.
Computers controlling assembly

lines use the time and date to schedule
regular maintenance shutdowns.
In either system, how well the software

handles the century rollover may determine
the fate of the company. If the code is error
free or has been cleaned of year-2000
flaws, the company should breeze through
the changeover without interruption.

But if not, the company could be hit with
massive losses in revenue and productivity
and may have to shut down for long
periods of time to make necessary repairs.
For this reason, the vulnerability of appli-
cation software is the single most urgent
question organizations must answer to
determine their year-2000 survivability.

MANAGING THE PROBLEM
Operating systems and application soft-

ware normally use BIOS interrupt services
to get time and date information from the
real-time clock or to change its contents.
Thus, the system BIOS is in an excellent
position to eliminate year-2000 problems
at the source.

The code in Listing 1 is similar to that
used in the Ampro BIOS interrupt 1Ah Get
Real Time Clock Date function. It
shows a simple but effective way of mak-
ing a PC/AT BIOS year-2000 immune.

The key to this patch�s effectiveness lies
in the fact that OSs generally request the
system time from the BIOS during bootup
in order to start their own internal clocks.
This process gives the BIOS a chance to
check and update the century counter
each time the system reboots. It also en-
ables updates to occur during regular
operation on systems that have been left
on since before the century rollover.

This capability could be critical for a lot
of black-box embedded-PC applications
which are never powered off or rebooted.
At any time, the application software can
make a call to the BIOS Get Real Time
Clock Date function to assure that its
current year and century information are
properly updated.

This simple enhancement to the origi-
nal IBM interrupt 1Ah code can effectively
eliminate all BIOS-related year-2000 prob-
lems. Yet remarkably, BIOS vendors didn�t
begin to incorporate comparable fixes
until the early to mid 1990s.

Such drivers provide the same protection
against year-2000�related problems as an
enhanced BIOS and can be installed in older
systems with a simple software upgrade.

If you can patch your systems with a
year-2000�immune BIOS or device driver,
most of your problems will be solved. In
particular, operating systems should be-
have well as long as they are provided
with correct date information.

Even if no BIOS fix or driver is avail-
able, the latest versions of just about all
operating systems now handle bad dates
elegantly. If you suspect your OS version
is susceptible to year-2000 problems, con-
tact the vendor for more information and to
arrange an upgrade to the latest release.

Regardless of how well your BIOS and
operating system can weather the millen-
nium change, there�s no guarantee that
the commercial or custom-written software
that runs in your system is impervious to
century defects. Unfortunately, a hard-
ware or OS vendor can�t do much to
protect against software problems.

If you�re using commercial off-the-shelf
software in your application, you should

Older model PC systems present more of a
challenge because there probably won�t
be a year-2000�immune BIOS available
for the down-rev hardware. This problem is
especially significant in the embedded
market because usable product lifetimes
are typically much longer than other types
of PC systems. The population of embedded
PCs more than a few years old that are still
in use today is much higher than compara-
bly aged desktop or notebook systems.

Despite the lack of BIOS upgrades, it
should still be possible to shore up the
defenses of older embedded-PC com-
patibles by using a device driver that
mimics the functionality of the improved
BIOSs.

One such driver is provided by Ampro
for use on earlier generation AT-class
products. It chains into the INT 1Ah service
routine and monitors the century value
returned by Get Real Time Clock Date.

If a rollover is detected, it increments
the century and calls Set Real Time
Clock Date to update the RTC. It also
updates the DOS date in the event of a
century rollover.

Listing 1�This software patch should protect PCs against century-rollover problems until the
year 2100. It assumes 1980 to be the earliest possible year and automatically increments
the century if a lower numbered year is detected.

cent_adr equ 32h ; RTC century address
year_adr equ 09h ; RTC year address
nmi_stat equ 00h ; always leave nmi enabled

; make 80h for nmi disable
;Return real-time clock year as four-digit BCD value in CX
;Update century if rollover is detected
Get_RTC_Year proc

cli ; clear interrupts
mov al,cent_adr ; load addr of RTC century
or al,nmi_stat ; set desired nmi status
out 70h,al ; write century index to RTC
in al,80h ; wait a microsecond or two
in al,71h ; read century value
mov ch,al ; save in CH
mov al,year_adr ; load addr of RTC year
or al,nmi_stat ; set nmi status
out 70h,al ; write year index to RTC
in al,80h ; wait
in al,71h ; read year value
mov cl,al ; save in CL
cmp cx,1980h ; 1980 earliest possible year
jb adjust_cent ; if below, it rolled over

done: sti ; restore h/w interrupts
ret

adjust_cent: mov ch,20h ; increment the BCD century
mov al,cent_adr ; load addr of RTC century
or al,nmi_stat ; set nmi status
out 70h,al ; write century index
in al,80h ; wait
mov al,ch ; new century value
out 71h,al ; update RTC
jmp short done

Get_RTC_Year endp

48

probably check with the software vendor
regarding possible year-2000 glitches.
Some of the most popular and widely used
application programs have been found to
contain bugs, although in most cases, the
problems are relatively harmless.

A word of warning, though. Microsoft
recommends against advancing the clock
to 11:59 P.M. on 12-31-99 and then wait-
ing to see what happens. Their advice
suggests that the results of such tests could
be unpredictable.

In most cases, software vendors should
be able to identify year-2000�susceptible
products and offer upgraded versions.

Custom software can be more of a chal-
lenge, depending on whether the engineer
who wrote the original code is still around
or how well the source is documented.
Companies must evaluate proprietary code
on a case-by-case basis to determine if
corrective measures may be required.

If you need to modify the software in
systems that are already installed in the
field�to replace buggy code, upgrade
the BIOS, or install a year-2000 software
patch�there may be ways to minimize the
effort needed to perform the update. This
situation depends entirely on the system
configuration and the capabilities of the
specific product.

It may be worthwhile to discuss your
options with your board vendor and
strategize on the best approach for up-
grading those systems. You may need to
dispatch service personnel to the installa-
tion sites or have the systems returned to
your facility for the required updates.

One final note on the year-2000 prob-
lem should be made relative to XT-class

embedded PCs. Recall that IBM didn�t
include a real-time clock with desktop PCs
until the introduction of the first AT-class
system.

However, because battery-backed time-
keeping is an important requirement in
embedded systems, some vendors pro-
vide onboard or plug-in real-time clock
options for their XT-class CPU products.
These devices are necessarily different
from the standard AT RTC because the XT
architecture doesn�t support the required
interrupt channel (IRQ8).

Thus freed of the burden of backward
compatibility, these devices typically pro-
vide full four-digit year counters, render-
ing them impervious to the sting of the
millenium bug.

THINKING AHEAD
Considering the widespread and po-

tentially devastating effects of the year-
2000 problem, it�s no surprise we�re
wondering how well embedded PCs will
weather the century changeover.

The good news is that PCs in their many
diverse form factors are much less likely to
suffer from ill effects than mainframe com-
puters and other predecessors. These newer
systems are highly upgradable, permitting
easy substitution of flawed hardware or
software components with backward-com-
patible, year-2000�immune replacements.

Even so, there are a lot of factors to
consider in evaluating the immunity or
vulnerability of your embedded PC.

Evaluate each system thoroughly for
possible weaknesses on all levels�hard-
ware, BIOS, and software. And, take
immediate corrective actions to ensure
that all problems are resolved before the
fast-approaching millennium deadline. EPC

Figure 2�If time information were passed
from one software layer to the next in a linear
fashion (center arrows), century management
would be fairly straightforward. But, com-
plexity is added by the fact that this conven-
tion isn�t always followed by OSs and
application software (dotted arrows).

Application Software

Operating System

BIOS

Real-Time Clock

Scott Lehrbaum has been at Ampro Com-
puters for nearly nine years, where he has
held numerous positions ranging from Soft-
ware Engineer to Applications Engineer-
ing Manager. He has done extensive
research into the year-2000 issue and
designed software patches similar to those
described in this article. You may reach
Scott at slehrbaum@ampro.com.

IRS
413 Very Useful

414 Moderately Useful
415 Not Useful

#121

 JANUARY 1998 EMBEDDEDPC 49

E
P
CRaz Dan &

Stefanie Hein

Flash-Disk Building Blocks
Tradeoffs in the Make vs. Buy Decision

E mbedded systems have moved from
simple controllers with small applications
to high-end processors that run 32-bit
operating systems.

The driving force behind this change is
customer requirements, both real and per-
ceived. Today, it seems that even if you want
to build a better mousetrap, it has to be
Web enabled to be interesting.

One of the changes that�s required to
support these new features is the addi-
tion of large amounts of local storage. A
128-KB EPROM is no longer enough,
yet products still have to meet many of
the old requirements (e.g., low power
consumption, light weight, small form
factor, harsh environments, low cost, etc.).

In this article, we look at some of
the mass-storage options available and
their implementation tradeoffs.

The obvious solution for high-capacity
storage and low cost is a magnetic
hard disk. But, this solution is neither
small nor lightweight, nor is it suitable
for low-power devices. In addition, hard

disks can�t withstand the harsh environ-
mental conditions that many embedded
designs are subject to.

One solution that meets all the require-
ments is a solid-state disk drive. Many
articles have been written about the differ-
ent types of solid-state disks available, but
the bottom line is that today, and in the

upcoming years, the best technology is
flash memory.

This has led to the development of a
new class of disk drives�flash disks. Flash
memory has many important characteris-
tics�high density (with an aggressive road
map), zero-power data retention, and
reliable data storage.

Flash memory is also replacing
ROMs in traditional applications (e.g.,
code storage), so there�s a huge market
for these components. The technology
is attractive to many semiconductor
manufacturers, which means they�ll con-
tinue to invest in research and devel-
opment and improve their products.
Expect the trend of falling prices and
improved features to continue.

The technology for implementing
flash disks has matured over the past
seven years, and engineers have the
option of designing their own solu-
tions or buying products off-the-shelf.

The building-block paradigm has
been used extensively to describe the

Customer needs�real and perceived�drive the market. And, right now, you
should be Web enabled. The result? You need greater mass storage. Raz and
Stefanie guide you through the decision of buying a solution or making your own.

Photo 1�DiskOnChip 2000 is a 32-pin DIP single-chip
bootable flash disk with hard-disk compatibility, high perfor-
mance, cost-efficiency, and extreme reliability. It is of-
fered in capacities of 2�72 MB with future models having
144+ MB. All this in a package smaller than a matchbox.

CIRCUIT CELLAR INK JANUARY 199850

E
P
C

way systems are de-
signed. These blocks range

from complete systems to com-
ponent solutions. For example,

multifunction processors are con-
nected to other modules such as dis-

play drivers, RF modems, network mod-
ules, flash disks (see Photo 1), and so on.

When searching for the appropriate
solution, several factors come into play:

� what�s the desired time to market?
� is there a ready-made solution available?
� can the dreaded NIH (Not Invented

Here) syndrome be overcome?
� what are the costs (both direct and

hidden)?

DEFINING REQUIREMENTS
Let�s look at some of the requirements

you need to consider for a storage system.
Will it be used for code, data, or combined
storage? Will it be a read-only device, or
does it need full read and write capability?

Will the code be executed directly from
the device (i.e., execute in place [XIP])?
How much storage will be required, what
will the performance requirements be,
and are there any limits on the form factor?

Next, consider the kind of interface you
need. Does the device need to be remov-
able or fixed?

What about memory requirements? Will
all the configurations require the same
amount of memory? Will storage require-
ments change in the future?

And of course, there are the marketing
questions. How much will it cost? Will the
device that gives you the best price and
performance today remain the same when
you start shipping? And finally, can the
product be made in-house?

As well, one of the major factors affect-
ing the final choice is whether or not you�re
designing the complete system. If the project
uses an off-the-shelf SBC, some options are
eliminated.

However, the project might use an SBC
for prototyping and then migrate to a
custom design. In that case, you want to
make sure that the same storage solution
can be used for both phases.

It�s important to understand the differences
between using flash memory for direct code
execution (e.g., XIP) and as a disk replace-
ment. A modem with firmware stored in flash
memory is a good example of an XIP applica-
tion. This firmware is updated fairly infre-
quently and executed directly out of flash.

On the other hand, an embedded PC that
runs DOS or an RTOS will load programs
from the flash disk into memory. These pro-
grams are stored as files, and a file system
manages data storage and retrieval. On the
flash disk, individual files may be updated,
whereas in the modem example, usually the
entire contents of the flash are updated.

AVAILABLE SOLUTIONS
After you decide to use a flash disk,

where do you get the software to make it
work? In Raz�s article, �An In-Depth Look
at FTL,� (INK 83), he discusses the technol-
ogy that makes disk emulation using flash
memory possible.

FTL has been recognized as the leading
technology for linear flash-disk management,
and M-Systems� implementation is the industry
standard. Therefore, the software part of the
project can also use an off-the-shelf solution.

In the following example, we look at a
class of solutions called linear flash disks. We
won�t deal with the more expensive and
complex class of solutions based on the
ATA or IDE interface. The two classes differ in
the type of interface presented to the host.

An ATA flash disk uses a processor to
talk to the host system using the ATA protocol.
The processor then translates the commands
from the host (e.g., read, write, or erase)
into operations on the flash devices. In this
type of flash disk, there is no direct data
path between the processor in the host
system and the flash chips in the flash disk.

By contrast, a linear flash disk has a
direct data path between the host proces-
sor and flash chips. The flash memory is
allocated a memory range in the processor�s
address space. In a linear flash disk, the
host processor executes the algorithms
that access the flash.

