
CELLAR
CIRCUIT
T H E C O M P U T E R A P P L I C A T I O N S J O U R N A L

®INK

$3.95 U.S.
$4.95 Canada

 # 9 2 M A R C H 1 9 9 8

ROBOTICS
This Robot Sees Color

Power Systems for
Autonomous Robots

Suppressing EMI

8051 Code Goes PC

E
M

BEDDEDPC
M

ONTHLY SECTION

2 Issue 92 March 1998 Circuit Cellar INK®

Reality Alert

janice.hughes@circuitcellar.com

TASK MANAGER

w hen robots first entered our pop culture
mentality, it was with great fanfare and hype.

People imagined critters who could come and take
over all the sloth of their lives and dispense with nasty

tasks at extraordinary speed. Car oil would be changed, bathroom sinks
unclogged, lawns cut and watered, sidewalks shoveled—all with simple
voice commands. After all, these jobs are very basic and every human
being from two on knows how to speak, at least, sort of.

The fall from this illusion was as catastrophic for some as Adam and
Eve’s expulsion from the Garden of Eden. Now, any mention of robotics is
met with scornful contempt. All robots have entered the never-never land of
Star Trek, Star Wars, and Johnny 5. It’s just not a reality.

Meanwhile, however, robotics marches on in many university and
corporate laboratories. Frankenstein-like engineers piece together software
and hardware technology with knowledge from oceanography, linguistics,
mechanical engineering, neurology, physiology, anthropology, and so on.
It’s rather an endless list.

And the breakthroughs by these scientists are phenomenal. Robots
that can leave a mothership for several hours to map a section of the ocean
floor before returning to the ship. Prosthetic robots for people with severe
spinal injuries. With these, a headset on the user transmits commands to a
nearby slave prosthetic, thereby enabling them to be more self-sufficient.
All-terrain wheelchairs granting someone access to the same places as
able-bodied people. All of these applications require a blending of expertise
from many disciplines.

Our first feature (and star of our front cover) is a good example of this
same kind of discovery. Newton Labs, a pioneer in robot engineering,
introduces us to M1, a color-sensitive robot. While M1’s primary task of
chasing tennis balls seems rather limited, the technology behind what the
robot accomplishes is being used for autonomous spacecraft docking,
automated acquisition of cargo by helicopter, and inspection of products
ranging from fruit to upholstery.

Ingo Cyliax, who has worked extensively with the miniature Stiquito
robots, brings us the next feature—how to power autonomous robots. Bruce
Reynolds takes us back to the basics. His MicroBot is just plain fun. His
goal: to help a non-techie friend discover how to program Intel’s 8749 and
learn the fundamentals of sequential control logic, servo control, timing, and
so on. Gordon Dick wraps up the features by zeroing in on microprocessor
control of motor speed, a necessary evil in many robot applications.

In Embedded PC, Chip Freitag and Jeff Kirk help you port your 8051
code to the embedded-PC world. Ingo illustrates how to pick a PC RTOS
using a robot application, and Fred goes embedded via the PC Card. As
Fred points out, a lot of functionality and client-specific tailoring can be
accomplished by implementing PCMCIA technology.

In Part 2 of his series on designing for EMI, Joe DiBartolomeo reviews
suppression components. Jeff shows how to do a workaround using
software when traditional hardware UARTs won’t do. And, Tom introduces
us to Patriot Scientific’s ShBoom CPU, a micro that incorporates some hot
ideas from the past with cutting-edge developments of the present.

T H E C O M P U T E R A P P L I C A T I O N S J O U R N A L

®INK
EDITORIAL DIRECTOR/PUBLISHER
Steve Ciarcia

EDITOR-IN-CHIEF
Ken Davidson

MANAGING EDITOR
Janice Hughes

TECHNICAL EDITOR
Elizabeth Laurençot

WEST COAST EDITOR
Tom Cantrell

CONTRIBUTING EDITORS
Rick Lehrbaum
Fred Eady

NEW PRODUCTS EDITOR
Harv Weiner

ASSOCIATE PUBLISHER
Sue (Hodge) Skolnick

CIRCULATION MANAGER
Rose Mansella

BUSINESS MANAGER
Jeannette Walters

ART DIRECTOR
KC Zienka

ENGINEERING STAFF
Jeff Bachiochi

PRODUCTION STAFF
John Gorsky

James Soussounis

Cover photograph Ron Meadows – Meadows Marketing
PRINTED IN THE UNITED STATES

For information on authorized reprints of articles,
contact Jeannette Walters (860) 875-2199.

Circuit Cellar INK® makes no warranties and assumes no responsibility or liability of any kind for errors in these
programs or schematics or for the consequences of any such errors. Furthermore, because of possible variation in
the quality and condition of materials and workmanship of reader-assembled projects, Circuit Cellar INK® disclaims
any responsiblity for the safe and proper function of reader-assembled projects based upon or from plans, descriptions,
or information published in Circuit Cellar INK®.
Entire contents copyright © 1998 by Circuit Cellar Incorporated. All rights reserved. Circuit Cellar INK is a registered
trademark of Circuit Cellar Inc. Reproduction of this publication in whole or in part without written consent from Circuit
Cellar Inc. is prohibited.

CONTACTING CIRCUIT CELLAR INK
SUBSCRIPTIONS:

INFORMATION: www.circuitcellar.com or subscribe@circuitcellar.com
TO SUBSCRIBE: (800) 269-6301 or via our editorial offices: (860) 875-2199

GENERAL INFORMATION:
TELEPHONE: (860) 875-2199 FAX: (860) 871-0411
INTERNET: info@circuitcellar.com, editor@circuitcellar.com, or www.circuitcellar.com
EDITORIAL OFFICES: Editor, Circuit Cellar INK, 4 Park St., Vernon, CT 06066

AUTHOR CONTACT:
E-MAIL: Author addresses (when available) included at the end of each article.
ARTICLE FILES: ftp.circuitcellar.com

CIRCUIT CELLAR INK®, THE COMPUTER APPLICATIONS JOURNAL (ISSN 0896-8985) is published monthly by
Circuit Cellar Incorporated, 4 Park Street, Suite 20, Vernon, CT 06066 (860) 875-2751. Periodical rates paid at
Vernon, CT and additional offices. One-year (12 issues) subscription rate USA and possessions $21.95,
Canada/Mexico $31.95, all other countries $49.95. Two-year (24 issues) subscription rate USA and
possessions $39, Canada/Mexico $55, all other countries $85. All subscription orders payable in U.S. funds
only via VISA, MasterCard, international postal money order, or check drawn on U.S. bank.
Direct subscription orders and subscription-related questions to Circuit Cellar INK Subscriptions,
P.O. Box 698, Holmes, PA 19043-9613 or call (800) 269-6301.
Postmaster: Send address changes to Circuit Cellar INK, Circulation Dept., P.O. Box 698, Holmes, PA 19043-9613.

ADVERTISING
ADVERTISING SALES REPRESENTATIVE

Bobbi Yush Fax: (860) 871-0411
(860) 872-3064 E-mail: bobbi.yush@circuitcellar.com

ADVERTISING COORDINATOR
Valerie Luster Fax: (860) 871-0411
(860) 875-2199 E-mail: val.luster@circuitcellar.com

Circuit Cellar INK® Issue 92 March 1998 3

ISSUE
INSIDE

Robots with a Vision
Using the Cognachrome Vision System
Bill Bailey, Jon Reese, Randy Sargent, Carl Witty, & Anne Wright

Power Systems in Autonomous Robots
Ingo Cyliax

MicroBot
Programming Intel’s 8749 for Robotic Control
Bruce Reynolds

Motor Speed Control with a Microtwist
Gordon Dick

I MicroSeries
EMI Gone Technical
Part 2: Suppression Components
Joe DiBartolomeo

I From the Bench
Proprietary Serial Protocols
No Help from Traditional UARTs
Jeff Bachiochi

I Silicon Update
ShBoom Box
Tom Cantrell

2

6

8

65

 96

EM
BE

DD
ED

PC
12

24
30

58
66

74

80

36 Nouveau PC
edited by Harv Weiner

41 Converting 8051 Code for
an ’x86 Embedded Processor

 Chip Freitag & Jeff Kirk

47 RPC Real-Time PC
Picking a PC RTOS
Ingo Cyliax

53 APC Applied PCs
Embedding PC Card
Part 1: The Time Has Come
Fred Eady

www.c i rcu i tce l lar .com

9292

Task Manager
Janice Hughes

Reality Alert

Reader I/O

New Product News
edited by Harv Weiner

Advertiser’s Index

Priority Interrupt
Steve Ciarcia

For Once, I Sort of Agree

6 Issue 92 March 1998 Circuit Cellar INK®

READER I/O
BAD LIC. PL. # = CE 4 PDA OS

Edward Steinfeld’s article was an excellent overview
of why not to use Windows CE (“Windows CE is Ready,
But for What?” INK 88). After being frustrated by Micro-
soft’s previous orphaned attempts at making a light-
weight OS (Windows Lite and Windows for Pens), I’ve
been skeptical about this new offering. While I could
point out a couple showstoppers for my application
right away, it’s good to have such a compilation of the
OS’s weaknesses before finding out the hard way. I still
don’t think Microsoft is serious about this product or
the field in general.

A surprise: given the choices out there, it looks like
the OS for scalable applications may be Linux. On the
high end, Linux benchmarks significantly faster than
most commercial OSs. It’s also much more reliable and
supported than anything I’ve used before.

For the embedded market, Linux can be booted from
1 MB of ROM and provides the capabilities of a mature
multitasking, multi-user, and network-centric environ-
ment. Also, it supports a wider range of the ’x86 plat-
forms than WinCE. Full source means no problems
with forced obsolescence or orphaning by the vendor.
Drivers and tools are plentiful, and commercial con-
tract help is available when custom work is necessary.

Development and deployment are trivial. It’s the
same OS scaled across the platforms as opposed to a
retrofitted or redesigned version of a desktop OS. And
for those areas where commercial support is crucial,
there are many competing companies from which to
choose—not just one unresponsive monopoly.

Thad Starner
testarne@media.mit.edu

MEET THE PIONEERS
The keyboard diagrams and table found in Table 1 of

“A Hardware Keyboard Remapper” (INK 89) were built
from research done by Altek Instruments. Altek’s work
represents a significant accomplishment as virtually all
previously published information they found was in
error in some way. If you’re interested in learning more
about building a keyboard wedge interface, be sure to
check out <www.hello. co.uk/altek/mule.html>.

Many thanks to Lee Allen for his permission to use
the figures.

Cheng-Yang Tan
cytan@fnal.gov

GETTING HOTTER AND HOTTER
We appreciated Fred Eady’s article, “Interfaces and

GUI-Building Packages—Part 2: Emulating Paper Tape”
(INK 89), which used emWare’s embedded networking
tools to create an interface to a paper-tape reader. The
article was interesting, informative, and accurate at
the time it was written.

In late September 1997, we released V.2.0 of the EMIT
software. This version addresses the limitations men-
tioned in the article by incorporating RS-485 multidrop
protocol, dial-up modem support, and Internet Explorer
and Netscape compatibility. Also, the Netscape plug-
in is no longer required, and we added drag-and-drop
user interface programming with Symantec’s Visual Café.

Todd Rytting
www.emware.com

ADVANCED NEEDS TO BE EXPENSIVE— NOT!
I found “Building Advanced Device Drivers for the

MPC860” (INK 90) interesting, but lacking in one
area. Avi forgot to mention that DriveWay for the
MPC860 costs about $30,000! Aisys’s Web site lists
prices from $500 to $1200 for versions of DriveWay for
various 8- and 16-bit processors. But, you have to call
to get a quote for the ’860. I nearly choked when I
found out its cost was an order of magnitude higher!

The MPC860 version is an impressive tool, but it’s
priced too high. It may be a small chunk of change at
GM, but $30,000 represents about five years of the
engineering software budget at my company. I’ll just
have to keep looking for $2–3k C compilers and as many
shareware libraries as I can find.

Would the Aisys license keep me from becoming a
driver-generating consultant? If I could sell off the
source code, perhaps I could make a living writing
drivers for the ’860—or maybe someone is already
doing it cheaper than Aisys. They charge about $5k to
run front-end specs through their program! Probably
takes 5–10 minutes to process your specs and generate
the code. Pretty expensive minutes.

Mark Borgerson
borgerm@peak.org

CORRECTION
ChorusOS URL (INK 90, p. 60): www.sun.com/chorusos

8 Issue 92 March 1998 Circuit Cellar INK®

NEW PRODUCT NEWS
Edited by Harv Weiner

MOTOR MIND B
Motor Mind B is a serial DC motor rriver

module controlled by commands sent through a
one- or two-wire interface. Its short instruction
set enables the user to implement complex
control algorithms quickly and with little
effort. Bidirectional or unidirectional DC
motors with operating voltages up to 30 VDC,
peak currents as large as 3.5 A, and continuous
currents of 2 A can be handled. Package power
dissipation must not be exceeded during use.

Features include the ability to read a motor’s
tachometer frequency (0–65,528 Hz), auto-
mated speed control, 254 discrete steps of
speed control, and motor direction changes.
A watchdog timer eliminates the possibility
of a system firmware failure. The Motor
Mind B comes in a 1.2″ × l.3″ SIP module. Its
small size and connection scheme enable the
device to be inserted directly into circuit
boards for production runs or into bread-
boards for easy prototyping.

The Motor Mind B sells for $29.95 in single
quantities. It can be purchased directly from
Solutions Cubed and is distributed by Paral-
lax, Jameco, Marlin P. Jones, and Digi-Key.
Complete datasheets and application notes
are available via the Solutions Cubed Web site.

Solutions Cubed
3029 Esplanade Ste. F
Chico, CA 95973
(530) 891-8045 • Fax: (530) 891-1643
lon@solutions-cubed.com
www.solutions-cubed.com #501

HIGH-SPEED IR CONTROLLER AND TRANSCEIVER
A new infrared controller and transceiver that provides a

fully compliant high-speed IrDA solution is available from Texas
Instruments. These devices support IrDA, the main standard for
IR data communications, up to 4 Mbps, as well as amplitude
shift keying (ASK) and television IR standards on the controller.
The IR controller and transceiver are ideal in applications such
as PC and notebook computers, printers, PDAs, and telephones.

The IR controller, designated the TIR2000, is an interface
between the ISA bus and an IR transceiver that encodes and
decodes information so that it conforms to the appropriate stan-
dard and can be understood and communicated by multiple
systems. The TIR2000 also converts the data into a format that
can be transmitted by the IR transceiver. The TIR2000 has a
smaller pin count than any other 4-Mbps IrDA solution cur-
rently on the market, which saves board space.

The IR transceiver, designated the TSLM1100, includes a PIN
photodiode, a two-path receiver with LED driver, and an 870-nm
LED. The TSLM1100 interfaces directly with an IrDA controller
and operates at data rates from 2400 bps to 4 Mbps.

The TIR2000 and TSLM1100 are available from TI and its
authorized distributors. The TIR2000 is available in a 64-pin
TQFP with a suggested price of $6.42 in quantities of 1000. The
TSLM1100 has a suggested price of $5.55 in quantities of 1000.

Texas Instruments, Inc.
Semiconductor Group, SC-97072 • Literature Response Ctr.
P.O. Box 172228 • Denver, CO 80217
(303) 294-3747
www.ti.com/sc/5052 • www.ti.com/sc/5800 #502

Circuit Cellar INK® Issue 92 March 1998 9

NEW PRODUCT NEWS
DATA ACQUISITION STARTER KIT

The DI-150RS Starter Kit is a low-cost solution for two-channel
data-acquisition and waveform analysis using a PC serial port. A user
can digitize and store a transducer’s analog output with 12-bit accu-
racy at rates up to 240 samples per second. At the same time, the
transducer’s output can be viewed onscreen in a triggered sweep or
scrolling display format.

The DI-150RS is equipped with two analog input channels that
can be software configured as two single-ended channels or one dif-
ferential channel, both with a gain of 1 or 100. It includes a ther-
mistor input and regulated excitation output and derives its power
directly from the RS-232 serial port line.

WinDaq software provides data acquisition, real-time display, disk
streaming, and playback and analysis of the acquired signals. It en-
ables review and analysis of waveforms with smooth scrolling in
either time direction as well as any degree of waveform compression.
Data files can be imported and exported from a variety of data-acqui-
sition, spreadsheet, and analysis formats.

The software’s disk-streaming design enables data files of any
length to be graphically displayed and browsed. Seven standard cursor-
based time and amplitude measurements, frequency domain (FFT and
DFT), and ten statistical analysis functions simplify waveform analy-
sis and interpretation. Digital filtering permits graphical editing of
the power spectrum for high-pass, low-pass, band-pass, and notch filters.

The kit features the DI-150RS module, serial communications
cable, two-channel version of WinDaq data-acquisition software,
WinDaq Waveform Browser software for playback and analysis, and
documentation. In short, everything needed to acquire and playback
data is available for $99.95 (two-channel unit).

Dataq Instruments, Inc.
150 Springside Dr., Ste. B220
Akron, OH 44333-2473
(330) 668-1444
Fax: (330) 666-5434
www.dataq.com # 503

TELEPHONE LINE PROTECTOR
The Patton Model 552 Series secondary

surge protector contains seven different
versions for protecting T1, E1, PRI,
ISDN/U, ISDN/ST, DDS, two-wire
dial-up, and 2-/4-wire leased-line
telecom circuits. Installed between
an incoming telecom line and a
modem, CSU/DSU, or similar
device, the Model 552 guards sen-
sitive hardware against damage from
nearby lightning strikes, electric motors,
and other sources of transient surges.

The Model 552 is equipped with
modular (RJ-11 or RJ-45) I/O jacks plus a
sturdy metal braided strap. Transient
energy is intercepted before it causes
hardware damage, and is safely divert-
ed to nearby chassis ground through
the strap. The Model 552 is UL 497A

listed for secondary surge protection and can handle
repeated surges up to 1500 W. Its “fail safe”

design feature causes the protector to fail
short to ground in the event of a catastrophic
surge, thereby sacrificing the protector to
save connected equipment.

Prices range from $39 to $89 per unit,
depending on the type of interface and the
number of pins protected. A 6″ (15.24 cm)
patch cable is included with each protector.

Patton Electronics Co.
7622 Rickenbacker Dr.
Gaithersburg, MD 20879
(301) 975-1000
Fax: (301) 869-9293
www.patton.com

#504

10 Issue 92 March 1998 Circuit Cellar INK®

NEW PRODUCT NEWS
DSP SERVO CONTROLLER FEATURES WINDOWS NT SUPPORT

The Model 5650A is an affordable, board-level servo controller that offers S-curve,
trapezoidal, and velocity motion profiling; 31-bit position, velocity, and jerk registers; as
well as 16-bit DAC or 10-bit PWM command signal output. Its dedicated DSP frees the
host CPU for other tasks and protects motion-control activities from host software prob-
lems. With the introduction of new drivers for Windows NT 4.0, designers can
take full advantage of NT’s multithreading, multitasking, and interrupt
capabilities for PC-based motion-control applications. Along with
the NT drivers, the Model 5650A’s open architecture soft-
ware library supports C, C++, BASIC, Pascal, Visual
Basic, and 16-bit drivers for Windows 3.11
and Windows 95.

The Model 5650A PC servo controller
sells for $950.

Technology 80, Inc.
658 Mendelssohn Ave. N
Minneapolis, MN 55427
(612) 542-9545
Fax: (612) 542-9785
info@tech80.com
www.tech80.com #505

12 Issue 92 March 1998 Circuit Cellar INK®

Robots with
a Vision

FEATURE
ARTICLE

Bill Bailey, Jon Reese,
Randy Sargent, Carl Witty,
& Anne Wright

m
Having a problem
mastering Sampras’s
serve? This robot,
equipped with a
color-conscious
vision system, can
chase down your
wayward tennis
balls. You’ll find it’s a
grand slam system.
Game, set, and
match to M1.

achine vision
has been a chal-

lenge for AI research-
ers for decades. Many

tasks that are simple for humans can
only be accomplished by computers in
carefully controlled laboratory envi-
ronments, if at all.

Still, robotics is benefiting today
from some simple vision strategies
that are achievable with commercially
available systems.

In this article, we fill you in on
some of the technical details of the
Cognachrome vision system and show
its application to a challenging and
exciting task—the 1996 International
AAAI Mobile Robot Competition in
Portland, Oregon.

MACHINE VISION
Vision systems typically have the

architecture depicted in Figure 1a.
But, this way of processing images has
a problem. There’s too much data in
the video streams.

The NTSC video standard (used in
North America, Japan, and several other
parts of the world) provides about 240
lines of video at 60 frames per second.
It takes a very fast CPU to do any
significant processing at that rate.

The sorts of CPUs typically used in
embedded systems generally can’t

Using the Cognachrome Vision
System

 12

24

30

58

Robots with a Vision

Power Systems in
Autonomous Robots

MicroBot

Motor Speed Control with
a Microtwist

FEATURES

Circuit Cellar INK® Issue 92 March 1998 13

USING THE VISION SYSTEM
The Cognachrome can either

be used as the main processor
in an embedded system or as a
peripheral to another computer.

In embedded use, the user
programs the vision system by
registering a callback function.
The callback is invoked after
every frame of video and has
access to all of the blob data.
Statistics are not computed for
a blob until requested, avoiding
unnecessary computation.

COGNACHROME HARDWARE
The vision board has NTSC video

input and output jacks, which provides
a lot of flexibility in the choice of
cameras. We put small CCD camera
boards on our mobile robots. Size isn’t
as much of an issue for stationary
applications, so we often use camcord-
ers for their flexibility and low cost.

The Cognachrome has a video
output jack for viewing the blobs in
real-time black and white, which is
useful during color training. The video
comes from the color-adaptive recog-
nition phase of the hardware.

Many of the hardware resources of
the 68332 are available for embedded
applications, including digital I/O
lines, several TPU (timer coprocessor)
lines, a bus with software-definable
chip selects, and one synchronous and
two asynchronous serial ports.

THE CONTEST
Every year, the AAAI (American

Association for Artificial Intelligence)
holds robot competitions at its annual

The user can add other useful statis-
tics.

The Cognachrome can compute
these statistics at frame rates up to
60 Hz. The actual frame rate achieved
depends on the number of blobs in the
image, their sizes, and which statistics
are computed. Aspect ratio and orien-
tation are much more expensive to
compute than centroid, area, and
bounding box.

When not requesting aspect ratio
and orientation, the system can handle
10–20 blobs quickly. If aspect ratio
and orientation are included, it may
only handle 5–7. If the system is over-
loaded with too many blobs, it drops
to 30 Hz or less.

The Cognachrome can be used to
grab frames into a frame buffer and do
more traditional vision processing on
them. Resolution is lower in this mode
(e.g., 64 × 48 to 64 × 250). The frame
rate in this mode depends on the vi-
sion processing being done, but soft-
ware-only processing is unlikely to be
better than 30 Hz, even for the sim-
plest processing.

process video at the full 60 Hz.
Ranges from 1 to 5 Hz are
much more common.

The Cognachrome solves
the problem by using hardware
acceleration to do relatively
simple vision processing (see
Figure 1b). This strategy im-
proves performance while
reducing overall cost. The
Cognachrome simplifies the
vision task by looking for
only three colors, which the
system is trained to see.

During operation, the acceleration
hardware compares each pixel against
these colors and groups contiguous
pixels of the same color into abstrac-
tions called “blobs.” Client software
then uses the location and size of
blobs (as well as other information
about them) to identify and react to
its environment.

The Cognachrome uses a simple
fixed-coordinate system to refer to the
video image. The horizontal axis ranges
from 10 to 230 (left to right), and the
vertical axis ranges from about 10 to
240 (top to bottom.) The exact numbers
depend on the particular camera used.

Photos 1a and b demonstrate how
the Cognachrome processes a video
image. The hardware presents the
Cognachrome with the blobs as shown
in Photo 1b. For each blob, the Cogna-
chrome computes several interesting
statistics, including:

• the x and y coordinates of the cen-
troid (i.e., the center of gravity)

• the area (number of pixels)
• the bounding box (the x coordinates

of the left- and right-
most pixels and the
y coordinates of the
topmost and bot-
tommost pixels)

• the aspect ratio
(how elongated the
blob is). A value of 3
indicates that the
blob is three times
as long as it is wide.

• the orientation
(only meaningful for
elongated blobs; the
direction of the long
part of the blob)

Figure 1a— A typical machine vision system loads digitized pixels into RAM
for the CPU to process in software. b—The Cognachrome system achieves
60-Hz tracking with special hardware that detects pixels of interest and
assembles them into contiguous blobs.

Video Digitizer Frame Buffer (RAM) CPU

Video Digitizer CPU

Color Detector Blob Assembler

Frame Buffer (RAM)

Figure 2a— With an ideal video camera, M1 would see the world much like this. b—The world, as seen through M1’s actual camera, has
fish-eye distortion, which is typical of cameras that show a wide field of view.

a) b)

b)

a)

14 Issue 92 March 1998 Circuit Cellar INK®

int find_targets(Target *dest, Vstate *vs, enum target_type type){
 Blob *blobs[MAX_TARGETS];
 int n_blobs;
 int i;
 int n_targets;
 /* Find largest MAX_TARGETS blobs on current channel */
 n_blobs= blobs_select_largest_n(blobs, frame_eb(vs), MAX_TARGETS);
 for (i= 0, n_targets= 0; i< n_blobs; i++){
 /* Find center of gravity of current blob */
 blob_find_cg(blobs[i]);
 /* If blob is too far left, too small, or over horizon, skip */
 if (blobs[i]->xcg < *p_track_min_col ||
 blobs[i]->area < ((*p_diam_thresh) * (*p_diam_thresh)) ||
 !camera_to_world(blobs[i]->xcg, blobs[i]->ycg,
 m1_camera_pos, &(dest[n_targets].x), &(dest[n_targets].y)))
 continue;
 dest[n_targets].area= blobs[i]->area;
 /* Set angle and distance, given robot-relative x-y coordinates */
 rect_to_polar(dest[n_targets].x, dest[n_targets].y,
 &dest[n_targets].angle, &dest[n_targets].dist);
 /* Use perceived size and computed dist. to compute real size */
 dest[n_targets].size=int_sqrt(blobs[i]->area) *
 [dest[n_targets].dist / 1000;]
 /* If actual size is too small, ignore object */
 if (dest[n_targets].size < *p_size_thresh){
 continue;}
 dest[n_targets].type= type;
 dest[n_targets].score= 0;
 dest[n_targets].age= 0;
 n_targets++; }
 for (i= n_targets; i< MAX_TARGETS+1; i++){
 dest[i].size= 0;}
 return n_targets;}

Listing 1— M1 iterates through all detected objects that are the color of the tennis balls or squiggle balls. After
determining ball position, M1 can decide which to pursue.

Figure 3a–c— M1 can determine a ball’s distance and angle
relative to the robot from the ball’s location in the camera
image, assuming the ball touches the floor.

Camera

Robot
Ball

h
x

d
φ

d

y

Robot θ

x

y

Ψ

c

a)

c)

b)

conference. In 1996, the contest was
for an autonomous robot to collect 10
tennis balls and 2 quickly and ran-
domly moving, self-powered squiggle
balls and deliver them to a holding
pen within 15 min.

At the time of the conference, we
had already been manufacturing the
Cognachrome for a while and saw this
contest as an excellent way to put our
ideas (and our board) to the test. We
outfitted a general-purpose robot called
M1 with a Cognachrome and a gripper
and wrote software for it to catch and
carry tennis balls.

CONTROLLING M1
M1’s base uses a two-wheel “wheel-

chair” drive. Connected to each wheel
by a toothed belt and sprocket combi-
nation is a NEMA 23 frame stepper
motor rated at 6.0 V and 1.0 A. There
is also a third, unpowered caster wheel.

An SGS-Thomson L297/L298 step-
per motor bipolar chopper drive pow-
ers the NEMA 23 motors with current
limited to 300 mA. Steep accelera-
tions and decelerations are possible
even at this low current setting. Three
NiCd batteries supply 30 V to the
chopper drive, which gives the step
rate an upper limit in excess of 6000
half-steps per second.

Stepper motors enable very accu-
rate drive control, and this particular
implementation appears to result in
good performance and low power

consumption at both low and high
speeds. At 30 V, the batteries have a
storage capacity of 600 mAh.

The “step now” input on each
stepper motor driver is connected
to a TPU line, so we can control
the speed of each motor indepen-
dently and precisely.

