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Under the Hood

TASK MANAGER

t here’s nothing like getting grease under your
fingernails, oil up to your elbows, and skinned

knuckles from a stubborn bolt to appreciate a nice,
clean, climate-controlled desk job in front of a computer.

I’ve just spent the past two weeks tearing down the engine in my ’85 Dodge
Caravan, finding the problem, fixing it, and putting the whole thing back
together. All this during the dark evenings in a chilly garage after the kids
were in bed.

While taking a break after struggling with the tenth head bolt, I started
noting how much simpler engines were 13 years ago than they are today.
Sure, the Caravan has an engine computer, but it too was pretty simple
back then. As today’s cars get more and more sophisticated, it’s becoming
harder to be a proficient do-it-yourself backyard mechanic. Bring one of
today’s cars to the shop, and you’ll most likely see the mechanic (I’m sorry,
“technician”) hook it up to the shop’s computer and have an intelligent
conversation with the car.

“What’s ailing you today, Mr. Ford?”
“I seem to have an ache right here under my fuel pump, and the

oxygen content of my exhaust is a trifle too high. My owner also isn’t paying
enough attention to me.”

We’re also starting to see more smarts elsewhere in the car than
under the hood. There’s a microcontroller handling the antilock brakes,
interior temperature, cruise-control speed, radio/cassette/CD player, and
GPS receiver. Never mind the cell phone, alarm system, and collision-
avoidance system.

Embedded processors continue their march into just about every
piece of electronics we come in contact with daily. In the best implementa-
tions, you don’t even know there’s a computer inside. When the device
does what it should naturally rather than try to show off what it could
potentially do, then it’s a successful design.

This year’s Embedded Processors issue starts with an article by
Tracey Lee on bootstrapping DSPs, making field modifications much more
efficient. Next, G.Y. Xu constructs a universal programmer that can be
used to burn code into microcontrollers with either EPROM or flash
memory. Vincent Rikkink introduces us to a new low-power micro that
shows a lot of promise. Finally, Tom Napier presents his crossbreeding of a
Basic Stamp with a Forth engine to come up with a powerhouse.

In our columns, Joe DiBartolomeo continues his series on EMI with a
discussion of protection components, Jeff revisits his old buddy the Z8, and
Tom goes back even further to his free-wheeling hippie days while talking
about Xilinx’s latest FPGA.

In EPC, Chuck Lewin surveys what’s available to aid in PC-based
motion control, Ingo illustrates the similarities and difference between two
real-time operating systems by implementing the same simple project on
both, and Fred uses a PC Card to get a touchscreen up and running.
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READER I/O
DON’T GET BURNED!

I’ve been reading Circuit Cellar INK off and on for
several years now. Steve and Jeff’s article, “Ground
Zero” (INK 90), encouraged me to drop you this note.
No matter where I live, it seems, vicious thunder-
storms are always around at least some part of the year.

I love to watch lightning. I’ve experimented with
high voltage from various sources including big Van de
Graaffs. As a kid, I built a big mailing-tube Tesla coil
from junk parts that would create a spark in excess of a
foot and wipe out all radio and TV for blocks around! I
also did some lightning experiments associated with
my radio towers, but I never did get to the heart of the
mystery. I did almost fry my butt off, though!

Long ago, I found out, when it comes to protection
from lightning, make sure it’s grounded! I always feed
my antennas or towers in some kind of shunt-feed
mode so the structure can go to ground as short as
possible with as big a ground as I can get. I usually use
2″ diameter thin-walled mast pipe and sometimes
industrial braid!

Thanks for reminding us how much fun lightning
can be!

D. D. Schendel
Scottsdale, AZ

AYE, AYE
I just finished yet another fine issue of Circuit Cellar

INK, and as usual, I went from cover to cover nonstop.
It’s truly refreshing to read a magazine that contains
actual substance and doesn’t assault the reader with the
hype found in most computer publications today.

I particularly enjoy Steve’s observations in Priority
Interrupt. His concerns (and gripes!) parallel mine more
often than not. When he expressed concern over bloated
PC code a while back (INK 89), it was gratifying to see
that someone else had noticed. Why do I need 32+ MB
of RAM and hundreds of millions of clock cycles per
second just to get average performance? As an engineer,
I have a hard time trading simple, elegant engineering
for something that has been kludged up with gimmicks
just to make it sell.

I also have to agree with Steve that the increasing
Wintel presence in the embedded world is cause for
concern. Personally, I’ll be pretty upset if the day
comes when I can’t find a good, cheap ’HC11 SBC!

On a final note, “Inside the Box Still Counts” (as
Steve wrote in INK 1 and reiterated in the tenth-

anniversary issue, INK 90) is true in my book, too.
Somebody still has to understand the hardware before
the software is going to fly.

Keep up the good work!

Paul J. Franklin
pfranklin@worldnet.att.net

A WORTHY REFERENCE
Congratulations on bringing to your readers a very

important reminder of the real hazard of lightning and
the need for well-designed protection (“Ground Zero,”
INK 90).

I have enjoyed Steve’s writing since the early days of
BYTE and always subscribed to INK. Circuit Cellar
INK enjoys a special place in my library—it’s one of
only three magazine files that I moved to our new
location a few years ago. The rest were hauled away in
two five-ton trucks!

Robert Barbour
Eagan, MN

CRACK OPEN THE MARKET
I picked up the December issue of Circuit Cellar INK

and wanted to comment on Steve’s editorial (“The Best
Kept Secret,” INK 89). I’ve been a programmer for 15 years,
and although I’ve never had the need to delve into embed-
ded systems, I try to keep up with related disciplines.

I think Steve’s views regarding the Wintel predomi-
nance in the marketplace are timely for the embedded-
systems industry and quite correct. He has the luxury
of learning from history in this matter. The PC market
has been ultimately decimated, in my opinion, by Intel—
but more by Microsoft, a company that somehow
manages to absorb change but withstand progress. I’ve
been frustrated by their (mostly) inferior and closed
architecture for too long.

I’m so glad some alternatives are starting to appear.
I manage to make a decent living existing solely in the
Linux OS world, and I’m grateful an open, shared system
is available for everyone to choose. I’m hopeful, this
situation will remain available in the embedded-
systems world as well.

Jim B.
jimbag@kw.igs.net
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NEW PRODUCT NEWS
Edited by Harv Weiner

BRUSHLESS DC FAN MANAGER
The TC642 brushless DC fan manager converts any

standard two-wire brushless DC fan into an intelligent
fan, controlling and monitoring brushless DC fans of
any current or voltage. It consists of a PWM fan speed
controller and integrated fan fault detector. Its efficient,
low-frequency (30 Hz) PWM fan speed control reduces
acoustic noise, extends fan life, and lowers average fan
operating current.

Onboard fan fault-detection
circuitry continuously monitors
fan operation. When an abnor-
mal condition is detected, the
*FAULT output is asserted and
fan operation terminated. This
output is also asserted (but fan
operation permitted to continue)
when measured temperature
exceeds a maximum limit,
indicating a blocked air intake
or system thermal runaway.

The TC642 lets the user
program a minimum operating

fan speed with a simple resistor divider. An external fan
shutdown input facilitates “green” system operation.
Special onboard start-up circuitry ensures that even the
most stubborn fans start and run reliably when exiting
auto-shutdown and when power is initially applied.

Available in standard eight-pin plastic DIP and SOIC
packages, the TC642 is ideal for personal-computer
motherboards, power supplies, and other applications

using brushless DC fans for
forced-air cooling. Commercial
and industrial temperature ranges
are available. Pricing starts at
$1.44 in 10,000-piece quantities.

TelCom Semiconductor, Inc.
1300 Terra Bella Ave.
Mountain View, CA 94043-1836
(650) 968-9241
Fax: (650) 967-1590
www.telcom-semi.com

#501

HIGH-PRECISION I/O CARD
Loughborough Sound Images has released a multi-

channel, high-precision analog I/O card—the PMC/16101.
This device is ideal for acoustic sensing in sonar and
seismic equipment, noise and vibration analysis, and
test and measurement systems, where an analog stimulus
triggers the acquisition of data at high data rates.

The single-size PMC format PMC/16101 card offers
16 analog input channels and one analog output channel.
It interfaces to the motherboard via a 32-bit PCI interface
and features a sustained data rate of 55 MBps. When
combined with a low-cost PCI/C42 motherboard, a
complete data-acquisition-system front end can be built
into a single PCI slot, enabling cost-effective DSP sys-
tems to be constructed around a standard PC chassis.

Both processors on the PCI/C42 motherboard, the
memory, and the host and PMC interfaces are connected
to the same synchronous bus to guarantee low-latency,
high-speed data transfers. A programmable interrupt
generator across the PCI interface can also be used to
control the data flow.

All I/O channels use crystal delta-sigma converters
with 20-bit accuracy. Each channel has an associated 1-KB
FIFO for data buffering. Sample rates—up to 50 kHz—can
be accommodated with the clock provided by an onboard
12.88-MHz crystal oscillator or from an external source.
Four TTL-compatible signal lines, configurable as ei-
ther input or output, are also provided.

Extensive software support is provided for the PCI/
C42 motherboard under Windows 95 (Windows 98
ready) and NT. Add-ons include plug-and-play–
compatible device drivers, interface libraries, and
DSP utilities for daughterboards like the PMC/16101.

Loughborough Sound Images
Loughborough Park, Ashby Road
Loughborough, Leicestershire
LEll 3NE, U.K.
+44 1509-63-4444 • Fax: +44 1509-63-4450
www.lsi-dsp.com #502
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NEW PRODUCT NEWS

SUPER-COMPACT DC-DC
CONVERTERS

Xentek Power Systems offers
ultra-compact, high-reliability DC-
DC converters for use in LCD bias
supplies. Three new models in the
RD Series of 5-V input variable
(positive or negative) bias modules
offer wide-range DC outputs of +35
to +40 V, +24 to +40 V, and –30 to
+38 V, respectively. A fourth model
in the EPN Series provides a vari-
able negative bias module with a
wide range output of –13 to +24.5 V.

Other models are offered with
nominal 5 VDC (4.5–5.5 V) or wide-
range (10–25 V) DC inputs. DC
output can be specified to be –22,
–23, or –24 V. A +38-VDC version
featuring adjustable output is also
available. Models are available with
remote operation (active high or
active low).

The largest models in the line
measure no greater than 35 mm
(1.38″) in length and l6 mm (0.63″)
in width, and all units have a rated
MTBF of over 1,000,000 h. Prices
range from $5 to $7 per unit in OEM
quantities.

Xentek Power Systems, Inc.
1770 La Costa Meadows Dr.
San Marcos, CA 92069
(760) 471-4001
Fax: (760) 471-4021
www.xentek.com

#504

SOLAR POWER SYSTEM
The first portable solar power

system capable of supplying full
operating power to a laptop com-
puter while simultaneously re-
charging its battery has been
introduced by SunWize. This new
Portable Energy System, featuring
a high-efficiency solar panel just
larger than a legal pad, can also
operate or recharge other low-
power products, such as a cell
phone, two-way radio, portable
stereo, or similar device.

In its basic configuration, the
system consists of a solar panel,
voltage controller, interconnect
cables, and storage case. When
used with one panel, the system
delivers enough sustained electri-
cal power to the computer (up to
9 W) to double or triple the run
time of a portable computer oper-
ating with battery power, or it
can recharge the battery when the
computer is turned off. With a
second panel, this power system
generates sufficient sustained
power to run the computer and
simultaneously charge its battery.

The voltage controller supplied
with the system can receive power
from one or two solar panels.
Two output ports on the control-
ler send power either to the por-
table computer or to a second
device. The output for the second

device can be set via a selector
switch at 3, 6, 7.5, 9, or 12 V, as
appropriate for most portable elec-
tronic products.

The solar panel is constructed
using a proprietary process in which
highest-efficiency single-crystal
photovoltaic cells are permanently
encased in rugged weather-resis-
tant urethane plastic. Built into the
case is a patented LCD meter—the
Opti-Meter—which instantly mea-
sures sunlight intensity and en-
ables optimum placement of the
panel. The panel’s 10′ cord winds
on a spool recessed into the back of
the panel. A hinged metal stand
folds flush into the panel’s back side.

