
CELLAR
CIRCUIT
T H E C O M P U T E R A P P L I C A T I O N S J O U R N A L

®INK

$3.95 U.S.
$4.95 Canada

 # 9 1 F E B R U A R Y 1 9 9 8

COMMUNICATIONS
Making NT Play Nice with Unix

Embedding Voice Recognition

Zilog’s Z89xx3 =
DSP + MCU

Converting PC GUIs
for NonPC Devices

E
M

BEDDEDPC
M

ONTHLY SECTION

2 Issue 91 February 1998 Circuit Cellar INK®

T H E C O M P U T E R A P P L I C A T I O N S J O U R N A L

®INK
EDITORIAL DIRECTOR/PUBLISHER
Steve Ciarcia

EDITOR-IN-CHIEF
Ken Davidson

MANAGING EDITOR
Janice Hughes

TECHNICAL EDITOR
Elizabeth Laurençot

WEST COAST EDITOR
Tom Cantrell

CONTRIBUTING EDITORS
Rick Lehrbaum
Fred Eady

NEW PRODUCTS EDITOR
Harv Weiner

ASSOCIATE PUBLISHER
Sue (Hodge) Skolnick

CIRCULATION MANAGER
Rose Mansella

BUSINESS MANAGER
Jeannette Walters

ART DIRECTOR
KC Zienka

ENGINEERING STAFF
Jeff Bachiochi

PRODUCTION STAFF
John Gorsky

James Soussounis

And Yet More Change

Cover photograph Ron Meadows – Meadows Marketing
PRINTED IN THE UNITED STATES

For information on authorized reprints of articles,
contact Jeannette Walters (860) 875-2199.

Circuit Cellar INK® makes no warranties and assumes no responsibility or liability of any kind for errors in these
programs or schematics or for the consequences of any such errors. Furthermore, because of possible variation in
the quality and condition of materials and workmanship of reader-assembled projects, Circuit Cellar INK® disclaims
any responsiblity for the safe and proper function of reader-assembled projects based upon or from plans, descriptions,
or information published in Circuit Cellar INK®.
Entire contents copyright © 1998 by Circuit Cellar Incorporated. All rights reserved. Circuit Cellar INK is a registered
trademark of Circuit Cellar Inc. Reproduction of this publication in whole or in part without written consent from Circuit
Cellar Inc. is prohibited.ken.davidson@circuitcellar.com

TASK MANAGER

i n my tenth-anniversary editorial last month, I
spent some time talking about change—specifi-

cally, the changes that have come about over the past
decade. One area in which we’ve seen drastic change just

in the past few years is how we communicate.
Printed publications have been around since the printing press was

invented in the 15th century, and will continue to thrive for the foreseeable
future. There is something about holding a book or magazine that people
still enjoy and aren’t willing to give up. They don’t require special equipment
to read. They’re lightweight, low cost, highly portable, and don’t require any
power. On the downside are the cost of entry, use and cost of paper,
required lead time, and limited distribution.

Along came the electronic bulletin board system, and suddenly time
and distance were compressed, enabling anybody with a computer and
modem to publish their own work for anyone in the world to access
instantly. The next step was the Internet and the World Wide Web, further
reducing cost and increasing availability and quality.

Publishers of print media are seeing the handwriting on the wall in a
big way, and virtually everybody has some kind of on-line version of their
print publication. We at Circuit Cellar brought the Circuit Cellar BBS on-line
back in 1986 to first support Steve’s BYTE articles and to later support
Circuit Cellar INK. It was a tremendous success, fueling active discussions
between talented engineers located throughout the world. Long-time
readers were also treated to a sampling of those discussions each month
through my ConnecTime column.

The Circuit Cellar BBS has just gone off-line for good as a BBS.
However, various Internet elements have replaced it, making the same
functions available to anyone in the world with Internet access. Magazine
information and articles can be obtained from the Circuit Cellar Web site
(www.circuitcellar.com). Files can be downloaded from our FTP site
(ftp.circuitcellar.com). And, messages can be exchanged in a public forum
through our new newsgroup server. Don’t look for our newsgroups among the
other Usenet groups you may be receiving from your ISP (Internet Service
Provider), though. You must point your newsreader at our server at
bbs.circuitcellar.com to see what groups are available and what discus-
sions are going on. If you’re still not sure what I’m talking about, there is more
information on the Web site.

In the coming months, I’ll be spending more time enhancing and
developing our on-line presence. Please send any suggestions or
comments along with those article proposals and ideas to editor@
circuitcellar.com and I'll respond as quickly as possible. I’ll see you on-line!

CONTACTING CIRCUIT CELLAR INK
SUBSCRIPTIONS:

INFORMATION: www.circuitcellar.com or subscribe@circuitcellar.com
TO SUBSCRIBE: (800) 269-6301 or via our editorial offices: (860) 875-2199

GENERAL INFORMATION:
TELEPHONE: (860) 875-2199 FAX: (860) 871-0411
INTERNET: info@circuitcellar.com, editor@circuitcellar.com, or www.circuitcellar.com
EDITORIAL OFFICES: Editor, Circuit Cellar INK, 4 Park St., Vernon, CT 06066

AUTHOR CONTACT:
E-MAIL: Author addresses (when available) included at the end of each article.
ARTICLE FILES: ftp.circuitcellar.com

CIRCUIT CELLAR INK®, THE COMPUTER APPLICATIONS JOURNAL (ISSN 0896-8985) is published monthly by
Circuit Cellar Incorporated, 4 Park Street, Suite 20, Vernon, CT 06066 (860) 875-2751. Periodical rates paid at
Vernon, CT and additional offices. One-year (12 issues) subscription rate USA and possessions $21.95,
Canada/Mexico $31.95, all other countries $49.95. Two-year (24 issues) subscription rate USA and
possessions $39, Canada/Mexico $55, all other countries $85. All subscription orders payable in U.S. funds
only via VISA, MasterCard, international postal money order, or check drawn on U.S. bank.
Direct subscription orders and subscription-related questions to Circuit Cellar INK Subscriptions,
P.O. Box 698, Holmes, PA 19043-9613 or call (800) 269-6301.
Postmaster: Send address changes to Circuit Cellar INK, Circulation Dept., P.O. Box 698, Holmes, PA 19043-9613.

ADVERTISING
ADVERTISING SALES REPRESENTATIVE

Bobbi Yush Fax: (860) 871-0411
(860) 872-3064 Email: bobbi.yush@circuitcellar.com

ADVERTISING COORDINATOR
Valerie Luster Fax: (860) 871-0411
(860) 875-2199 Email: val.luster@circuitcellar.com

Circuit Cellar INK® Issue 91 February 1998 3

ISSUE
INSIDE

Low-Cost Voice Recognition
Brad Stewart

Building an Embedded Web Server from Scratch
Richard Ames

Integrating Windows NT 4.0 into a TCP/IP Environment
Bill Payne

Codesign
The Evolving Relationship Between Hardware and Software
Richard Moseley

Choosing the Right Crystal for Your Oscillator
Norman Bujanos

I MicroSeries
EMI Gone Technical
Part 1: Surge Suppression
Joe DiBartolomeo

I From the Bench
Choose the Right Vehicle Before Riding the Air Waves
Jeff Bachiochi

I Silicon Update
Double-Duty DSP
Tom Cantrell

2

6

8

65

 96

EM
BE

DD
ED

PC
12
20
30
60

66
72

78

82

36 Nouveau PC
edited by Harv Weiner

40 Converting PC GUIs for NonPC Devices
 Dan Johnson

47 RPC Real-Time PC
Real-Time Operating Systems
Part 2: RTOS Interfacing
Marc Guillemont

53 APC Applied PCs
RF Telemetry
Part 2: You’re on the Air
Fred Eady

www.c i rcu i tce l lar .com

9191

Task Manager
Ken Davidson

And Yet More Change

Reader I/O

New Product News
edited by Harv Weiner

Advertiser’s Index

Priority Interrupt
Steve Ciarcia

Techno-Jargon

6 Issue 91 February 1998 Circuit Cellar INK®

READER I/O
THAT DARN x-y RATIO

As a broadcast professional with over 20 years in the
(PAL) business, I was happy to read Do-While Jones’
article “HDTV—The New Digital Direction,” (INK 86).
Anything that helps people understand how high band-
width content travels along a limited-size pipe is good.

One very minor mistake that I’ve seen made a thou-
sand times is the reference to a 4 × 3 video wall. If you
stack monitors symmetrically 4 across × 3 vertically,
you end up with a 16:9 video wall—oops! To retain the
aspect ratio of the individual monitors, you need to
expand both dimensions by the same ratio!

Michael Coop
mcoop@pop.jaring.my

RENAMING “FUZZY LOGIC”
Ken’s editorial in INK 88 (“Stuffed Mentality”) made

a good point—“fuzzy logic” sounds like fuzzy thinking.
I suggest we rename it “quantitative logic.” It is logic in
which truth is a quantity (i.e., something you can have
a little or a lot of).

There are other nonclassical logics, too. I’m currently
doing research on defeasible logic, a system where gen-
eralizations are automatically overruled by specific
exceptions. It’s a good fit to the way human beings de-
scribe things.

Michael A. Covington
mc@ai.uga.edu

SLACKING OFF?
A programmer friend passed me a copy of INK 88 for

the articles on automotive applications for fuzzy con-
trols. Constantin von Altrock’s “Fuzzy Logic in Auto-
motive Engineering” was very clear and gave me a
much better understanding of how and why fuzzy logic
is being used. Unfortunately, Constantin shows his lack
of automotive background (and/or the results of reading
a poorly translated paper) in a couple of places—the
article would have been much more convincing without
these mistakes.

First of all, when the car is moving and a wheel stops
turning, it is “locked” (not “blocked”).

Also, the variable s in the text (p. 13) and in Figure 1
is “slip ratio” (not “slack”). There are a number of
definitions for s used in different parts of the world.

There’s a summary of eight different slip-ratio relation-
ships starting on p. 39 of Race Car Vehicle Dynamics
(W.F. and D.L. Milliken, SAE, www.sae.org, 1995).

In Figure 1, the curve for “Snowy Road” would per-
haps be more accurate if labeled “Hard Packed Snow”.
The three curves shown are all representative of tire
performance on “hard” surfaces, where there is a definite
peak in m (tire-road friction coefficient).

To give but one example of the difficulty of designing
an ABS algorithm, consider that unpacked snow, gravel,
and sand are all “deformable” surfaces, and braking on
deformable surfaces has a completely different charac-
teristic than on hard surfaces. On a deformable surface,
a locked wheel usually gives the best braking (but no
steering control), perhaps by building up a wedge of
material in front of the tire. I say “perhaps” because
tire-road friction on different surfaces is still not well
understood. The inability of current production ABSs to
properly distinguish between different surfaces remains
a major problem.

The stopping ability of ABS on various slippery sur-
faces was discussed in a recent article (D. Simanaitis,
“ABS: Putting a Stop to it All,” Road & Track, July
1997). In their tests, locking the brakes (with the Mer-
cedes-Benz ABS disarmed) produced shorter stopping
distances on three out of four different icy/snowy sur-
faces tested. The ABS also lost on gravel and tied on sand.
ABS won on wet roads and won dramatically on dry roads.

Douglas Milliken
bd427@freenet.buffalo.edu

Thanks for such detailed feedback. I’d like to briefly
comment on your issues.

I have no doubt that it’s “locking” instead of “block-
ing.” I used “blocking” because “ABS” stands for Anti-
Blockier System in German.

Regarding s, the German is “Schlupf,” which in tech-
nical dictionaries is translated to “slack” (which Ox-
ford defines more precisely than it does “slip”). And,
you’re right: s has many definitions worldwide. Rather
than discussing these, I took one, showed the definition,
and focussed on fuzzy-logic use in this system. I don’t
think any other approach would have helped the reader.

I limited the discussion on hard surfaces because
discussing all the different things that occur within an
ABS situation was not my goal. But, you’re absolutely
correct: there’s a lot more to say about ABS.

Constantin von Altrock
cva@inform-ac.com

8 Issue 91 February 1998 Circuit Cellar INK®

NEW PRODUCT NEWS
Edited by Harv Weiner

BATTERY POWER MINDER
The bq2018 Power Minder IC

provides state-of-charge informa-
tion for any type of rechargeable
battery, including Li-Ion, NiMH,
NiCd, lead acid, and recharge-
able alkaline. Designed for bat-
tery-pack integration, the 8-pin
bq2018 communicates critical
battery information over a
single-wire control/data serial
interface to an intelligent host
controller. Typical applications
include cell phones, PDAs, and
personal organizers.

The bq2018 measures the
voltage drop across a low-value
series sense resistor between the
battery’s negative terminal and
the battery-pack ground contact.
By using the accumulated counts
in the charge, discharge, and self-
discharge registers, an intelligent host controller can deter-
mine battery state-of-charge information. An internal offset
count register improves accuracy.

The bq2018 features 128 bytes of NVRAM, including
115 bytes of user RAM for storing battery characteristics,
charge data, or ID information, thus eliminating the need

PROCESSOR PROTECTOR

for a separate battery ID chip.
An internal ADC and refer-
ence operate from 2.8 to 5.5 V
and at less than 80 µA. Stand-
by-mode current is less than
10 µA and data-retention cur-
rent is less than 50 nA, so
critical information can be
stored for over 10 years with
5 mAh of battery capacity.

The 8-pin, 150-mil SOIC
package of the bq2018 is small
enough to fit in the crevice
between two adjacent cells. It
is priced at $1.85 in 10k quan-
tities. The bq2118 Power
Minder miniboard incorpo-
rates all of the necessary com-
ponents for a fully functional
implementation that sells for
$4.40 in 10k quantities.

Benchmarq Microelectronics, Inc.
17919 Waterview Pkwy.
Dallas, TX 75252
(972) 437-9195
Fax: (972) 437-9198
www.benchmarq.com #501

Processor Protector pro-
vides a simple means to
confirm the proper values.

The Processor Protector
plugs into the CPU socket
and indicates the value of
the core and I/O voltages
applied on a two-digit LED.
Lights on the unit indicate
which voltage is being mea-
sured. The Processor Pro-
tector is compatible with
Socket 5 and 7 mother-
boards and sells for $59.

Incorrect jumper
settings for the dual
voltage levels on new
microprocessors manu-
factured by AMD, IBM,
Cyrix, and Intel can
shorten CPU life and
cause erratic operation.
System lockup, memory
errors, and other inter-
mittent phenomena
may be the result of an
over- or under-voltage
condition. Poorly writ-
ten instruction manuals
and the limitations of
verifying the core volt-
age on the chip are two
reasons why incorrect
settings can occur. The

Autotime
6605 SW Macadam Blvd.
Portland, OR 97201
(503) 452-8577 • Fax: (503) 452-8495
www.autotime.com #502

Circuit Cellar INK® Issue 91 February 1998 9

TMS320C6x SINGLE-PROCESSOR DEVELOPMENT SYSTEM

NEW PRODUCT NEWS
The HEVAL6A TMS320C6x single-pro-

cessor development system integrates a
200-MHz (1600 MIPS) TI TMS320C6201
processor with several memory types, in-
cluding SBSRAM, SDRAM, and asynchro-
nous SRAM. A mezzanine slot supporting a
pair of serial interfaces and two I/O inter-
face slots supporting a variety of data-acqui-
sition and communications modules enable
developers to integrate the hardware into
their chosen application environment. The
DSP hardware can be programmed and de-
bugged via the PC board’s 16-bit ISA-bus
host interface and JTAG controller. It can
be booted without a host computer (for
stand-alone or embedded applications) via
its onboard flash memory.

Development tools include the TI ’C6x
Code Development Tools (C compiler, assembly opti-
mizer, assembler, and linker), software loader utility,
GO DSP Code Composer for C source debugging, and
PC-based API for DOS and Windows.

The HEVAL6A is priced at $14,000.

Traquair Data Systems, Inc.
114 Sheldon Rd.
Ithaca, NY, 14850
(607) 266-6000 • Fax: (607) 266-8221
www.traquair.com #503

POWER-TO-FREQUENCY CONVERTER
The AD7750 is designed for residential and industrial

power-metering applications. It can be configured for
power measurement, voltage-to-frequency conversion,
or converting the product of two voltages to a frequency.

It contains two ADCs, a multiplier, offset compensa-
tor, digital-to-frequency converter, reference, and other
conditioning circuitry. Both channels are driven by
differential gain amplifiers—channel 1 with selectable

gains of 1 and 16, and channel 2 with a gain of 2. A
high-pass filter can be switched into the signal path of
one channel to remove offset effects.

The AD7750’s switched-capacitor architecture al-
lows a bipolar analog input of 11 V with a single 5-V
power supply. Nonlinearity for either input is less than
0.05% maximum.

The device features two sets of frequency outputs
that consist of fixed-width pulse streams with pin-
selectable frequencies. Low frequencies are suitable for
stepping motors, while higher frequency pulse streams
are appropriate for calibration and test. In the signed mode,
outputs can be configured to represent the result of
four-quadrant multiplication. In the unsigned mode,
magnitude-only outputs are always positive regardless
of the input polarities. A reverse-power indicator activates
when negative power is detected in the unsigned mode.

The AD7750 comes in 20-pin SOIC and DIP pack-
ages and is priced at $2.50 in 100,000-piece quantities.

Analog Devices, Inc.
804 Woburn St. • Wilmington, MA 01887
(781) 937-1428 • Fax: (781) 821-4273
www.analog.com #504

10 Issue 91 February 1998 Circuit Cellar INK®

NEW PRODUCT NEWS
SCOPE UTILITY SYSTEM

EZ-View-SA functions as a data-acquisition system,
oscilloscope, digital voltmeter, and chart recorder. The
hardware module attaches to a parallel printer port and
provides six single-ended channels of input with 12-bit
resolution. An input range of ±10 VDC is available at
an input impedance of 330 kΩ.

The software features auto-installation and configu-
ration, mouse or keyboard control, remote start, and
trigger controls. It works with all MS-DOS-, Win3.1-,
and Win95-based computers with ’386 or higher pro-
cessors and VGA or better screens. Operating modes
include real-time monitoring (oscilloscope), data ac-
quisition (record), and rapid record (burst).

Features include gain adjustments, bias offsets,
scale selection, variable sampling-rate and run-time
selection, channel labeling, triggering, auto-scaling,
and remote-start options. Acquired data can be trans-
ported to standard spreadsheets and expanded for de-
tailed analysis. A notes feature permits a brief text
description of the data to be attached to saved files.

EZ-View-SA costs $199, including the data-acquisi-
tion module, power supply, data cable, instruction

manual, and screwdriver. Options include 16-bit data
resolution, remote battery power supply, and probes.

Mid-Atlantic Systems Co.
2284 Golden Pond Ct. • Fenton, MI 48430-1097
(810) 750-4140 • Fax: (810) 629-4988
www.mid-atl-sys.com ` #505

Circuit Cellar INK® Issue 91 February 1998 11

NEW PRODUCT NEWS
WIRELESS KEYBOARD

SurfMate is a 79-key
plug-n-play wireless key-
board that requires no
software installation.
The user plugs Surf-
Mate’s receiver unit into
the computer’s keyboard
port to establish the
interface. An optional
integrated pointing device
replaces the mouse. Surf-
Mate is compatible with all
Internet applications, including
Web browsers and E-mail. However, it
can be used with any software (e.g., presentation
programs, games, word processing, accounting, etc.).

SurfMate can be positioned almost anywhere in a
room and still maintain complete control of the com-
puter. It transmits through infrared LED at distances up
to 45′ (14 m) and, depending on the distance to the PC,
at horizontal angles up to ±60° and vertical angles up to
±50°.

SurfMate fea-
tures an ergo-
nomic design
with full-sized
keys and includes
three Windows 95
keys. It comes
equipped with

four Duracell AA
alkaline batteries,

weighs only 21 oz.
(including batteries),

and sells for $129.99, in-
cluding shipping.

US Electronics
585 N. Bicycle Path, Ste. 52
Port Jefferson Station, NY 11776
(516) 331-2552 • Fax: (516) 331-1833
www.uselectronics.com/surfmate

#506

12 Issue 91 February 1998 Circuit Cellar INK®

Low-Cost
Voice Recognition

FEATURE
ARTICLE

Brad Stewart

v
Brad’s Tiny Voice—
based on an ’HC705
and powered off a
9-V battery—can be
trained to recognize
up to 16 command
templates and costs
less than $5. Toys,
voice-activated
padlocks, and
remote controls had
better listen up.

oice recognition
has come a long

way in the past five
years, due mainly to the

advent of cheap and powerful PCs
equipped with Pentiums and MMX
technology. Performance continues to
improve to the point where parts of
this article were comfortably voice-
dictated via Kurzweil VoicePlus.

But, this performance comes at a
cost. You need fast Pentiums with
MMX, at least 16 MB of DRAM, and
even more disk stroage.

What if your application has a
budget of a couple dollars? Can you
still embed some form of voice recog-
nition or voice command and control
into your product?

In this article, I’ll show you how to
implement a voice-command system for
under $5. I conclude with some appli-
cation examples and recommendations
to improve the system even further.

TINY VOICE
My system—Tiny Voice—is based on

a low-cost, 20-pin single-chip controller.
It’s a speaker-dependent, template-
based, isolated-word recognizer. You
train it to recognize your voice.

Up to 16 voice patterns are stored in
a nonvolatile 512-byte serial EEPROM.
Five push buttons enable programming

 12

20

30

60

66

Low-Cost
Voice Recognition

Building an Embedded
Web Server from Scratch

Integrating Windows NT
4.0 into a TCP/IP
Environment

Codesign: The Evolving
Relationship Between
Hardware and Software

Choosing the Right
Crystal for Your Oscillator

FEATURES

Circuit Cellar INK® Issue 91 February 1998 13

and operation, and seven
LEDs give status.

For embedded systems,
Tiny Voice can be controlled
over a parallel or serial pro-
tocol from a host micro-
controller or it can run
stand-alone. The source
code may be modified to
fit your requirements.

At under $5, Tiny Voice
won’t do dictation. But,
it’s good for applications
like toys, repertory phone
dialers, voice-activated pad-
locks, security systems,
remote controls, and other
low-cost consumer products.

A voice command can
be one or several words,
with a total maximum
length of 1.6 s and a mini-
mum of 0.2 s. Response time is typically
<100 ms. By carefully selecting the
vocabulary and context, over 95%
recognition accuracy is possible.

The heart of the system is the 68HC-
705J1A Motorola 8-bit processor. There
were a number of reasons why I chose
this part over a comparable one from
Zilog or Microchip.

There’s sufficient RAM (64 bytes) to
buffer the input waveforms and hold
template structures, and its 1240 bytes
of ROM provide enough program stor-
age. Also, interrupts are supported,
including changes on the I/O lines.

This system is inexpensive (<$2) in
high volume. The development kit is
cheap, too, at $99.

Shown in Photo 1, the Tiny Voice
system was built on a 3″ × 3″ bread-
board and is powered off a 9-V battery.
Standby current consumption is ~2 mA,
which is primarily due to the op-amp
and electret microphone bias.

With some added power manage-
ment, standby current could be re-
duced to a few microamps. Operating
power while sampling and analyzing
speech is ~10 mA.

THEORY OF OPERATION
The 68HC05 processor is very

simple. There are no ADCs, so you
need a way to convert the time domain
signal to a format the microcontroller
can recognize.

The small amount of mem-
ory requires a lot of approxi-
mations and simplifications
to convert the speech into a
small set of features.

To meet these limitations,
I use a simplified formant
tracker. The microphone input
is high-pass filtered and then
infinitely clipped using two
operational amplifiers. The
resulting square wave is con-
nected to an MCU input.

By sorting and tallying long
and short pulse widths of the
square wave, you get a crude
but effective two-channel
frequency analyzer. One chan-
nel gives frequencies below
1500 Hz, and the other ranges
from 1500 Hz to 5 kHz.

These two frequency
areas roughly define F1 and F2, the
two formant regions of speech. It’s a
well-known principle that F1 and F2
for a given speaker and a given set of
vowels remain the same.

Using F1 and F2 was first tried in
1952 by Bell Labs employing vacuum
tubes and capacitors for memory. Crude
as it sounds, that system achieved 97%
recognition accuracy!

The input signal is high-pass filtered
(i.e., pre-emphasized) to accentuate the
F2 frequencies. Figure 1 illustrates
why this is necessary.

Figure 1a is a sample of the voiced
vowel sound “ee” as in “speech.” Note
the F2 component shown by the arrow.
Also note that these high-frequency

a)

b)

c)

Figure 1a— This is a waveform of the voiced sound “ee” as in “speech.” The arrow
points to high-frequency wiggles corresponding to the second formant (F2). Note that
these wiggles do not cross the zero axis. b—After preemphasis or high-pass filtering,
the F2 components now cross the zero axis with the same waveform. c—After being
infinitely clipped, the waveform of Figure 1b is a square wave showing both F1 and F2
components. This signal is applied to the microprocessor via a digital input pin.

Figure 2— An electret
condenser microphone (not
shown) is biased to 5 V via
R4. The signal is then
amplified by U2a. C2 and
R6 (along with C3 and
R10) form a high-pass
filter. The output is fed to
the second op-amp, which
is configured as a com-
parator whose output is
connected to PB4 of the
68HC705J1. The EEPROM
has a two-wire I2C inter-
face, which is connected to
PB1 and PB0. The remain-
ing pins of the processor
are connected to LEDs and
push buttons.

14 Issue 91 February 1998 Circuit Cellar INK®

TINY USER INTERFACE
Before discussing the

voice-recognition software,
I want to describe the
interface and how the
system works from the
user’s point of view.

Seven LEDs and four
switches compose the Tiny
Voice user interface. LEDs
D2, D3, D4, and D5 make
up a four-bit binary num-
ber that gives Tiny Voice’s
status. It can either be the
index of a voice command
or an error message.

When power is con-
nected or when the Reset
switch is pressed, the Stop
mode is entered. Pressing
a push button activates the
system and performs a
certain function.

Pressing Select displays
a binary number from 0
to 15 on four LEDs which
selects the template num-
ber to be trained or un-
trained. Each time Select
is pressed, the number
increments to 15 and
back to 0.

Pressing Train starts
the Training mode. The
On LED is activated, and
the user is prompted to

say the command to be trained.
While the user is speaking, the Sam-

pling LED is lit during periods of speech
and off during periods of silence. If the
training is successful, the template is
stored in EEPROM at the selected
template location and the system
enters the Stop mode.

Untrain modifies the data in the
stored template so the pattern-match-
ing algorithm skips over this template
and does not consider it as a possible
candidate.

This is useful for context switching
of vocabularies. For example, out of the
16 templates, you may only need to
scan for two words (e.g., “yes” or “no”),
while ignoring the remaining 14.

To enable a template that was
previously untrained, press the Train
button and then press another button
(e.g., Select) before speaking.

wiggles do not cross the
zero axis. Thus, if the
waveform is infinitely
amplified and clipped, the
square wave would not
reveal the F2 component.

However, Figure 1b
shows what happens
after pre-emphasis. The
F2 wiggles cross the zero
axis, and the resultant
infinitely clipped square
wave now contains both
F1 and F2 (see Figure 1c).

TINY HARDWARE
Figure 2 shows a sche-

matic of the system. An
electret condenser micro-
phone is biased to 5 V via
R4. The signal is then
amplified by U2a.

C2 and R6 (along with
C3 and R10) form a high-
pass filter, with a cut-off
frequency of 1600 Hz with
an added zero at 800 Hz.
This setup provides a
pre-emphasis function.

C1 serves as a mild
antialiasing low-pass
filter. The output is fed
to the second op-amp,
which is configured as a
comparator with some
hysteresis. R8 sets the
threshold of the comparator.

The comparator’s output is a square
wave that’s applied to an input pin of
the processor. The threshold defines
the beginning and end of a speech
utterance. With no signal present, the
second op-amp’s output is at a DC level.

Voice pattern data is stored in a non-
volatile EEPROM. For this project, I
selected Ramtron’s FM24C04, which
uses ferroelectric cells.

It has several advantages over a more
generic part. For one thing, the FRAM
part can be written to over 10 billion
times, compared to about 10k cycles
with a generic EEPROM. This feature
is important here because the first 128
bytes are used for scratch-pad memory
and are constantly written to.

Also, it has a deep write buffer. So,
once the starting address is specified,
memory address is autoincremented

and additional writes can be performed
with no more intervention. As a result,
writing to the device is very fast.

Generic parts, however, require you
to set up the address every other byte
before you write data. This task creates
additional time overhead that may cause
a bottleneck in the software flow—a
major concern in a real-time system.

The FM24C04 has a low standby
current of 25 µA as well as a low op-
eration current of 100 µA. So, it’s well
suited for battery operation.

The EEPROM’s first 128 bytes hold
the transformed input utterance to be
recognized or trained. Locations 128–512
store the feature vectors of a previously
trained utterance. Each vector occupies
24 bytes, so the maximum number of
templates that can be stored is 16.

The rest of the circuit comprises a
5-V regulator, switches, and LEDs.

STOP
Wait for
Interrupt

Call Input

Initiate I/O ports
Turn off LEDs

Call Input

Select
 Button?

Untrain
button?

Recognize
button?

STOP

Kick the Watchdog

Call Normalize

Train
button?

Store results in
template memory

Call Normalize

Return from IRQ
Handler

Input
Error?

Select the
template with the lowest
error score and display

results on LEDs

Set Watchdog
RTI

Display error
on LEDs

Call Untrain

Input
Error?

Call Compare

RESET

Display error
on LEDs

No

No

Yes

No

No

Yes

No

Yes

No

Yes

Yes

Yes

Increment count and
display on LEDs

Figure 3— The main routine performs the event handler. Events are generated by an interrupt
caused by pressing a push button or by system reset. The events dispatched are Select,
Train, Untrain, and Recognize.