One problem with stepper
motors is that they stall if you try
to run them too fast or accelerate
or decelerate too quickly. M1 has
no stall-detection sensors, but it
does have stall-recovery software.
If the control software decides
that no progress has been made
for long enough, it will slow to a
stop, which recovers from the stall.

Of course, it’s much better to
avoid stalls in the first place. M1
contains a software layer between

the high-level control and the motors
for this purpose. When the high-level
control software commands a speed,
this low-level software smoothly accel-

erates or decelerates to this speed,
within the motors’ safety parameters.

Internally, two sets of commands
control wheel speed. One set controls
the left and right wheel speeds indepen-
dently. The other commands control
the angular and forward velocities.

The mapping between the two com-
mand sets is simple. If a is angular
velocity, f is forward velocity, and l and
r are the left and right wheel velocities,
respectively, then the mapping is:

l = jf – ka
r = jf + ka

where j and k are constants that de-
pend on the units used.

GATHERING THE BALLS
M1’s basic operation during the

contest is to find a ball, grab it, carry
it to the goal, and drop it in. And as
we mentioned, there are two kinds of
balls in the contest—standard tennis

16 Issue 92 March 1998 Circuit Cellar INK®

Photo 1— There are two sides to every story, or in this case, two ways to view the same picture. These brightly colored objects (a) change appearance when seen by the
Cognachrome vision system (b). The system assembles contiguous pixels of interest into blobs and calculates various statistics, such as centroid, area, elongation or aspect
ratio, and direction of orientation. Notice that Cognachrome only sees colors it was trained on.

a) b)

Photo 2— The left half of M1’s infrared sensor array is composed of a Sharp GP1U52X infrared detector
sandwiched between four infrared LEDs.

balls and motorized, randomly-mov-
ing squiggle balls.

Of course, the real challenge is the
squiggle balls. The squiggle balls are
almost as big as M1’s gripper and they
move almost as quickly as M1, so the
robot control must be very accurate to
turn toward the squiggle ball and run
it down. Once we can do that, it isn’t
hard to handle tennis balls as well.

The contest rules also require us to
announce when M1 is chasing a squiggle
ball. This is done via a small piezo-
electric speaker that beeps when M1
sees a squiggle ball. Once the an-
nouncement is made, M1 chases the
squiggle ball until it catches it or
doesn’t see it any more. Tennis balls
are ignored to make it clear to the
judge that M1 really is distinguishing
tennis balls and squiggle balls.

LOCATING THE BALL
The tennis balls

are greenish yellow,
and the squiggle balls
we use are red. We
train two of the Cog-
nachrome’s three
color channels on
these colors.

When the Cogna-
chrome detects the
ball color, it reports
the x and y coordi-
nates of the ball’s
center, relative to
the camera’s field of

view. These numbers need to be trans-
lated into a rotation angle and distance.

The control software uses the angle
to decide how to turn and uses the
distance to determine the ball’s loca-
tion relative to the gripper. The func-
tion definition is shown in Listing 1.

The translation involves some
interesting math. It is handled in two
stages, which we will present in re-
verse order.

PERSPECTIVE TRANSLATION
First, imagine that the camera gives

us a nice perspective image, something
like Figure 2a. From an image like this,
we can compute the distance and angle
to the ball straightforwardly (assum-
ing that the ball is on the ground).

In Figure 3a, φ is a straightforward
function of the y coordinate of the
ball and the tilt of the camera. (M1
can tilt the camera with a stepper

motor, so the ball-location routine has
to compensate for this.)

We know h—it’s the location of
the camera above the ground (~8″ for
M1) minus the height of the center of
the ball. To find x, we use:

x = h tan φ

We also want to know d:

d = x2 + h2

Figure 3b looks like a top view, but
it’s actually looking from a little bit
forward of top (compare it to Figure 3c).
We are looking from the direction
labeled with the arrow in Figure 3a.

Here, θ is a straightforward function
of the x coordinate of the ball, and d
was computed above. To find y, use:

y = d tan φ

Now we have x,
which is the distance
from the camera for-
ward to the ball, and
y, the distance left or
right to the ball.
What we want is the
angle to turn and to
head toward the ball
(when the turning
point is centered
between the two
drive wheels) and the
distance to the ball.

18 Issue 92 March 1998 Circuit Cellar INK®

Photo 3— Force, Mass, and Acceleration are the three members on Newton Labs’ world-champion robot soccer
team. (Mass is the goalie.) In the foreground is the soccer ball (actually an orange golf ball.)

Photo 4— The SCAMP underwater robot, created by the University of Maryland’s Space Systems Laboratory, is designed to simulate zero-gravity spacecraft motion. With the
use of a Cognachrome vision system, SCAMP can autonomously perform simulated docking and station-keeping maneuvers.

So finally, the distance to the ball is:

x + c
2

+ y2

and the angle is:

ψ = tan– 1 y
x + c

FISH EYES
Unfortunately, this isn’t the whole

story. Remember our assumption that
the camera gives a nice perspective
image? It doesn’t.

To get the right compromise between
peripheral sensing and seeing in the
distance, we use a camera with about

a 100° field of view. This results is a
serious fish-eye effect—the nice, straight
lines in Figure 2a look curved when
viewed through the camera (Figure 2b).

We need to find a mapping that
undoes this fish-eye distortion before
applying the above mathematics.
Basically, this mapping should use the
x and y coordinates from the vision
data to compute the θ and φ angles
suitable for use in the equations.

When we implemented this code,
we tried to derive the correct math-
ematical form of the mapping. We soon
decided it would be easier to approxi-
mate it. We used polynomial equations
because they’re easy to deal with.

A linear mapping like θ = axy + bx +
cy + d is not sufficient. We need a
slightly more complicated polynomial—
a bivariate quadratic. We suspected
this type would be adequate because
the curved lines produced by the fish-
eye effect look vaguely like parabolas.

However, if it had not been adequate,
we had to be prepared to move on to
higher-degree polynomials or find a
different form of equation. Therefore,
we wanted to find values for the coef-
ficients a–r in:

θ = ax2y2 + bx2y + cx2 + dxy2 + exy + fx
 + gy2 + hy + i

φ = jx2y2 + kx2y + lx2 + mxy + nxy2 + ox
 + py2 + qy + r

First, we needed some experimental
data. We set up a vision target as far as
possible from M1 and had the robot
pivot from side to side and rotate the
camera up and down in a predefined grid
pattern.

At each location, we recorded the x
and y positions of the target according
to the vision system as well as the
vertical and horizontal angles, based
on how far the robot pivoted and ro-
tated its camera.

We then needed to find the values
for a–r that would minimize the error
between the computed θ and φ values
and the measured values. Although this
task may sound daunting, we simply
plugged all the values into an Excel
spreadsheet, calculated the differences
for each sample, and summed the
squares of the differences.

Camera Housing

Color
Camera

Electronics Box

Lead Pendulum

Electronics Box

6-V 10-Ah Batteries

Ducted Fan
Thrusters

6-V 10-Ah
Batteries

Lead Pendulum

SCAMP Side View
Cutaway

SCAMP Front View
Cutaway

Circuit Cellar INK® Issue 92 March 1998 19

Figure 4— In M1’s IR sensor array, each LED is
fired in turn and detected reflections are latched by
the 74HC259 into an eight-bit byte.

We let Excel’s Solver find values for
a–r that minimized this error sum.
(The Solver isn’t installed by default,
so you might need to find your instal-
lation CD to add this feature.)

GRABBING THE BALL
Thanks to all the above math, M1

now knows the distances and angles
to all the balls in view. The next task
is to choose a ball and chase it down,
where the chase is a lot easier for a
tennis ball than a squiggle ball.

We already mentioned that once
M1 starts to track a squiggle ball, it
continues tracking it until the ball is
within reach or disappears from view.
Also, once M1 starts tracking a tennis
ball, it does not switch to a squiggle
ball unless the squiggle ball is about
half as far away as the tennis ball.

We use the following algorithm to
head for a ball, given an angular off-
set, ψ. Here, a is the required angular
velocity, e is an angular error term,
and f is the required forward velocity:

a = k 1ψ
e = k 2ψ 2

f = sk 3 1 – e

(If e > 1, then we set the speed to zero,
rather than moving backward.)

The constant s has different values
for tennis balls and squiggle balls. M1
moves as quickly as possible to chase

squiggle balls. But, it’s more cautious
when approaching tennis balls because
they have a tendency to bounce off
the gripper and roll away.

We quickly found that this algo-
rithm doesn’t work all the time. If a

ball is within reach but to the left or
right of the gripper, M1 pivots toward
the ball and the gripper then knocks
the ball away. So, we use a different
algorithm for this situation—M1 sim-
ply backs up.

20 Issue 92 March 1998 Circuit Cellar INK®

100˚

9′

Figure 5— M1’s camera can detect balls in a pie-
shaped region.

SEARCHING FOR BALLS
If M1 cannot see any balls at the

moment, it has to find some. When M1
starts looking for balls, it first spins
around to try to see one. However, that
doesn’t always work. The repository
might be in the way. Or, if the balls
are too far away, M1 can’t see them.

If a simple spin doesn’t find any balls,
M1 goes searching. It heads forward
until it finds a wall (unless it finds a
ball), and then it follows the wall.

M1 follows the wall using an infra-
red obstacle detector. The code drives
two banks of four infrared LEDs one
at a time, each modulated at 40 kHz.

Two standard Sharp GP1U52X infra-
red remote-control reception modules
detect reflections. The 74HC163/
74HC238 combination fires each LED
in turn, and the ’HC259 latches detected
reflections. This system provides reli-
able obstacle detection in the 8–12″
range. Figure 4 shows the schematic,
and Photo 2 shows the IR sensors.

The system provides only yes/no
information about obstacles in the eight
directions around the front half of the
robot. However, M1 can crudely esti-
mate distance to large obstacles (e.g.,
walls) via patterns in the reflections.
The more adjacent directions with
detected reflections, the closer the
obstacle probably is.

SEARCHING THE ENTIRE REGION
Unfortunately, even with M1’s wide

100° field-of-view camera (illustrated
in Figure 5), wall following doesn’t cover
the whole room. It just sees the areas
depicted in Figure 6a.

So, every few seconds, M1 stops,
spins 180° away from the wall, then
spins back to the original direction. This
sequence enables it to see into the cen-
ter of the room from various points

along the wall (see Figure 6b). M1 does
this once every 8 s in the first 8 min.
of the round, and once every 4 s in the
final 2 min.

DUMPING THE BALL
Once M1 has the ball, it must dump

it in the repository. Contestants can
build their own ball repository, and
we marked ours with a blue rectangle.

To keep the squiggle balls inside, we
put a 1″ lip in the repository’s gate, so
the gripper has to lift the balls over
this lip to deposit them. However, M1
would go after the balls in the repository
if it could see inside, so we covered
the gate with a black curtain and put
the blue marker on the curtain.

Much like searching for a ball, M1
starts its search for the repository by
spinning. If it doesn’t see the blue
marker, it heads for a wall and follows
it around.

When it sees the blue marker, M1
heads straight for the repository. It
begins to slow down and slows down
even more as it nears the repository.

The size of the blue marking is
used to estimate the distance. We
can’t use the vertical angle to the
marker, like we do for the balls, be-
cause the rectangle is at roughly the
same height as the camera.

Two bump sensors on the bottom
of the gripper tell M1 when it reaches
the lip of the gate. They also enable
M1 to line up with the gate before it
drops the ball.

When one bump sensor is engaged,
M1 turns off the wheel on that side
and turns on the wheel on the other
side. This action causes M1 to line up
with the gate. M1 drops the ball when
both bump sensors are engaged.

Fashion collided with function when
one of the spectators wore a bright blue
shirt in a preliminary round. The shirt
was approximately the same color as
the gate marker, and the spectator stood
next to the 3′ wall surrounding the
playing field. When M1 picked up a
ball, it often headed straight for the
spectator rather than the repository.
Not able to reach the repository, the
robot acted quite confused.

We fixed this problem by computing
the vertical angle to the gate marker
(using the same algorithm, including

Circuit Cellar INK® Issue 92 March 1998 21

Repository

G
at

e

Visible

Hidden

Repository

G
at

e

Visible

Hidden

Figure 6a— If M1 searches the arena simply by following the
wall, it misses most of the middle. b—If M1 periodically pivots
to face the middle of the room while following the wall, it
searches a much larger region.

fish-eye correction, as for the balls) and
ignoring blobs above a certain angle.

We had already compensated for a
similar problem by ignoring red and
yellow blobs above the horizon. Oth-
erwise, M1 might have viewed certain
spectators as huge squiggle balls.

M1’s control software is surprisingly
complex given its seemingly simple
task. While describing the entire soft-
ware system is outside the scope of
this article, the state diagram in Fig-
ure 7 gives you the overall picture.

GAME DAY
We worked through the night before

the contest, tweaking the algorithms.
Early the morning of the contest, M1
completed three perfect runs. We called
it complete then and froze the code.

To add a little extra stress, the com-
petition was being recorded for Scien-
tific American Frontiers with its host,
Alan Alda, standing next to the arena
giving commentary. M1 got off to a
strong start, capturing the first tennis
ball in mere seconds. It continued
roaming around the arena and quickly
collected almost all the tennis balls
and both squiggle balls.

However, the final tennis ball re-
mained elusive. It was in the exact
center of the arena, and remained just
slightly beyond the visual reach of M1
as it scanned the arena. Clearly, to
collect this ball, M1 had to turn and
look into the center of the arena from
exactly the right point along the wall.

The spectators grew tense as M1
followed the wall around and around,
turning and looking toward the ball
but not quite seeing it. Time was
running out.

Finally, on its third time around
the arena, M1 looked into the center
from just the right spot, collected the
ball, and sped to the repository with
seconds to spare, earning a perfect
score. The crowd erupted into cheers
and applause. And, the Newton Labs
team began to breathe again.

ROBOTS SEE THE WORLD—
AND BEYOND

The Cognachrome vision system
serves a wide range of applications,
from research uses like catching balls,
autonomous spacecraft docking, and
automated acquisition of cargo by heli-
copter, to industrial uses like sorting

fruit and inspecting upholstery.
We entered (and won) the first

and second International Micro
Robot World Cup Soccer Tourna-
ments (MIROSOT) held by KAIST
in Taejon, Korea, in November of
1996 and June of 1997. We used
the Cognachrome system to track
our three robots’ position and
orientation, the soccer ball, and
the three opposing robots. Our
team is pictured in Photo 3.

Because of the robots’ small size
(each fits into a 7.5-cm cube), we
opted for a single vision system
connected to a camera over the
field instead of a system in each
robot. (In fact, the rules of the con-
test require markings on the top of
the robot that encourage this. All
but one of the teams used a single
camera above the playing field.)

Professor Jean-Jacques Slotine
and Dr. Kenneth Salisbury of MIT
incorporated two Cognachrome
systems into their adaptive robot
arm—the WAM (whole arm ma-
nipulator). Using two-dimensional

b)

a)

22 Issue 92 March 1998 Circuit Cellar INK®

Yes

No

Find and Approach Ball

Camera tilted downwards

Spin in place
(modified by IR

sensors)

Go straight until find
wall with IR sensors

Whenever ball detected
by vision system

Follow Wall

Every 6–12 s,
pivot back and forth

Raise gripper while
moving forward

Back up slightly

Vision: Ball in
gripper?

Lower
gripper

Lift Ball

Camera tilted downwards

Find and Approach Goal
Camera tilted upwards

Whenever goal detected
by vision system

Spin in place
(modified by IR

sensors)

Go straight until find
wall with IR sensors

Follow Wall

Vision: Is Goal
close?

Approach goal
quickly

Approach goal
slowly

Yes

No

Whenever goal detected
by contact sensors

Where is
contact?

Move forward and
right

Move forward

and left

Left
only

Right
only

Both sides

Drop Ball in Goal

Lower
gripper

Move
backwards

Raise
gripper

Approach ball

Vision: Ball in
gripper range?

No

Yes

START

Figure 7— This diagram gives a simplified view of M1’s different behavior states and how they are activated. Not
shown here are special time-out behaviors designed to get M1 unstuck if it hasn’t made progress for some time.

I R S
401 Very Useful
402 Moderately Useful
403 Not Useful

SOURCES

Cognachrome vision system
Newton Research Labs
Robotics Systems and Software
14813 NE 13th St.
Bellevue, WA 98007
(425) 643-6218
Fax: (425) 643-6447
www.newtonlabs.com

GP1U52X
Sharp Electronics Corp.
Microelectronics Group
5700 NW Pacific Rim Blvd., Ste. 20
Camas, WA 98607
(360) 834-2500
Fax: (360) 834-8903

L297/L298
SGS-Thomson
55 Old Bedford Rd.
Lincoln, MA 01773
(617) 259-0300
Fax: (617) 259-4421

REFERENCES

www.newtonlabs.com/cc.html
www.mirosot.org
www.ai.mit.edu/projects/wam/

index.html#S2.2
www.pbs.org/saf/8_resources/

83_transcript_705.html

SOFTWARE

Design documentation for M1,
including the full source code, is
available at www.newtonlabs.com/
cc.html#ml.

A video tape highlighting applica-
tions discussed in the paper (e.g.,
M1 picking up tennis balls, the
soccer robots performing, etc.) can
be ordered from www.newtonlabs.
com/cc.html#video.

Anne Wright is the senior design engi-
neer at Newton Research Labs. The

primary architect of the Cognachrome
vision system, Anne received her B.S.
and M.Eng. in computer science from
MIT. She also helped lead and develop
technology for the MIT LEGO Robot
Contest from 1992 to 1994.

Carl Witty is a research scientist at
Newton Research Labs. He received
his B.S. and M.S. in computer science
from Stanford University and MIT,
respectively. A member of the winning
team in the 1991 international ACM
Programming Contest, his interests
include robots, science fiction and
fantasy, mathematics, and formal
methods for software engineering.

Randy Sargent is the president of
Newton Research Labs. He received a
B.S. in computer science at MIT, and
an M.S. in media arts and sciences from
the MIT Media Laboratory. Formerly
holding titles of Lecturer and Research
Specialist at MIT, he is one of the
founders of the MIT LEGO Robot Con-
test (a.k.a. 6.270), now in its ninth year.

Jon Damon Reese received a B.A. in
computer science from Rice University
and an M.S. and Ph.D. in information
and computer science from the Univer-
sity of California, Irvine. His research
interests over the years have included
artificial intelligence, programming
languages, software engineering, and
software safety. Jon serves as a soft-
ware and applications specialist at
Newton Research Labs.

Bill Bailey is a design engineer at
Newton Research Labs, a company that
develops high-performance, low-cost
machine vision hardware and software
for industrial and robotic applications.
The original developer of the M1 robot
base, Bill has over 25 years of expertise
covering analog and digital electronics,
software, and mechanical design. He
and the other authors may be reached
via vision@newtonlabs.com.

stereo data from a pair of Cognachrome
systems, the WAM controller predicts
the three-dimensional trajectory of a
ball in flight and controls the arm to
quickly intercept and catch the ball.

The University of Maryland Space
Systems Laboratory and the Kiss Insti-
tute for Practical Robotics have simu-
lated autonomous spacecraft docking
in a neutral buoyancy tank for inclusion
on UMD’s Ranger space vehicle. Us-
ing a composite target of three
brightly-colored objects designed by
Dr. David Miller, the spacecraft (shown
in Photo 4) knows its distance and
orientation and can servo to arbitrary
positions around the target.

So, although participating in the
AAAI contest was exciting, what it
really demonstrated is that robots can
perform interesting tasks using a simple,
fast vision system. I

24 Issue 92 March 1998 Circuit Cellar INK®

Power Systems in
Autonomous Robots

FEATURE
ARTICLE

Ingo Cyliax

i
Power presents a
special challenge
when it comes to
robot design. After
reviewing the various
types of batteries,
Ingo shows how he
untethered the power
system on the
Stiquito robots he
introduced in an
article in INK 73.

t’s pretty clear I
like to dabble in

robotics. Over the past
couple of years, I’ve writ-

ten about controllers for six-legged
walking robots (INK 73) as well as
robot navigation schemes (INK 81).

This time, I want to zero in on
some of the power systems used in
robotics and take a look at how the
power system for the Stiquito II was
upgraded to an untethered system.
Previously, we used a novel bumper-
car–type power-delivery system to run
these micro-robots. (You can take a
look at a Stiquito II on the cover of
INK 81.)

But before looking at the Stiquito
power system, I want to tell you about
some of the design issues involved
with robot systems.

After giving a short overview of
potential power sources, I demonstrate
how you can adapt power supplies to
the power requirements of a typical
robot’s subsystems.

DESIGN TRADEOFFS
When you’re designing a power

system for mobile robots, the biggest
concern is power density. In a nutshell,
power density is a figure of merit
describing the amount power you can
expect for a given weight or volume.

Power density is usually represented
by expressing the power system’s
capacity in watt-hours compared to
some measure of weight or volume.
Common units are Wh/lbs., Wh/kg,
and Wh/l.

The capacity of a power source is
typically represented by the amount of
current or power the system can pro-
vide over time. Units such as ampere-
hours or watt-hours are used here.

For example, a battery may be rated
at 12 V and 1200 mAh. That is, it can
provide 1.2 A at 12 V for 1 h. Of course,
if the current is drawn at 120 mA, it
should last 10 h.

Battery capacity usually varies by
the discharge rate as well. So, the
figure of 1200 mAh may only be good
when discharged at 120 mA, and it may
be lower if discharged at a higher rate.
That is, it may only have 900-mAh
capacity when discharged at 1.2 A.

Another design decision is whether
to use rechargeable (e.g., batteries) or
replaceable (e.g., dry-cells and fuels like
gasoline or hydrogen) power sources.

Finally, whatever power source you
use, you have to worry about conver-
sion. As you know, whenever energy
is converted, a little bit is lost. So,
matching the power source to the
type of loads in the system is also a
design tradeoff.

For example, if you want to build
an autonomous flying robot, it may
not make sense to use electrical en-
ergy as a primary energy for the craft
and use electric motors for propulsion.
It may be much more efficient to
power the craft with a combustion
engine to provide propulsion and a
small generator to power electrical
components like the computer.

POWER SOURCES
There are a variety of power sources

to choose from. Power sources are
classified into categories by how the
energy is produced.

Well, technically, energy is never
really produced; it’s converted. So in
all these cases, power sources are just
devices and systems that convert energy
stored in one form into energy we need.

For robotics, the most convenient
form of energy is electrical energy.
Electrical energy is easy to manage,

Circuit Cellar INK® Issue 92 March 1998 25

Electromechanical systems convert
mechanical energy into electrical en-
ergy. Some typical electromechanical
devices are generators and alternators.

Electric motors convert electrical
energy into mechanical energy. One
typical application of electromechani-
cal system is to use an internal com-
bustion engine to power a generator
for electrical power.

When self-contained, these systems
are called gen-sets. The energy is stored
in the fuel for the engine. Robotic
vehicles besides cars have used this
method to generate electrical power for
robots. Also, vehicles that use inter-
nal combustion engines for propulsion
usually have a generator to produce
electrical power.

Another novel electromechanical
system which promises to have good
efficiency for storing energy is the
flywheel. A flywheel is a mass which
stores energy in the form of inertia by
spinning the mass at a high velocity.

A dual-function electric motor-
generator is incorporated into the
flywheel unit. The motor is used to
accelerate the flywheel (i.e., to store
energy). Electrical energy is provided
by consuming the inertia to power the
generator. Discharging the energy
stored in a flywheel slows the rota-
tion of the mass.

Lightweight flywheel systems are
being developed for mobile applica-
tions. These systems use carbon fiber
composite for the flywheel mass.

The flywheels are encased in a
vacuum enclosure to eliminate fric-
tion from air, and they are levitated
with magnetic bearings, which also
act as the motor-generator units. To
achieve the high energy density de-
sired in vehicles, the flywheel is then
spun to very high speeds. These sys-
tems are being developed for electric
cars and buses.

Table 1—Let’s compare the working cell voltage and capacity density of the most popular battery chemistries. As
you can see, some batteries only operate at high temperatures.

example, the hydrogen-oxygen fuel
cell produces water.

Today’s fuel cells typically operate
using hydrogen as the fuel and oxygen
as the oxidizer. Small fuel cells can
power small electric cars and buses,
as well as provide electrical power for
spacecraft. Some day, fuel cells may
operate from other fuels besides hydro-
gen, which will make them versatile.

Another popular power source is
the solar cell. A solar cell is a photo-
voltaic system that uses PN-junction
semiconductors (diodes). All semicon-
ductor diodes are inherently photosen-
sitive. However, the trick is making
these diodes sensitive to sunlight,
rather than infrared light, and large in
area so they produce enough current.

Solar cells aren’t very efficient.
They achieve ~20% efficiency in con-
verting the 100–250 W/m2 of sun energy
that can reach Earth’s surface on a
sunny day.

The solar cell’s open-circuit voltage
is 0.5 V. Several cells are typically
wired in series to give more useful
outputs levels. Solar cells provide
constant current for a particular light
level, which makes them suitable for
charging secondary batteries.

and we need it to power our logic any-
way. So, let’s look at some of the
power-storage and -conversion systems
we can use for robots.

The most common power source is
the electrochemical battery. The term
“battery” refers to a collection of cells,
which is the basic unit that power is
converted in. Cells are connected in
parallel to increase current and in
series to increase output voltage.

David Prutchi gives an excellent
overview of various battery chemistries
in “Battery-operated Power Supplies”
(INK 55). Table 1 summarizes some of
the most common primary and sec-
ondary battery technologies and their
energy density and cell voltages.

Fuel cells are another type of elec-
trochemical cell. In a fuel cell, the
agents are fed into the cell, and the
reaction is maintained as long as fuel
and oxidizer are provided.

Fuel cells have potentially high
power density, since the non-energy-
producing elements of the cell, the
electrolyte, and mechanical construc-
tion are continually reused. Also, they
are reliable since they contain no
moving parts. They also provide no
nasty combustion by-products. For

Battery Type Anode Cathode Vwork Wh/kg Wh/l

Primary Type
Leclance Zn MnO2 1.2 80 140
Magnesium Mg MnO2 1.5 125 195
Alkaline Zn MnO2 1.3 95 210
Mercury Zn HgO 1.2 95 325
Mercad Cd HgO 0.85 45 180
Silver oxide Zn Ag2O 1.5 130 515
Zinc-air Zn O2 1.2 290 905
Li-SO2 Li SO2 2.9 340 440
Li-MnO2 Li MnO2 3.5 200 400

Secondary Type
Lead-acid Pb PbO 2.0 40 80
Edison Fe Ni NiO 1.2 40 60
Nickel-cadmium Cd Ni NiO 1.2 50 80
Silver-zinc Zn AgO 1.5 140 180
Nickel-zinc Zn Ni NiO 1.6 70 120
Nickel-hydrogen H2 Ni NiO 1.2 55 60
Silver-cadmium Cd AgO 1.1 60 120
Zinc-chlorine Zn Cl2 1.9 100 130
Nickel-metal hydride H2 (metals) NiOOH 1.2 60
Lithium/Aluminum iron disulfide (400°C) Li/Al FeS2 1.4 100 100
Lithium/Aluminum iron sulfide (400°C) Li/Al FeS 1.2 80 100
Sodium sulfur (300°C) Na 1.9 100 150
Zebra (200°C) Na NiCl2 2.4 100 150

Figure 1 —In this simplified ignition coil, when the
switch is closed, energy is stored as a magnetic field.
When you open the switch, a high voltage is generated
in the secondary as the field collapses.

Circuit Cellar INK® Issue 92 March 1998 27

I like to think of an inductor as
something like a current capacitor. As
the inductor tries to maintain the
current, it induces a voltage across it.
The voltage induced is the voltage
needed to push the current it’s main-
taining through a load. The current, of
course, decays as the energy stored in
the field is used up to push the current.
The voltage is thus related to the rate
of discharge by:

V = L dI
dt

For example, if you take an induc-
tor and connect it to a power supply,
the current builds up over time as it
builds the magnetic field until a steady-
state current is reached. If you now
disconnect the inductor, it tries to
maintain the current by inducing a
voltage across it. Since the inductor is
not connected to anything, it induces
a high voltage to push the current
through a high impedance (i.e., air).

In principle, this is how a car igni-
tion works. The inductor builds up a
very high voltage—enough to break
down the fuel-air mixture in the cyl-

inder between the spark gap
of the spark plug.

The car ignition also uses
a step-up winding, which is
magnetically coupled to the
primary winding to further
increase the output voltage
generated when the current is
cut to the primary winding
(see Figure 1).