A diagram showing how to con-
nect the SunWize Portable Energy
System to a computer or other
device is permanently printed on the
back of the panel. The system
weighs just over 2 lbs. and mea-
sures 15.5″ × 10.5″ × 0.675″. The
voltage controller weighs 4 oz. and
measures 4″ × 2.5″ × 0.675″.

The basic SunWize Portable
Energy System package, which
includes one solar panel, the volt-
age controller, interconnect cables,
storage case, operating instruc-
tions, and other material, retails
for $349.95. The System Doubler,
which consists of a solar panel
with power cord and storage case,

has a retail price of
$279.95.

SunWize Technologies, Inc.
1151 Flatbush Rd.
Kingston, NY 12401
(914) 336-7700
Fax: (914) 336-7172
www.sunwize.com

#503
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NEW PRODUCT NEWS
NETWORKABLE STEPPER MOTOR CONTROLLER

The MotionNet MN100
from MicroKinetics is a
low-cost single-axis net-
worked stepper motor in-
dexer that communicates
with a PC via RS-485 serial
port. This device can be
used with the company’s
own drivers—such as the
DM8010, DR8010, DM-
4050, and UnoDrive—or
with any driver having
standard step and direction
inputs.

The MN100 uses the
inherent reliability of RS-
485 multidrop networking,
so one central PC can con-
trol and monitor up to 127
controllers. Software-select-
able communication speeds
up to 115 kbps are standard.
Other features include

device addressing via onboard
rotary DIP switches, an easy-
to-use single-letter command
set, and a compact size of
only 2.235″ × 2.325″ × 0.75″.

The MN100 offers in-
creased reliability and cost
reduction for single and
multiaxis noninterpolated
applications such as multi-
station switch testing, feed
to length, telescope/micro-
scope control, camera posi-
tioning, and pick and place
systems.

The MN100 has a five-
year warranty and is priced
at $99.

MicroKinetics Corp.
2117-A Barrett Park Dr. • Kennesaw, GA 30144
(770) 422-7845 • Fax: (770) 422-7854
www.microkinetics.com                    #505
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NEW PRODUCT NEWS
SMART BATTERY MONITOR

The DS2437 smart battery monitor offers a complete
battery data-acquisition system on a single chip. It
supplies all the real-time battery data needed to ensure that
the battery does not overcharge or overdischarge. The
chip fits into the battery pack, so it doesn’t consume
extra space. Applications include cellular phones, PCs,
PDAs, portable fax/modems, handheld meters and in-
strumentation, palmtop computers, and more.

The DS2437 measures four key parameters—time,
temperature, voltage, and current—to keep the battery
pack operating within safe
limits while charging and
discharging. A 64-bit ROM
code laser-engraved on each
chip provides a unique ID to
prevent the use of cloned
batteries. As well, 40 bytes
of EEPROM enable the
DS2437 to function as a
battery-pack ID device by
storing a manufacturer’s ID,
battery-chemistry code, and
charge and discharge param-

eters. This memory also permits optimization of the
battery system for multiple chemistries, suppliers,
capacities, and usage histories. The DS2437 is compat-
ible with, but not limited to, these battery chemistries:
NiCd, NiMH, SLA (Sealed Lead Acid), RAM (Recharge-
able Alkaline Manganese), Li-Ion, and Li-Polymer.

Communication between the central microprocessor
and the DS2437 is achieved via a one-wire interface,
which simplifies interconnection and preserves system
resources. The battery pack uses three output connectors—

battery power, ground, and
the one-wire interface.

The DS2437K sells for
$4.63 in 5k quantities.

Dallas Semiconductor
4401 S. Beltwood Pkwy.
Dallas, TX 75244-3292
(972) 371-4448
Fax: (972) 371-3715
www.dalsemi.com

#506
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DSP Boot-Loading
Techniques

FEATURE
ARTICLE

Tracey Lee

i
Memory speed hasn’t
kept up with the
speed increases of
micros, especially
DSPs, where EPROM
acts as a bottleneck.
Rather than slowing
the DSP down, Tracey
uses a PIC to load
SRAM with external
code and then wake
the DSP up.

n today’s micro-
controller environ-

ment, memory speeds
haven’t kept up with the

speed increases of the processing unit.
Even the high-speed version of the
8051—namely, Dallas Semiconductor’s
87C530—requires a chip with an ac-
cess time of 55 ns or better to run at
its maximum rated clock speed.

But, at least this chip has built-in
wait states. Otherwise, you’d have to
use it at a lower crystal frequency.
Fast nonvolatile memory is expensive.

In this article, I examine how I
solved this problem for a particular
microprocessor. It should be fairly
clear, however, that these techniques
can be applied to a wider class of pro-
cessors. I first discuss the standard
techniques available and then present
my solution.

I was working with a group of stu-
dents to develop the Sound FX-26
board—an entry in the Texas Instru-
ments DSP Solutions Challenge 1995

 12
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30

DSP Boot-Loading
Techniques

8x51 EPROM/Flash
Microcontroller
Programmer

CoolRISC

Picaro

FEATURES

Built-in boot facility C25 C26
RS-232 No Yes
Parallel I/O No Yes
EPROM width No 8 bit
Length of data transfer N/A 1536 words

Table 1—’C2x devices have basic boot-loading facili-
ties that enable you to transfer code to fast SRAM.
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enabling the use of 1-Mb devices like
the 27C010 (EPROM) or 28010 (flash
memory). The program stored within
may be transferred to fast SRAM and
the processor can then execute the
program from there.

Another 64K words may be ad-
dressed as data memory. These use
SRAM anyway.

There were two main options I had
to consider. Let me go over each of
these in turn.

First of all, I could use a standard
boot. That is, I’d use standard EPROMs
for code with wait states on the DSP
chip. This solution has the lowest
cost, and it uses conventional SRAM
for data.

Then, all code accesses will be
slower because of wait states. How-
ever, certain portions of code may be
loaded into faster internal code RAM,
which is a feature of these chips. The
size is 1536 and 4096 bytes for the
’C25 and ’C26, respectively.

Another possibility is booting from
SRAM. In achieving high performance,
the ’C2x devices have basic boot-
loading facilities that allow code to be
transferred to fast SRAM. The boot-
load facilities of the ’C26 are summa-
rized in Table 1.

The CPU’s firmware transfers some
or all of the code from other devices to
internal or external RAM. Therefore,
we may use standard, small EPROMs
with wait states, which the DSP can
boot from.

This boot code then loads the actual
program code from various sources,
like a larger EPROM, serial device, or
parallel device. After that, slow devices
attached to the data bus have to be
switched out of the address space if
the memory location is to be used.

indicate when a code or data fetch
is taking place.

So, I had two choices. Either I’d
need two eight-bit nonvolatile
devices fast enough to keep up with
the processor, or I’d have to intro-
duce wait states. Herein lies the
main challenge of implementing
such a system. This basic concept
involves exploiting the high per-
formance of the Harvard architec-
ture found in the DSP chip.

Chips with a Harvard architecture
have problems in the code space. At
40 MHz, the TI manuals recommend
that, for nonwait-state access, mem-
ory devices should have a 35-ns access
time or better.

Since code space needs to be non-
volatile, devices that are high speed
yet nonvolatile (like the 27C292, which
has a 35-ns access time) tend to be
costly and have a small capacity.
Although larger capacity nonvolatile
devices give better performance—
some flash devices can provide 70-ns
access time—they still fall short of
the required access time.

In the search for high-capacity
memories and fast access time, you
can’t beat SRAMs. Typical SRAMs
come with capacities of 32 and 64 KB.
Such SRAMs have declined in cost
over the years, which may be attrib-
uted to the high demand for using
them as memory caches in PCs.

A 64-/256-KB cache comes standard
on today’s PCs. So, it’s possible to capi-
talize on these 20–25-ns access-time
devices for our DSP chip.

In a typical setup, the ’C2x devices
can address up to 64K words of code
memory, which translates to 128 Kb,

in Singapore. It needed to be a general-
purpose board capable of producing a
wide range of sound effects, and the
hardware had to be able to handle newer
and more demanding algorithms.

BOARD DESIGN
In the design of the sound board, I

used a 40-MHz Texas Instruments
TMS320C25 DSP chip. In a more con-
ventional design, the DSP chip would
be wired up like the one illustrated in
Figure 1.

Whereas most designers of conven-
tional microcontrollers will just hang
an EPROM off the address and data
buses without a care, you have to note
here that these TI fixed-point devices
have several features that need to be
considered.

First of all, the ’C2x features a 16-bit
data bus. And, it operates at a clock
speed of 40 MHz.

Additionally, this device has a
Harvard architecture. In other words,
programs execute out of a separate
memory area (i.e., the code space), while
data is accessed from data space. How-
ever, both spaces share a common
address and data bus, whereas the
CPU uses separate control pins to

Boot Code (Note: C26 may boot from only one EPROM)

EPROM
2764

8K × 8

EPROM
2764

8K × 8

EPROM
27512

64K × 8

EPROM
27512

64K × 8

Program
Code Load
by C25

Wait
State
cct

C25 SRAM

Program Code
Transfer to SRAM

Figure 1 —In a conventional design, here’s how you would
boot load the ’C25 from a 2 × 8 device.

Figure 2 —You can also perform a boot-load process using
a transfer from 8-bit memory.

Boot Code (Note: C25 needs two EPROMs)

EPROM
2764

8K × 8

EPROM
27001

128K × 8

Latch

Program
Code Load
by C25

Wait
State
cct

C26 SRAM

Program Code
Transfer to SRAM

Feature/Requirement ’C25 ’C26

Boot code loader 2 × 8 bit EPROM 1 × 8 bit EPROM
Code storage 128K × 8 bit 128K × 8 bit

  (all memory usable)   (boot code uses some space)
Boot config register decode N/A 1 PAL
Wait state and decode 1 PAL 1 PAL
Switch between code storage
  device (EPROM) and code
  memory (SRAM), retrieve
  16-bit data from 8-bit device 1 PAL, I/O address used 1 PAL, I/O address used

  or one I/O pin   or one I/O pin
Code address space Some used by boot load Some used by boot load

Table 2—To implement the boot-to-SRAM feature, you need these features. Note the differences between what the
two chips need.
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EPROM

LS590

LS590

PIC16C54

Latch

Counter Clock

A16
A15
A14
A13
A12
A11
A10
A9

A8
A7
A6
A5
A4
A3
A2
A1
A0

SA15
SA14
SA13
SA12
SA11
SA10
SA9
SA8

SA7
SA6
SA5
SA4
SA3
SA2
SA1
SA0

Select High Byte
and SRAM Strobe

SRAM

Low Byte High Byte

Latch High Byte
and SRAM Enable

Figure 4 —Here’s how I transfer data from an 8-bit
EPROM to a 16-bit SRAM system.

This microcontroller had a windowed
EPROM version and was easily avail-
able.

In the final design, no PALs are
needed for wait-state generation or
special decoding. There are no special
addressing requirements as well. The
boot-loading circuit effectively switches
itself out of the DSP circuit when its
task is completed and takes over the
system again only when the reset
switch is pressed.

So far in this system, the additional
chips needed for boot loading are now
two counters, one EPROM, one latch,
and one microcontroller. Note that
code is kept in 8-bit EPROM while
the ’C2x reads code 16 bits at a time.

I used 8-bit SRAM devices con-
nected up as two 8-bit devices. Code
needs to be transferred from two ad-
dresses of the EPROM into one address
of the SRAM.

MICROCONTROLLER FUNCTIONS
The microcontroller controls the

RESET and HOLD pins on the DSP
chip. These pins make sure that the
DSP chip is inactive and its pins tri-
stated, so that data may be transferred
between EPROM and SRAM.