16 Issue 91 February 1998 Circuit Cellar INK®

The main program, MAIN.ASM,
responds to events and schedules the
remaining subroutines.

COMPARE.SUB handles the pattern
matching. It compares the input tem-
plate to each active template in memory
and calculates the best match.

EEPROM.SUB handles the reading
and writing of data to the EEPROM. It
bit-bangs two I/O pins to simulate an
I2C protocol used by the EEPROM.

IRQ.SUB is the interrupt handler.
Interrupts are caused by a button press.

The most complicated routine is
INPUT.SUB. It samples the input, deter-
mines where the word starts and ends,
and builds up the voice template.

TIME_NOR.SUB normalizes the
length of the speech input to a fixed
length of twelve two-element data
values.

DIV16_8.SUB is an integer divide
routine that divides a 16-bit number
by an 8-bit number. This routine is
called repeatedly by the time-normal-
ization routine.

And finally, DELAYMS.SUB is a
simple program where a delay is set by
the value passed in the accumulator.

Tiny Voice is entirely event-driven
and spends most of its time in the Stop
mode. Events are caused by the inter-
rupt of pressing push buttons. The
event handler is shown in Figure 3.

INPUT ROUTINE
When a Recognize or Train event

occurs, the input routine is invoked
(see Figure 4). A timer is set up and
polled until 110 µs has elapsed.

An interrupt routine could have been
used to time the samples every 110 µs,

but I was concerned that the overhead
to service the interrupt might make it
difficult to complete all the paths in
the input routine within 110 µs.

Once the time elapses, the input
square wave is sampled. If the sign
changes from the previous measure-
ment, one of the two frequency bytes
is updated.

The threshold limit is set to six. In
other words, if the pulse (positive or
negative) is greater than six samples
(roughly corresponding to 1.5 kHz), the
“high” frequency byte is incremented
by one. If it’s less than six, the “low”
frequency byte is incremented.

The rest of the routine is basically
a state machine that uses speech activ-
ity as an input to determine a utterance
bounded by silence. At each rising or
falling edge, another byte counts the
zero crossings.

After 256 samples, a frame counter
advances and several tests are made. If
the frame counter is greater than 64, the
input buffer is filled (i.e., you spoke too
long) or there is too much background
noise, and an error is generated.

Otherwise, a timeout value is decre-
mented and tested. This setup enables
the routine to exit if too much time
elapses before any sound is input.

If the buffer isn’t full or a timeout
has not occurred, then it tests the zero-
crossing counter. Too low a value
signifies silence, and a silence counter
is incremented.

Otherwise, a sound-activity counter
is incremented. If the sound-activity
value is above a certain threshold and
the silence value is high enough, the
routine exits with a valid data sample.

TIME NORMALIZATION
Words vary in length. But for this

algorithm to work, the lengths must
be normalized to a fixed value.

Each sample consists of two bytes
sampled over one frame of 256 samples.
The unnormalized data in the first
128 bytes of the EEPROM is normal-
ized to a set of 12 vectors in main RAM.

The vector in RAM is built up,
element by element, by down- or up-
sampling the raw data in EEPROM.
Since there are two elements per fea-
ture, a template has a fixed memory
length of 24 bytes.

In Recognition mode, the speech is
sampled and analyzed. The On LED is
activated, and the user is prompted to
say a previously trained command. As
before, the Sampling LED is lit during
speech and off during periods of silence.

The input is compared to the tem-
plates in memory and a decision made.
If recognition is successful, the result
is displayed on the four LEDs in binary.

When Reset is pressed, Stop mode
is entered and the system is ready to
accept a push-button command. Previ-
ously trained commands are not erased.

When an error occurs, the Error LED
(D1) is lit and the error code is displayed
in binary using the same four LEDs
that display the template index number.
After ~2 s, the LEDs go off and the
system enters Stop mode.

The error codes—Time Out, Buffer
Full, and Not Recognized—are defined
in the header file.

After Train or Recognize is pressed,
the system waits for valid speech input.
If no input occurs after ~6.5 s, the
system enters the Stop condition and
the Time Out error code is displayed.

On the other hand, if the length of
the utterance is longer than 1.6 s, the
system enters the Stop mode and the
Buffer Full error is displayed.

The Not Recognized error code is
displayed if the input utterance doesn’t
match a stored template. The system
then enters Stop mode and waits for
new input.

TINY ALGORITHMS
The software for Tiny Voice was

written entirely in assembly. There is
a total of eight routines.

Photo 1— My prototype was
built on a 3″× 3″ breadboard
and is powered off a 9-V
battery. The only ICs are the
68HC705J1 processor, LM358
dual-operational amplifier, the
4096-bit FM24C04 FRAM serial
memory, and a 78L05 5-V
regulator.

18 Issue 91 February 1998 Circuit Cellar INK®

THE MAIN ROUTINE
If the event is for training, the nor-

malized vector in RAM is stored in
memory according to the template num-
ber selected. Templates are stored in
memory locations 128–512, which
allows for sixteen 24-byte templates.
No comparisons are performed.

If the system is recognizing, the
normalized input utterance, which is
stored in RAM, is compared element
by element to each previously trained
template stored in EEPROM.

The comparison is a simple Euclid-
ean distance measure, and an error value
accumulates. The minimum error value
is selected and compared to a threshold.

If the result is above the threshold,
the system rejects the recognition. If

the value is low enough, the word is
recognized.

Well, almost. Two more criteria
must also be met: the score must be low
enough, and the two smallest scores
must differ by a large enough value.

TINY APPLICATIONS
For testing purposes, the system

was trained with eight words: “VCR”,
“television”, “telephone”, “stereo”,
“CD”, “PC”, “yes”, and “no”. Each
word was trained twice, thereby occu-
pying 16 templates.

Recognition accuracy approaches
100% when background noise isn’t too
severe. It also works with ~90% accu-
racy using speakers who didn’t train
the system.

A speaker-independent vocabulary
can be constructed by having multiple
trainings of a few words. For example,
training “yes” and “no” eight times
over a set of different speakers yields
excellent results.

A note of caution: when using Tiny
Voice, don’t use a lot of short words
(e.g., the numbers “one”, “two”, etc.).
They’re a bit beyond its capabilities.

And watch for commands that sound
alike. For example, “on” and “off” will
get you in trouble. Instead, try “turn
on” and “off please”.

A fun application might be a voice-
activated padlock. Change the code so
you have to enter one, two, or three
voice commands in sequence. Then,
multiply the scores. If the result is
small enough, then “open sez me.”

FUTURE TINY ENHANCEMENTS
Naturally, there are ways to improve

the system. I was surprised by the
HC05’s speed. I also wound up with at
least 200 bytes of leftover ROM for
more code. Tiny Voice’s code is modu-
lar, and updates can be easily added.

I can increase the EEPROM capacity
to 1 or even 2 KB. This size would pro-
vide more template storage or allow
for more frame features to better re-
solve differences in speech patterns.

I’d also like to add some fuzzy logic
to the pattern-matching algorithm to
improve recognition accuracy and the
rejection criteria.

Adding a serial port instead of push
buttons and LEDs could reduce cost
and add more functionality. Threshold
values could be changed, templates
uploaded and downloaded, and so on.

I want an MCU-controlled gain ad-
justment on the input for different mi-
crophone levels and background noise.

Another improvement would be to
add a dynamic time warp (DTW) algo-
rithm to the pattern-matching routine.
The DTW takes into account slight
variations on how each word is pro-
nounced—in particular, variations in
lengths of phonemes.

But with only 200 bytes of code
space left over, adding a DTW would
be challenging. A first-order approxi-
mation may be achievable, however.

I’d rather use C than assembly lan-
guage. When I started this project, I

Figure 4— Every 110 µs, the square-wave input is sampled and several options are considered, depending on the
state of the frame, zero-crossing, silence, and sound counts. The state machine effectively captures the input
utterance, while rejecting short bursts and input errors due to excessive background noise.

START

Initialize
Values

Initialize input variables
Set EEPROM address to 0 and
set up for sequential writes.

Turn on Sampling LED.

110 µs
Elapsed?

B

Sample Speech

Square wave
cycle reached?

Done 256
samples?

Store both freq.
vectors in
EEPROM

Update freq.
counters

Was last frame
silence?

Silence
Count reached?

Increment
frame count

Increment
Silence Count, turn
off Sampling LED

Increment Sound Count,
turn on Sampling LED

Frames = 64?

EXIT with
buffer-full

error

Sound
Count = 1?

Kick the Watchdog

Sound
Count reached?

EXIT
Good sample

A

Timeout
= 0?

EXIT with
timeout

error

A

B

B

Decrement
Timeout

No

Yes

No

Yes

Yes

Yes

No

No

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

Circuit Cellar INK® Issue 91 February 1998 19

I R S
401 Very Useful
402 Moderately Useful
403 Not Useful

SOURCES

68HC705J1A
Motorola
MCU Information Line
P.O. Box 13026
Austin, TX 78711-3026
(512) 328-2268
Fax: (512) 891-4465

FM24C02
Ramtron Intl. Corp.
1850 Ramtron Dr.
Colorado Springs, CO 80921
(719) 481-7000
Fax: (719) 481-9294
www.ramtron.com

C Compiler
Byte Craft Limited
421 King St. N.
Waterloo, ON
Canada N21 4E4
(519) 888-6911
Fax: (519) 746-6751
www.bytecraft.com

ARM710M, SM8500
Sharp Electronics Corp.
Microelectronics Gr.
5700 NW Pacific Rim Blvd., Ste. 20
Camas, WA 98607
(206) 834-2500
Fax: (206) 834-8903
www.sharpmeg.com

Brad Stewart is currently the product
technical manager for RISC processors
at Sharp Electronics. He also served
as technical director for IPI, which
specialized in voice-recognition and
speech-compression software, and
vice president of Covox, which spe-
cialized in multimedia products. You
may reach Brad at bstewart@e-z.net
or bstewart@sharpsec.com.

REFERENCES

B. Georgiou, “Give an Ear to Your
Computer,” BYTE, 56–91, June,
1978.

Motorola, MC68HC05J1A Techni-
cal Data Manual, 1997.

Sharp Electronics, SM8500 User’s
Guide, 1997.

B.C. Stewart and S. Sidman, “Design
and Use of Voice Recognition in
Embedded Applications,” Paper
presented at ESC East, Boston,
MA, 1997.

knew squeezing this functionality into
1200 bytes would be tough. So, a high-
level language was out of the question.

Since then, I’ve had the opportunity
to try out a C compiler from Byte
Craft. The good news is, it generates
small enough code. The bad news: I
wish I’d used it earlier.

And as a final wish, I would like to
use a different processor. Of all these
improvements, this one is probably
the best. You can now get equivalent
MCUs with built-in ADCs, which
would provide more elaborate signal
processing and better noise rejection.

One of the best candidates for a
low-cost system is the Sharp SM8500
8-bit MCU. It has almost everything you
need for an embedded voice-command
system, including a 10-bit ADC (8 chan-
nels) and an 8-bit DAC, which is useful
for voice feedback and verification.

The SM8500 features SIO and UART
ports to communicate with other
system devices, 2 KB of internal RAM,
as well as internal ROM and the ability
to access external ROM or RAM. It
also offers 80+ I/O pins for keypad and
display interfacing, hardware multiply
and divide, and a 250-ns instruction
cycle time. And, it costs under $3.

If you’re willing to spend a bit
more, then a new level of performance
may be realized. New 32-bit RISC
MCUs are becoming available in the
sub $15 or even sub $10 range.

For example, the Sharp ARM710M
RISC processor, running at a conser-
vative 16 MHz, performs a complete
FFT-Mel-Cepstrum analysis using
only 50% of the processor’s resources.

With the ability of RISC processors
to address large amounts of memory,
you have the ingredients to put to-
gether a dictation system like the one
I’m using now. And, it can run off a
couple pen-light batteries! I

SOFTWARE

Source code (tinyvoice.zip) for this
article may be downloaded from
the Circuit Cellar Web site.

20 Issue 91 February 1998 Circuit Cellar INK®

Building an Embedded
Web Server from Scratch

FEATURE
ARTICLE

Richard Ames

w
Tired of surfing?
Ready to make some
waves of your own?
Richard demonstrates
how to implement
your own embedded
Web server—from
creating a base
TCP/IP application to
writing interactive
HTML forms.

eb surfing may
be an absorbing and

potentially educational
activity, but there’s some-

thing about it that’s just so…passive.
Sometimes, you yearn to not only
partake of the networked wonders of
the world, but to add to them as well.

So, you take this opportunity to
create your own Web page, complete
with scanned images of your pets, a
local map highlighting your favorite
pizza parlors, and links to magnetic
media duplicators.

But, the hit counter isn’t increment-
ing quickly. And besides, the page is
stored on some massive drive in some
computer you’ve never seen before.

Being a hands-on sort of person,
you’re ready for the next step. It’s time
to put together your own embedded
Web server from scratch.

Your own Web server can do a lot
more than serve up text and GIFs. It
can also provide a way to monitor and
control an embedded system.

Since powerful Web browsers are
given away free today, there’s a great
opportunity to add a graphical front
end to control your embedded system
and display status or supply control
parameters in a user-friendly manner.

Fortunately, the protocol that de-
scribes the operations of a Web server

Figure 1 —When
clients and servers
are written using the
BSD Sockets
interface, these are
the typical function
calls made to
transfer information.

is rather straightforward. The most
recent version of the formal specifica-
tion HTTP 1.1 is contained in RFC
2068. The preceding version—HTTP
1.0—is simpler to implement and
widely supported.

The example I present here follows
the earlier standard. But first, let me
briefly summarize Web-server operation.

SERVER OPERATION
In a typical client/server system, the

client establishes a connection with the
server, submits a request to the server,
interprets the server’s response, and
then sends further requests or closes
the connection if it’s no longer needed.

A Web browser is a client application
that establishes a connection with a
Web server, requests a resource from
the server, reads the information that
the server sends, displays it using the
built-in formatting information, and
then closes the connection.

If the page just loaded contains refer-
ences to multimedia resources that
haven’t been loaded yet, then additional
connections are established to read
and display this information.

This action continues until all the
resources on a Web page are retrieved.
At this point, the system waits for
you to click on a new resource, which
leads to a server being contacted to
request the new resource and the
cycle starts anew.

To implement your own Web server,
you need to create your own TCP/IP
application that runs on top of a TCP/
IP stack. The application establishes
the connection, reads and writes data,
and closes the connection using func-

Server Client

socket()

connect()

write()

read()

close()

socket()

bind()

listen()

accept()

read()

write()

close()

Circuit Cellar INK® Issue 91 February 1998 21

tions provided by the stack. (Refer to
“TCP/IP in Embedded Systems” [INK
79] for an overview of stacks in em-
bedded systems.)

Although the RFCs suggest the
general form and the capabilities to be
supplied by the interface between a
network application and TCP/IP stack,
they don’t fully specify the Applica-
tion Program Interface (API).

A number of APIs have been estab-
lished, but by far the most common is
the BSD Sockets interface, which is
provided by BSD releases of the Unix
operating system. A close relative, the
WinSock interface, is used for Windows
networking applications.

I’ll use the BSD Sockets interface to
illustrate a sample Web-server applica-
tion because it is well known and
widely available. Of course, my code
may need slight adaptation to work with
other TCP/IP-stack implementations.

Figure 1 illustrates a typical sequence
of BSD Sockets functions that are
called by server and client applications
in a network transfer. They act as a
road map to the Web-server code in
Listing 1.

GETTING A HANDLE ON THINGS
The Web server’s first task is to

indicate its interest in receiving TCP
segments directed to port 80, which is
the default port for an HTTP server.
Under BSD Sockets, four function
calls are made to set this up.

The first step allocates a socket for
the server to use. A socket is a data
structure that maintains information
on a network connection.

The prototype for the function is:

int socket(int domain, int
type, int protocol);

The first parameter is the communi-
cations domain, which in this case is
PF_INET, indicating that I want to work
with the Internet protocol family. Other
domains can be specified for other
communications families (e.g., ISO).

The next parameter is the socket
type, which I specified as SOCK_
STREAM, indicating that I want reli-
able bytestream service (i.e., TCP).
SOCK_DGRAM would be specified for
UDP service.

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include "romfile.h"
#define HDR "HTTP/1.0 200 OK\r\n"
#define HDRHTML "Content-type: text/html\r\n"
#define HDRJPEG "Content-type: image/jpeg\r\n"
#define DEFAULTRESOURCE "index.html"
main(){
 char buf[500]; /* holds incoming request, outgoing response */
 char defaultresource[] = DEFAULTRESOURCE;
 char resourcename[80]; /* holds name of requested resource */
 char *filename; /* pointer to requested resource */
 char *extension; /* ptr to extension for requested resource */
 int remSize; /* holds size of address structure */
 int retcod; /* general purpose return code */
 int s; /* handle to listening socket */
 int s2; /* handle to socket being serviced */
 long filelen; /* size of requested resource */
 struct sockaddr_in locAddr; /* addr struct for local address */
 struct sockaddr_in remAddr; /* addr struct for remote address */
 RFHTYPE rfhandle; /* handle for rom file */
 printf("Sample Web Server v0.0\n");
 s = socket(AF_INET, SOCK_STREAM, 0); /* create listening socket */
 if (s < 0) {
 printf("Error opening socket\n");
 return -1; }
 memset((void *) &locAddr, 0, sizeof(locAddr));
 locAddr.sin_family = AF_INET;
 locAddr.sin_addr.s_addr = htonl(INADDR_ANY);
 locAddr.sin_port = htons(80);
 retcod = bind(s, (struct sockaddr *) &locAddr, sizeof(locAddr));
 if (retcod < 0) {
 printf("Error binding socket\n");
 close(s);
 return -1; }
 retcod = listen(s, 5);
 if (retcod < 0) {
 printf("Error in listen\n");
 close(s);
 return -1; }
 while (1) {
 remSize = sizeof(remAddr);
 s2 = accept(s, (struct sockaddr *) &remAddr, &remSize);
 if (s2 < 0) {
 printf("Error in accept\n");
 close(s);
 return -1; }
 retcod = read(s2, buf, sizeof(buf)); /* read request */
 if (retcod >= 0)
 buf[retcod] = 0; /* change to null terminatd str */
 printf("%s\n", buf); /* display request for debug */
 write(s2, HDR, strlen(HDR)); /* write first response line */
 sscanf(buf, "GET %s", resourcename); /* find resource */
 filename = defaultresource; /* use this resource for deflt */
 if (strcmp("/", resourcename) != 0)/* is this default request? */
 filename = resourcename + 1; /* no, skip past initial '/' */
 extension = filename; /* isolate extension */
 while ((*extension) && (*extension != '.'))
 extension++;
 if (strcmp(".html", extension) == 0) /* write type */
 write(s2, HDRHTML, strlen(HDRHTML));
 else if (strcmp(".jpg", extension) == 0)
 write(s2, HDRJPEG, strlen(HDRJPEG));

Listing 1 — This code implements a minimal Web server that can be set up to deliver ROMed Web pages.
This example compiles and runs under Linux, and can be easily adapted for other environments.

(continued)

22 Issue 91 February 1998 Circuit Cellar INK®

blocks until a connection is established
and then returns a handle to a new
socket associated with the client that
connected.

The original socket continues to
collect subsequent clients that want
to connect to port 80. A return value
of –1 indicates an error.

ITERATIVE VS. CONCURRENT
When a client establishes a connec-

tion with a server, the server creates a
data structure that holds the state of the
connection until the connection closes.
The server then listens for and responds
to client requests until one side or the
other indicates that the connection
should be closed.

What happens if another client con-
tacts the server while the first client
is being served? The outcome depends
on the design of the server.

In an iterative server, the second
client’s requests are ignored until the
connection with the first client closes.

In a concurrent server, the code that
services a connection is set up as a task,
and this task is launched every time a
connection is established. So, a concur-
rent server can serve more than one
connection at once, assuming that the
system software supports multitasking.

For this demonstration, I take the
approach of an iterative server. This
approach isn’t the most common for a
Web server, but it will do, especially
since I expect the server to only ser-
vice one client at a time.

Other clients that request services
are forced to wait until a previous
request has been fulfilled. This scenario
is often quite workable but doesn’t
make sense for a large-scale server.

The final parameter can be used to
further specify the protocol, but for
Internet bytestream service, a 0 suffices.
socket() returns a handle to the
socket or –1 to indicate an error.

This seems like a roundabout way
of indicating that you want a handle
to a socket that talks TCP. However,
the BSD Sockets interface is used for
more than applications running over a
TCP/IP stack.

There’s a whole world of protocols—
old, current, and yet to be defined—
that can be coupled to an application
through this interface. The protocol
doesn’t even need to be a network proto-
col. For example, the Unix domain
protocol permits interprocess commu-
nication within the same system.

Once you have a handle to a socket,
you need to specify the port at which
you’re listening for incoming informa-
tion. This task is accomplished via a
call to the bind() function:

int bind(int s, struct sockaddr
*my_addr, int addrlen);

The first parameter is the handle to
the socket that was returned earlier.
The second parameter passes a pointer
to a socket address structure that
specifies the local IP address and port
number for this connection.

For Internet addresses, the sock-
addr_in structure is used, which con-
tains fields for the address family, IP
address, and port number. You clear the
structure and then fill in these values
before passing a pointer to the structure
in the call to bind(). The port-number
field is a two-byte value that should
be expressed in network byte order,
which is Big Endian.

To make the code portable, the util-
ity function htons()translates between
the host’s native format and network
byte order before saving the value in
the structure. The constant INADDR_
ANY indicates that this socket should
accept connections from any of the
system’s network interfaces. This four-
byte IP address also needs to be trans-
lated by the htonl() utility function
to put it in network byte order before
storing the value in the structure.

The last parameter in the call is
simply the size of the sockaddr_in

structure, another indication of the
flexible design of the socket’s interface.
It returns –1 if there is an error.

Now, I have a socket associated with
a port. The next step is to put the socket
into the listen state, so it’s ready to
service incoming requests for connec-
tions to port 80. This task is done with a
call to listen:

int listen(int s, int backlog);

Here, I simply specify the socket and
a backlog value, which indicates the
number of connections that will be
held in a queue awaiting service. An
error is indicated by a –1 return value.

Finally, I make a call to accept a
connection:

int accept(int s, struct sockaddr
*addr, int *addrlen);

Here again, I pass a socket handle and
then a pointer to an address structure,
followed by a pointer to the size of the
address structure.

In this case, the accept() function
fills in the IP address and port number
of the remote system that is establish-
ing a connection on the socket in the
address parameter. The application
therefore knows a little about the
remote system requesting services when
the function returns.

The address-length parameter should
contain a pointer to an integer with the
length of the address structure. On
return from accept(), this parameter
contains the length of the address
structure that was filled in.

For Internet protocols, this value
doesn’t change. The accept() function

Listing 1 —continued

 rfhandle = romfileopen(filename); /* open local resource */
 filelen = romfilelen(rfhandle); /* determine size */
 sprintf(buf, "Content-length: %d\r\n\r\n", filelen);
 write(s2, buf, strlen(buf)); /* write size */
 while (1) { /* write out resource */
 if ((retcod = romfileread(rfhandle, buf, sizeof(buf))) > 0)
 write(s2, buf, retcod);
 else
 break; }
 romfileclose(rfhandle); /* close resource */
 close(s2); } /* close connection */
 return 0; }

24 Issue 91 February 1998 Circuit Cellar INK®

Photo i —The code of Listing i produces this minimal
Web page. It looks good as 109,208 pixels.

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<HTML>
<HEAD>
<TITLE>Embedded Web Server</TITLE>
</HEAD>

<BODY>
<H1>Features</H1>

 Intuitive Interface
 Contemporary Styling
 Small Footprint

<P>One paragraph is all we have ROM for.
</BODY>

</HTML>

Listing i —A minimal Web page can be rather short. Here are 274 bytes worth.

Basic HTML
Hypertext Markup Language (HTML) is the formatting language that

transforms plain text into the attractive Web pages that fill the Internet.
Creating effective HTML pages for an embedded system requires an extra
measure of skill because you need to make the most of a limited set of
resources. We all know how graphic images can eat up memory, so it makes
sense to keep GIF images to a minimum and make the most of the other
formatting features.

The formatting information is included in the document via tags that
appear between angled brackets (e.g., <TT>, which specifies a teletype-like
font). The syntactic rules for HTML can be inferred by reviewing examples,
and RFC 1866 can be consulted for the specifics of HTML V.2.0.

Much of the formatting is specified by a pairing of a start tag and an end
tag, such as <I>italic</I>, where the slash indicates the end of italic
font. Some tags stand alone though. For example, <HR> creates a horizon-
tal line across the page.

Tags may also contain attributes
which may further specify format-
ting information. Listing i shows
the basic form of a document and
when displayed appears as Photo i.
In most cases, the browser treats
all white space in the same way,
allowing you to format the infor-
mation so it is easier to follow.

The document is made up of
HEAD and BODY sections. A TITLE
must be present in the HEAD sec-
tion. This title is typically dis-
played in a title bar on the Web
browser and is also stored in a
browser’s list of saved links. The
BODY section contains the con-
tents of the page. Table i lists
some formatting features that can
liven up this section.

26 Issue 91 February 1998 Circuit Cellar INK®

Now is the time for the server to
read() a request from the server. The
read() function is similar to a file read:

int read(int s, char *buf,
int count);

The application specifies the socket
handle, a pointer to a buffer that stores
the incoming data, and the buffer size.
When the function returns, the number
of bytes that were read is returned.

This value may be less than the
requested amount of information, and
the application should continue to
issue calls to read from the connection
if the application-level transaction
syntax indicates that more information
is expected.

TCP acts like a pipeline delivering
a bytestream, and the read() function
delivers information as soon as it is
available. However, the application
developer should be aware that there
may be more in the pipeline, especially
if the buffer being read is large.

So, let’s assume now that the server
program is running on your Web server,
which you set up with the IP address
of 192.168.173.15. You fire up your
favorite Web browser and request the
URL <http://192.168.173.15/>.

Photo 1 —Using HTML form tags, we achieve some-
thing very much like a traditional graphical user inter-
face. Listing 4 contains the code to instruct the browser
to generate this image.

Table i —These common formatting tags help spice up the text on your pages.

<H1>–<H6> Headers of increasingly less emphasis
<P> Starts new paragraph, leaving a blank space to separate from the previ-

ous paragraph. A </P> end tag is optional.
<PRE> Preformatted text. Preserves line breaks in the original text. Usually, line

breaks are ignored and the text is flowed to fit in the browser’s window.
 Starts unordered list, typically presented as a series of bulleted items.

Within this section, the tag starts a list item.
 Starts ordered list, similar to above, but with numerals
 Starts emphasis, often expressed as italics

 Starts strong emphasis, usually in bold

 Forces line break. An end tag is not needed.
<HR> Inserts horizontal line
 Inserts graphical image

A number of utilities—commercial and otherwise—can be used to sim-
plify the creation of HTML text. Most browsers have a View Source option
that lets you to see how a particularly neat feature of a Web page has been
implemented. Beware of incorporating nonstandard HTML into your ROM,
though.

Circuit Cellar INK® Issue 91 February 1998 27

Listing 2 —When you pull up a simple page, your Web browser and server trade data. The request that the
Web browser sends to the Web server (a) results in the Web server giving this response (b).

GET / HTTP/1.0
Connection: Keep-Alive
User-Agent: Mozilla/3.01(Win95;I)
Host: 192.168.173.15
Accept: image/gif, image/x-bitmap, image/jpeg, image/pjpeg, */*

HTTP/1.0 200 OK
Date: Sun, 06 Nov 1994 08:49:37 GMT
Content-Type: text/html
Content-Length: 1523
<HTML>
<HEAD>
<TITLE> Sample Embedded Web Page </TITLE>
[the rest of the contents of the default page]
</HTML>

a)

b)

On the server end, the first buffer of
data might look something like Listing
2a. This buffer is filled with the request
message from the browser, the first line
of which is called the request line. The
next lines contain headers that provide
additional details about the request.

The request line is of the form:

Method <SPACE> Resource <SPACE>
HTTP-Version <CR><LF>

This request indicates that the Web
browser would like for the server to
GET the resource known as “/”, and
that this request is coming from an
HTTP V.1.0 client.

At this point, the Web server should
examine the requested resource and
provide an appropriate response. Since
the resource identified as “/” corre-
sponds to the default Web page, that’s
the page that will be delivered.

The response might look like List-
ing 2b. Here, the first line is a status
line, indicating that the server was able
to locate the resource and is about to
send it.

The next three lines are headers
providing more information about the
resource to be transferred. The first
line is a time stamp, which indicates
the time that the resource is being
delivered by the server, followed by
the type and length of the resource.

A blank line separates the end of
the header fields from the contents of
the resource itself, known as the Entity

Body. See the sidebar “Basic HTML”
for more details on the formatting and
features of hypertext documents.

After this response is sent, the
server should close the connection.
Under HTTP 1.1, the default behavior
is to leave the connection open to
reduce the overhead of HTTP transfers.

FOLLOWING THE LINKS
The beautiful thing about Web

pages is that they can be “deeply inter-
twingled,” as Ted Nelson described
the concept when first introducing
the idea of hypertext in 1965. Within
the body of the first default Web page
that is delivered, a number of hyper-
links can be indicated by anchor tags:

 The
Latest Statistics

The text “The Latest Statistics” is
displayed as a hypertext link on a
browser, and should the user point to
this text and click the mouse, a fresh
GET request will be sent by the browser,
specifying the resource indicated in
the HREF attribute (i.e., newstats.
htm). The Web-browser function that
interprets this request tries to look up
this resource and deliver it as a fresh
Web page to the browser.