How does this apply to
converter circuits? If you
think about it, a car ignition
system is just a step-up con-
verter. And in fact, that’s
how high-voltage step-up
(also sometimes called fly-

Thermoelectric devices are usually
solid-state junction devices which
convert temperature differentials into
electric energy. They’re not very effi-
cient but can be used when abundant
heat is available.

One application is interplanetary
space probes. These probes use radio-
active power generators (RPGs) to
convert the heat generated by a thermo-
nuclear reaction to generate electrical
energy. Of course, because they’re in
space, they don’t need to be shielded
well, which makes them light. Also,
since no moving parts are involved,
these systems are reliable—a must
when you can’t service your robot.

CONVERSION TECHNIQUES
Now that you’re up to speed on the

various electrical power sources, here
comes the hard part.

Power requirements in a robot are
typically diverse. At a minimum, power
is required for actuators or propulsion,
the logic controlling the robot, and
possibly a communication system.

These subsystems have different
voltage and current requirements. For
example, the logic might require a
regulated 5-V power supply, while a
radio module might need unregulated
12 V. Of course, the propulsion system
has different requirements, typically
at high currents.

Let’s look at some conversion tech-
niques for electrical energy that enable
us to adapt our power source to differ-
ent subsystems. For us, DC-to-DC
converters are the most common.
These converters transform the input
voltage to output voltage.

There are three kinds of DC-
to-DC converters—step down,
step up, and voltage inverter.
The step-down converter is
probably the most common. It
converts a high-voltage power
supply to a low-voltage one.

Similar to the step-down,
the step-up converter steps up
the input voltage to the out-
put voltage. The last type, the
inverter, converts positive to
negative or negative to posi-
tive voltage.

While all this is pretty
convenient, remember when

we convert voltages, we don’t create
power. This might seem obvious,
but it’s easily forgotten.

The output power of any con-
verter is going to be less than the
input power. That is, we lose power,
usually in the form of heat in the
converter. The efficiency of a con-
verter is expressed as a percentage:

E =
Pout
Pin

100%

The power-converter efficiency lets
us calculate the total power require-
ments of the system by inflating the
power used by power sources when
adapted by a converter.

For a low-power application, like
you usually encounter in a robotics
system (unless it’s a car-sized mobile
robot), two kinds of converter tech-
niques are commonly used—switched
inductor and switched capacitor (i.e.,
flying capacitor) converters.

The switched inductor converter is
the most versatile and efficient, so
let’s look at it first.

SWITCHED INDUCTOR CONVERTER
The basic idea of a switched induc-

tor converter is to use the inductor’s
properties of storing energy in the
form of a magnetic field to adapt in-
put and output impedances. An induc-
tor stores energy by building up a
magnetic field, which is generated by
current passing through it. When the
current flow is interrupted, an induc-
tor uses the stored magnetic field to
try to maintain current flow.

Figure 2 —In this step-up converter, the MOSFET transistor
(Q) sets up a charging current through the inductor (L). When
a transistor isolates the inductor, the inductor discharges its
stored energy through the keeper diode (D) into the load
(Rload).

Time

Inductor
Current (Il)

Ipeak

0 A

Capacitor
Current (Ic)

Iload

Ipeak – Iload

0 A

Signal
Switch

Ton Td

T

Von

0 V

Figure 3 —This timing diagram shows what’s going on in the circuit in Figure 2.
You can see the transistor switching signal and the current through the capacitor
(lc) and inductor (II).

28 Issue 92 March 1998 Circuit Cellar INK®

Figure 5 —Here, an analog DPDT CMOS switch
connects the charge transfer capacitor (C1) between
the input to charge and between the input and output to
double the voltage.

back) converters work. Let’s now look
at how this can be applied to DC-to-
DC step-up converters.

By using an inductor, we can gener-
ate higher induced voltages than the
voltage used to establish the current
through the inductor. However, as the
inductor discharges, the energy stored
in the magnetic field is used up, even-
tually dissipating and needing to be
reinstated.

This means we have to periodically
connect the inductor to our input power
supply to set up the field and then
connect it to the load to dissipate the
energy. We do this with a circuit like
Figure 2.

In Figure 2, a MOSFET (Q) switches
the inductor (L) to ground, setting up
a current through the inductor to
establish the field. When the ground
path is broken, the inductor induces
an output voltage. When the induced
voltage is higher than that stored in
the capacitor, the catcher diode (D)
lets the current discharge into the
filter capacitor and the load (Rload).

Once the inductor has spent its
energy, the cycle is repeated by con-
necting the inductor to ground. The
capacitor is important in this circuit,
since it needs to provide current to
the load when the inductor is being
charged, because the voltage across the
inductor then is only as high as the
input supply. Figure 3 shows the sig-
nals in this circuit.

The switching signal is the key to
this converter. It needs to meter how
much energy is stored in the inductor
delivered to the load. If too much is
delivered, the voltage starts to rise
and may become very high.

Fortunately, it’s easy to calculate the
relationship of this signal. The duty
cycle of on- and off-times is simply

the ratio of the boost voltage (Vo –
Vin) to the output voltage (Vo):

DC =
Ton
Td

=
Vo – Vin

Vo

This is easy to remember,
since the duty cycle is zero when
the input voltage is as high as the
desired output voltage. The size

of the inductor depends on the desired
output current, input voltage, and on-
time (Ton) of the MOSFET.

L =
Vin × Ton

I peak

where the maximum current in the
inductor (Ipeak) is:

I peak =
2 × I load × Vo

Vin

The capacitor (C) needs to be large
enough to maintain the current to the
load with an acceptable amount of
ripple (Vripple) voltage:

C =
∆Q

Vripple

C =
Ipeak – Iload

2

2 × Vripple × Ipeak
Ton

Vo

Vo – Vin

So this pretty much lets us define
the parameters for the components in
a switching power supply. I’ll show an
example of this when I talk about
implementing an untethered power
supply for the Stiquito.

Similarly, we can design a step-down
converter and a voltage inverter using
switched inductance technique. The

values for the components are arrived
at similarly. Figure 4 depicts a voltage
inverter configuration.

SWITCHED CAPACITOR
By contrast, in the switch-capacitor

converter, you use a capacitor to trans-
fer charges. The switched-capacitor
converter is much simpler to think
about and implement.

The essential mechanism in this
type of converter is that we use a
capacitor which is charged from the
input power supply and then discon-
nected from the input power and con-
nected in different configurations to
arrive at the needed output voltage.
Figures 5 and 6 show a step-up and an
inverter configuration of a switched-
capacitor converter.

It’s easy to see you can only imple-
ment output voltages that are multiples
of the input voltage. That is, the
smallest voltage you can switch is the
power-supply voltage. This, combined
with the limited current capabilities
due to internal resistance of large
capacitors, limits the applications of
the switched-capacitor converter.

However, they are popular for gen-
erating the bipolar power supplies
(±10 V) needed for RS-232 implemen-
tation from a single 5-V supply. Also,
they can be used for low-current high-
voltage power supplies by cascading
stages.

NiCd POWER IN STIQUITOS
In INK 73, I talked about control-

ling a small Nitinol-based robot,
Stiquito II. The Stiquito uses Nitinol
wires for actuators. The wires, some-
times called “muscle wires,” contract
when they’re heated above a threshold
temperature.

These wires aren’t energy efficient
(i.e., not much of the energy that is
needed to heat the wire through I2R
heating is converted into mechanical
energy). However, since it’s easy to
use them to build small and light
actuators, they’re common in minia-
ture robotics and animatronics.

Since Nitinol wires use so much
power, we originally used a sort of
tethered system to power the robots.
That is, we didn’t carry any power on
the robot itself.

Figure 4 —This configuration inverts the input voltage—
something that can’t be done with a linear power supply.

Circuit Cellar INK® Issue 92 March 1998 29

I R S
404 Very Useful
405 Moderately Useful
406 Not Useful

This method was effective for pow-
ering the robots, but it made the sys-
tem unwieldy. The tether system
consists of a large cage, and the robots
receive power from brushes, which
connect them to an overhead screen
and a copper floor.

To make Stiquitos more mobile, a
small NiCd cell power supply powers
the propulsion and logic systems on
these robots. Even though NiCd bat-
teries don’t have the highest power
density of all the secondary battery
chemistries, they come in a variety of
common cell sizes, all the way from
button cells to D-size cells. Also, in-
between sizes are available.

One popular cell size is the sub-C
cell. This cell has the same length as
a regular C-size battery, but it’s skin-
nier. Sub-C NiCd cells have capacities
of 1200 mAh. It turns out that two of
these cells are the maximum that the
Stiquito can carry.

Another reason NiCds are well
suited for this job is the very low
internal resistance of the battery.
NiCds can generate very large cur-
rents, which is just the thing we need
to power our Nitinol actuators.

Two cells generate a high enough
voltage (2.4 V) to power the Nitinol
actuators in the Stiquito directly using
power MOSFETs to switch them, so
they match the Nitinol load well. How-
ever, two cells aren’t enough to power
the logic on the Stiquito, which runs
at 5 V and consumes up to 100 mA.

To generate the necessary 5 V, I
use a step-up converter. The current
requirement for the logic is too high
to consider a switched-capacitor con-
verter, so I use a switched-inductance
converter.

To keep things small, I constrained
myself to using a 22-mH inductor. So
let’s calculate the timing parameters
for the switching signal to drive this
converter. We can calculate the duty
cycle (DC) by:

DC =
Ton

Ton + Td

=
Vo – Vin

Vo

= 5 – 2.4 V
5

= 52%

SOURCE

MAX877
Maxim Integrated Products
120 San Gabriel Dr.
Sunnyvale, CA 94086
(408) 737-7600
Fax: (408) 737-7194

Figure 6 —Similar to the switched capacitor step-up
converter in Figure 5, a switched capacitor converter
can be used to invert voltages as well.

Ingo Cyliax has been writing for INK
for two years on topics such as em-
bedded systems, FPGA design, and
robotics. He is a research engineer at
Derivation Systems Inc., a San Diego-
based formal synthesis company,
where he works on formal-method
design tools for high-assurance systems
and develops embedded-system prod-
ucts. Before joining DSI, Ingo worked
as a system and research engineer for
several universities and as an inde-
pendent consultant. You may reach
him at cyliax@derivation.com.

Since the value of the inductor and
currents are known, we can calculate
Ton and thus the frequency of the
switching signal:

I peak = 2 × I load
Vo
Vin

= 2 × 100 mA × 5 V
2.4 V

= 0.417 A

Ton = L
I peak

Vin

=
2 µH × 0.417 A

2.4 V
= 3.8 µs

Freq = 1
Ton + Td

= 1
Ton / 0.52

= 138 kHz

So, all we need is a square-wave signal
at ~138 kHz to derive a logic power
supply for the Stiquito.

Of course, a simpler solution is to
use Maxim’s wide-range regulated step-
up converter chip—the MAX877. This
chip can generate up to 200 mA at 5 V
from a ~1.5–6.0-V power-supply range.

Also, the MOSFET and a variable
PWM generator are integrated into
this eight-pin chip. The MAX877 was
designed for use in battery-operated
computing devices like PDAs and
portable phones.

GOING FURTHER
Hopefully, you’ve gotten some ideas

for your next robot project. Robot
power systems are a difficult issue.
OK, perhaps not as bad as robot navi-
gation, but pretty hard.

It should be interesting to watch
the portable computing-device indus-
try for battery-powered technology.
Hopefully, we will see better battery
technologies, as well as more efficient
converters and chargers. It will be

interesting to revisit this topic in a
few years to see the changes.

If you’re interested in power gen-
eration and storage, check out the
references. In particular, The Art of
Electronics has a whole chapter de-
voted to the topic of low-power tech-
niques and a detailed discussion of
primary and secondary battery types.
The Standard Handbook for Electri-
cal Engineers is also a great resource
for power-related technologies. I

REFERENCE

D.G Fink and H.W. Beaty, Stan-
dard Handbook for Electrical
Engineer, McGraw-Hill, New
York, NY, 1993.

D.G. Fink and D. Christiansen,
Electronics Engineers’ Handbook,
McGraw-Hill, New York, NY,
1989.

P. Horowitz and W. Hill, The Art
of Electronics, Cambridge Press,
New York, NY, 1989.

D. Lines, Building Power Supplies,
Master Publishing/Radio Shack,
Ft. Worth, TX, 1991.

30 Issue 92 March 1998 Circuit Cellar INK®

MicroBot FEATURE
ARTICLE

Bruce Reynolds

f
Bruce is an advocate
of age-old wisdom: If
you can do it simply
and with common
components, do it!
As he proves with
MicroBot, overkill is
unnecessary. You
can still cram a lot of
functionality into an
8-bit micro.

rom the first
mechanical clun-

kers resembling a tin
can with arms and legs

to today’s advanced techno-marvels
deployed by NASA, robots have always
captured our imaginations and height-
ened our anticipation for the future.

With the new advances in micropro-
cessor technology and endless resources
for technical information at our finger-
tips unleashed by the Internet, it’s no
longer a massive engineering feat to
develop an experimental robotics plat-
form on your own. The average designer
now has the means to produce robotic
creations with advanced capabilities.

The idea for MicroBot came about
after a recent discussion with a not-so-
technically-inclined friend in which
he proudly announced that he thought
of robots as simple boring machines.

My reaction: simple perhaps, boring
never! Putting together a simple robot
application is a great way to develop
your engineering expertise.

To prove my point, I use MicroBot to
acquaint you with Intel’s 8749 micro
and to demonstrate issues that need
to be considered when you work with
sequential control logic, servo control,
timing, and power consumption.

I decided to base MicroBot, shown
in Photo 1, on the Intel D8749H ce-

ramic DIP 8-bit microcontroller. It’s
an older version of the 8-bit family
from Intel, but it’s still capable of
handling many control applications.

The D8749H has 2K × 8 data
EPROM, with 128 × 8 RAM, making it
ideal for robots needing only small
amounts of program memory. The
ability to erase and reprogram the
windowed version is handy when debug-
ging assembly code. The 27 available I/O
lines were more than enough for Micro-
Bot’s limited control requirements.

I chose the 3.57-MHz crystal because
of its availability and because higher
clock speeds aren’t crucial to Micro-
Bot’s operation. If you want the tim-
ing routines written for MicroBot to
work without having to modify them,
stick with the 3.57-MHz crystal.

My idea was to build a small, simple
robot from readily available parts and
without using overkill tactics. I wanted
a robot that could be programmed via
onboard push-button switches to
navigate through an obstacle course.

My goal: have the user program
MicroBot to navigate the course in the
shortest amount of time, thus winning
the competition, gaining the respect
of all present…and maybe, just maybe,
having a little fun in the process.

OPERATION
Before getting into how I put this

robot together, let me first tell you
how I wanted MicroBot to operate.

If the user presses button 1 (For-
ward), the display shows the number
01. Pressing button 8 (Enter) clears the
display, and the control bits for for-
ward motion are recorded into the on-
chip RAM.

Pressing button 6 (Time) displays a
count from 1 to 60, which indicates the
number of seconds MicroBot should
proceed in the preselected direction. To
stop the counting at the desired time,
press Enter. The display digits update
at approximately 0.5-s intervals.

Once Enter is pressed, the time data
is stored in on-chip RAM and program
control is then passed to the first
routine (Begin, shown in Listing 1) to
wait for more user entry.

Once all directions and times are
entered, pressing the Run button causes
MicroBot to execute the stored instruc-

Programming Intel’s 8749 for
Robotic Control

Circuit Cellar INK® Issue 92 March 1998 31

Photo 1 —Here’s MicroBot fully
assembled.

servos are an exceptional choice for
precision positioning applications.
Since MicroBot requires a full 360°
rotation of the wheels, the servos
have to be modified prior to use.

To modify these servos, just remove
the drive electronics from inside the
servo case and cut the nib off the final
gear. Next, remove the three wires
from the circuit board and solder the
red and black power wires directly to
the motor power tabs. The white
(control) wire may be discarded, be-
cause no positioning pulses are needed.

Next, replace the motor and reduc-
tion gears. Modifying the servo in this
way makes it possible to use simple
relay or digital control techniques with
the servo and achieve the full 360° of
rotation.

Since no two servos ever seem to be
created equal, using variable resistors
or experimenting a little with fixed
values provides some equalization of
speeds between the two motors. If you
notice that MicroBot tends to veer
slightly while moving forward, you
can adjust individual motor speeds by
adding or subtracting resistance values.

POWER SUPPLY
Figure 3 shows the individual power-

supply sections. As a general rule of
thumb, it’s good practice to include
some type of regulation in any circuit
you design. However, when cost and a

polarity to each motor to provide
forward and reverse motion.

The motors I selected for MicroBot
are modified Futaba FP-S148 servos.
They provide an output torque of
42 oz./in. (3 kg/cm) to power through
rough terrain and weigh a mere 1.5 oz
each. Subsequently, they are lightweight
and powerful enough to be used in many
robotics applications.

In their unmodified state, pulse-
proportional servos are designed for
use in radio-controlled cars and planes.
They require control pulses from 1 to
2 ms long, repeated 60 times per second.

The servo positions its output shaft
in proportion to the width of the pulse.
A 1.5-ms pulse centers the shaft. A
1-ms pulse positions the shaft to the

left 45°, and a 2-ms pulse moves
the shaft to the right 45°.

Standard un-
modified

tions for direction and time,
thus attempting to navigate the
obstacle course.

After executing the first
programming sequence, Micro-
Bot adds any further data entry to
the end of the first stored se-
quence. You can add more to the
stored direction and time data.

If you were close on the first
programming attempt, you may
be able to finish the obstacle
course. If not, pushing Reset
and Clear erases prior program-
ming, enabling you to start over.

HARDWARE
As shown in Figure 1, port

pins 12–19 (DB0–DB7) are used
to output user data-entry infor-
mation to the 7447 decoder/
drivers that drive the LA-6760
seven-segment displays. Port 2 handles
the user input of forward, reverse, left,
right, pause, time, clear, and run. Port
1 uses the three least significant bits
to control three Omron G5V-2 DPDT
relays, which control motor power
and direction.

The switch connected to pin 1 (T0)
is for the Enter key, and the conditional
transfer instruction JT0 detects when
Enter is pressed. All instructional func-
tion keys (i.e., forward, reverse, left,
right, pause, and time) wait for the
Enter key to be pressed before return-
ing program control to Begin and
waiting for more user data entry.

Figure 2 illustrates the simple con-
trol scheme for the motors, using
relay 3 as the power-on/-off control to
the motors. Relays 1 and 2
simply reverse

Figure 1 —Pin 1 (T0) of the D8749H detects the Enter key input using the conditional transfer instruction JT0. Port 2 keeps
track of the rest of the key input. The LA-6760 seven-segment common anode displays verify user key presses and display the
time count when setting the time. Port 1 uses only the three least significant bits to control the motor relays. The remaining five
I/O pins can be used to add extra features.

32 Issue 92 March 1998 Circuit Cellar INK®

CONTROL CODE
The control soft-

ware was kept ex-
tremely simple, yet
it very effectively
controls MicroBot.
With a little creativ-
ity at the keypad,
one can make Micro-
Bot seem quite life-
like and even appear
to be making intelli-
gent decisions about
its environment.

The code begins
by selecting register
bank 0, establishing
Direction and Time
RAM location point-

ers. It then sends data to clear the dis-
play, stop the motors, and wait for key
entry on powerup and on return from
other key-entry routines. Registers R0
and R1 are indirect address pointers
for direction and time storage locations,
respectively.

MicroBot uses 104 internal RAM
storage locations starting at location
24d, just above the eight-level stack,
up to 127d, allowing for up to 52 direc-
tions with 52 corresponding time
periods for storage and execution.

The first version of MicroBot was
assembled on a breadboard. But, due
to the somewhat overzealous contest

low parts count are
important factors (and
efficiency isn’t), it can
sometimes be avoided
for the more simple
circuits.

The MicroBot power
supply was designed
to use AA batteries
without regulation.
Since a linear regula-
tor like the LM7805
requires an input volt-
age of 7.0 V or higher
to maintain a regulated
output of 5.0 V, larger
and heavier batteries
are required, adding to
the weight, parts count,
and cost. Linear-regulator power loss
also adds to circuit power consump-
tion. For battery-operated platforms,
you want to avoid any unnecessary
power loss.

The 6.0-V supply for the servo motor
section consists of four 1.5-V alkaline
AA batteries. Each servo draws approxi-
mately 70 mA with a 6.0-V supply, for
a total power consumption of 140 mA.
Good-quality alkaline batteries nor-
mally provide ~1.5 h of motor opera-
tion. Using separate 6.0-V supplies for
each motor could extend this time, but
not without a tradeoff of increased
weight and load on the motors.

Power to the microcontroller and
relay section comes from eight 1.5-V
alkaline AA batteries in series. Ground
is tapped between the fourth battery,
which is a common ground for the
microcontroller and relay circuit.

The Omron G5V-2 relays are rated
from 5 to 6 V and consume about 60 mA
each with a 6-V supply. The motors
require only the activation of relay 3
for forward motion using 60 mA.

Since MicroBot normally covers
more ground in the forward direction,
this configuration ultimately saves on
power consumption. When MicroBot
is going in reverse, the relay section
consumes 180 mA, and a left or right
turn requires 120 mA. While this is
indeed a simple process, it is important
to remember this during design.

The D8749H microcontroller’s
absolute maximum voltage rating is
7.0 V [1]. Operating at 6.0 V keeps the

project within this limitation. Here
again, the flexibility of the D8749H
comes into play. Power consumption
for the microcontroller section is
~195 mA without the seven-segment
displays active and 290 mA with the
displays active during user program-
ming.

Figure 4 depicts an optional light-
sensitive headlight assembly. By ad-
justing the variable resistor, you can
select the level of darkness required to
activate the headlights. I used garden-
variety (super bright) red LEDs, which
are quite effective with a distance of
about 6′.

Figure 2 —This relay setup controls MicroBot’s servos. Relay 3 serves as a power switch. Relays 1 and 2
reverse polarity to each motor, providing forward and reverse motion. When power is applied, relay 3 turns
off to stop both motors. Relays 1 and 2 in the normal off state supply power to the motors for forward
motion. When attaching the motors to the relay outputs, the left motor connects to relay 2 and the right
motor to relay 1. The 0.1-µF capacitors are soldered across the servo power leads inside the servo case.

Listing 1 —The beginning code segment sets up direction and time RAM pointers, clears the display, halts
the motor, and waits for user key entry. You can get the remaining code segments from the Circuit Cellar
Web site.

org 0 ; Start at 0
sel rb0 ; Select register bank 0
mov r0,#18h ; Set DIRECTION RAM location pointer
mov r1,#19h ; Set TIME RAM location pointer

begin: mov a,#0ffh ; Load clear display bits
outl bus,a ; Clear display
mov a,#0f0h ; Bits to halt all motors (CLR P1.0)
outl p1,a ; Halt motors
clr a ; Clear accumulator
in a,p2 ; Get user keypad input
cpl a ; Invert keypad entry 0 = 1
jb0 fwd ; If Acc Bit 0 = 1 goto fwd
jb1 rvs ; If Acc Bit 1 = 1 goto rvs
jb2 left ; If Acc Bit 2 = 1 goto left
jb3 right ; If Acc Bit 3 = 1 goto right
jb4 clear ; If Acc Bit 4 = 1 goto clear/clear ram
jb5 run ; If Acc Bit 7 = 1 goto run/execute pgm
jb6 time ; If Acc Bit 6 = 1 goto time/set time
jb7 pause ; Pause/Stop routine
jmp begin ; Recycle until keypress detected

34 Issue 92 March 1998 Circuit Cellar INK®

participants, the breadboard construc-
tion method seemed weak at best. Wires
and wheels were soon flying about as
excited, would-be contestants crowded
around grabbing at MicroBot.

Soon MicroBot and I were back in the
lab, so I could add a little armor plating.
The final version is on a single-sided,
circuit board attached to Plexiglas via
standoffs, allowing placement of the
motor batteries and a place to secure
the servos with hot glue.

The rear (center) wheel is a model-
airplane tail wheel assembly. The rubber
wheels came from a remote-controlled

car that didn’t survive a day after Christ-
mas, and they’re attached to the servo
horns with epoxy.

SIMPLE, NOT LIMITED
Simplicity is a breath of fresh air. It’s

amazing what you can create with com-
mon parts and a single simple micro.

With the ever-advancing onslaught
of new and improved, super-charged
16-bit micros, it’s easy to feel hard
pressed about deciding which device
would prove most efficient for a par-
ticular application. But remember,
there’s still a place for simple 8-bit
and even 4-bit microcontrollers [2].

Figure 4 —In the optional headlight assembly, the
Radio Shack super-bright red LEDs have a laser-like
quality and cast a narrow spot ~6′ in front of MicroBot.
For maximum effect, keep the value of R1 as low as
possible.

I R S
407 Very Useful
408 Moderately Useful
409 Not Useful

SOFTWARE

Complete source code for this ar-
ticle is available via the Circuit
Cellar Web site.

REFERENCE

[1] Intel, Publication 270646-005,
1993.

[2] S. Ciarcia, “A Computer-Con-
trolled Tank,” BYTE, 6:2, 80–93,
1981.

[3] J.L. Jones and A.M. Flynn, Mo-
bile Robots, A.K. Peters, 1993.

SOURCE

D8749H 8-bit microcontroller
Intel Corp.
5000 W. Chandler Blvd.
Chandler, AZ 85226-3699
(602) 554-8080
Fax: (602) 554-7436
www.intel.com

Bruce Reynolds works for the Colorado
State Department of Corrections as
an electronics supervisor. He also
operates Reynolds Electronics, provid-
ing contract engineering services for
8051-based embedded control systems,
as well as building and consulting for
new computer systems. You may
reach Bruce at breyno@rmi.net.

Figure 3 —MicroBot’s power supply consists of 12 AA
alkaline batteries. To simplify battery placement and
connections, three battery holders with four AAs in each
are used to house the batteries.

I am often approached by beginning
microcontroller designers with the same
questions: “What is the best device type
to use?” and/or “What is the most
efficient assembler?”

Without the concerns of going to full
production with a new product or the
cost of large volume manufacturing, I
recommend experimenting with as
many device types as possible—even
older 8- and 4-bit low-end models. (If
you’re looking for how-tos, check out
Mobile Robots [3].)

This experience helps build a well-
rounded knowledge of device capabili-
ties and design techniques. Break new
ground, and don’t limit yourself to
one device type. Bigger and faster is
not always the answer. I

Photo courtesy of
Advanced Micro Devices, Inc.

36 Nouveau PC
edited by Harv Weiner

41 Converting 8051 Code for an �x86
 Embedded Processor
Chip Freitag & Jeff Kirk

47 Real-Time PC
Picking a PC RTOS
Ingo Cyliax

53 Applied PCs
Embedding PC Card
Part 1: The Time Has Come
Fred Eady

CIRCUIT CELLAR INK MARCH 199836

N
PC

PCNouveau
edited by Harv Weiner

FLASH MEMORY
ZF MicroSystems is offering flash-memory

chipsets certified to work with embedded systems
based on the company’s Single-Device PC (SDPC)

OEModules.
The new ZF FlashDisk-SC chipsets consist of flash-

memory and controller devices, which are guaranteed by the
company to work with the recently announced SMX/386-40
OEModule and other ZF MicroSystems products. The SMX/386-
40 is a complete 40-MHz, ′386-based PC in a device that
measures approximately 2″ × 3″, complete with ISA bus, floppy
and hard drive controllers, system memory, and serial and
parallel ports.

The ZF FlashDisk-SC, which is available in 2-, 4-, 8-, and
12-MB versions, offers high performance for a lower price than
other flash-memory chipsets in the industry. The full-boot operability
and superior read/write speeds make this chipset ideal for high-
performance demands in embedded-systems design. The chipset
offers full read/write disk emulation and contains ECC/EDC for
high data reliability. The chipsets are an industry-standard design
and provide an easy-to-use interface.

The ZF FlashDisk-SC is available now and is sold together with
the SMX-386 OEModule. Prices start at $40 in quantities of 100.

ZF MicroSystems
1052 Elwell Ct.
Palo Alto, CA 94303
(415) 965-3800
Fax: (415) 965-4050
info@zfmicro.com • www.zfmicro.com #510

ISDN ACCESS IN PC/104 FORMAT
Xecom has announced a PC/104-card family for connecting

to the Integrated Services Digital Network (ISDN). Six boards
offer various combinations of ISDN, analog modem, RS-232, and
POTS interfaces. Two high-speed serial ports with 16C550 UARTs
provide interface to the onboard ISA-bus connector. Applications
include remote data collection and transaction processing, process
monitoring and control, network monitoring, audio transmission,
and remote LAN and Internet/Intranet access.