Linear flash disks are inherently lower
cost than ATA flash disks because an ATA
disk contains an additional processor and
has a more complex electrical interface.

TYPICAL PROJECT
Our project has the requirements listed

in Table 1. This example uses a PC-type
platform, but the design considerations for
the flash disk apply to any architecture.

Our goal is to put a device into the
hands of shoppers so they can press a
trigger and verify the price of an item on
the store shelf. In addition, the device will
have a display capable of showing graphi-
cal advertisements, coupons, or special
product announcements.

The unit will keep a log of the items
scanned during the day. The price data-
base and advertisement content will be
updated and the scan log downloaded
every night through the serial interface when
the unit is placed in its charging cradle.
The storage requirements are 8 MB with
the ability to expand to 16 MB or more.

The schedule requires a proof-of-con-
cept model in one month and production

1 MB

BIOS

Window

640 KB

DOS

CPU
Address
Space

XIP
Partition

(Optional)

Physical
Flash
Array

C
P

U
 A

dd
re

ss
 S

pa
ce

Window

Table 1�Many portable applications share similar requirements when building their platforms.
Here�s what you typically need to check when creating a price-verification system.

Application Portable price-verification system for stores
Environment Mobile, battery operated, used by supermarket shoppers
Form factor Small, hand-held, sealed unit
Features and user interface Bar-code scanner, LCD, scan trigger
External interfaces Serial port, battery charger
Data storage requirements Application program, price database, graphics for ads
Operating system DOS or RTOS
Platform Embedded ’386 with a customized PC architecture (diskless,

 no keyboard)

Figure 1�In many cases, design engineers
find that the memory address space in PCs is
limited. The simplest way to access the flash
disk is through a sliding window interface for
large flash arrays.

CIRCUIT CELLAR INK JANUARY 199852

E
P
C

upper address. This task is accomplished
via the Page register.

The name Page register comes from
systems using a paged memory access
method. By driving the upper address
lines, the register selects a block or a page
of flash to be accessed. The number of bits
in this register is determined by the size of
the flash array and the sliding window.

To access up to 16 MB (1000000h) of
flash, we need a total of 24 address lines. The
lower 13 address lines are already avail-
able, so we need to drive lines A23�A13.

The Page register must be 11 bits wide.
If you want to reduce the number of bits in
the Page register, you can increase the
size of the window. However, a larger
window uses up valuable address space.

The PC architecture has limited space for
expansion cards. Systems with many expan-
sion cards might have a lot of integration
problems, so consider complexity versus ease
of integration when designing an interface.

Not all of the address lines generated
by the Page register go to the flash chips.
The four upper address lines, A23�A20,
are routed to a decoder that generates
individual chip-select signals for up to 16
flash chips. If a larger array is required,
Page register�s size can be increased and
the additional signals used to encode a
larger number of chip selects.

In addition to the logic used to decode
the address range, a Control register is
usually implemented. This register can be
used to control and read the status of VPP,
VPPSense, write-protect switches, and so on.

Figure 2 doesn�t include buffers and
transceivers. However, they need to be

Figure 2 shows a block
diagram of the circuit required
to implement an RFA. The base
address and window size are
determined by the window
decode logic.

In this example, we have
an 8-KB window into the flash
array, so address lines A12�A0 are passed
through to the flash chips. The upper address
lines, A19�A13, determine the window�s
base address.

Take care when designing the decode
logic to prevent aliasing of this window with
memory located above the 1-MB boundary. In
addition, DMA and refresh cycles gener-
ate addresses within this range, so the
appropriate control signals (AEN and
REFRESH in PC) must be decoded to pre-
vent erroneous access into the flash array.

The decode logic also determines the
location of the Page and Control registers.
These registers can be mapped into I/O or
memory space, but they must be mapped
into a different region or they will conflict
with the space used to access the flash
chips. Many embedded processors have
a built-in chip-select generator circuit that
can be used instead of the external de-
code logic.

Since each flash chip is 1 MB in size
and the window is smaller than the chip
size, we need a method of driving the

prototypes in three
months. Therefore, the only

way to meet the deadlines is
to use a commercial SBC for the

proof of concept and at the same
time design the final unit.
The unit has to be very low cost be-

cause every store in a chain needs at least
100 units. Also, it can�t have a standard
disk drive because of the constraints listed
above, yet it needs a disk to make devel-
opment and maintenance as easy as pos-
sible. The solution: a solid-state disk.

The flash-disk solution must allow devel-
opers to start prototyping their system with
a standard PC and then quickly migrate to
the target without modifying the code. The
solution would be even better if they could
use the same flash disk in the prototype
and target systems.

COMPARE THE ALTERNATIVES
Let�s analyze two low-cost flash-disk

alternatives�a Resident Flash Array (RFA)
and a DiskOnChip 2000 from M-Systems�to
demonstrate the differences between the
make versus buy options.

An RFA consists of flash memory and
some control logic soldered directly on the
same board as the host processor. A Disk-
OnChip 2000 contains all the flash and
control logic in a small package with a 32-pin
DIP interface and is ready to be used in many
standard and custom single-board PCs.

BUILDING AN RFA
The PC has limited address space, so a

special mechanism is required to access a
flash disk, which has several megabytes of
storage. The simplest method�a sliding
window, as shown in Figure 1�requires a
small memory window (typically, 8 KB) in
the address space allocated for expansion
cards (i.e., segment A000h�EFFFh).

VCC

GND

*CE

*WE

*OE

D[0:7]

A[0:12]

System
Interface

EDC/ECC
Flash

Control

Flash
Control

IPL
State

Machine

Flash

Control & Page
Register Enable

Flash Disk Enable

W
in

do
w

 D
ec

od
e

Lo
gi

c
P

ag
e

R
eg

is
te

r F
la

sh
 C

hi
p

S
el

ec
t

Control Register
VPP Control

Write Protect

Flash

Flash

Flash
FLASH_A23–A20

*CE1

*CE15

FLASH_A19–A13

A12–A0

A19–A13

D7–D0

D
7–

D
0

Figure 2�An RFA consists of
more than soldering a few flash
chips onboard. The function
blocks required for implement-
ing a sliding window RFA are
flash array, control register,
page select register, and the
window decode logic.

Figure 3�DiskOn-
Chip 2000 provides
the design engineer
a complete modular
solution without hav-
ing to learn the intri-
cacies of flash. Its
major components
include flash array,
control register, ini-
tial program loading
(IPL), EDC/ECC, and a
common system in-
terface.

 JANUARY 1998 EMBEDDEDPC 53

E
P
Cadded to overcome problems of bus load-

ing and to meet the drive and timing
requirements of the entire system.

As you can see, the hardware required to
implement an RFA is more than just a handful
of flash chips. Several discrete compo-
nents or programmable logic are required.

This part count�and the board area
required to mount the parts�must be taken
into account when deciding whether or not
to make your own RFA. And once the
hardware part of the project is done,
you�re still faced with the burden of writing
the software to make the RFA function as a
hard-disk replacement.

DiskOnChip 2000 DESIGN
Working with flash and making it func-

tion like a hard disk can be quite complex
unless you have a lot of experience or an
off-the-shelf package. The most appropriate
flash disk for our application is M-System�s
DiskOnChip 2000.

Illustrated in Figure 3, the DiskOnChip
2000 is a complete flash disk packaged in
an industry-standard 32-pin DIP form factor.
The interface with the device is quite
simple because the device�s pinout is simi-
lar to an EEPROM or SRAM chip (see
Figure 4 and Table 2).

The interface pinout and footprint re-
main the same regardless of the disk�s
capacity. Available capacities range from
2 to 72 MB, and future growth options may
double or even quadruple the capacity.

The DiskOnChip 2000 shares some of
the same system requirements as an RFA.
However, unlike designing an RFA, work-
ing with the DiskOnChip 2000 is quite
simple.

This device only requires an 8-KB
memory window in the system�s address
space. It doesn�t need a separate I/O
address range to access any of the control
registers.

All the firmware required to make it
function like a hard-disk replacement is
already built in as a BIOS extension module.
Therefore, it can serve as the boot device
in a PC. The DiskOnChip 2000 incorpo-
rates an additional feature not available
in the RFA�hardware EDC/ECC for maxi-
mum data reliability.

The PC architecture has a standard
mechanism for adding support for devices
that aren�t supported by the standard
BIOS�a BIOS extension. When properly
written, a BIOS extension is executed by

the BIOS after the system has completed its
Power On Self Test (POST).

At this point, the system can allow other
drivers to install themselves. The BIOS scans
the expansion memory space between seg-
ments C000h and EFFFh and searches for
BIOS-extension code. Just like the RFA, the
DiskOnChip has to be located at a base
address that is within this range, in an area
that doesn�t conflict with other hardware.

Many SBCs already have a socket that
can accommodate the DiskOnChip 2000
with the logic required to generate a chip
select in the appropriate address range. If
they don�t have a socket, there are several
options for adding in a DiskOnChip 2000-
compatible socket (e.g., via ISA-bus or
PC/104 boards).

Pin Name Description Pin Number Direction

A0–A12 Address Bus 4–12, 23, 25–27 I
D0–D7 Data Bus 13–15, 17–21 I/O

*CE Chip Enable 22 I
*OE Output Enable 24 I
*WE Write Enable 31 I
NC Not Connected 1, 2, 3, 28, 29, 30

VCC Power 32
GND Ground 16

Table 2�Since
the signal defini-
tions of DiskOnChip
2000 are the same pin-
out as the EEPROM, it can
be plugged into an existing
socket with minimal or no re-
design effort.

NC

NC

NC

A12

A7

A6

A5

A4

A3

A2

A1

A0

D0

D1

D2

GND

VCC

*WE

NC

NC

NC

A8

A9

A11

*OE

A10

*CE

D7

D6

D5

D4

D3

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

MD2200

Figure 4�DiskOnChip 2000 has a very simple
interface. Since its interface is based on a
32-pin JEDEC standard, the device�s pinout is
similar to an EEPROM or SRAM chip.

CIRCUIT CELLAR INK JANUARY 199854

The compact package and easy installa-
tion make it a modular solution. Storage
capacity doesn�t need to be predetermined.
Boards can be built with a socket and popu-
lated just before shipping. Units can be pre-
programmed in a gang programmer, while
the board is being manufactured.

Software support for this module is much
easier than for the RFA. Since it is a standard
product, drivers are already available for
many operating systems and RTOSs (e.g.,
DOS, Win3.x, Win95, WinNT, WinCE,
VxWorks, QNX, pSOS, VRTX, etc.).

In addition, for custom architectures
that are not supported, the FLite package
is available which provides full source
code�all in ANSI C�for the drivers.

ANALYZING THE SOLUTIONS
Now that we�ve reviewed the imple-

mentation requirements for the two flash-
disk options, let�s look back at the require-
ments we defined and determine the best
solution.

Based on the results summarized in
Table 3, there is little motivation to develop our
own flash-disk solution. Especially if time to
market is critical and you don�t have a lot of
experience in working with flash chips, a
proven solution might mean the difference
between getting your product out to mar-
ket and not getting it out at all.

SOURCE
DiskOnChip 2000, PC Flash Disks and Cards,
 Fast Flash Disk (FFD), FLite
M-Systems, Inc.
39899 Balentine Dr., Ste. 335
Newark, CA 94560
(510) 413-5950
Fax: (510) 413-5980
info@ccm.msyscal.com
www.m-sys.com

IRS
416 Very Useful

417 Moderately Useful
418 Not Useful

Stefanie L. Hein has worked in the elec-
tronics industry for the past four years,
after receiving her BS and BA from Brigham
Young University. She is currently the cor-
porate communications manager for M-
Systems.

Feature DiskOnChip 2000 RFA

Environment solid-state, low power, withstands same
high shock and vibration

Form Factor small, modular, <1 in.2 regardless small, capacity affects real estate
of capacity (~9 in.2 for a 16-MB 28F008 TSOP)

Capacity 2–72 MB now, 144+ MB in the limited to amount of flash designed
future, expandable after mfg. onboard and populated

Flash interface independent of technology limited to flash designed onboard
Technology inside device

Handling and preprogrammable with low-cost flash components in a TSOP need
Preprogramming gang programmer (no special special handling to preprogram

handling)
Software multiple OSs and RTOSs requires resource investment to
Support provide same support

Ease of Use same utilities and function calls depends on software solution
access flash disk as a regular implemented
hard disk, so third-party
tools manage data storage

Performance sustained write: >250 kBps depends on technology, with
sustained read: >700 kBps Intel28F008: sustained write:

25 kBps; sustained read: 1 MBps
Prototype and many systems have appropriate software development must wait
Migrate to socket; if not, ISA-bus and PC/104 for hardware design, mfg., and
Final System cards offer immediate prototyping testing. No concurrent develop-

in a desktop PC and migration ment of target hardware and
migration to target application

Price 24 MB in OEM quantities is $174 approx. $15 per MB of flash, not
including support hardware and
FFS licenses

Table 3�When deciding which solution to implement in a design, many factors must be
considered. This table summarizes the tradeoffs between the DiskOnchip 2000 and an RFA.

Raz Dan is the customer engineering man-
ager for M-Systems. He is currently respon-
sible for custom applications, advanced
technical support, and system integration
for the company�s product line. Raz holds
a BSEE from Tel-Aviv University. You may
reach him at raz@ccm.msyscal.com.