This microcontroller also clears and
increments the counters for generating
the 16-bit addresses used to access

This option offers the most flexibil-
ity, but it takes up more hardware. In
the conventional design of such a
project, the lowest-cost solution is to
boot from an eight-bit EPROM and
transfer program code from the device.

To implement this, another set of
hardware is needed, and other resources
are taken up as well. Between the two,
the ’C26 chip has better built-in boot-
ing facilities, such as being able to
boot from a specially configured 8-bit
EPROM or serial device.

Alternatively, you can load from a
single eight-byte device. But, the ’C26
may need some hardware assist to
read in two bytes and transfer it over.
For example, a latch may be used as
shown in Figure 2.

In a stand-alone embedded system,
however, you may not be able to boot
from a serial device. So, the solution
providing both the lowest cost and
highest performance is to boot from
an eight-bit EPROM and transfer pro-
gram code from such a device.

Extra resources are needed to imple-
ment the boot since extra decoding
hardware must switch out the EPROM
after booting and account for it in
memory decoding. As well, the hard-
ware needs to cater to the slower
access time of the EPROM boot-load
devices by adding wait states.

Extra software has to be written to
account for the boot loading. As well,
some addresses in the code memory
are used by boot-loading software.

To switch out the EPROM, we
need to use up some other resource,
perhaps a device pin or an address in
the ’C2x I/O address space. Table 2
summarizes the hardware and soft-
ware requirements to implement the
boot to SRAM option.

The PALs would be 20-pin
devices, or a GAL could also be
substituted. In other words,
the additional hardware needed
to implement native EPROM
boot loading for a ’C25 are the
two PALs (2 × 8 bit) and a
128K × 8-bit EPROM. For a
’C26, I need three PALs and a
128K × 8-bit EPROM.

Special boot code needs to
be written, but that’s a one-
time job. Also, certain address

spaces may be reserved. Although this
overhead is small, it may be signifi-
cant in certain cases. Be sure to watch
out for this when porting code.

THE IMPLEMENTATION
After considering all these options,

it was clear that there had to be a
better way, especially in the use of
code. What about leaving gaps in the
code space to cater to the boot process?

In this implementation, I explored
the possibilities of transferring data
from the EPROM to fast SRAMs in a
DMA-like operation. The general idea
is that instead of letting the DSP do
the code transfer, you switch it out of
the circuit, let an auxiliary circuit do
the transfer of data, then switch in
the DSP.

If you consider how some dedicated
DMA controllers (e.g., the Intel 8257)
work, this rules out the use of PALs.
The logic would be too complex.

Note that for this option to work,
the address, data, and control buses
must be tristate capable. Unfortu-
nately, this rules out quite a few
processors.

To transfer code from EPROM to
SRAM, I next considered a microcon-
troller. Some may complain and say
that to delegate another controller to
such a lowly task is surely a waste of
resources. But, I’ll show you later
that this isn’t the case.

At this point in time, some widely
used low-pin-count processors cost
about the same as three GALs. These
low-cost processors may be one-time
programmable in the field and are
available from chip manufacturers
like Microchip, Zilog, and Motorola.

For this project, I decided to go
with the PIC16C54 from Microchip.

Counter Counter

16-bit Address Bus

DSP C2x

Reset

Hold

16-bit Data Bus

Latch

PIC
8-bit

EPROM SRAM

Figure 3 —The PIC controller can boot load to SRAM using only 30
lines of code.
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both the EPROM and SRAM. And,
it generates the Enable and Read
signals to the EPROM.

Another function of the microcon-
troller is to latch the higher eight
bits from the EPROM and generate
the address of the lower byte held
by the EPROM, thus forming a
16-bit word which is held in prepa-
ration for the next step. The address
remains the same for both SRAM
and EPROM, except the lowest
address bit is not used by the SRAM
during the code-transfer process.

In addition, it outputs the Write
signal to the SRAM chip and incre-
ments the counter and checks for
overflow from it. When this task is
done, the RESET and HOLD pins
are released and the processor runs.

Figure 3 shows a basic block
diagram of the system. The PIC
does all this with only 30 lines of
code, excluding comments. At this
time, the OTP version of the PIC
costs about the same as three GALs.
The counters are tristate capable, as
are the PIC and the latch.

Figure 5a —On powerup, the PIC-based circuit
transfers the EPROM contents to the SRAM and
then wakes up the DSP.
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I  R  S
401 Very Useful
402 Moderately Useful
403 Not Useful

SOFTWARE

Source code for this article is avail-
able via the Circuit Cellar Web site.

Tracey Lee lectures at Singapore Poly-
technic, where he specializes in micro-
systems. He has a B.Eng. from the
University of Singapore and a M.Eng.

DATA TRANSFER
Let’s look next at how I transferred

data from an 8-bit EPROM to a 16-bit
SRAM system. Figure 4 illustrates this
process. (Several other pins aren’t de-
scribed here.)

Also, the addresses of the EPROM
and the tristatable counters are offset
by one. The PIC latches the high byte
and leaves the low byte to be output
by the EPROM.

Because of a shortage of pins on the
PIC, many of them had to do double
duty. For example, the Latch High
Byte signal is used elsewhere (see
Figure 5) as an Enable signal to the
SRAM. Likewise, the Select High Byte
signal is used as a Strobe signal to the
SRAM.

The processor used is the TMS-
320C26 with the full 64K words of
data and code space available for use.
No wait states are employed.

The schematic in Figure 5 doesn’t
show the entire Sound FX-26 board—
just the processor and memory portion.
As the schematic has been modified
for this article, the modified circuit has
not been tested. However, I routed the
Sound FX-26 on a two-layer board (7″ ×
4″), and it performed to specifications.

SRAM’S YOUR PAL
In summary, I’ve shown you how I

used SRAMs to improve and exploit
the performance of fast DSP chips or
similar available devices. The cost of
inexpensive microcontrollers and
parts like counters and latches is less
than the cost of using PALs.

How cost-effective this solution is
depends on the type and cost of the
microcontroller you use. Special con-
siderations for gaps in the address
space which must be set aside to sup-
port the boot-loading hardware are no
longer required. This eases implemen-
tation complexity and enhances code
portability.

I hope you now feel confident enough
to try constructing a DSP or similar
system at a reasonable cost and with
high performance. Have fun. I

SOURCES

TMS320C25, TMS320C26
Texas Instruments, Inc.
MS 14-01
34 Forest St.
Attleboro, MA 02703
(508) 699-5269
Fax: (508) 699-5200
www.ti.com

PIC16C54
Microchip Technology, Inc.
2355 W. Chandler Blvd.
Chandler, AZ 85224-6199
(602) 786-7200
Fax: (602) 786-7277
www.microchip.com

from the Nanyang Technological
University. You may contact him at
tlee@sp.ac.sg.

I want to acknowledge the contribu-
tions of Koh Beng Chuan and Poh Tze
Koon in setting up the Sound FX-26 and
Ong Kok Leong for the initial draft of
this article.

Figure 5b —Once loaded, the DSP/RAM circuit
runs in the traditional manner.
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8x51 EPROM/Flash
Microcontroller Programmer

FEATURE
ARTICLE

G.Y. Xu

t
With all the 8051s
out there, it’s nice to
have one
programmer that fits
all. That’s what Xu
shows us—a
universal 8051
programmer that can
blank check, read,
write, and verify
EPROM- and flash-
based MCUs.

he 8051 is one
of the most popular

8-bit microcontrollers
used in industrial control

and the electronic world.
Since Intel first introduced it in the

early ’80s, numerous versions of the
device (generally referred to as 8x51)
have been manufactured by many
semiconductor companies, including
AMD, Atmel, and Philips, to name
just a few. And, the market demand
on these devices continues to grow.

A whole line of 8051 derivatives
features memory built-in with program-
mable code. The 8751, for example, is
an 8051 with 4 KB of EPROM code
memory. The 89C51, by contrast, is
an 8051 with 4 KB of flash memory,
and the 89C55 contains
20 KB of flash memory.

These devices provide much more
flexibility and versatility than the
8051. The EPROM version must be
erased by an ultraviolet-light eraser
before it can be reprogrammed, but
the flash version doesn’t require a
special tool. It can be erased electri-
cally in-circuit or by a programmer.

The programmer presented in this
article is designed to program three
kinds of DIP-style 8x51 devices. The
first device is the venerable EPROM
version 8751H, which requires a 21-V
programming voltage and the normal
programming algorithm (50-ms program-
ming pulse for each byte).

The CMOS EPROM version 87C51,
which uses a 12.75-V programming
voltage and the Quick Pulse program-
ming algorithm (1-ms programming
pulse for each byte) is the second, and
the third is the Atmel 89C51/55 flash
MCUs, which use a 12-V program-
ming voltage and 2-ms write cycle for
each byte.

This programmer software is a
menu-driven system. It contains a
submenu for each kind of device, and
it can blank check, write, read, and
verify the device to be programmed.

The menu also provides erase capa-
bility for the flash MCUs. Addition-
ally, it can program the lock bits of
the device to protect the programmed
source code. The programmer accepts
both Intel hex and binary format files.

To keep the cost of the programmer
as low as possible, I designed it under
the constraint of using just two chips.
This approach means that the device
can program the AT89C55’s flash
memory only up to 16 KB, not the full

Photo 1 —This 8x51 MCU pro-
grammer features minimum chip
count design and is easy to use. It
programs the popular 8751H and
87C51 and Atmel’s AT89C51 and
’55 (up to 16 KB). With an adapter,
it also programs Atmel’s 20-pin
AT89C2051 and ’1051.
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diode (D1) protects the line-powered
DS1275 chip.

The 40-pin ZIF socket serves to
hold the target 8x51 MCU. To program
the target MCU, three groups of sig-
nals are derived from the system MCU.
D0–D7 are data lines that use the
entire port P0. As well, address lines
A0–A13 use the entire port P2 and 6
bits of port P1.

Also, five control signal lines come
from system-MCU pins P3.3, P3.4,
P3.5, P3.6, and P3.7. The first pin (P3.3)
provides the programming pulse sig-
nal to the target (*PROG), and the
next four pins provide the control
signals required for operations like
device read, write, flash erase, and
program the lock bits.

Under such a configuration, the
circuit is capable of handling all the
4-KB EPROM and flash-memory 8x51
MCUs, with one exception. It doesn’t
handle Atmel’s new 89C55. However,
Atmel has announced that it will
continue to develop more flash-memory
MCUs with higher capacities.

You’ll recall that the remaining
two bits of port P1 (P1.7 and P1.6) and
the remaining bit of port P3 (P3.2) are
already used for VPP controls. In other
words, I’m running out of all the

There are two voltage regulators as
well. VR1 accepts the dropped voltage
from the power resistor R1 and provides
+5-V output for VCC, and VR2 provides
multiple controlled regulated outputs
for the target MCU’s programming
voltage, VPP.

The transistor pair Q1 and Q2 form
a solid-state switch to control the on
and off states of VPP. The base poten-
tial of Q2 is controlled by the system
MCU’s port pin P3.2. When Q2 base
is applied to a high-level signal from
the MCU, Q2 and Q1 turn on simul-
taneously.

Additionally, VR2 outputs a volt-
age VPP that depends on the values of
R5, R6, R7, R8, and the on and off
states of transistors Q3 and Q4, which
are controlled by the MCU’s port pins
P1.7 and P1.6, respectively.

The system MCU runs at a clock
frequency of 3.6864 MHz, as determined
by the crystal (XTAL) and capacitors
C6 and C7. Capacitor C5 is used to
reset the system to a known state
during powerup.

RX and TX are the two pins used
by the system to receive and transmit
signals from and to the host PC. The
communications software runs at
9600 bps. A reverse-biased Schottky

20 KB. With an adapter unit plugged
into the programmer’s ZIF socket and
some special software, it can also
program Atmel’s 10-pin 89C1051 and
’2051 flash MCUs, which contain 1
and 2 KB of flash memory, respectively.

CIRCUITRY AND OPERATION
The complete schematic of the 8x51

programmer is shown in Figure 1.
This device connects to the serial port
COM1 of an IBM PC or a PC-compat-
ible computer, which serves as the host.