The PCISDNU, a single-board ISDN terminal adapter with
integral NT1 (U interface), provides
a serial data channel capable of
1200 to 64,000 bps synchronous
or 300 to 115,300 bps asyn-
chronous over one ISDN B-channel.
The ISDN interface includes the
line termination with all passive
components. Only a standard two-
wire phone cable is needed for
hookup to the ISDN wall jack, and
the firmware is compatible with all
standard ISDN central-office
switches used in North America.

The PCISDNUP lets you
connect an analog telephone,

modem, or fax machine directly to the PC/104 board. It provides
dial tone, ring voltage, and calling progress tones to the POTS
line, so it uses the full potential of the high-speed ISDN interface
without requiring ISDN-compatible telephone or fax equipment.

Other products combine ISDN terminal-adapter and analog-
modem functions at 14.4-, 28.8-, or 33.6-kbps data rates. The
modem runs on a second high-speed RS-232 channel, providing
an analog back-up line when ISDN service isn’t available or acting as
a lower speed data line. Serial channels are jumper configurable

to COM ports 1–4 and IRQs 3–4.
The boards are in a 90 mm × 96 mm ×
15 mm (3.6″ × 3.8″ × 0.6″) con-
figuration with stackthrough pins.

Single-quantity pricing for the
PCISDNU is $339.

Xecom, Inc.
374 Turquoise St.
Milpitas, CA 95035
(408) 945-6640
Fax: (408) 942-1346
www.xecom.com

#511

 MARCH 1998 EMBEDDEDPC 37

N
PC

PCNouveau

EMBEDDED PROCESSOR MODULE
Intel’s Embedded Processor Module is a high-performance

subsystem for embedded, industrial, and communication
applications where flexibility and the ability to upgrade are
important. The module contains the 133-MHz mobile Pentium
processor or the 166-MHz Pentium MMX, 82439HX system
controller, 256-KB pipeline-burst SRAM L2 cache, clock generator,
and a voltage regulator for the Pentium processor.

The module consists of a six-layer board fabricated with FR4
laminate with top and bottom signal layers, separate power and
ground layers, and two internal signal layers. It measures 3″ × 4″,
double sided with two high-performance low-profile connectors
and a heat sink for the Pentium processor.

A development kit, available from VenturCom, includes the
Embedded Processor Module, evaluation board, interposer board
for voltage and power measurement, and schematics.

Software includes evaluation copies of the QNX RTOS and
Photon microGUI windowing system with Watcom C/C++ compiler
and tools, Cogent Slang programming language for QNX and
Photon microGUI, RadiSys Intime with Intrinsyc Integration Expert,
VenturCom RTX with Component Integrator, and PhoenixPICO
BIOS.

Pricing is $400 in single quantities.

Intel Corp.
2200 Mission College Blvd.
Santa Clara, CA 95052-8119
(408) 765-8080
www.intel.com/design/intarch #512

MOBILE PC
The PC-500 packs high-performance features

into 5.75″ × 8″, including a 133-MHz 5x86 CPU, five
serial ports, 10BaseT Ethernet, SCSI-2 interface, advanced
flat-panel video controller, and 24 lines of bit-programmable
DIO. It withstands 20 G of shock, 3 G of vibration, and
operation from –40° to 70°C at full CPU speed. It operates stand
alone or with PC/104 expansion.

The card also features 2-MB flash memory with resident DOS
6.22, 1–33-MB EDO DRAM, and real-time video with graphics
accelerator. It has 2-MB video RAM; IEEE 1284 multifunctional
parallel port; floppy and hard drive interfaces; keyboard, speaker
and mouse ports; and a watchdog timer. And, the card offers a
real-time clock and optoisolated interrupts.

The PC-500 supports leading OSs like Windows NT and QNX.
The on-card flash contains DOS 6.22 and diagnostic software to
test and verify on-card I/O and memory functions. Application
programs can be stored in the resident flash memory or on an
external 24-MB flash card, eliminating the need for a hard drive.

The card supports CRTs and LCD, plasma, and EL flat-panel
displays. Since the video circuitry operates on the Local bus at full
processor speed, high-performance programs execute rapidly.
The video RAM supports high-resolution displays to 1024 × 768.

The PC-500 costs $995 and sells for less than $700 in OEM
quantities.

Octagon Systems
6510 W 91st Ave.
Westminster, CO 80030
(303) 430-1500 • Fax: (303) 412-2050
www.octa.com #513

CIRCUIT CELLAR INK MARCH 199838

N
PC

PCNouveau

RUGGED CompactPCI ENCLOSURE
 The PC/Ranger is a rugged enclosure for 3U CompactPCI boards. The Nema 4-sealed PC/Ranger is designed

for use in high-vibration, high-shock, and exposed environments such as trains, aircraft, trucks, military vehicles, and
outdoor areas.
In the PC/Ranger, off-the-shelf CompactPCI boards

are individually mounted into shock-absorbing card guides
and locked in place with retaining screws. Off-the-shelf CPU

boards are cooled with a supplied companion conduction
cooling card to remove heat from Pentium-class CPUs to the
chassis. The PC/Ranger has a mounting flange to dissipate
heat by conduction to a cold plate as well as cooling fins to
dissipate heat by convection to the ambient air.

Pricing for the PC/Ranger starts at $1895.

Kinetic Computer
76 Treble Cove Rd.
Billerica, MA 01862
(978) 439-0500
Fax: (978) 439-0501
www.kin.com #514

EPC

 MARCH 1998 EMBEDDEDPC 41

Chip Freitag &

Jeff Kirk

Converting 8051 Code for

an ’x86 Embedded Processor

Perhaps you�re running out of memory
space with the 8051, needing more per-
formance, or designing a totally new prod-
uct. You�re convinced you need to switch
architectures, and you�ve looked at the
various options available.

Maybe you�re leaning towards the
Am186 family of processors, but you have
many man-years invested in assembly-lan-
guage code and are dreading the thought
of throwing it all away and starting over.
You need to know how difficult it is to write
80186 assembly-language code.

The good news is that it�s
reasonably easy to migrate�both
from a hardware and a software
perspective. We�ll show you how.

In this article, we�re assuming
you�re an experienced 8051 user
but haven�t used the Am186/
188 before. Just as a quick over-
view, the Am186 family of embed-
ded microprocessors is 100%
instruction-set compatible with the
Intel 80186. It includes standard

80186 peripherals such as timers and
memory/peripheral chip selects.

The Am186 family also offers integra-
tion like async and sync serial ports,
programmable I/O, and 32 KB of SRAM.
Speed grades of up to 40 MHz are
available.

REGISTERS
The 8051 microcontroller is somewhat

unique in that its special-function registers
are located in RAM. This setup is possible

because the 8051 was designed with a
small amount of SRAM on the die, so
there�s no speed penalty for accessing
registers in RAM.

Since you can access the Accumulator
(A) as both a register and direct memory
location, you can do things like add the
accumulator to itself (e.g., ADD A, acc ;
where acc = E0h).

The register set of the 80186 processor
follows a microprocessor model rather
than a microcontroller model. Usually,

there�s no on-chip RAM on 80186
processors.

Perhaps the biggest conse-
quence of this difference is the
lack of banked indexed registers
(R0�R7) on the Am186. Other-
wise, the 80186 register set
(shown in Figure 1) is function-
ally similar to the 8051�s.

In general, the 80186 regis-
ter set is 16 bit rather than 8, but
some registers (i.e., AX, BX, CX,
DX) are also byte addressable

Although many prefer using C when moving to a 16-bit processor, there are times
when low-level drivers and time-critical code demand that portions of the code
remain in assembler. Chip and Jeff suggest ways to ease that process.

8051 AM186
Register Register Function

ACC(A) AX Accumulator
B DX Auxiliary accumulator & multiply results

PSW FLAGS Processor status flags
SP SP Stack pointer

DPTR BX Base index register
R0–R7 DI,SI Index registers

Table 1�This table shows the approximate register-set equivalents
between the 8051 and 80186 processor families. The 8051 does
have more index registers. The 80186 AX register can be treated as
two separate eight-bit registers.

CIRCUIT CELLAR INK MARCH 199840

N
PC

PCNouveau

PENTIUM MMX SBC
The 2107 from Toronto MicroElectronics is the

first half-sized (4.8″ × 7.8″) industrial SBC that supports
Intel Pentium MMX and AMD k6 processors at speeds up

to 266 MHz. Features include L2 pipeline-burst cache, complete
standard I/O (i.e., two serial ports, one parallel port, floppy and

EIDE interfaces), up to 256-MB FPM or EDO DRAM on two 72-pin
SIMM sockets, and PCI and ISA buses on a passive backplane, with
a very small form factor.

The board features a flat-panel display interface using C&T 65548
with 1-MB display memory. Its LVDS (low-voltage differential signal)
drives the flat-panel display cable up to 100′. It also minimizes EMI,
which helps the system designer meet FCC, DOC, CE, or other
regulatory requirements.The 2107 supports most flat-panel displays
(e.g.,TFT, passive LCD, gas plasma, FL, etc.).

Embedded-PC system features include a watchdog timer with
software or hardware disable/enable, 128 bytes of EEPROM for
system parameters, up to 384 KB of EEPROM for user system
parameters, real-time clock, fully AT-compatible BIOS, power-failure
detection circuitry, and PC/104-bus capability.

Toronto MicroElectronics, Inc.
5149 Bradco Blvd. • Mississauga, ON
Canada L4W 2A6
(905) 625-3203 • Fax: (905) 625-3717
www.tme-inc.com #515

EP
C

CIRCUIT CELLAR INK MARCH 199842

and can function much
like the 8-bit 8051 ver-

sions.
Table 1 has a short list of the

core 8051 special-function regis-
ters with the 80186 equivalents.

MEMORY SPACE AND ADDRESSING
The 8051 and 80186 have different

memory schemes, but in many ways, they�re
very similar.

The 8051 divides memory into two
categories�on-chip and external. Exter-
nal memory is subdivided into program
and data memory, which enables the

8051 to double the 64-KB address space
of a standard 16-bit address.

On the other hand, the 80186 has no
on-chip address space and divides exter-
nal memory into two categories�memory
and I/O. I/O space has its own set of
dedicated instructions.

Each of these two schemes has an effect
on both instructions and addressing modes.
For example, the 8051 forces you to
access external memory indirectly through
the data pointer (DPTR). This limitation is
such a problem that some 8051 versions
add a second data pointer to try to ease
this bottleneck.

The 80186 has no such limitation (you
can address external memory and I/O
directly). However, if indirect addressing
is desirable, it can be done with one of the
BP, BX, DI, or SI registers.

In general, the 80186 has more types
of addressing modes that are more power-
ful than the 8051. Table 2 gives the approxi-
mate 80186 equivalents of the standard
8051 addressing modes, but it�s worth-
while investigating the more powerful
modes unique to the 80186.

One last addressing topic deserves brief
discussion: the 80186 is a segmented
processor. This concept should be easy for
8051 users to understand. Think of the
80186�s memory space as a collection of
8051-sized code and memory spaces, or
in short, one segment equals an 8051
64-KB memory space.

Each segment register points to one of
these 64-KB spaces. The memory�s physical
address is generated by shifting the 16-bit
segment address to the left four bits (multi-
plying by 16) and adding it to the 16-bit
offset. The result is a 20-bit address that
reaches a 1-MB address space.

Consequently, the 64-KB spaces can over-
lap, which is useful in smaller systems with
limited memory. The segment registers are:

� DS (data segment)�holds data, like the
8051 external data memory

� CS (code segment)�serves as default
locations for instructions, like 8051 pro-
gram memory

� SS (stack segment)�is the location of the
stack, like 8051 internal stack space

� ES (extra segment)�acts as a spare,
often used for string operations

As you see, you can think of the 8051 as
a segmented processor with three types of
segments (internal, data, and program)
consisting of a single segment each.

The 80186 has a few addressing modes
that the 8051 doesn�t. In most cases, these
addressing modes aren�t needed and can
be ignored.

But, you can understand the different
addressing-mode possibilities better if we
separate them into three categories�data
(MOV, AND, etc.), program (CALL, JMP),
and stack (PUSH, POP).

DATA ADDRESSING MODES
As we mentioned, the physical address

consists of segment plus offset. The seg-

EPC

 MARCH 1998 EMBEDDEDPC 43

ARITHMETIC
OPERATIONS

The 8051 arithmetic instruc-
tions are a subset of the arithmetic
operations the 80186 can perform.
The 80186 can perform 8- or 16-bit
arithmetic operations, so it�s fairly easy to
port 8051 code using the 8-bit operations.

Naturally, floating-point code is a lot
faster using the 16-bit math operations.
New 80186 instructions include signed
multiplication and division and several
ASCII adjust instructions.

LOGICAL OPERATIONS
Like the arithmetic operations, the logi-

cal operations of the 8051 are a subset of
the 80186. The logical operations can be
8 or 16 bit. Unlike the 8051, which has
only single-bit rotate instructions, the 80186
allows multiple-bit shifts and rotates using
CL or an immediate byte to specify the
number of shifts to perform.

Notably, many operations restricted to
the 8051�s accumulator (CPL, RR, etc.) are
open to any 80186 register or memory.

The 80186 also has a new set of arithmetic
shift operations. These instructions can per-
form 8- or 16-bit shifts in either direction
and include the carry bit in the shift operation.

DATA TRANSFER
The data-transfer capabilities of the

80186 are almost a superset of the 8051.
The only unique 8051 instruction is XCHD,
which requires several 80186 instructions
to perform.

Be aware that most 80186 data-trans-
fer operations are less restrictive than the
equivalent 8051 instructions. For example,
MOVC can only read a byte from code
space. The equivalent 80186 operation
(moving a byte, word or string from/to the
code segment) has no such restriction.

The 8051 only supports
one instruction for indirect
program branching (i.e.,
JMP @A+DPTR), while the

80186 is a lot more flexible, including the
capability to do a double indirect jump or
call. This feature can be useful for program
structures such as jump tables.

ADDRESSING-MODE SUMMARY
The 8051 is essentially a subset of the

80186. If you only need the capabilities of
the 8051, it�s possible to keep your code
fairly simple.

On the other hand, the more powerful
capabilities of the 80186 make a lot of
tasks easier. Here are a few simple hints
about addressing.

First of all, the operand field often
determines the size of the transfer (AX vs.
AL). Also, either the source or destination
must be a register (no memory to memory),
with the exception of some string opera-
tions.

As well, don�t mix data sizes (e.g., mov
AX,CL). And finally, remember that in most
cases, the segment register is implied but
can be overridden (defaults are BX, DI,
and SI equal to data, and BP equal to
stack).

ment register is usually implicitly chosen
by the addressing mode but can be explic-
itly chosen with a segment override prefix.

On the other hand, the offset can be
composed by summing one or more of
three address elements:

� displacement (D)�an 8- or 16-bit imme-
diate value contained in the instruction

� base (B)�contents of the BX or BP base
registers

� index (I)�contents of the SI or DI index
registers

These three elements are combined
into the six data-addressing modes given
in Table 3. Unfortunately, not all assem-
blers use the same notation. In general,
there are some minor differences between
the common 8051 and 80186 syntaxes.

STACK AND PROGRAM ADDRESSING
The addressing modes of these two

groups are about the same between the
two processors with a few differences. We
discuss the most important ones here.

The stack-addressing instructions (i.e.,
PUSH and POP) are almost identical. Per-
haps the biggest difference is that these
instructions use the Stack Segment register
by default. The location of the stack seg-
ment is usually affected by the �model� (an
assembler directive), so consult your
assembler�s user manual.

Program addressing has a few more
differences. There is no equivalent of the
11-bit addressing modes of the 8051
(AJMP and ACALL). Otherwise, they both
support direct, relative, and indirect ad-
dressing for program branching.

AX

DX

CX

BX

BP

SI

DI

SP

Byte
Addressable

(8-Bit Register
Names Shown)

Multiply/Divide
I/O Instructions

Loop/Shift/Repeat/Count

Base Registers

Index Registers

Stack Pointer

7 0 7 0

15 0

CS

DS

SS

ES

15 0
Code Segment Register

Data Segment Register

Stack Segment Register

Extra Segment Register

8 General Registers

Segment Registers

8051 80186
Mode Mode Addressing Function

Rn Register Register addressing (register holds data)
direct Direct Direct memory address (memory holds data)
@Ri Register Indirect Indirect address (register holds address)
#data Immediate8 8-bit constant included in instruction (immediate)

#data 16 Immediate16 16-bit constant included in instruction (immediate)
addr 16 Direct (& Far Dir) 16-bit destination (LCALL/LJMP form of #data)
addr 11 (none) 11-bit destination(ACALL/AJMP form of #data)

rel Displacement PC relative (short jumps)
bit (none) Direct memory address of a bit

Table 2�There is a good correspondence between the addressing modes of the 8051 and 80186.
The only real mismatch is the bitwise addressing mode of the 8051, which is typically reproduced
with a read-mask-compare 80186 sequence.

Figure 1�The 80186 micro-
processor family register set
includes several more gen-
eral-purpose registers than
the 8051. This setup allows
for more efficient code as
operands don�t have to be
temporarily saved to free up
the accumulator.

CIRCUIT CELLAR INK MARCH 199844

The 80186 adds several new data-
movement instructions, which include in-
structions to push and pop the flags to the
stack and push and pop all registers. The
new 80186 instructions also include the
IN and OUT instructions, which operate on
the separate I/O space via peripheral
chip-select pins, reflecting this difference
in the architecture of the two processors.

PROGRAM CONTROL
At first glance, it looks like the 80186

doesn�t cover all of the 8051�s branching
instructions. On closer examination, how-
ever, we find that the 80186 has close
equivalents in all cases.

The 8051 is a little more flexible about
which register and memory can be used as
a loop counter, but the 80186 has more
sophisticated ways of terminating a loop
(i.e., count or comparison).

The 80186 provides many conditional
jump instructions, allowing jumps on the value
of most flag register bits. Besides the short
relative jumps and calls the 8051 provides,
11-bit absolute jumps and relative �near�
jumps and calls, as well as segment-plus-
offset �far� jumps and calls are supported.

One subtle�but very important�dif-
ference between the two processors is the
JZ instruction. On the 8051, this instruc-
tion branches if the accumulator is zero,
but on the 80186, the branch is taken if the
ZF flag is set.

The JCXZ instruction tests the CX regis-
ter for zero, so it could be used if you don�t
want to add an extra compare with zero. The

80186 Offset
Mode Calculation Example

Register (none) Mov ax,bx
Immediate (none) Mov ax,#0
Direct D Mov ax,ds:4
Register Indirect B or I Mov ax,[si]
Based B + D Mov ax,[bx]4
Indexed I + D Mov ax,[si]4
Based Indexed B + I Mov ax,[si][bx]
Based Indexed B + I + D Mov ax,[si][bx]4
 with Displacement

mov dx,PDATA1 ;point to PIO1 DATA register
in ax,dx ;read current value
or ax,0x0040 ;set PIO bit 6 (to make it high)
out dx,ax ;write changed value back to the port

Listing 1�Setting a programmable I/O bit on an Am186 microprocessor involves reading
the PIO data register, masking for the specific bit (or bits), and then writing the result back
out the data register.

LOOP instruction is essentially
the same as DJNZ, the only
difference being that LOOP is

restricted to using CX as its counter, while
DJNE can use any register or direct byte.

LOOPE and LOOPNE do the same thing
as LOOP as well as examining the ZF flag.
These instructions are usually combined
with either CMP or TEST to properly set the
ZF flag. For example, you can search through
a fixed-length string for a specific pattern
of set bits by putting the length of the string
in CX and using the TEST instruction.

BOOLEAN DATA MANIPULATION
The biggest limitation of the 80186, as

compared to the 8051, is the lack of bit
addressing. Without bit addressing, many
of the 8051 Boolean instructions have no
80186 equivalents. However, all of the miss-
ing instructions can be simulated with a
small number of 80186 instructions.

In general, the 80186 can set, clear, or
complement only the carry bit. Most other
bits must be either masked for and tested
explicitly or somehow shifted to the carry bit.

One common application is to set or
clear port bits (PIOs). Listing 1 shows how
to do this on a 80186-family microcontrol-
ler. The 8051 can do this type of operation
with one instruction.

STRING OPERATIONS
Among the nice features of the 80186

family are the string instructions, which move
string data between registers, memory,
and/or I/O space. Automatic compari-
son and scanning can also be performed.

The CLD and STD opcodes enable the
direction of the string movement to be

Table 3�The 80186 data address-
ing modes provide efficient access
to high-level data structures. This
table also shows examples of typi-
cal assembler syntax.

 MARCH 1998 EMBEDDEDPC 45

 MOV src_h,#20h ;initialize high byte of source pointer
 MOV src_l,#00h ;initialize low byte of source pointer
 MOV des_h,#40h ;initialize high byte of destination pointer
 MOV des_l,#00h ;initialize low byte of destination pointer
 MOV R0,#57h ;initialize block length

top:
 MOV DPH,src_h ;get source pointer
 MOV DPL,src_l
 MOV A,@DPTR ;get byte from source block
 INC DPTR ;prepare for next source byte
 MOV src_h,DPH ;save source pointer
 MOV src_l,DPL
 MOV DPH,des_h ;get destination pointer
 MOV DPL,des_l
 MOV @DPTR,A ;write byte to destination block
 INC DPTR ;prepare for next destination byte
 MOV des_h,DPH ;save source pointer
 MOV des_l,DPL
 DJNZ R0,top ;decrement count and branch

Listing 2�This listing shows an example of moving a block of memory on the 8051. The
availability of only one data pointer makes this an awkward chore, since the source and
destination addresses must be swapped twice for each iteration of the loop.

Listing 3�In contrast to the 8051, the 80186 provides specific instructions for moving
blocks of data. This elegant code example takes advantage of these instructions, specific
source and destination pointer registers, and a counter register to perform block moves
of up to 64 KB.

MOV SI,2000h ;load source pointer (immediate addressing)
MOV DI,4000h ;load destination pointer
MOV CX,57h ;initialize block length
CLD
REP MOVSB ;move byte string

controlled. CLD clears the direction flag,
enabling the index registers to increment
after the operation. STD allows the index
registers to decrement.

Each string instruction operates on a
single component�byte or word�of a
string. Combining the string instructions
with repeat prefixes enables multiple byte
and word operations. Prefixes aren�t re-
ally instructions. They assemble as part of
the repeated string instruction and only
operate on a single instruction.

The REP MOVS instruction is particu-
larly useful for block memory transfers,
which are always a problem on the origi-
nal 8051 since it has only one data pointer
(DPTR). A typical block transfer on the
8051 usually looks like Listing 2.

The situation is slightly more compli-
cated when moving data from program
memory to RAM since the only available
instruction is MOV A,@A+DPTR (the accu-
mulator needs to be reloaded each cycle).
Listing 3 shows the equivalent operation
on the 80186. Obviously, the 80186
code is much easier to read.

OTHER INSTRUCTIONS
There are a variety of new complex instruc-

tions in the 80186 instruction set, includ-
ing the all-important CLI and STI, which
disable and enable maskable interrupts.

Check out the XLAT instruction, which
can be useful in embedded systems for
table-lookup tasks like converting BCD to
seven-segment LED. The BCD value in AL
is used to look up the seven-segment value
from a table in memory, and AL receives
the new value.

As another example, the 80186 in-
struction set includes several instructions
(e.g., ENTER, LEAVE, and BOUND) that
can be used by a compiler to efficiently
implement higher level languages (e.g., C
or C++).

Other examples include the LOCK in-
struction, which can prevent external bus
masters (as well as the internal DMA) from
interrupting nonatomic events like repeated
string operations. It�s unlikely that converted
8051 code will need to use most of these
classically CISC instructions, but it�s good
to understand what�s available.

EP
C

CIRCUIT CELLAR INK MARCH 199846

Chip Freitag is currently an MTS system
applications engineer in the embedded
processor group at Advanced Micro Devices,
where he specializes in networking and
telecommunications. Previously, he was a
software engineer at Andrew/KMW,
where he worked on various 5250 terminal
emulation and high-speed page printer
emulation products. You may reach him at
chip.freitag@amd.com. IRS

413 Very Useful
414 Moderately Useful

415 Not Useful

Jeff Kirk has spent eight years at AMD as
a senior field application engineer specializ-
ing in telephone line card applications and

embedded processors. Previously, he wrote
software for embedded systems, primarily
in industrial control and avionics. His soft-
ware experience covers the gamut from
real-time assembler (on most popular micros)
to Windows 95 applications written in C++.

ON YOUR OWN
To aid programmers in

converting code from the
8051 to the 80186, there is a

Perl script that performs the basic
conversions derived from this article. It

isn�t a turn-key conversion program, since
it can�t account for the inevitable system-
dependent cases.

However, this program can at least be
run against your source code and do a lot
of the work for you. With a little knowl-
edge of Perl (which might hurt at first, but
will be good for you in the long run), it can
be tailored to get you most of the way there.

For more information on code conversion,
check the References. Subbarao focuses
mostly on older 16-bit processors instead
of the newer 32-bit versions, and his book
is well-suited to embedded applications.

Brey covers the entire 8086 family, so
he gives a lot more information on the
32-bit processors up through Pentium Pro.
However, chapters 3�6 give an excellent
description of the instruction set and ad-
dressing modes of the 8086.

This book also covers many of the
notational differences between the various

80186 assemblers, so it�s a good choice
if you�ll eventually need to move up to the
�386 or better.

We hope you have enough information
now to feel comfortable converting 8051
code for an �x86 processor. Even though
the two processors were designed with
different philosophies, they�re surprisingly
similar.

As you�ve seen, the 8051 is largely a
subset of the 80186. With a little fore-
thought, it should be easy to port 8051
assembler code to any of the Am186
family of microcontrollers. EPC

SOURCE
Am186 family
Advanced Micro Devices, Inc.
One AMD Pl.
Sunnyvale, CA 94088-3453
(408) 732-2400
Fax: (408) 732-7216
www.amd.com

REFERENCES
AMD, Fusion E86 CD-ROM, Publication 19255, 1997.
AMD, Am186ES/Am188ES User�s Manual, Publica-

tion 21096, 1997.
AMD, Am186/Am188 Family Instruction Set Manual,

Publication 21267, 1997.
B. Brey, The Intel Microprocessors: 8086/8088,

80186/80188, 80286, 80386, 80486, Pentium,
and Pentium Pro Processor, Prentice-Hall, Englewood
Cliffs, NJ, 1997.

W.V. Subbarao, The 8086/8088 Family Micropro-
cessors: Software, Hardware, and System Applica-
tions, Delmar Publishers, Albany, NY, 1992.

SOFTWARE
To retrieve a copy of the Perl script, visit www.io.com/
~chipf/perlconvert or the Circuit Cellar Web site.

 MARCH 1998 EMBEDDEDPC 47

R
P
C

Real-Time PC

Ingo Cyliax

Picking a PC RTOS

Wow! So much has happened this
month. I�m starting two new things�a new
job and this column. I�m really excited
about both. In fact, writing this column is
part of my new job description.

And, I get the chance to work more with
embedded systems at many levels. At the
top end, we develop system-level
modeling and verification software.
In the middle, we�re working on
PC/104 modules, which will be
used in conjunction with off-the-
shelf PC/104 module and soft-
ware components to build
embedded systems. And, we�re
using some of our tools to de-
velop synthesizable VHDL cores.

I�ve written for INK for a couple
years now. You may have noticed
my interests range from chip-level
designs (e.g., FPGA-based robot
controllers) to complete hardware-
and software-based systems, like
the MC68030 system described
in INK 86�88.

So, I�m comfortable looking at different
levels of detail. I also enjoy the contrast
between the true parallelism of hardware
objects with the flexibility and complexity of
software objects running on a processor.

This meeting of software and hardware
essentially describes Real-Time PC. In this

column, the embedded PC meets the RTOS.
I�ll be looking at how real-time embedded
PCs solve problems in applications like robot
controllers, data acquisition, and more.

Real-Time PC just ran a two-part RTOS
101 series (INK 90�91), introducing real-
time operating systems, the terminology used,

and the typical hardware found
in an embedded PC. Those articles
will serve as our launching point.