FROM DISK TO ROM
The easy way to satisfy a resource

request is to defer to a file system to
look up and deliver the resource re-

quested by the Web browser. Unfortu-
nately, a file system isn’t standard
equipment with all embedded systems.

A reasonable facsimile, however,
isn’t hard to come by. Instead of stor-
ing information in a file on a disk, the
same information can be compiled
into large arrays of data that can be
linked into the image in the embed-
ded system’s ROM.

To accomplish this, the example
Web server includes two utility pro-
grams. The first utility, rfmake, con-
verts a binary file into an array of data
that is acceptable to a C compiler.

After all of the file images have been
converted into C data arrays, these
arrays are collected into a directory-
like structure using the romdir utility.
The output from romdir is another C
structure that acts as a directory to all
the ROMed file images.

When the output from the utilities
is linked in with the Web server, this
data can be accessed through a set of
routines that resemble file I/O functions
(see Listing 3). Another advantage of
this system is that if a disk-based file
system is available, then the server
program can easily be adapted to use
real file I/O functions.

INTERACTIVITY
Although it may be great fun to

have your embedded Web server dish-
ing up those pages with the best of
them, things get really interesting
when you add interactive functions.

To accomplish this, the server needs
to be implemented with a combination
of appropriately written HTML docu-
ments and functions that can interpret
interactive requests, such as image
maps and forms.

An image map is usually included
in the body of a page as part of an
anchor, such as:

<IMG ISMAP
SRC="panel.gif">

The ISMAP attribute in the IMG tag
indicates that this image should be
treated in a special way. The contents
of panel.gif will be displayed as a
clickable image on the browser, and
when the user clicks within this area,
a request is sent to the server specify-

28 Issue 91 February 1998 Circuit Cellar INK®

I R S
404 Very Useful
405 Moderately Useful
406 Not Useful

SOFTWARE

The rfmake and romdir utilities
discussed in this article are avail-
able on the Circuit Cellar Web site.

Listing 4 —In the second line of this section of HTML, TYPE=TEXT specifies that the form’s input will
come as a text box, NAME="LiteOn" is the variable name associated with the input, SIZE=10
entails that 10 spaces will be available in text box, and Lights On is the label to be displayed beside
the box on the form. See Photo 1 for the end result.

<FORM ACTION="control" METHOD="POST">
 <INPUT TYPE=TEXT NAME="LiteOn" SIZE=10>Lights On
 <INPUT TYPE=TEXT NAME="LiteOff" SIZE=10>Lights Off
 <INPUT TYPE="submit" NAME="Save">
</FORM>

Listing 3 —These function prototypes form the link between the Web server and a file system. They have
been defined to make it easy to use either a disk- or memory-based file system.

RFHTYPE romfileopen(char *romfilename);
long romfilelen(RFHTYPE handle);
int romfileread(RFHTYPE handle, char *buf, int bufsize);
int romfileclose(RFHTYPE handle);

ing the offset into the bitmap where
the mouse click occurred.

The server may see a request for
panelmap?12,4, which indicates that
the user clicked inside this area at a
point 12 pixels from the left edge and 4
pixels down from the top of the image.

By supplying a routine on the server
that interprets location information,
the system recognizes the object a
user points to and responds appropri-
ately. So, clicking on a darkened win-
dow in an image of a house might
command a home controller to turn
on the lighting in this area.

To obtain full style points, the
server could update the image with
one that shows the window being lit.

Form submission is another tech-
nique that can be used to send infor-
mation to a server, providing many of
the familiar dialog box tools, such as
text boxes, check boxes, radio buttons,
and lists. These features start with a
FORM tag in an HTML document.

Listing 4 presents an example of a
form with two text boxes and a submit
button. The second line refers to the
first text box. The fourth line in the
form definition defines the submit but-
ton, which is needed whenever there
is more than one input in a form.

The user can type any text string
into the boxes for the time at which the
home controller should turn the lights
on and off. When the user clicks on the
submit button, the home-control Web
server is sent the request:

control?LiteOn="7:00p";
 LiteOff="9:30p"

Photo 1 displays this interface.
Again, an appropriate routine needs

to be provided on the server to interpret
this information and take appropriate
action. The server should also generate a
page that tells the user that the com-
mand was successfully processed.

ERROR HANDLING
In a number of situations, the Web

server may not be able to respond to a
request. The user may have typed in a
request for a resource the server has
never heard of, or the user may have
used an interactive control to submit
information the server won’t accept.

When everything is in order, the
server sends the string “200 OK”
response as part of the status line for
the response.

Additional three-digit codes that
are suitable for other conditions that
might arise are divided into a series of
related responses.

Codes in the 100 series are infor-
mational, the 200 series indicates
success, the 300 series indicates a
need for redirection, and the 400 and
500 series are for client and server
errors, respectively.

For example, a request for an un-
known resource could generate a sta-
tus line containing “404 Not Found”.
In the response, the Entity Body could
contain HTML text to further explain
that the resource couldn’t be found on
this server.

ON YOUR OWN
Of course, this discussion just

begins to describe the sorts of capa-
bilities that might be implemented on
an embedded Web server.

Additional information on HTML
and HTTP is available online and
from a library of ever thicker books,
and there’s a variety of software tools
that do everything from verifying the
syntax of an HTML page to providing
a turn-key server.

Now you can sleep well, knowing
your home page could be served up
from a networked controller living in
a shoebox under your bed. I

REFERENCES

S. Berners-Lee, R. Fielding, and H.
Nielsen, Hypertext Transfer Proto-
col—HTTP/1.0, RFC 1945, 1996.

T. Berners-Lee and D. Connolly,
Hypertext Markup Language—
2.0, RFC 1866, 1995.

R. Fielding, J. Gettys, J. Mogul, H.
Frystyk, and T. Berners-Lee, Hyper-
text Transfer Protocol—HTTP/1.1,
RFC 2068, 1997.

T.H. Nelson, Computer Lib/Dream
Machines, Tempus Books, Red-
mond, WA, 1977 (Reprinted by
Microsoft Press).

D. Raggett, HTML Tables, RFC
1942, 1996.

W.R. Stevens, Unix Network Pro-
gramming, 1, Prentice-Hall, Engle-
wood Cliffs, NJ, 1998.

Richard Ames is a staff engineer at
U.S. Software. He finds that working
with networking software allows him
to gather more computers around him
than the average engineer. You may
reach Richard at richard@ussw.com.

30 Issue 91 February 1998 Circuit Cellar INK®

Integrating Windows NT 4.0
into a TCP/IP Environment

FEATURE
ARTICLE

Bill Payne

i
Bill needs to connect
Windows NT stations
into an existing
TCP/IP network, but
Microsoft gave the
Domain Name
Server its own
personal twist. After
reviewing the
protocols, he shows
how to get Windows
and Unix to talk.

was recently
involved in a large-

scale project in which
I integrated Windows

NT 4.0 servers and workstations into
an existing TCP/IP network. The
network comprised multiple Unix,
IBM mainframe, PC, and DEC Alpha-
based hosts.

In addition, approximately 3000
clients were to be upgraded from Win-
dows 3.11 to Windows 95 and Win-
dows NT 4.0 Workstation.

The network used the Dynamic
Host Configuration Protocol (DHCP),
an open industry standard designed to
reduce the complexity of managing a
TCP/IP network.

Every computer and resource on a
TCP/IP network must be given a unique
IP address and computer name. DHCP
assigns a client an IP address from a pool
of addresses when it starts up. This
enables the IP addresses to be managed
from one central point on the network.

The network also uses the Domain
Name System (DNS) for name-to-IP
address resolution. Cisco routers were
implemented to segment the network
into smaller manageable sections.

After the initial installation of the
Windows NT 4.0 servers, we began
having problems with the address
resolution process on various clients

throughout the network. And, the
problem wasn’t DHCP. It worked
properly, assigning IP addresses to
client workstations as requested.

But, if we used a command that
tried to resolve a name to an IP address,
we had problems. Sometimes the name
would resolve, but not necessarily.

We also began seeing a lot of traffic
on the segments that had been created
with the routers. One thing stood
out—if the name to be resolved was
on the same segment as the client
issuing the query, it worked.

After many hours of going through
traces from a network sniffer, the
problem was found and corrected. It
turns out that even though DNS is a
standard, certain companies give it
their own personal twist.

Such is the case when interconnect-
ing devices that use the enhancements
developed by Microsoft. The problems
do not manifest themselves until
routers are added to a network.

Routers in general do not forward
broadcast messages. The reason for
using routers in the first place is to
segment the network and to isolate
traffic to separate segments.

Windows NT relies on a process
called Windows Internet Name Service
(WINS) for name resolution. This
service augments the traditional DNS
service with dynamic name registration
capabilities and uses the NetBIOS
protocol encapsulated in TCP/IP for
communication between nodes.

To help you gain an understanding of
the problem, I first present the basic
concepts of TCP/IP, DNS, and WINS
as implemented by Microsoft. Once you
have the nuances down, interconnect-
ing systems using TCP/IP in a routed
network becomes fairly straightforward.

TCP/IP
The Transmission Control Protocol/

Internet Protocol (TCP/IP) suite is a
standard set of networking protocols.
It was originally developed by the
Department of Defense and is some-
times referred to as the DOD model.

A protocol is an agreed-to set of rules
governing the communication of data
between two parties. You could com-
pare it to two people trying to com-
municate with each other. They must

Circuit Cellar INK® Issue 91 February 1998 31

both speak the same language or no
transfer of information occurs.

TCP/IP is a scalable, robust, client-
server networking protocol. It connects
dissimilar systems and is the basis of
the global Internet.

The TCP/IP family comprises four
layers—network interface, Internet,
transport (host-to-host), and application.
These layers map to one or more layers
of the International Standards Organi-
zation (ISO) seven-layer Open Systems
Interconnection (OSI) model as shown
in Figure 1.

Each layer of the TCP/IP model con-
tains defined protocols that dictate how
computers communicate and connect.
The most common are the TCP, IP,
User Datagram Protocol (UDP), Address
Resolution Protocol (ARP), and Internet
Control Message Protocol (ICMP). The
breakdown of the various protocols is
shown in Figure 2.

TCP establishes a virtual circuit
between hosts, providing a reliable
connection for exchanging data. All
transmitted packets are sequenced and
acknowledged by the receiving host.

If a packet is corrupted or lost during
transmission, this protocol retransmits
the faulty packet. The protocol is used
by applications such as telnet, file trans-
fer protocol (FTP), client-server appli-
cations, and E-mail.

UDP provides an unreliable, connec-
tionless delivery service. It doesn’t
guarantee delivery or correct sequenc-
ing of the delivered packets.

Therefore, applications can exchange
data without the overhead of acknowl-
edging packets and maintaining a virtual
circuit. UDP is used by applications that
rely on broadcasts to multiple receivers.

Trivial FTP (TFTP) and the Unix
Network File System (NFS) use this
transport system. Because it is a broad-
cast message, most routers won’t pass
these messages between different
segments on a network.

IP provides packet delivery for all
other protocols within the suite. It is
used primarily to route packets between
different hosts. IP finds the shortest
path between hosts, fragmenting the
data into packets and then reassembling
the packets into data.

ARP functions in a support role to
the TCP/IP suite. It translates a re-

mote host’s IP address into a physical
address.

ICMP lets systems share status and
error information in much the same
way as ARP. As an example, the ping
program uses this protocol to determine
whether a route exists to a particular
IP address.

DOMAIN NAME SYSTEM
The Domain Name System (DNS)

resolves host names to IP addresses. It
is a distributed database that is struc-
tured as an inverted tree.

DNS was developed in the early
1980s to solve problems that resulted
from the dramatic rise in the number
of hosts on the Internet. The specifi-
cations for the DNS are defined in
RFC 1034 and RFC 1035.

DNS relies on a static mapping of
hosts to IP addresses. However, some
confusion occurs from the term “host.”

In this context, all computers with
IP address are referred to as hosts.
They may be known as servers and
client workstations, but to DNS they
are only hosts. The domain name refers
to the computer’s position in the hierar-
chical tree relative to the parent domain.
The full name for a domain is con-
structed by listing all of the labels on
the path from the domain to the root.

DNS computer names consist of
two parts—the host name and the
domain name. No second-level domain
name can exceed 12 characters.

When combined, these names form
the fully qualified domain name
(FQDN). Each FQDN has a maximum
length limitation of 255 characters.
The FQDN is not case sensitive.

DNS is further divided into parti-
tions, referred to as zones or subdo-
mains. A zone begins at a specified
domain and extends downward until
either an end node is reached or another
subzone begins. These zones represent
the logical divisions of the Internet.

For example, my server’s FQDN is
kramerkent.com. kramerkent is the
name of the zone which is registered
with the InterNIC. It is located under
the com domain of the hierarchical tree.

The names and IP addresses for all
hosts in a zone are maintained on a
single server referred to as the master
server for the domain. The information

on this server is the authoritative data-
base for that zone.

The database includes the names
and addresses of all IP hosts within
the domain, the names of all subzones
and the addresses of the name servers
for those zones, and the addresses of
the name servers for the root domain.
These addresses provide the necessary
links between your domain and the
existing DNS hierarchy.

Keep in mind that all of these links
are static. If you change the IP address
of a host, it must be manually changed
on the DNS master server for your zone.

The primary task for DNS is to
resolve user-friendly names to IP ad-
dresses. The name-resolution process is
performed from left to right. If the local
name server does not have the address
record for the requested name, it queries
other name servers on behalf of the
resolver. The name resolution process
consists of three key concepts: recursive
resolution, iterative resolution, and
caching.

A recursive resolution request is
typically passed from the resolver to
the local name server. The local name
server processes the query and returns
a complete answer to the resolver. The
local name server contacts other name
servers if necessary to resolve the
name. It doesn’t return a pointer to
another name server, which enables
the resolver to be small and simple.
The workload is placed on the local
name server.

Iterative resolution requests are
passed to other name servers if the
local name server cannot fully resolve
the query. The contacted name server

Application

Presentation

Session

Transport

Network

DataLink

Physical

Application

Transport

Internet

Network
Interface

Figure 1 —This figure shows the mapping of the TCP/
IP model to the seven-layer OSI model. The Application
and Network Interface layers map to multiple layers of
the OSI model.

32 Issue 91 February 1998 Circuit Cellar INK®

Earlier Microsoft implementations
of the NetBT protocol relied on broad-
casts, local cache, or an LMHOSTS file
for locating resources on the network.

In Windows NT 3.5x and 4.0, a
NetBIOS name server was implemented
called the WINS server. It lets programs
query the DNS namespace by append-
ing user-configurable domain suffixes
to a NetBIOS name.

NetBT uses a session layer network
service to perform name-to-IP
mapping for name resolution.
There are four basic modes that
determine how network re-
sources are identified and ac-
cessed. The name resolution
order depends on the mode type
and computer configuration.

The B-node mode uses broad-
cast messages to resolve NetBIOS
names to IP addresses. This is the
default mode type for a Windows
resource on a network.

The P-node mode uses point-
to-point communications with a
WINS name server for name reg-

istration and resolution.
The M-node mode first registers with

the name server using broadcasts before
trying to resolve names by using the
B-node mode. If this fails, it switches
to the P-node mode to resolve names.

The fourth mode—the H-node—uses
the WINS name server for both name
registration and resolution. If the name
server cannot be located, it switches
back to the B-node mode.

It then continues to poll for a name
server and switches back to the P-node
mode when one is located. WINS
clients (i.e., Windows NT 3.5x and 4.0
workstations and servers) are config-
ured as H-node devices by default.

PUTTING IT ALL TOGETHER
Now that you have a basic under-

standing of the mechanisms involved,
let me explain how DNS name resolu-
tion works in conjunction with WINS
name resolution. This will give the
foundation needed to understand the
original problem and see what solutions
are necessary to run Windows NT in a
mixed network environment.

For this discussion, let’s assume
that Circuit Cellar is running a Win-
dows NT 4.0 Server as their Primary

is instructed to only attempt to resolve
the name locally. If it cannot, it returns
a pointer to the next name server in
the DNS tree.

This process continues to walk up
the hierarchical tree until the primary
master name server for the zone is
reached. An error to the requester is
returned if the name cannot be resolved
at this level.

With caching, the local name server
keeps a copy of the resolver request
answer in local memory. This
speeds DNS performance and eases
the burden on other name servers.

The local name server first
checks its static mapping infor-
mation when a resolver request
arrives. If the answer is not found,
the cache is then checked for
either an answer or a pointer to
the name server containing the
answer. This process reduces the
number of iterative resolution
requests for the name servers on
the network.

WINS
Windows Internet Name Service

(WINS) is a Microsoft-developed nam-
ing service. Microsoft recommends
that their naming service be used in
conjunction with DNS. Unlike the
static naming which is inherent in DNS,
WINS offers dynamic naming capability.
To understand how WINS works, an
understanding of both NetBIOS and
NetBEUI is necessary.

All Microsoft Windows networking
components rely on NetBIOS, which is a
software interface and naming conven-
tion, not a protocol. It is a set of Appli-
cation Programming Interfaces (APIs)
which lets applications request services
from lower-level network processes.

All computers and resources within a
Microsoft networking environment
must be assigned a unique NetBIOS
name, which cannot exceed 16 charac-
ters. Microsoft allows the first 15
characters to be specified by the user
or administrator. The sixteenth char-
acter of the name is reserved to indi-
cate the resource type. Since it is an
8-bit field, there are 256 resource
types available.

These device names are stored
within the NetBIOS namespace data-

base. This database is designed as a
flat, single-level structure.

A resource is dynamically registered
with the database when it starts. This
occurs when a computer boots, a ser-
vice on a server starts, or a user logs
on to a resource. Names can be regis-
tered as either a single owner or as a
group composed of multiple owners.

In 1985, IBM developed a protocol
named NetBIOS Extended User Interface

(NetBEUI) for programs designed around
the NetBIOS APIs. This small protocol
does not have a networking layer, so
it is not routable and cannot be passed
between segments connected by routers.

NetBEUI was originally designed
for department-sized LANs ranging
from 20 to 200 computers. It supports
both connection-oriented and connec-
tionless communications.

Its greatest strengths are that it is
self-configuring and self-tunable. It
requires a very small memory overhead
in the client and provides for reason-
able error detection and correction.

The NetBEUI protocol is the glue
that provides interoperability with
older networking systems, such as
Microsoft LAN Manager and Win-
dows for Workgroups 3.11. When you
set up shared drives and folders under
Windows 3.11, 95, and NT, you are
using the NetBEUI protocol.

Microsoft extended the reach of the
NetBIOS programming interface with
the NT products to include the world
of client/server applications in a WAN
environment. This was accomplished
by encapsulating the NetBIOS requests
in TCP/IP packets. This is known as
NetBT or NetBIOS over TCP/IP.

DOD Model

Process/
Application

Host to Host

Internet

Network
Access

TCP/IP Protocols

Telnet FTP LPD NFS Others

TCP UDP

IP
ICMP

BOOTP ARP RARP

Ethernet
Token
Ring FDDI Others

Figure 2 —Each layer within the DOD model is broken down into
individual protocols. The protocols in the Transport (Host to Host)
layer and the Internet layer are the ones of interest in this article.

34 Issue 91 February 1998 Circuit Cellar INK®

I R S
407 Very Useful
408 Moderately Useful
409 Not Useful

in the TCP/IP properties page. If found,
the IP address is returned.

The client then checks the local
HOSTS file for the NetBIOS computer
name. This also only occurs if the
proper option has been selected in the
TCP/IP properties page. If found, the
IP address is returned.

The client ends by querying the DNS
server. If the NetBIOS computer name
is in the database, the IP address is
returned to the requesting host.

In P-node mode, the client first issues
a query to the local WINS server. If the
name is found, the IP address is returned
to the requesting host.

Next, the third, fourth, and fifth
steps of the H-node mode protocol are
executed.

In M-node mode, the client uses
local broadcasts to locate the NetBIOS
computer name. If the name is found,
the IP address is returned to the re-
questing host.

The client then issues a query to
the local WINS server. If the name is
found, the IP address is returned to
the requesting host. Steps 3, 4, and 5
are then executed.

And finally, in B-node mode, the
client uses local broadcasts to locate
the NetBIOS computer name. If the
name is found, the IP address is returned
to the requesting host, and the third,
fourth, and fifth steps are executed.

PROBLEM RESOLVED
In a traditional TCP/IP environment

(e.g., Unix), the DNS name-resolution
process is fairly straightforward. The
host addresses to be resolved are in
the HOSTS file on the DNS server.

Networks containing routers do not
present a problem to a system based
on this older technology. The only name
registration that occurs if the network

uses DHCP is assigning IP addresses
to clients. The drawback to this is
that DNS by its nature is static.

The implementation of the Micro-
soft WINS server for NetBIOS computer
name and IP address resolution provides
the ability to dynamically modify the
information in the translation database.

Windows NT uses UDP broadcasts
as the protocol for NetBIOS (NetBT)
name resolution. Unfortunately, UDP
broadcast packets are not usually

forwarded by routers between
network segments.

In addition, the WINS name-
resolution process can generate a
considerable amount of burst traf-
fic on a network segment. WINS
name resolution in a routed envi-
ronment requires either a name
server of some type on each seg-
ment of the network or the use of
static database files.

In the case of the company I did
the Windows NT integration for, WINS
name servers were established on
each segment of the routed network.

Once the problem is understood, the
answer is fairly simple. The problem
is in understanding the processes and
how they interact with each other. I

Domain Controller (PDC). This server
also has the DNS and WINS services
running on it.

Connected to this server are 20
workstations running a combination
of Windows 95 and Windows NT 4.0
Workstation. I want to look specifically
at communication between hosts on
this simple network.

The resolution process is started
when a host issues a query to resolve
a name to an IP address. It can be as
simple as issuing the ping com-
mand directed at an address such
as janice.circuitcellar.com (ping
janice.circuitcellar.com).

If the name to be resolved is
greater than 16 characters or con-
tains a “.”, it is passed on to the
DNS name server. If the address
record for the host janice is found in
the DNS database, it’s returned to
the host which sent the query.

If the name is not found in the
DNS database or the name is a valid
NetBIOS computer name, the WINS
client performs the NetBIOS computer
name-to-IP address resolution using
NetBT and WINS.

The first thing the WINS client does
is to determine the mode type it is
operating as: H-node, P-node, M-node,
or B-node. The mode type is defined
on a Windows NT computer through
the TCP/IP configuration settings.
Each mode type processes the query
in a different manner.

The first step is common to all four
node types. The local NetBIOS name
cache is searched for the computer
name. If found, it returns the IP address
to the host which issued the query. The
following steps are executed if the local
cache doesn’t contain the NetBIOS
computer name.

As the first step in the H-node
mode, the client issues a query to the
local WINS server. If the name is
found, the IP address is returned to
the requesting host.

The client then uses local broadcasts
to locate the NetBIOS computer name.
If the name is found, the IP address is
returned to the requesting host.

As the third step, the client checks
the local LMHOSTS file for the Net-
BIOS computer name. This occurs only
if the proper option has been selected

Bill Payne has many years’ experience
as a digital design engineer. He is a
Novell Master CNE, Novell Certified
Instructor, and a Microsoft Certified
Trainer for the NT 4.0 Products. He
may be reached at bpayne@kramer-
kent.com.

REFERENCES

Microsoft, Microsoft Windows NT
Workstation Resource Kit, Red-
mond, WA, 1996.

Microsoft, Microsoft Windows NT
Server Networking Guide, Red-
mond, WA, 1996.

Inside TCP/IP, Second Ed., New
Riders, Indianapolis, IN, 1995.

Novell, DNS and FTP Server In-
stallation and Configuration,
Orem, UT, 1996–97.

Resolving network
addresses goes back to
the basics of Windows
networking protocol—
something originally

designed by IBM in 1985.

Photo courtesy of
Spyglass, Inc.

36 Nouveau PC
edited by Harv Weiner

40 Converting PC GUIs for
 NonPC Devices
Dan Johnson

47 Real-Time PC
Real-Time Operating Systems
Part 2: RTOS Interfacing
Marc Guillemont

53 Applied PCs
RF Telemetry
Part 2: You�re on the Air
Fred Eady

CIRCUIT CELLAR INK FEBRUARY 199836

N
PC

PCNouveau
edited by Harv Weiner

EMBEDDED PC SYSTEM
The CoreModule/P5i is a PC/104-Plus-compliant module that

contains the functions of an entire Pentium-based embedded-PC
system. The module includes a 133-MHz voltage reduction
technology (VRT) Pentium processor, up to 64-MB system DRAM,
and a battery-backed real-time clock. It also features peripheral
interfaces for serial (two 16550 buffered UARTs), parallel (IEEE-
1284 EPP/ECP), keyboard, speaker, floppy, IDE, and USB. A
built-in bootable read/write flash disk (up to 16 MB) enables
stand-alone operation as a self-contained embedded computer in
many applications. Two system expansion buses (ISA and PCI)
facilitate interfacing with application-specific custom electronics
or off-the-shelf PC/104 and PC/104-Plus function modules.

PC/104 EXTRACTION TOOL
The X-Tool, a PC/104 extraction tool, is de-

signed to separate PC/104 cards from each other or
from single-board computers without bending or breaking

header pins. The X-Tool can be used to quickly disconnect
components without damage to the pins.
Simply place the tool between the boards and squeeze, and the

boards easily detach from the stack.
Single-board computer components can
also be separated with this tool. Snap
the single-board computer adapter to
the extraction tool. Vertically position
the adapter next to the board and
gently squeeze to remove the board.
The X-Tool can be used with static-
sensitive devices and will not demag-
netize sensitive materials or documents.

The X-Tool retails for $19.95.

parvus Corp.
396 W. Ironwood Dr.
Salt Lake City, UT 84115
(801) 483-1533
Fax: (801) 483-1523
www.parvus.com #510

The CoreModule/P5i is designed for mobile and portable
embedded applications. Its environmental specs include an
extended operating temperature range of –40 to +85°C, MIL-STD-
202F shock and vibration specs of 50 and 12 Gs, respectively,
and compliance with European CE Mark requirements for EMI,
EMC, and ESD. Hardware and software enhancements include a
ruggedized embedded-PC BIOS, watchdog timer, battery-free
boot (to enable use without battery-backed “CMOS SETUP” or to
boot despite dead battery), serial program loader, serial console,
and fail-safe boot.

Extensive power management in both hardware and software
results in extremely low power operation. To support the low

voltage (3.3 and 2.9 VDC) requirements of the VRT
Pentium processor and core logic, a highly efficient
DC-to-DC converter is built into the CoreModule/
P5i, resulting in single-supply (+5 VDC) system
operation and minimal power consumption. A
temperature sensor monitors operating tempera-
ture, and can trigger a slowdown of system clocks
if needed.

The CoreModule/P5i sells for $875.

Ampro Computers, Inc.
4757 Hellyer Ave.
San Jose, CA 95138.
(408) 360-0200
Fax: (408) 360-0220
www.ampro.com #511

 FEBRUARY 1998 EMBEDDEDPC 37

N
PC

SINGLE-BOARD COMPUTER
The SBC-MaX is a small form factor, industrial-strength, SBC

with the functionality of a desktop MMX machine. It features an
MMX Pentium CPU to 200 MHz, a 32-bit Chips and Technologies
65555 advanced video controller 100BaseT Ethernet, 16-bit
Sound Blaster audio, and two USB ports. Up to 128 MB of
synchronous DRAM and 512K level-2 cache are accommodated.
A hard disk drive can be mounted directly onto the board, and the
two-channel IDE hard-disk interface supports up to four IDE drives.
The floppy-disk controller supports two 1.44- or 2.88-MB floppy
drives. PC/104 and ISA-bus expansion are also provided.

Other I/O features include four RS-232 serial ports, one printer
port, and keyboard, PS/2 mouse, speaker, and IrDA interfaces.
The board measures 9.625″ × 6.875″ and is rated at 0–60°C.
Power requirements are less than 20 W.

The 65555 video controller provides flat-panel support, espe-
cially for the newer passive color LCDs. This chip includes up to
4-MB video memory for maximum color depth in all resolutions
and operating systems. Its Temporal Modulated Energy Distribu-
tion (TMED) technology enables the display of 16.7 million colors
on STN (passive) LCDs without dithering. The 65555 also supports
NTSC overlay capabilities on flat panels, a feature useful for
displaying a video window over graphics or full-screen video.

The SBC-MaX SBC with a 200-MHz MMX Pentium CPU and
4 MB of DRAM sells for $1290 in quantities of 100.

Computer Dynamics
7640 Pelham Rd.
Greenville, SC 29615
(864) 627-8800
Fax: (864) 675-0106
www.cdynamics.com #512

WEB SERVER FOR
EMBEDDED SYSTEMS

The OSE Web Server
enables you to interface an
embedded device to a Web
browser via the Internet. It is
fully compatible with all stan-
dard browsers, such as Net-
scape and Internet Explorer,
and it runs on top of the OSE
INET TCP/IP stack or any stan-
dard third-party TCP/IP stack.

The OSE Web Server gen-
erates Web pages that are
graphically displayed in a Web
browser. Three complementing
methods are supported—gen-
erating HTML pages dynami-
cally, using a Web-page com-
piler, or managing with a file
system. So, software engineers
can use readily available and
inexpensive Web browsers for
flexible and powerful analysis,
debug, and management of
embedded devices.

Generating HTML pages dy-
namically allows continuous
run-time information from the
embedded system to be dis-
played in the browser (e.g.,
during debugging or run-time
supervision of a product in the

field). The Web-
page compiler en-
ables files in any format
(e.g., JPG, PDF, GIF, TIFF,
ASCII, HTML, etc.) to be dis-
played, including Java app-
lets. This method means the
compiled files can be viewed
in a tree structure as in a
virtual file system but without
the need for an actual file
system. If a standard file sys-
tem is needed, OSE’s embed-
ded file system permits file
upload and download via FTP.
All files can be displayed and
managed in a Web browser.