As I mentioned, the programmer
circuitry was designed with an em-
phasis on minimum chip count and
low cost. As a result, it was imple-
mented with only two chips—Dallas
Semiconductor’s DS1275 line-pow-
ered RS-232 transceiver chip (U1),
which transfers the TTL signal level
to RS-232 level and vice versa, and the
87C51/89C51 microcontroller chip
(U2), which stores the system control
firmware.

Photo 1 gives you a view of the
programmer board. Its power-supply
circuit consists of the bridge rectifier
(BR1), which receives 24 VAC from a
wall-mount transformer’s output and
transfers it to about 33 VDC with the
filter capacitors C1 and C2.

Figure 1 —As you can see from this schematic of the 8x51 MCU programmer, the DS1275 provides an RS-232 serial interface to the host PC. The 87C51 or 89C51 controls the
programming tasks and communications with the host. The respective power supplies VCC and VPP are generated by two voltage regulators.
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available pin resources provided by
the 87C51/89C51.

Because I wanted to keep the pro-
grammer’s cost low, I didn’t want to
add chips just to achieve complete
handling of the 89C55. And, I didn’t
have to—there are other options. The
result is the compromised circuit
shown in Figure 1.

Here, 14 address lines (A0–A13) are
constructed from the system MCU,
which can handle 16 KB of memory
addressing. I grounded address pin
A15 for the 89C55 (or other high-
capacity target MCU) due to my lim-
ited resources.

Another issue that needs to be ad-
dressed here concerns the two switches
SW1 and SW2. In the winter of 1995,
Intel announced a new requirement
on its 87C51 programming algorithm,
which adds pin P3.3 as a control pin.
For its 87C51 EPROM writing, this
pin must be held high. For reading and
verifying, it must be held low.

To comply with such a require-
ment, an SPDT switch (SW1) should
be connected to the target MCU’s pin
P3.3. The user can manually set it to a
high or low logic level when program-
ming the Intel 87C51. But for other
companies’ 8x51 chips, this pin is a
don’t care, so you can leave the SW1
in any state.

The DPST switch SW2 helps you
avoid the ZIF being a hot socket. This
switch should be open (i.e., turned off)
before the target MCU is put on the
ZIF socket. This action means that
the ZIF socket is isolated from both
VCC and VPP when you’re placing the
target MCU.

The Schottky diode D2 serves two
purposes. First, it provides a logic
high level to the target MCU’s VPP/EA
pin from the VCC side while reading. It
also blocks the VPP to prevent it from
entering the VCC side during program-
ming.

The 4-MHz ceramic resonator (CR)
enables the target MCU circuit to
work. During reading or writing on
this MCU, it needs a clock signal for
data transfer. When reading or verify-
ing, the data buses D0–D7 transmit
data from the target MCU to the sys-
tem MCU. Such a situation requires
10-kΩ pull-up resistors.

LED1 is the system’s indicator
light. When the system is powered up,
this LED goes on. It’s interesting to
note that it connects to the address
pin A7 in this resource-tight system.
Fortunately, that doesn’t hurt the
system performance at all because,
when reading or writing, A7’s logical
level can also indicate that the system
is operating properly.

For example, every time the LED1
changes its on and off state during
reading or writing, the user is informed
that another 256 bytes of data have
been transferred. LED2 is an indicator
light for the VPP during MCU pro-
gramming.

A double-sided, plated-through-hole
PCB is needed for building this pro-
grammer. You can make your own
PCB by taking a look at the informa-
tion given at the end of this article.

USING THE PROGRAMMER
There are two programs to make the

8x51 programmer work with a PC—
MP1.EXE, which resides in the PC’s
memory, and MP51.BIN, which resides
in the 87C51 EPROM or the 89C51
flash memory of the programmer.

With the 8x51 programmer’s power
off, place the 8x51 MCU device to be
studied on the ZIF socket. To avoid
any hot sockets, you should keep the
switch SW1 up and switch SW2 left at
the beginning.

Connect the DB-25 male/female
cable between the programmer and
your PC’s serial port COM1, and then
turn on the plug-in 24-VAC power
supply. You’ll see LED1 light, but
LED2 remains off.

A sample program file, LEDSHOW.
BIN, is supplied with the source code
that comes with the programmer.
This simple program causes the two
LEDs mounted on the programmer to
light up and blink. When you first run
the 8x51 programmer, it’s best to give
this program a try to see if the system
works as expected.

To start using the 8x51 programmer,
from your hard disk or any floppy
drive containing the supplied pro-
grams, type MP1 and press Return. A
root menu appears on the screen,
prompting you to select the device
you’re going to work with.
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Suppose you’ve placed an AT89C51
on the ZIF socket, you should select
the option corresponding to AT89C51.
The AT89C51 programming menu is
then displayed onscreen.

There are several options to choose
from—blank check, write, read, verify,
erase, or program the lock bits for the
AT89C51. You can try them one by
one as you like.

Now suppose you selected the
blank check and already got the “Blank
Check Okay” response. Next, select
the write option. The program will
ask you about the filename and exten-
sion you’re going to write. Type in
LEDSHOW.BIN.

In less than a second, the “MCU
Programming Finished” message ap-
pears, indicating that the programmer
works fine. To verify that the code
stored in the target MCU memory
matches the code stored in LEDSHOW.
BIN, you can choose the verify option.

To demonstrate your success, turn
the 8x51 programmer’s power off and
use a chip puller or screwdriver to
temporarily remove the system firm-
ware MCU (U2) from its socket and
replace it with the newly programmed
MCU. Then, power your system up
again.

If you now see the LED1 single
blinking and LED2 double blinking,
then you’ve been successful in pro-
gramming the MCU. That’s all the
LEDSHOW program is supposed to do.

You don’t have to build your own
circuit. You can just use the program-
mer itself to demonstrate your result.
That’s a unique advantage of the 8x51
programmer.

GIVE IT A TRY
With so many different kinds of

8x51 devices available today, you can
use this programmer to do a lot of
interesting jobs.

For example, as an experiment (and
only an experiment!), you can place
the 8052AH/8052-BASIC chip on the
programmer’s ZIF socket and read its
8 KB of code memory into a disk file
called BASIC_52.BIN.

Then, put an Atmel’s 89C55 chip
on the same socket and use the pro-
grammer’s write option to transfer
this file into the 89C55’s flash memory.

I  R  S
404 Very Useful
405 Moderately Useful
406 Not Useful

SOURCES

Assembled and tested 8x51 pro-
grammer .................................... $75
Complete kit (software, PCB, hard-
ware, cable and 24-VAC plug-in
transformer) .............................. $65
PCB and software only ........ $29.95
Adapter for AT89C1051/2051 . $30
Blank 8751H (4-KB EPROM) ... $15
AT89C51(4-KB flash memory) $15
G.Y. Xu
P.O. Box 14681
Houston, TX 77021
(713) 741-3125

89C1051/2051 flash MCUs,
87C51/89C51
Atmel Corp.
2125 O’Nel Dr.
San Jose, CA 95131
(408) 441-0311
Fax: (408) 436-4200
www.atmel.com

DS1275
Dallas Semiconductor
4401 S. Beltwood Pkwy.
Dallas, TX 75244-3292
(972) 371-4448
Fax: (972) 371-3715
www.dalsemi.com

80C52
Micromint, Inc.
4 Park St.
Vernon, CT 06066
(860) 871-6170
Fax: (860) 872-2204
www.micromint.com

G.Y. Xu has many years of experience
specializing in microprocessor and
microcontroller systems design and
development, both in hardware and
software. He may be reached at (713)
741-3125.

From now on, the programmed 89C55
becomes a chip just like any other
8052AH-BASIC chip, and you can use
this BASIC-52 chip directly or modify it
to replace the original BASIC-52 chip.

Good luck getting your programmer
to work just the way you need it. I
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CoolRISC FEATURE
ARTICLE

Vincent Rikkink

l
Standard 8-bit
micros—the 68HCxx,
PIC16/17xxx, and
8051/8031—offer low
power consumption,
but at a price: they
need several clocks
to execute one
instruction. CoolRISC
manages to offer
both low power and
fast execution.

ow-voltage and
low-power eight-

bit microcontrollers
implemented as standard

chips or embedded cores are becoming
increasingly needed for portable prod-
ucts. The market today is dominated
by conventional architectures like the
68HCxx, PIC16xxx and ’17xxx, and
8051/8031.

The power consumption of these
systems has been reduced via advanced
low-voltage 0.8- and 0.6-µm technolo-
gies. However, these architectures
still need several clocks to execute a
single instruction, resulting in a clock
per instruction (CPI) of 4–20.

One measurement that needs to be
taken into account when choosing an
architecture is MIPS, which equals
frequency divided by CPI. To provide
good MIPS performances, these systems
have to be clocked at relatively high
frequencies.

But because power consumption is
proportional to frequency, these systems
present a MIPS-per-watt figure that
isn’t reduced to the extent it could be.
The goal for the CoolRISC 816 micro-
controller, then, was to achieve 10 MIPS
and 2000 MIPS/W at 3.0 V.

Due to the RISC revolution, 32- or
64-bit pipelined microprocessors present
CPIs between 1 and 2 for scalar archi-

tectures and less than 1 for super-
scalar architectures. But, these archi-
tectures haven’t been used for 8-bit
microcontrollers due to software in-
compatibility.

RISC architectures also present
drawbacks for 8-bit low-cost devices.
The code size grows as 32-bit instruc-
tions increase the size of the program
memory.

Additionally, the load and store
mechanism requires more instructions
to execute operations with the data
memory. And, the pipeline, which
includes prediction logic as well as the
register set, results in more hardware.

Development tools—compilers,
mainly—provide code with a minimum
of executed instructions for a given
task. Although the compiled code size
is always bigger than handcrafted code,
the number of instructions in the
program memory produced by the com-
piler must be kept as low as possible.
Code optimization is also achieved by
reducing the number of memory oper-
ands via an optimal allocation of vari-
ables to internal registers.

Subroutine calls must be handled
in priority by the hardware stack
before the software call (branch and
link) is used. If the compiler has the
choice between various instructions,
it has to pick the one with the less
energy per instruction.

If a short subroutine isn’t frequently
called, its code can be inserted two or
three times when it is called. So, the
CALL and RETURN instructions can be
removed.

As well, small loops executed only a
few times can be unrolled. The compiler
removes instructions that increment
and test the loop counter, resulting in
more instructions in the memory but
fewer executed instructions.

These examples illustrate a general
rule: less sequencing in the software
comes at the expense of more hardware.
In other words, fewer executed instruc-
tions means more instructions in the
program memory. For this reason, tools
estimating software power are based
on the energy-per-instruction criterion.

ARCHITECTURAL CHOICES
The CoolRISC features a Harvard

RISC-like architecture with one-word

The Low-Power Microprocessor
Solution
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the 64-KB program memory as well as
an indirect addressing through the 16-bit
IP ROM index. The hardware stack can
be read via POP and PUSH instructions.

Load and store instructions are avail-
able with a NOP as an arithmetic logic
unit (ALU) operation. They can be ex-
ecuted conditionally on the carry flag.

Only 16 ALU operations can be
specified for the ALU instructions
with immediate 8-bit data. The other
ALU instructions provide a 5-bit field
to specify the ALU operation. There are
two types of ALU instructions—RISC-
like (use only registers) and register
memory (the operand comes from the
data memory).

The 816 has a number of addressing
modes. One goes directly to the first
page of data memory, and several others
use one of the four 16-bit index regis-
ters to address the 64-KB data memory.

The index registers can be post- or
premodified while adding or subtract-
ing a 7-bit offset. Another addressing
mode is based on one of the four index
registers, with the 8-bit R3 register as
an offset.

The 816 ALU operations with the
post-fixed A (arithmetic) modify the

flags so that the signed
numbers in the two’s-
complement representa-
tion are supported. The
most-significant-bit result
of an 8 × 8 multiplication
(MUL) is stored in the desti-
nation register, and the
least significant bits are
stored in the accumulator.