DiskOnChip 2000 lets you treat the
storage subsystem as a building block. So,
you can spend your engineering resources
on addressing issues you know how to
deal with the best�your application. EPC

 JANUARY 1998 EMBEDDEDPC 55

R
P
C

Real-Time PC

Marc Guillemont

Real-Time Operating Systems
Part 1: Fundamental Components

Y our body is much akin to a real-time
operating system. Your brain contains the
kernel executing the threads that determine
your everyday life. You can communicate with
other units, and you are time aware. You can
be interrupted, and you can be scheduled.

You have the ability to manage your
memory, monitor your actions, and correct
your mistakes. In a manner of speaking,
you�re a real-time device running a real-
time operating system (RTOS).

In a process-based real-time environ-
ment, system components (processes) are
kept from affecting each other through
memory protection (normally via an MMU).
Bugs such as stray pointers or array indi-
ces may corrupt other processes if this
mechanism isn�t available. The MMU can
also identify the violation to the RTOS,
which then takes appropriate action, re-
taining intelligent control over the system.

Processes communicate via a well-de-
fined interprocess communication (IPC)
interface. In the body, these components
are things like muscles, which your brain

communicates with via a nerve IPC. In
some cases, it may make sense to group
control of related muscles through threads.

Protection between components pre-
vents something like a broken finger from
directly affecting your digestion. The body�s
MMU identifies the break to the brain (i.e.,
RTOS), which uses IPC to tell the surround-
ing tissue to start repairing the break,
intelligently recovering from the fault.

RTOSs can be found in a variety of
places other than the human body. PBXs,
smart home devices, medical equipment,
automobiles, and scientific data-gather-
ing devices are a few that come to mind.

With this proliferation of embedded
real-time activity, I want to introduce you to
the world of RTOSs from the inside out. So,
I�ll discuss the modules and techniques
used to implement a typical RTOS.

WHY USE AN RTOS?
Most applications don�t need to run in

a real-time environment. Device program-
mer applications are one good example.

The application focuses on programming
a single device at a time. No other real-
world events may interrupt the program-
ming process.

Thus, no memory management, sched-
uling, or monitoring needs to take place.
The only real requirement is that some sort
of executive is running to provide the
necessary hardware and software re-
sources for the application.

On the other hand, an Internet appli-
ance like a remotely monitored weather
station needs a real-time operating envi-
ronment. And, some systems can run in so-
called soft real time (see the �Soft Real
Time� sidebar).

Since in a real-time system, multiple
operations occur asynchronously and at
predetermined times, multiple software
threads have to be capable of running
concurrently, as shown in Figure 1.

This concurrent operation forces the
application programmer to be concerned
with synchronization and memory man-
agement as well as interrupt handling,

The embedded PC is a good match for the power, resources, cost, and complexity
of the real-time market. Marc launches this series on real-time operating systems
with simple answers to basic questions like �What makes a real-time OS?�

CIRCUIT CELLAR INK JANUARY 199856

R
P
C

porting modules can implement differing
processes without compromising the
kernel�s inherent mechanisms.

This situation calls for an interface that
can support the smallest to the largest
application configurations, as well as the
simplest to most sophisticated modules.

The concept of modularity implies that
individual processes are combined in the
most efficient manner to drive a particular
application. In most instances, RTOS modu-
larity is implemented at RTOS build time.

High availability is achieved since mod-
ules can be replaced, repaired, or removed
on-the-fly. Although this on-the-fly ability is
desirable in some situations (e.g., candy
making and banking), it�s not necessary in
all RTOS applications. For instance, you
probably wouldn�t replace software mod-
ules in a washing-machine application.

Modularity enables the programmer to
implement new modules that complement
the standard kernel procedures. The new
modules may introduce new procedures
or custom implementations of the standard
kernel interface.

Including modularity in an RTOS facili-
tates unlimited customization of the kernel
to satisfy specific functionality, size, or
hardware support requirements. As an
added advantage, unwanted processes
need not be included, thus releasing re-

sources for other components of the RTOS
application.

THE KERNEL
An RTOS is a collection of software

modules that cooperate, enabling compu-
tational hardware and application code
to perform real work in real time. The heart
of this collaboration is the kernel.

The kernel provides the basis for RTOS
operation. Normally, it exports services
via an API to manage system resources
and application processes (e.g., synchro-
nization, interrupt handling, trap, and
exception handling).

Kernel services are accessed by other
modules via the kernel interface. This
interface isn�t exported directly to any
application. It�s dedicated to system com-
ponents, and it defines exported functions
to other modules and the operation of the
functions expected from them.

The kernel can also be responsible for
initializing the target processor and set-
ting up low-level details of the application
(boot activity). So, it�s safe to say the kernel
is the low-level foundation of all RTOSs.

RTOS INTERRUPTS
Once the kernel has prepared the sys-

tem for operation, the application in asso-
ciation with the kernel-provided services is

timing, and intermod-
ule and intersite commu-

nications. The RTOS provides
the means by which all these

processes are handled from within
the framework of the RTOS code.
Think of an RTOS as an engine run-

ning various applications. If you view an
RTOS application suite as an automobile,
the RTOS is the motor, and the application
is the frame and body of the car.

In that context, the motor or RTOS could
power many types of automobiles or appli-
cations. That is, a particular RTOS can
serve just as well in a medical application
as in an automotive application.

The only difference between most RTOS
implementations is the coding and purpose of
the application being supported. Let�s take an
RTOS apart module by module and examine
how each piece fits into the grand scheme.

RTOS MODULARITY
To be flexible and efficient, an RTOS

should be modular (see Figure 2). If the
real-time application is small or simplistic,
a nonmodular single OS kernel may be
sufficient. But if it must span various plat-
form sizes and encompass differing sets of
functionality, a modular RTOS is in order.

In a modular system, OS services such
as scheduling, memory management, com-
munications, and timing are provided as
separate program modules. The selection
and inclusion of certain modules form the
basis for the RTOS�s functionality as it
relates to the kernel.

For modularity to work, the mechanism
by which a module works must be sepa-
rate from the policy it invokes. The kernel
must provide the basic framework so sup-

Applications

COTS
Clients

Database
Server

Admin. App. App.

PM OM

Phone Lines

SIM

PDA Storage

OS OS OS

Figure 1�Once a single system is built, it can be deployed throughout a set of boards and in different configurations. Since the IPC is location
transparent, the deployed configuration can be dynamically changed according to changing needs.

Soft Real Time�Greg Bergsma, QNX Software Systems
A good example of a soft real-time system would be an ATM. Ideally the machine

should process your request in less than a few seconds, but if you had to, you�d
probably wait a minute for the response. If it takes any longer, you�re likely to look
for another machine or go to a branch office.

The stress here is more on throughput when under load. A late response may be
acceptable, but it�s less than ideal. Soft real-time systems can tolerate the occasional
missed deadline, but they still must operate very quickly and repeatably.

 JANUARY 1998 EMBEDDEDPC 57

R
P
Cready to handle software- or hardware-

generated events. In nonreal-time environ-
ments, a process called polling does this.

Polling involves interrogating ports, soft-
ware modules, and devices one at a time in a
predetermined order. Polling implies that
the device that gets service is the device
being polled when it requires service.

The drawback with polling is that other
devices can need service but must wait
until the currently selected device is fully
serviced.

In the real-time world, devices and
software modules can interrupt the pro-
cess and request service. This scheme
gives the real-time application the ability
to prioritize service requests. The kernel or
an external attachable module can con-
tain the interrupt-management routines.

THREADS
Event-driven real-time systems usually

run a monitor routine while waiting for an
event to trigger an action.

In a real-time system, the other active
programmatical entity is usually a thread.
A thread is a unit of execution representing
a single flow of sequential execution of a
program (see Figure 3).

Threads can be application or kernel
based. Application-based threads execute
in nonprivileged mode usually in an iso-
lated address space. Kernel-based threads
execute in privileged processor mode with
access to restricted processor instructions
in system address space.

Under program control, it�s possible for
an application thread to operate in kernel-
based mode. This situation usually results
from a trap or exception condition.

A thread is created in its host application.
During its life, a thread may cross its applica-
tion boundaries and execute code belonging
to another application. This situation enables
efficient interapplication cooperations,
although they�re usually restricted to threads
running in the system address space.

Conversely, a thread may be executed on
behalf of another thread (local or remote)
that�s requesting a given service which the
thread is able to provide. This flexibility in
the thread�s identity is another key for
efficiency in modular systems.

In a process-based model, by contrast,
multiple threads running in a process ad-
dress space are memory protected from
threads running in another process ad-
dress space.

As you have ascer-
tained, RTOSs require a
scheduler to operate. A sched-
uler is a module that provides
scheduling rules and regulations. A
scheduling decision may be based on
thread priority, response times, or any
other time-critical criteria affecting the op-
eration of the real-time system.

The exported kernel interface allows
coordination of thread execution. Thread
execution with other threads, events, and
functions is controlled by the scheduler
module, which lets a thread wait until an

SCHEDULING THREADS
Because threads are units of execution

within applications, it�s logical to assume
that in a real-time situation, threads must
be able to run concurrently or be pre-
empted by higher priority processes.

The kernel exports an interface to enable
the programmer to use any scheduler
module. Also, if needed, it lets the system
programmer introduce new scheduling mod-
ules implementing particular scheduling poli-
cies. For now, let�s think of a scheduler as
modular with the ability to interface to an
exported kernel-scheduler interface.

CIRCUIT CELLAR INK JANUARY 199858

event is posted to it, stop or restart another
thread, stop or restart all threads in any
running application, and abort other
threads.

RTOS MEMORY MANAGER
So far, I�ve described a typical RTOS

from the ground up. I first went over the
importance of RTOS modularity and ker-
nel concepts and then moved on to inter-
rupt handling and thread scheduling.

These pieces can be combined to as-
semble a minimal real-time system. But to
bring them to life as a working RTOS, we
need another ingredient�memory.

As you well know, most of the time,
memory is physical hardware. In a work-
ing RTOS, it can be physical silicon (i.e.,
the processor issues addresses which di-
rectly represent cells of physical memory).

But more often, the processor issues
addresses that are translated (by hard-
ware) to determine the physical cell con-
cerned. This hardware mechanism�the
MMU (Memory Management Unit)�
brings many advantages, the most obvi-
ous being a hardware-based protection
between different programs. It dramati-
cally increases the system�s reliability at
virtually no execution cost overhead.

At least two memory models must be
taken into consideration when working
with an RTOS�the flat model and the
protected model.

The flat model needs the least manage-
ment�if any at all�because all applica-
tions are run in one unprotected address
space. All virtual addresses directly map
to their respective physical address, and

an application may allocate no more
memory than is physically available.

The protected memory model is the
entry-level memory-management scheme
for real-time applications. It exploits the
machine�s hardware capabilities to offer
separate protected address spaces for
different applications. This model also
eases the mapping of various special
memory locations (e.g., video RAM) in an
application�s address space.

Virtual memory mode is another ad-
vanced memory-management technique
that uses physical storage to emulate real
memory. This mode uses paging and swap-
ping to provide the appearance of more
real memory than physically exists within
the RTOS.

SYNCHRONIZATION
RTOSs are event-driven mechanisms.

Since events can occur anytime during
any process, there must be a logical way
to coordinate incoming events. The syn-
chronization module performs this work.

The synchronization module provides
its services via sychronization objects such
as an integer counter associated with a
thread�s waiting queue. On initialization,
the counter is loaded with a user-defined
positive or null value. These queue counters
are located within the application address
space and decremented when a thread
performs a wait operation.

If the count goes negative, the thread is
blocked and put in the respective queue.
If the decrement operation does not take
the counter negative, the thread continues
normal execution.

Communications Time Synchronization Memory
Management

Interrupts Schedulers

Distributed 60 KB
Time Utilities

Time of day

Timers

User Defined

Generic
2 KB

Semaphores

Mutexes

Event Flags
2 KB

User Defined

Multiclass

RealTime

7 KB

3 KB

Virtual 100 KB

Protected 20 KB

Flat 10 KB

Micro Core Executive

Core Executive

30 KB

8 KB

Local 25 KB

Mailboxes

5 KB

4 KB

Figure 2�A componentized RTOS (like Sun Microsystem�s ChorusOS) shifts the focus from
microkernels to components. The whole design stresses separation of mechanisms from policies.
So, scheduling, interrupt and fault management, memory management, and IPC are provided
by external modules and are not implemented within the base of the system (i.e., the Core
Executive).

 JANUARY 1998 EMBEDDEDPC 59

Another type of synchronization mod-
ule supplies sleep locks. This type of syn-
chronization object is an exclusion lock
where a thread sleeps instead of spinning
when contention occurs.

Earlier, I mentioned posting events to
threads. The event module contains the algo-
rithms necessary to effect posting. A set of bits
called the event-flags set resides in memory
and is associated with a thread wait queue.

Each bit represents one event. An event
is posted when a flag bit is set. This flag bit
can be used by interrupt handlers and
threads for signaling purposes.

In a process-based model, IPC can
serve as a synchronization mechanism.

TIME MANAGEMENT
It�s good to be able to schedule and

synchronize events and responses to events
within a real-time application, but execu-
tion would be chaotic without an underly-
ing time base. Timing for an RTOS and its
associated applications is provided by a
set of time-management routines.

RTOS time management generally focuses
on time-out management and watchdog
events. Date and time may be present as well.
Performance-measurement and time-interval
functionality play an integral role.