The OSE Web Server oc-
cupies 5 KB of ROM on a 68k
target or 7 KB on a PPC target.
Prices start at $3000.

PCNouveau

Enea OSE Systems Inc.
5949 Sherry Ln.,
 Ste. 1710
Dallas, TX 75225
(214) 346-9339
Fax: (214) 346-9344
www.enea.com

#513

CIRCUIT CELLAR INK FEBRUARY 199838

N
PC

PCNouveau

SINGLE-BOARD COMPUTER
Ziatech’s ZT 8907 Single Board 486/PCI Computer fea-

tures a range of ’486 processor options (25–100 MHz) and a feature set
designed to accommodate embedded applications. Based on the small

(4.5″ × 6.5″), rugged STD 32 computer standard, the ZT 8907 includes up to
4 MB of flash memory, up to 32 MB of DRAM, two RS-232 serial ports, a printer

port, 24 points of DIO, six counter/timers, and a real-time clock. The computer is PC
software compatible and runs MS-DOS, the major Windows environments, and real-
time operating systems such as QNX and VxWorks.

The ZT 8907 can operate as a single CPU or as one of several CPUs in Ziatech’s
multiprocessing system, the STD 32 Star System. The board is equipped with an
industrial BIOS, which supports many embedded control features and multiprocessing.
In addition, the ZT 8907 provides a Local-bus expansion connector that enables the
system designer to add PCI peripherals such as SVGA, flat panel, or 100-Mb Ethernet
interfaces. A local IDE hard drive is another option.

The ZT 8907 Single Board 486/PCI Computer sells for $1270 in single quantities.

Ziatech Corp.
1050 Southwood Dr. • San Luis Obispo, CA 93401
(805) 541-0488 • Fax: (805) 541-5088
www.ziatech.com #514

EMBEDDED CONTROLLER
The FlashLite 386EX is a single-board computer that’s ideal

for control applications. The DOS-based board features a 32-bit
processor running at 25 MHz in protected mode as well as
complete PC serial-port compatibility. The two serial ports can be
configured as two RS-232 ports or as one RS-232 and one RS-485
port. The controller has 24 parallel I/O lines, two DMA channels,
three counter/timers, and
three available interrupt
lines, providing a powerful
platform for developing em-
bedded DOS applications.

An onboard switching
power supply accepts 7–
34 VDC, converting the in-
put to 5 VDC to provide
power for the FlashLite
386EX and optional sub-
systems. A battery-backed
RTC (clock/calendar), IBM-
PC speaker, and watchdog
timer are also included.

Applications can be de-
veloped using Borland

C/C++, Microsoft QuickC, QuickBASIC, or other DOS develop-
ment tools. The board has 512-KB SRAM, 512-KB flash memory,
and a socket for another 512-KB flash memory, RAM, or EPROM.
Developers can easily upload compiled code through one of the
serial ports.

The FlashLite 386EX comes with a user manual and schematic
and is priced at $279. A
Developer’s Kit that includes
the FlashLite EX, an AC adapter,
programming and port cables,
utilities disk, manual, and sche-
matic is also available for
$349.

JK Microsystems, Inc.
1275 Yuba Ave.
San Pablo, CA 94806
(510) 236-1151
Fax: (510) 236-2999
www.jkmicro.com

#515

CIRCUIT CELLAR INK FEBRUARY 199840

EP
C

Dan Johnson

Converting PC GUIs

for NonPC Devices

A s the Web evolves, it is becoming a
medium accessed not only by PCs, but also
a wide range of nonPC devices. Televisions,
set-top boxes, smart phones, PDAs�they�re
all connecting to the Internet.

Perhaps the most significant challenge
presented by these new devices is how to
display content, originally created to be
viewed on a PC, on the large variety of often
limited displays found on these devices.

A computer may feature a 24-bit, 21″
SVGA screen, but a typical cell phone
features a one-bit 200 × 200-pixel display.
The heavily formatted content initially de-
signed for the PC may take too long to
download or be illegible on many nonPC
devices. However, the success of these
devices primarily depends on their ability
to access and display meaningful content
for their users.

Although it�s possible for Web-site de-
velopers to create special versions of their
sites for different devices (this is now done
for different PC Web browsers), such a
trend is unlikely at this time. Creating multiple

versions of one Web site for different
nonPC devices is a complex, time-consum-
ing process. Many content providers aren�t
ready to make that investment yet.

So, we�re left with a classic chicken-and-
egg dilemma. Device manufacturers need
quality content before they can sell large
quantities of their devices, and content provid-
ers don�t want to develop specialized content
until large numbers of devices are sold.

To meet current needs, Spyglass Prism
converts existing Web content for a vari-
ety of devices on-the-fly. Content providers
can maintain a single version of their content
on a server for use with all devices without
any proprietary HTML tags or resorting to
entirely new markup languages. And, users of
nonPC devices gain faster access to Web
content that looks good on their devices.

SERVER-BASED TECHNOLOGY
In essence, Spyglass Prism acts as a

proxy server, operating on either Windows
NT or Solaris. It is an intermediary server
software that receives requests from a

client (the device), makes requests for docu-
ments on behalf of that client, and returns
the appropriate content to the client.

Through a series of conversion routines,
the software automatically massages Web
content into a format that matches the capa-
bilities of the device. Let�s look at how
Prism functions from a high level.

On requesting a URL, a nonPC device
connects to an Internet access provider�s
server where Prism resides. Once connected,
the device identifies itself and the user to
Spyglass Prism.

This information is cross-referenced
against two different databases. The user
database tracks user preferences, and the
device database contains the characteris-
tics of various devices, such as display resolu-
tion, color or monochrome support, and
textual or graphical display.

Prism uses its own Web-browser compo-
nent, which accesses the URL requested by the
user. The browser uses this stored data about
the Web site, user, and device to convert the
data into the best format for the device.

Sure, it�s easy to create Web GUIs for your PC, but what about devices that
connect to the Internet�TVs, PDAs, set-top boxes, or smart phones? Dan shows
how Prism distills complex Web pages for one-bit 200 × 200-pixel displays.

 FEBRUARY 1998 EMBEDDEDPC 41

EPC

Images as well as HTML content are
converted depending on the needs of each
device. These conversions include chang-
ing color images to grayscale, reducing
color depth, and converting JPEGs to GIFs.

HTML conversions can take many forms.
Element start and end tags may be removed,
leaving the content between the tags intact.

For example, if a device cannot display
tables, the table-formatting tags are re-
moved. But, the text in the table is still sent
to the device in a simplified format.

Other removable elements include an-
chors, character formats (e.g., bold, italic),
frames, tables, and tags such as
<isindex>, <link>, <object>,
<bgsound>, <center>, and <META>.

Attributes of an element may also be
removed. The tag remains intact, but any
attributes of the tag which are inappropri-
ate for the target device are deleted.
Hence, the background attribute of the
<BODY> tag may be removed so no back-
ground images are downloaded which
the device cannot display.

Similarly, if the SRC, WIDTH, HEIGHT
attributes of the tag are removed,
the ALT text is displayed in
place of the image, and the
image cannot download.

Elements may also be re-
placed by elements more ap-

propriate for the target de-
vice (e.g., marquee text is
changed to bold). On a de-
vice that cannot display mar-

quee text, you could draw attention to the
text by resizing all <H1> to <H3>.

Attribute values (e.g., background col-
ors) can be changed as well. Elements like
comments, applets, scripts, styles, and
images may be removed entirely.

If you�re familiar with how Web browsers
work, you�ll have noticed that these conver-
sions can be accomplished by a browser.

For instance, take a look at Microsoft�s
Pocket Internet Explorer (PIE). PIE is part of
its Windows CE operating system and is
found on all WinCE-based hand-held per-
sonal computers (HPCs).

Because these devices have a grayscale
display, PIE must convert color images to
grayscale. It also does some HTML conver-
sions, eliminating applets and frames, but
image conversion is its most important task.

The weakness in this solution, however, is
that before PIE can do the color-to-gray-
scale conversion, it must first download a
relatively large color image. To the user,
this is wasted download time.

In contrast, Prism does this conversion on
the server, only downloading a much smaller
grayscale image. Given the fact that the

dial-up modem connec-
tion is the slowest link in the
access chain, this feature rep-
resents significant time savings.

Performance gain is also in-
creased since the server on which Prism
resides has considerably more processing
power for image conversions than the
HPC. The net result is that an HPC using
Prism as a proxy server can access typical
Web sites up to four times faster than it can
via a direct connection to the Web.

PRISM ARCHITECTURE
Figure 1 diagrams the components that

make up Prism. Let�s look at a sample applica-
tion to get a feel for how its functions work.

Spyglass�s Infrastructure Server acts as
the connection point for devices. In addition to
its basic tasks of managing connections and
user requests, the Infrastructure Server is
also the point where security (e.g., SSL)
and user identification are implemented.

Identifying the user, through a login screen
or other methods, permits personalized con-
tent services to be delivered to the user. One
of these services is SurfWatch content filter-
ing, which lets users block access to con-
tent they deem inappropriate (e.g., sexually
oriented, hate, gambling, drugs, or alcohol).

Identifying the user, and the type of device
and browser, is the beginning of the content-
conversion process. The Infrastructure Server
creates a metadata structure that offers a
construct for conveying information about the
request between the components of Prism.

The format of the metadata structure is a
series of comma-delimited name,value pairs
that begins with the content of the original
client request and any additional informa-
tion it passes.

SurfWatch
Filtering

Cache
(Converted and Unconverted Content)

Client
Components

Transaction
Manager

User DB Device DB

Admin.

Logging

S
py

gl
as

s
In

fr
as

tr
uc

tu
re

 S
er

ve
r

Content Converters

Conversion
Routines

HTML
Converter

JPEG to
GIF

Image
Scaling

Custom
Routines

Header Description Example

spyga-element-neutralize Remove element markup but leave spyga-element-neutralize blink
 content intact

spyga-element-remove Remove element markup and content spyga-element-remove applet
spyga-element-replace Replace start/end tags of element but spyga-element-replace blink=strong

 retain attributes and element content
spyga-comment-remove Remove comment markup and content spyga-comment-remove
spyga-attribute-neutralize Remove attribute name and value but spyga-attribute-neutralize bodybackground

 retain element content
spyga-attribute-replace Replace attribute value but leave attribute spyga-attribute-replace hrwidth=100

 name and element content intact
spyga-attribute-scale Scale attribute value by scaling factor spyga-attribute-scale imgheight=075
spyga-attribute-min Force attribute minimum value if original spyga-attribute-min hrsize=2

 value exists and is not equal to 0
spyga-attribute-max Force attribute maximum value spyga-attribute-max hrwidth=100
spyga-image-scale Scale image by specified amount spyga-image-scale 50
spyga-image-encode Translate file to specified encoding spyga-element-encode gif

Figure 1�Spyglass Prism fea-
tures a modular architecture,
so many of the key compo-
nents (e.g., the databases
and caching module) can be
replaced if necessary.

Table 1�This table lists the
metadata headers. The meta-
data structure enables device
and user-related information to
be passed between the various
components of Prism.

CIRCUIT CELLAR INK FEBRUARY 199842

EP
C

At this point, Prism has identi-
fied the user and, by means of the
browser�s user agent string, the
type of device making the request.
The request is now passed to
the Transaction Manager.

The Transaction Manager en-
hances incoming requests with
information about the user and
device. Using the user-agent
information passed on by the
Infrastructure Server as a key, the Transac-
tion Manager queries the device and user
databases for additional information.

The databases are object oriented,
using Versant technology. The user data-
base maintains conversion and filtering pref-
erences for each user. The device database
offers information about each type of de-
vice such as display resolution and supported
image formats (GIF, JPEG) and HTML tags.

These databases determine how to
convert the Web content before passing it
back to the client. For example, they can
contain the following information for a
particular device and user:

� convert color images to four-bit grayscale
� eliminate images larger than 50 KB
� convert tables to text
� no SurfWatch filtering

The Transaction Manager appends these
preferences to the metadata before passing
the request on to the Content Converter.

Tables 1 list Prism�s metadata headers.
Only the first conversion in the collection is
performed per element or element.at-
tribute pair.

Hence, spyga-attribute-scale img.
height=0.75 and spyga-attribute-min
img.height=10 cannot work together.
Only the one that appears first is performed.

In addition, UA-color headers provided
by the device indicate what type of color-
depth conversion is performed. These head-
ers are included in metadata.

The Content Converter module tailors
Web content to meet the characteristics of a
specific user and device. It is invoked by the
Transaction Manager, which passes it the
metadata of user and device preferences.

Using a multivalue key derived from the
metadata, the Content Converter queries the
cache to determine if a previously converted
version of the content is available. There
are three possible results of this query.

If there is a converted version in the cache,
the Content Converter returns it to the Tran-
saction Manager. If the cache only con-
tains the original content with no converted
version, the Content Converter converts it
to suit the needs of the user and device.

If the original version of the content is not
in cache, the Content Converter invokes a
Client module to retrieve the requested
content and then converts it according to
the needs of the requesting user and device.
The original and converted versions are
then added to the cache.

When content requiring conversion is
returned from cache or the Web, the
Content Converter first looks at the MIME
type(s) of the content and loads the appro-
priate conversion routine(s).

For example, for an HTML document,
the HTML Parse routine is loaded. For a
JPEG image, JPEG-to-GIF and color-reduc-
tion routines might be loaded.

In addition to the MIME type, other
information derived from the metadata
determines which conversion routines ex-
ecute as well as which parameters are used by
a routine. Such information includes the
requested URL from the HTTP request head-
ers, user preferences from the user data-
base, and device attributes and preferences
from the device database.

The HTML Parse routine creates a parse
tree and delivers parsed data back to the
Content Converter. After comparing the
parsed data with the metadata, additional
conversion routines may be executed. Rou-
tines may be invoked to remove, replace,
or modify HTML tags and attributes.

The output from the conversion routines
is assembled into the new converted docu-
ment based on the parse tree. The Content
Converter then adds the converted content
to the cache and provides it to Transaction
Manager for subsequent delivery to the
client device.

The architecture of the Content Converter
requires all content conversion routines to
be provided as shared libraries (DLLs).
Therefore, new and updated conversion
routines can be added to Prism at any time.

By default, routines are loaded on
demand. Frequently used routines may be
marked �resident� so that they are loaded
at startup and never unloaded.

Routines can be written that remove
part of the content or that transform elements
in the content. They can also be written to
customize content based on specialized
knowledge of particular content (e.g., con-
verting a table to a specific format based
on the contents of that table).

CACHE
Caching plays a significant role in

Prism�s performance. To understand how
beneficial caching can be, it�s important to
understand the overall solution.

Prism is an intermediary between the
Web and some nonPC device. The nature
of Web access on these devices is quite
different than it is on PCs.

Because of the wide variety of tasks per-
formed on a PC and its relatively high perfor-
mance, a typical user accesses many Web
sites. This variety reduces the likelihood
that the document they need is cached.

End

Return document
to client

No

Yes

Document
in cache?

NoYes

Start End

Retrieve document
from origin server
and return to client

Document
complete?

Document
expired?

No

Document
updated on origin

server?

Retrieve document
from cache

No

Yes

Ask origin server
to send document

to client

Should
document be

in cache?
End

Yes

Delete another
document

from cache

No

Yes

Get cache ID, add
document to cache,

set cache_done

Is there
room in cache?

NoRetrieve document
from origin server
and return to client

F i g u r e
2�Prism�s

caching mech-
anism improves

overall perfor-
mance. Both con-

verted and unconverted
versions of content are

stored in the cache, reducing
the need to retrieve documents

from the Web.

CIRCUIT CELLAR INK FEBRUARY 199844

EP
C

PDA users be-
have differently. They

perform more specialized
tasks and access a much

smaller number of Web sites.
Therefore, they have an increased

chance of benefiting from caching.
However, it�s not always appropriate

to cache content. There are some cases
where Prism must always retrieve content
from the origin server.

Obviously, content must be received
from the origin server if this is the first time
the content has been requested or if the
content was removed from the cache.

The Caching module assigns an expi-
ration time to all content when it is cached.
If the origin server doesn�t provide an expira-
tion period, the Caching module calculates
one based on a configurable value.

The content is considered fresh until the
end of the expiration period, at which time
the Caching module marks it as stale.

When a client requests content which is
in the cache but marked stale, Prism asks
the origin server if the content has been
updated. If it has, the server transfers the
updated content.

If the content has not been updated, the
origin server returns a status code of 304,
and the Caching module marks the content
as fresh again. Prism never checks if fresh
content has been updated.

Prism will also retrieve content from the
origin server if there is a cookie-related
request or response header. This content
might be customized for the client based
on the cookie value.

Cookies are commonly used to record
a user�s activity on a Web site or to recall
their preferences for the type of data they
see on a site. For example, many news-
related sites let you personalize the topics
of news you see by having you fill out a
form with your preferences.

The same is true when there is an
authorization-related request header. The
content is only accessible by those with
authorization.

If the response is intended as a server-
push, then the content might be exces-
sively long and involve intentional pauses
in transmission. So, caching is not appro-
priate here.

As well, responses that are missing the
Content-Length and Last-Modified response
header fields are likely to be generated
on-the-fly and should not be cached.

If the response is fairly new, then it is
assumed that this content is more likely to
be updated in a short period.

A cookie, which contains your prefer-
ences, is then created by the server, sent
to your browser, and stored on your com-
puter. Whenever you visit the site, the
cookie is retrieved by the server so your
personalized information can be displayed.

When content is not in the cache, the
Content Converter invokes the Client Com-
ponents module to retrieve it from the
Web. The caching function is summarized
in Figure 2.

CLIENT COMPONENTS
Prism includes client components used

to retrieve content from the Web. The
components include support for images
(GIF, JPEG), HTML, HTTP, FTP, and other
Web client technologies.

Content retrieved by the client compo-
nents is returned to the Content Converter,
starting the data flow back to the user.

ROADMAPS EN ROUTE
This example illustrates the steps that

occur when Prism converts a Web page
designed for a PC to information suitable
for viewing on an HPC with a simple
display. Photo 1 shows how the page
appears when viewed on a PC with Internet
Explorer.

In this page, the GIF image provides a
full-color representation of real-time road-
way conditions, and text links provide
HTML text descriptions of current roadway
conditions.

A mailto link enables users to send
E-mail to the Webmaster. A GIF image
acts as a banner ad, providing name
exposure for page sponsors.

The target HPC has 256 KB of memory
and a 480 × 240 monochrome display
running PIE. Photo 2 depicts how the page
appears on an HPC after being converted
by Prism.

Without Prism, most of the content on this
Web page cannot be displayed on an
HPC. To display this information, Prism sends
the traffic information as scrollable text,
provides alternate text for the banner ad,
and removes the images and background.

The text alternatives of the graphical
traffic-congestion data and advertiser in-
formation are not changed.

UNIVERSAL CONVERSION
Content conversion is a relatively new

concept. As Web content becomes more
complex, conversion will become more
difficult, even though the need for it will be
much greater.

Our desire to access key information,
regardless of where we are, shows no
signs of declining. And, the Web is in-

Photo 1�Here is a typical Web page as viewed on a personal computer with Microsoft�s Internet
Explorer. Spyglass Prism hasn�t converted this page.

 FEBRUARY 1998 EMBEDDEDPC 45

EPC

As product manager, Dan Johnson leads
the team responsible for developing the
marketing programs for Spyglass�s line of
Internet software products and services for
wireless and telecommunications devices
including smart phones, PDAs, and laptops.

IRS
410 Very Useful

411 Moderately Useful
412 Not Useful

creasingly the repository for this data in
both the public Internet and corporate
Intranets.

Effective ways to bridge the variety of
form factors found in information access
devices must be created. The ability to
take existing standard HTML content and
deliver it to multiple devices represents a
win for everyone involved�from the end
user to the device manufacturer and con-
tent provider.

SOURCES
Spyglass Prism
Spyglass, Inc.
1240 E. Diehl Rd., 4th Fl.
Naperville, IL 60563
(630) 505-1010
Fax: (630) 505-4944
needs@spyglass.com
www.spyglass.com

PIE, Windows CE
Microsoft Corp.
10500 NE 8th St., Ste. 1300
Bellevue, WA 98004
(206) 635-1900
Fax: (206) 635-1049

Object-oriented databases
Versant Object Technology
6539 Dumbarton Circle
Fremont, CA 94555
(510) 789-1500
Fax: (510) 789-1515
info@versant.com
www.versant.com

This type of solution accelerates the
expansion of the Web beyond just the PC,
bringing universal access to what has
become the universal medium. EPC

Photo 2�Here�s the same Web page as viewed on a hand-held personal computer (HPC) after
Spyglass Prism content conversion.

His main challenge is
to define, direct, and mea-
sure product marketing strat-
egy for the wireless and telecom-
munications market. You may reach
Dan at djohnson@spyglass.com.

 FEBRUARY 1998 EMBEDDEDPC 47

R
P
C

Real-Time PC

Marc Guillemont

Real-Time Operating Systems
Part 2: RTOS Interfacing

In Part 1, I introduced real-time operat-
ing systems and defined some of their
components as well as the differences
between hard and soft real-time applica-
tions. Now, I want to cover how the RTOS
interfaces to hardware with device drivers
and applications through the application
programming interface (API). It�s where the
rubber meets the road.

This duo paves the way for INK�s new
�Real-Time PC� column. Articles on choosing
an RTOS, using it in various applications,
networking, and so on are in the works.

START YOUR ENGINES
I think of the RTOS as sitting between

the device-driver and application software.
Being in the middle enables it to act like a
traffic cop, directing each component to
the resources it needs.

An RTOS tries to hide the heterogeneity
of different hardware architectures to sim-
plify development and enhance portabil-
ity of applications across various processors
and boards. In a generic OS, which is

concerned with allocating resources fairly,
the abstraction level is high and far re-
moved from the hardware.

Unix, for example, only deals with two
different kinds of devices�block oriented,
like disks, and character based, which are
unlike disks. Block-oriented devices are
only used by the file-system driver. Character-
based devices permit a consistent interface to
hardware and files via generic file I/O
primitives like open, read, write, and close.

RTOSs, however, don�t care about deal-
ing with resources fairly. In fact, you want
high-priority tasks to get the resources they
need right away. This way, they can meet
their deadlines at the cost of preempting
tasks that don�t have as high a priority.

So, in real-time embedded systems, the
hardware abstraction is not cast in stone.
In some cases, there may not be any kind
of isolation and an application may even
touch a device register itself.

The abstraction required usually de-
pends on the device and applications. An
RTOS gives you the tools to implement

different abstractions through its API. Let�s
look at how this might work.

I first discuss some typical hardware
devices that might be found in an embed-
ded system in terms of their function as
seen by the programmer. I then show how
a device driver might be constructed and
how the device driver and application use
the RTOS�s API to abstract the hardware.

To understand how the RTOS interfaces
to the hardware, you need to be familiar
with the hardware devices you�re likely to
encounter. So, let�s discuss how some
common devices work and what kind of
interface they present to the software.

SERIAL INTERFACES
Serial ports are probably the most

common hardware device. The serial in-
terface is also known as the Universal
Asynchronous Receiver and Transmitter
(UART), and UARTs that implement syn-
chronous serial interfaces are referred to
as Universal Synchronous and Asynchro-
nous Receiver and Transmitters (USARTs).

After defining what a real-time system is in Part 1, Marc puts the RTOS in its
place�right between the device driver and application software, where it can
implement hardware abstractions and allocate resources more efficiently.

CIRCUIT CELLAR INK FEBRUARY 199848

R
P
C

You may also add flags in the receiver
indicating error conditions, such as not
detecting a stop condition (framing error)
or when the receiving device doesn�t clear
the data from the received data register
before new data comes in (overrun error).
You can also add a parity bit to the serial
data transmitted, either even or odd, which
would cause a parity error condition in the
receiver if the parity didn�t match.

Commercial UART interfaces, like the
8250/16450 and 16550, add features
like a programmable bit-rate register, vari-
ous buffers, and FIFO. Also, a modem
interface lets the UART module control
modem functions and sense modem status
information (e.g., carrier detect).

Serial port interfaces of interest to RTOS
developers can also interrupt the CPU
when characters are received, the trans-
mitter buffer becomes empty, or the mo-
dem status and error conditions change.

PARALLEL PORTS
Next to serial interfaces, parallel inter-

faces are very common. They�re flexible, and
they enable the system to communicate
with a variety of external devices, send
individual digital control signals, and sense
external signals.

The simplest implementation of a paral-
lel I/O interface is the use of a register on
the system�s bus to output signals and a
tristate buffer to read signals onto the
processor bus when addressed. These
ports are useful when you interface simple
devices like lights, relays, or switches.

Parallel-port controller chips are flexible
devices, containing a cluster of parallel
ports that can be configured as output and
input ports. Parallel-port controllers also
implement handshaking hardware logic
that can operate some I/O signals as
handshake signals to simplify communica-
tion with other parallel peripherals.

Implementing these handshake signals
directly in the parallel-port controller chip
offloads the processor from individually

monitoring control signals. The controller
can usually be configured to interrupt the
CPU when a parallel word has arrived or
when it�s ready to transmit the next word.

COUNTERS AND TIMERS
Timers and counters measure time inter-

vals and count events. A counter/timer chip
(CTC) contains several counters that are
clocked from an external clock signal and
controlled with external inputs (gates). Each
CTC also has an output signal, which can
be wired to an interrupt or another device.

Each CTC counter unit is program-
mable to operate in various modes and
may include a programmable prescaler.
The prescaler reduces the external clock
rate to slow down the counting rates.

Modes such as pulse width measure-
ment will, once the counter is armed,
measure the width of a pulse presented on
the gate input. Other modes may provide
a fixed delayed output, depending on the
input-gate start signal.

CTC counters can also generate system
interrupts. The programmable-delay and
free-running modes are of interest here.

In the programmable-delay mode, the
counter interrupts when it reaches zero.
The program desiring such service loads
the timer with the desired delay count and
goes about its business. This facility is
useful for scheduling events in an RTOS.

You can use the delay mode for watch-
dog or failsafe timers by wiring the output
to a nonmaskable interrupt or the system�s
reset signal. As a watchdog timer, the
software must reload the timer before it
times out and resets the system. This helps
detect when a system hangs.

If the counter is set in a free-running
mode, it counts to zero and then pulses or
toggles the output line. It also reloads itself
from a counter-holding register and re-
starts the cycle. The steady rate of inter-
rupts produced by this mode is useful for
heartbeat interrupts in the system and
software-based real-time clocks.

The UART�s primary
function is to convert parallel

data into serial bitstreams and
then convert received bitstreams

back to parallel. It accomplishes these
tasks via shift registers.

Parallel data is loaded in a shift register
and shifted out over a single interface. The
receiver takes this serial bitstream and
deserializes it using a serial-to-parallel
shift register. Once the word is received,
it can be read by the receiver.

This technique would work fine�if the
transmitter and receiver were perfectly
synchronized and knew implicitly where
the word boundaries in the serial bitstream
were. In real life, especially if the devices
are separated by some distance and are
not synchronized, this is close to impos-
sible. Here�s where the asynchronous se-
rial protocol comes to the rescue.

With the asynchronous serial protocol,
each word is introduced by a start bit. The
start bit is a mark condition, which is
opposite of the space condition (i.e., the
serial line is between words of data). The
word is followed by one or more stop bits.

A stop bit is just a bit period at which
the line is held at a space condition to
ensure you can detect the start mark of the
next word. This scheme enables devices to
transmit data at any rate, even with idle
spaces between words.

The bit clock rate transmitting serial
data is usually much slower than the de-
vice producing data. To prevent the trans-
mitting device from overrunning the serial
transmitter with data, a handshaking
method is used.

The transmit buffer empty (TBE) flag is
set whenever the transmit shift register has
transmitted the start bit, data word, and
stop bit(s). Loading a value into the trans-
mit register clears this flag.

The receiver, on the other hand, listens
to the serial bitstream, waiting for a transition
from space to a start-bit mark. When it sees
this transition, it shifts the next required num-
ber of bits into a register. Once the data is
shifted in, it verifies this was a valid trans-
mission by making sure the line returns to
an idle state, indicating the stop condition.

If the word is received successfully, the
receiver logic asserts the receiver buffer
full (RBF) flag, indicating that data is ready
to be read. The device reading the data
clears this flag by reading the received
data register.

ser_int(){
 if (ser_status() & SER_RBF){
 MutexWait(ser.mutex);
 ser.inbuf[ser.inhead] = ser_data();
 ser.inhead %= SER_BUFSIZE;
 MutexRelease(ser.mutex);
 Signal(ser.event);} }

Listing 1�The serial-port interrupt service routine is responsible for pulling characters from
the serial-port interface and queuing them for the upper level driver.

CIRCUIT CELLAR INK FEBRUARY 199850

R
P
C

CTCs also let you start
and stop counters, as well as

read and load counter values
while a counter is running.

INTERRUPT CONTROLLERS
Real-time systems rely on interrupts to

offload the CPU from polling hardware
devices. Interrupt controllers manage mul-
tiple interrupt sources from various devices
and prioritize them.

 For example, a timer interrupt may
need a very low interrupt latency to prop-
erly time the generation of an event. By
giving this timer a higher priority and
allowing it to interrupt other interrupt ser-
vice routines, you can ensure that the timer
interrupts at the lowest latency.

An interrupt controller prioritizes inter-
rupts via a priority encoder. A typical
number of interrupt sources for an interrupt
controller is eight.

Interrupt sources may be nested. On
the PC/AT architecture, for example, the
interrupt level IRQ2 maps interrupts IRQ9�
15. In this case, IRQ2�s interrupt source is
another interrupt controller with eight more
interrupt sources.