This month, I want to discuss
the issues you need to consider in
selecting an RTOS for your em-
bedded-PC application. For my
application, I�ll use a hypotheti-
cal robot controller that has some
realistic requirements.

Next month, I�ll look at the
next step�developing the soft-
ware for the system. OK, let�s get
on with it.

STARTING LINE
So, where do we start? The

beginning always seems like the

To implement a real-time system, you have to figure out which RTOS to pick. Using
a robot control application as an example, Ingo establishes what fundamental
criteria you need to look at first.

Controller

UART

Gait Generation Servo ISR

Parallel I/OTimer

Wireless Modem To Servos

(IRQ0)

TCP/IP RTOS

Software

Hardware

System

Figure 1�Here�s the big picture of our sample system. The controller
receives commands from a remote host via a wireless modem and
coordinates the robot�s leg movements by generating the appropri-
ate timing for the RC-servo actuators.

CIRCUIT CELLAR INK MARCH 199848

When the servo is set to 45° (1.5 ms),
the signal needs to be between 1.450 and
1.650 ms. Excessive chattering causes
unnecessary wear in the servo mechanism
and heating.

The wireless modem runs at 9600 bps
and provides a communication channel to
the serial port of a Unix workstation. Over
this channel, I want to run PPP so high-level
control processes on the Unix workstation
can control the robot.

It does this by establishing a network
connection using TCP/IP to the process on
the robot that deals with gait control. I
don�t really care what the software on the
Unix workstation does. I�m only concerned
with the controller on the robot and how it
interfaces.

The hardware for this applica-
tion can be covered by using a
standard off-the-shelf PC/AT
PC/104 CPU with at least one
serial port and 12 parallel I/O
ports. As part of the PC/AT
architecture, a timer chip can be
programmed to post an inter-
rupt to the system. The resolution
of the channel 0 timer on a
PC/AT is 0.86 µs, which should
be sufficient for our purposes.

SOFTWARE
The software for this controller can

roughly be split into three components�
the controller task, gait generator, and
servo drivers.

The controller thread, which starts the
ball rolling, initializes the system and network-
ing software and spawns the gait genera-
tor. The controller then waits for network
connections and handles decoding the
high-level commands, which are sent by a
process on the Unix host (see Listing 1).

The gait generator coordinates the se-
quencing of the legs, as shown in Listing 2.
Therefore, it needs to communicate with
the controller thread and servo driver. The
servo driver handles the timing of the servo

best place, doesn�t it? For us, that
means the specification for the
system we�re trying to implement.

In other words, we need to
identify our system�s hardware and
software components and know
what real-time constraints, if any,
it has. We also need an idea of
what the target system costs ought
to be, and maybe we even need
to write some code to model the
system�s behavior.

To make this a little more real, let�s spec
out a system and try to find an RTOS for it.
Since this issue of INK is featuring robots,
let�s consider a robot controller to drive
one of the six-legged robots I work with.
Figure 1, the system block diagram, shows
the software and hardware components.

The system needs to run on a PC/104
platform to be able to fit on the robot and
interface with it. It uses 12 parallel output
lines to drive 12 radio-control servos, which
serve as the actuators. The two actuators
for each leg control the up/down and for-
ward/backward functions of the leg.

Besides the actuators, there is also a
serial port connected to a radio modem,
which sends motion-control commands to
the robot from a process on a Unix worksta-
tion. These commands are high level, so
they focus on things like telling the robot to
walk in a certain direction, stop, or walk
backwards, and so on.

Our controller has to generate the ap-
propriate leg motion for each of the walk-
ing-mode commands. Besides generating
the actuation patterns for each walking mode
(i.e., gait), it also needs to generate the
appropriate control signals for the servos.

RC servos use a pulse-width coded
signal, in which the pulse width indicates
the desired position of the servo. The servo
itself has a position feedback-based con-
troller, which controls its electric motor.

The pulses vary between 1 and 2 ms,
encoding positions of 0�90°, and are
repeated at 10�20 ms. Figure 2 shows
how the position relates to the pulse width.
Experimentation has shown that providing
four steps, or positions, from 0 to 90°
(22.5°/250-µs resolution) is sufficient.

However, these particular servos chat-
ter (i.e., vibrate) when the pulse width
signal has too much jitter (typically greater
than 100 µs). This means we need to
control the jitter in the timing of the servo
signal to within ±50 µs.

Figure 2�Here we see the timing for an RC-servo actuator used on the
robot. The width of the pulse, which needs to be repeated every 10� 25
ms, controls the position of the actuator. A 1.0-ms pulse represents 0°°°°°,
and 2.0 ms represents 90°°°°°.

Time (ms)

0 1.0 1.5 2.0

0˚ 45˚ 90˚

Position

10.0–25.0

Listing 1�The main thread starts the system off and then acts as the communication thread.
It receives commands from a remote host via a serial network connection over the wireless
modem and signals the gait-generator thread setting the global Command variable.

int cmdmutex;
int servomutex;
extern int Command;
main(){
 int s,ns;
 struct sockaddr_in sin;
 int slen;
 int GaitThread();
 SpawnThread(GaitThread);
 servomutex = InitMutex();
 cmdmutex = InitMutex();
 s = socket(AF_INET, SOCK_STREAM, 0); /* establish cmd port

using TCP/IP */
 sin.sin_addr.s_addr = htonl(MyIPAddress);
 sin.sin_port = htons(MyPort);
 bind(s,&sin,sizeof(sin));
 while(1){ /* main loop; wait for connection */
 slen = sizeof(sin);
 ns = accept(s,&sin,&slen);
 while(1){ /* do command loop */
 if((n = ReadLine(ns,buf,sizeof(buf))) < 1)
 break;
 GetMutex(cmdmutex);
 Command = DecodeCommand(buf);
 ReleaseMutex(cmdmutex);}
 GetMutex(cmdmutex); /* remote process has closed connection */
 Command = CMD_STOP;
 ReleaseMutex(cmdmutex);
 close(ns);}}

CIRCUIT CELLAR INK MARCH 199850

R
P
C

pulses as you see in
Listing 3.
Our RTOS needs to re-

spond to timer interrupts with a
latency of less than 100 µs. In

addition, it should be multitasking,
and in particular, it should be multi-
threaded. It also needs networking
support, especially for TCP/IP, as well
as a device driver for the serial port
to handle PPP.

Obviously, our timing requirements
are what make this a real-time project.
To address this issue, we need to
know what the RTOS�s interrupt latency is.

This figure essentially defines how effi-
ciently the RTOS can respond to an inter-
rupt and may include the time the RTOS or
application interrupts are blocked during
critical sections. The RTOS�s interrupt latency
is usually given as a time measurement on
a given processor architecture.

A proper specification includes the
range of interrupt latency (i.e., with or
without possible interrupt lock-out times).
Typical values are 15�50 µs on a 33-MHz
�386. This amount of time should be enough
to prevent our servos from destroying

Pulse Start IRQ0

Pulse Generated

Timeline

Jitter

AvgMin Max
Interrupt Latency

Figure 3�Any nondeterministic timing variation in the inter-
rupt latency of the system introduces jitter in the output signal
for the RC-servo actuator. Critical code segments needing to
be protected from interrupts usually introduce nondetermin-
ism to the interrupt latency.

themselves. Figure 3 shows a timeline
indicating the interrupt latency.

But latency isn�t the most important
issue. When you have several RTOSs, each
of which can meet your timing requirement,
you have to think about some other factors
as well. That is, the fastest RTOS on a
particular architecture may not always be
the best RTOS for your application.

Although not necessarily important for
our application, figuring the throughput of
an RTOS is important elsewhere. For ex-
ample, in multimedia, you may want to make
sure you can move the data through the

system at the specified rate without
starving the DAC for audio or video
output. This shows up as obnoxious
clicks in the audio and frozen frames
on the video.

While calculating this throughput
is complex and involves factors like
the particular hardware architecture
(e.g., bus, peripherals, and proces-
sor speed), RTOS vendors claiming
multimedia support typically provide
some estimate of how well a system
built on their architecture might be
expected to perform.

There are many timing factors which
may affect how a particular RTOS per-
forms in your system. These have to do with
how efficient the interprocess communica-
tion is implemented as well as reschedul-
ing delays.

Since we didn�t put any real-time or
throughput constraints on the tasks in the
system, it�s not an issue here. In a system
where tasks may have compute informa-
tion necessary for real-time response (e.g.,
an airplane auto-pilot), the system has to
continually compute the settings for actua-
tors, while reading sensor and pilot inputs.

 MARCH 1998 EMBEDDEDPC 51

troller application is the ZF104Card �386
module from ZF MicroSystems (see Photo 1).
This module, designed especially for cost-
sensitive applications, only has 2 MB of
DRAM, so the memory footprint of our
RTOS needs to be pretty small.

RTOSs vary in their memory require-
ments. Many RTOSs have very small ker-
nels, sometimes as small as 30 KB. On top
of this, we have to add modules with the
features and facilities we�re using in our
applications. For example, the TCP/IP stack
may take another 100 KB.

Finally, our application takes some static
memory for the text and data segments but
may also consume memory at run time.
Stack space for tasks needs to be com-
puted as well. RTOS vendors can provide
you with memory requirements, both static
and run-time, for their modules as well as

In our system, we also want to use a
TCP/IP stack to communicate with a Unix
host. This implies that we need to select an
RTOS that supports TCP/IP networking.

There are several products out there
that offer TCP/IP support. In most RTOSs,
this feature is an extra. Some RTOSs even
have additional support, such as embedded
Web server support.

However, for our robot controller, we only
need minimal TCP/IP support. Which brings
me to the next issue�memory footprint.

One way to make your system cost-
sensitive is to reduce its memory require-
ments. Recall that I specified a PC/104
CPU for our system. PC/104 boards typi-
cally are highly integrated systems, where
real estate is used fully.

For example, a PC/AT module which is
a potential candidate for my sample con-

int Command; /* current cmd */
extern SetTime[nCHAN]; /* time to set servo channel */
extern int MaxSteps[nCMD]; /* number of steps in pattern */
extern int Pattern[nCMD][nSTEP]; /* gait patterns */
GaitThread(){ /* generate leg actuations depending on current cmd */
 int CurrStep;
 int LastCommand;
 GetMutex(cmdmutex)
 Command = CMD_STOP;
 LastCommand = Command;
 ReleaseMutec(cmdmutex)
 CurrStep = 0;
 while(1){
 Sleep(STEPTIME); /* check if cmd mode has changed */
 GetMutex(cmdmutex)
 if(LastCommand != Command) CurrStep = 0;
 LastCommand = Command;
 ReleaseMutec(cmdmutex) /* set servo channels */
 foreach (i=0;i<nCHAN;i++){
 GetMutex(servomutex)
 SetTime[i] = Pattern[LastCommand][CurrStep];
 ReleaseMutex(servomutex);}
 CurrStep = (CurrStep + 1) % MaxSteos[LastCommand];}} /* next step */

Listing 2�The gait-generator thread actuates the legs with stored patterns, depending on
the current command mode (e.g., walking forward or stopping). It stores the current position
of the actuator based on the pattern in a global data structure.

int SetTime[nCHAN]; /* value for timer */
int Ticks; /* value for current output */
int CurrChan; /* current channel */

Servo_Isr(){ /* only do something when we run out of ticks */
 if(!ticks--){
 outpw(SERVO_PORT, (1<<CurrChan));
 ticks = SetTime[CurrChan++];
 CurrChan %= nCHAN;}}

Listing 3�The servo timing is generated by the servo interrupt service routine, which is called
once per tick. It simply generates pulses of programmable duration on the parallel port. Each
channel is actuated in sequence, which generates a pulse train of 1.5 ms ××××× 12, or 18 ms, on
average. The pulse rate is not critical and varies between 10 and 25 ms, but the pulse width
has to be precise to set the positions of the actuators.

CIRCUIT CELLAR INK MARCH 199852

R
P
C

IRS
416 Very Useful

417 Moderately Useful
418 Not Useful

SOURCE
ZF104Card �386
ZF MicroSystems
1052 Elwell Ct.
Palo Alto, CA 94303
(415) 965-3800
Fax: (415) 695-4050
www.zfmicro.com

Ingo Cyliax has been writing for INK for
two years on topics such as embedded
systems, FPGA design, and robotics. He is
a research engineer at Derivation Systems
Inc., a San Diego-based formal synthesis
company, where he works on formal-
method design tools for high-assurance
systems and develops embedded-system
products. Before joining DSI, Ingo worked
for over 12 years as a system and research
engineer for several universities and as an
independent consultant. You may reach
him at cyliax@derivation.com.

REFERENCES
comp.realtime FAQ, www.realtime-info.be/encyc/

techno/publi/faq/rtfaq.htm

RESOURCES
Text
J.A. Stankovic and K. Ramamritham, Tutorial on Hard

Real-Time Systems, IEEE Computer Society reprint
series 819, December, 1984.

C. Foster, Real-Time Programming: Neglected Topics,
Addison-Wesley MicroBooks, Reading, MA, 1981.

C. Vickery, Real-Time and Systems Programming for
PCs, McGraw-Hill, New York, NY, 1993.

Internet
comp.os.lynx
comp.os.os9
comp.os.qnx
comp.os.vxworks
comp.realtime
www.realtime-info.be
www.cs.umd.edu/~fwmiller/etc/realtime.html
www.realtime-os.com/rtresour.html

run-time�memory requirements
for the task control structures
and stack.

But, that�s not all. While the
devices on our PC/AT-compat-
ible CPU board are standard,
this is the exception. We need
peripheral boards, which are not standard.

Take the network cards, for example.
I�m using the PC/104 module�s serial port
and a wireless modem as the network inter-
face. Since the serial port is a standard
PC/AT 16550 serial port, I can use PPP over
it, which many RTOSs have device drivers for.

Now, if I wanted to use a wireless PC
Card network adapter with my system by
adding a PC Card adapter, I may have
trouble finding an RTOS that supports such
a card. Granted, wireless network adapters
are probably not that much in vogue yet.

But the issue still exists with standard
Ethernet cards, for example. If you stick with
common Ethernet network adapters, such
as an NE2000, you�ll have no trouble finding
an RTOS that supports this card. So, make
sure you allocate resources to write device
drivers for peripherals not supported by the
RTOS you plan to use.

LICENSING
Another thing to consider is licensing.

RTOS vendors usually sell you their toolset
and development system, which includes a
one run-time license. This package lets you
develop a prototype and debug it.

In some cases, like when you are de-
signing a one-off system, this is enough.
However, when you�re building embedded
systems which may be used as a product
or installed in several systems, you need to
purchase more run-time licenses.

This process varies with each RTOS
vendor. Typically, the cost of each run-time
license is cheaper the more units you plan

to sell, and in some cases, site licenses or
unlimited licenses can be purchased.

This pricing can be an important issue
in selecting an RTOS. What if the best-
suited RTOS for your application has a run-
time licensing structure, which makes your
product too expensive?

Finally, it seems some RTOS vendors
think the weight of their documentation
makes it worth more. However, more is not
necessarily better. Manuals should be
concise and organized in such a way that
it�s easy to find information quickly. Also,
I like a quick tutorial and sample code in
any documentation.

I�d also love to see more on-line docu-
mentation. Chorus Systems, now part of
Sun, publishes their documentation in HTML
format so it can be read on any system with
a Web browser. This feature makes it easy
to look up something quickly, like when I�m
sitting in an airplane, frantically trying to
finish this article in time for the deadline.

WHAT NOW?
This brings you up to speed about the

kinds of issues you need to evaluate when
selecting an RTOS for your application.
But of course, anytime you need to evalu-
ate anything based on more than one
criterion, you need to make tradeoffs.

Some tradeoffs, like performance, are
pretty firm. Others, like ideas about docu-
mentation, are more flexible.

Another important issue is familiarity.
In many cases, assuming the RTOS you�ve
chosen has the performance you need,

being familiar with a particular RTOS has
a lot of merit.

But, don�t let that cloud your judgment.
There are several really good RTOSs out
there. You can paint yourself into a corner
if you don�t at least give them a look.

Check out some of the resources listed
below. Many are Web and Internet based,
so it�s easy to obtain and store them on
your PC. I usually download information
into my notebook to look at when flying.

You�re probably wondering which
RTOS I ended up choosing for my sample
robot controller.

Well, sorry, you�ll have to wait. I�ll give
you some hints next month, when I take a
look at software development for RTOSs.
RPC.EPC

Photo 1�This
PC/104 module,

using ZF MicroSys-
tems� PC/AT on a chip,

contains everything we
need: a 40-MHz �386 CPU,

2 MB of RAM, serial/parallel
and disk I/O, BIOS, and a
512-KB SSD in a single module.
At less than 2 W, this module is
perfect for portable applica-
tions, like a robot.

53 MARCH 1998 EMBEDDEDPC

A
P
CApplied PCs

Fred Eady

Embedding PC Card
Part 1: The Time Has Come

With PC Cards, the designer gains many additional resources without the cost
of incorporating all the functionality in everyone's product and without having
to "buy" more real estate. Fred shows you how to make the most of PCMCIA.

You and I use ´em all the time. During
the course of a normal business day, I swap
Ethernet adapters, modems, Token Ring
adapters, and high-speed serial ports in
and out of the PC Card sockets of my
laptop. To many of us that must code and
communicate to pay the bills, the PC Card
is simply a tool we cannot do without.

The PC Card of today, known as the
PCMCIA card of yesterday, adds flexibility to
base PC configurations by enabling you to
plug in the function or feature you may need at
the time. The obvious advantage
is that a single PC Card can be
used across many differing em-
bedded and desktop platforms.

Today�s embedded-PC en-
vironment is quickly moving into
the realm of our so-called daily
routine. In other words, the em-
bedded product must be ca-
pable of taking on different tasks
depending on the application
it�s required to perform at any
given moment.

Sure, you could reinvent the wheel by
designing and incorporating singular spe-
cialized hardware and software for each
particular application that must be per-
formed, or you could simply use what�s
already there�the PC Card. For the em-
bedded application, its time has come.

PC-CARD SKINNY
PCMCIA is a standard that the modern-

day PC Card is built on. It�s a little confus-
ing because the association chartered to

push the PCMCIA is also called PCMCIA
(Personal Computer Memory Card Inter-
national Association).

In the beginning, the physical PC Card
was also known as a PCMCIA card, and
PCMCIA was the catch-all phrase for the
specification, the devices, and the associa-
tion. I recall how difficult it was back then
to remember the acronym PCMCIA be-
cause PC Card use wasn�t as prevalent as
it is now. But since February 1995, PCMCIA
cards have been known as PC Cards.

PC Card hardware is di-
vided into categories of
cards, sockets, and adapt-
ers. PC Cards come in five
various types. Table 1 de-
notes the types, their physi-
cal dimensions, and their
uses.

As you can see, Type I PC
Cards are typically memory
cards. The type of memory
can vary, but it�s usually
SRAM or flash memory.

PC Card Dimensions Typical Implementation
Type (thickness ××××× width)

I 33 × 54.0 Memory cards
II 5.0 × 54.0 I/O cards (network cards, modems)
III 10.5 × 54.0 Hard disks

I Extended 3.3 × 54.0
with up to 40 mm of

extended length
II Extended 5.0 × 54.0 Pagers, wireless communication adapters

with up to 40 mm of (with antennae)
extended length

Table 1�Types I and II are probably most familiar, but in my times, I�ve
had the opportunity to use Type II Extended on a daily basis.

CIRCUIT CELLAR INK MARCH 199854

A
PC The application

dictates the type of
memory used. Although

SRAM is probably cheaper and
faster than flash memory, it�s power

requirements to store and maintain
data are high. Designs sometimes give

way to the slower but overall less power-
dependent flash memory.

Type II PC Cards often need a connector
and thus are usually I/O cards. A popular
example is today�s PC Card modem.

Although Type II PC Cards mimic their
desktop counterparts, more often than not,
they outperform their traditional card-based
cousins. Once again using the common PC
Card modem as an example, by placing
a more capable UART right on the PC Card
modem, you can realize an immediate perfor-
mance boost if the host computing device
is equipped with a less-capable UART.

With the advent of cheaper hard-disk
storage, the Type III card isn�t as widely
used today. A Type III PC Card is typically
a miniature rotating head and disk assem-
bly. I recently added a 2.1-GB drive
internally to my laptop. So, any Type III
hard-disk discussion would be pointless
here. Let�s move on.

The extended PC Cards perform special-
ized functions that require them to hang
out of the PC Card socket. You�ve seen
these around. They�re usually RF or IR based
with an antenna or IR emitter/detector
attachment. There�s even one PC Card
modem vendor out there that employs a
standard RJ-11 telephone jack here.

That�s about all I need to say about PC
Cards in a general way. Before we move

on to the software ele-
ments necessary to imple-
ment them, let�s talk about
a piece of hardware
that sits between the PC
Card and host system.

That piece of hard-
ware is an LSI integrated circuit that con-
nects the PC Card socket and host system
bus. Called the PC Card adapter, it�s
nearly always the very first piece of active
electronic hardware connected to the PC
Card itself. The most commonly used PC
Card adapter is the Intel 82365.

PC Card adapters are designed to
translate PC Card signals to whatever bus
lingo the host system is equipped with. The
adapter usually has a standard I/O ad-
dress of 0x3E0.

The PC Card adapter controls PC Card
power, interrupts, and timing functions.
Any status change involving a PC Card-
generated interrupt (e.g., card detect) is
also fielded by the PC Card adapter and
routed to the responsible hardware or
software. A typical PC Card adapter can
handle up to two PC Card sockets.

Just when you think you�re in paradise,
somebody takes a big bite out of the apple.

As you can ascertain from what you�ve just
read and by what you already know
about PC Card technology, LSI technology
may simplify the hardware piece, but the
software side of this could be really hairy.

Essentially, there�s this PC Card adapter
IC and a socket that must take on a
multitude of differing PC Cards, all of
which may perform totally unrelated tasks.
Again, it�s left to the software guys and
gals to drive the demons out of the garden.

PC CARD�S SOFT SIDE
In the beginning, each PC Card manu-

facturer included a piece of software
bundled with their PC Card that permitted
that card to function in a selected system.
This little jewel was (and is) known as a
point enabler.

The immediate drawback to point
enablers is that they are, by design, ma-
chine and PC Card specific. To eliminate

the need to depend on each manu-
facturer to support a piece of

specialized software for every
computing platform that

could use its PC Card, the
PCMCIA folks came up

with three software
modules�card ser-

vices, socket ser-
vices and client
drivers.

Before the ad-
vent of these soft-
ware services,
some manufac-
turers also in-
cluded driver

Figure 1�The PC Card
adapter is the hardware
termination point. Note
that you can employ mul-
tiple socket services us-
ing a single card-services
module.

Client Device Driver
(CDD)

Card Services
(CS)

Bus A

Socket Services
(SS)

Bus B

Socket Services
(SS)

PC Card
Adapter

PC Card
Adapter

PC Card Socket PC Card Socket

PC Card PC Card

Card
Services

API

Socket
Services

API

System Software

System Hardware

Photo 1�These guyes are a
must-have if you want to
play PC Card.

55 MARCH 1998 EMBEDDEDPC

A
P
Croutines that set up the PC Card for a

particular hardware platform and operat-
ing system. One big bugaboo with this
was that, depending on the PC Card�s
function, sometimes you had to shut every-
thing down to use a different PC Card
performing another distinct job even if that
PC Card was complementary to your cur-
rently running application. Bummer.

Card services (CS) is an operating system-
specific API that eliminates the need for a
hardware-encumbered point enabler. Thus,
the dependence on software written for a
particular hardware platform is eliminated.

CS usually ships as a component of the
operating system or as a device driver that
can be easily used in both desktop and
embedded environments. It acts as a server
to a client device driver (CDD).

Requests for hardware resources are
generated by the CDD and routed to the
CS. It�s up to the CS to keep up with what�s
available and either grant or deny the
CDD request. This client/server relation-
ship means the CDD can be written with-
out any regard to what hardware is on the
other side of the PC Card adapter.

PC Card system hardware is managed
by socket services (SS). Socket services is
tailored to the operational characteristics
of the PC Card adapter.

Before SS and CS, the point enabler
was responsible for directly interfacing
with the PC Card adapter. Therefore, only
one point enabler per PC Card adapter
could physically exist in a system at a time.

This is also true for SS�sort of. Actu-
ally, many socket services routines can be
loaded and called on as they�re needed.
Thus, SS can be located in the system BIOS
or included as separate driver routines.

The role of the CDD is dedicated to the
PC Card itself. The CDD is responsible for
configuring and supporting the PC Card.
The CCD relies on CS to coordinate hard-
ware resources and keep the device driver
updated with the status of PC Card events.
Figure 1 puts these services in perspective.

Once the card is inserted and detected
by the PC Card adapter, an interrupt is
generated by the adapter. CS, not SS,
picks up the request (because SS is not
capable of handling interrupts).

Even though SS is most often imple-
mented as a device driver, it�s capable of
being embedded with the system BIOS,
too. That�s why it isn�t coded for interrupt
handling.

CS then calls on SS to root out the cause
of the interrupt. In this case, the interrupt
was the result of a PC Card insertion event.

SS then informs CS that a card insertion
occurred. CS then polls all of the CDDs it
knows of to see who wants to service the
interrupt.

Depending on the PC Card inserted,
one or maybe none of the loaded CDDs
step up to the task. Once a CDD accepts
and services the interrupt, system resources
are allocated to the inserted PC Card.

Conversely, when the PC Card is re-
moved, a similar algorithm is executed

that ultimately releases
the previously allocated re-
sources in preparation for an-
other insertion.

EMBEDDING THE TECHNOLOGY
Now that you have a good idea about

how PC Card hardware and software
work together, you�re probably wonder-
ing how to apply that basic knowledge to
an embedded environment.

The first question you may ask is how I
enable the PC Card if I don�t have a
specific operating system running on my

CIRCUIT CELLAR INK MARCH 199856

A
P
C

embedded platform.
You may also be won-

dering about the client driv-
ers. Where do they come from?
Being a bit-banger at heart, I

asked myself about how I�d go about
running and debugging a PC Card ap-

plication. Well, let�s welcome back an old
friend to help us out.

Remember the Phar Lap TNT Embed-
ded ToolSuite? Guess what. I just happen
to have the latest and greatest Version 9.
And guess what. It does PC Card!

It�s called the ETS PC Card Support
Package. This package contains all the
necessary components needed to use PC
Card ATA Disks, Ethernet adapters, serial
ports, and modems the embedded way.

We�ve already seen how PC Card
technology can enhance even the most
mundane of computers. Think about how
much value a PC Card socket can add to
an embedded solution.

The first thing that comes to my mind is
test equipment. With the addition of a PC
Card socket and the backing of the ETS PC
Card package, you could fabricate a multi-
purpose embedded test tool that can change
its spots by simply changing its PC Card.

Let�s compare the ETS PC Card Support
Package�s embedded components to the
generic software suite set forth by the
PCMCIA group.

First of all, the ETS package includes
library functions that can be called from
applications and supports enablers for most
PC Cards in existence today. If a card finds
itself alone, there�s plenty of example code to
steer the PC Card software engineer in the
right direction.

But, there is a downside. The ETS
Support Package doesn�t support sound
cards or memory at this time.

On the up side, most of the ETS code
can talk to PC Card devices without modifica-
tion. One example of this occurs when the
local file system is an ATA PC Card Disk.

I haven�t mentioned it, but most of you
know that today�s PC Cards support so-
called hot swapping�the ability to insert
and remove a PC Card without removing
power from the host. This feature is espe-
cially handy for the embedded applica-
tion that must change horses midstream
without changing saddles.

Well, that�s all fine, but ETS doesn�t
support hot swapping, so don�t get real
excited about it. The nature of the beast is

to have the desired PC Card inserted
before and after the target ETS application
is run. I�m sure that will get fixed real soon!

For all intents and purposes, the PC
Card and PC Card adapter are hardware
and will be a constant in our comparison.
So, let�s start by looking at what I call SS
and what ETS dubs as enabler code.

In the case of ATA PC Card Disks, it�s
possible for the system BIOS to enable the
device. In this instance, the application
software need not be concerned about the
device other than to access its services.
The problem is, we all know the majority
of embedded systems don�t have a built-in
BIOS as such, and everything must be
handled by the application program.

To handle this dilemma, ETS includes a
couple modules that can be linked into the
target embedded application. Remember
that in the standard PCMCIA spec, CS was
defined as operating system dependent
but device independent.

Well, it�s the same story for the ETS CS
module. The other piece of that story is the
ETS enabler that parallels the generic SS
I told you about earlier.