For example, imagine that one RTOS-
controlled electronic element needs to syn-
chronize its operation with a remote
electronic device. The timing accuracy
between the remote devices is then gov-
erned by the time-management modules.

Event recovery is also important in most
RTOS-based systems. The watchdog timer
is usually employed for this task.

COMMUNICATIONS
Each process running under RTOS con-

trol is designed to perform a specific task.
Some tasks may depend on the state of
another task inside or outside the local
RTOS environment.

A communications conduit must be in
place for all subtasks and applications to
communicate with each other. The commu-
nications module effects this, and this
process is known as IPC.

This module enables a major applica-
tion composed of multiple threads to send
and receive chunks of data (i.e., mes-
sages) between threads and applications,
inside or outside the same local RTOS.

One model for IPC implementation is to
create message pools, queues, or mail-
boxes shared by all or a subset of threads
and applications. Messages are stored in
these pools, and pointers are passed be-
tween applications to retrieve messages

attached to the pools.
This communication

scheme is the most efficient,
as information is never cop-
ied but stored directly where
it will be retrieved.

To effect this messaging
technique over a network,
a logical mailbox system is
used, similar to a basic
E-mail system. Messages
are exchanged between
logical addresses, often
known as ports.

In some cases, this net-
work-wide IPC totally hides
the distributed nature of the
application. Local and re-
mote communications are

Figure 4�When building an RTOS for a specific application, you
use a host platform like Windows NT or Unix to design the
applications that run on the RTOS on the target system. This
diagram represents the development configuration for devel-
oping on a ChorusOS operating system.

Host

Chorus
Tools Applications

Chorus
APIs/Services

POSIX
APIs/Services

Chorus/Nucleus
Microkernel

Target

Processing

Server

Code

Data

Client-Server Protocol

Interserver

Protocol

Figure 3�The basic building block of ChorusOS
applications is the actor that represents the
basic unit of resource allocation and is the
shell into which threads can execute. The
actor also represents the basic error-detection
(exception handlers are attached to actors)
and fault-confinement (protected address
space and execution boundary are associ-
ated to actors) abstraction.

CIRCUIT CELLAR INK JANUARY 199860

R
P
C

expressed in the same
way, which simplifies the

IPC�s programming, eases
different distributions of its com-

ponents, and permits easier static
or dynamic configuration and

reconfiguration.
 In other words, this system benefits

from the underlying hardware redundancy
and flexibility. Of course, the built-in RTOS
message synchronization controls the flow
of reading and writing messages.

MONITORING AND DEBUGGING
Given the complexity of RTOS environ-

ments, so you may need to monitor activity
within the kernel and application modules
(see Figure 4). This task is most often done
by a monitor module running concurrently
with the RTOS and application.

Major events are logged with pertinent
process information that tells the program-
mer what occurred when the event was
recognized and processed. As a result,
the process or application can be con-
trolled and possibly adapted.

Once the desired data is captured, the
programmer can recall the statistics and

determine the application code�s perfor-
mance. For instance, for tuning purposes,
it�s necessary to know how much compute
time is spent in certain routines. With this
information, the programmer can tell where
the program consumes the most resources.

Using a debugger, the programmer
can single-step through an application or
run the application until a failure occurs.
At that point, a memory dump can be
taken for analysis of the problem.

To take this concept one step further,
hardware debugging tools can assist the
software-based debugger by capturing
and logging the resultant hardware reac-
tions as they relate to the application
code. Hardware debuggers are minimally
intrusive and usually provide a means by
which the debug pass can be recorded
and replayed.

REAL-TIME WORLD
In this article, I examined the major

components of a typical RTOS. As you see,
there are endless variations that may be
applied to the many modules of an RTOS.

What you should walk away with is
that RTOSs are time-dependent, event-

driven environments suitable for support-
ing real-life, real-time applications.

In Part 2, I�ll take the logical framework
of an RTOS and interface it to hardware in
the real world. RPC.EPC

SOURCE
ChorusOS
Sun Microsystems
Embedded Systems Software Group
1999 S. Bascom Ave., Ste. 400
Campbell, CA 95008
(408) 879-4100
Fax: (408) 879-4102
www.sun.com/chorus

IRS
419 Very Useful

420 Moderately Useful
421 Not Useful

Marc Guillemont, ChorusOS product man-
ager for Sun Microsystem�s Embedded Sys-
tems Group, joined INRIA in 1977 to work on
the Cyclades project. He was a member of
the initial Chorus research project team in
1980 before becoming head of the team.
Marc managed the final research phases
of ChorusOS before developing the com-
mercial version. You may reach him at
marc.guillemont@france.sun.com.

61 JANUARY 1998 EMBEDDEDPC

A
P
C

Applied PCs

Fred Eady

RF Telemetry
Part 1: Theory and Implementation

Although RF telemetry is traditionally associated with rocket science, it�s as down
to earth as modem-based communications. Using a Linx UHF receiver module,
Fred pokes at low-power data transmission. After all, who wants to alert the FCC?

I don�t know about you, but when I hear
�telemetry,� I immediately go to the stars.
I�ll bet you equate telemetry and satellites,
too. It�s natural in today�s society.

For me to be spouting about telemetry
can only mean one thing. I�m bringing that
concept down to Earth, and embedding it.

My first real experience with any kind
of telemetry was with model rocketry. I
must have fired off a thousand of those
things with almost every pay-
load I could think of.

The problem was, in those days,
you had to build everything from
scratch. Consequently, any elec-
tronic payloads in my younger
days were very amateurish.

While doing research for this
article, I discovered things haven�t
changed much for the model-
rocket scientist. Very few vendors
cater to selling radios with rockets.

Enough reminiscing. I want
to talk about what telemetry is
and why we should bother with it.

TELEMETRY 101
If I had to sum it up, I�d say telemetry is

a means by which data is collected from a
remote-monitoring device over a predeter-
mined communications method. If you don�t
work in the telemetry field every day, the
most common form of telemetry you may
be familiar with is satellite oriented.

Although the concept is fairly simple,
the implementation isn�t. First, you design

and build your satellite. Then, you have to get
it up there somehow. Assuming all goes well,
you need a pretty elaborate base station to
receive and assimilate your data.

The most common form of satellite-
based telemetry the average person en-
counters is the six o�clock news weather
report. About the closest I�ll ever get to a
telemetry satellite is stepping out my back
door and watching a launch from the Cape

Canaveral Air Force Station.
If you need to get close, com-

panies like Handar can take you
there. Handar makes a wide
range of products that are GOES-
satellite compatible.

If satellites are a little bit much,
there�s RF modem-based telem-
etry. This type of telemetry in-
volves moving data across terrain
and boundaries that prove diffi-
cult for traditional land-based
communications channels.

For instance, suppose you, a
member of a research team, are

Photo 1�This is something only an RF engineer could love�ground
planes and coils. I think I�ll stick with my buses and ports, thank you.

CIRCUIT CELLAR INK JANUARY 199862

A
P
C

1 2 3 4 5 6 7

10 µF

47 kHz

DATA
AF
VCC 4–9V

GND

in the rain for-
est tracking a

specific species of
monkey. Problem. The

monkeys are across the
river from your base camp.
It�s your turn to hike while

your colleagues monitor equip-
ment in a tent at base camp.
Since you�re working in dense
foliage, you can�t bounce your
signal off a satellite even if you had access
to one. Running wires across the river isn�t
even a consideration.

Infrared or laser technology? Nope.
Not here. That�s line of sight, and you
can�t see the forest for the trees.

Aha! Microwaves! Naaah. First good
rain would wash out your signal.

What�s left? Good old RF.
Unlike satellite telemetry, RF modem-

based telemetry is less complicated to use.
Essentially, you have a transmitter-receiver
pair capable of translating sensor data
into modulated RF energy and vice versa.

Depending on the application, the RF
modem pair�s output power can vary from
milliwatts to multiwatts. Normally, you see
RF modem technology employed at plant
sites or in the field as portable weather
stations or monitoring sites.

We could talk about this topic for days.
But, let�s get on with it and lay the ground-
work for putting embedded hardware on
the air.

RF MAGIC
The first problem I pondered was how

I was going to build up a working RF
modem. Yep, I�ve got the big fancy FCC
license. So what? I�m a computer dude,
not a RF engineer.

Speaking of the FCC, I don�t want to
have to get a special license to use this
thing. Besides, unlike my little 1 and 0
world, RF is smoke and mirrors.

I decided to check out the availability of
a ready-to-roll RF modem that I could easily
tie to a couple pieces of embedded hard-
ware and fly binary digits across the ether.
As luck would have it, my first possibility
was an out-of-country solution. It was perfect!

An RF modem with enough power for
me to put some distance between the
embedded PCs was simple to implement.
Well, not really.

After talking to the engineer, I found my
�perfect� solution was not FCC approved.
But, if I wanted to use it in the outback,
there would be no problem. Next!

With that tidbit of knowledge, I decided to
make sure I searched within the bound-
aries of the US and the regulations of the
FCC. Restrictions such as power output and
licensing requirements narrowed the field.

I needed a low-power solution that
required no FCC approval on my part and
was easy to integrate with my embedded
platforms. It would be nice, too, if I found
a solution small enough and power-stingy
enough to fit in the nose of a model rocket.

Well, ask and ye shall receive. Linx
Technologies�wireless made simple. The
transmitter and receiver pair is modular
and easily integrated into most applica-
tion. As long as I don�t need to traverse
super-long distances, the Linx solution is
adequate.

RF 101
�Wireless made simple� did it for me.

In my AM radio days (a few years back), I
calculated power output and antenna patterns
with ease. I have no desire to retool that talent.
I passed the FCC exam and qualified to
operate the transmitter. That�s all I needed
(or wanted) to do.

I didn�t own a computer (PCs as we know
them weren�t commercially available), and
I wouldn�t have known what to do with one
if I did. The closest I got to RF telemetry as
a kid was hang a light-sensitive audio
oscillator off my walkie-talkie.

Times have changed. I have a computer or
two�embedded even. And, I have a
data-ready RF modem set. I�m dangerous.

I considered the Linx RXM-418 UHF
receiver module to capture my telemetry
data. This module incorporates an ultra-
sensitive, SAW-based, double-conversion
FM superheterodyne receiver. When
paired with the Linx TXM-418 transmitter
module, the units create a highly reliable
RF link capable of transferring analog or
digital data at distances in excess of 500′.

THE RECEIVING END
As I said, the RXM-418 is a SAW

(Surface Acoustic Wave) based double-
conversion FM superheterodyne receiver.
The receiver uses a data slicer (it slices, it
dices) that is driven by the AF output.

From what I can see, the data slicer is
effectively a Schmitt trigger. A depiction
of the RXM-418 is rendered in Figure 1.

You all know I like to blink the lights,
and there�s a carrier-detect signal available to
indicate to external circuits that a signal is
present. This signal could be used in a power-
saver circuit or to indicate to an embedded
PC that a signal is being received. All good RF
stuff. All I have to do is add an antenna.

The range of the RF link depends on
many factors, including the type of antenna
employed and the environment. According to
the datasheets, the 500′ range is a conser-
vative estimate of the operating distance
over open ground using ¼-whip antennae
at both ends of the link at 5′ above ground.

A smaller antenna, obstacles, or inter-
ference can reduce the reliable operating
range down to as little as 100′. By raising the
antenna higher than 5′, slowing the data rate,
or using a larger antenna on the receiver,
ranges in excess of 1500′ can be realized.

The Linx folks don�t recommend you toy
with the FCC regulations by doing this. They
offer a service to keep you out of such trouble.

As Photo 1 shows, the receiver is pack-
aged as a hybrid SIP module with five pins

RF IN 418-MHz
Band-Pass Filter

Pre-
amplifier

SAW-controller
1st Local Oscillator

1st Mixer

2nd Local
Oscillator

15.92 MHz

2nd mixer
IF Amplifier

Demodulator

AF 3rd order–
5-kHz Low-Pass Filter

Buffer

VCC 4–9 V

VCC 4–9 V

Adaptive Data Slicer

Data

0 VGND

Figure 1�It�s surely smoke and mirrors. How can all this stuff be on that little board? Note the data slicer in
the bottom right corner.

Figure 2�This is the base test circuit. Carrier
detect is pulled up when it�s not being used.

CIRCUIT CELLAR INK JANUARY 199864

A
P
C

spaced on 0.100″ cen-
ters. This packaging enables

easy horizontal and vertical
mounting in tight spaces. The stan-

dard-spaced leads make it easy to
hook this little wonder into almost any

prototype circuitry.
The RXM-418 is tough, too. The module

is coated with Tek-Protek encapsulant to
provide some shock resistance and pre-
vent damage that can be dealt from oper-
ating in hostile environments.

Reference Figure 2 as I take a quick turn
around the RXM-418. The receiver an-

tenna connects to pin
1 and is capacitively
isolated from the in-
ternal circuit. Pin 2
should be connected
to the RF ground
plane and is inter-
nally connected to
pin 4, which is the power-supply ground.

Pin 3 provides the carrier-detect signal and
is designed to directly drive the base of a PNP
small-signal transistor. The RXM-418 can
operate with clean and stable supply voltages
of 4�9 V and only draws a meager 13 mA.

Analog data emanates from the FM de-
modulator output (pin 6). This output is ca-
pable of driving analog data circuitry such
as modem chips and DTMF decoders.

The digital output from the internal data
slicer is a squared version of the signal on the
AF output. The output is an exact re-
creation of the input placed on the trans-
mitter�s data pin. If the signal is digital,
that�s what our embedded PC wants to see.