The interrupt controller also has to gen-
erate an interrupt vector for the processor
when the CPU acknowledges the inter-
rupt. This vector says which interrupt oc-
curred and which service routine to call.

To manage the interrupts, the interrupt
controller uses a set of registers. The inter-
rupt mask register masks off (i.e., disables)
a particular interrupt source. The interrupt
pending register indicates which interrupt
is currently pending. And, the interrupt ser-
vice register indicates the interrupt cur-
rently being serviced by the CPU.

When an interrupt source becomes
active and is not masked in the interrupt
mask register, it sets a corresponding bit in
the interrupt pending register. If this inter-
rupt is currently the highest priority inter-
rupt, an interrupt is generated on the CPU.

The CPU acknowledges the interrupt to
which the interrupt controller supplies the
interrupt vector for the interrupt source and
sets the corresponding bit in the interrupt
service register. The CPU then executes the
appropriate interrupt service routine.

Another interrupt may only initiate an
interrupt cycle on the CPU if its priority is
higher than those already in service, as
indicated by the interrupt service register.
When the CPU executes an end-of-inter-

to transfer the data. Once the data is
transferred, the DMAC decrements the
length count and asserts a signal (EOP)
when it reaches zero. The device signals
that it�s done transferring data by deas-
serting the request signal.

When using a separate DMA, as in a
PC/AT-architecture�based system, the
device-driver routine needs to initialize the
start and count register for each transfer.

However, master-capable devices on
multimaster buses (e.g., PCI or VME bus)
that may include the DMAC in the periph-
eral make memory transfers between the
device and system memory transparent.
Some devices, such as network and disk
controllers, may even be intelligent enough
to implement their own buffer manage-
ment in system memory by using DMA.

DATA-ACQUISITION DEVICES
One common data-acquisition device

is the ADC. The conversion process from
analog signal to digital word may take
some time. To begin, an ADC requires a
start signal. It then interrupts the processor
when the conversion is complete.

The start signal can come from a timer
or may be generated by the CPU when it
writes to a register. For constant rate

rupt instruction, the bit for the interrupt is
cleared in the interrupt service register
and the system is ready to respond to this
particular interrupt again.

DMA CONTROLLERS
Direct memory access controllers

(DMACs) move data between I/O devices
and memory or from one memory region
to another without CPU intervention. Like
interrupt controllers, these data-movement
engines prioritize requests from several
sources. Priorities are normally fixed, but
some controllers can implement priority
schemes like round robin.

A DMAC maintains several bits of
information about each DMA channel it
intends to service. It needs to know where
to start the transfer as well as the length
and types of DMA transfer to do.

After a DMA channel is initialized, the
DMAC listens for a DMA request from a
device. The device indicates its readiness
to transfer data by asserting the DMA
request signal. The DMAC then tries to
take control of the system bus by request-
ing that the CPU stop and get off the bus.

Once the CPU says it has relinquished
the bus, the DMAC asserts the target
address and signals the requesting device

ser_edit(){
 char data;
 while(1){
 Wait(ser.event);
 MutexWait(ser.mutex);
 data = ser.buf[ser.tail++];
 ser.tail %= SER_BUFSIZE;
 MutexRelease(ser.mutex);
 switch(data){
 case CNTL_H:
 MutexWait(cmd.mutex);
 if(cmd.len != 0)
 cmd.len�;
 MutexRelease(cmd.mutex);
 break;
 case CNTL_X:
 MutexWait(cmd.mutex);
 while(cmd.len != 0)
 cmd.len�;
 MutexRelease(cmd.mutex);
 break;
 case CNTL_M:
 Signal(cmd.event);
 break;
 default:
 MutexWait(cmd.mutex);
 cmd.buf[cmd.len++] = data;
 MutexRelease(cmd.mutex);
 break;} } }

Listing 2�The upper level driver module implements the line-oriented abstraction of this
serial port to the application. This module processes raw characters received from the serial
interface and packages them into a line buffer for the application.

 FEBRUARY 1998 EMBEDDEDPC 51

routine (ser_int) which, once invoked
by the CPU�s interrupt dispatch system,
needs to figure out why we were inter-
rupted and what to do about it. Listing 1
shows what this might look like.

Once it is determined to be a receive
buffer full event, the routine makes sure
that it has exclusive access to the circular
buffer using a mutex. It then extracts the
data received and inserts it into the buffer.
Once the data is stored, the driver sends a
signal to whomever is waiting, indicating
that data has been added to the buffer.

In this example, I implement the upper
level device-driver routine as a single task
that implements a simple line editor. A
user can enter data into line buffer, and
once a carriage return is received, the line
buffer is made available to other tasks.

Ctrl-H erases the last character in the
command line buffer, and Ctrl-X erases the
whole line. Listing 2 shows the editor task.

This device driver abstracts the serial
input port as a line-oriented device. This
situation is useful if the serial port is con-
nected to a keyboard and the application
implements a command line interpreter. On
the other hand, if the serial port is con-
nected to a communications device, the
device driver may need to implement a
different kind of device abstraction.

All that is left now is the initialization
routine, which is shown in Listing 3. During
the initialization, I set up the queue used
by the interrupt service routine to commu-
nicate with the upper level and the mutex

acquisitions, such as used in DSP applica-
tions, the start signal is generated by a
hardware timer. Very high-speed ADCs may
also use DMA to transfer data into buffer
memory, which is then read and pro-
cessed by the CPU.

DEVICE DRIVERS
Device drivers are the glue that inter-

faces hardware to the RTOS and, in some
cases, the application. They abstract the
device for the application.

In real-time systems, the device should be
abstracted in such a way that the amount of
time spent in the interrupt service routine is
minimal. The more time spent in a interrupt
service routine, the longer that lower prior-
ity interrupts and task execution are blocked.

When designing device drivers, we
usually try to divide the driver into two
layers�the lower and upper levels. The
lower level is the software that directly
touches the hardware registers and handles
interrupts. The upper level does the rest.

In a thread-based RTOS, the lower level is
implemented as a interrupt service routine
and the upper level is usually a thread.

Consider a hypothetical serial-port de-
vice driver. This serial-port device is ideal
and deals only with the receive buffer full
and transmit buffer empty conditions. (Real
serial device drivers may also have to deal
with error conditions, modem control sig-
nals, and transmit buffer empty interrupts.)

Let�s look at the low-level part first. The
device driver has one interrupt service

struct ser{
 Mutex mutex;
 Event event;
 int tail;
 int head;
 char buf[SER_BUFSIZE];}
ser;
struct cmd{
 Mutex cmdmutex;
 Event cmdevent
 char cmdlen;
 char cmdbuf[SER_BUFSIZE];}
ser_init(){
 ser.mutex = MutexCreate();
 ser.event = EventCreate();
 ser.tail = ser.head = 0;
 cmd.mutex = MutexCreate();
 cmd.event = EventCreate();
 cmd.len = 0;
 RegisterISR(ser_int,IRQ_SERIAL);
 ser_hardware_init(baudrate,stopsbits,wordsize);}

Listing 3�The initialization routine is responsible for setting up data structures and OS
resources that are needed to implement the driver.

CIRCUIT CELLAR INK FEBRUARY 199852

R
P
C

REFERENCES
M.J. Bach, The Design of the UNIX Operating System,

Prentice-Hall, Englewood Cliffs, NJ, 1986.
Chorus Systems, CHORUS/OS User Manual, 1997.
D. Comer, Operating System Design: The XINU Ap-

proach, Prentice-Hall, Englewood Cliffs, NJ, 1984.
L.C. Eggbrecht, Interfacing to the IBM Personal Com-

puter, SAMS, Carmel, IN, 1990.
H.-P. Messmer, The Indispensable PC Hardware Book,

Addison-Wesley, Reading, MA, 1997.
Phar Lap Software, ETS Technical Reference, TNT

Embedded ToolSuite, 1996.
QNX, QNX Operating Systems: System Architecture,

1996.
T. Shanley, PCI System Architecture, Addison-Wesley,

Reading, MA, 1996.
E. Solari, ISA & EISA: Theory and Operation, Annabooks,

San Diego, CA, 1992.
A.S. Tanenbaum, Operating Systems: Design and

Implementation, Prentice-Hall, Englewood Cliffs, NJ,
1987.

IRS
413 Very Useful

414 Moderately Useful
415 Not Useful

Marc Guillemont, ChorusOS product man-
ager for Sun Microsystems� Embedded
Systems Group, joined INRIA in 1977 to

needed to protect the data
structure.

API
In my example, I access several

RTOS functions through the RTOS�s API,
which is usually presented as a set of
function calls. The functions calls are ac-
cessed by either linking in a set of libraries
or including include files.

The RTOS API is normally divided into
several groups of functionality. Examples
of these groups are task management,
memory management, interprocess com-
munication, and networking. In large
RTOSs, these API groups are sometimes
bundled in separate library modules.

In each functional group, an API usually
falls into three categories of routines. One
category initializes the functionality or
resource. In the serial-driver example, these
were calls to the routine MutexCreate().

Other routines use or operate with this
resource or functionality (e.g., Mutex-
Wait() and MutexRelease()). And
others free up the resources we may have
allocated. For example, MutexFree()
might free up a mutex resource.

work on the Cyclades project. He was a
member of the initial Chorus research
project team in 1980 before becoming
head of the team. Marc managed the final
research phases of ChorusOS before de-
veloping the commercial version. You may
reach him at marc.guillemont@france.
sun.com.

By using the API, you can make sure
that the interface between the application
and the RTOS is defined and everyone
understands what to expect. Also, an
RTOS implementer may change or en-
hance some functionality, without break-
ing existing code.

You could even imagine a new mutex
type, which may have a new API, like
NewMutex{Create,Wait,Release}.
The application-code developer can then
decide whether to use the new mutex type
by accessing the routines in the new API.

WHAT NOW?
In this series, I�ve introduced RTOSs,

described why they are useful, and showed
you how to use some of their key functions.

Of course, it�s impossible to define all
RTOS terms and structure in just two articles.
However, future Real-Time PC articles will
develop RTOS-related topics and idiosyn-
cracies and how to implement them. Be
sure to check in for details. RPC.EPC

53 FEBRUARY 1998 EMBEDDEDPC

A
P
CApplied PCs

Fred Eady

RF Telemetry
Part 2: You’re on the Air

Fred wants to implement duplex RF communications between two sites using
a BiM RF module. Connected to a VIPer 806 and a PCM-4862, these modules
transmit and receive RF data he can view on a software-based datascope.

I probably scared the stuffing out of you
in my first RF-oriented installment. To us that
work in the world of magnetic-wave genera-
tion, the mere mention of the FCC usually
means trouble one way or another. But,
in actuality, the FCC is our friend.

Without their rules and regulations,
there would be untold magnetic-wave
bashing going on out there. Even in our
embedded environment, the FCC is more
help than hindrance, as RF-enhanced
embedded applications are becoming
more and more popular.

Last time, I promised a closer look at
putting some data in the ether between
an embedded system and some kind of
target. Thanks to a company called Linx,
in Part 1, I was able to introduce you to
a basic transmitter/receiver pair that
with a little tweaking could be used to
further data along its course in the mag-
netic ocean we live in.

In my travels since then, I�ve become
acquainted with another company across
the Canadian border that offers an abun-

dance of RF goodies well-suited to embed-
ded RF applications. So, let�s take a look at
some of the magnetic wave-bending mod-
ules offered by Abacom Technologies.

RF MODULE HEAVEN
Just like the Linx products described in Part

1, Abacom offers the TXM-xxx transmitter
module. The RXM receivers offered by Linx are

paralleled by Abacom�s SILRX series.
The modules are pretty much identi-

cal in form and operation. All you need
to get on the air is clean power, a suitable
antenna, and some data to send. Photo 1
shows us this entry-level pair of RF modules.

These versatile little boards work at
418, 433.92, and 403 MHz. Interestingly
enough, the 403-MHz variant is exclu-
sive to the South African RF bit-bangers.

Abacom also has a more secure RXM
receiver (RXM-xxx-A), which incorporates
features like received signal strength indica-
tion and antenna tamper sensing. The
�xxx� is the module operating frequency.

Up to now, every RF module I�ve
described has been single-functioned.
Receiver modules receive, and transmit-
ter modules transmit. Imagine that.

With what we know now, to implement
duplex RF communications between two

Photo 1�These little jewels are marvels of today�s
miniature technology. The transmitter is the smaller of
the two units.

CIRCUIT CELLAR INK FEBRUARY 199854

A
P
C

VCC 4.5–5.5 V

TXD

Audio

RXD

*CD

*RX select

*TX select

Ground

10 kΩ

10 kΩ

10 kΩ

10 kΩ

SAW-controlled
Oscillator

FM Modulated

Tuned Buffer
Amplifier

TX/RX
Supply

Switches

67 kΩ

Discri-
minator

Signal
Detect

2nd Local
Oscillator
16 MHz

2nd Mixer

1st Mixer

16-MHz
8 pF

1st Local
Oscillator

TX / RX
Switch

418-MHz
8 pF

Antenna

RF Ground

Modulation
Linearizer

2 A

Pre
Amp

sites, we�d need a minimum of four
RF modules. It is indeed possible to put
this type of communications system to
work, but the physics of double anten-
nae at each site and the design of
elaborate transmit/receive switch-
ing circuitry would have to be dealt with.

A simple pair of kid�s walkie-talkies would
be a more elegantly engineered RF lashup
than the suite of modules I just described.
Obviously, the solution is to find a suitable RF
module out there that would perhaps incorpo-
rate some of these desirable functions.

BiM-4xx-F/HP TRANSCEIVER
The BiM RF module family is a series of

miniature UHF radio modules capable of half-
duplex data transmission at speed of up to
40 kbps (see Photo 2). These low-power RF
modules can communicate at distances up
to 120 m over open terrain. For indoor
applications, the effective range is 30 m.

Like the simpler TXM/RXM, the BiM
uses SAW (Surface Acoustic Wave) con-
trolled FM transmission at frequencies of
418 and 433.92 MHz. The �xx� in �4xx�
designates the frequency of operation.

Radiated RF energy from the F series is
set at �6 dBm. A higher powered version (HP)
radiates at 0 dBm. With a receive sensitiv-
ity of �107 dBm, the BiM�s receiver section
can pull in signals way down in the dust.

A single antenna ser-
vices both transmitter and
receiver circuitry, as on-
board antenna and power
supply switches are integral
to all BiM modules. A single
4.5�5.5-V at 25-mA power
source is all that�s required
to fire up a BiM. If you use
all of the BiM�s features in-
cluding the loop test,
power-supply consumption
varies from 1 µA to around
20 mA. Under normal op-
eration, 15 mA is the aver-
age current consumption.

CMOS-level logic inter-
facing and fast receiver
power-up capability make

the BiM transceiver modules ideal for battery-
powered applications and easy to interface to
most microcontrollers and processors. Typi-
cally, the BiM�s receiver section can come
to life in about 1ms. A block diagram of a
typical BiM is shown in Figure 1.

JUST WHEN YOU THOUGHT�
You were settling in for some C code

and application physics, Fred throws a
changeup. Sorry. No C here.

BiM is designed to be versatile. Its stan-
dard CMOS data and control pins scream
for a CMOS microcontroller�s I/O interface.

Sorry. No stand-alone micros in this ar-
ticle, either. C and an appropriate embed-
ded PC coupled with some front-end CMOS
logic or processor would be typical here, but
you�re reading INK. That means you are most
likely not the typical cookie-cutter engineer.
So, let�s do something entirely different.

Ever hear of Visual Basic? Did you know
that VB V.5 compiles? Did you know Visual
Basic 5 is object oriented and event driven?
Do you know anybody who uses a computer
and hasn�t written a program in BASIC?

Whether you answered yes or no
to any of these questions, it doesn�t
matter. We�re going to use the BiM
modules, Visual Basic 5, Windows
95, a couple of very capable em-
bedded PCs, and some trick bench
equipment to modulate some ether.
But before we get any deeper,
there are some more details we
need to cover concerning the BiM.

BiM BASICS
Although the BiM is nifty as far

as RF stuff goes, it is simply a transmitter
and receiver that can be controlled by
another device of higher intelligence that
needs to transport data from point A to
point B without the aid of hard wires.

The BiM has no control of how the data
it sends and receives is formatted. It is up
to the intelligent subsystem to code and
decode the data placed into the ether by
the BiM. Since this article has been de-
clared a �no micro, no C� zone, intelli-
gence in our world is defined as an
embedded-PC hardware/software suite.

Wait a minute. Just because I said no
micros doesn�t mean we can�t use a micro
example to push a point forward. I love using
micros. I�m just not going to in this article.

Figure 2 shows us how the typical micro
would interface with a BiM. Basically,
there�s serial I/O (SDO and SDI) working
in harmony with bit-based I/O (I/O 0�2).

You know where I�m going. What if we
replace the micro in Figure 2 with the serial
and parallel interfaces of an embedded PC?
Theoretically, the physical layout in Figure 2
would not change and as long as we didn�t

Figure 1�The CMOS interface and simplistic layout of the BiM can take the pain out of many embedded RF
applications.

Photo 2�This is
getting better and

better. Everything for
the RF-challenged de-

signer is included in a single
neat little package.

CIRCUIT CELLAR INK FEBRUARY 199856

A
P
C

violate the BiM�s 5-V interface rule, the
whole thing would probably fly. Right!

How many times have I taken that
shortcut? How many times have you taken
that shortcut? How many times did you end
up buffering things you knew you should
have buffered in the first place?

If you want to connect directly out of the
standard embedded ports, be my guest. If
not, Figure 3 ensures that CMOS levels
will be present at the BiM�s interface.

Now that the data and control inter-
faces between our embedded PC and the
BiM have been defined, let�s look at what
needs to be considered once the data has
entered the BiM�s electronics. First of all,
the data path within the BiM is AC coupled.

As you well know, where there are capaci-
tors or capacitance, timing is everything. The
minimum time allowed between consecutive
transitions is 25 µs, while 2 ms is the maxi-
mum. By keeping our data rates between
4800 and 38,400 bps, even the worst
case of all zeros or all ones in an eight-bit
frame won�t violate the timing window.

To provide increased immunity to RF
interference, the BiM�s AFC and data-slicer
electronics require a preamble of at least
3 ms of hex 55 or hex AA characters. These
are transmitted before data at the RXD
output may be considered reliable. The data-
sheet recommends 5 ms of preamble for
increased data integrity. This preamble is
also specified as the receive settling time.

To reduce pulse width distortion and in-
crease noise tolerance, it is recommended
that the mark/space ratio be kept as close
to 50:50 as possible. The data slicer is opti-
mized for 50:50 but can handle ratios of
30:70 or vice versa with some degradation of
the data quality. The bit error rate is based
on the mark/space ratio over a 4-ms period.

If you�ve assumed that we will be provid-
ing the BiM serial data from a UART-based
embedded serial port, you�re on the beam.
With that assumption and our working
knowledge of typical async data packets,
we have quickly come to the conclusion
that we can�t guarantee a 50:50 mix of

transitions within any particular data
framed from the UART.

The good news is that the BiM can
handle raw RS-232 serial data as long as
some rules are followed.

First of all, the data rate must fall between
4800 and 38,400 bps. Our application
can live with this. If you need a higher speed
for your app, just hold on. I�ll get to that.

Of course, the transmission must be in
half duplex mode. No problem there, either.

Secondly, the data must be packetized
and contain no gaps between the bytes.
Here�s how that�s done. The preamble is
sent for a minimum of 5 ms, which allows
the data slicer to settle.

This is immediately followed by a couple
of bytes of hex FF. The hex FFs lock the UART
by placing the datastream in a marking state.
The UART expects to see a start bit following
the hex FF bytes. A unique start of message
byte is then sent followed by the actual data.

If you want extreme accuracy, a checksum
or CRC byte is sent at the end of the trans-
mitted packet. Since this is a duplex system,
the receiver can verify the CRC or checksum
and request a resend of the last packet if
things don�t match.

Now, for you guys and gals who want to
operate at hyperspeed, you need to adhere to
the 50:50 mark/space ratio rule. If you plan
to operate above 20 kbps, this is mandatory.
Three ways are recommended to get the
50:50 mark/space ratio and thus transmis-
sion speeds of up to 40 kbps between BiMs.

The first method is called Biphase or
Manchester coding. Each bit is sent as two

bits. The first bit is the actual data bit to be
sent and the second bit is the first bit�s comple-
ment. This guarantees a transition in the �cen-
ter� of the bit which is a perfect 50:50 mark/
space ratio. The 100% redundancy of the
data offers 40 kbps throughput, but it actually
equates to only 20 kbps of usable throughput.

Another scheme called byte-coding as-
sumes that only a subset of the ASCII code
is required as data. A look-up table is
needed as only 70 of the possible 256
eight-bit codes are used. All of the 70
codes contain four ones and four zeros. In
actuality, only 68 of the 70 are used
because hex 0F and hex F0 are left out to
minimize consecutive zeros and ones.

Using a standard UART setup for one stop
bit, one start bit, and no parity, these codes
meet the 50:50 mark/space requirement.
An additional plus to this method is that
error checking is simplified because of the
4:4 ratio of ones to zeros in each byte.

FEC coding is the third way to balance
the mark/space ratio. In this coding scheme,
each byte is sent twice. The first send is true
data, with the second send being a comple-
ment of the first.

This scheme can be enhanced by add-
ing a parity bit. With parity, the decoder
algorithm can check the true byte for correct
parity and on parity failure select the next
inverted byte to use for data if it�s not corrupt.

The bottom line is that packets sent
between BiMs must contain a preamble, a
control bit or bytes, data, and some form
of error checking in gapless succession.

The preamble gives the receiver in the
BiM time to stabilize. The preamble time may
be increased to allow more time for carrier
detection or receiver wakeup and initial-
ization.

The packet�s control area is used for many
purposes. Primarily, it signals the beginning of
a message. Other information such as packet
number, byte counts, or flow-control char-
acters may be included here.

GND
RF
GND

0 V
VCC

*RX
*TX

TXD
AF

RXD
*CD
0 V

BiM-UHF
Radio Data
Transceiver

0 V

RF I/O
50 Ω

18
17
16
15
14
13
12
11
10

1
2
3 +5 V

Test Point

Microcontroller

I/O 0
I/O 1
SD 0

SD 1
I/O 2

Figure 3�Adding this minimal number of components provides a fully buffered CMOS interface
to the BiM. Note the pulse stretcher attached to the CD pin.

GND
RF
GND

0 V
VCC

*RX
*TX

TXD
AF

RXD
*CD
0 V

BiM-UHF
Radio Data
Transceiver

0 V

RF I/O
50 Ω

18
17
16
15
14
13
12
11
10 100 kΩ

10 nF

+5-V Supply

Enable/*Sleep

TX/*RX

TX Data

RX Data

Carrier Detect
0 V

NAND Gates = 74HC132 or 4093
NOR Gates = 74HC82 or 4001

1
2
3

Test Point

Figure 2�
As you can see,

this is a perfect
union of RF and mi-

cro. It�s also the basis
for a perfect union of RF

and embedded PC.

57FEBRUARY 1998 EMBEDDEDPC

As well, an address area can be inserted
between the control and data areas. The
address data can be source or destination
address information or a unique site identifier.

Data is data is data is data. The only
restriction�keep the actual byte count as
low as possible. In case of CRC or checksum
errors, it�s more bandwidth efficient to resend
smaller packets, especially if there are mul-
tiple BiM stations that must communicate
with each other or a central host site.

BASIC COMMUNICATIONS
Using Visual Basic 5 and the MSComm

Control, let�s assemble a software-based
datascope that shows the raw data flowing
between BiM�s connected to a couple of

embedded-PC serial and parallel ports.
The hardware I use is depicted in Figure 3.

Each embedded PC is equipped with
enough memory and disk space to accommo-
date Windows 95 and the Visual Basic 5
development suite. I chose the Teknor VIPer
806 and the Advantech PCM-4862 because
they can support this kind of environment.

As well, the VIPer and the 4862 both
have Ethernet adapters. I can develop the
VB code on a third machine and transfer
it electronically via the Florida Room LAN.

Third machine? Let�s park the truck here
and walk awhile. I use bunches of support
tools that I don�t talk about to make what
you see here. But, there�s one tool I use
every day that you need to know about.

Private Sub MSComm1_OnComm()
 Select Case MSComm1.CommEvent
 Case comEvCD
 If MSComm1.CDHolding
 Then txtwindow.Text = txtwindow.Text & MSComm1.Input
 End If
 End Select
End Sub

Listing 1�Visual Basic relieves the pain of getting the transmitted data. Here, we simply
wait for the carrier detect to active.

Listing 2�The Form_Load routine sets up the serial port. After that, it�s just a click of the
Transmit button to send the complete data packet.

Private Sub Form_Load() 'init comm parms
 MSComm1.CommPort = 1
 MSComm1.Settings = "9600,N,8,1"
 MSComm1.InputLen = 0
 MSComm1.PortOpen = True
End Sub

Private Sub btnxmit_Click() 'set up storage and variables
 Dim x As Integer
 Dim xmitpreamble As Variant
 Dim xmitmsg As Variant
 Dim xmitcrc As Variant
 Dim msg As String
 Dim recbuf As String
 xmitcrc = 575 'preload crc with 0xFF+0xFF+0x41
 xmitpreamble = Chr$(85) 'define message to send
 msg = "Circuit Cellar"
 msglen = Len(msg)
 xmitcrc = xmitcrc + msglen
 For x = 1 To msglen 'calculate a checksum
 xmitcrc = xmitcrc + Asc(Mid$(msg, x, 1))
 Next x
 xmitcrc = xmitcrc And &HFF
 xmitmsg = Chr$(255) & Chr$(255) & Chr$(65) & Chr$(msglen) _
 & msg & Chr$(xmitcrc) 'send message packet
 For x = 1 To 700 'send preamble
 MSComm1.Output = xmitpreamble
 Next x
 MSComm1.Output = xmitmsg 'send message packet
End Sub

CIRCUIT CELLAR INK FEBRUARY 199858

A
P
C

I�m con-
stantly hooking

up different embed-
ded platforms for this

and that. It�s a drag to con-
nect a monitor here, a key-

board there, and then swap them
for another embedded PC project.

You either buy a bunch of
monitors and keyboards and lay
stuff all around, or do what I did.
Get yourself a Vetra MegaSwitch.

I use the eight-port model (VIP
1328) in the Circuit Cellar Florida
Room. Each port is equipped with a
cable for video, keyboard, and mouse. By
just pressing a button on MegaSwitch�s front
panel, a single monitor, keyboard, and mouse
switches between eight embedded and/
or desktop PCs. OK, back in the truck.

MSComm
The MSComm control is VB5�s way of

controlling serial communications via avail-
able serial interfaces. With MSComm, you
can open or close a serial port, set up the
serial port parameters, and transfer data
via the serial port�s I/O structure.

I mentioned that VB5 was object ori-
ented and event driven. Well, that�s al-
most completely true. VB5 doesn�t let cer-
tain object-oriented things happen that
would let you corrupt original VB5 objects,
but for our purposes that�s OK.

By employing a property called Comm-
Event, we can interact with our BiM data
by reacting to a change in events. In the
case of our datascope, we will key on a
change in state of the CD pin. Listing 1
describes how we will put MSComm to
work.

PULLING DATA OUT
OF THIN AIR

It�s obvious that BiM can
radiate bit patterns into electro-
magnetic space. So, it doesn�t
mean much to just send some
data and say, �There�see.�

That�s why I built a pseudo-
datascope so we can see what
goes out and what comes in.
From its beginning, Visual Basic
has been strong in the user
interface department. Photo
3 is a view of our datascope.

Here�s the plan. Since BiMs
are half-duplex devices, one PC will transmit,
and the other will receive. The receiver runs
code using MSComm�s CommEvent property
to trigger reception on a change in Carrier
Detect from the BiM. If the change is a true
detection of carrier, then the receiver will
receive the RF-based datastream and dis-
play it on our datascope screen.

This is what we should see. First of all,
the transmitting embedded PC is pro-
grammed to send a 700-ms preamble
consisting of hex 55. This is approximately
700 8-bit characters at 9600 bps.

Photo 3�It�s all here, the preamble and everything else. The �A� begins
our message, which is surrounded by a message length and checksum
character.

59 FEBRUARY 1998 EMBEDDEDPC

A
P
C

IRS
416 Very Useful

417 Moderately Useful
418 Not Useful

Fred Eady has over 20 years� experience
as a systems engineer. He has worked
with computers and communication sys-
tems large and small, simple and com-
plex. His forte is embedded-systems de-
sign and communications. Fred may be
reached at fred@edtp.com.

SOURCES
RXM-418 UHF receiver,
TXM-418 transmitter, LC series
Linx Technologies, Inc.
575 S.E. Ashley Pl.
Grants Pass, OR 97526
(541) 471-6256
Fax: (541) 471-6251
www.linxtechnologies.com

Abacom Technologies
67 Hamptonbrook Dr.
Etobicoke, ON
Canada M9P 1A2
(416) 242-3120
Fax: (416) 242-2697
abacomtech@compuserve.com

VIPer 806
Teknor Industrial Computers, Inc.
616 Cure Boivin
Boisbriand, QC
Canada J7G 2A7
(514) 437-5682
Fax: (514) 437-8053
www.teknor.com

PCM-4862
American Advantech Corp.
750 E. Arques Ave.
Sunnyvale, CA 94086
(408) 245-6678
Fax: (408) 245-8268
www.advantech-usa.com

Once the receiving BiM locks in, two
bytes of hex FF will be sent. This should
look like a marking line to the UART.

The next character out will be a hex 41
or ASCII A. This is our control character
and signals the VB5 application that real
data is to follow. Listing 2 is the code
snippet that created the view in Photo 3.

ROGER THAT�OVER
What we�ve just done is transmit and

receive real data over the distance of a
few feet. With low-power RF applications,
that�s sometimes all that is needed.