Listing 1�This is what I've come to expect from Phar Lap�working code complete right
down to the compilation parameters.

It�s not surprising that the ETS enabler
performs the SS functions of providing
resource information and allocating IRQ
and DMA services to the embedded sys-
tem. After all, the ETS package is based on
the PCMCIA standards. ETS enablers in-
clude modules for 3Com and Novell Ethernet
adapters, serial lines, modems, and as I
mentioned before, ATA disks.

For the embedded system, the enabler
code and its functions are important to the
operation of the PC Card interface. With that,
the ETS PC Card Support Package provides a
sample program called CISID (Card Infor-
mation Structure ID) that lets us determine
the necessary information that can be added
to an existing enabler to bring the unknown
card online. Once the info is gleaned, it�s
just a matter of recompiling the modified
enabler and rebuilding the library.

To make life easier for the PC Card
programmer, this process is all automated
by batch files included with the ETS pack-
age. Listing 1 is an example of the network
module rebuild batch file.

On detecting a PC Card, the Realtime
ETS Kernel calls each enabler defined in

@echo off
REM
REM For sbemb debug symbols add the switch -Z7 to the cl line and
the switch
REM -cvsym to the 386asm line.
REM
386asm -twocase -o smcutil.obj utils.asm
cl -c -I.\inc -MT -Gs -Zl -W3 -Og -Oi -GF smc16.c
lib -out:eth-smc.lib smc16.obj smcutil.obj
386asm -twocase -define _PET9_ -o 3comutil.obj utils.asm
cl -c -I.\inc -MT -Gs -Zl -W3 -Og -Oi -GF 3c509.c
lib -out:eth-3com.lib 3c509.obj 3comutil.obj
386asm -twocase -define _NE2K_ -o ne2kutil.obj utils.asm
cl -c -I.\inc -MT -Gs -Zl -W3 -Og -Oi -GF ne2k.c
lib -out:eth-ne2k.lib ne2k.obj ne2kutil.obj
386asm -twocase -o smc9util.obj utils.asm
cl -c -I.\inc -MT -Gs -Zl -W3 -Og -Oi -GF smc9.c
lib -out:eth-smc9.lib smc9.obj smc9util.obj
cl -c -I.\inc -MT -Gs -Zl -W3 -Og -Oi -GF ser16550.c
lib -out:ppp16550.lib ser16550.obj

Listing 2�Here�s a typical ETS enabler record. If the PC Card is to be found, this record must
exist.

static isa_db_t isa[] = {
 { CS_ISA_VERSION, "3Com 3C589 LAN Adapter", {
 "3Com Corporation", "3C589" } },
 { CS_ISA_VERSION, "3Com 3C589D LAN Adapter", {

 "3Com Corporation", "3C589D" } }, };

57 MARCH 1998 EMBEDDEDPC

A
P
C

the system to determine the correct en-
abler for the requesting card. The enabler
first queries the PC Card for the CIS data
and then compares what it receives to its
own internal database.

This CIS data resides within the PC
Card proper and follows a predetermined
format, which is set forth by the PC Card
standard. The local database used by ETS
is the isa_db_t data structure found in
the include file EMBCS.H.

Listing 2 is a snippet of the enabler
record for the 3Com card. All of the network
card enabler entries are similar in content.
CISID is coded to query any PC Cards on
the embedded target and create an isa_
db_t record for the card.

Listing 3 is a sample of the output pro-
duced by CISID when run against an
unrecognized Ethernet PC Card. Once the
PC Card is properly recognized and config-
ured, it�s business as usual on the I/O ranch.

ALL THAT HARDWARE
The TNT Embedded ToolSuite V.9 also

brings another old friend to the PC Card
party�Intel�s EXPLR2. Recall that the
EXPLR2 is almost a perfect embedded PC/
AT platform. Just about everything on this
embedded eval board works just like the
desktop.

The latest ToolSuite provides native
support for the EXPLR2 and its onboard PC
Card socket and adapter. That is, there�s
already a kernel assembled and just wait-
ing to be loaded. You�ve already read
about the extensive PC Card support.

In addition, the new TNT ToolSuite can
support the EXPLR1 and its PC Card socket,
too. Photo 1 is a shot of the twins.

The Phar Lap folks didn�t forget about
Bill, either. This version has the capability
of running from within the Microsoft Devel-
oper Studio using Microsoft C++ V.5.
Another blow to the DOS command line.

SOURCES
TNT Embedded ToolSuite V.9
Phar Lap Software
60 Aberdeen Ave.
Cambridge, MA 02138
(617) 661-1510
Fax: (617) 876-2972
www.pharlap.com

EXPLR2, EXPLR1
Intel Corp.
5000 West Chandler Blvd.
Chandler, AZ 85226-3699
(602) 554-8080
Fax: (602) 554-7436
www.intel.com

Microsoft C++ V.5
Microsoft Corp.
One Microsoft Way
Redmond, WA 98052
(206) 882-8080
Fax: (206) 936-7329
www.microsoft.com

IRS
419 Very Useful

420 Moderately Useful
421 Not Useful

Fred Eady has over 20 years� experience
as a systems engineer. He has worked
with computers and communication sys-
tems large and small, simple and com-
plex. His forte is embedded-systems de-
sign and communications. Fred may be
reached at fred@edtp.com.

Listing 3�To use the ID database for EtsCSIsA, insert the card in question (and only that card)
into a socket. Run this program, redirecting its output to a file select the single line best fitting
your situation and delete the rest. Insert the useful line into the ID database in your enabler.

static isa_db_t isa[] = {
 // Socket 0;
 { CS_ISA_FUNCTION, "Network Adapter", {
 (void*)CISTPL_FUNCID_NETWORK } },
 // Change fields to NULL if they seem too specific
 // The more generic fields come first, the more specific come
last
 { CS_ISA_VERSION, "Put your card's name here", {

 "PMX ", "PE-200", "ETHERNET", "R01", } }, };

NEXT TIME, TEST TIME!
Although the TNT PC Card Support

Package isn�t perfect, it�s well thought out.
Phar Lap tends to have a logical approach
to solving embedded problems with their
products. The new support included within
V.9 is just another example of their good
code and good coding tools.

I�m about out of paper, so here�s what
we�re gonna do next time. Recall that I
mentioned something about test equip-
ment. Well, you know what that means. In
the next installment, I�ll turn one of the
twins into a dedicated test instrument via
its PC Card interface. APC.EPC

58 Issue 92 March 1998 Circuit Cellar INK®

Motor Speed Control
with a Microtwist

FEATURE
ARTICLE

Gordon Dick

s
If you need to modify
an analog speed-
control circuit, you’re
in for a major
redesign. But if your
system is digital like
Gordon’s, adding an
extra feature isn’t so
complicated. Hop
onboard to learn how
to develop speed
control with a 68HC11.

ome years ago,
an analog speed-

control circuit was
designed to control the

speed of a line-powered universal
motor driving a woodworking machine.
The circuit worked fine on the bench,
but when it was connected to the
machine, it was painfully apparent
there should have been a provision to
control the rising rate of the setpoint.

The control system was so powerful
that if the setpoint changed too rapidly,
the motor caused the drive belt to slip
and squeal loudly. However, that sort of
a change requires a redesign of the PCB.

The system has never been changed.
Had it been digital, like the one I talk
about in this article, adding an extra
feature would have been simple.

REVIEWING PHASE CONTROL
It’s often necessary to control how

much power is delivered to a piece of
line-powered equipment. The most
common example is light dimmers.

The dimmer adjusts an incandescent
lamp’s brightness by controlling where
in the half cycle of the line voltage a
switch (e.g., a triac or SCR) turns on.
The amount of the half-cycle angle is
called the conduction angle. The wave-
forms in Figure 1 illustrate different
conduction angles and lamp intensities.

Varying the voltage to a load by
changing the conduction angle is a
technique also used to control the speed
of universal motors. To do this, you
need a unit, available in many hardware
stores, that’s basically a light dimmer
with more heatsinking, a wall plug-in
cord, and a tool plug-in receptacle.

With it, you can control the speed of
a drill, router, or any tool powered with
a universal motor. However, this
method of speed control doesn’t include
any feedback. As the load on the tool
increases, the tool slows down because
the voltage to the motor is constant.

SYSTEM OVERVIEW
Figure 2 illustrates a closed-loop

speed-control system where most of the
work is done by an embedded control-
ler (an ’HC11, in this case). Only a
little additional circuitry is required.

An analog setpoint is produced at the
wiper of the potentiometer and imme-
diately converted to a digital quantity.
A setpoint can be provided in various
ways, but a control knob suits me best.

The ’HC11’s ADCs are eight-bit
units. That’s often a limitation, but not
here. It simply means there are only
256 different setpoints, but the control-
loop calculations are done in 16 bits.

To build a feedback system, you first
need to measure the quantity you’re
trying to control. Motor speed-control
systems often use a tachometer gen-
erator to provide an output voltage
proportional to speed.

I use an optical interrupter to produce
a pulse train with a frequency propor-
tional to motor speed. And, I have some
good reasons for this.

For one, an optical interrupter is
cheaper than a tachometer, especially if
you build it. As well, a tachometer
needs another ADC, so the ’HC11’s
eight-bit ADCs is a disadvantage be-
cause this one is inside the control loop.
And finally, fitting an optical interrupter
into a system is mechanically easier
than coupling a tachometer to it.

In Figure 2, the ’HC11 is fed a signal
from the optical interrupter, whose
frequency varies directly with motor
speed. The ’HC11 includes a timer
that can easily measure this signal’s
period and that can be used as a feed-
back quantity.

Circuit Cellar INK® Issue 92 March 1998 59

To measure the period in the feed-
back unit, the timer subsystem is
configured to set a flag on every lead-
ing edge of the optical interrupter’s
signal. An internal clock is read each
time a flag is set, and the difference in
internal clock readings is proportional
to the signal period. This number is
passed to the control algorithm.

Error detection is done in the control
algorithm (i.e., the 16-bit setpoint has
the 16-bit period subtracted from it).
The error signal passes to the control
algorithm, where it is either multiplied
by a constant which calculates a new
delay number for the motor drive signal
unit if the motor is running too slow,
or the delay is increased to maximum
if the motor is running too fast.

At maximum delay, the motor does
not get any voltage applied to it for a
half cycle of the line. The delay number
calculated is used by the motor drive
signal unit the next time the ISR runs.

GETTING DOWN TO IT
Now, I just need to make the con-

cept a reality. That shouldn’t be hard
to do. The ’HC11 is going to do most
of the work! Well, sort of.

There’s a fair amount of code to
create, and this is after all a real-time
control loop. Since I’m short on the
tools standard in the real-time embed-
ded-control business (and since my code
never works the first time), I approached
things systematically. I modularized
the code building and testing into small
manageable units.

During the course of this project, I
created many small test files for vari-
ous functional blocks. I’ll discuss four
major functional blocks of code.

The ’HC11 makes the setpoint unit
easy to deal with. The A/D subsystem

is initialized to convert a
single analog input con-
tinuously. When the
real-time loop needs a
setpoint for the error
calculation, it’s avail-
able in a register.

As for the feedback
unit, measuring a signal’s
period is handled nicely
via the ’HC11’s timer
subsystem. When a
period measurement is

t

SCR
V

t

V

Lamp

Dim Lamp
Conduction
Angle = 20˚

t

V
Lamp is
Brighter

Conduction
Angle = 90˚

t

V

Lamp is
Very Bright
Conduction

Angle = 160˚

sense for the unit to be interrupt driven.
So, the unit runs at every line-voltage
zero crossing and produces a pulse after
a set delay passed to it.

Suppose the delay number passed to
the motor drive signal unit is 4 ms.
Then, 4 ms after the line-voltage zero
crossing, the motor driver receives a
signal to turn on the motor and apply
power to it for the remaining half-cycle.

Decreasing the delay number in-
creases the motor voltage by applying
power to the motor earlier in the half-
cycle. The motor drive signal unit runs
as an interrupt service routine (ISR),
and the remaining code to implement
Figure 2 runs when it finishes.

The setpoint unit gives instructions
to the ADC system to convert the set-
point signal continuously. This task is
handled by a dedicated system, so it
doesn’t take any processing time away
from the real-time loop.

So, you get a value for the newest
setpoint simply by reading a register.
(An average setpoint is obtained from
four ADC readings.) Shifting the set-
point reading left by eight bits forces
it into a 16-bit value.

Once a feedback signal (or number)
is available, it can be compared to the
setpoint signal. A simple subtraction
produces an error signal, which is then
fed to a control algorithm.

The calculations executed in the
control algorithm determine the kind
of control implemented. In other words,
they make the controller a P, PI, PD,
or PID, where P is proportional, I is
integral, and D is derivative.

A simple proportional control algo-
rithm multiplies the error signal by a
constant. The signal from the control
algorithm then provides a signal that is
appropriately delayed relative to the
power-line zero crossings, so the con-
duction angle of the voltage applied to
the motor causes it to be driven in a
way that minimizes the loop error.

For example, if the load on the motor
increases, causing it to slow down,
the control loop measures the lower
motor speed and delivers a drive signal
to the motor driver. This driver then
feeds more voltage to the motor to
make up for the lost speed.

TRANSLATING INTO CODE
Since the code for this

project is too long to
include here (see Software
for download information),
I want to explain how the
block diagram in Figure 2
might be implemented.

I built the motor drive
signal unit first. Since this
unit must produce signals
delayed a specific amount
relative to the line-voltage
zero crossings, it makes

Setpoint

Adjust

ADC

(Setpoint Unit)

+

–

Control

Algorithm

(Control Algorithm)
(Unit)

Measure
Period

(Feedback Unit)

(Motor Drive)
(Signal Unit)
Determine
Conduction

Angle

Optical
Interrupter

Motor
Driver

+

A

–

VCC

Figure 2 —The ’HC11 can do nearly all the speed-control tasks. It performs the functions in
the dashed box.

Figure 1 —Varying the conduction angle changes the lamp’s brightness.

60 Issue 92 March 1998 Circuit Cellar INK®

trol-algorithm unit, a drive signal is
fed to the motor drive circuit via OC2.

GET OUT THE SOLDERING IRON
Until now, all the code has been

tested on the ’HC11 development board
at my desk. All the signals appear to
behave correctly on the oscilloscope.

But, there’s no motor whirring and
responding to load changes and set-
point changes. It’s time to build a
prototype (see Photo 1).

I didn’t anticipate many difficulties
because I’ve built analog speed-control
units before. I just use the motor drive
circuit and optical interrupter circuit
from before, and substitute the ’HC11
for the rest. Simple, right? Not quite.

Since this prototype will eventually
run on its own using code stored in
the internal EEPROM of the ’HC11,
the prototype is wired so the signals
produced by the ’HC11 can be sup-
plied from the development board via
an interconnect cable. Of course,
there is no ’HC11 in the socket on the
prototype board when the system is
operated this way.

Only after everything is working
satisfactorily in this mode will I re-

required, a free-running clock is read
at an edge of the signal to be measured
and read again at the next similar edge.

The difference between free-running
counter values is directly related to
period. (The code documentation for
this unit has a more detailed descrip-
tion of period measuring.)

The control-algorithm unit appears
simple at first. Do a subtraction and
multiply by a constant. Ah, but there
are more details to deal with.

Because the ’HC11 mul instruction
isn’t signed, negative and positive
errors must be handled separately. And
since the phase-control method of
driving the motor can’t force the motor
to slow down (friction or the external
load does that), the control actions are
different for positive and negative errors.

When the control loop senses the
motor is going too slow, the voltage to it
is increased. But when the motor is
going too fast, the motor voltage reduces
to zero so it can slow down to the
desired speed as quickly as possible.

In this unit, I need to make deci-
sions regarding the proportional gain
(i.e., the proportional band). In other
words, over what range of errors will

proportional control exist, and beyond
what bounds will I force the equiva-
lent of analog saturation?

Fortunately, as long as the code to
take these issues into account is in-
cluded, the proportional band can be
tuned when the system is finally
operational.

The ’HC11’s output-compare (OC)
subsystems make producing the mo-
tor drive signal rather straightforward.
This code runs as an ISR when the
*IRQ input is driven low by a syn-
chronizing signal at each line-voltage
zero crossing.

The OC subsystem uses a free-
running counter. When the counter
number matches the number passed
to the OC subsystem, a flag is set.
The ’HC11 has five OC subsystems,
and the ISR producing the motor drive
signal uses OC2.

At each line-voltage zero crossing,
the OC2 output is forced low to pre-
pare a signal for the motor drive circuit
to apply power to the motor. A set
time to wait before applying power to
the motor is passed to the ISR, which
is used in OC2. So when the ISR runs,
after the delay calculated by the con-

Figure 3 —The ’HC11 and a little support circuitry do the job.

Circuit Cellar INK® Issue 92 March 1998 61

Photo 1 —The development board connects to the prototype via the umbilical cable. Note the ’HC11 is missing in
the prototype board. During debugging, all of the displays were used to show the values of the variables.

move the umbilical cable from the
development board and install an
EEPROM-programmed ’HC11 in the
prototype board. This tack turned out
to be a big time saver.

For a while, the code worked fine
running out of RAM on the develop-
ment board but not out of EEPROM.
(This was when I was learning about
relocatable code. More on that later.)

There could have been a lot of
frustrated chip swapping at this point
with bent pins and blue air. Happily,
at least the bent pins were avoided.

Figure 3 shows the schematic for
the prototype. Eventually, this circuit
will be used to control universal mo-
tors in the 0.5–2-hp range. However,
working with a smaller motor initially
makes more sense.

Since I didn’t have a small universal
motor, I opted for a small DC motor
to be driven from a phase-controlled
bridge. This makes the motor drive
circuit a bit more complicated, but I
had a smaller motor on hand.

As a bonus, my DC motor also has
an optical encoder integrally mounted.

Therefore, I didn’t have to build an
optical interrupter circuit and code
wheel, which I thought would save
some time. But, no! It turned out that
this optical encoder didn’t produce
TTL-compatible signals.

To make things worse, the small
signal it produced was superimposed

on 4.5 V, making it difficult to extract.
I’m sure there are op-amps with input
common mode ranges that include the
positive supply, but I didn’t have any,
hence the somewhat unorthodox way
of powering the Schmitt trigger.

So, the motor with the integral
encoder didn’t save much time. It just

62 Issue 92 March 1998 Circuit Cellar INK®

lated on the motor, slowing it down.
The feedback loop should respond by
increasing the motor voltage. If this
control action is not happening under
these conditions, you can be sure the
actual system won’t work either.

Eventually, I got the problems
corrected, and the faked feedback loop
behaved appropriately.

Getting this system to work was a
bit of a high. Without the proper tools
for this kind of development, trouble-
shooting was slow.

CUTTING THE CORD
Up to this point, I’ve done everything

using the ’HC11 in the development
system shown in Photo 1 with a cable
connecting it to the prototype board.
And, the code being executed was con-
tained in the development board’s RAM.

Since I got the feedback system
working correctly, it should be simple
to transfer the code into EEPROM and
have a stand-alone system. Oops,
wrong again.

Getting the code into the EEPROM
went quite smoothly. Motorola’s
reference manual was helpful [1],
providing clear examples.

To load code, I built a program that
copies part of itself somewhere else
(i.e., into the EEPROM). Then, I made
the part to be copied the motor speed-
control code.

Because the motor speed-control
code was assembled and linked as part
of a larger program and then copied
into EEPROM, it is essential that it be
relocatable. To run code in EEPROM,
the ’HC11 has to be started in Special
Bootstrap Mode. This meant adding
jumpers to the development board.

Also, the interrupt vectoring is
different, so my code had to be changed.
So, put the jumpers in the bootstrap
position, hit Reset, and it should con-
trol speed, right?

Wrong. Troubleshooting just got an
order of magnitude more difficult. At
least before, I could put a breakpoint
in. Now, I can’t even do that.

By embedding some diagnostics, it
appeared the code executed once and
didn’t jmp back to the top the way it
was supposed to. After puzzling over
this a while, I remembered hearing
that the code transferred to EEPROM

changed the tasks. Ordinarily, the
Schmitt trigger and its associated
components aren’t required.

The optocoupler U7 requires some
explanation also. As I mentioned, a
lot of initial testing was done with no
’HC11 in the prototype board and a
cable to the development board, which
provided the signals.

At first, I got a lot of spurious resets
on the development board when the
motor was running. I could never catch
a noise spike, but I figured the noise
had to be getting into the development
board via the *IRQ signal lines.

Optoisolating the *IRQ signal and
ground lines between the prototype
and development boards solved the
problem. Since I may yet tweak the code
for this project, I decided to leave the
optocoupler in. However, it shouldn’t
be necessary on a production version.

One final comment about Figure 3.
Since usually the motor would be pow-
ered directly from the 120-V line, the
winding on T1, which produces 30 V for
the motor bridge, wouldn’t be needed.

CLOSING THE LOOP
Experience has taught me that even

though I’ve tested the code and have
all the electronics working, the system
will not work. Some part of the code
isn’t quite right, and I don’t know
that because the feedback loop is not
yet closed.

Systems that incorporate feedback
are particularly difficult to trouble-
shoot with the loop closed. So, the
trick is to fake a closed-loop system.

If you have a signal generator, use it
to simulate the optical interrupter
signal. In other words, don’t connect
the signal from the motor encoder, but
rather use a signal generator instead.

I didn’t have a signal generator, but
I did have another motor with an
encoder attached—a mate to the mo-
tor/encoder.

By powering this motor with some
fixed voltage, I produced a pulse train
just like the signal generator. When
the loop behaves correctly, the motor
connected to the phase-controlled
bridge runs at a speed dictated by the
setpoint and the faked encoder signal.

If the faked encoder signal’s fre-
quency is reduced, then a load is simu-

#129

#130

64 Issue 92 March 1998 Circuit Cellar INK®

I R S
422 Very Useful
423 Moderately Useful
424 Not Useful

SOURCE

68HC11
Motorola
MCU Information Line
P.O. Box 13026
Austin, TX 78711-3026
(512) 328-2268
Fax: (512) 891-4465
freeware.aus.sps.mot.com

SOFTWARE

Complete source code for this ar-
ticle is available via the Circuit
Cellar Web site.

#131

keeps the setpoint in the control algo-
rithm until the real-time loop has
been executed a set number of times.

Then, the setpoint in the control
algorithm is only increased or decreased
by one. This continues until the ex-
ternal setpoint matches the one used
by the control algorithm. Rapid changes
in the analog setpoint now produce a
very sedate response from the proto-
type board.

There’s another feature I worked
on but chose not to include here. The
best way to describe it is to call it a
watchdog.

At very low speeds, the ISR won’t
complete a period measurement before
the next *IRQ appears. When this
happens, the *IRQ is masked.

This leaves the OC2 output high too
long causing a full half cycle of line
voltage to be applied to the motor before
the following *IRQ is honored. As a
result, there is a speed below which
the motor runs rough.

I wrote code that monitors the time
remaining from the last *IRQ, and if
the ISR doesn’t complete in ~8 ms,

had to be relocatable. Suddenly, it all
made sense.

That jmp instruction jumped to an
area where there is no code, interpret-
ing what it found as opcode and ending
up in the ditch. “Relocatable” took on
a clearer meaning! So, I changed jmp
to a bra, and it worked.

Now, it’s time to cut the cord. Take
the ’HC11 from the development board,
install it in the prototype, and discon-
nect the ribbon cable. Yes, it works!

ADDING FEATURES
By now, I’d created what seemed

like quite a bit of code. And, I hadn’t
even spent much time shaving bytes
here and there. To my surprise, the
’HC11’s 512-byte EEPROM was only
a little over half full.

The primary feature I want to add
is the one that got left out of the ana-
log design I mentioned at the start. In
other words, I don’t want the system
to respond instantly to an abrupt change
in setpoint.

To control how the system responds
to a setpoint change, I added code that

the watchdog aborts it. When this
happens, no new values are calculated
and stale numbers are used in the con-
trol algorithm. This keeps the motor
from running rough at low speeds,
effectively setting a low-speed limit.

NEXT STEPS
This project was a valuable learn-

ing experience. As I mentioned, the
term “relocatable” has taken on a
graphic meaning for me now.

I also gained a new respect for the
’HC11. Being able to use a single-chip
micro as a design solution is just plain
cool.

Hopefully, my next foray into a
single-micro solution to a control task
won’t take so long since I can build on
what I learned here. And, I keep tell-
ing myself that once it’s working, it’ll
be so easy to add a feature. I

REFERENCE

Motorola, M68HC11 Reference
Manual, Rev. 3, 1991.

Gordon Dick is an instructor in Elec-
tronics Technology at the Northern
Alberta Institute of Technology in
Edmonton, AB, Canada. He is a mem-
ber of the American Institute of Motion
Engineers and is the first Canadian to
obtain the Certified Motion Control
Specialist (CMCS) designation. You
may reach Gordon at gordond@nait.
ab.ca.

66 Issue 92 March 1998 Circuit Cellar INK®

 Suppression Components

MICRO
SERIES

Joe DiBartolomeo

l

EMI Gone
Technical

Sometimes
it feels like
a case of

eenie-meenie-miney-
moe when it comes to
figuring out which
suppression
component is best for
you. Time to chat with
Joe. He has some
guidelines that help
you find the best fit.

P
ar

t

of4
2

 66

74

80

MicroSeries

From the Bench

Silicon Update

DEPARTMENTS

4

started this
MicroSeries with a

look at the most
common sources of

transient EMI and their representative
waveforms. This month and next, I
want to examine the components that
protect electronics from these tran-
sients.

There are many ways to protect
circuits and systems from transients.
Protection techniques range from
simple series resistors to the special-
ized and specific, like the quarter-
wave shorting stubs used in telecom
applications, and everyone has their
own favorite methods and components.

Of course, due to the varied nature
of EMI transients, no single technique
or component can protect equipment
from all transients. But, you’d be
surprised how many designers don’t
want to modify their EMI-transient
protection, even when they discover
their equipment is underprotected.

Recently, I talked with a designer
who had been using zener diodes on
I/O lines for years. When I pointed
out that TVS diodes would be a better
solution, he agreed to think about it.

After considering the TVS diodes
versus the zeners (a topic I’ll cover
next month), he came to the same
conclusion I did—his equipment was
underprotected. But, he still stuck
with the zeners. Why? Because they
had worked for so many years without
a problem.

2

Circuit Cellar INK® Issue 92 March 1998 67

Now, his basic argument—if it
ain’t broke, don’t fix it—is a design
philosophy I strongly adhere to. But,
zeners are much too slow for his ap-
plication, and TVS diodes are defi-
nitely the better choice.

What’s going on? Why is his equip-
ment still working?

One possibility is that the worst-
case transients he designed for didn’t
appear. But, this option doesn’t seem
too likely after several years.

The more reasonable explanation is
that other circuit conditions are miti-
gating the transients’ effects, thus
enabling the zeners to provide ad-
equate protection. Recall that the
effect of the transient depends as much
on the transient’s receptor as it does
its source and coupling path. Either
way, it’s a problem waiting to happen.

For example, one circuit condition
possibly enabling the zeners to provide
proper protection is IC technology. A
zener may adequately protect older,
robust 5-V TTL chips, but it may not
achieve the same level of protection
for today’s newer, smaller, faster,
lower voltage chip technology.

As you know, selecting compo-
nents to protect equipment from EMI
transients requires some degree of
knowledge and understanding. But in
fact, if care is taken in the design
stages, selecting the appropriate com-
ponent is often fairly easy.

Although there are many more
design issues to be covered and I’ll
return to the topic of design philoso-
phy, now is an appropriate time to
introduce the components most com-
monly used to protect against tran-
sient EMI.

COMMON COMPONENTS
The two most commonly used

transient-suppressor types are arc

discharge and semiconductor. The arc-
discharge group includes air spark
gaps and gas discharge tubes. Semi-
conductor transient-suppression de-
vices include diodes, zener diodes,
transient voltage suppression (TVS)
diodes, thyristor/zener combinations,
and metal oxide varistors (although
MOVs aren’t actually semiconductors).

The devices you employ to protect
your circuits from transients depend
on the characteristics of the device
itself, the nature of the transient, and
your circuit or equipment parameters.

The best protection technique is to
divert the transient energy away from
the component or circuit and into
ground. Therefore, transient-suppres-
sion devices are normally connected
in shunt across the component or
circuit being protected, as shown in
Figure 1. Transient-suppression com-
ponents are triggered by the voltage
across them, another reason for them
being employed in a shunt arrange-
ment.