THE SENDER
Figure 3 shows us that the transmitter is

a relatively simple device with respect to
the receiver. The SAW technology in both
the receiver and transmitter inherently pro-
vides good noise margins because the
operating frequency stability is very tight.

Just in case you haven�t figured it out
yet, the RXM-418 and TXM-418 operate at
what frequency? I�ll give you five guesses,
and the first four don�t count.

ENCODING THE DATA
Now that we�re all qualified and certified

RF engineers and can generate electromag-
netic fluctuations, how in the world are we
going to encode the data we must send?
The good news is that due to the features
included in the design of our Linx modules,
we can encode data in a number of ways.

One of my favorite encoding schemes for
analog data is pulse width modulation
(PWM). Using some homegrown software
and almost any embedded PC, I can translate
analog-based signals into a digital form that
can be spewed out across the airwaves.

The concept is relatively simple. A quick
look at the datasheets for the RF-modem
equipment puts the minimum pulse width
that can be propagated and received at
10 µs. Maximum rated throughput is stated
to be 5 kbps.

Arbitrarily, let�s select 1 ms for the pulse
width of a binary 0 and 2 ms for a binary
1. With an ADC, the embedded hardware
running the binary-to-pulse-width program
can encode the digital output and port it out
to the input of the RF transmitter. Con-
versely, on the receiving end, the pulses are

RF IN 418-MHz
Band-Pass Filter

SAW Oscillator WBFM
Modulator

470 pF

Data LPF

VCC 5.9Ð9 V

Data

0 VGND

Figure 3�The transmitter is a bit simpler, but it�s still smoke and
mirrors to me.

CIRCUIT CELLAR INK JANUARY 199866

A
P
C

received and converted
to their digital equivalents.
What if there was analog

data that could be sent without
first having to convert it to digital

form? A good example of such analog
data is standard touch-tones or DTMF.

As you know, DTMF tones consist of a
combination of frequencies that are com-
monly used for electronic
signaling within the public
telephone system. You�ll
find a bunch of DTMF
applications in the amateur-
radio world, too. Since there
are a variety of commercial
ICs specifically designed
to manipulate DTMF, it�s
a popular way to convey
information or control re-
motely located devices.

By design, my RF mo-
dem can process raw ana-
log signals on both the
transmit and receive ends
of the RF link. Thus, there�s
another way to implement
an RF telemetry link.

Of course, the most straightforward
telemetry link would be direct input of digital
data from the serial or parallel port of an
embedded PC. If no sensors were used, the
embedded device would likely work in a
supervisory control mode. This mode would
be useful in cases where remote sensors
needed periodic polling from the base station
to obtain the required telemetry data.

GOTCHA!
So, you think everything�s just rosy. The

world is finally in harmony with your inner
spirits. Life is good.

Sorry! Although everything I�ve discussed
makes RF modem life easy, it�s all illegal!

Yep, illegal. Bogus. Part 15 of the FCC
regulations doesn�t allow �data� to be
transferred on the devices I described. �Data�

10.7-MHz
Band-Pass Filter

Pre-
amplifier

AM Detector
Data Slicer

Data

50-Ω RF In
(Ant.)

Band Select Filter

10.7-MHz
Ceramic FilterLimiting Amp

SAW Oscillator

50-Ω RF Out
(Ant.)

SAW
Oscillator

Data In

Phase Shift Network

Output Isolation
& Filter

RF Amplifier

VCC

a)

Figure 4�For the RF challenged, the transmitter is the one that says �RF Out.�

b)

IRS
422 Very Useful

423 Moderately Useful
424 Not Useful

SOURCES
RXM-418, TXM-418, LC series
Linx Technologies, Inc.
575 S.E. Ashley Pl.
Grants Pass, OR 97526
(541) 471-6256
Fax: (541) 471-6251
www.linxtechnologies.com

Abacom Technologies
67 Hamptonbrook Dr.
Etoblcoke, ON
Canada M9P 1A2
(416) 242-3120
Fax: 242-2697
abacomtech@compuserve.com

Fred Eady has over 20 years� experience
as a systems engineer. He has worked
with computers and communication sys-
tems large and small, simple and com-
plex. His forte is embedded-systems de-
sign and communications. Fred may be
reached at fred@edtp.com.

is defined as collected data such as tem-
perature or humidity. Only �commands�
or control signals are legal.

Essentially, anything originating from a
computer is considered data. It looks like
all is lost, but there�s a provision for data
transmission under Part 15 paragraph E.

First, cut the output power in half, and
then limit your data transmissions to 1 s with a
duty cycle of 30 to 1 off versus on time. OK.
Now you can transmit �data.� Whoopee.

And, oh yeah, remember that the RXM and
TXM modules are FM based. So, all the
nasties that go with FM transmission and
reception are present and accounted for.

A BETTER WAY
Just like the TXM and RXM modules, the

Linx LC series is designed to make RFing a
pleasure. The LC-TXM and RXM are also
SAW based. This variant uses a CPCA
(Carrier-Present Carrier-Absent) transmitter
capable of sending serial data at up to 5 kbps.

Mixing the magic number of 1s and 0s, the
CPCA modulation method enables the trans-
mitter to be legally operated at higher output
power levels than conventional continuous
carrier modulation methods. The LC series
has a shorter range of 300′ line of sight.

To combat the FM-inherent shortcomings,
the LC series uses CPCA modulation. This
AM-modulation scheme simply suppresses
the carrier when the data input is low.

CPCA AM modulation is often referred to
by other designations, including CW and
OOK (On-Off-Keying). A logic-low 0 is repre-
sented by the absence of a carrier, and a
logic-high 1 by the presence of a carrier.

During this carrier-deficient period, the
part draws little to no power and emits zero
signal into the ether. Because FCC regulations
measure power output as a function of time,
up to twice the output power can be radiated
if the data input duty cycle is 50%.

One drawback of this modulation
method is that no raw analog or clocked
data can be exchanged between the trans-
mitter and receiver. A combined logical
view of the LC transmitter and receiver
resides within Figure 4.

A WALK AROUND THE TOWER
For most of you, this may have been a

different experience. In EPC, you�re used
to reading about hardware speeds and soft-
ware feeds of various embedded systems.
But, I wanted to expose you to the reality of
designing RF-based embedded applications.

Just because Part 15 of the FCC regulations
implies �unlicensed� doesn�t mean you can
just go compute and radiate at will. Most
of my conversations with RF engineers were
laced with warnings about what I could
and could not transmit.

One of the first questions I was asked was,
�Do you have a ham ticket?� Their point�
if I was going to experiment with this stuff,
I should do it in the amateur-radio band
and save myself the hassle.

Implementing an off-the-shelf embedded
RF-telemetry solution isn�t simple. To further
complicate matters, the designer must design
or choose the proper antenna system.

Again, I could write a whole series of
articles on that. And yes, that�s FCC regu-
lated, too! This area can make or break
your RF design, so the folks at Linx told me
that a really good app note on antennae
will be available on their Web site soon.

This has been a good, bad, and ugly
description of one particular set of RF
modules that could be used to overcome the
natural and FCC obstacles that stand in the
way of implementing a reliable RF data link.

Although the modules I described are
capable, they might not meet your
application�s needs. There are many other RF
solutions out there. I�ll dig them out for you.

In the next installment, I�ll take a look at
how to get the RF side to cooperate with
the embedded side and put some bits into
the wind. APC.EPC

68 Issue 90 January 1998 Circuit Cellar INK®

Building and Testing an NCO
Generator

MICRO
SERIES

Tom Napier

i

Applying
Direct Digital
Synthesis

Last month,
Tom went
over the

basics of how to
synthesize accurate
sine- and square-
wave signals. This
time, he shows you
how to build and test
a generator with both
sine- and square-
wave outputs.

P
ar

t

of2
2

 68

78

MicroSeries

Silicon Update

DEPARTMENTS

2

n Part 1, I in-
troduced the Nu-

merically Controlled
Oscillator (NCO), a chip

that can generate a sine
wave whose frequency is proportional
to a number supplied by the user.

The NCO contains an accumulator
to which it continuously adds the user’s
number at a crystal-controlled rate.
So, the accumulator overflows at a
frequency that depends only on the
length of the accumulator, the crystal
frequency, and the increment value.

The NCO chip also converts the
ramp output from the accumulator
into a series of samples that closely
approximates a sine wave at the de-
sired frequency. An external DAC and
a low-pass filter convert these
samples into a pure sine wave. The
sine-wave frequency can be set in
millihertz steps from 0 up to 25 MHz
(typically).

Using a Harris HSP45102 serial input
NCO and a PIC16C54 microcontrol-
ler, I designed and built a bench-top
signal generator with a frequency
range of 1 Hz to 9.999 MHz.

This generator supplies sine- and
square-wave outputs. Either Frequency
Shift Keyed (FSK) or Binary Phase Shift
Keyed (BPSK) modulation can be used.

This month, I cover the details of
the design, show how you can build
and test your own versatile signal
generator, and give examples of the
intriguing signals it can generate.

2

Circuit Cellar INK® Issue 90 January 1998 69

CONTROLLING THE NCO
Apart from the 12 output and two

phase-control bits mentioned in Part 1,
the NCO chip has six bits that control
the loading of a new frequency and
two internal control signals that need
to be in the correct state before an
output can be generated.

The serial input data is controlled by
a data-input pin (13), clock pin (14),
and serial-enable pin (10). Since the PIC
generates a burst of 64 clock pulses as
the 64 data bits are loaded, there’s no
need for a separate enable signal. I wired
pin 10 low.

I wired the input-direction pin (11)
high since the data is loaded most sig-
nificant bit first. When pin 17 is low,
new frequency data transfers to the
increment register. Pin 9 selects which
of the two frequencies to transfer.

Since I wanted pin 9 for frequency
modulation, the controller keeps pin 17
low except when loading a new pair of
frequencies. The increment register is
transparent when pin 17 is low, so
switching pin 9 changes the frequency
instantly.

When pin 12 is high, it stops the
accumulator from changing. This

situation can stop the output and
restart it from the same phase. I wired it
to a pin on the PIC, but I don’t use it.

Pin 18 disconnects the accumulator
feedback. When it’s low, the accumu-
lator content is made equal to the incre-
ment number. So, any fixed number
can be sent to the DAC, and it’s use-
ful for testing. I use this feature to
switch between plus and minus full
scale to adjust the output amplitude.

SQUARE-WAVE OUTPUT
Instead, the square-wave output

comes from a comparator chip driven
by the filtered sine wave. I used an
Analog Devices AD9696KN, which
costs about $5 and has rise and fall
times less than 5 ns.

I had to wire it with hysteresis (posi-
tive feedback), or its low-frequency
output would contain a burst of clock
frequency every time the sine wave
passed through zero. (If you put a scope
probe on the comparator outputs, you’ll
see what I mean. Luckily, the output
is stable when no probe is connected.)

Since the square-wave frequency is
accurately known and contains odd
harmonics up to at least 200 MHz,

this output can be a useful calibration
source for receiver testing. The square-
wave output can also be phase and
frequency modulated.

FILTER TEST
A filter test is built into the firm-

ware but isn’t accessible from the front
panel. If the two outer pins of the mode
switch are connected together (e.g.,
with a clip-on jumper wire) and the
switch is not in its center position,
the NCO generates a full-scale square
wave at ~250 kHz. This wave calibrates
the signal amplitude and checks filter
performance.

As Figures 1 and 2 show, the major
components of the NCO generator are
the thumb-wheel switch block, PIC
controller, switch decoder, modulation
buffer and selector, NCO and DAC
chips, the filter and its buffer, and the
comparator. It also has a regulated
+5-/–5.2-V power supply.

The PIC drives a 74HCT138 eight-
way decoder chip to address each of
the five four-bit thumb-wheel switches.
The range switch has only four states,
so only its lower two bits are needed.
The two outer pins of the mode switch

are wired as if they
were the upper two
range switch bits.

Diodes connected
to the switches let the
switch bits be wire-
ORed into four input
bits of the PIC. Two
spare decoder states
generate the serial
data for the NCO,
since the 18-pin PIC
doesn’t have enough
outputs to drive all
the NCO functions.

Half of a 74ACT74
dual flip-flop divides
the crystal frequency
in two to drive the
PIC. The other half
buffers the applied
modulation to syn-
chronize it to the
NCO’s operation. A
74ACT153 multi-
plexer switches the
modulation to the
NCO.

Figure 1 —The digital section of the NCO generator
comprises the microcontroller that reads the thumb-
wheel switches, the modulation selection circuit, and the
NCO chip. The output of this section is a stream of
10-bit waveform samples.

70 Issue 90 January 1998 Circuit Cellar INK®

The 74AC series chips also work,
but the 74HCT series is a little slow.

CONSTRUCTION
I built the generator on a Radio Shack

universal board and housed it in a metal
utility cabinet (see Photo 1). Power
comes from a 9-VAC wall transformer
that drives two half-wave rectifiers,
reservoir capacitors, and +5- and –5.2-V
regulators. These are bolted to the back
panel.

An adjustable negative regulator can
be substituted if a fixed –5.2-V regula-
tor is unavailable. A –5.0-V part is a
bit close to the DAC manufacturer’s
specified minimum supply voltage.

I used a surplus thumb-wheel switch
bank that came with a decimal-point
position and power-of-ten indicator.
Distributors such as Digi-Key sell
thumb-wheel switches in various sizes.