In Part 1, I discussed the good and bad of
transmitting data over certain distances. In
reality, where you are and over what dis-
tances you must communicate determine the
power levels and frequencies you may use.

After speaking to the folks at Abacom
and Linx, I found that other countries have
far different attitudes about RF communica-
tions than we do here in the States.

To that, I say this: Don�t use the FCC
regulations for applications geared for other
countries, and don�t think FCC regulations are
restrictive. The low-power RF modules I de-
scribed are perfect for most applications.

For instance, inventory and POS appli-
cations don�t need to pass data over a
great distance. Your keyless entry system
for your car is another good example. You
don�t unlock or lock it from a mile away.
You�re right there up close.

If you do find an application where a
higher powered RF field is required, there
is equipment available and FCC regula-
tions that permit its use.

The BiM module is the basic building
block for a multitude of RF-based applica-
tions. With careful selection of frequency,
power output, and antenna characteris-
tics, it can provide a solution to many of
your RF data-transfer problems.

By establishing itself as an embedded
building block, the BiM proves that it
doesn�t have to be complicated to be
embedded. APC.EPC

60 Issue 91 February 1998 Circuit Cellar INK®

Codesign FEATURE
ARTICLE

Richard Moseley

a
Far too often, design
schedules go awry
due to the difficulty
of coordinating
hardware and soft-
ware design teams.
Richard brings us up
to date on codesign
tools and how they
promise a smoother,
faster development
cycle in the future.

s pressures in-
crease to bring

products to market
more quickly, design

engineers are looking for ways to
speed up design cycles and decrease
the time required for debugging proto-
types and fixing problems.

Of course, to accomplish their
goals, they must find ways to do this
without suffering the penalties associ-
ated with learning curves that result
from using new design tools.

One promising solution is codesign—
a synchronized collaboration between
software- and hardware-development
teams.

The most common approach for
embedded-system design positions
hardware and software teams on un-
connected paths that are only reunited
after the creation of the hardware proto-
type.

These individual design groups make
presumptions about each other’s contri-
bution to the overall system, which
are magnified and later surface as
significant errors that can take a big toll
on budgets and schedules.

In addition, time-to-market urgency
typically mandates that fixes be carried
out via software workarounds rather

than hardware redesign. This approach
can result in significant compromises
to the performance of the finished
system.

In a perfect world, hardware and
software teams would work in harmony
from initial design concept all the way
through to benchmarking the finished
system, staying in constant communi-
cation as the design reaches critical
integration and test phases. The two
groups would work together, and the
interface between their designs would
be constantly validated to identify
problems early in the design cycle.

Employing the precepts of codesign,
simulation and verification would be
performed on hardware and software
synergistically, resulting in robust
designs with added functionality and
shaving time off development cycles.

This next-generation system-level
design formula embodies the creation
of a virtual prototype—a speed-opti-
mized combination of software simu-
lation and hardware emulation that
precisely mimics the target system,
albeit at a slower speed in most cases.

This environment would feature a
new generation of interoperable co-
design tools for simulation and verifi-
cation that identify and resolve errors
during the specification and partition-
ing phases. The result: clearly defined
parameters for hardware and software
implementation.

Even though most concede that the
isolation of hardware and software
implementation paths is less than
optimal, it’s still the most common
methodology used in designing em-
bedded systems. Part of the problem
lies in the fact that until recently,
design-tool technologies haven’t been
available to orchestrate cooperative
design efforts between hardware and
software development.

However, the design-tool community
has made great strides with this prob-
lem, and a number of significant new
tool technologies have emerged over
the past year.

But, sometimes even the best-laid
plans suffer in implementation, and
most codesign solutions are far from
perfect. In truth, none of the codesign
solutions available today are an optimal
fit for every application since they are

The Evolving Relationship
Between Hardware and Software

Circuit Cellar INK® Issue 91 February 1998 61

often largely based on the
particular vendor’s core com-
petency, whether it be soft-
ware or hardware emulation.

Each approach is more
suited for a specific set of
requirements. Even those show-
ing the most promise are likely
to endure slow adoption since
they’re regarded with skepti-
cism until proven.

Significant barriers also lie
in the organizations targeted
by codesign-tool vendors. Even
if robust codesign tools and
environments were available,
the infrastructure in place at
most system OEMs could
seriously hamper the tools’ acceptance.

Problems such as a lack of commu-
nication between design teams, differ-
ent management systems for hardware
and software, and deep-seated biases
in engineering managers contribute to
an unfavorable climate for the imple-
mentation of codesign methodologies.

Although the potential benefits of
implementing a codesign methodology
outweigh the obstacles to its adoption,
this is only true if the codesign is
planned well in advance of the design
project. For instance, the value of
coverification is extremely high early
in the design process.

With today’s time-to-market de-
mands, attaining design closure as soon
in the process as possible is critical. If
the coverification process can be carried
out with a high degree of certainty, any
later problems associated with integra-
tion and testing will be minimized.

A NEW PLAYING FIELD
Soon, however, the overall situation

may change dramatically. Players in
the codesign-tool arena seem to be
migrating toward a common approach—
a speed-optimized mix of software
modeling and hardware emulation. A
year from now, these tools are likely
to be robust and remarkably similar in
the features they offer.

Widespread adoption of codesign
methodologies and tools isn’t a question
of “if” but “when.” In fact, it would be
beneficial for companies to work with
codesign-tool vendors even this early.
By doing this, they’d help shape tool

features, while gaining the experience
required to increase the probability of
a successful design project.

With today’s high-performance sili-
con technologies inexpensively combin-
ing tremendous computer horsepower
with integrated peripherals and memory,
it’s no surprise the software content
of today’s embedded systems has
exploded. Most estimates place the
software-development cost for a typi-
cal system at well over half the total
development budget—a reality that
the system development-tool industry
has practically ignored for years.

In addition to the hardware compo-
nents, such as one or more CPUs,
possibly a coprocessor (e.g., a DSP or
graphics coprocessor), an ASIC or two,
some memory, and assorted off-the-shelf
parts, a typical embedded system
includes software components like an
RTOS, device drivers, and an embedded
application.

CODESIGN IN DEVELOPMENT
Most aspects of the hardware and

software development process can be
automated, except in the cases of system
definition, architectural design, and
software/hardware partitioning. As
well as not being well automated, these
exceptions are fairly disconnected
from the implementation process,
which is itself divided into distinct
hardware- and software-design efforts.

As a result, hardware and software
engineers don’t get to test their respec-
tive subsystems together until a physi-
cal prototype exists. Unfortunately,

most problems in the hard-
ware/software interface aren’t
discovered until this point,
possibly forcing a redesign.
And so, schedules slip. Often,
the integration and testing
phase may represent the criti-
cal path or as much as 50% of
the development cycle.

To counteract these prob-
lems, codesign solutions are
extremely attractive. Unfor-
tunately, the pieces aren’t all
in place yet. For instance,
general-purpose automated
tools for system definition,
architectural design, and soft-
ware/hardware partitioning

that offer enormous leveraging over
the subsequent phases of development
are rare today.

In fact, most mainstream develop-
ment-tool vendors focus on the imple-
mentation portion of the process (i.e.,
linking the software and hardware
design phases of the project after par-
titioning). However, a lot can be gained
by shortening the implementation/
test phase.

Current codesign methodologies
focus on two basic approaches to creat-
ing a virtual prototype. They attempt
to shorten the “software waiting for
hardware” gap encountered in most
development efforts.

One camp, with roots deeply embed-
ded in hardware and in-circuit emula-
tion technologies, provides for the
creation of the virtual prototype using
a “black box” filled with FPGAs.

The other camp, whose technology
originated from the high-level simula-
tion and abstraction approaches of EDA,
has developed unique techniques for
speeding up logic simulation in order
to build a virtual prototype.

Each approach has advantages and
disadvantages, but one thing is clear.
Both camps are on intersecting courses.
Product developments will start to look
quite similar as these new products
continue to mature in the marketplace.

HARDWARE EMULATION
The integration levels and perfor-

mance provided by today’s FPGA ven-
dors, plus the maturity of tools available
for mapping the register-transistor-

Debug
Interface

Emulator/
Debugger

System
Sense
Inputs

AHDL

System
Hardware

Drivers

Verilog HDL

Communication
Interface

Hardware Emulator

SRAM

Vendor-Specific
Software Model

DRAM

C Model

EPROM
(RTOS)

Second Vendor’s
Emulator/Debugger

ICACHE

ColdFire
Core

Parallel
Port

Interrupt
Controller

DRAM
Controller

MBUS DUART

Dual
Timer

Chip
Selects

SRAM

Figure 1— Chip manufacturers are doing an excellent job of emulating the
logic that goes onto a chip, as evidenced by shrinking debugger ports on new,
complex chips. Next tasks: emulating the chip in both systems and stand-
alone environments as well as eliminating bugs.

62 Issue 91 February 1998 Circuit Cellar INK®

development of a number of critical
models—an ISS model for the target
processor and any off-the-shelf VLSI
components, a bus-functional model,
and a memory model.

If models are not readily available
from the chip vendor in a form that
works with Seamless CVE, the time
required to create them can add months
to the overall development cycle. Plus,
most vendors won’t provide them

even if they are available unless
a binding nondisclosure agree-
ment is signed and you’re signed
up to buy chips. Some vendors
refuse to supply these models
or even develop them to pro-
tect their intellectual property.

You can also include actual
components in your virtual
prototype if they’re available,
or you can do hardware emula-
tion of blocks using Mentor’s
SimExpress box. Mentor’s
strategy is to enable designers
to create the level of abstrac-
tion required.

Both approaches require hard-
ware to be well-modeled and -defined
before the creation of the virtual pro-
totype, much more so than the soft-
ware. The software then turns up bugs
that require a redesign on portions of
the hardware.

TOOLSETS
Before taking on a codesign meth-

odology, examine the tools closely to
ensure that specific project requirements
can be met in the allotted time. Co-
design tools should be adopted for
smaller projects to give you time to
learn the tools before committing the
methodology to a critical design project.

A number of things should be con-
sidered before committing to codesign.
Are the proper models available for
the functions required? If not, how
will the models be obtained?

What is the cost (in dollars and time)
if models must be developed? If mod-
els must be developed, will the infor-
mation be available to develop them?

What developments, if any, are
planned by the chip or tool vendor that
could aid the design process? What
other tools will work with the target
codesign toolset?

level description of hardware, enable
hardware emulation of a target system
to be realized fairly quickly and easily.

The advantage of the hardware-
emulation approach, led by systems
such as Quickturn Design Systems’
System Realizer, is that they provide
gate-for-gate, wire-for-wire prototyping
of the target system. In some cases, they
may even be able to operate at the
target system’s full operating speed.

Motorola used System Real-
izer during the verification phase
of the MC68060 and ColdFire
microprocessor cores (see Figure
1). During the ’060 verification,
prior to first silicon, over one
trillion instructions were run to
verify that the chip was running
instructions correctly, as illus-
trated in Figure 2.

The main downside to the
hardware-emulation-only ap-
proach is the investment in
front-end work required to map
the system into programmable
logic, although tools designed
solely for this task greatly fa-
cilitate the process. Once the system
is mapped, hardware changes can be
quickly and easily implemented.

This step, however, must be com-
pleted at some stage of the design
process anyway, to analyze the validity
of the customer-designed logic. The
only disadvantage is that the gate-level
implementation must be completed at
an earlier stage in the project.

SEAMLESS SIMULATION
On the simulation front, Mentor

Graphics recently released its Seamless
Co-Verification Environment (CVE).
Using a unique approach to speeding
up the verification process, this sys-
tem enables the designer to minimize
the time spent in logic simulation by
isolating the CPU and memory from
the rest of the system logic.

The CPU is modeled using an in-
struction-set simulator (ISS), which
can run compiled C or assembly code
at millions of instructions per second
in full-emulation mode. The ISS tracks
the number of CPU cycles required
for each operation for performance
analysis and synchronizing with the
rest of the system. By abstracting the

memory in addition to the CPU, a
majority of the bus cycles, which are
simply data or instruction fetches, can
be avoided.

To handle concerns about accuracy
or analysis at a deeper level, a bus func-
tional model is also created in C to
enable the logic simulator to stimulate
bus activity and interact with the rest
of the system logic. The memory
system is also modeled in the logic

simulator so it’s visible to the rest of
the logic. The memory and bus func-
tional models communicate with the
ISS using an API.

However, this approach alone is
not enough, since waiting for the logic
simulator to complete each operation
renders it unusable. In addition, the
contents of the memory model in the
simulator must synchronize with the
image expected by the CPU without
tying up resource-intensive bus cycles.

To solve this problem, Seamless
CVE employs an intelligent kernel
between the ISS and logic simulator.
It keeps the two simulations synchro-
nized and maintains a consistent view
of memory for the CPU and logic.

Most importantly, it optimizes the
performance of the overall system simu-
lation by letting the user selectively
filter certain classes of bus activity to
avoid unnecessary stimulation of the
logic simulator. For example, once the
instruction fetch cycle has been char-
acterized for a portion of the memory
map, fetches can be turned off to reduce
load on the logic simulator.

The main disadvantage to the simu-
lation approach is that it requires the

Figure 2— The 68060 verification experience demonstrated that the verifi-
cation process weeds out many bugs that would have slipped by through
the sheer number of instructions run against the part. However, a certain
number of bugs only manifest themselves in a full-blown end system that
includes memory components, peripherals, and perhaps other processors.

B
ug

 C
ou

nt
21 Months

40 Billion Instructions
3 Months

1 Trillion Instructions

Module
Verification

Chip-Level
Integration

and Verification

Target System
Integration

and Verification

Simulation and Verification Time

64 Issue 91 February 1998 Circuit Cellar INK®

Codesign toolsets should embody a
start-to-finish solution that ideally
includes:

• a “real” fully-integrated hardware/
software design environment

• software and hardware emulation
with programmable breakpoints

• mixed hardware emulation and
simulation with visibility at any
level

• tool-vendor interface interoperabil-
ity (a common interface standard)

• high abstraction levels to speed the
simulation of large systems

• a flexible, distributed system that
allows for multiple design seats

• minimized cost per design seat
• an investment outlay that’s easy to

amortize over large production runs
• a portable stand-alone detachable

emulation board for system demos
• the ability to keep intellectual prop-

erty secure for model or chip vendors

WHAT’S AHEAD?
As a methodology, codesign requires

a fair bit of maturing before it can

I R S
419 Very Useful
420 Moderately Useful
421 Not Useful

Richard Moseley, principal staff engi-
neer with Motorola, currently works
with integrated systems, directing a
systems and design support team
involved in ColdFire and 680x0 systems
using the FlexCore standard cell-
design methodology. Richard has been
involved in semicustom library devel-
opment, CAD, and design since 1982.
You may reach him at moseley@
oakhill.sps.mot.com.

SOURCES
Seamless CVE, SimExpress
Mentor Graphics, Inc.
8005 SW Boeckman Rd.
Wilsonville, OR 97070
(503) 685-7000
Fax: (503) 685-1205
www.mentorg.com

MC68060, ColdFire
Motorola
MCU Information Line
P.O. Box 13026
Austin, TX 78711-3026
(512) 328-2268
Fax: (512) 891-4465

System Realizer
Quickturn Design Systems, Inc.
440 Clyde Ave.
Mountain View, CA 94043
(415) 967-3300
Fax: (415) 967-3199
www.quickturn.com

enjoy the kind of widespread adoption
hoped for by the companies developing
codesign products.

In the coming year, many new and
upgraded products are anxiously being
expected from development-tool ven-
dors that could push the methodology
into acceptance at mainstream system
OEMs.

But, it’s certainly true that codesign
has some other hurdles to overcome.
Many of these rise primarily from the
mind-set of engineers involved in
hardware and software design.

For now, sit back and observe. Only
time will tell what will develop. I

66 Issue 91 February 1998 Circuit Cellar INK®

Choosing the Right
Crystal for Your Oscillator

FEATURE
ARTICLE

Norman Bujanos

s
Although critical to
the timing of your
design, crystals are
glossed over in
engineering schools.
Norman puts a stop
to that. His review of
crystal parameters
gets you up to snuff
when it comes to
picking the right
crystal for your design.

electing quartz
crystals for oscilla-

tors can be confusing
and mysterious. Engineer-

ing programs tend to give them only a
cursory overview.

Hence, many engineers are unfamil-
iar with crystal parameters and jargon.
A crystal datasheet can appear to be
as cryptic as Egyptian hieroglyphics.

In this article, I cover crystal param-
eters and explain how system design can
affect clock accuracy. It should make
crystal selection significantly easier.

WHY QUARTZ CRYSTALS
The quartz crystal integrates me-

chanical and electrical characteristics.
If quartz is stressed, an electric field is
generated in the direction perpendicular
to the applied stress.

Conversely, if an electric field is
applied to a quartz crystal, a mechani-
cal stress appears in the direction per-
pendicular to the applied stress. This
effect, known as the piezoelectric effect,
is the basis for quartz being used so
extensively in crystal manufacturing.

By placing a quartz crystal between
two electrodes and applying a changing
voltage, the crystal can be made to
vibrate. Maximum vibration amplitude
occurs when the frequency of the chang-
ing voltage matches the crystal resonant

frequency. Oscillator circuits using a
quartz crystal vibrate at the crystal
resonant frequency.

High Q is one of the most desirable
features of quartz crystals. It is a mea-
sure of how much energy is lost due
to vibration. In mechanical terms, Q is:

Q = 2π Energy stored per cycle
Energy lost per cycle

In electrical terms, Q is the inductive
reactance at resonant frequency divided
by the equivalent series resistance (ESR).

A crystal with a high Q loses little
energy while vibrating. Commercial-
grade crystals have Qs ranging between
20,000 and 200,000. High-precision
crystals have Qs up to 3 million.

In addition to high Qs, quartz crys-
tals tend to be incredibly stable. The
only drift associated with crystals is
from temperature fluctuations and
aging. Temperature effects are about
100 ppm over the operating range, while
aging effects are around ±5 ppm per year.

TIMING BUDGET AND ACCURACY
When selecting a crystal, carefully

consider how accurate your system
has to be. Crystal selection and oscil-
lator design must be weighed equally.

These factors work together, influ-
encing the system operating frequency
and cost. Typically, the more accurate
a system is, the more expensive it is
to build.

If you’re building a system with an
RTC, your target accuracy should be ±2
min. per month. PLL reference clocks,
however, can tolerate less accuracy.

Four crystal parameters play a key
role in system accuracy. The contri-
bution from each must be added to
obtain the total system accuracy.

Each parameter can be adjusted
without influencing the others. This
parameter independence makes custom-
izing crystals attractive.

However, customization results in
increased system cost. Look carefully at
your system requirements. Try to use
readily available, off-he-shelf crystals.

FREQUENCY TOLERANCE
The frequency tolerance (i.e., cali-

bration effect) is the first of the four
accuracy-budget parameters. It is a

Circuit Cellar INK® Issue 91 February 1998 67

∆+ppm

∆–ppm

AT-Cut Curve

Increasing TempDecreasing Temp

25˚CBT-Cut Curve

room-temperature (i.e.,
25°C) spec stating how
close the actual crystal
frequency is to its speci-
fied frequency. Like
most crystal specs, it
is in parts per million.

For example, a
32,768-Hz crystal may
have a frequency toler-
ance of ±20 ppm. At
25°C, the resonant
frequency can be any-
where between
32,768.65536 and
32,767.34464 Hz.

The 32768 crystal is
known as a watch crys-
tal. This system might
sound highly accurate,
but when you consider
its accuracy impact
over a month, this one
parameter alone can
cause the watch to be off by almost
1 min.

Equation 1 shows that a ±20-ppm
frequency tolerance can account for
about 52 s per month:

60 s
min × 60min

h
× 24 h

day
× 30

days
mon

× ± 20
1,000,000 = ±51.84 s

mon (1)

FREQUENCY STABILITY
Frequency stability is the second

item to add to the timing budget. It is
a function of temperature and is related
to the crystal cut type.

The most common crystal cut types
are AT and BT. Their temperature
stability curves are different—a fact
that should be considered when you’re
designing a system.

The AT curve is cubic [1], as depicted
in Figure 1. Note that the curve moves
between the +ppm and –ppm areas
with temperature.

If a system using an AT-cut crystal
is exposed to temperature fluctuations,
the temperature effects tend to average
to zero over time. However, an error is
introduced from not operating at 25°C
(i.e., crystal calibration temperature).

The BT cut, common in low-fre-
quency crystals, is a parabolic form.
Increasing or decreasing temperatures

both cause a decreasing resonant fre-
quency. Unlike the AT-cut crystal,
temperature fluctuation effects do not
average to zero.

AGING
The third item in the timing budget

is aging as it relates to crystal contami-
nation and drive level. Resonant fre-
quency changes as a function of time.

It tends to be related to crystal con-
tamination. That is, particles either
drop off or fall onto the quartz surface.
Because this happens inside the crystal
case, there isn’t anything you can do
about it. It’s up to the manufacturer.

However, keeping the drive level low
can reduce aging effects as the crystal is
not knocked around as much. Choose
crystals that are hermetically sealed
for best aging characteristics.

LOAD CAPACITANCE
The fourth timing budget parameter

to consider has to do with load capaci-
tance. For parallel resonant circuits,
there is a load-capacitance spec.

If the load capacitance of your circuit
doesn’t match the crystal load capaci-
tance, there is a resonant frequency
shift. I’ll discuss this effect shortly.

One nice characteristic of quartz
crystals is that all of these parameters
are independent. Each one can be

adjusted without affect-
ing other parameters.

You can request a
crystal with 5-ppm
frequency tolerance,
and keep the other
parameters the same or
change them. However,
you pay a premium for
custom-made crystals.

SERIES AND
PARALLEL
RESONANCE

The question of
parallel and series
resonant crystals often
comes up and is occa-
sionally a source of
confusion. Let me
clarify the situation.

There is no such
thing as a series or
parallel resonant crys-

tal. Instead, crystals have different paral-
lel and series resonant frequencies.

When a crystal is calibrated at the
factory, it is trimmed to hit a particular
frequency while operating in the series
or parallel resonant mode. The parallel
resonant frequency is greater than the
series resonant frequency.

Most oscillators operate in the paral-
lel resonant mode (i.e., they see a paral-
lel load capacitance). Some examples
of parallel resonant oscillators are the
Pierce-, Colpitts-, and Clapp-style
oscillators. Series-resonant oscillators,
on the other hand, are uncommon.

Transforming mechanical param-
eters into electrical parameters is
known as creating the electrical dual.
The equivalent electrical circuit for a
crystal is shown in Figure 2. Compo-
nents C1, L1, and R1 make up the crys-
tal’s motional arm.

Co is the shunt capacitance. It is
composed of packaging and lead effects,
and is on the order of a few picofarads.
Co is also known as the crystal’s static
capacitance.

L1 is the crystal’s motional induc-
tance. This value is determined by the
crystal’s motional mass during oscilla-
tion, and is on the order of thousands
of henries.

C1 is the crystal’s motional capaci-
tance. It is determined by the crystal’s

Figure 1 —AT-cut crystals (solid curve) exhibit a cubic temperature stability curve. On the other hand,
BT-cut crystals (dashed curve) exhibit a parabolic temperature stability curve.

68 Issue 91 February 1998 Circuit Cellar INK®

number appears in the datasheet as
the load capacitance.

If your load capacitance doesn’t
exactly match the load capacitance in
the datasheet, your oscillator won’t run
at the spec Fp frequency. (I look at the
effects of mismatched load capacitance
in the next section.) Note that the
parallel resonant frequency is greater
than the series resonant frequency.

FREQUENCY TOLERANCE AND
LOAD CAPACITANCE

When the oscillator circuit load
capacitance doesn’t equal the crystal
spec load capacitance, the oscillator’s
operating frequency is different from
the crystal’s frequency tolerance spec.

Equation 3, for Fp, shows that as
the board attributed load capacitance
increases, Fp decreases. The change in
frequency as a result of mismatched
load capacitance is:

stiffness, and is on the order of a few
femtofarads.

R1 is the crystal’s ESR when oscil-
lating, and it is related to mechanical
loss during oscillation. ESRs range
from a few ohms to tens of thousands
of ohms.

If the ESR is small, the crystal loses
little energy while vibrating. A small
ESR helps with startup and continued
oscillation.

The series equivalent circuit for a
crystal omits the shunt capacitor, Co.
The crystal series resonant frequency is:

Fs = 1

2π LC (2)

When crystals are connected to
PC boards, they see a circuit that
looks like Figure 3. Here, CL is
equal to the series combination of
CL1 and CL2, and is attributed to
board parasitics and/or load caps

added to the oscillator. The resonant
frequency changes from equation 2 to:

Fp = Fs 1 + C1

Co + CL (3)

In most cases, Fp, the parallel load
resonant frequency, is specified in the
crystal datasheets. C1 and Co are part
of the crystal, but the load capaci-
tance, CL, is not.

At the factory, the crystal is cali-
brated (frequency-tolerance spec) with
a particular load capacitance. This

Figure 2 —The mechanical properties of mass, friction, and
stiffness are mapped to inductance, resistance, and capaci-
tance, respectively.

Crystal Specs
Here is a list of the crystal specs, along with an

abbreviated description and typical values.

Nominal Frequency—This is the ideal crystal frequency,
or target frequency at 25°C. Typical values are ±20 ppm.

Frequency Tolerance—This error is associated with the
crystal calibration at 25°C. Tolerances range from ±5
to ±200 ppm.

Frequency Stability—This error is associated with
temperatures away from the calibration temperature.
Most crystals are calibrated at 25°C. Moving away from
this temperature causes a shift in resonant frequency.
The temperature-dependence curve depends on the
crystal cut type.
 The AT cut provides the best temperature curve.
Typical AT numbers may be ±100 ppm across the
operating temperature range, although you can get
down to ±10 ppm.
 BTs follow parabolic temperature curves. Resonant
frequency decreases with temperature changes from
25°C. Typical spreads are –100 ppm across the operat-
ing temperature range.

Long Term Stability—Aging characteristics are largely
a function of contamination. Keep the drive level low
to reduce aging effects. Typical aging is around ±5 ppm
per year.

Load Capacitance—If the load capacitance of your sys-
tem (oscillator plus board) does not exactly match the
crystal load capacitance, there is a resonant frequency
shift, which you can calculate via equation 4. Typical
load capacitance values are around 20 pF.

Operating Mode—Try to stay with the fundamental-mode
crystals. If you have a high-frequency oscillator (i.e.,
greater than 50 MHz), use overtone crystals. Be aware of
the pitfalls mentioned in the Mode of Operation section.

Drive Level—The crystal drive level is how much power
the crystal can safely dissipate. Typical numbers are in
the microwatt to milliwatt range. The exact drive-level
equation is rather involved. However, a close approxima-
tion can be made from the following assumptions.
 Referring to Figure 4, at resonance, the impedance of
the motional arm composed of L1, C1, and R1 is equal to
the impedance of CL and Co. Power dissipation is given by:

P = I2R1

Since the current through the crystal is generally un-
known, it is more useful to write the power as:

P = V
Z

2
× R1

where |Z| is the impedance magnitude of CL and Co, and V is
the peak voltage across the crystal. The drive level is:

P = 2π × freq × V Co + CL
2

× R1

where freq is the resonant frequency [2]. For a parallel
resonant circuit, the impedance goes to infinity. This
implies that the net current goes to zero, but in reality,
energy is lost through friction and joule heating. Also, the
currents through the motional and capacitive arms are
sinusoidal and 180° out of phase.

Circuit Cellar INK® Issue 91 February 1998 69

Note that overtone frequencies are
not harmonics of the fundamental
frequency, although they are close.
Harmonics are exact integer multiples,
while the overtones are not.

However, overtone frequencies are
always odd multiples of the fundamen-
tal frequency. Both AT- and BT-cut
crystals are available for overtone use.

Overtone operation is a nontrivial
effort. Oscillators that run over 50 MHz
must run in the overtone mode.

You don’t see high-frequency funda-
mental crystals because the crystal
becomes too thin. Crystal thickness is
inversely proportional to resonant
frequency, so high frequencies translate
to thin crystals. And, thin crystals are
expensive because they’re difficult to
manufacture and handle.

∆Fp = Fp1 – Fp2

= Fs 1+
C1

Co + CL spec
–

= 1 +
C1

Co + CL system

 (4)

where Fp1 is the spec parallel resonant
frequency, Fp2 is the actual parallel
resonant frequency, CLspec is the crys-
tal spec load capacitance, and CLsystem

is the system load capacitance.
Equation 4 is known as the pullabil-

ity equation and gives the frequency
error of mismatched load capacitances.
Often, this error is insignificant. How-
ever, it does come into play when there
is a cumulative effect. If the crystal is
used in a timekeeping application,
cumulative effects are important.

If you’re trying to tightly control
accuracy, you must consider PCB stray
capacitances. Routing to the crystal and
socket effects, if used, also add to the
load capacitance.

It may be necessary to use a trim cap
to hit the target accuracy. If the circuit
load capacitance is less than the target
load capacitance, add a parallel trim cap
to the circuit. Connect the cap between
either the crystal pin or ground.

If the circuit load capacitance is
greater than the target load capacitance,
a series trim cap should be added to the
circuit. The trim cap is connected to
either crystal pin and the correspond-
ing oscillator pin.

AT VS. BT CUT
If you take a look at the two tempera-

ture coefficient curves for the AT- and
BT-cut crystals (see Figure 1), you find
that the AT cut is preferable. For the BT,
temperature changes always cause a
resonant frequency decrease.

Unfortunately, you may not have a
choice. For low-frequency crystals below
1 MHz, BT cuts dominate. Oscillators
using these style cuts may not perform
well in environments with large tem-
perature fluctuations. But, if you have
the choice, pick the AT cut.