The MSHx instructions
can shift several bits at a
time using a register and

clock. A branch instruction also ex-
ecutes during this half, which is long
enough at 1–10 MHz to perform all the
necessary transfers.

For a store instruction, only the first
half of the second clock is used to store
data in the RAM. For an arithmetic
instruction, the first half of the second
clock is used for reading an operand in
the RAM or register set, the arithmetic
operation is performed in the second
half of this second clock, and the first
half of the third clock is used to store
the result in the register set. Figure 2
shows the CoolRISC 816 architecture
with 16 registers.

A hardware stack of 1–8 levels
handles CALL instructions. This setup
is more efficient (i.e., has fewer executed
instructions) than using RISC-like
branch and link instructions, which
implies that the return address must
be saved by software. But in case the
hardware stack is full, this branch and
link instruction is also available.

Figure 3 depicts the generic instruc-
tion set of the 8-bit CoolRISC 816 with
16 registers. Instructions are 22 bits
wide. Branch and CALL instructions
provide a 16-bit direct addressing of

instructions (16–22 bit) and separate
program and data memories. It also has
a register-memory architecture (i.e.,
one operand of an arithmetic instruc-
tion can be fetched in the memory
and another one in the register bank).

With requested performances rang-
ing from 1 to 10 MIPS, only a 1–10-MHz
clock is required when a CPI of 1 is
achieved. And, a simple three-stage
pipeline minimizes the amount of
hardware and power consumption.

In advanced technologies, a clock
cycle of 100 ns to 1 µs is long enough
to execute several functions in series
(e.g., fetch and decode), resulting in
rather long combinatorial paths and
short pipelines.

CoolRISC ARCHITECTURE
The CoolRISC is a three-stage

pipelined core, as illustrated in Figure
1. One instruction is provided to the
pipeline at each clock. Arithmetic and
load instructions are executed in the
three pipeline stages.

Data from the preceding instruction
is bypassed to the next instruction if
needed, which results in no load delay.
This bypass occurs in the hardware.

The store instruction is executed in
the two first stages of the pipeline. The
branch instruction is executed in only
one clock in the first pipeline stage, and
the condition provided by the preced-
ing instruction is always available.

This way, no branch delay occurs in
the CoolRISC core, resulting in a strict
CPI of 1. A 1-MIPS performance is
therefore achieved at 1 MHz. But, the
same doesn’t hold for other 8-bit pipe-
lined microprocessors like the PIC,
Nordic µRISC, and MCS-151 and ’251.

As Table 1 demonstrates, reducing
CPI is key to high performances. Here,
you see the number of
instructions, bits in the
ROM memory, executed
instructions, and clocks
used to execute the same
small routine on various
microcontrollers.

For each instruction, the
first half clock is used to
precharge the ROM program
memory. The instruction
is read and decoded in the
second half of the first

Figure 1 —CoolRISC features three-stage pipelined scheduling and instruction execution. A
CPI of 1 is always respected even for a branch instruction. The evaluation of the branch condi-
tion, as well as the possible execution, is performed in the second half of the clock period.

Instruction Bits Executed Executed
Code Code Instructions Clocks CPI

ST62xx 12 152 60 2704 45
COP800 12 120 60 2000 33
8048 8 112 35 1125 32
Z86Cxx 8 168 35 692 20
68HC05 11 160 59 2261 41

PIC16C5x 11 132 59 300 5
Punch 12 216 74 296 4
CoolRISC 81 12 192 58 58 1
CoolRISC 88 10 180 58 58 1
CoolRISC 816 10 220 58 58 1

1 Refers to the internal E frequency that is two times slower than the
oscillator frequency.

18 Bit

Arithmetic

Arithmetic

Branch

RAM Write

RISC 1
Word Instruction

1 Clock

RAM ALU Write

Fetch Dec RAM ALU Write

Bypass

Condition
Code Ready

Fetch Branch

Fetch Dec RAM

Table 1—Compared
with conventional
architectures, CoolRISC
(with a CPI equal to 1)
has a significantly lower
number of executed
clock cycles.
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A similar mechanism is used for
the instruction registers. In a branch
instruction, which executes only in
the first pipeline stage, no transitions
occur in the second and third stages of
the pipeline.

Note that gated clocks can be advan-
tageously combined with the pipeline
architecture. The input and control
registers implemented to obtain a
gated-clocked ALU are naturally used
as pipelined registers.

Another interesting low-power
feature is the support of hierarchical
memories. Frequently used codes are
stored in a small, fast ROM, whereas
infrequently used parts of the code sit
in a large but slow memory.

Most of the time, the small ROM
is read, which reduces power con-
sumption. This mechanism can be
combined with an automatic reduc-
tion of the operating frequency when
the large memory is read.

Via software, the internal frequency
can be reduced by a factor of 2–16 while
using a FREQ instruction in which the
division factor is programmed. The

the accumulator. The bit instructions
(i.e., TSTB, SETB, CLRB, and INVB) test,
set, reset and invert a single bit in a
register.

The index registers can also be
used as 8-bit general-purpose registers
if the ROM index isn’t used or if less
than four index registers are used for
the data memory. The accumulator
stores the last ALU result, which can
be used as an intermediate result for
the next ALU operation.

LOW-POWER DESIGN TECHNIQUES
Another important issue in design-

ing 8-bit microcontrollers is power
consumption. The CoolRISC cores
rely extensively on the gated-clock
technique.

The ALU, for instance, features
input and control registers that are
loaded only when an ALU operation
has to be executed. During the execu-
tion of another instruction (e.g., branch
or load and store), these registers are
not clocked, so no transitions occur in
the ALU. Thus, power consumption is
further reduced.

REG0
REG1
REG2
REG3

RAM Index 0 L
RAM Index 0 H
RAM Index 1 L
RAM Index 1 H
RAM Index 2 L
RAM Index 2 H
RAM Index 3 L
RAM Index 3 H
ROM Index 3 L
ROM Index 3 H
ROM Index L
ROM Index H

Status Register

PC<16>

PC
2..9

P
C
1

M
U
X

ROM Index<16>

Branch
Address

Control
Unit Second

Stage

CoolRisc 816 Core

PROM
ROMAddr<16>

First Pipeline Stage

Branch Unit
RomInstr<22>

CALL to
Interrupt Address

MUX

Data

Opcode

B Bus<8>

IR2<22>

C.U. 3rd Stage
DataOut<8>

ROM (Program)
max. 64k

InstructionsP
C
0

+1

IR1<22>

DataIn<8>A Bus<8>

RAM
ROM (data)

and Peripheral
max. 64 KB

13

8

16

RAMAddr<16>

ReadNWrite

ChipSelect

Multiplier

Gated
Clock

ctr

8 LSB

CY,Z

S Bus<8>

8 MSB
Gated
Clock

ALU<8>

ACC

CoolRISC Core 816

Figure 2 —The CoolRISC 816 core
architecture features four general
registers, eight RAM and two ROM
index registers, a status register, and
an accumulator register. The arith-
metic unit contains an ALU and an
8 × 8-bit multiplier.
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21             0
 op<3>      cc<3>                           addr<16>

JUMP addr,  PCO < --addr
JCC addr;  if cc then PCO < --addr

21             0
 op<6>                                      addr<16>

CALL addr,  PCn < -- PCn-1, PC1< --PC0+1, PC0< --addr
CALLS addr;  IP < --PC0 +1, PC0 < -- addr

21             0
 op<3>      cc<3>     1  1  1  1 1  1  1  1  1  1  1  1  1  1  1  1

JUMP IP;  PCO < --IP
JCC IP;  if cc then PCO < --IP
RETS;  PCO< --IP

21             0
    op<9>            1  1  1  1 1  1  1  1  1  1  1  1  1  1  1  1

CALL IP;  PCn < -- PCn-1, PC1< --PC0+1, PC0< --IP
 CALLS IP;  IP < --PC0 +1, PC0 < -- IP
RET;   PCn-1< --PCn
RETI;   PCn-1 < --PCn
PUSH;  PCn < --PCn-1, PC1< --IP, PC0 < --PC0+1
POP;   IP< --PC1, PCn-1< --PCn, PC0< --PC0+1

21 0 
      op<6>           alu<4>             reg<4>            data>8>

ALU reg, data ; reg < --(reg alu-op data)

21 0
    op<5>             alu<5>             reg<4>            addr>8>

ALU reg, addr ; reg < --(reg alu-op data-mem (addr))

21 0
   op<5>       alu<5>      reg2<4>     reg1<4>          reg<4>

ALU reg, reg1 ; reg2 ; reg < --(reg2 alu-op reg1)

 21 0
   op<3>        IX       alu<5>         reg<4>            offset<8>

 ALU reg, (ix, offset) ;  reg< --(reg alu-op data-mem (ix+offset))
ALU reg, (ix, offset) ;  reg< --(reg alu-op data-mem (ix)), ix < --ix +offset
ALU reg, (ix, offset) ;  reg< --(reg alu-op data-mem (ix-offset)), 

 ix < --ix-offset

21 0
     op<5>         alu<5>         reg2<4>       111111         ix

ALU reg, (ix,r3) ; reg < --(reg alu-op data-mem (ix+r3))

21           0
    op<6>            data<8>                     not_addr<8>

MOVE addr, data ;  DM (addr)< --data, addr [15 :8]=0

21             0
  op<10>             reg<4>                      not_addr<8>

MOVE addr, reg ;  DM (addr)< --reg, addr [15 :8]=0

21 0
      op<8>           ix<2>               reg<4>           offset <8>

MOVE (ix, offset), reg ; DM (ix, offset)< --reg

21 0
  op<8>          ix<2>             reg<4>              offset <8>

MOVE (ix, offset), reg ; DM (ix, offset)< --reg, up-date ix

21 0
  op<8>           ix<2>          reg<4>             11111111

MOVE (ix, r3), reg ; DM (ix +r3)< --reg

21             0
  op<16>                                                               div<4>

FREQ div ;

21             0
Op<22>

HALT;
SFLAG;
NOP;

microcontroller can also be in standby
mode during a HALT instruction.

Also noteworthy is a multiprocess
mechanism that shares data address
spaces with several microprocessors
or intelligent peripherals. During
clocks in which the microcontroller
doesn’t access its own data memory,
other microcontrollers connected in
parallel have free access to this
memory.

Management of shared memories is
handled by a request/acknowledge
mechanism, which can also be used
for intelligent peripherals like DMAs.

AT THE CORE
The CoolRISC 816 core comprises

16 registers, 22-bit wide instructions,
a maximum ROM program memory
of 64K × 22,  and a maximum RAM
data memory of 64 KB. It also has one
ROM index register and four index
RAM registers, eight RAM addressing
modes, three interrupts, and two events
to wake up.

The core provides a branch and link
instruction as well as a multiprocessor
mechanism you can use for DMA
purposes. It also contains an 8 × 8
parallel-parallel multiplier.

With its 19,000 transistors, Cool-
RISC achieves 70 µA at 1 MIPS at 3.0 V
in a 1-µm process (i.e., 4700 MIPS/W
at 3.0 V). At 1.5 V, it achieves 32 µA
at one MIPS in a 1-µm process (i.e.,
21,000 MIPS/W at 1.5 V).

These figures are given for the
microcontroller cores only, and they
differ from the performances given in
Figures 4 and 5, where small embed-
ded low-power memories are taken
into account.

Keep in mind, though, that the
CoolRISC 816 was integrated in a test
chip with small embedded low-power
memories.

DEVELOPMENT TOOLS
The development tools are based

on the GNU (Gnu’s Not Unix) toolset,
including a GCC (GNU C compiler),

assembler, instruction-set simulator,
debugger, and hardware emulator.

The CoolRISC IDE (Integrated
Development Environment) consists
of three parts—the target configuration,
project manager (including source
code editors), and tools for debugging
source-level code. The target-configu-
ration editor, for instance, is used to
choose a given CoolRISC core.