Since this circuit is built on a board
without a ground plane, good ground-
ing, power-supply pin bypass capacitors,
and short direct connections are a
must. I used DIL sockets with built-in
bypass capacitors for the digital com-
ponents and mounted bypass capaci-
tors inside the open-frame 28-pin
NCO and DAC sockets.

I used some surface-mount capacitors
to bypass the power pins of the analog
parts. Regular 0.1-µF capacitors will
do if their leads are kept very short.

If you can find tinned copper bus
strip, use it. It also acts as a shield
between the components. Otherwise,
use thick bus wire for grounds.

I had some 0.156″ spacing prototyping
board that matched the pin spacing on
the thumb-wheel switches, so I used it
as a bus connection between the diodes

I soldered to the switch pins. I then
connected ribbon cable from this bus
to a 16-pin DIL connector.

This cable mates with a second
16-pin connector on the board and lets
the circuit board be removed from the
box. I wired the power supplies via
the same connector.

The power-supply parts are bolted or
glued to the back panel. The –5.2-V
regulator needs to be insulated from
the panel by a mica washer.

Twisted-pair wire connects the
board to the output connectors. Since
there’s no guarantee the generator will
be used in a 50-Ω system, the wiring
impedance isn’t critical. Series resistors
in each output protect the circuit from
short circuits and give source imped-
ance matching to reduce reflections if
a high-impedance load is connected.

USING THE OUTPUT
There are two ways to terminate

the outputs. For one, you can drive into
a high impedance, in which case you
get the maximum available output
voltage but the cable capacitance
attenuates the higher frequencies.

Alternatively, you can use 50- or
75-Ω cable with the corresponding

Figure 2 —The analog section of the NCO generator includes the DAC, a low-pass filter, the DC-restoration circuit,
and the optional comparator chip. It also includes the DC power regulators.

 00 C00 006 C07 026 205 E0C 1E2 C00
08 026 000 A1C C07 026 C10 A16 C05
10 026 C14 A16 C06 026 A04 03E 9B0
18 92E 93F 966 A04 070 071 072 074
20 075 076 C40 033 CC0 037 966 205
28 E0C 743 A04 C01 1A6 A27 C05 02F
30 C08 024 C0F 166 384 E70 126 C0A
38 9B8 205 020 2A4 2EF A32 A7B 21E
40 024 C04 02F 060 2A4 2EF A43 208
48 02D 36D 36D C0C 16D C09 03D C04
50 02F 9BC 038 9BC 039 9BC 03A 9BC
58 03B 21D 024 280 03C 0FC 643 A62
60 97E A5D 2BD 2EF A51 800 C08 02F
68 C17 024 C60 126 200 02D C08 02E
70 486 6ED 586 5E6 4E6 36D 2EE A70
78 0E4 2EF A6C C0F 166 800 21E F10
80 743 A99 218 1F0 703 A8B 3F1 A8B
88 3F2 A8B 2B3 219 1F1 703 A92 3F2
90 A92 2B3 21A 1F2 603 2B3 21B 1F3
98 800 218 1F4 703 AA2 3F5 AA2 3F6
A0 AA2 2B7 219 1F5 703 AA9 3F6 AA9
A8 2B7 21A 1F6 603 2B7 21B 1F7 800
B0 C6A 02F 06E 2EE AB3 2EF AB3 800
B8 02E 2EE AB9 800 20D 2AD 1E2 883
C0 800 800 800 81F 805 800 800 833
C8 833 800 800 800 800 802 800 800
D0 800 814 800 800 800 8C8 800 800
D8 800 8D0 807

Listing 1 —Column 1 shows the hex address every eight instructions. The remaining columns are the 12-bit
instructions.

72 Issue 90 January 1998 Circuit Cellar INK®

matching resistor. This option reduces
the output amplitude to about a third
but lets even the highest output fre-
quencies reach the device being driven.

FIRMWARE
The firmware is simple since the PIC

micro has only two main tasks. It reads
the thumb-wheel switches, converts
that information into a frequency
control number by indexing into a
decade parameter look-up table, and
sends the result to the NCO.

It also checks the position of the
mode switch and sets up the multi-
plexer. This switches the modulation
input to the appropriate NCO pins. In
FSK mode, only the mode switch is read.
No frequencies are loaded to the NCO.

The firmware comprises 220 instruc-
tions. The raw code is laid out in
Listing 1 and can be typed into any
PROM programmer that can handle PIC
microcontrollers.

FREQUENCY COMPUTATION
The frequency-control algorithm is

simple as well. Each digit of the thumb-

GETTING IT RUNNING
Testing this generator requires at

least a voltmeter and oscilloscope with a
bandwidth in the 50-MHz region.
Start with a chipless board so you can
test as you go, minimizing the risk of
expensive damage.

First, hook up the power and test that
all power pins show the correct voltages
(either +5 or –5.2 V). Now, you can
insert the crystal and the 74ACT74
chip. (Always switch off the power
before inserting chips!)

Test for the crystal output on pin 16
of the NCO socket and pin 11 of the
DAC socket. Pin 16 of the PIC socket
should show half the crystal frequency.

Put the mode switch in one of its
extreme positions, and plug in the pro-
grammed PIC chip. All four Port A bits
(pins 1, 2, 17, and 18) should be high.

Now, you can plug in the 74HCT-
138 decoder. Pins 14, 13, 12, and 11
should show sequential negative pulses
(each ~10 µs long), which are the switch
selector pulses. The PIC’s Port A bits
should now show a data pattern that
changes with the thumb-wheel switch
setting.

Check the most significant bit of the
PIC’s Port B—pin 13. It should show a
burst of 64 positive pulses occurring
in groups of eight. Each pulse is ~200 ns
wide. The burst is ~150 µs long and
repeats every 20 ms.

Verify that the burst is also present
on pin 14 of the NCO socket. A burst
of data should be visible on pin 13 of
the NCO socket. Between bursts, pin
13 will be high.

wheel switch is assigned a decimal
weight that depends on the position of
the four-way range switch.

There are seven possible weights,
ranging from one to one million. Each
weight has a corresponding 32-bit
frequency-control value, which is the
weight times either 128 or 131.072
(33.554- or 32.768-MHz crystal, re-
spectively). The table of seven 32-bit
weights is precomputed for the appro-
priate crystal.

The frequency-control number is
computed by taking four successive
32-bit table entries (the start point
depends on the range) and adding each
to a 32-bit total n times, where n is
the corresponding switch digit. This
task requires many 32-bit additions but
avoids 32-bit × 4-bit multiplications.

Photo 1 —The majority of the generator is built on a
3″ × 4″ prototyping board. The empty socket makes the
connection to the thumb-wheel switches.

Circuit Cellar INK® Issue 90 January 1998 75

Hook a wire between the outer two
pins of the mode switch, which should
still be in an extreme position. Check
that pin 18 on the NCO socket is low
and that pin 9 shows a 250-kHz TTL-
level square wave. Pin 9 should go high
when the mode switch is put in its
central position.

Power down, insert the NCO chip,
and put the mode switch back in an
extreme position. Check that pins 1–6
and 24–28 show a 250-kHz square wave.
Don’t worry if the signal’s high states
are curved.

Next, remove the jumper on the
mode switch, put the switch in its
low position, and set the thumb-wheel
switches to 1000E0. The NCO’s pin 6
should show a 1-kHz square wave.

If all is well, changing the thumb-
wheel setting should generate the
appropriate square-wave frequency.

Test each switch digit in turn by
zeroing all other switches and check-
ing that the output frequency steps each
time the switch under test is moved.
This task confirms that the switch
connections and decoding logic are in
order and that none of the switch
diodes are installed backwards.

On the highest range, the output on
pin 6 shows a lot of jitter, but this
situation is normal. Indeed, it’s why

an NCO isn’t used to generate a square
wave directly.

Now, plug in the DAC. Reset the
thumb-wheel switches to 1000E0, and
leave the mode switch low. If every-
thing is hooked up properly, DAC pin
25 should be near –1.25 Vpp. A scope
probe on DAC pin 20 should show a
1-kHz sine wave with about a 1-Vp-p
amplitude, centered roughly about 0 V.

If everything works, power down
and plug in the LM6361 and the OP-290.
On powering up, the same 1-Vp-p signal
should be visible on pin 6 of the LM-
6361 and at the BNC sine-output socket
(if the amplitude control is set to full).

The output should now be equally
balanced about ground or at least
heading in that direction. It can take
tens of seconds to reach an exact bal-
ance after turning on.

Put the unit back in test mode with
the jumper across the mode switch. The
output signal on the amplifier (pin 6)
should now be a ±0.5-V square wave
at 250 kHz. Adjust the amplitude
trimmer until the output is correct.

Check that the square wave’s lead-
ing edge looks like Figure 3, which
has a horizontal scale of 20 ns per
division. The edge should have a rise
time of 30 ns with no more than 12%
overshoot.

a) b)

c) d)

Figure 3a —The output rising edge is in test mode. The horizontal scale is 20 ns per division. b—The generator’s
square wave output is clean at 5 MHz. c—In frequency shift keying (FSK), the binary modulation switches the sine
wave between two frequencies without any amplitude discontinuities. d—Biphase modulation (BPSK) inverts the
sine-wave output whenever the binary modulation input is a 1. This can generate large steps in the waveform.

76 Issue 90 January 1998 Circuit Cellar INK®

The waveform in Figure 3a repre-
sents the BNC output connected via
50-Ω cable to a 50-Ω input oscilloscope.

With the test jumper removed, it
should be possible to set any output
frequency and see a clean 1-Vp-p sine-
wave output. The output amplitude
will roll off a little above 5 MHz.

Above 1 MHz, there will be a little
fuzziness in the waveform caused by
the residual alias frequencies passing
through the filter. You can see how bad
this effect is by setting a frequency that
is a power of two times 1 kHz (e.g.,
4096 kHz).

At these frequencies, the aliases are
in phase with the wanted signal and
show up as a small static ripple in the
waveform. They should be barely
visible.

Two things remain to be tested—
modulation and the square-wave out-
put. For the latter, plug in the AD9696
comparator, and check that the square-
output BNC connector shows a TTL-
level square wave at the frequency set
by the thumb-wheel switches. At
5 MHz, it should look like Figure 3b.

Tom Napier has worked as a rocket
scientist, health physicist, and engi-
neering manager. He spent the last nine
years developing space-craft commu-
nications equipment but is now a

Modulation testing requires an
external TTL pulse generator, ideally
one with an accurate crystal timebase.
With the external generator connected
to the modulation-input BNC connec-
tor and the mode switch high, the out-
put sine and square waves will be 180°
phase modulated by the TTL input.

The effect is most easily seen if the
scope is triggered from the pulse genera-
tor and the NCO generator’s frequency
is set to a small multiple of the modula-
tion frequency. The sine wave’s drift
rate is a function of the frequency error
between the NCO and pulse-generator
clocks (see Figure 3c).

If the mode switch is set low and the
frequency changed, setting the mode
switch to its center position causes the
output to switch between the two fre-
quencies according to the modulation
input. Figure 3d is a typical example.

Since the modulation input has a
pull-up resistor, it can be switched high
and low by a simple on/off switch
connected to the socket. This switch
can be handy when a test requires
either of two fixed frequencies.

AREAS TO EXPLORE
The beauty of an NCO generator is

the variety of things you can do with it.
It generates frequencies from below the
audio range up to the short-wave bands.

If you use a bigger box, you can add
digits to the frequency-setting switch
and achieve better frequency resolution.

If you’re ambitious, you can run
two NCOs at the same frequency but
with different phases (e.g., to perform
quadrature modulation of a carrier).

NCOs running at different frequen-
cies can have their outputs added or
multiplied together before being sent
to the DAC. This way, you can dem-
onstrate many interesting mixing and
modulating schemes. I

Many thanks to the applications engi-
neers at Harris Semiconductor for their
help and to Newark Electronics for
providing samples.

I R S
425 Very Useful
426 Moderately Useful
427 Not Useful

SOURCES

HSP45102, HSP45106, HSP45116,
HI-5721BIP, HI-5731 DAC

Allied Electronics
7410 Pebble Dr.
Fort Worth, TX 76118
(817) 595-3500
Fax: (817) 595-6406
www.allied.avnet.com

Harris Corp.
1025 W. Nasa Blvd.
Melbourne, FL 32919
(407) 727-4000
Fax: (407) 724-3973
www.harris.com

Newark Electronics
12880 Hill Crest Rd.
Dallas, TX 75230

SOFTWARE

The source code, in official Micro-
chip mnemonics, is available from
the Circuit Cellar Web site.

Santa Clara, CA 95052-8090
(408) 721-5000
Fax: (408) 739-9803

General-purpose NCOs
Stanford Telecom, Inc.
480 Java Dr.
Sunnyvale, CA 94089
(408) 745-2660
Fax: (408) 341-9030
www.stelhq.com

PIC16C54
Microchip Technology, Inc.
2355 W. Chandler Blvd.
Chandler, AZ 85224-6199
(602) 786-7200
Fax: (602) 786-7277
www.microchip.com

Preprogrammed PIC16C54 $8
Tom Napier
P.O. Box 3155
Maple Glen, PA 19002-8155

(972) 458-2528
Fax: (972) 458-2530
www.newark.com

DACs and fast amplifiers
Analog Devices, Inc.
One Technology Way
Norwood, MA 02062-9106
(617) 329-4700
Fax: (617) 329-1241

Thumb-wheel switches, connectors,
inductors, amplifiers, 74ACT
chips, PIC microcontrollers

Digi-Key Corp.
701 Brooks Ave. S
Thief Falls, MN 56701-0677
(218) 681-6674
Fax: (218) 681-3380

PLP-10.7
Mini-Circuits
13 Neptune Ave.
Brooklyn, NY 11235-0003
(718) 934-4500
Fax: (718) 332-4661
www.minicircuits.com

LM6361
National Semiconductor
P.O. Box 58090

consultant and writer. You may reach
Tom via E-mail at eric@voicenet.com.