Under nontransient operating con-
ditions, the suppressor component
doesn’t affect the operation of the
protected circuit, behaving (ideally) as
an infinite impedance. When a tran-
sient appears across the suppression
component, it limits the voltage across
and diverts the energy away from the
circuit.

Transient-suppression devices fall
into two broad categories—clamping
devices that absorb transient energy
and crowbar devices that reflect it.

CLAMPING DEVICES
As the name implies, clamping

devices simply clamp the voltage to a
maximum level. Figure 2 shows the
voltage/current (VI) curve of a typical
clamping device (e.g., a MOV or sili-
con avalanche diode).

Ideally, the device looks like an
open circuit until the clamp voltage is
reached. At that point, the voltage is
clamped and the device can handle
infinite current. The VI curve of prac-
tical clamping devices can be divided
into three regions—high impedance,
transition, and clamping.

When the voltage across the devices
is less than VNom, the device looks like
a high impedance drawing minimal
current, INom. When the voltage across
the device begins to increase towards
VClamp, there is a transition region
between VNom and VClamp.

The breakover voltage is the point
at which only a small voltage increase
is required to greatly up the device’s
current-handling capabilities. Once
the voltage across the device is greater
than the breakover voltage, we’re into
the clamping region and the device
clamps the voltage across it to VClamp.

Figure 1a— Transient-suppression devices
are normally connected in shunt across the
circuit or system being protected. Under
normal operating (nontransient) conditions,
the transient suppressor has no effect on
the system. b—When a transient voltage
(VTrans), appears, the transient-suppression
device limits the voltage to VLim, ensuring
the input voltage does not exceed VLim,
thereby protecting the circuit or system.Transient

Suppressor

VLim

VN

VLim

VIn

ZIn

Circuit or System to Protect

Transient
Suppressor

VLim

VTrans

VLim

ZIn

Circuit or System to Protect

a) b)

VClamp

–VClamp

I

V

VClamp

INom

I

V

Clamp

TransistorHigh Z

VNom VBreakover

Figure 2a— Note that the ideal device draws no current until VClamp is reached, at which point the device turns on
instantly and can handle infinite current. b—The VI curve for an actual clamp suppressor shows that in the off state,
it draws nominal current, INom, has a transition to clamping, and a limit to the current it can handle.

a) b)

68 Issue 92 March 1998 Circuit Cellar INK®

The regions of the VI curve enable
us to compare the characteristics of
clamping devices. The high-imped-
ance region lets us compare the char-
acteristics in the off state (e.g., MOVs
have a higher INom than zener diodes).

The size of the transition region
and the di/dv of the VI curve in the
transition region indicates the speed
of the device, indicating the types of
transients it protects against.

For example, the transition region
for a MOV is relatively large and its
di/dv is relatively slow, indicating a
soft transition to clamping. The TVS
diode’s transition region is very small
and the di/dv very large, permitting
the TVS diode to transition hard into
the clamping region.

The clamping region tells how
much energy the device can handle.
Diodes dissipate the transients in
their junctions, which account for
only a portion of their mass. There-
fore, they can turn on quickly and
hard.

Clamping devices that use all of
their mass to dissipate transients
(e.g., MOVs) can handle much more
energy per unit device size than junc-
tion-dissipating devices can. Of course,
the larger areas make MOVs much
slower.

CROWBAR DEVICES
The VI curve for a typical bidirec-

tional semiconductor crowbar device
is given in Figure 3. Under normal
operating conditions, the crowbar
device is similar to the clamping de-
vice. It presents a high impedance and
draws a nominal current, INom.

When the voltage across the crow-
bar device increases to VBreakover, the
impedance of the device begins to

drop and conduct energy away from
the device being protected. As the
voltage across the devices increases, it
reaches a foldback voltage, at which
point the voltage across the crowbar
device drops significantly.

The crowbar device then begins to
reflect much of the transient energy
back to the transient source. Once the
transient is removed, the crowbar
device returns to its high-impedance
state only after the current through it
drops below its holding current, IHold.

As with the clamping devices, the
VI curves of the crowbar devices pro-
vide insight into the nature of the
device as well as which device is best
suited for a particular transient threat.

Crowbar devices inherently handle
greater amounts of energy than clamp-
ing devices. Crowbar devices reflect a
great deal of transient energy back to
the source, whereas clamping devices
dissipate the transient energy by junc-
tion heating.

The clamping ability is VPeak × IPeak

per unit time. However, crowbar de-
vices have the disadvantage of their
hold currents.

AIR-GAP DISCHARGE DEVICES
Air-gap discharge devices are gener-

ally used between the line to be pro-
tected and earth ground. The basic
construction is two electrode tips
made of metal or carbon separated by
an air gap.

In normal operating conditions,
these devices have virtually infinite
impedance, drawing no leakage cur-
rent and therefore not affecting the
circuit being protected. These devices
don’t begin to conduct until their

breakover voltage is reached, at which
point they arc across, diverting the
transient energy to ground and pro-
tecting the line.

The breakover voltage depends on
the type of electrode and size of the
air gap. Environmental conditions
(e.g., humidity) also affect the break-
over voltage.

The breakover voltage can be as
low as 100 V or as high as thousands
of volts. However, the uncertainty of
the breakover voltage means you need
to take some care in designing with
these devices.

As an example, let’s assume the
working voltage on an I/O line is 75 V
and an air-gap arc device with a break-
over voltage of 100 V is protecting the
line. The first thing you notice is that
unless your I/O line can handle a
transient of 100 V for 1 µs (typical
turn-on time), you need secondary
protection.

But, you must also be aware of the
environmental conditions under which
the breakdown voltage is specified.
Otherwise, you’ll have more or less
protection than you think. Also, the
dv/dt of the transient affects the
breakover voltage (more about this
when I discuss gas-tube discharge
devices).

The characteristics and low cost of
air-gap devices make them ideal for
primary protection against lighting
transients, in which the transient sup-
pressors are replaced as part of scheduled
maintenance, and or in applications
where transient suppressors are re-
placed after every thunderstorm. But
as I mentioned, you normally need
secondary protection.

Figure 3— Here’s a typical VI curve for a bidirectional
semiconductor crowbar-type surge-suppressor device.
Crowbar devices reflect much of the transient energy
back to the transient source, allowing them to dissipate
much more energy than clamping devices.

Figure 4— Here, I used an IV curve rather than a VI curve, since it’s easier to see the behavior of the gas tube.
However, the crowbar action is harder to see. Note that the current and voltage axes are not to scale.

–IHold

I

V

IHold

V

Breakover
Voltage

Low
Voltage

Arc
Voltage

Current

Off Glow Discharge Arc Discharge

I > kiloampsI < 1 A

× 10–30 V

× 70–150 V

IHold

Circuit Cellar INK® Issue 92 March 1998 69

GAS DISCHARGE TUBES
Gas discharge tubes, also

known as gas-tube arrest-
ers, are similar to air-gap
suppressors but are de-
signed to overcome several
of their disadvantages.

These devices consist of
two or three electrodes
enclosed in a ceramic tube,
filled with inert gas and
hermetically sealed. This
construction eliminates the
uncertainty caused by environmental
conditions and enables the breakdown
voltage to be easily controlled.

The breakdown voltage is a func-
tion of the gap distance between the
electrodes (on the order of 1 mm), the
gas in the tube (normally a mixture of
argon and hydrogen), and the gas pres-
sure (normally 0.1 bar). Devices are
available with breakover voltages
ranging from 80 to several thousand
volts with current ratings in the kilo-
ampere range.

The gas tube is normally connected
in parallel with the line to be pro-

tected—one end connected to the line
being protected and the other end to
ground. As long as the voltage across
the device is below the gas tube’s
breakover voltage, the gas tube has
virtually infinite impedance.

When the voltage across the tube
reaches the breakover limit, the de-
vice begins to conduct. For a current
less than 1 A, the gas-tube device is in
the glow mode and the voltage across
the device ranges from 50 to 150 V.

When the current through the de-
vice is greater than 1 A, the device is
in arc voltage mode. In this mode, the

Equipment
to

Protect

Equipment
to

Protect

Equipment
to

Protect

Figure 5a— To protect a single-wire system, use a two-electrode gas tube. b—For a two-
wire system with two two-electrode gas tubes, you have an extended turn-on time. c—A
three-electrode gas tube is a better solution for two-wire systems.

a) b) c)
current through the de-
vice can be several thou-
sand amperes and the
voltage across the device
is in the 10–30-V range,
as illustrated in Figure 4.

Once the surge dies
off, the surge arrester
returns to its high-im-
pedance state only after
the current through the
devices goes below IHold.
Notice the similarity

between the semiconductor crowbar
device in Figure 3 and the arcing device.

You should be aware that there are
both two- and three-electrode devices.
Two-electrode devices protect single
lines, and three-electrode devices
protect two-wire systems.

When a common-mode surge ap-
pears on a two-wire system, as in
Figure 5, the surge travels down each
line at a different rate due to the dif-
ference in line impedance. If two two-
electrode devices are used (see Figure
5b), one device turns on sooner than
the other, resulting in an overlap of

70 Issue 92 March 1998 Circuit Cellar INK®

turn-on delays and an extended turn-
on time.

In the three-electrode device, the
first surge ionizes all the gas in the
device. Thus, when the second surge
arrives, it is diverted to ground with
no delay.

With gas-tube arresters, there are
two things to be careful with. First,
the current through the device must
be reduced below the glow current or
the device will “hold” in the glow
state. Normally, when the surge dies
out, so does the surge current, but you
should still watch out for the hold
phenomenon.

Another thing to keep your eye on
is the dv/dt of the incoming transient.
A finite time is required to ionize
particles between the electrodes. Gen-
erally speaking, the device turns on in
less than 1 µs. Therefore, faster tran-
sients can exceed the gas tube’s break-
over voltage momentarily.

So, if a gas arrester with a breakover
voltage of 100 V and a turn-on time of
0.5 µs is subjected to a transient with
a dv/dt of 1 kV/µs, the arrester breaks
over at ~500 V, not the specified 100 V.
If the same device is subjected to a
10-kV/µs transient, it strikes at ~5000 V.

The main advantage of the gas tube
is its high-current-handling capability.
Usually, gas tubes are employed as
the first line of defense, being placed
at the entry points of a piece of equip-
ment to be protected. Secondary pro-
tection is normally required since
gas-tube breakover voltages are in the
80–1000-V range.

Another advantage of gas tubes is
that they have long lifetimes and
require no maintenance, unlike air
and carbon spark gaps.

METAL OXIDE VARISTORS
A MOV is a voltage-dependent

resistor with a nonlinear VI curve.
Varistors are monolithic devices con-
sisting of many grains of zinc oxide
combined with small amounts of
metals (e.g., bismuth, cobalt, manga-
nese, and other metal oxides).

The mixture is compressed into a
single form. The result is a matrix of
zinc-oxide grains that provide back-to-
back PN-junction diode characteristics.

When the MOV is exposed to a
surge, it behaves as an array of series
and parallel connected diodes. This
behavior results in the voltage across
the MOV being clamped and the surge
current being absorbed.

Figure 6 shows the VI curve of a
resistor, MOV, and back-to-back zener
diodes. Notice the nonlinear VI curve
of the MOV with respect to the resis-
tor. Also notice that the clamping
action of the MOV is softer than that
of the zener diode as mentioned previ-
ously.

However, a MOV absorbs much
more energy than a zener diode. This
is due to the fact that the MOV’s
ability to absorb energy depends on

100

80

25

10

100 101 102 103

I

V

Number of 8/20-µs pulses

P
ea

k
C

ur
re

nt
 R

at
in

g
as

 %
 o

f
S

in
gl

e
8/

20
-µ

s
V

al
ue

100

10

1

0.01

20 200 2000 20,000

I

V

Pulse Duration (µs)

P
ea

k
C

ur
re

nt
 R

at
in

g
as

 %
 o

f a

S
in

gl
e

8/
20

-µ
s

V
al

ue

100

50

80 90 100 110
Ambient Temperature

C
ur

re
nt

, E
ne

rg
y

of
 P

ow
er

 R
at

in
g

%
 o

f R
at

ed
 V

al
ue

120 130–55

Figure 7a— As the number of pulses a MOV is subjected to increases, M
cross

, the MOV’s current handling capability, measured as a percentage of its single pulse current
handling ability goes down. b—As the pulse duration increases, the peak-current handling capabilities of the MOV decrease. c—As the ambient temperature passes a threshold,
the ratings of a MOV must be reduced.

a) b) c)

the amount of material present, whereas
the zener’s ability to absorb energy
depends on the size of its junction
area.

MOVs are two-terminal devices,
with one terminal connected to the
line being protected and the other
terminal typically connected to ground.
When the applied voltage is below the
breakover voltage, the MOV appears
as a high-impedance device with a
leakage current in the range of 5–250 µA
and a capacitance of 10–10,000 pF.

When the voltage across the MOV
reaches the breakover and clamping
voltages, the MOV goes into its low-
impedance state. In this state, the
MOV clamps the voltage across, di-
verting the surge current away from
the line being protected.

When the voltage across the MOV
goes below the breakover voltage, the
MOV returns to its high-impedance
state. There is no hold current as in
crowbar devices. MOVs’ clamping
voltages range from about 6 V to sev-
eral kilovolts, and their turn-on time
is in the 50-ns range.

MOVs absorb the transient energy
and dissipate it as heat, like all resis-
tors. Therefore, a MOV can handle a
finite amount of energy, given by the
MOV’s joule rating. The joule rating
is normally specified for one pulse of
a standard waveform:

E = KVcIp

where E is the energy the MOV can
absorb, K is a constant (i.e., 1 for a
rectangular and 8/20 waveform and
1.4 for a 10/1000 waveform), and Ip and
Vc are the peak current and clamping
voltage, respectively.

I

V

Resistor
MOV

Zeners

Figure 6— Here’s a VI curve for a MOV, back-to-back
zener diodes, and a resistor. Notice how nonlinear the
MOV’s VI curve is when compared to the resistor. Also
notice that the MOV’s turn-on is soft, as compared to
the hard turn-on of the zener diodes.

72 Issue 92 March 1998 Circuit Cellar INK®

I R S
425 Very Useful
426 Moderately Useful
427 Not Useful

Manufacturers typically supply
curves that show how the MOV be-
haves when subjected to a series of
transient pulses (see Figure 7a). As
you’d expect, as the number of pulses
increases, the energy-handling ability
decreases.

Another useful curve that manu-
facturers provide is the maximum
current versus pulse width shown in
Figure 7b. Again as expected, the
longer the pulse width, the lower the
peak current.

Of course, if the pulse width is less
than an 8/20 waveform, then the MOV
could handle a current larger than Ip.
Regardless of whether the MOV handles
one transient or a repetitive set of
transient pulses, the power rating of
the MOV must be derated to account
for ambient temperature (see Figure 7c).

Every time a MOV clamps a tran-
sient, it degrades slightly. This degra-
dation is due to a small percentage of
the device’s internal diodes fusing and
becoming permanently shorted.

The result is an aging effect with
respect to the number of transients

absorbed, increasing the leakage cur-
rent. Also, if a MOV is subjected to a
large current spike for an extended
period, all of the device’s diodes per-
manently short. Therefore, it’s a good
idea to fuse MOVs.

MOVs are commonly used in AC
applications in conjunction with arc-
type suppressers. The MOVs don’t
have the current-handling ability of
the gas tube, but they turn on much
faster and reduce the voltage over-
shoot associated with arc-type devices.

Due to their high capacitance,
MOVs aren’t used in high-speed cir-
cuits. Their high capacitance coupled
with lead inductance works to form a
low-pass filter. Surface-mount and
leadless MOVs are available, but for
applications greater than a 100 kHz, I
tend to use other devices.

MORE TO COME
There are a lot more types of surge-

suppression devices you need to con-
sider. So, join me next month as I
take a look at zeners, TVS thyristors,
and diodes. I

REFERENCES

Harris, Transient voltage-suppres-
sion handbook, 1994.

KeyTek, Surge-protection test hand-
book, 1986.

J. King, “Comm systems need pro-
tection from lightning,” EE Times,
February, 92, 1997.

MAIDA, Zinc-oxide varistors for
surge protection.

MTL, Surge-Protection App note,
1993–1994.

MTL, App. note AN9009, 1990.

Joe DiBartolomeo, P. Eng., has over
15 years’ engineering experience. He
currently works for Sensors and Soft-
ware and also runs his own consult-
ing company, Northern Engineering
Associates. You may reach Joe at
jdb.nea@sympatico.ca or by telephone
at (905) 624-8909.

74 Issue 92 March 1998 Circuit Cellar INK®

FROM THE
BENCH

Jeff Bachiochi

o

Proprietary
Serial
Protocols

Even
when you
don’t
have the
tools, you

need to know how to
get the job done. For
instance, with
proprietary protocol
message formats,
traditional UARTs
aren’t an option. Jeff
checks your options.

ne of my favorite
commercials is

about automobiles.
Let’s face it: next to our

homes, our autos are our largest invest-
ment. We pay more for auto mainte-
nance than health care.

Anyway, Joe Customer drives into
a service center to get a new battery
installed in his vehicle. The scene
opens with two mechanics under the
hood.

Protruding above everything else in
the front-most corner is an oversized
battery. Joe asks, “Isn’t that battery
too large?” One mechanic answers,
“No problem. We’ll make it fit.”

The scene flashes back to two boys
standing behind a table. One is hold-
ing a rather large sledgehammer and is
proudly grinning. His brother praises
him saying, “Good job.”

On the table is a child’s shape toy
that has a number of different-shaped
holes. In the center triangular hole is
a round wooden peg beaten
into submission.

I still chuckle when I
think about the commercial.

On the flip side, did you know that
was an actual technique used to make
wooden dowels in many woodwork-
ing shops?

The point is, we don’t always have
the right tool for the job for whatever
the reason. Can you accomplish the
task even when your tools fail?

TRADITIONAL UARTs
Speaking of tools, almost everyone

has worked with a Universal Asyn-
chronous Receiver Transmitter (UART).
The most common is the hardware
UART.

The UART is capable of translating
a serial bitstream to and from a paral-
lel word. It was originally developed
to provide a cost savings in copper
when transmitting data over long
distances. Although the data traveling
single file through one wire is less
than one-eighth the data rate of a
parallel eight-wire transfer, the copper
savings was worth the speed penalty.

However, for the serial data caught
by the receiver to be recognized as the
same data sent by the transmitter, the
transmitting and receiving UARTs
must play by the same rules.

RULES
Probably the most important rule

in serial data transmission is the bit
timing. Beginning with RTTY (radio-
teletype), the operating speeds of most
mechanical machines (like those used
by Western Union) sending Baudot
code were on the order of 60–100 wpm
(or 6–10 characters per second). Or, as
we call it, baud rate.

Unlike human speech where you
can probably continue to understand
the conversation independent of the
speaker’s pace, UARTs must talk and
listen at the same baud rate. This task
is usually accomplished by a combi-

No Help from Traditional UARTs

Start
Bit

n Data Bits
(5–8)

Parity
Bit

n Stop
Bits

Mark

Space

Figure 1— All UARTs require a start bit
(space state) followed by data bits, an
optional parity bit, and at least one stop
bit (mark state).

Circuit Cellar INK® Issue 92 March 1998 75

nation of hardware and
software design.

Some oscillating stan-
dard (e.g., a crystal or other
clock/clocking device) is
input to the UART (a
UART built into a micro
may use the micro’s mas-
ter clock). This UART
clock usually goes through
a software-programmable
divider to enable the
UART’s bit rate generator to be ad-
justed to one of many standard baud-
rate values. Now, the transmitting
and receiving UARTs can divide time
into identical-length time slots.

Since both UARTs have free run-
ning bit-rate generators, the next rule
ensures that the two UARTs stay in
sync with each other. The transmitter
output is a digital value, so it can be
in only one of two states—a logic 1,
called the mark state, or a logic 0,
known as the space state. When the
transmitter is not sending data, it
must remain in the mark state.

To get the receiver’s attention and
consequently sync its bit-time genera-
tor with that of the transmitter, the
receiver sends out a start bit. The
start bit is always a space equal to one
bit time. When the receiver sees the
falling edge, it restarts its bit-time
generator.

Next, we get to the actual trans-
mission of data. The maximum num-
ber of bits in a byte is eight, but that
doesn’t necessarily mean that a data
word has eight bits. The early RTTY
Baudot code was only five bits long.
ASCII data is only seven bits long.

The data word length (i.e., the
number of data bits actually sent)
must be selected to be the same for
both the transmitting and receiving
UARTs. Typically, it’s between five
and eight bits.

It also makes a difference whether
the data bits are transmitted least or
most significant bit first. UARTs use
the least significant bit-first conven-
tion. Each data bit is always equal to
one bit time.

To add some security to the trans-
mission, UARTs have an optional
parity bit. The UART must be told
whether this parity bit is used. If it is

used, there are a number
of options about how it is
implemented.

The parity bit can
always be either a mark
or a space, or it can be
based on the data bits.
Parity that is based on the
data bits can be either odd
or even.

Odd parity defines the
parity bit as whatever

level is necessary to make the total
number of 1 bits (including data bits
and parity bit) odd (i.e., 0110111 + ? =
1). Even parity is defined as the level
needed to make the total number of 1
bits even (i.e., 0110111 + ? = 0). The
parity bit is always equal to one bit
time.

Finally, to signify the end of the
single character transmission, at least
one stop bit is sent. A stop bit is al-
ways a mark equal to one bit time. A
transmission must have at least one
stop bit, but the UART can usually be
set to transmit one or more stop bits.
Extra stop bits give the receiver a
little more time to get ready for the
next start bit.

The receiving UART can be set to
fewer stop bits than the transmitting
UART because this time is essentially
idle. (Note: if one UART forces you to
use one kind of parity which the other

Figure 2— For two UARTs to communicate, they must change and sample bits only
at prearranged times.

Start

0
1

2

3

4

5
6

7

Stop

Data

Receiver
samples every

bit timeReceiver
delays ½ bit time

after start bit’s falling edge

Transmitter
outputs every

bit time

Start

0
1

2

3

4

5
6

7

Stop

Transmitter
–0.01%

83.341 µs

750.069 µs

833.410 µs

Receiver
+0.01% 83.325 µs

43.663 µs

41.663 + 740.025 = 781.688 µs

10 Bit Times

9 Bit Times

9½ Bit Times

a)

Transmitter
–0.8%

84.000 µs

756.000 µs

840.000 µs

Receiver
+0.8%

82.667 µs

41.335 µs

41.335 + 744.003 = 785.338 µs

Start

0
1

2

3

4

5
6

7

Stop

10 Bit Times

9 Bit Times

9½ Bit Times

b)

Figure 3— These diagrams show how tolerance can affect the data received by inaccurate bit timing for UARTs when transmitters are on the slow side of the tolerance and the
receivers are on the fast side of the clock’s tolerance. For a UART using a crystal (a), the nominal time (what the transmitter is using) for 91⁄2 bits is 792 µs (83.341 × 9.5), but
the receiver’s actual time is 781 µs. For a UART using a resonator (b), the nominal time for 91⁄2 bits is 798 µs (84 × 9.5), but the receiver’s actual time is 785 µs. For a UART
using a internal RC oscillator (c), the nominal time for 91⁄2 bits is 823 µs (86.666 × 9.5), but the receiver’s actual time is 760 µs, which is not within one bit time.

Transmitter
–4%

86.666 µs

779.994 µs

866.666 µs

Receiver
+4%

80.000 µs

40.000 µs

40.000 + 720.000 = 760.000 µs

Start

0
1

2

3

4

5
6

7

Stop

10 Bit Times

9 Bit Times

9½ Bit Times

c)

76 Issue 92 March 1998 Circuit Cellar INK®

doesn’t support, mark parity looks just
like a stop bit.)

Although not previously stated, the
entire character transmission, includ-
ing start plus data plus (parity) plus
stop, must be sent sequentially using
consecutive bit timing (see Figure 1).
The whole sequence begins when the
data to be transmitted is written into
the transmit register.

The UART handles the timing and
bit output of the complete character
transmission, leaving the program free
to handle other tasks. An interrupt
can indicate when the transmitter
UART is free for the next character.
In fact, some UARTs have a buffer
that can hold a number of characters
to be transmitted.

On the reception side, the receiving
UART automatically synchronizes its
bit timing by delaying a ½ bit time
after the falling edge of the start bit.
(To minimize the delay in synchroni-
zation, the receiver must have edge-
detection circuitry or sample the input
at a fast rate. Most sampling rates are
16× the bit time.)

After the initial ½ bit time, which
offsets the bit sampling point into the
(assumed) center of the transmitted bit
time, sampling the incoming bitstream
after each full bit time enables the
data word to be reformed by shifting
the samples into a receive register.

In addition to sampling for data,
the receive UART also tests and cal-
culates parity (if used) and reports any
errors in the status register. A framing
error can be generated by the receiv-
ing UART if the stop bit was not
received correctly. The framing error
indicates the data is probably invalid
due to noise within the transmission
or a data set using an incompatible
data (bit) rate.

If a second character is received
before the receive register has been
read (by the executing program), an
overrun error is flagged. This flag
indicates some data has been lost
because it’s coming in faster than it’s
being processed.

So, what can the UART do about
these errors? Absolutely nothing. It’s
up to the executing program to insti-
tute some kind of error correction,
possibly by asking for the information
to be retransmitted, but this goes
beyond the scope of this article.

WHEN WHAT YOU’VE GOT WON’T DO
If you wish to remain compatible

with the world’s serial communication
standards, you must choose a protocol
(i.e., a data word format) that fits in
with the mainstream. The most widely
used protocol is probably 8N1—1 start
bit (assumed), 8 data bits, no parity
(not used), and 1 stop bit.

But, what happens when the proto-
col you need to be compatible with
falls outside the normal standards?
The hardware UART, based on the
fixed set of rules, becomes unusable.

Recently, an application surfaced
in which OEM equipment in a distrib-
uted control system needed a redesign.
Intersystem communication, which
used an existing proprietary protocol
message format, had to remain intact.

The protocol used a 256N1 format.
So, hardware UARTs couldn’t be used.
Enter the software UART.

SOFTWARE TO THE RESCUE
Implementing a software UART is

not a momentous task. But, it does
require a bit more processing time.

The most important routine is
implementing some kind of bit-timing
strategy. If you have a reload timer
available, you can initialize it to re-
load itself with a value that overflows
on exactly one bit time.

If the reload function isn’t avail-
able, your code must pay attention to
the overflow and manually reload it
with a bit-time value adjusting for the
execution time your code takes to
acknowledge the overflow and reload
the timer. The worst scenario requires
you to actually count cycles between
outputting serial bits because you
don’t have a timer.

The accuracy of the communica-
tions depends on the clocking source.
Not only is using a crystal necessary,
but choosing the right speed is of
extreme importance.

The crystal frequency should be
selected such that the timer’s over-
flow occurs at exactly the prescribed
bit rate. This usually means using a
crystal whose frequency is an even
multiple of the selected bit rate.

On the transmitting side, you can’t
just pop your data into a transmit
register and go away until the hard-
ware has done its job. Your code be-
comes responsible for outputting a
start bit, the required number of data
bits, calculating the parity bit (if nec-
essary), and finishing with the appro-
priate number of stop bits.

If the timer is available, your pro-
gram can go off and do some other
processing after you’ve set the output

Figure 4— Using a resonator for the UARTs would mean that at the end of the transmission, the receiver would be
off as much as four bit times, which is totally unacceptable.

Start

0
1

2

3

4

5
6

7

Transmitter
–0.8%

84.000 µs

21588.000 µs

21672.000 µs

Receiver
+0.8%

82.667 µs

41.333 µs

41.333 + 21245.419 = 21286.725 µs

247

248
249

250

251

252

253
254

255

Stop

257 Bit Times

258 Bit Times

257½ Bit Times

Circuit Cellar INK® Issue 92 March 1998 77

bit appropriately and are waiting for
the bit time to expire.

When using high baud rates, you
may not have time to go off and do
other processing. You may have to
remain with the communication rou-
tine until you have completed the
whole task.

If a timer isn’t available, you are
stuck looping until you execute the
number of instructions that equals a
bit time because you must ensure that
the count remains accurate.

On the reception side, the recon-
struction of the data must be handled
by your code following the same tech-
niques as the hardware UART. Again
timing is most important. Since you
never know when a start bit may
come, your code must rely on an in-
terrupt or continuous polling.

The most favorable time to sample
the input for data is during the center
of the transmitted bit time. Calculat-
ing this (½ bit time) point is based on
when the receiver first sees the start
bit’s falling edge.