At the project-manager level, the
tools include:

• a project browser and configuration
editor

• a source-code editor
• a C compiler (cc)
• macro-assemblers (as)
• linkers (ld) and librarians (ar)

As I mentioned, the C compiler for
the CoolRISC 816 is based on the GNU
toolset. The GNU toolset, available in
the public domain, was chosen for the
quality of the generated code, and the
GCC is a parameterizable compiler

a) b)
MOVE load/store
CMOVE conditional
SHL shift left
SHLC shift left with carry
SHR shift right
SHRC shift right with carry
CPL complement
INC increment
INCC increment with carry
DEC decrement
DECC decrement with carry
AND logical and
OR logical or
XOR logical xor
ADD addition
ADDC addition with carry
SUBD op1 – op2
SUBDC op1 – op2 with carry
SUBS op2 – op1
SUBSC op2 – op1 with carry
MUL multiply
MULA two’s complement

   multiply
MSHL multiple shift left
MSHL multiple shift right
MSHRA two’s complement
CMP compare
CMPA two’s complement

   compare
TSTB bit test
SETB bit set
CLRB bit reset
INVB bit invert

Figure 3a —The eight-bit CoolRISC 816 uses 22-bit instructions with variable-width fields. b—A great deal of the 816’s reduced instruction set is devoted to arithmetic-logic unit
operations. Operations with a post-fixed A modify the flags so the signed numbers in the two’s complement are supported.
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which needs a description
of the microprocessor and
its resources.

The C compiler must
take low-power aspects of
the system into account
by minimizing the num-
ber of executed instructions
for a given task. There are
several ways to do this.
You can minimize the
memory accesses, unroll
loops, minimize the num-
ber of CALLs and RETURNs,
and choose instructions
with the lowest energy
per instruction.

To use the GCC, the original Cool-
RISC 816 had to be modified. Some
instructions were changed to facilitate
the creation of stacks in data memory.

Four index registers are available
(some were added due to the com-
piler) to produce better generated
code, primarily for routines accessing
the data memory. These modifications
help lower the number of executed
instructions, which saves power.

The C compiler calls routines writ-
ten in assembly language. Several
arithmetic routines are available, such
as single, double, and quadruple preci-
sion unsigned or signed multiplica-
tion and division, as well as 24- and
32-bit floating-point routines.

The CoolRISC GCC provides many
GNU-based optimizations of the gen-
erated code. These improvements
reduce the number of instructions,
while using a good register allocation
to the variables and optimized in-
struction scheduling.

During testing, the first version of
the CoolRISC C compiler generated
good-quality code. It was also fully
tested with an ANSI/ISO validation
suite.

The powerful macro-assemblers
(as) were developed with the GNU
toolset. The assembly process consists
of two phases—preprocessing, which
expands macros and loops, and assem-
bly.

The assembler generates relocatable
code. A set of assembly routines were
written to provide the user with a
CoolRISC library of arithmetic func-
tions.

A linker (ld) enables you to insert
the needed routines into your code.
The linker provides an absolute object
file that you can extract data ROM
content from via GNU binary utilities
software.

The source-level debugging tools
include:

• instruction-set processor simulator
• GDB debugger
• processor hardware emulator

The instruction-set simulator is a
C++ software model of the CoolRISC
core that can execute each instruction
of the CoolRISC set. This simulator is
interfaced with GDB, the GNU
debugger.

The debugger can be used with
both source-C and source-assembly
code in various modes (e.g., step by
step, continuously, or with break-
points). The contents of the C variables,
registers, program counter, flags, call
stack, and data memory can be dis-
played in several windows.

 The GDB can also interface with a
hardware emulator con-
taining a ROMless Cool-
RISC chip. When you’re
using the 816 C compiler,
pointers on the C code as
well as on the assembly
code are available during
the debug of the applica-
tion program. You can also
use these debuggers for
the processor peripherals.

These GNU-based
development tools pro-

vide text windows with
the Emacs editor. These
tools can be run on a
Sun/Solaris or a PC
running under Windows
95 or NT.

The next version of
the CoolRISC develop-
ment tools will operate
on a PC running under
Windows 95 or NT with
an enhanced user-friendly
graphical window-based
environment named
CoolRIDE. It will pro-
vide advanced facilities
for project management

as well as enhanced editors.

PERFORMANCE COMPARISON
Figure 6 shows MIPS performances

as a function of the operating frequency.
With a large CPI, 1-MIPS performance
requires a large frequency. But, that’s
not the case with the CoolRISC fam-
ily with a CPI of 1.

Note that the MIPS-per-watt figure
does not depend on the operating
frequency. As Figure 4 shows, the
performances in MIPS per watt of the
microcontrollers with a large CPI are
quite low. This data was computed
from various datasheets, so these
results are only approximates. Only
orders of magnitude are important here.

Compared to most existing 8-bit
microcontrollers, an improvement of
the MIPS-per-watt figure by a factor of
about 10 can be reached with new
8-bit architectures designed with low-
power techniques.

This factor improves even further
if the power supply can be reduced
while satisfying speed performances.
And as you see in Figure 5, the MIPS-

Figure 5 —The MIPS-per-watt figures can be improved further by operat-
ing at a lower voltage level.

MIPS/Watt

21,000
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CoolRisc 81

CoolRisc 88

CoolRisc 816 MIPS

12108642
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CoolRisc 81

CoolRisc 88

CoolRisc 816

at 1.5 V

MIPS/Watt

MIPS/Watt=f(MIPS)

Microcontroller at 3.0 V
4000

3000

2000
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68HC11

CoolRisc 81

CoolRisc 88

CoolRisc 816

Nordic µRISC

Atmel AVR
MIPS

1412108642
MCS-251

PIC16Cxxx

PIC17Cxxx

WDC 65C02

8051

60HC08-like (0.9 V)
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Figure 4 —This graph shows the MIPS-per-watt numbers for different cores at 3 V. A CPI
equal to 1 results in better MIPS-per-watt figures, which are key for low-power applications.
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I  R  S
407 Very Useful
408 Moderately Useful
409 Not Useful

Vincent Rikkink is the manager of
the microcontroller and DSP business
division at Xemics, and he has also
worked for Philips Oscilloscopes as
well as the Swiss Center for Electron-
ics and Microtechnology (CSEM).

per-watt performances of the Cool-
RISC core improve when the device
runs at 1.5 V.

LOW POWER = MORE POWER
More and more often, low-power

and low-voltage embedded microcon-
trollers are required in portable appli-
cations.

Power reduction should be addressed
at the software and architecture lev-
els. Lower power requirements are
also achieved by reducing the number
of executed instructions for a given
task.

In this article, I’ve introduced you
to one 8-bit RISC-like microcontroller
family that achieves 1 CPI. It employs
several techniques such as gated clocks,
hierarchical memories, and pipelines
to further reduce power consumption
while maintaining speed performance.

The result: a MIPS-per-watt figure
that exceeds conventional architec-
tures by at least an order of magni-
tude. I
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Picaro FEATURE
ARTICLE

Tom Napier

f
For years, Tom’s
been itching to
control the
instruction sets of
processors. Using a
PIC, some memory,
and an interpreter,
he bypasses the
processor hurdle and
writes his own
language. He shows
you how to do it, too.

or as long as
I’ve been using

microprocessors—and
I was designing the Intel

8080 into radiation-monitoring equip-
ment in 1977—I’ve always itched to
have control over the instruction set.
The makers always seem to leave
something out.

When I first encountered Micro-
chip’s PIC microcontrollers, I realized
that a chip with a built-in EPROM
and a 200-ns instruction time could
emulate, and outrun, other micropro-
cessors. And if you write an inter-
preter, you can design any instruction
set you wish.

Two years ago, I started developing
a PIC-based tokenized Forth engine,
but that idea went on the back burner.
Then, inspired by Sojourner, I started
designing a computer to control mod-
els. It would store its software in an
EEPROM, so I could change its pro-
gram on the move. Since the EEPROM

has a serial interface, execution would
be relatively slow but adequate for
real-time control applications.

I didn’t want to reinvent the Basic
Stamp and I wasn’t sure implement-
ing another Forth interpreter would be
all that interesting, so I designed my
own machine language.

Since this little computer would be
more adventurous than most, I decided
to call it “Picaro.” (I was tempted to
call it “Picard” but decided I couldn’t
afford a fight with Paramount’s lawyers.)

HARDWARE IMPLEMENTATION
Picaro’s hardware couldn’t be much

simpler. As you see in Photo 1, it’s
built in a 2.1″ × 1.35″ × 0.6″ plastic
box on a piece of perf-board cut to fit.

The box contains an 18-pin
PIC16C56 in a low-profile socket, a
24C16B EEPROM (also from Micro-
chip), 16-pin I/O connector, stereo
jack socket, a few resistors, a crystal,
and a couple other parts, as shown in
Figure 1. There’s room left over for a
DIP chip having up to 20 pins, so you
could add, for example, a serial DAC
or ADC chip.

The I/O connector carries the power,
reset, and timer pins and is compat-
ible with a 16-pin ribbon cable con-
nector. It has eight pins that can be
programmed to be inputs or outputs.

Each pin has a 10-kΩ pull-up resis-
tor and a 1-kΩ series resistor, and
connects to one pin of the PIC’s eight-
bit ports. This combination enables
outputs to supply a voltage or current,
and it protects the microcontroller
from accidental overload.

When specified as an input, a con-
nector pin can be connected directly
to a switch contact (e.g., a limit switch
on a moving part) without external
components. As an output, each pin
can drive an LED directly, but it can
also drive a Darlington transistor and
switch several amps on and off.

A Stamp-like Interpreted
Controller

D Addr Display 16 bytes from the EEPROM
E Addr Display and edit the EEPROM code
F Addr  Byte Fill 16 locations with the byte
G Addr Go to address and start interpreter
I Display the input port
O Byte Output the byte to the port
R Addr Read and edit any byte from RAM
U Upload a program file (see sidebar)

Table 1—When Picaro is in system
mode, it interacts with the user with
single-letter commands. When it’s
ready for a command, it outputs “>”
and waits for input to be typed in.
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Picaro fetches and executes eight-bit
instructions from the user’s program.

This program is stored in EEPROM
and retained when the power is off.
You can change it whenever you wish,
even while the model is operating. On
powerup, the user’s program, which
starts at address 0 of the EEPROM, is
executed until either a serial input is
detected or a “jump to system” in-
struction is encountered.

I modeled this interpreted language
on the machine languages of many
small microprocessors, and almost all
instructions are coded as single bytes.
It has a regular structure, partly to
make it easy to write and partly to
make the interpreter as simple as
possible.

Despite its simplicity, however,
this language can perform almost any
programming task. I even threw in an
8- × 8-bit multiply instruction.

USER-PROGRAM MEMORY
The user program is contained in a

Microchip 24C16B EEPROM. This
8-pin DIP chip has 2048 programmable
locations, each containing 1 byte. It
uses a serial input and output that can
run at 400 kbps.

With a 6.144-MHz crystal driving
the PIC, the transfer rate is 192 kbps.
Reading and interpreting an instruction
takes around 60 µs (i.e., the computer
executes about 17,000 instructions a

then I cut down the protruding pins
on the underside. Now, the lid closes
tightly even when a windowed chip
is used. The crystal and bypass capaci-
tor fit inside the socket.

I bought the 6.144-MHz crystal,
PIC, and EEPROM from Digi-Key.
They also have suitable SIPs and right-
angle connectors. The plastic case
and serial I/O jack came from Radio
Shack. The serial output transistor
can be just about any small PNP
type. I used an old European one
with a low profile.

FIRMWARE
IMPLEMENTATION

Picaro runs two lan-
guages. It can operate in
system mode, responding di-
rectly to commands entered at a
terminal connected to the serial port.
These commands, listed in Table 1,
enable the user to load and modify a
program, read and modify memory,
read or drive the I/O port, and initiate
interpretation of a program.

The Edit command displays the
byte at the current address and waits
for user input. If it’s a hex byte, it is
written to that address, then the next
address, and its contents are displayed.
Entering a space steps to the next
address without changing anything,
and Return exits you from the editor.