78 Issue 90 January 1998 Circuit Cellar INK®

SILICON
UPDATE

Tom Cantrell

t

M•Core on the March

To Tom,
M•Core
offers
PowerPC
perfor-

mance and the cost,
power, and code
density of the 68k.
It’s a 32-bit RISC
that delivers now and
leaves plenty of
headroom for the
future.

reading down the
primrose 32-bit

processor path isn’t
something to be done

lightly. Step gingerly past the remains
of chips like the 88k, 29k, 860, and
others that fell along the wayside.

Certainly, the desktop CPU market
is effectively closed at this point with
’x86 dominant, PowerPC (and Apple)
a dark horse, and the familiar collec-
tion of workstation RISCs (e.g., MIPS,
SPARC, Alpha, and HP-PA) watching
NT warily. New desktop CPU archi-
tectures need not apply.

The embedded world is another
story. The breadth of the application
demands more not fewer choices—
everything from 4 to 64 bits. Yes, this
includes embedded PCs and stripped
versions of the desktop RISCs, but
there’s still plenty of room for embed-
ded-only 32-bit chips like the ARM and
Hitachi SH.

Leave it to Motorola to keep the
proud tradition of processor proliferation
alive with M•Core, a 32-bit stream-
lined RISC. According to Motorola,
M•Core is more than a brand-new chip.
Coincident with their latest reorg, it
represents a whole new way of doing
business.

In essence, M•Core consists of
intellectual property including the core
design, third-party and in-house tools,
documentation, EV boards, and so on.

This know-how can be turned into chips
in a number of ways as illustrated in
Figure 1.

For instance, one of the first M•Core
customers is combining the CPU with
a DSP core to handle base-band pro-
cessing in a cellular phone.

Motorola’s semiconductor group can
add M•Core to their stable, too, using
it as the nucleus of standard products
and adding it to their ASIC cell library.
It’s conceivable that M•Core might be
even more widely proliferated, perhaps
to other IC suppliers.

REDUCED RISC
Although M•Core adopts certain

aspects and philosophies of other
Motorola architectures (e.g., the 68k,
ColdFire, and PowerPC), they’re com-
bined in such a way that the end result
is quite distinguishable.

M•Core is perhaps best described
as aspiring to PowerPC-like perfor-
mance, while offering the cost, power,
and code-density advantages of chips
like the 68k and ColdFire. As you see
in Figure 2, it’s a moderately aggressive
32-bit RISC that delivers now and
offers plenty of headroom for the future.

Initially, M•Core relies on a four-
stage pipeline, arguably right in the
middle of the three- to five-stage sweet
spot that delivers the best bang per
buck. That is, it offers high performance
at moderate (i.e., double digit) clock
rates without a lot of circuit complexity.
This class of design is well-understood,
as are possible future enhancements
like superscalar techniques, high-
speed numerics, and faster clock rates.

Unlike chips that take excessive
liberty with the RISC moniker, M•Core
is relatively true to form. For instance,
it’s a pure load/store architecture.
Instructions only operate on registers,
except for load and store, which are the
only instructions that access memory.

The programmer’s model is kind of
a hybrid of PowerPC and 68k with a bit
of Z80 thrown in for good measure (see
Figure 3). The chip features sixteen
32-bit registers, which are mostly gen-
eral-purpose (R0 and R15 serve double
duty as data and return address stack
pointers). A second bank of registers
enables high-speed interrupt response,
while the 68k-like User/Supervisor

Circuit Cellar INK® Issue 90 January 1998 79

protection scheme exposes 13 other
specialized registers to trusted software.

TIGHT CODE
RISCs usually feature fixed-length

instructions (faster and easier to pipe-
line and superscale), and M•Core fol-
lows suit. Traditionally, most chips
devote 32 bits to the cause—espe-
cially those with large register files
and/or three operand instructions,
both of which consume opcode bits at
a prodigious rate.

In the performance-at-any-price
desktop world, poor code density isn’t
a big deal. First, in a system with CRTs,
disks, printers, and other expensive
iron (not to mention pricey CPUs),
memory isn’t the main cost factor.

Second, even a 50–100% code-size
penalty washes out in
light of the overall
code-bloat trend. Con-
sider the example of
the RISC Mac versus
the CISC PC. Code
density isn’t high on
the list of factors con-
sidered when choos-
ing between the two.

But in the embed-
ded world, especially
the portable battery-
powered segment, code
density deserves more
thought. Memory cost
may represent a much
higher, if not the
highest, portion of
system cost.

Poor code density may compel the
addition of memory chips and compli-
cate single-chip integration. Equally
critical—and totally unlike desktop
machines—memory power consump-
tion can’t be ignored.

M•Core finesses the performance/
code-density tradeoff by going with
fixed-length instructions, but ones only
16 bits wide. It’s not surprising that
other machines with tight encodings
such as the Hitachi SH, ARM Thumb,
and MIPS16 (the latter two using 16-bit
opcode subset schemes) represent the
most likely M•Core competition.

Some RISCs use delay slots so non-
dependent instructions execute during
the branch and load delays. However,
delay slots worsen code density since
the compiler must insert NOPs when

it can’t find a useful instruction to
schedule—an all-too-often occurrence.

A more subtle problem is that
assembly-language programming and
debugging (still necessary in many
real-time apps) is complicated when
instructions get moved around.

By contrast, M•Core avoids delay
slots entirely. Yes, loads and branches
incur a pipeline stall, but the payback
is elimination of superfluous NOPs,
WYSIWYG assembly language, and
simpler faster compilers.

INSTRUCTIONS APLENTY
Though the instructions may be

short, there’s no shortage of them with
nearly 100 different opcodes by my
count. However, that’s a bit mislead-
ing since many are just minor variations

on a theme.
For instance, you

may have noticed in
Figure 3 that the USER
status info consists of
a single C (carry) bit.
Instead of having a lot
of different status bits,
M•Core offers multiple
types of compare in-
structions (e.g., higher,
equal, not equal, less
than, etc.) using the C
bit as a universal con-
dition code.

Besides expected use
directing conditional
branches, the C bit also
supports a form of
conditional execution

DSP
Debug

Baseband
Serial Port

Audio
Serial Port

QSPI
Serial Port

Smart Card
Interface

External
Bus

Interface

Keypad
Interface

TDMA
Timer

Data RAM
4–16K × 16

Data ROM
6–18K × 16

PROM
24–48K × 24

PRAM
512 × 24

Clocks/PLL

Microcontroller
Debug

JTAG

 MUX

UART

GPT

56600
DSP Core

DSP/MCU
Interface

1024 × 16

M•Core
RISC

MCU core

RAM
512 × 32

ROM
4K × 32

Timer/PIT
Watchdog

128-KB ROM

TOD

RESET

WDOG

PIT

GPIO

Keypad

PWM (6)

UART (2)

ISPI

32-KB SRAM

M•Core
1.5

Debug

OSC

CLK
GEN

Ext. Mem.
Interface

INTR CTL.

64-KB Flash

TOD

RESET

WDOG

PIT

GPIO

Keypad

PWM (6)

UART (2)

ISPI

1.5-KB SRAM

M•Core
2.0

Debug

VCO/PLL

CLK
GEN

Ext. Mem.
Interface

INTR CTL.

a) b) c)

Figure 1a —Motorola offers M•Core for ASICs such as a cellular phone chip. b & c— Motorola also plans standard products for commercial and industrial applications.

Data Calculation Address Generation

General-
Purpose

Register File

32 bits × 16

Alternate
Register File

32 bits × 16

Control
Register File

32 bits × 13

Sign Ext.

Scale

Immediate
Mux

Barrel Shifter
Multiplier
Divider

Mux Mux

Adder/Logical
Priority Encode/Zero Detect

Result Mux

X Port Y Port

Writeback Bus

Address Mux

PC
Increment

Branch
Adder

Instruction Pipeline

Instruction Decode

Address
Bus

Hardware Accelerator Interface Bus Data Bus

Figure 2 —M•Core tempers conventional RISC wisdom with 16-bit opcodes, powerful bit processing, and
programmer-friendly (i.e., invisible) pipeline.

80 Issue 90 January 1998 Circuit Cellar INK®

for selected operations including register
increment, decrement, clear, and move.
Conditional execution shrinks code
and also equalizes execution time
regardless of conditional evaluation.

Per RISC dogma, most M•Core
instructions (including 1–32-bit shifts)
execute in a single clock, thanks to a
built-in barrel shifter. In fact, M•Core
adds a number of other bit-oriented
features likely to be useful in I/O-
oriented applications.

Besides the expected bit-set and
-clear instructions, there two forms of
bit-generate instructions. The “imme-
diate” version (BGENI) sets any bit in
a register (like bit set) but also clears
the rest of them.

The “dynamic” form (BGENR) works
similarly, except the bit position to be
set is specified in another register rather
than immediately. There’s also a bit-
mask-generate instruction (BMASKI)
that works like BGENI, except it sets
all bits up to the specified position
and clears the rest.

A novel bit-reverse instruction does
just what it says (i.e., bit 0 of a register
moves into position 31, bit 1 into 30,
etc.). Yeah, you may not need to do it
often, but BREV is a heck of a lot easier
(and faster) than the conventional 32-
iteration shift, check, and stuff loop.

Also unique is a Find First 1 (FF1)
instruction that returns the position of
the first 1 found in a register scanning
from most to least significant bits.
BREV offers a handy solution if you
prefer an least significant bit-first scan.

Although
there’s no provi-
sion for align-
ment, bus
sizing, or Big
versus Little
Endian in the
core itself, in principle, such support
circuits could be added externally. Once
onboard, however, the same friendliness
M•Core exhibits towards bits extends
to bytes and half words, with instruc-
tions to load and store as well as ex-
tend them (zero and signed) to 32 bits.

There are also four byte-specific
extract instructions (i.e., XTRB0–3) that
copy the specified byte from one regis-
ter to the low-order byte (with zero
extend) of another. Finally, there’s an
instruction (TSTNBZ) that checks
whether any byte in a register is 0.

Like most RISCs, not every M•Core
instruction executes in a single clock.
As I mentioned, loads, stores, and
taken branches require two clocks.

It’s also predictable that MULT and
DIV take longer. The former delivers
two bits per clock with two clocks

overhead (e.g., a 16 × 16 mul-
tiply takes 10 clocks, 32 × 32
takes 18 clocks). DIV (un-
signed and signed versions)
takes 3–37 clocks depending
on the result magnitude
using an early-out algorithm.

There are other multi-
clock instructions where the
extra clocks are an unavoid-

R0'(sp')

C

R0 (sp)

R1

R2

R3

R4

R5

R6

R7

R8

R9

10

R11

R12

R13

R14

R15(lr)

PC

PSR

VBR

EPSR

FPSR

EPC

FPC

SS0

SS1

SS2

SS3

SS4

GCR

GSR

Figure 3 —Dual
general-purpose
register banks bypass
memory bottlenecks
and boost real-time
performance. A third
set of control registers
is accessible in
supervisor mode.

Photo 1 —Using the latest design
(synthesis) and production (0.36 µm)
know-how, M•Core cuts cost and power
use. The core itself (i.e., no memory or
I/O) is only 2.2 mm 2 and consumes less
than 1.5 mW/MHz at 3.3 V, targeting
0.5 mW/MHz and 1.8 V in the future.

Circuit Cellar INK® Issue 90 January 1998 83

able by-product of data movement.
For instance, there are multiregister
versions of load and store.

LDQ/STQ moves the quadrant of
registers comprising R4–R7, while
LDM/STM moves a contiguous range
from Rn–R15 to and from the stack.
Note that n must be between 1 and
14, since R0 is the stack pointer
and a LDM/STM R15�R15 is better
handled as a simple LD/ST R15.

These instructions only take one
plus the number of register clocks
(e.g., moving five registers = six clocks),
making them faster (and shorter) than
a sequence of individual two-clock
LD/ST instructions. Data access time
also affects a few other instructions,
such as indirect branches and returns
(three clocks) and TRAP (five clocks).

Power-management embellishments
include three low-power instructions—
STOP, WAIT, and DOZE. However, since
M•Core defines a core, not a complete
chip, it simply signals which if any of

these instructions have been executed,
leaving the exact function (e.g., stop
the clock) to external circuits.

EXCEPTIONAL EXCEPTIONS
For all their bandwidth, traditional

RISCs sometimes don’t handle distrac-
tions (in the form of interrupts and
exceptions) well. M•Core builds on
the familiar and proven 68k exception
model, adding a number of enhance-
ments to improve real-time response.

Vector Vector
Number(s) Offset (hex) Assignment

0 000 Reset
1 004 Misaligned Access
2 008 Access Error
3 00C Divide by Zero
4 010 Illegal Instruction
5 014 Privilege Violation
6 018 Trace Exception
7 01C Breakpoint Exception
8 020 Unrecoverable Error
9 024 Soft Reset
10 028 INT Autovector
11 02C FINT Autovector
12 030 Hardware Accelerator
13 034 (Reserved)
14 038 (Reserved)
15 03C (Reserved)

16–19 040–04C TRAP #0–3 Instr Vect
20–31 050–07C (Reserved)
32–127 080–1FC Reserved for Vect Int

Controller Use

Table 1—M•Core exception handling recalls the
68k with some key improvements. Note the vectors
for both normal (INT) and fast (FINT) interrupts and
provision for add-on hardware accelerators.