MODE OF OPERATION
The crystal mode of operation largely

depends on the operating frequency. Up
to 50 MHz, the mode of operation is
fundamental. Above 50 MHz, the mode
is probably overtone.

Figure 3 —When the external load capacitance CL is taken into
account, it appears as a capacitor in parallel with Co.

With overtone crystals, the
thickness is greater than that of the
fundamental crystal [3]. The overtone
mode multiplies the thickness. As
Figure 4 shows, a third overtone
crystal is three times thicker than
the comparable fundamental crystal.

There are a few disadvantages to
using overtone crystals. The first is
that the oscillator must be designed to
specifically operate at the overtone
frequency and not the fundamental
frequency. Therefore, the oscillator
must contain a filter to avoid the
fundamental frequency.

Another disadvantage is that over-
tone crystals tend to be thicker than
the fundamentals. This translates into
larger ESRs, hence lower Q. Care should
be take to ensure reliable oscillator
startup and operation.

A third disadvantage is that overtone
crystals can contain spurs (i.e., short for
spurious mode, an unwanted type). The
crystal manufacturer has to make sure
that spurious modes are sufficiently
suppressed. If they aren’t, the oscillator
can run at the wrong frequency.

70 Issue 91 February 1998 Circuit Cellar INK®

I R S
422 Very Useful
423 Moderately Useful
424 Not Useful

Norman Bujanos is a member of the
technical staff at Advanced Micro
Devices in Austin, Texas. He is an
analog circuit designer for the Logic
Products Division. He received a B.S.
in Physics from the University of
Houston and an M.A. in Physics from
the University of Texas at Austin.
You may reach him at norman.
bujanos@amd.com.

PACKAGE CONSIDERATIONS
Crystals are available in a variety

of packages. There are many metal-
can configurations, plastic packages,
and surface-mount plastic.

Unlike ICs, the plastic version is
probably the most expensive. This is
because the plastic version is the metal
version encapsulated in plastic. In other
words, you pay for two packages.

Handling considerations should be
the only reason to select one package
type over another. Performance is the
same.

CRYSTAL PLACEMENT
The old real-estate adage “Location,

location, and location” applies to crystal
placement. Closer to the oscillator is
better.

You want to minimize parasitics
introduced by long PCB traces. The
board traces add to the CL value in the
crystal model. Remember, a CL that
does not match the CL in the specs
causes a frequency shift (see equation 4).

Also, look around the crystal area to
see if there are any other clock signals
or otherwise frequently changing signals
nearby. These signals can introduce
noise into the oscillator. A good (quiet)
ground plane under the oscillator can
help eliminate noise problems, too.

Consider the distance between the
two crystal lead traces as well. This
distance adds to the Co term in the
crystal model. Keep the traces apart
by at least the same distance as the
crystal width.

CRYSTAL CLEAR?
Hopefully, terms like BT cuts, third-

overtone mode, and parallel resonance

Fundamental-Mode Crystal

Third-Overtone-Mode Crystal

Thickness = 1 Unit

Thickness = 3 Units

Figure 4 —The thickness of the third-overtone crystal
slab is three times that of the fundamental-mode crystal
slab.

no longer send chills down your back.
This brief overview of all the crystal
specs should give you a bit more con-
fidence when it comes to dealing with
them.

As I mentioned, for accuracy, you
need to consider four important specs.
I discuss them in more detail in the
“Crystal Specs” sidebar.

The sum of the errors contributed
from each spec is the total system
timing error. Since system cost is
probably an issue, do not overspecify
the crystal. Try to determine how much
timing error your system can tolerate.
Then, select the appropriate crystal
using the information given here [3,4].

The other crystal parameters deal
mostly with how the crystal is being
used. For high-frequency applications,
you’ll almost certainly need an over-
tone crystal. For very low-frequency
applications, it will be fundamental
but a BT cut.

Basically, you want to design the
best system you can at a particular
price. Invest the time in planning for
a good system. I

REFERENCES

[1] M.E. Frerking, Crystal Oscillator
Design and Temperature Compen-
sation, Van Nostrand Reinhold
Co., New York, NY, 1978.

[2] T. Williamson, Oscillators for
Microcontrollers, Microcontroller
Technical Marketing App. note
AP-155, Intel, June, 1983.

[3] Ecliptek Corp., www.ecliptek.com.
[4] Cardinal Components, www.

cardinalxtal.com.

72 Issue 91 February 1998 Circuit Cellar INK®

Surge Suppression

MICRO
SERIES

Joe DiBartolomeo

l

EMI Gone
Technical

Caught in
an EMI
eddy? Joe’s

here to help you out.
He begins by review-
ing how to prepare for
EMI threats, such as
lightning, electromag-
netic discharge, fast
transients/bursts, and
inductive load
switching.

P
ar

t

of4
1

 72

78

82

MicroSeries

From the Bench

Silicon Update

DEPARTMENTS

4

ast year, I wrote
a MicroSeries on

the most common
electromagnetic com-

patibility (EMC) standards
and tests mandated for digital equip-
ment by the FCC and European Com-
munity (INK 79–82). As I pointed out,
these EMC tests and standards have
become de facto design specifications.

This MicroSeries builds on last
year’s. I begin by looking at common
types of electromagnetic interference
(EMI) transients.

I then present components used to
both protect equipment from transient
EMI and aid in passing the EMC tests.
These components include metal
oxide varistors (MOVs), zener diodes,
transient voltage suppressor (TVS)
semiconductors, and spark gap devices.

I’ll end the series with a look at
design philosophies and techniques
for protecting electronics from EMI
and passing the EMC tests.

These articles are intended as gen-
eral design aids. Due to the nature of
EMI, the equipment designer is the
best judge of what techniques and
components solve EMI problems.

USING EMC TESTS AND STANDARDS
Before discussing EMI threats, I’d

like to take a moment and discuss my
philosophy on the use of the EMC
standards and tests.

I received several calls and E-mail
messages regarding last year’s Micro-

1

Circuit Cellar INK® Issue 91 February 1998 73

Series. During these discussions, I
noticed that many designers assume
that if their equipment passes the pre-
scribed EMC tests, then they won’t
have any EMI problems in the field.
Unfortunately, this may not be the case.

EMI/EMC tests are general in nature.
It’s impossible to set tests and standards
that apply to all equipment and oper-
ating conditions. Therefore, it’s conceiv-
able that your equipment will pass all
the relevant EMI tests and have EMI
problems during normal operation.

The first step in designing for EMC
is to understand the tests mandated by
the testing agencies. You can think of
the EMC tests as the first EMI threat
your equipment must en-
dure. I treat the EMC tests
and standards as mini-
mum—but not necessarily
sufficient—design specifi-
cations.

WHAT IS SUFFICIENT?
When I went to school,

most of my classmates
chose economics as their
minor. Their rationale was
that engineering and eco-
nomics go hand in hand,
cost versus performance
curves, and so on. I, how-
ever, chose philosophy as
my minor.

I’d love to say I chose
philosophy for some eso-
teric reason like “taking
the road less traveled,” but
that wasn’t the case. I
chose philosophy simply

because it had the most
women in the class.

One thing I did learn in
those classes, however, is
the concept of necessary
and sufficient conditions.
What is necessary to com-
plete an objective may not
be sufficient.

For example, the state-
ment “I’m healthy because
my diet is well balanced”
is clearly wrong. Of course,
ensuring that your diet is
well-balanced is a neces-
sary condition of good
health, but it is not suffi-

cient. Regular exercise is also neces-
sary for good health, but that too is
insufficient. You get the picture.

Getting back the EMC/EMI tests,
it’s clear that the design philosophy
“Passing the EMI/EMC tests will ensure
no EMI problems” is incorrect and may
lead to trouble. The EMI/EMC tests
are necessary and must be passed, but
they may not be sufficient to ensure
problem-free operation.

As an example, let’s look at a piece
of equipment being subjected to a light-
ning transient test (e.g., 1000-4-5).
Assume the equipment passes the test.

However, keep in mind that you
normally take new equipment to the

test labs. Unfortunately, several of the
components used to protect electronics
from lightning surges degrade with use.

What happens in the field as pro-
tection degrades? The tests only deal
with the equipment once—normally,
when it’s new.

The solution is to ensure that surge-
protection devices that degrade are on
a maintenance or replacement sched-
ule. Here, obviously, the test standard
is insufficient, and extra protection
needs to be designed in.

I’m well aware of standard company
policy when it comes to EMC tests:
do the minimum for the equipment to
pass the tests. There’s no provision
for adding extra protection. But re-
member the people in your company
who set this EMC testing policy,
usually the bean counters, are the first
to run for the hills when and if an
EMI problem arises.

I follow a general rule whenever I
design something that I must sign off.
I never take design advice from any-
one who has less at stake than I do if
something goes wrong.

I refuse to lose my professional
engineer’s license because somebody
wants to save a few bucks. I’m not
trying to sound melodramatic, but as
most designers know from experience,
when something goes wrong, it’s a

lonely world.
I want to make this

point early rather than
waiting till the article
on design techniques
because it’s important
to understand the distinc-
tion between necessary
and sufficient. Now,
let’s look at common
EMI transient threats.

WHAT’S THE
THREAT?

One of the most
fundamental principles
of protection is to define
the nature of the hazard.
I did some of that last
year, but I want to expand
on the EMI threats here.

By developing qualita-
tive measures for EMI
threats, you’re able to

Peak

0.9

0.5

0.1

V
ol

ta
ge

 o
r

C
ur

re
nt

(k
V

)

 (

kA
)

T1
T2

Figure 1 —This double exponential curve is representative of a lightning-
induced transient. T1 represents the rise time from 10 to 90% of peak
value. T2 represents the fall time to 50% of peak value. The most
commonly used double exponentials are the 8/20 and 1.2/50. The
10/700 and the 10/1000 are double exponentials that are commonly
used in telecom applications.

100%

90%

I at 30 ns

I at 60 ns
10%

IIPEAK

30 ns
60 ns

tr = 0.7–1 ns

t

Severity Voltage First Peak Rise Time Current Current
Level (kV) (A) (ns) @ 30 ns (A) @ 60 ns (A)

1 2 7.5 0.7 4 2
2 4 15 0.7 8 4
3 6 22.5 0.7 12 6
4 8 30 0.7 16 8

Figure 2 —In a current waveform produced by an ESD gun, the charge is transferred in a
very short period of time (i.e., <100 ns). The large, extremely fast spike at the start of the
waveform simulates the initial charge transfer or spark that occurs when a charged human
body comes in contact with a conducting object. The ESD-gun waveform parameters are
established by the ESD test standard IEC 1000-4-2.

Circuit Cellar INK® Issue 91 February 1998 75

understand the stresses that your
electronic equipment will be sub-
jected to and thereby ensure that the
equipment is properly protected.

EMI is either conducted or radiated.
It can originate from outside (i.e.,
lightning) or it can be an internal
problem (i.e., when the microprocessor
clock causes problems in an adjacent
circuit).

When designing for EMI protection
or solving EMI problems, it’s useful to
divide the EMI threats into these two
broad categories. Here, I deal with
conducted EMI threats. I’ll address
radiated threats in a later article.

CONDUCTED EMI
Conducted-EMI threats can be sub-

divided into two broad categories—
transient events and steady-state signals.
No doubt, you recognize this approach
from circuit analysis.

I use the word “event” for transients
because it points out the singularity
of transients. Many similar transient
events may occur one after the other
or together, but they should still be
regarded as individual events.

The term steady-state signal is also
quite appropriate. Note that what I refer
to as steady-state EMI (e.g., power-
supply steady-state EMI), others may
call circuit noise.

The transient EMI event (e.g., light-
ning) can be characterized as being a
high-energy pulse of short duration. The
transient EMI event is unpredictable
and nonperiodic with very fast rise
and fall times.

In contrast to transient EMI events,
steady-state EMI signals tend to have
much less energy content. They are
generally periodic and predictable.

The fact that they are periodic means
they normally have much lower fre-

quency content
than their tran-
sient EMI cous-
ins. An example
of a steady-state
EMI signal is
microprocessor
clock noise on
the power lines.

The solution
to both transient
and steady-state

conducted EMI is to filter out or divert
the interference away from the affected
electronics. But clearly, the filter
technique that works for transient
EMI rarely works for steady-state
EMI, and vice versa.

Filtering transients requires the
filter to turn on quickly and absorb or
divert a large amount of energy for a
very short time. By contrast, when
filtering steady-state EMI, the filter
turn-on time is not very important
and the power-handling capabilities
are normally much less.

I’ll concentrate on the transient
EMI signals, as these are less well
understood than the steady-state EMI
signals and their effects are generally
more dramatic.

CAUSES OF TRANSIENT EMI
The most common

transient EMI threats
are lightning, electro-
static discharge (ESD),
electrical fast tran-
sients/bursts (EFT/B),
and the switching of
inductive loads. A
much less common
EMI threat is the
nuclear electromag-

netic pulse (NEMP). Let’s look at
these threats one at a time.

As Steve Ciarcia and Jeff Bachiochi
discuss (“Ground Zero,” INK 90), light-
ning is caused by a separation of charge.
When the potential is large enough to
ionize a path, we get lightning.

The most common types of light-
ning are cloud to cloud, intercloud, St.
Elmo’s Fire, and cloud to earth. The
cloud-to-earth lightning—although it
only accounts for about 15% of all light-
ning strikes—is normally of greatest
concern to designers of electronic
equipment. However, all forms of
lightning can cause problems for elec-
tronic equipment.

A cloud-to-earth strike occurs when
the potential difference between the
cloud and the earth is large enough to
ionize the cloud-to-earth path. The
lightning strike normally consists of
two or more strokes (with a rare maxi-
mum of about 40 individual strokes).

The duration of each stroke is in
the order of microseconds, and the
peak current ranges from 2 to 200 kA
with rise times to peak currents in
the 0.1–10-µs range. The large amount
of energy contained in a lightning
strike, coupled with the rise times,
makes it practically impossible to
protect equipment from a direct light-

Rise Time Fall Time Peak Voltage Peak Current

Lightning 1–10 µs 50-1000 µs 6 kV 10 kA
ESD 0.7–1 ns 60 ns 15 kV >16 A
EFT/B 5 ns 50 ns 4 kV N/A
Switching 1.2 µs 50 µs 4 kV N/A
 Inductive loads
NEMP 5 ns 250 ns 100 kV/m N/A

Table 1—As you can see, the common causes of transient EMI present their own
unique design problems. For example, lightning is slow but contains a great deal of
energy, whereas ESD contains much less energy than lightning but has extremely fast
rise times.

V

0.9

0.5

0.1

5 ns ± 30%
t

50 ns ± 30%
V

t
15 ms

300 ms

Power Supply Ports I/O Ports
Severity Voltage Repetition Voltage Repetition
Level Peak (kV) Rate (kHz) Peak (kV) Rate (kHz)

1 0.5 5 0.25 5
2 1 5 0.5 5
3 2 5 1 5
4 4 2.5 2 5
X Special Special

Figure 3 —The EFT/B generator
produces a train of pulses which
lasts 15 ms during a 300-ms time
frame. The individual pulses are
well-defined. The voltage level of
the applied voltage V depends on
the severity level applied. The
calling standard specifies
severity levels for various test
voltage levels and repetition
rates.

76 Issue 91 February 1998 Circuit Cellar INK®

Figure 4 —Using the schematic of an ESD gun (Figure 2, INK 81, p. 63), we can calculate
the voltage and currents resulting from an ESD event. Here, an RS-232 input with an input
impedance of about 8 kW is subjected to a 15-kV ESD. The result is virtually the full 15 kV
appearing across the input.

ning strike. Thankfully,
direct strikes are rare.

Of greater concern to
designers of electronic
equipment are indirect
lightning strikes. With
about 100 cloud-to-earth
strikes every second
worldwide, chances are
your equipment will be
subject to indirect light-
ning strikes.

Unfortunately, when it comes to
lightning strikes, defining the hazard is
very difficult. Of course, we must
come up with waveforms that define
the transients that lightning produces.
However, it’s important to keep in
mind their limitations and to under-
stand that the test waveforms depend
to some extent on your equipment.

Why are transients induced by light-
ning so hard to define? First, lightning
is a natural phenomenon that occurs
in an environment—outdoors—that
has a great many variables. Therefore,
quantifying lightning is difficult.

Note the values I gave above for
lightning: peak current of 2–200 kA
and a rise time of 0.1–10 µs. These are
hardly ranges you can plug into your
circuit-analysis program.

Another reason it’s difficult to
develop lightning transient waveforms
is that the coupling path is unpredict-
able. Lightning can couple into a net-
work via direct conduction or indirect
conduction, where lightning induces a
voltage on a wire that then conducts
it into a circuit or system.

When lightning is directly coupled
in, you can usually identify the entry
point (e.g., a power cable or I/O line) but
it’s difficult to quantify the coupling
path. When the lightning transient is
coupled in via indirect conduction, the
best you can do to quantify the coupling
path is to say the farther away the
strike, the better.

As a general rule of thumb, a light-
ing strike 1 km away from a 1-m piece
of bare wire induces a voltage of 100 V
across the wire. Since propagation is
through the air, coupling behaves as a
square law.

Without exact knowledge of the
source or coupling path, it’s difficult to
come up with test waveforms that simu-

This is known as the
turboelectric effect.

The most common
cause of ESD is humans
coming in contact with
electronic equipment.
When the charged body
comes in contact with a
conducting path (e.g.,
electronic equipment),
an ESD event occurs.

As you may recall, one
of the immunity tests is the ESD test,
in which the equipment under test is
subjected to a simulated ESD with
varied levels of severity. Figure 2 (repro-
duced from INK 81, p. 63) shows the
transient waveform associated with
ESD and gives typical specifications.
Note that the energy contents are much
less than that of a lightning transient,
but the rise and fall times are much
faster (i.e., in the nanosecond range).

Arcing-type surge protectors, such
as gas discharge devices, are too slow
for ESD events. Generally, metal oxide
varistors (MOVs) along with transient
voltage suppressor (TVS) semiconduc-
tors protect against ESD.

EFT/B
Electrical fast transients or bursts

are usually caused by the repetitive
switching of inductive loads. The indus-
try standard for EFT/B waveforms is
shown in Figure 3 (reproduced from
INK 81, p. 68).

MOVs and TVS semiconductors
protect from EFT/B. For more informa-
tion on EFT/B and ESD, please refer to
“Standards for Electromagnetic Com-
pliance Testing—Part 3: Immunity
and Susceptibility” (INK 81).

SWITCHED INDUCTIVE LOADS
The switching of inductive loads is

a special case of the EFT/B where the
transient is a single event rather than
a burst, as shown in Figure 3. When
the current flowing through an induc-
tive load is interrupted, a transient
voltage is produced by the collapsing
magnetic field.

These loads are everywhere (e.g.,
refrigerators, air conditioners, motors,
etc.). The voltage is characterized by:

V = –Ldi
dt

late transients caused by lighting. How-
ever, industry and standards groups
have done a good job of creating useful
test waveforms, which are based on
observation as much as calculation.

Several industry-standard wave-
forms model lightning-induced surges.
Virtually every one of these waveforms
is based on the double-exponential
waveform (see Figure 1).

The double-exponential waveform is
characterized by an exponential rise
from 10% to 90% of the peak and an
exponential decay to 50% of peak. The
most commonly used waveforms are
the 8/20-current and the 1.2/50-volt-
age waveforms. The first number is
the rise time, and the second number
is the decay time in microseconds.

Lightning is modeled as a short-
circuit event with a peak current up to
10 kA or as an open-circuit event with
peak voltages up to 6 kV. The peak
voltage of 6 kV is the point at which
most household receptacles flash over.

Other standard double-exponential
waveforms are the 10/1000 and 10/700
most commonly used in telecom appli-
cations. The European Community uses
1.2/50 for power lines and 10/700 for
telecom lines to describe the transient
threat posed by lightning (see 1000-4-5).

Voltages for these waveforms range
from 500 to 4000 V. Depending on the
class of equipment and peak currents,
voltages can be as high as 1 kA.

As transients go, lightning is a
relatively slow event and is normally
handled using air or carbon spark gaps
or gas discharge devices.

ESD
Electrostatic-charge buildup is

caused when two nonconducting objects
come in contact and then separate,
one gaining and one losing electrons.

Circuit Cellar INK® Issue 91 February 1998 77

where V is the induced voltage, L is
the inductance, and di/dt is the cur-
rent’s rate of change.

The industry standard for a switched
inductive load is the 1.2/50 double
exponential shown in Figure 1, with
voltage peaks in the 0.5–6-kV range
depending on the class of instrument.

Keep in mind that the point at
which the current is switched is also
important. If the current is switched
near the zero crossing, much less
voltage is induced than if the current
were switched near the peak of the
voltage waveform. This fact is impor-
tant if you have any control over the
switching of the inductive load.

Once again, MOVs and TVS semi-
conductors are the normal method of
protection.

NUCLEAR EM PULSE
A nuclear electromagnetic pulse

(NEMP) is, thankfully, not a common
EMI threat and is therefore not of
concern to most designers. However,
NEMPs are of great concern to the
designers of military equipment.

When a nuclear device explodes, it
creates an impulse of electromagnetic
energy. The pulse rise time is in the
5-ns range with a pulse duration of
~250 ns.

The pulse produces fields in the
100-kV/m range, which of course, has
devastating effects on most electronics.
This concept was used in the movie
Broken Arrow.

TRANSIENT THREATS
Table 1 summarizes the most com-

mon transient-producing EMI threats.
As you can see, every EMI transient
threat presents its own special prob-
lems to designers.

Lightning is a relatively slow tran-
sient threat, but it has a great amount
of energy. On the other hand, an ESD
has a very small amount of energy,
but its rise time is extremely fast.

It’s important to keep in mind that
the characteristics of the transient
event—the current and voltage ampli-
tudes, rise and fall times, and duration—
depend as much on the characteristics
of the affected equipment as on the
source of the transient and the cou-
pling path.

Telecom applications generally use
a 10/100 or 10/700 double exponen-
tial, rather than the more common
8/20 or 1.2/50 waveform. This is due
to the nature of telecommunications
networks, which tend to distribute
the transient over many lines, thereby
reducing its rise time and increasing
the decay time.

Now that you’ve seen the waveforms
of the most common EMI transients,
a useful experiment would be to apply
these waveforms to your circuit with-
out protective devices and calculate
the voltage and current levels.

Figure 4 shows a circuit that simu-
lates an ESD being applied to an RS-232
input. The input impedance of the line
is about 8 kΩ (assuming input capaci-
tance and lead inductance are zero).

If you assume contact resistance is
zero, the result, using the voltage
divider rule, would most likely be the
destruction of the RS-232 input. Al-
though this example was very simple,
with the addition of a little more
detail, this technique is a powerful
design tool.

Now that you have a feel for the
transient threats that your equipment
will encounter, we can turn our atten-
tion to protecting circuits. In the
upcoming months, I’ll discuss the
components used to protect equipment
from EMI transients. I

Joe DiBartolomeo, P. Eng., has over
15 years’ engineering experience. He
currently works for Sensors and Soft-
ware and also runs his own consult-
ing company, Northern Engineering
Associates. You may reach Joe at
jdb.nea@sympatico.ca or by telephone
at (905) 624-8909.

REFERENCES

Encyclopedia International, Vol.
10, Grolier, New York, NY, 1972.

MTL, Surge-Protection App note,
1993–1994.

MTL, App note AN9009, 1990.
KeyTek, Surge-protection test hand-

book, 1986.

I R S
425 Very Useful
426 Moderately Useful
427 Not Useful

78 Issue 91 February 1998 Circuit Cellar INK®

FROM THE
BENCH

Jeff Bachiochi

e

Choose the Right Vehicle
Before Riding the Air Waves

Even
with all
the TVs,
tapes,
CDs, and

VCRs, radio still
persists. Jeff takes a
look at dual-state
modulation
techniques to help
you ensure that your
message gets
through.

veryone has their
favorite. Chances

are, either yours has
changed format over the

years or your tastes have changed. Yet,
we all still listen to that old medium
that just won’t quit—radio.

It was comforting growing up with
your favorite station. That special DJ
was like a good friend you could always
count on.

Even with the availability of cas-
settes, CDs, TVs, and VCRs, radio
continues to be a popular medium. And
now, talk radio has its own following.
Radio just won’t die.

AM VS. FM
For a signal to be transmitted and

received over a particular medium,
the characteristics of the signal need
to be modulated or changed.

Our vocal cords modulate the air,
creating air-pressure waves that travel
outward from our mouths. If these
waves happen to enter our ear’s cavity
and in turn vibrate the eardrum, the
pressure waves are demodulated into
the original signal.

We can control the amplitude or
overall amount of the air pressure.
Loud sounds have large pressure waves,
and quiet sounds have smaller pres-
sure waves.

And, we can control the frequency
of air-pressure waves. Low frequencies

produce waves stretched apart, while
higher frequencies create waves that
are packed closer together.

Our vocal cords modulate air using
both AM (amplitude modulation) and
FM (frequency modulation). I could
use the term AM (angular modulation)
instead of FM, but it gets too confusing.

Angular modulation can be either
frequency or phase modulation. Fre-
quency modulation changes the car-
rier’s frequency in direct proportion to
the modulation’s amplitude. Phase
modulation (PM) changes the carrier’s
phase in direct proportion to the modu-
lation’s amplitude.

These differences are subtle. The FM
carrier is at its maximum frequency
deviations during the maximum and
minimum amplitudes of the modula-
tion signal. The PM carrier is at its
minimum frequency deviations dur-
ing maximum and minimum ampli-
tudes of the modulation signal.

Since both FM and PM carriers
have the same spectral properties, I’ll
use FM, one form of angular modula-
tion, to lessen the confusion with AM
(amplitude modulation).

AUDIO VS. DATA
AM and FM radio broadcasts are

forms of analog modulation. When
AM and FM are used for data trans-
mission, the modulation format can
be simplified.

AM becomes a carrier-present/
carrier-absent function, where the
presence of the carrier indicates one
data state and the absence equals the
opposite state.

FM can have two states as well,
but a carrier is always present. Using
FM, the two states are two frequencies
equidistant from the original carrier—
one above it and the other below.

Data transmission over the perfect
medium (or close to it), a LAN, or
phone line often uses multilevel modu-
lation (i.e., four or more states, instead
of two) to double the data transmitted
in one bit time.

Both AM and FM can even be used
together to increase the data/bit time.
That’s how we can get more and more
throughput using the same antiquated
POTS (plain old telephone service)
delivery service.

Circuit Cellar INK® Issue 91 February 1998 79

Improving technologies enable us
to get better at detecting multilevel
transmissions. In this discussion, I
won’t delve into these more complex
modulations.

Instead, I concentrate on a more
error/interference-prone transmission
medium—radio. And, I will compare
only the simplest dual-state modula-
tion techniques.

ASK VS. SPECTRUM
Amplitude Shift Keying (ASK) was

first used commercially by Marconi in
1896, when his Wireless Telegraph
Company established the world’s first
permanent wireless installation at The
Needles on the Isle of Wight, Hamp-
shire, England.

Marconi used Morse code, devel-
oped earlier by Samuel Morse, to send
wireless messages. (Actually, Morse
amplitude modulated current flow in
his telegraph system, but the medium
was copper wires.)

The maximum modulation rate is
generally a factor of 10–100 times less
than the carrier frequency. The upper
data rate for the AM radio band is
about 15 kHz, and the lowest AM
carrier is 36 times that (i.e., 540 kHz).

As audio modulates a carrier, upper
and lower sidebands are created and
transmitted along with the carrier.
These sidebands are spaced at a devia-
tion from the carrier equal to that of
the modulation frequency, where:

sidebandf
= carrierf ± modulationf

as you see in Figure 1a.
When audio modulates a carrier

between 0 and 100%, the sidebands
increase in amplitude in relation to
the percentage of modulation from no

sidebands, at 0% modulation, to half
the carrier amplitude, at 50% modula-
tion (compare Figures 1a and 1b).

When data is transmitted using ASK
modulation, no sidebands are created
since the modulation varies between
0% and no carrier (see Figure 1c).
Receivers require only a narrow band-
pass filter. However, in-band noise
has a large effect on the signal since it
is playing one-on-one with the carrier.

FSK VS. SPECTRUM
Frequency modulation became a

commercial institution in 1940 when
Zenith Radio’s Eugene McDonald
started an FM radio station. However,
it was Edwin H. Armstrong who first
demonstrated FM’s superior static-free
radio reception.

Unlike AM, where legal modulation
is between 0 and 100%, FM is expressed
as a modulation index or the ratio of
peak frequency deviation to modula-
tion frequency.

As the amplitude of the modulation
increases, the frequency deviation
(and the modulation index) increases
with respect to the modulation fre-
quency, moving the sidebands further
from the unmodulated carrier (see
Figures 2a and 2b).

As the modulation frequency falls,
the sidebands become rich in over-
tones. Remember, in FM, the center
frequency (or unmodulated carrier) is
not part of the FM transmission, un-
less of course, there is no modulation.

Unlike AM, where the total power
transmitted was proportional to the
data, the total power with FM is always
the same. FM’s change is one of side-
band deviation.

In FM data transmission, this change
consists of a increase or decrease in the
overtones of the sidebands sharing the
transmitted power.

POWER RESTRICTION
The FCC regulates all radio-fre-

quency (RF) devices.
RF devices are defined as “…any

device which in its operation is ca-
pable of emitting radio-frequency
energy by radiation, conduction, or
other means,” whether it be inciden-
tal, unintentional, or intentional
transmissions. Part 15 of the FCC
regulations explains the conditions
under which devices can be operated,
licensed, and unlicensed.