The RAM editor uses the same
syntax, except that it doesn’t step. It
exits on any non-hex character.

The on-chip EPROM also contains
the interpreter. In interpreter mode,

Two pins of the PIC’s four-bit port
connect to the EEPROM, which stores
the user’s program. The other two
pins, with the addition of some dis-
crete components, make up a full-
function serial port, which is wired to
the stereo jack.

This jack lets you program and
control a model from the serial port of
a portable computer (in my case, an
ancient Tandy Model 100). No RS-232
driver chips or negative voltage con-
verters are necessary. The negative
output voltage comes from the device
being driven, while a diode blocks the
incoming negative signal voltage.

When the jack plug is removed, the
serial output switches to the 16-pin
connector, enabling the model to have
its own communications facility by
radio, ultrasound, or infrared. The two
communication links can run at dif-
ferent data rates.

BUILDING PICARO
If you’ve ever assembled a Swiss

watch, this project should be easy.
Naw, I’m kidding, but you do need a
delicate touch with a fine-pointed
soldering iron.

To squeeze the parts in, I cut short
one row of pins on the I/O connector
and wired them to cordwood-mounted
series resistors. The 10-kΩ SIP is
mounted under the connector pins
and the eight-bit port pinout is out of
order just to avoid lumpy wiring (shades
of the S-100 bus).

I also drilled out the board so the
PIC socket can be pushed into it, and

Photo 1 —The Picaro fits in a small
space, but its communication and control
capabilities make it a giant.

Figure 1 —On the Picaro, when the serial connector is unused, serial I/O is present on the parallel port.
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tions. It has two arithmetic and three
logical operations as well as register-
increment, -decrement, and constant-
loading instructions.

It also has bit-set, bit-clear, and bit-
test instructions. Its program-flow
instructions include skip on test,
conditional and unconditional jump,
and a subroutine call.

The high four bits of each eight-bit
instruction specify its type. Most
instructions use their lower four bits
to address one of the 16 RAM regis-
ters. For example, there are 32 move
instructions—16 copy the accumula-
tor to another register, and 16 copy
another register to the accumulator.

ARITHMETIC AND ACCUMULATORS
The accumulator serves as the

destination as well as a source for all
two-parameter operations except mul-
tiplication. That is, both arithmetical
operations and all three logical opera-
tions between two variables use the
accumulator as one input. Any of the
16 registers can act as the other input.
The result ends up in the accumula-
tor. If it needs to be placed in another
register, a specific move instruction is
required.

Accumulator bits can be changed
one at a time by bit-set and -clear

second), which should be fast enough
to control even a complex model in
real time.

Writing to the EEPROM is much
slower than reading it. To change one
instruction takes up to 10 ms. Luckily,
up to 16 bytes can be loaded sequen-
tially and written simultaneously, so
uploading a program takes ~0.5 ms per
byte.

In practice, the 9600-bps serial link
from the terminal is the bottleneck.
Memory locations can be rewritten at
least 100,000 times, so memory life
isn’t a problem.

READ/WRITE MEMORY
The PIC16C56 has 32

one-byte RAM registers,
which Microchip confus-
ingly calls “files.” (Did
someone copyright “regis-
ter”?)

Eight of these have
special functions. For
example, one is the pro-
gram counter and others
are I/O ports.

I allocated the remain-
ing 24 registers as eight
system registers and 16
interpreter registers. That
is, the interpreted program
has access to 16 RAM

locations, which are listed in Table 2.
The interpreter is denied access to

the system registers. However, it can
read and write Port B, access the regis-
ter storing the interpreter’s carry and
zero flags, and indirectly access the
two system registers that store the
interpreter’s program counter. As
you’ll see, the latter are rarely used.

INSTRUCTION SET
This language has 37 instruction

types, listed in Table 3. It is accumula-
tor based and has the usual complement
of memory fetch and store instruc-

Table 2—Registers 0–7 can be incremented and decremented.

Register Function

0 The accumulator; where results end up
1 Can be used as an index register
2 Can be used as a multiplicand
3 Can be used as a multiplicand
4 General-purpose register
5 General-purpose register
6 General-purpose register
7 General-purpose register
8 General-purpose register
9 General-purpose register
A General-purpose register
B General-purpose register
C General-purpose register
D General-purpose register
E Low byte of return address
F High byte of return address

Table 3—The Picaro supports 37 instructions. In most, the upper four bits specify the instruction type while the lower four bits reference a register.

Sixteen unique instructions
00000000 NOP Does nothing
00000001 PRTD Set port direction from next byte
00000010 PRTO Move A to port
00000011 PRTI Move port to A
00000100 SERO Send A to serial out
00000101 SERI Put serial input in A
00000110 TYPE Print counted string from EEPROM
00000111 SWAP Swap upper and lower nibbles of A
00001000 SHL Shift A left
00001001 SHR Shift A right
00001010 INXO Move A to indexed register
00001011 INXI Move indexed register to A
00001100 WAIT Use next byte as wait period
00001101 MULT Multiply registers 2 and 3
00001110 RET Return from subroutine
00001111 EXIT Return to System

Arithmetic and logic instructions
RRRR is a register address
If RRRR = 0, the second operand is the next program code byte
0001RRRR AND R A := A and R affects zero flag
0010RRRR OR  R A := A or R affects zero flag
0011RRRR XOR R A := A xor R affects zero flag
0100RRRR ADD R A := A + R affects zero and carry flags
0101RRRR SUB R A := A – R affects zero and carry flags

Register move instructions
If RRRR = 0, the move is to or from the flags register
0110RRRR MOVR A R := A no flag effect
0111RRRR MOVA R A := R no flag effect

Move immediate instructions
1000XXXX MVIL A := 0000XXXX no flag effect
1001XXXX MVIH A := XXXX0000 exor A no flag effect

Bit set, clear and test
1010FBBB SET/CLR Set bit BBB of A to the value F
1011FBBB SKIS/SKIC Skip two bytes if bit BBB = F

Register increment/decrement, affect zero flag
1100FRRR INC/DEC Increment RRR if F=0, decrement if F=1

Program control, two-byte instructions, second byte is address
PPP is the destination page.
1101FPPP JMP/CALL Unconditional Jump (F=0) or Call (F=1)
1110FPPP JNC/JC Jump if carry flag = F
1111FPPP JNZ/JZ Jump if zero flag = F
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instructions. There are eight of each,
one for each bit. Accumulator bits can
also be tested. Eight instructions specify
to skip the next instruction if the
corresponding bit is a 0, and another
eight test for a 1.

Four- and eight-bit constants can be
loaded into the accumulator by the 32
move immediate instructions. Of these,
16 set the accumulator to a four-bit
value and the other 16 XOR a four-bit
constant with the upper four bits of the
accumulator. So, loading an arbitrary
eight-bit value requires two instructions,
but a four-bit constant requires only one.

In theory, since the accumulator is
also Register 0, it’s a legal input oper-
and. Since the only instruction that’s
really useful is ADD 0 (which doubles
the accumulator), I preferred using the
five Register 0 codes to perform imme-
diate operations on the accumulator.
That is, the next byte in the program
code is the second operand.

Move operations between the accu-
mulator and Register 0 are also use-
less, so the flags register is treated as
Register 0 for fetch and store instruc-
tions only. Therefore, the flag bits can
be set, cleared, and tested under pro-
gram control, thus implementing
skip-on-carry and skip-on-zero opera-
tions. The accumulator can be shifted
left and right through the carry bit,
and its upper and lower four bits can
be swapped.

INCREMENT AND DECREMENT
One irregularity in the instruction

set is that there are only eight regis-
ter-increment instructions and eight
register-decrement instructions. (I ran
out of codes.)

Only the lower eight registers can
be incremented and decremented, but
that shouldn’t be a problem. There’s
also no specific register-clear instruc-
tion. You need to load the accumula-
tor with 0 and move it to the register.

SPECIAL CODES
Unique instructions, such as port

input and output, are carried out by the
16 opcodes whose high four bits are 0.
Allocation of the port bits to inputs or
outputs is done on a bit-by-bit basis
by the PRTD instruction. It takes the
next code byte and writes it to the
PIC’s port direction register. A 1 bit
sets an input and a 0 bit an output.

Two instructions of special interest
are the indexed read/write pair. By using
Register 1 as an index, not only can
these instructions access any of the 16
RAM locations, but they can also read
and write the upper 240 bytes of page 7
of the EEPROM. Since this area is
addressable as program memory, it can
be loaded with tables of constants at
upload time.

The indexed write instruction, dare
I mention it, lets the program modify
itself. Since anything written is unaf-

fected by a powerdown, it’s the ideal
place to store measurement results.
However, when a byte is written to
this area, there is an 8-ms timeout
before normal operation resumes.

The TYPE instruction reads the next
code byte and uses it as a count to out-
put a string from the next n bytes of
program memory to the serial port. This
allows the program to communicate
with people. “Take me to your leader?”

WAIT also reads the next code byte.
It uses it as a time delay in half-milli-
second units, so you can implement a
time delay from 0.5 to 128 ms.

The MULT instruction multiplies
Registers 2 and 3. It puts the 16-bit
result back in the same registers with
the more significant byte in Register 3.

PROGRAM-FLOW CONTROL
There are six program-flow instruc-

tions—unconditional jump, uncondi-
tional call, jump on carry set, jump on
carry clear, jump on zero, and jump
on not zero. They all require two code
bytes. The first specifies the type of
jump and contains the three-bit page
code for the EEPROM, and the second
specifies the address within a page.

As well, the bit-test instruction con-
ditionally skips the next two instruction
bytes. That is, you can skip a jump or
call instruction, an immediate instruc-
tion, a two-byte macro, or just a single-
byte instruction plus a NOP.

Uploading a Program
You can send a code file to Picaro whenever it’s in

system mode and waiting for a command. This uses the
U command, which heads the code file to be uploaded.
The file format is:

Ulf
:0AA0lf
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXlf
 - - - more code lines - - -
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXlf
XXXXXXlf
lf

where lf is a line-feed character and 0AA0 is the program’s
start address.

All uploads must start at an address whose lowest four
bits are zero. Each code line except the last contains 32

characters, 16 hex bytes. The last line contains 1–16 bytes.
All lines end with a single line-feed character. The
upload terminator is a blank line (i.e., two successive
line feeds). Carriage-return characters may be used in
place of line feeds. The system ignores all characters
between the initial U and the “:”, so this is the place
to insert a title or version information.

The upload link runs at 9600 bps unless you program it
to be slower. To avoid halting the source device, each
successive 16-byte line is stored in the PIC’s RAM as it
is received, overwriting any existing contents. The stored
bytes are then quickly transferred to the EEPROM
while the line-feed character is arriving. The EEPROM
then goes offline and writes them while the next 16 bytes
are being transmitted. Picaro echoes a U to indicate
that the file has been received and stored. This is fol-
lowed by the “>” prompt for the next command.
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SUBROUTINES
The ability to call subroutines was

worth incorporating, but anything more
than a single level of nesting was too
much trouble in a machine with limited
RAM space. Thus, when a subroutine
is called, the next instruction address
is stored in Registers 14 and 15. When
a subroutine return executes, the
contents of these registers become the
new execution address.

This arrangement has two side
effects. One is that Registers 14 and
15 can be used as normal registers
until you call a subroutine. The other
is that you can jump to any instruction
address by loading it into Registers 14
and 15 and executing a return. This
lets you execute a computed jump as
you would need, for example, when
implementing a case statement.

THE FLAGS REGISTER
The interpreter’s zero and carry bits

are stored in the flags register and set
by the result of an operation. (The carry
bit uses the Intel convention, not the
Microchip one. It is cleared if the
result of a subtraction is positive.)

The flags register also has an inter-
rupt enable flag. Clearing this bit causes
unexpected characters at the serial
port to be ignored. If it’s set, an unex-
pected character acts as a user interrupt
(i.e., it causes an automatic return to
the system).