Listing 1 —Dedicated registers (R12–14) and the FF1 (Find First 1) instruction form the basis of a soft-
ware-driven interrupt priority scheme. FF1 identifies the highest priority pending interrupt. The most
significant bit of a priority word in memory corresponds with the highest priority (e.g., UART_TX), and the
least significant bit with the lowest priority (e.g., SW3).

; Assumes the following alternate register file image:
; r14�pointer to priority word
; r13�pointer to Normal Vector Table
; r12�scratch register
Normal_Service:
ld r12,(r14) ; get contents of priority word
ffl r12 ; find highest priority intr
lsli r12,2 ; translate to offset
add r12,r13 ; point to assoc. table entry
ld r12,(r12)
jmp r12 ; jump to intr service routine
.align WORD_ALIGN

; Indexed vector table contains addresses of each of the
; 32 service routines. FFI instruction returns offset from
; most significant bit of the register
Normal_Vector_Table: ; addresses of service routines
.long UART_Tx_Service
.long UART_Rx_Service
.long Timer_Service
�
.long SW3_Service
.long Spurious_interrupt_Service

XXX_Service
�
rte

84 Issue 90 January 1998 Circuit Cellar INK®

Clearly, the extra registers are at the
top of the list, since they can eliminate
or reduce the time-consuming chore
of saving and restoring context.

The function of the alternate register
file (i.e., R0′–R15′) is obvious. Its selec-
tion is controlled by a bit in the proces-
sor status register (PSR). Though the
control bit is only accessible in super-
visor mode, both supervisor- and user-
mode programs can access either file.

Let’s take a closer look at the extra
supervisor control registers (refer back
to Figure 3) since they play a crucial
role in exception processing.

The lineup starts with the PSR,
which contains the myriad bits that
control exception-related operations.
Exceptions (listed in Table 1) may
occur as a result of internal operation
or external interrupt request.

M•Core defines two interrupt excep-
tions—normal and fast, the latter hav-
ing higher priority. The PSR contains
three bits that enable or disable excep-
tions, normal interrupts, and fast inter-
rupts. Another bit controls whether
multiclock (e.g., MULT, DIV, LDM/STM,
etc.) instructions can complete or termi-
nate early (and subsequently restart)
when an interrupt is pending.

Like the 68k, M•Core relies on a
vector table in memory, and VBR allows
the table’s base address to be changed
dynamically. Also like the 68k, exter-
nal interrupt requestors (both normal
and fast) can either provide a vector or
accept the default autovector.

The least significant bit of a vector
table entry isn’t needed since instruc-
tions must be 16-bit aligned (i.e., it’s
presumed 0). Instead, that bit automati-
cally selects which register file should
be used by the handler.

EPSR and EPC are one-level stacks
where the status register (PSR) and PC
are saved when an exception occurs. It’s
up to you to put them somewhere else
(typically on the stack) if necessary, lest
the next exception overwrite them and
force your system to punt.

FPSR and FPC perform the same role
but specifically for the fast interrupt
request. Thus, you can safely take a fast
interrupt during exception processing
without muss and fuss.

Five extra storage registers (SS0–4)
are handy for holding key pointers and

The primary interface signals (i.e.,
address, data, control, interrupts) are
self-explanatory, especially if you know
the 68k. As with that chip, an asynchro-
nous transfer protocol is used so the
system must return active acknowl-
edgment (i.e., *TA or *TEA) to com-
plete a transfer.

However, the intimacy of connection
at the core level calls for extra interface
logic. For example, the core simply
outputs a *SEQ (sequential) indicator.
You handle the details of a particular
memory-burst transfer scheme.

The same goes for memory man-
agement. The CPU outputs a translate
enable (*TE) signal for an external
MMU.

As mentioned, the execution of low-
power mode instructions (LPMD0�1) is
left for the external logic. The core offers
a bit of support for leaving low-power
mode with the *IPEND (interrupt pend-
ing) output which, derived from the
level-sensitive interrupt inputs, works
even when the clock is stopped.

Access at the core level is further
distinguished by a unique hardware
accelerator interface. At the time I’m
writing this, some details are TBD, but
what is known is worth examining.

Consisting of a separate 32-bit data
bus and miscellaneous address and con-

parameters. So, each can store the stack
address for a different task, swapped
in and out of R0 for each task switch.

Since M•Core doesn’t define I/O and
glue logic around the processor, the GSR
and GCR provide a direct path (32-bit
input and output, respectively) to the
CPU for these add-ons.

Of course, with no a priori knowl-
edge of a particular implementation,
M•Core can’t offer the comprehensive
interrupt priority schemes of completely
integrated chips. However, software can
do a pretty good job as Listing 1 shows.

This routine exploits the alternate
registers and FF1 instruction to quickly
prioritize interrupts from a hypotheti-
cal selection of hardware. After a mini-
mum exception latency of six clocks
(i.e., EPSR, EPC save, vector table fetch,
branch), it only takes nine clocks to
find the highest priority interrupt and
execute the handler’s first instruction.

HW XLR8R
Figure 4 shows the “pinout” of

M•Core, keeping in mind that circuits
directly connected to the core are
usually integrated on the same chip.
Although Motorola plans to offer a raw
M•Core CPU, the 384-pin chip shown
in Photo 1 is really intended for evalu-
ation and prototyping.

Address Bus

Transfer
Request

Transfer Busy

Transfer
Attributes

Transfer Abort

Memory
Management

Power
Management

Hardware
Accelerator

Interface

Clocks

Address (A31–0)

Transfer Request (*TREQ)

Transfer Busy (*TBUSY)

Read/Write (R/*W)

Transfer Code (TC2–0)

Transfer Size (TSIZ–0)

Abort Cycle (*ABORT)

Translate Control (*TE)

*LPMD1–0

System Clocks

Test Clocks

32

1

1

1

3

2

1

1

1

2

~52

2

2

32

1

1

1

2

7

1

1

2

32

32

5

1

1

5

?

Data (D31-0)

Transfer Ack (*TA)

Transfer Error Ack (*TEA)

Breakpt Request (*BRKRQ)

Interrupt Requests

Interrupt Vector#

Autovector (*AVEC)

INT Pending (*IPEND)

Resets (*RST, *SRST)

Global Status (GSB31–0)

Global Control (GCB31–0)

PSTAT4–0

Debug Request (*DBGRQ)

Debug Ack (*DBUG)

JTAG/COP

Test

Data
Transfer

Transfer
Termination/
Status

Interrupts
and Reset

Global
Status/Control

Processor
State

Emulation
Support

JTAG/COP
Interface
LSSD Test
Control

M•Core

Figure 4 —Though intended for on-chip connection, the M•Core bus is similar to a conventional CPU, mainly differ-
entiated by the addition of a dedicated hardware accelerator interface.

Circuit Cellar INK® Issue 90 January 1998 85

I R S
428 Very Useful
429 Moderately Useful
430 Not Useful

Tom Cantrell has been working on
chip, board, and systems design and
marketing in Silicon Valley for more
than ten years. You may reach him by
E-mail at tom.cantrell@circuitcellar.
com, by telephone at (510) 657-0264,
or by fax at (510) 657-5441.

trol lines, the accelerator interface is set
up for tight coupling to on-chip intelli-
gence like a DSP or other coprocessor.

For a simple output-only connection,
just register snoop. With this, changes to
M•Core registers (primary or alternate)
are echoed externally (i.e., 32-bit data,
5-bit register specifier, *REGWR strobe).
External hardware latches output, mak-
ing a shadow copy of the CPU register.

You can also spread smarts by pass-
ing instructions. M•Core reserves op-
codes for this and outputs them and a
signal from the instruction decoder
when they’re fetched. Once the copro-
cessor signals readiness, M•Core issues
the order to execute.

Passing data with instructions likely
involves transfer primitives, such as
accelerator call/return and load/store.
The former count the registers to be
transferred (up to seven, starting with
R4), while the latter bridge data across
the system and accelerator interfaces.

Core-level interface also inspires an
M•Core debug built on various hooks,
including a software- and hardware-
invocable debug mode, a breakpoint

request input (for instructions and data),
JTAG or other serial scan scheme (ac-
cess to registers, etc.), and overt clock
control. Host software uses some or all
of these functions as the foundation
for a sophisticated development suite.

NICE CHIPS FINISH LAST
It’s the nature of progress—and hind-

sight—that the latest chip is often the
best. M•Core is no exception. It deliv-
ers good performance efficiently.

Ultimate success depends on more
than features, though. Motorola has to
deftly position M•Core against worthy
competitors (including their own 68k,
ColdFire, and PowerPC).

One challenge is third-party tools.
Achieving the quality and breadth of
support of, for example, a 68k doesn't
happen overnight.

But, M•Core’s off to a good start. Its
quiver includes Diab Data C/C++, SDS
simulator/debugger, HP logic analyzer
probes, and ISI and Microtec RTOSs.

Given this initial lineup, it’s reason-
able to believe M•Core will achieve the
critical mass needed to be a contender.

Without a steady supply of new
chips, the IC revolution would be cut
short. I might end up selling insurance
or something equally grim.

So, thanks Motorola. Keep the
chips coming, and keep hope alive. I

SOURCE

M•Core
Motorola
7600 Capital of Texas Hwy.
Austin, TX 78731
(800) 521-6274
Fax: (800) 521-6274
www.motorola.com/mcore

96 Issue 90 January 1998 Circuit Cellar INK®

PRIORITY INTERRUPT

steve.ciarcia@circuitcellar.com

After Ten Years, Inside the Box Still Counts

w riting an editorial for the tenth-anniversary issue is a little like sitting down at the dinner table for a special
occasion. Your first inclination is to simply say grace and thank everyone responsible for making the day happen.

Certainly, this is no different. Any successful magazine is the work of many people and not just the achievement of a
single individual. Still, a tenth anniversary is a cause to celebrate the past, analyze the present, and predict the future.

As for the past, probably the greatest cause for celebration is being successful against the odds. How many magazines have you
subscribed to during the last 10 years that no longer exist? I’d like to say we’re still here because of our technical prowess and foresight.
While there’s no doubt they’re among the principal reasons you read INK, in truth, these attributes are the de facto result of simply letting
an engineer choose an editorial course most interesting to other engineers. Our motto is and has always been that we are a magazine
written for engineers, by engineers.

Of course, today, I’ve come to interpret “engineer” to more appropriately indicate an engineering cast of mind rather than any strict
degree designation. It would be far too egotistical of me to diminish the valuable contribution of professionals and programmers who don’t
strictly call themselves engineers. My personal programming language may still be solder, but this is simply my choice and not a cam-
paign platform. The technical cross-pollination involved in today’s embedded control designs certainly makes such divisions meaningless.

As for the present, what can I say? “Give me the means and I’ll control the world!” The options are more varied today than ever.
There are dozens of processors, scores of tools, and even more marketing hype as to the direction designers should take. In a world filled
with 4- to 64-bit system solutions, I’m hopeful the real applications we document in the pages of INK help separate hype from reality.

We’ll continue to bridge the gap between trade magazines and technical enjoyment. Believe me, it’s no easy task. As you see more
of the large semiconductor companies in our pages, consider the value of the achievement. These companies finally discovered that their
engineering departments read INK. Of course, the marketing guys didn’t know this because they never saw any issues lying around.
(Leave INK around where it could get taken? No way, they take it home!) Of course, trade magazines are easy to find. They’re in unread
piles on every desk.

As for the future, it sounds trite, but there is a multitude of possible alternatives. If I mimic today’s popular press, I’m supposed to be
warning you about the dire meltdown associated with the millennium issue. Apparently, when the clock clicks over to January 1, 2000,
there will be massive software glitches causing considerable confusion and financial loss. Banks will start posting mortgage interest from
1900, insurance annuities will cease, and ICBMs will head the wrong way.

Personally, I think all this is a bunch of over-anxiety. Forewarned is forearmed. While it’s conceivable the rest of the world might not
know that 00 follows 99, I can’t see that a traffic-light sequencer or a soda-machine coin counter cares what year it is. Much of what we
design will be immune (for what isn’t, see Scott Lehrbaum’s article, “Year 2000 and Embedded PCs”). Nevertheless, I am prepared for the
Department of Motor Vehicles to cancel my registration because they can’t calculate a negative age. Forewarned doesn’t mean anything
to the bureaucracy.

All levity aside, I do have one future prediction. It’s easy for us to look at the Internet as simply a neat way to run searches and
download datasheets. But, that may be a gross underestimation of its potential application in embedded controls. I believe that the power
of all those connected resources combined with the rapid evolution in phone and wireless communication technology will define a new
Internet that will offer a completely new control methodology. Cars will have dashboards that download maps, upload vehicle perfor-
mance, and provide customized entertainment. Televisions, pagers, wrist communicators, and perhaps even microwave ovens will con-
tain chips connecting them to TCP/IP. A browser will connect you to the world.

Certainly, the politics of all this connectivity will play a significant role in its adaptation. As for the technology, you can depend on our
tenacity to stay the course and tell you how it’s implemented. It may have been ten years, but to this day, I believe that the title on our
first issue is still a great truth: Inside the box still counts . We won’t let you down.