Among the regulations is the defini-
tion of digital devices (formerly labeled
computing devices) as a “…(device or

Emax
Ec

Emin

m = 0.2

Ec

EusbElsb

fc fc + fmfc – fm

Emax

Ec

Emin

m = 0.7

Ec

EusbElsb

fc fc + fmfc – fm

EmaxEcEmin

m = 0

Ec

EusbElsb

fc fc + fmfc – fm

a) b) c)

m = 7.0

fc fc + 9fmfc – 9fm

a) b)

m = 2.0

fc fc + 9fmfc – 9fm

Figure 2a —In FM, large modulation amplitudes move sidebands further from center frequency, while small modulation amplitudes (b) require less bandwidth.

Figure 1 —The amount of
amplitude modulation
affects the amplitude of
the sidebands and not that
of the carrier. At 30%
modulation, the sidebands
are small (a), while at 70%,
the sidebands are large
(b), and at 0%, there are
no sidebands (c).

80 Issue 91 February 1998 Circuit Cellar INK®

system) which generates and uses tim-
ing signals or pulses at a rate in excess
of 9000 pulses (cycles) per second.”

Also of note is the ever-popular
electronics kit, described as “any num-
ber of electronic parts, usually provided
with a schematic diagram or printed
circuit board, which, when assembled
in accordance with instructions, results

in a device subject to the regulations
of this Part, even if additional parts of
any type are required to complete the
assembly.”

Part 15 characterizes intentional
radiators as those devices that emit
radio-frequency energy. And, RF energy
is defined as electromagnetic energy
at any frequency in the radio spectrum

between 9 kHz and 3,000,000 MHz.
That just about covers everything
we’d be talking about, huh?

Subpart B of Part 15 discusses unin-
tentional radiators. That’s where most
devices and appliances fit (see Table 1a
for the band vs. field-strength limits).

Subpart C reviews intentional
radiators (i.e., transmitters), and these
range from 9 kHz to well over 38 GHz.
Within this range, there are many
bands in which only spurious emissions
are permitted, and radiated energy
must fall within strict guidelines.

Table 1b lists the bands limited to
these transmissions. For continuous
operation, the bands are even more
restricted (see Table 1c).

So, you can see that field strength
isn’t the only limitation put on a
transmitter. The type transmissions
are also restricted to certain bands.
This means if you intend to operate
an unlicensed transmitter, you need
to identify where you fit in the FCC’s
regulations before you can determine
what transmitter frequencies are avail-
able to you.

Frequency Unintentional Radiators
 of Emission (Class A digital device)

9–490 kHz 2400 µV/m
490 kHz–1.7 MHz 24000 µV/m

1.7–30 MHz 30 µV/m
30–88 MHz 90 µV/m
88–216 MHz 150 µV/m
216–960 MHz 210 µV/m

960+ MHz 300 µV/m

Table 1—Part 15 regulates maximum allowable emissions based on the signal types of unintentional radiators (a),
intentional spurious radiators (b), and intentional continuous radiators (c).

a) b)

c)

Frequency Intentional Spurious
of Emission Radiators

40 MHz 225 µV/m
70–130 MHz 125 µV/m
130–174 MHz 125–375 µV/m
174–260 MHz 375 µV/m
260–470 MHz 375–1250 µV/m

470+ MHz 12,500 µV/m

Frequency Continuous Intentional Continuous Intentional
of Emission Radiators (Fundamental) Radiators (Harmonics)

902–928 MHz 50 mV/m 500 mV/m
2400–2483 MHz 50 mV/m 500 mV/m
5725–5875 MHz 50 mV/m 500 mV/m

24+ GHz 250 mV/m 2500 mV/m

Circuit Cellar INK® Issue 91 February 1998 81

I R S
428 Very Useful
429 Moderately Useful
430 Not Useful

REFERENCES

Text
American Radio Relay League, The

Radio Amateur’s Handbook,
Newington, CT, 1998.

FCC, Code of Federal Regulations,
Title 47, Part 15, 1995.

Internet
Spectrum Analysis, Amplitude &

Frequency Modulation, Test &
Measurement App note 150-1,
www.tmo.hp.com

williams.cs.ncat.edu/modulate.htm
robotics.eecs.berkeley.edu/~sastry/

ee20/modulation.html
www.physics.udel.edu/wwwusers/

watson/student_projects/scen167/
thosguys

Jeff Bachiochi (pronounced“BAH-key-
AH-key”) is an electrical engineer on
Circuit Cellar INK’s engineering staff.

His background includes product design
and manufacturing. He may be reached
at jeff.bachiochi@circuitcellar.com.

Why am I talking about the FCC
regulations when I started off talking
about AM and FM?

First, it’s important to realize that
you just can’t arbitrarily choose any
transmission frequency if you want
your product to be legal. Second, be-
cause the FCC regulations have radi-
ated-energy limits, the transmission
distance depends on the type of trans-
mission modulation you plan to use.

So, let’s wrap this up by looking at
the advantages and disadvantages of
AM and FM.

Advantages Disadvantages

AM lower cost lower data rate
lower power consumption poor noise immunity
smaller size noncontinuous carrier
potentially twice the
 allowable output power

FM higher data rate higher cost
better noise immunity higher power consumption
continuous carrier larger size

lower allowable power output

Table 2—AM and FM techniques should be considered based on need since
each has its own advantages or disadvantages.

WHICH WAY?
Like anything else

in life, it’s one big
tradeoff. If the low-
est cost, power con-
sumption, and/or
size is the ultimate
goal, then AM looks
like the best choice
(see Table 2).

However, if a
higher data rate and/
or better noise immu-
nity is of the utmost

importance, then it might be better to
go with FM. Then again, if it’s not
legal, it doesn’t matter much, does it?

The moral is, when you think you
found the solution, make sure to check
the regulations. After all, while it
might seem as if the FCC’s sole pur-
pose is to make life miserable, really,
they’re just here to protect us from
each other. I

82 Issue 91 February 1998 Circuit Cellar INK®

SILICON
UPDATE

Tom Cantrell

t

Double-Duty DSP

What
first
appears
as just
another

DSP turns out to be
much more. Zilog’s
Z89xx3 DSP offers
the usual DSP goods
and acts like many
highly integrated
controllers for a
fraction of the cost.

he earnest mar-
keting fellow from

Zilog didn’t get more
than a few foils into his

presentation about their DSP to Ken
and me before I butted in.

I’m definitely a left-coast kind of guy
(er, dude). You may think you’re giving
me a presentation, but I see every meet-
ing as a potential rap session. Mean-
while, Ken is one of those New England
“salt of the earth” types who use words
sparingly, as if stocking up for winter.

Anyway, the poor Zilog fellow said
something about RISC and DSP that

convinced me my comments would,
or at least should, be welcomed. I
suppose my two cents could have been
helpful, but I have to admit I ran up
the tab to at least a quarter.

Eventually realizing I was chewing
up the allotted meeting time at a prodi-
gious rate, I finally deigned to allow
the poor guy to rush through the rest
of his pitch. The usual stuff about
MIPS and MACs, high performance,
low cost, and so on. To tell the truth,
I was already mentally filing under
“Yet Another DSP.”

Ken hadn’t said much during the
meeting—not that he could have got-
ten a word in edgewise. It was only as
we were leaving and I mentioned my
somewhat ho-hum assessment that
Ken finally spoke, “You know, there
might be something to that.”

DSP STEREO(TYPING)
It was one of those moments that

prompts a breakthrough in self-aware-
ness. I realized I was guilty of the same
sin of conventional wisdom compla-
cency that I always warn against.

In the CPU versus DSP debate, I’ve
been inspired by the work of professor
Michael Smith. He demonstrated way
back in ’92 (including “To DSP or Not
to DSP,” INK 28) that a decent CPU-
pipelined Harvard RISC enhanced
with key DSP features (e.g., fast mul-
tiplier) could match the signal-process-
ing performance of DSPs.

Photo 1a —Whether the new Zilog ’x3 is a DSP or a micro, you’ve still got to hook it up and get it working. Zilog
offers a low-cost evaluation and emulation board that connects to a PC via a serial port and includes an OTP
programmer.

Circuit Cellar INK® Issue 91 February 1998 83

Today, you needn’t look further
than your own desktop, where MMX
and similarly pumped CPUs crunch
through audio, image-processing,
compression, and modem algorithms
formerly deemed the province of DSPs.

Reinforcing my bias, I had a number
of negative conceptions about DSPs.
Pricey, hard to program and debug, weak
handling anything besides DSP loops,
finicky hardware interface, and so forth.

Ken’s comment prompted me to
stick to my own advice: Question
authority, including your own. If CPUs
are becoming more like DSPs, doesn’t
that mean DSPs are automatically
becoming more like CPUs? I decided
to give the Zilog Z89xx3 16-bit single-
chip DSP a closer, and impartial, look.

Even without popping the hood, a
glance at the sticker dispels price
misconceptions. Though high-end
DSPs that I’ve covered in the past
(like Analog Device’s SHARC and
TI’s VelociTI) come with double- or
even triple-digit price tags, the Zilog
parts are less than $10 for low-volume
OTPs and dive below $5 for high-
volume masked ROMs.

TWO CHIPS IN ONE
Along with the price tag, the ’x3

block diagram in Figure 1 further
highlights the similarity with main-
stream MCUs. Certainly nothing odd

about the ADC, counter/timers, SPI,
parallel I/O, and expansion bus.

Indeed, the high-speed multiplier and
dual data RAMs are the only distinctly
DSP features. They’re also the focal
point for critical design tradeoffs that
achieve good performance at such a
low price.

For instance, 16-bit operands would
normally call for a 32-bit ALU and
accumulator to avoid overflow. How-
ever, when determining the resolution
required, consider the source—most
likely an on-chip four-channel eight-
bit ADC.

No sense demanding accuracy
beyond the precision of the input. So,
instead of a full 32-bit result, the ’x3
only totes the most significant 24 bits.

Though the 24-bit fractional format
(i.e., sign bit followed by fractional

power of two bits, such as 1⁄2, 1⁄4, 1⁄8…)
can’t represent 1.0, it gets darn close
with 0.9999999. Furthermore, 8-bit data
and 24-bit resolution mean we can mul-
tiply and accumulate up to 256 samples
before worrying about overflow, which
just happens to perfectly match the
256-word depth of the data RAMs.

Similar economizing takes place on
the shifter front. Instead of the full
barrel shifter found on expensive chips,
the ’x3 gets by with conventional
single-bit left and right shifts, supple-
mented by a three-bit right-shift option.
Of course, simply multiplying by the
appropriate fractional power of two
duplicates the function of the right-
shift portion of a barrel shifter (e.g.,
multiply by 1⁄32 to shift right five bits).

Remember that clever design may
offset left-shift laments. For instance,
one Zilog app note discusses connecting
a single eight-bit SRAM to the 16-bit
expansion bus. Since the chip has no
built-in bus matching or sizing capabil-
ity, this calls for software to morph
16-bit transfers into dual-byte accesses.
It seems there’s no escape from chugging
through eight left-shift instructions.

The trick? Connect the SRAM to
every other expansion-bus bit, and a
single shift is all it takes to switch
between the even and odd bits.

LINGUA FRACTAL
As with the block diagram, only a

small portion of the architecture (see
Table 1) uniquely brands the ’x3 as a
DSP, most notably the one-clock multi-
ply (MLD), multiply and accumulate
(MPYA), and multiply and subtract (MPYS)
instructions.

There’s also a bit of looping support
with the Loop address-mode option

Port 0
*EXTEN
EA0–2
EXT0–15/P00–15
*DS
RD/*WR

AN0
AN1
AN2
AN3

Port 1
P10–17
or
INT2
CLKOUT
SIN
SOUT
SK
SS
U10–1

Port 2
P20–27
OR
U12
TMO01,10
TMO2
INT0–1
*WAIT

Port 3
P30–33
P34–37

*HALT

ROMEN

*RES

CLK1

CLK0

AGND

ANVCC

VAL0

VAH1

LPF

VSS

VDD

PD0–15

PA0–15

*PAZ

PDATA

PADDR

Program
ROM/OTP
8192 × 16

Data RAM0
256 × 16

P0 P0
P1 P1
P2 P2

D P0–3 D P4–6

ADDR ADDR
GEN0 GEN1

Data RAM1
256 × 16

X Y
Multiplier

P

Shifter

Arithmetic
Logic Unit

(ALU)

Accumulator

16-Bit Timer
Counter

16-Bit Timer
Counter, PWM

16-Bit Timer
Counter, PWM

SPI

4 Inputs
4 Outputs

8-Bit I/O

8-Bit I/O

8-Bit
ADC

16-Bit
Program

I/O

Program
Control

Unit

Switch
DDATA

Stack

Figure 1 —The ’x3 surrounds the core of a DSP
(high-speed multiplier, dual-bank RAM, and sepa-
rate instruction and data buses) with traditional
controller peripherals (PIO, timer/counters, ADC,
and SPI).

Figure 2 —The ’x3
clock generator is about
as good as it gets,
certainly far superior to
the plain oscillator found
on most controllers.

LPF

Phase
Detector

8-Bit
Divider

VCO

STOP_VCO

:2
:2

Clock
Sync

Switch System
Clock

32 kHz

STOP_OSC

PLL
Divider

Bank 15/Ext15

Clock Source

BYPASS_PLL

Off-Chip

0.1 µF
22 µF

1 kΩ

:2

On-Chip

0 [1
5–

8]

1 4–
3

2

84 Issue 91 February 1998 Circuit Cellar INK®

Table 1a & b —The speedy multiply and program memory address modes are the only clues that the ’x3 is a DSP.
c—The instruction set is quite terse, indeed more “reduced” than that of many RISCs.

that tweaks conventional pointer auto-
increment and -decrement with modulo
rollover. Cost consciousness dictates
a bit of a compromise. That’s why only
power-of-two loop sizes between 2
and 256 are supported.

Since the ’x3 is a true Harvard
architecture, the <memind> address-
ing mode is provided to access data
(e.g., constants, tables, and coefficients)
stored in program (EP)ROM.

Other than these overtly DSPish
features, there’s little to distinguish
the ’x3 from conventional controllers.
It has kind of a “Z8 on steroids” flavor
(in fact, the $99 assembler offered by
Zilog supports both the Z8 and ’x3).
Otherwise, it’s business as usual (e.g.,
LD, JP, CALL, AND, OR, etc.).

Of course, the ’x3’s claim to fame
is that most of the instructions are
single word and execute in a single
clock. Two exceptions are when the
long (16 bit) immediate (two word, two
clock) and indirect (one word, three
clock) address modes are used. Since
they’re relatively rarely encountered,
that leaves two clock branching (i.e.,
JPs, CALLs, RETs) as the main MIPS
versus megahertz derater.

JPs and CALLs are conditional, but
timing is the same whether the branch
is taken or not. Besides the usual flags
(Z, C, OV, etc.), two pins (UI0 and UI1)
and their inversions are patched into
the condition codes. The ’x3 also
supports conditional execution for
typical accumulator operations (INC,
DEC, NEG, shifts, and rotates), cutting
the number of JPs required.

The interrupt scheme furthers the
cause of fast and predictable response.
It isn’t fancy, mind you. No intricate
programmable priority or nesting
schemes, and the stack is just six deep.
However, it only takes two clocks (after
completing the current instruction) to
save the PC and vector to the handler.

All interrupt sources (including on-
chip I/O and three external program-
mable edge inputs) are mapped to one
of three internal interrupt vectors. The
idea is to pick the two most critical
interrupt sources and map them to
vectors 0 (highest priority) and 1.

Then, any or all of the remaining
sources are assigned to vector 2 (low-
est priority), recognizing some polling

Symbolic Name Syntax Description

<pregs> Pn:b Pointer Register
<dregs> Dn:b Data Register

 (points to RAM)
<hwregs> X, Y, PC, SR, P Hardware Registers

EXTn, A, BUS
<accind> @A Accumulator Memory Indirect
(points to

Program Memory)
<direct> <expression> Direct Address Expression
<limm> #<const exp> Long (16 bit) Immediate Value
<simm> #<const exp> Short (8 bit) Immediate Value
<regind> @Pn:b Pointer Register Indirect

 (points to RAM) @Pn:b+ Pointer Register Indirect with Increment
@Pn:b–LOOP Pointer Register Indirect with Loop Decrement
@Pn:b+LOOP

<memind> @@Pn:b Pointer Register Memory Indirect
 (points to @Dn:b Data Register Memory Indirect

 Program Memory) @@Pn:b–LOOP Pointer Register Memory Indirect with Loop Decrement
@@Pn:b+LOOP Pointer Register Memory Indirect with Loop Increment
@@Pn:b+ Pointer Register Memory Indirect with Increment

Register Description

P Multiplier output (24 bit)
X X multiplier input (16 bit)
Y Y multiplier input (16 bit)
A Accumulator (24 bit)

SR Status register (16 bit)
Pn:b Six RAM address pointers (8 bit)
PC Program counter (16 bit)

EXT0 External data port 0 (16 bit)

Instruction Description

ABS Absolute value
ADD Addition
AND Bitwise AND
CALL Subroutine call
CCF Clear carry flag
CIEF Clear interrupt enable flag
COPF Clear overflow protect flag

CP Compare
DEC Decrement
INC Increment
JP Jump
LD Load

MLD Multiply
MPYA Multiply add
MPYS Multiply subtract

a)

b)

c)

EXT1 External data port 1 (16 bit)
EXT2 External data port 2 (16 bit)
EXT3 External data port 3 (16 bit)
EXT4 External data port 4 (16 bit)
EXT5 External data port 5 (16 bit)
EXT6 External data port 6 (16 bit)
EXT7 External data port 7 (16 bit)

Register Description

NEG Negate
NOP No operation
OR Bitwise OR

POP Pop stack
PUSH Push stack
RET Subroutine return
RL Rotate left
RR Rotate right
SCF Set carry flag
SIEF Set interrupt enable flag
SLL Shift left logical

SOPF Set overflow protection flag
SUB Subtract
XOR Bitwise XOR

Instruction Description

will be required if more than one is
enabled. Any source that isn’t assigned
to one of the three internal vectors is
de facto disabled.

MY KINGDOM FOR A CLOCK
Before going further, I’d like to

single out the ’x3 clock generator,
shown in Figure 2, for special praise.
Often overlooked, clocking is a key
issue with intrinsic relation to system
cost, reliability, power consumption,
EMI, and timing capability.

Zilog could have gotten by with the
conventional crystal oscillator, since
20 MHz arguably doesn’t push the enve-
lope. Nevertheless, they went to the
trouble of providing a PLL-based clock
generator that works with a cheap,
rugged, low-EMI 32-kHz watch crystal.
While the ’x3 isn’t the first (and won’t
be the last) to exploit PLL, Zilog’s design
is notably pragmatic and versatile.

As shown in Figure 3, a variety of
dynamically programmable options
comprise a four-tier low-power regime.

Circuit Cellar INK® Issue 91 February 1998 85

The most miserly Stop
clock mode shuts every-
thing down.

However, those who’ve
dealt with PLLs before
know that slow wakeup
is the price to pay for
deep sleep. The ’x3 is no
exception, needing a
leisurely 10 ms to get up
and running.

If that’s a problem,
select the option that
leaves the PLL running for fast recovery.
Another choice has the ’x3 run directly
off the 32-kHz crystal, again with or
without the fast-recovery option. Notice
the selection of wakeup sources, includ-
ing INT0, the SPI SS (Slave Select), a
PIO bit (U10), or all three.

KITCHEN SINK
The ’x3 may be brainy, but does it

have the I/O brawn to match highly
integrated controllers? Though the chip
has a complete selection of peripherals,
the devil may be in the details, so let’s
take a closer look.

The ’x3 is offered in five different
packages (listed in Table 2), which basi-
cally fit into two categories—big (68+
pins) and small (44 pins). Though the
100-pin version does offer 64K word
program expansion, it’s the 16-bit EXT
(external) bus that’s intended to accom-
modate application-specific add-ons.

The three-address-line limit (EA0–
2) isn’t simply a case of pin shortage.
In fact, EXT0–EXT7 are all the ’x3
knows about because they’re hardwired
into the opcode map.

Since EXT is also used for accessing
the on-chip I/O, the ’x3 relies on a

banking scheme. Vari-
ous combinations of
internal and external
registers are mapped
into 16 banks, with
EXT7 (which selects
the bank and consoli-
dates interrupt status)
common across all
banks.

The EXT bus,
mapped directly into
the register file, is fast

(i.e., one clock). If timing is tight, take
advantage of the on-chip one-wait
state generator and *WAIT pin. Of
course, you can always configure one
or both bytes of EXT as regular PIO
(outputs configurable as push-pull or
open-drain) and do everything in soft-
ware, especially with so many MIPS
on tap.

DSPs are known for delivering bus
bandwidth, but how does the ’x3 fare
on controllers home turf (e.g., the
ADC, timers, SPI, etc.)? With rela-
tively modest expectations, I was
surprised to find that these functions

Z89223-ROM Z89323-ROM
Z89273-OTP Z89373-OTP Z89393-EXT.ROM

Pin Count 44-Pin 68-Pin 80-Pin 100-Pin
Package PLCC/QFP PLCC PQFP PQFP

P0[15:8] EXT, P0, P1 EXT, P0 EXT, P0 EXT, P0
P0[7:0] EXT, P0 EXT, P0 EXT, P0 EXT, P0
P1[7:0] P1 P1 P1
P2[7:0] P2[4:0] P2 P2 P2
P3[7:0] P3

Table 2—The ’x3 lineup starts with the ’223/’273 in 44-pin packages and moves up to the ’323/
’373 with 68 or 80 pins. The 100-pin ’393 supports external ROM up to 64K × 16 with a separate
bus (16 address and 16 data lines).

86 Issue 91 February 1998 Circuit Cellar INK®

are not only competitive with control-
lers, but quite a bit better than most.

For instance, the four-channel eight-
bit ADC offers separate high and low
reference voltage inputs. Of course, you
can just connect them to digital power
and ground, achieving the equivalent of
chips without dedicated pins. However,
separate references are often preferred
for higher accuracy, especially consid-
ering noise and drift on the digital side.

The ADC is quite fast (2.0 µs) and
is rather versatile and easy to use. For
instance, besides program control, a
conversion can also be initiated by an
interrupt input (INT1) or countdown
of one of the timers. Conventional

single channel conversion is supple-
mented with modes that gather four
readings from a single channel or one
from each channel.

The three 16-bit timers prove that
’x3-peripheral know-how extends into
the digital realm as well. Two of the
units feature eight-bit prescaler, auto-
reload, and a variety of modes includ-
ing square wave, PWM, one-shot,
gated-count, triggered count, and
period measurement. There are even
two watchdog variants—one retrigger-
ed by software and one by pin input.

The third 16-bit unit isn’t as whizzy
but does offer the unique advantage of
being able to run off the 32-kHz time-

D15 D14 D13 D12 D11 D10 D9 D8 D0D1D2D3D4D5D6D7

Programmable PLL Divider Register
System Clock = Bits 15–8 × 4 × Crystal Frequency (32.768 kHz)
8 (1.05 MHz) < Bits 15–8 < 152 (19.923 MHz) for Z89223/323/393
8 (1.05 MHz) < Bits 15–8 < 122 (15.991 MHz) for Z89273/373

STOP Recovery Level
0 : Low
(Default setting after reset)
1 : High

Recovery Source
00 : POR (Power-On Reset) or Port 2, Bit 0 (INTO)
01 : POR or Port 1, Bit 4 (SS)
11 : POR or Port 2, Bit 0 or Port 1, Bit 4 or Port 1 Bit 6

DSP (System) Clock Source
00 : VCO Clock
01 : VCO Clock Divided by 2
10 : VCO Clock Divided by 4
11 : Twice the Crystal Frequency

BYPASS_PLL
0 : Clock Source is Oscillator
1 : Clock Source is VCO

STOP_VCO
0 : VCO Running
1 : Stop VCO

STOP_OSC
0 : Oscillator Running
1 : Stop Oscillator

Figure 3 —The ability to completely program the clock generator provides the basis for ’x3 low-power modes.

Photo 1b —Traditional controller users will feel right at home with the ’x3 Windows-based development software
included with the evaluation and emulation board pictured in Photo 1a.

Circuit Cellar INK® Issue 91 February 1998 87

I R S
431 Very Useful
432 Moderately Useful
433 Not Useful

CONTACT

Z89xx3
Zilog, Inc.
210 E. Hacienda Ave.
Campbell, CA 95008-6600
(408) 370-8000
Fax: (408) 370-8056
www.zilog.com

Tom Cantrell has been working on
chip, board, and systems design and
marketing in Silicon Valley for more
than ten years. You may reach him by
E-mail at tom.cantrell@circuitcellar.
com, by telephone at (510) 657-0264,
or by fax at (510) 657-5441.

base (other options are clock/2 and an
external input), which the rest of the
chip is running at high speed.

Even the lowly SPI port earns
Brownie points with lots of program-
mable options—master or slave, clock
source, divide ratio, slave select (SS)
polarity, and data transfer (SIN/SOUT)
on the clock’s rising or falling edge (SK).

MCU + DSP = MSP?
Zilog also offers low-cost tools

including an emulator/programmer
board with Windows front-end (see
Photos 1a and 1b) and a full-featured
assembler, while PLC offers a C com-
piler for those so inclined.

I didn’t have a lot of time to check
the tools out thoroughly, but they
seemed to work fine, notably passing
my ancient PC reality check. If the
stuff works with my 33-MHz ’386
Win3.1 box of distinctly dubious pedi-
gree, I suspect your PC can handle it.

Experimenting with the tools was
the final nail in the coffin of my pre-
conceived notions. The look and feel
of the setup was no different than for
any number of micros I’ve dealt with.

If the ’x3 is any indication, what a
chip is labeled will soon be more a
matter of marketing than what’s un-
der the hood. Zilog may call it a “DSP,”
but it’s also a fast, low-cost, high-
integration 16-bit controller that just
happens to know how to multiply. I

96 Issue 91 February 1998 Circuit Cellar INK®

PRIORITY INTERRUPT

steve.ciarcia@circuitcellar.com

Techno-Jargon

e very industry and occupation has its jargon. At one time, it was just the military that came up with acronyms
and abbreviations that stumped the conscious mind. These days, every technical discussion is interspersed with

so much techno-speak, you need an acronym dictionary to participate.
There’s no rational approach to its creation either. We create new acronyms as if coining one is a necessary

marketing tactic. At one time, we just used the acronym with a prefix or suffix to keep things simple. A 1200-bps modem (MOdulator-
DEModulator) and a 56.7-kbps modem served the same purpose, but you easily knew the difference. A new Jeep (I forgot what it stood
for) isn’t called a Jeep XR5. It’s an HMMWV (High Mobility Multipurpose Wheeled Vehicle). Of course, the guy who coined the acronym
and the people who tried to pronounce it had some disagreement. Now, it’s spelled Humvee, but it still has the original description. Talk
about muddying the waters.

The worst part about using explicit technical jargon and acronyms in conversation is that unless everyone is clued into exactly the
same definitions, everyone can come away with different understandings of what was communicated. An editor attending a news
conference had better know that this latest computer widget with ESP has an Enhanced Serial Port—not Extra Sensory Perception.

Keeping up on the latest techno-speak is no easy task. It’s a language with no regulations other than use three times as many
syllables as would normally suffice, forget all the grammar rules, and try to arrange it into a catchy acronym if possible. The only guide to
actual meaning is often the context in which it’s used. Even then, you might have to listen very carefully. You can’t blindly assume that
IDE always means Integrated Device Electronics (hardware), when the reference may in fact be to an Integrated Development Environ-
ment (software) instead.

The downside of all this language modification is that we end up with a different language for every expertise. I had a very real
demonstration of this during a meeting at a recent computer conference. Typical of tradeshows where time is at a premium, marketing
people, engineers, editors, and advertising representatives all meet together. Invariably, as the engineers and editors discuss the latest
technical attributes of a new product, you can watch as the other meeting attendees start counting the holes in the acoustic ceiling tiles.
As the marketing and advertising people banter in their equally obscure terminology, the editors and engineers fidget with their electronic
notepads or just glaze over. As for myself, I nodded confidently at most of the presentation. That was true until their development
software description included the sentence, “…and the whole system is cued from the RMB.”

Say what? I had familiarized myself with most of the terms in their new product literature just in case. This was one I didn’t
remember. I could feel a little sweat forming as I tried to inconspicuously open the product brief and scan the block-diagram notations. I
couldn’t help feeling like a school kid hoping to be invisible to the teacher. All I needed was for the speaker to say, “So Steve, how do you
think INK readers will feel about our use of the RMB?”

The meeting broke up with everyone feeling that a lot had been accomplished. I frowned as I walked away muttering to myself,
“What is this RMB triggering logic?” Later, after a few drinks in the restaurant, I decided to probe the question without directly admitting
ignorance. “Should we be investigating the significance of their RMB cueing?” I asked.

One of my editors laughed and said, “I hardly think an exposé on using the Right Mouse Button will excite our readers.”
“Right mouse button! Why the hell didn’t he just say you start the development program by clicking the right mouse button?”
I know I really shouldn’t be criticizing the use of technical acronyms, even techno-speak. After all, when it’s used correctly, it’s an

expedient means for rapidly communicating concepts and ideas. Surely, if everyone at the table understands that BDM means Back-
ground Debug Mode, it can more easily be used in the descriptive explanation of another concept. The downside of the constant and
arbitrary use of vague acronyms in technical descriptions (especially proprietary ones), however, is that invariably they often serve only to
obscure a simpler explanation.

Before you cave in to language intimidation, realize there’s no requirement that technical explanations include a dozen six-letter
acronyms. Simply presuming that someone who uses a lot of techno-jargon has a better technical understanding is an oversimplification
and often incorrect. And unfortunately, even when you know exactly what’s being discussed, it can still be very difficult to determine the
dividing line between Babel and genius. I certainly discovered that.