Once this estimate is made, suc-
cessive whole bit-time samples are

Yes

No

Polled
start

detect

Timer
overflow?

Load timer
for ½ bit

time

Load counter
with number of

data bits to
receive

Yes

NoTimer
overflow?

Load timer
for 1 bit

time

YesNo All bits
received?

Sample input
for data bit

Yes

No
Edge

detected?

Reload timer
for ½ bit

time

Yes

No Timer
overflow?

Load timer
for 1 bit

time

sample parity
bit and flag
any parity

error

Yes

NoTimer
overflow?

Load timer
for 1 bit

time

Load counter
with number of

data bits to
receive

Optional
parity?

All bits
received?

Sample input
for stop bit

and flag any
framing error

Exit

Yes

No

No

Yes

Figure 5— Adaptive timing can be used to resynchron-
ize bit timing based on data edge detection by the
receiving software UART.

used to reconstruct the data. Error
checking and received data processing
must all take place prior to the begin-
ning of a new character transmission.

TIMING
Let’s take a look at how the trans-

mitter and receiver tolerances affect
communication integrity.

The standard AT-cut microproces-
sor crystal is ±100 ppm (or 0.01%)
over the 0–70°C temperature range. A
ceramic resonator is about ± 0.8%
over the same temperature range.

A particular micro using an inter-
nally trimmed R/C oscillator could be
off as much as 6.25% over the same
temperature range, while an external
R/C could be off much more, depend-
ing on the tolerances of the two parts.

Figure 2 shows a nominal 8N1
serial transmission with nominal
reception timing.

Figures 3a–c show transmitters
with timing on the lower limits of the
tolerances and reception sampling
based on the upper limits for each of
the three clocking sources—crystal,
resonator, and internal R/C.

78 Issue 92 March 1998 Circuit Cellar INK®

software and hardware developers
who had to make that dream a reality
must have sought a gruesome revenge.

ADAPTIVE TIMING
If the system design doesn’t have

the accuracy necessary, is there any
hope of implementing this type of
protocol? Yes and no.

It depends on the data being trans-
mitted. In a large packet like this
proprietary protocol, the data is likely
transmitted in some kind of limited
set that’s not a binary transmission.

Since binary transmissions can
include data containing many 00s or
FFs, and this protocol has only one
start and one stop bit, it’s possible that
there are no data transitions through-
out the entire packet, making adap-
tive timing ineffective.

Adaptive timing is based on the
assumption that data changes states
from time to time throughout the
data-word transmission. If this as-
sumption is valid, you can add adap-
tive timing to the receiver’s code.

Simply put, if the data changes
state within an expected window, you
need to resynchronize the receiver’s
bit timer. This task is accomplished
by reloading the timer with the appro-
priate value of ½ bit time no matter
where it is in its counting cycle (see

I R S
428 Very Useful
429 Moderately Useful
430 Not Useful

Jeff Bachiochi (pronounced“BAH-key-
AH-key”) is an electrical engineer on
Circuit Cellar INK’s engineering staff.
His background includes product design
and manufacturing. He may be reached
at jeff.bachiochi@circuitcellar.com.

Figure 6— Here you can see the difference between nominal receiver timing (a) and
creeping receiver timing (b) which has been corrected by data.

Start

0
1

Stop

Data

Receiver
samples every

bit time
(tolerances create

sample drift)
Receiver

delays ½ bit time
after start bit’s falling edge

Transmitter
outputs every

bit time

Start

0
1

Stop

Data

Receiver
samples every

bit time
(resync fools
sample drift)

Receiver
delays ½ bit time

after start bit’s falling edge

Transmitter
outputs every

bit time

Receiver
resynchronizes

delays ½ bit time
after data change state

a)

b)

Figure 5). Figures 6a and b
demonstrate how this
solution can help the
timer recover in an out-of-
tolerance system.

One danger of this
technique is noise on the
transmission. If noise is
detected as a legal transi-
tion and the timer syn-
chronizes to it, sampling
proceeds based on the noise
transition, most likely
giving erroneous data.
Such are the tradeoffs.

DATA ACCURACY
On the whole, data

accuracy can only be as-
sured by using a well-
designed protocol. To
receive reliable data, start
with an accurate trans-
mitter and receiver. Then,

add some kind of data check. The
most common is the use of parity
(and it’s free with most UARTs).

In larger packets, like the 64-data-
word–sized protocol I needed to design
for, you can use checksum or CRC
data checks built into the packets. It
adds a bit of overhead to the receive
routines to ensure accurate reception
and also requires a method of request-
ing retransmission of a damaged data
packet from the transmitter.

So, the next time you have a com-
munication job to do, make use of
that good old standard, the hardware
UART. But if the bits get out of con-
trol, take over and bang ’em into sub-
mission.

Just remember to get out your slide
rule and check the system tolerances—
because the impossible is a wee bit
more difficult. I

In many designs, not
much thought is given
to baud-rate divisors.
Crystal frequencies are
often picked for maxi-
mum speed of execu-
tion. Baud-rate tables
located in processor
manuals usually give a
list of baud rate and
accuracy breakdowns
for various crystal fre-
quencies.

In this example, a
deviation of a few per-
cent wasn’t a problem
for most UARTs, as this
was well within the
operating tolerance of
the device.

But, if the clocking
frequency is not an even
multiple of the baud
rate, the timer overflow
can never be on the mark (so to speak).

If this is the case, you start out with
an inaccuracy and it can get much
worse from there. As the total tolerance
excursions approach 10%, the 8N1
protocol approaches doom. You must
also take into account things like the
receiver’s lag time on start detection
or the slew rate of the data edge.

Now imagine extending the data
word out to 256 bits instead of just 8.
System tolerances must be held ex-
tremely small or accurate communi-
cation cannot be achieved.

Figure 4 shows the same tolerance
picture as the 8N1 protocol. This
time, however, it is extended out for
the full 256 bits of the proprietary
protocol we must comply with. All
the sudden, even a resonator’s clock
accuracy doesn’t look that good.

If a system was not designed with
these parameters in mind, we could
be in deep trouble. Fortunately, sys-
tem designers are well-aware of the
need for accurate baud-rate generation
in order for their system to use this
proprietary protocol.

This unusual communication proto-
col makes it most difficult for external
equipment to listen in, which might
be the reason for its origin. It may
have been designed for efficiency by
some system’s designer, but the poor

80 Issue 92 March 1998 Circuit Cellar INK®

SILICON
UPDATE

Tom Cantrell

i

ShBoom Box

A little
bored?
Patriot
Scientific’s
ShBoom

to the rescue. It
brings past and
present together with
stack-machine
architecture, Java
portability, and code
density to make one
mean little CPU.

t’s been said that
inside every reporter

is a Great American
Novel. It’s also been said

that inside is where it should stay! So,
while you won’t find mine on the
bookshelves anytime soon, it goes
something like this.

Imagine a time when science
eliminates death from natural causes,
though you can still get taken out by
unnatural causes. (In the sequel, they
just grow a new you whenever the old
one breaks.) Sounds grand, eh? Uh-uh,
no way.

In fact, give evolution enough it-
erations under such a scenario and

what’ll be left won’t be people but
spineless, anxiety-ridden losers that
scurry underground the day they leave
the test tube. Think about it next time
you hop into the minivan to make a
run for tofu and diet soda. Better pick
up some sunscreen and condoms, too.

How does this relate to chips, you
may ask? Well, with the Silicon Wiz-
ards giving all we ask, I fear that the
result is kind of boring—safe cars, safe
diets, safe sex, and now, safe chips.

Of course, you can guess the final
chapter of my book. A small tribe of
untamed wild ones keep the spark of
humanity alive and ultimately save
the day.

Are any chips left with the passion
and zest for life that’s always been the
heart and soul of high tech? Let’s take
a close look at a chip with a lot of
spirit—Patriot Scientific’s PSC1000
ShBoom CPU.

TROJAN CHIP
“XYZ company introduces their

new high-performance, low-cost, and
easy-to-use 32-bit embedded micro.
With C, Web, and Java support, the
chip is ideal for set-top boxes, PDAs,
and office equipment. Benchmarks
prove….”

That PR could apply to any number
of chips, including, frankly, the PSC-
1000. Even a cursory glance under the
hood reveals few surprises, as you see
in Figure 1.

The clock generator requires an
oscillator input, which is PLL-boosted

Photo 1 —The PSC1000 evaluation board includes plenty of memory (ROM, SRAM, and DRAM), PC-like (2S+P)
I/O, and debugging/expansion headers.

Circuit Cellar INK® Issue 92 March 1998 81

internally 2× to clock the MPU and 4×
for fine-resolution bus timing. A four-
bank memory interface (MIF) accom-
modates various combinations, widths,
and speeds of ROM/EPROM, SRAM,
DRAM, and VRAM.

The eight-channel DMAC includes
bus-matching support for byte, four-
byte, and cell (32 bit) transfers. Eight
bits each of input and output can be
configured as control signals for the
DMAC or interrupt inputs in addition
to general-purpose I/O.

Although the concept of including
a separate I/O processor (IOP) isn’t
new, the implementation is somewhat
novel. First, instead of a dedicated
memory, the IOP fetches instructions
externally via the MIF, contending for
access with the MPU and DMAC.
Communication with the MPU (and
DMAC) is accomplished via 16 global
registers (see Figure 2) accessible to all.

Reflecting the real-world time
constraints imposed on I/O, the IOP
is given top priority. Thus, the most
important instruction in the IOP’s
minimal (12 instruction) repertoire is
DELAY, which puts the IOP to sleep
for a particular amount of time, relin-
quishing the MIF to the MPU.

In fact, every time the MPU (and
DMAC) requests access to the MIF, a
slot check is performed to guarantee
there’s time to complete the requested
transaction before the IOP comes out

of DELAY. Such deterministic schedul-
ing is possible because the details of bus
timing are completely known internally.
The emphasis on no ifs, ands, or buts
I/O timing goes so far as to preclude
an external WAIT input and its accom-
panying temporal uncertainty.

The 100-pin (PQFP) chip runs at 3–
5 V and provides separate power con-
nections for the core, control signals,
and the A/D bus. The current drive on
key signal groups (i.e., RAS/CAS,
control lines, A/D bus) is program-
mable. Using the minimum drive
required by a particular design reduces
the output edge rates, which cuts
noise emissions.

FORTH TO THE PAST
Peering more closely at the innocu-

ous-sounding MPU block reveals a
chip that marches to a different
drummer. As shown in Figure 3,
the PSC1000 architecture is atypi-
cal, incorporating aspects of what
old-timers might recognize as a
stack machine.

Goethe said something like, “Ev-
erything has been thought of before,
but the problem is to think of it again.”
And, it’s true in this case as well.

In fact, stack machines have a
proud tradition dating to practically
the dawn of computing. For instance,
back in the ’60s when the only com-
puters were mainframes, a company
called Burroughs designed the innova-
tive stack-oriented B5000. Although
Burroughs, like a bunch of other would-
be competitors, faded under the main-
frame hegemony of IBM, interest in
stack machines continued to grow.

The Golden Age of the concept was
ushered in with the invention of the
Forth language in the mid ’70s by
Charles Moore and Elizabeth Rather
[1]. Reflecting the starry-eyed faith of
the inventors, the first applications
were controlling the giant telescope at
Kitt Peak National Observatory.

I myself did more than a bit of
fooling around with Forth, which
offered a number of unique advantages
including economy, performance,
interactivity, and portability.

Remember, machines at the time
were laughably limited. I was running
a mighty 4-MHz Z80 with 64 KB of
RAM, but even the minicomputers
(e.g., the PDP-11) and mainframes
(e.g., 360) of the time couldn’t match
today’s PC. Effectively, the only pro-
gramming options for me were ASM
and BASIC.

Performance and economy were
derived from the fact that Forth
mapped naturally to minimalist hard-
ware (i.e., a stack-oriented language
for stack machines). The PSC1000
lineage is easily discernible in papers

Data/Control

IOP
Global

Registers MPU
On-Chip Resource

Registers

Outputs

MIF

Transfer
Logic

Inputs
Clock

INTCDMAC

Addr

Data

Hold

Addr

Data

Addr

Data

C
on

tr
ol

Data/Control

Control

Addr

Data

Data/Control

Control

Addr
Data

Control
Addr

Data

Data/
Control

OUT(7:0)

*CASO_3
*CAS
CAS

*RASO_3
*MGSO_3

*RAS
RAS

*DOB
*OE
*EWE
*LWE

DSF
*MFLT

AD (31_0)

*IN (7:0)
CLK

*RESET

32

32

32

4

32

32

32

11

32

4

32

4

Figure 1 —The PSC1000 memory interface (MIF, which supports direct DRAM connection), interrupt controller
(INTC), and DMA controller (DMAC) appear typical. It’s the on-chip I/O coprocessor (IOP) and, most of all, what’s
buried inside the MPU block that make the chip unique.

Figure 2 —The general registers serve as the link
between the MPU and IOP. The IOP instruction
set targets real-time I/O and is extremely reduced.
The MPU can only run when the IOP is executing
DELAY (i.e., I/O has the highest priority).

g15
g14

g8

g7

g1

g0

dskipz
mloop
xfer

delay

Id

Delay
Decrement and Skip
Interrupt MPU
Jump
Load Register
Micro-Loop
No Operation
Output True
Output False
Refresh
Test Input and Skip
Transfer

82 Issue 92 March 1998 Circuit Cellar INK®

The combination of a simple ma-
chine model and interpretive execu-
tion meant Forth could be, and was,
easily ported to many different ma-
chines. All that was required was a
few kilobytes to implement a virtual
stack machine and seed the dictionary
with a basic vocabulary. You’d use
these words to build your own words

in a hierarchical manner, hiding com-
plexity along the way.

It was fun, but eventually the party
was over. For all its niceties, Forth
suffered from some flaws.

Most apparent was the RPN nota-
tion intrinsic to the stack concept.
Instead of writing (A × X) + B, you
entered A X × B +. Despite the fact
that scientists might actually prefer
the elegance of RPN, it made for dubi-
ous readability.

Another problem was that stacks,
although great for calculations, are
quite limiting in other ways. Invariably,
much head scratching revolved around
the need to get at some deeply buried
element, to which end a variety of stack
manipulations (e.g., duplicate, swap,
rotate elements, etc.) were required.

Ultimately, macromarket forces
caused Forth to fade. The appearance
of the PC changed the rules, the issue
becoming whether any other architec-
ture—not to mention an unconven-
tional one—could survive.

The subsequent explosion in com-
puting capabilities rendered the effi-

Photo 2 —Though most of the DOS-based development software is command-line driven, the debug front-end
includes a simple GUI. Notice the grouping of byte-wide instructions into 32-bit cells in the assembly-language
window.

and articles of the time describing
homebrewed Forth engines [2].

 As much as the language itself,
implementation as an interpreter was
key. This meant Forth memory needs
were low both for development and at
run time. Development was also highly
interactive, thanks to elimination of
cumbersome compile and link steps.

Circuit Cellar INK® Issue 92 March 1998 83

ciency issue somewhat
moot. After a bit of flirting
with Forth and other lan-
guages like Pascal and Ada,
the programming commu-
nity decided to hitch up
with C.

BACK TO THE FUTURE
So, why sift through the

history books today? Well,
remember Goethe. Just
because an idea came and
went doesn’t mean its time
won’t come again.

For instance, doesn’t the
idea of running an inter-
preted language on a virtual
machine to achieve true
portability sound familiar?
Have a cup of coffee while
you think about it.

Naturally, the company
exploits the linkage with
the Java craze. They’ve licensed the
required technology from Sun, are
working on their virtual machine, and
expect competitive Caffeinemarks.

However, I suspect the ultimate
fate of Java—whether it takes off and
what chips it runs on—is as likely to
be decided in a courtroom than in the
lab.

In the meantime, the PSC1000 is
certainly competitive in traditional
embedded applications. After all, the
most popular embedded micros (’51,
’68, PIC, ’x86, etc.) aren’t exactly
spring chickens themselves.

And, the embedded market still
cares about things like code density—
a stack machine forte. Consider the
PSC1000 instruction set in Table 1. It
has a number of interesting features,
but a real standout is the fact most
instructions are a measly byte long.

As shown in Figure 4, and not un-
expected, the only exceptions are
branches and literals. Both take ad-
vantage of a four-instruction (i.e., the
32-bit bus width) grouping concept to
expand opcodes as necessary.

Grouping also supports the concept
of micro-loops (i.e., loops that fit

Table 1—The instruction set is an interesting combination of RISC and CISC. The conventional ALU, branch, and load/store instructions are supplemented with stack-centric
ops and floating-point assists.

g15
g14

g8

g7

g1

g0

r15
r14

r1

r0

g15
g14

g8

g7

g1

g0

Global
Registers

Local-Register
Stack

Operand Stack Miscellaneous
Registers

mode

ct

x

Addressable Unaddressable (used by cache logic)

Arithmetic/Shift
ADD
ADD with carry
ADD ADDRESS
SUBTRACT
SUBTRACT with borrow
INCREMENT
DECREMENT
NEGATE
SIGN EXTEND BYTE
COMPARE
MAXIMUM
MULTIPLY SIGNED
MULTIPLY UNSIGNED
FAST MULTIPLY SIGNED
DIVIDE UNSIGNED
SHIFT LEFT/RIGHT
DOUBLE SHIFT LEFT/RIGHT
INVERT CARRY

Floating Point
TEST EXPONENT
EXTRACT EXPONENT
EXTRACT SIGNIFICAND
RESTORE EXPONENT
DENORMALIZE
NORMALIZE RIGHT/LEFT
EXPONENT DIFFERENCE
ADD EXPONENTS
SUBTRACT EXPONENTS
ROUND

Miscellaneous
CACHE CONTROL
FRAME CONTROL
STACK DEPTH
NO OPERATION
ENABLE/DISABLE
 INTERRUPTS

Figure 3 —The PSC1000 is a hybrid register/stack architecture that tempers Forth roots
with register reality. Most instructions (ALU ops and loads/stores) work on the top of the
operand stack, but data can be moved to local and global registers as well. x is a dedi-
cated index register (s0 and r0 also work as indexes), and ct a loop counter. All registers
are 32 bits wide.

entirely within a group).
In this case, the group is
buffered on-chip and acts
as a minicache, speeding
access and freeing the
internal bus.

The addition of regis-
ters eases the dreaded
stack bottleneck. Yes, all
ALU ops and loads/stores
work with the operand
stack, and there are even
stack-shuffling instruc-
tions like EXCHANGE and
REVOLVE, but it’s easy to
move data to and from
registers as well.

The local registers can
either be accessed as a
stack (e.g., return ad-
dresses) or directly (four-
bit register number in
opcode). The global regis-
ters are only directly

accessed, reflecting their primary role as
interconnect with the IOP and DMAC.

Most of the simple ALU ops ex-
ecute in a single cycle of the 2× clock
(i.e., 50 MIPS with a 25-MHz oscilla-
tor). Numeric operations are slower
(e.g., multiply and divide are 32 clocks)
but supplemented with a selection of
housekeeping aids for floating point.
Of course, instructions that require
memory accesses (e.g., branches, loads,
and stores) depend on external bus
timing.

Along with micro-loops, another
small concession to caching is 16-

Control Transfer
BRANCH
BRANCH ON ZERO
BRANCH INDIRECT
CALL
CALL INDIRECT
DECREMENT AND BRANCH
SKIP
SKIP ON CONDITION
MICRO-LOOP
MICRO-LOOP ON CONDITION
RETURN
RETURN FROM INTERRUPT

Logical
AND
OR
XOR
NOT AND

TEST BYTES
EQUAL ZERO

Data Management
LOAD
STORE
STORE INDIRECT, pre-dec/post-inc
PUSH REGISTER/STACK
POP REGISTER/STACK
EXCHANGE
REVOLVE
SPLIT
REPLACE BYTE
PUSH LITERAL
STORE ON-CHIP RESOURCE
LOAD ON-CHIP RESOURCE

Debugging
STEP
BREAKPOINT

84 Issue 92 March 1998 Circuit Cellar INK®

Tom Cantrell has been working on
chip, board, and systems design and
marketing in Silicon Valley for more
than ten years. You may reach him by
E-mail at tom.cantrell@circuitcellar.
com, by telephone at (510) 657-0264,
or by fax at (510) 657-5441.

REFERENCES

[1] C. Moore and E. Rather, “The
Forth program for spectral line
observing,” Proceedings IEEE,
61, September, 1973.

[2] J.C. Vaughan and R.L. Smith,
The Design of a Forth Com-
puter,” Journal of Forth Applica-
tion and Research, 2:1, 1984.

SOURCE

PSC1000 ShBoom CPU
Patriot Scientific Corp.
10980 Via Frontera
San Diego, CA 92127
(619) 674-5000
Fax: (619) 674-5005
www.ptsc.com

I R S
431 Very Useful
432 Moderately Useful
433 Not Useful

Branches

opcode opcode opcode branch

opcode opcode branch offset

opcode branch offset

branch offset

Literals
 push.n

opcode opcode push.b value

opcode push.b branch value

push.b opcode opcode value

opcode push.l opcode opcode
 data for first push.l
 data for second push.I (if present)
 data for third push.I (if present)
 data for fourth push.I (if present)
opcode opcode opcode opcode

All Others

opcode opcode opcode opcode

Push Long
(Any Position)

Push Byte

Push Nibble

27-Bit Offset

19-Bit Offset

11-Bit Offset

3-Bit Offset

preponderance of impossible-to-probe
fine-pitch surface-mount chips. Opera-
tion revolves around the usual com-
pile, download, and debug ritual under
control of a simple ROM monitor.

The package I received was defi-
nitely beta and a bit rough around the
edges. A few incomplete docs, cut and
jumps on the board, some finicky
software, and such. Nothing that
proved insurmountable.

While I’m sure the package will get
fine-tuned, these tools will never win
the Barney award. Running under
DOS, there’s little attention to cos-
metics, IDEs, GUIs, and so on.

Instead, the software is of the tradi-
tional command-line power user sort.
In other words, it works great once you
get fully up to speed, but there’s a lot
of documentation to wade through.

Fortunately, a simple tutorial sec-
tion steps through the compile, link,
hex format, download, and run pro-
cess. So, I tried the example in Listing
1, which exercises floating point to
compute an approximation of π.

I then ran the same program on my
Mac (16-MHz ’030) but only after
changing the int i in the original to
a long i on the Mac. The Mac didn’t
complain about being asked to com-
pare an int with 100000. It just never
found a match.

For what it’s worth, the PSC1000
with its 20-MHz oscillator (i.e.,
40-MHz CPU clock) was about three
times faster than my 16-MHz Mac
(i.e., ~1.5–2 s vs. ~6 s). The code was
substantially smaller as well (19 vs.
26 KB).

entry storage for the operand and local
stacks. On-chip hardware automati-
cally spills and refills as stack accesses
cross the boundary.

Since cache effects can compromise
determinism, CACHE-CONTROL in-
structions give explicit control to
those who need it. The DEPTH instruc-
tion reports how many items can be
removed from a stack without causing
a refill, while the CACHE instruction
prepares the stack to accept or deliver
a specified number of operands with-
out interruption.

LINGUA FRACTION
The $299 evaluation kit I checked

out comes with a board (see Photo 1),
power supply, cables and a complete
selection of PC-based development
software (see Photo 2), including a C
compiler. By the time you read this,
you can contact the company for the
latest status on Java and, yes, even
Forth.

The board accommodates 4-MB
DRAM, up to 1-MB SRAM, and up to
2 MB of flash memory. An additional
DIMM socket lets you put on an addi-
tional 16-MB DRAM, while a 16550
serves up PC-compatible serial and
parallel I/O ports.

Expansion headers make all critical
signals accessible—a must, given the

#include <stdio.h>
#include <math.h>
#define ITERATIONS 100000
int main(void)
{
 long i;
 int sign = 0;
 double pi = 0.0;
 printf("\n");
 for(i = 1; i < ITERATIONS; i += 2)
 pi += (sign ^= 1) ? 4. / i : -4. / i;
 pi += 2. / (ITERATIONS - 2);
 printf("pi is approximately equal to %.12f (%.12f)\n",
 pi, 4. * atan(1.0));
 return 0;
}

Listing 1 —This C program computes the value of π.

Figure 4 —The combination of 8-bit opcodes and 32-bit
bus width lends itself to a four-instruction grouping
concept. For instance, branch offset can consume a
small portion (3 bits) or almost all (27 bits) of a group.
Byte literals always occupy the last byte of a group,
while long literals occupy their own group.

The results are certainly interest-
ing and arguably even intriguing.
They may not prove compelling for
those who prefer to lead safe, quiet
lives.

But, sometimes don’t you just wish
you could swap the minivan and tofu
for a Humvee and T-bone? I

96 Issue 92 March 1998 Circuit Cellar INK®

PRIORITY INTERRUPT

steve.ciarcia@circuitcellar.com

For Once, I Sort of Agree

i t’s not often that I agree with Bill Gates, I assure you. From a technology viewpoint, we are worlds apart. My
idea of computerizing something is a vision of making its operation simpler and more efficient. Every time I get

involved in one of Bill’s visions, I end up having to buy a new computer. Certainly, we don’t debate that these
offerings contain a modicum of enhancements and improvements. However, having to triple or quadruple the

horsepower of your PC each time you upgrade the software leaves a lot to be desired. But don’t worry, this isn’t a tirade against Microsoft
and I’m not going to reminisce about how much we used to do on an 8-bit processor with 64 KB.

Fact is, there’s one issue where I might have to agree with Bill. In this latest face-off with the government, the makers of Netscape
argue that a browser and an operating system are two separate things. It’s OK to have customers buy your operating system, but to force
them to all use your browser is monopolizing. Microsoft insists that there is no defining line between an operating system and browser.
Supporting this opinion is the reality that a browser seems to be the user interface of choice in a majority of recently introduced software
applications. Microsoft contends it is a natural evolution of technology.

I suspect that all those people who enjoy browsing the ’Net have a great deal to do with that evolution. It only takes visiting a few
Web sites and executing a few online transactions to quickly realize that your browser is a universal entry vehicle into other systems. It
gives you all the benefits of executing the online application without concern for the host’s operating system or processor type.

The good news is that for many applications it offers a standard interface model. A remotely monitored refinery tank farm could have
a unique communication protocol and a custom display medium. That would be the traditional approach. Today, however, it probably
makes far more sense to design the monitoring system so it can interact with a browser. The user simply has to dial up the tank farm from
anywhere with any computer and see what’s going on.

There are clear advantages to using a browser as a front end for software applications. The user interface serves as an effective
isolation between the user and the physical application hardware. Software changes and technical support need only be applied at the
application end rather than to each user site. Want to expand the tank farm? Simply change the monitoring electronics and server
software. The next time the user checks in, the browser shows 20 additional tanks. No fuss, no muss, no wiring.

The bad news is that there will be increased demand for everything being browser compatible. If we’re not careful how it’s done,
browser-based closed-loop monitoring and control can become cutesy and inefficient. One of the things we have to be careful about in all
this is that all this user interface and application isolation doesn’t get out of hand. While it’s easy to conclude that a browser makes an
ideal user interface, I’m not all that convinced that enough thought is being given to the browser application itself. I don’t write a lot of
software, but I certainly believe that designing software for a browser application is significantly different than for a stand-alone operating
system.

Someone suggested to me that there is a simple test to illustrate the obvious answer. Pick a dozen Web users at your office and
look at their favorite-sites list. Invariably, Yahoo or Altavista, two of the 50+ search-engine sites, will appear on their list. If you ask why,
most users simply say that it’s because these sites are fast.

There’s a natural tendency for developers to include fancy graphics, multiple windows, and lots of bells and whistles in their
presentation pages. Yahoo and Altavista are fast because they avoid bandwidth-eating graphics and high-end features. We’ve all
experienced the excruciating wait at Web sites that download page after page of useless, albeit flashy, graphics before they get to an
index page. You could have breezed through a half dozen Yahoo pages in the same time.

Future implementation of browsers in embedded system applications is a given. Successful execution, however, is a careful
balance between bandwidth and UI graphic necessity. I realize that the experience of the past suggests that one answer is to simply force
us all to increase the bandwidth and computer horsepower once again. The other option is to put a little more thought behind this kind of
software.

Yes, Bill, this is one of those occasions that I agree with you. Indeed, there isn’t a clear line between browser and operating system
anymore. Agreeing with you, however, doesn’t mean that I’m willing to live with only one brand.