Another bit controls the data rate
used when returning to the system. If
it is set, the system default rate is used
(i.e., 9600 bps). If it is cleared, the
data rate remains at the preset rate.

Three bits of the flags register store
this data rate. This can be set from
300 to 38,400 bps by setting these
three bits from 111 to 000. Writing to
the flags register (via MOVR 0) sets up

the new data rate. Table 4 summarizes
this information.

PROGRAM COUNTER
The EEPROM has the useful property

that once you have sent a memory
address to it, you can read sequential
bytes indefinitely without sending a
new address. You can execute instruc-
tion after instruction without worrying
about the current program address. To
execute a jump, send a new address to
the EEPROM since you don’t care where
it was before the jump.

Unfortunately, when you call a sub-
routine, you must know where to return
to. The bad news is that there’s no
method of reading back the address
counter of the EEPROM, so you have
to track the current program address.

Tracking is done via a phantom
program counter—two bytes of the
system RAM which track the internal
counter of the EERPOM. Every time
an instruction is executed, the phantom
program counter is incremented, and
every time a jump is made, the new
address is loaded into the EEPROM
and phantom counter. When a subrou-
tine is called, the phantom counter’s
contents are saved as the return address.

The only other use for the phantom
counter is when an indexed read or

write to the EEPROM occurs. The
EEPROM’s address counter is changed
to point to the indexed address on page
7. After the operation, the EEPROM’s
program address counter is automatical-
ly restored from the phantom counter.

The interpreter has no direct access
to the phantom counter, but if you want
to implement a program-counter–
relative operation, you can read it
indirectly by executing a call to the
next instruction. This action copies
the program counter into Registers 14
and 15.

TIMER REGISTER
The microcontroller has a timer

register which can count prescaled
clocks or external events. In this imple-
mentation, it controls the timing of
the serial port.

The prescale ratio is changed to set
different data rates. Therefore, the
timer input pin of the parallel port
has no function. You can change this
if you want to use the timer for some-
thing else. However, the interpreter’s
WAIT instruction performs some of
the same functions.

PROGRAMMING PICARO
If you have experience in program-

ming a register-based eight-bit micro-

Table 4—The flags register contains the zero and carry
bits and also sets the bit rate of the serial port.

Bit Function

 0 Interrupt enable. Normally set
 1 Data rate. Set = revert to 9600 bps
 2 Carry flag, set by overflow or borrow
 3 Zero flag, set by result = zero
 4 Low bit of the data-rate setting
 5 Middle bit of the data-rate setting
 6 High bit of the data-rate setting
 7 Reserved for timer control

Addr Mnemonic Code Function

000 PRTD 01 Use next byte as port direction
001 F0 Low four bits are outputs
002 MVIL 5 85 Set accumulator to 5
003 PRTO 02 Write it to port
004 CALL D8 Subroutine call, page 0
005 4A Call address
006 PRTI 03 Read port
007 SHL 08 Shift MSB to carry
008 JC E8 Jump if carry, page 0
009 13 Destination address
00A TYPE 06 Send a string
00B 05 String length
00C 48 "H"
00D 6F "o"
00E 77 "w"
00F 64 "d"
010 79 "y"
011 JMP D0 Carry on
012 1A
013 TYPE 06 Send a string
014 05 String length

Listing 1 —First upload or type in the Picaro test program, and then enter G 000.

(continued)
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computer, such as any of the Intel
80xx series, learning and using this
assembly language should be straight-
forward. Once you figure out what you
want your model to do, the easiest
way to proceed is to break the func-
tions down into manageable chunks
you can pass parameters to.

So, to turn 10° right, call the sub-
routine Turn Right with a parameter
of 10. A sequence of subroutines,
combined with tests and jumps, pro-
grams the desired operations. (Forth is
the ideal language for this type of
application, but that’s another article.)

Once your program is written in
assembly language, you need to trans-
late it into a list of instructions. I do
this by hand, which is a strong motiva-
tion for keeping the language simple.
The biggest job is tracking the instruc-
tion addresses since you need to specify
where all the jumps are headed.

The listing must be converted into
a text file using the 16 bytes per line
format specified in the sidebar “Up-
loading a program.” Next, the com-
puter can be turned on, put in system
mode, and the program uploaded. The
program can be examined and modi-
fied while in system mode. The G
system instruction starts execution
from any address.

On powerup or reset, Picaro uses
the highest EEPROM byte, at address
7FFH, to tell it whether it should start
executing the user’s program immedi-
ately or go to system mode and wait
for instructions. If this byte is 0, it
jumps to the user’s program. Any other
value tells it to enter system mode.

Since blank EEPROMs seem to
contain mostly 1s, Picaro should power
up in system mode the first time you
switch it on, so you can upload or edit
a program. Once your program works,
you can edit byte 7FFH to 0 so your
program starts every time the model
turns on.

Listing 1 is a short sample program
for testing Picaro. It can be typed in
byte by byte in system mode or sent
as a text file in upload format. If port
bit 7 is high (default), the output is:

Hello
ABCDEFGHIJ
OK

015 48 "H"
016 65 "e"
017 6C "l"
018 6C "l"
019 6F "o"
01A CALL D8 Send CRLF
01B 4A
01C MVIL 10 8A Specify count
01D MOVR 4 64 Store count
01E MVIL 1 81 Specify low nibble
01F MVIH 4 94 Specify high nibble
020 SERO 04 Send character
021 INC 0 C0 Increment character
022 DEC 4 CC Decrement count
023 JNZ F0 Jump back unless done
024 20 Destination address
025 CALL D8 Send CRLF
026 4A
027 MVIL 13 8D
028 MOVR 1 61 Set index to 13
029 MVIL 10 8A Accu = 0AH
02A MOVR 3 63 Set counter to 10
02B MVIH 5 95 Accu = 5AH
02C INXO 0A Write to indexed register
02D ADD 0 40
02E 29 Add 29H to accu
02F DEC 1 C9 Decrement index register
030 DEC 3 CB Decrement counter
031 JNZ F0 Jump to loop
032 2C
033 MOVA 13 7D Start testing arithmetic
034 XOR 8 38
035 AND 6 16
036 ADD 11 4B
037 OR 4 24
038 SUB 6 56
039 SWAP 07
03A XOR 0 30 Check result
03B 67
03C JZ E8
03D 45
03E TYPE 06
03F 04
040 4F "O"
041 6F "o"
042 70 "p"
043 73 "s"
044 EXIT 0F Return to system
045 TYPE 06
046 02
047 4F "O"
048 4B "K"
049 EXIT 0F
Subroutine, print CRLF
04A MVIL 13 8D CR to Accumulator
04B SERO 04 Send serial character
04C MVIL 10 8A LF to Accumulator
04D SERO 04 Send serial character
04E RET 0E Return
Upload file
U
:0000
01F08502D84A0308E8130605486F7764
79D01A060548656C6C6FD84A8A648194
04C0CCF020D84A8D618A63950A4029C9
CBF02C7D38164B2456073067E8450604
4F6F70730F06024F4B0F8D048A040E

Listing 1 —continued
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I  R  S
410 Very Useful
411 Moderately Useful
412 Not Useful

SOFTWARE

Complete documentation and source
code for Picaro is available via the
Circuit Cellar Web site.

Tom Napier has worked as a rocket
scientist, health physicist, and engi-
neering manager. He has spent the
last nine years developing spacecraft
communications equipment but is now
a consultant and writer. In his free
time, he develops neat test instru-
ments, debunks pseudoscience, and
writes in Forth on an Amiga 3000.

If port bit 7 is held low, Hello is
replaced by Howdy. If the last line is
Oops, then something went wrong.

It would be easy to write an assem-
bler for this language. I didn’t need to
myself, and in any case, my software
runs on an Amiga and wouldn’t be
much use to Wintel users. Perhaps
you can fill the gap.

USING THE SERIAL PORT
Normally, the serial port provides

direct interaction with the user in
system mode. However, the user’s
program can also transmit and receive
serial data, and it can use a different
data rate from the 9600 bps used in
system mode. This allows the use of
longer range, narrower bandwidth
communication paths.

Ideally, serial input only takes place
when the computer is waiting for it
(e.g., when it has sent a request for new
instructions). But, you have to decide
how to handle unexpected input. You
could ignore it via an interrupt disable
flag, but then you have to do a hard-
ware reset if you want to plug in a
terminal and diagnose a problem.

If you don’t ignore unexpected
inputs, you have to decide whether
they’ll come from the low-speed com-
munication link or the terminal. In
the first case, you set the rate rever-
sion flag to “preset” and in the second
case to “default.”

The same flags control what hap-
pens when the program executes a
return-to-system instruction. “Tell
me what to do next” may be more
easily handled by uploading new code
over the communications link in
system mode, rather than by choosing
from a limited number of preset ac-
tions in interpreter mode.

GETTING STARTED
To make Picaro work, the system

firmware must be written into the
EPROM of the PIC chip. There are
two ways to do this.

If you have a UV eraser, a PIC as-
sembler, and a programmer, you can
buy your own windowed PIC chip and
download the firmware from the Cir-
cuit Cellar’s Web site. Or, you can
purchase the preprogrammed parts
from me.

WRITING ASSEMBLY LANGUAGE
Picaro’s assembly language is sup-

posed to be general-purpose, but your
application may require an operation
that can’t be readily synthesized from
combinations of the existing instruc-
tions but that’s still within the PIC’s
capabilities. In this case, you’re wel-
come to modify the source code, but
please do not make commercial use of
this code without my permission.

The firmware is divided into two
blocks—system and interpreter—and
occupies ~70% of the 1-KB EPROM. A
gap between the blocks keeps the inter-
preter and system code on separate
EPROM memory pages to avoid having
to swap the page-select bit too much.
So, you can change the interpreter’s
instruction set by modifying only the
second page.

In operation, the interpreter reads
an instruction, saves its lower four
bits as a possible register address, and
uses the upper four bits to make a
calculated jump to one of 16 handlers.
These handlers use the saved lower
four instruction bits as a register ad-
dress, immediate data, or a flag bit
and partial program jump address.

If the upper four bits are zeros, the
handler makes a second calculated
jump, this time based on the lower four
instruction bits. This jump ends up at
one of the 16 subhandlers containing
the code for the 16 unique instructions.
After every instruction, the interpreter
returns to a housekeeping routine,
which sets the zero and carry flags and
advances the phantom program counter.

I ended up with no spare codes. At
one point, I even implemented an
escape instruction, which used the
following byte as a pointer to (poten-
tially) 256 further instructions. But, I
found I didn’t need it and took it out
again. If you want to add a function,
you need to insert an escape code or
replace an existing function by chang-
ing its handler.

The only reason to change the sys-
tem firmware on the first EPROM page
is to use a different crystal frequency.
Then, the constants controlling the data
rate have to be changed, and if the crys-
tal frequency is higher than 6.144 MHz,
NOPs need to be inserted into the
EEPROM read and write routines.

SOURCES

EEPROM and PIC microcontroller
Microchip Technology, Inc.
2355 W. Chandler Blvd.
Chandler, AZ 85224-6199
(602) 786-7200
Fax: (602) 786-7277
www.microchip.com

Digi-Key Corp.
701 Brooks Ave. S
Thief Falls, MN 56701-0677
(218) 681-6674
Fax: (218) 681-3380

Picaro kit
Preprogrammed, nonwindowed
PIC16C56, 24LC16B EEPROM,
6.144-MHz crystal, and disk with
Picaro firmware and manual ... $15
Tom Napier
P.O. Box 3155
Maple Glen, PA 19002-8155

DESIGN YOUR OWN
So, I finally got to write my own

assembly language. I haven’t done as
much with it as I had expected, but
I’m passing it on in the hope that
you’ll find it useful.

If you have the tools to program PIC
chips, you can follow my lead in design-
ing your own custom computer. Picaro
makes a pleasant change from systems
with 16-MB minimum memories and
operating systems no human being
can comprehend. I
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EMBEDDED MODEMS
WinSystems has introduced two 33.6-kbps

modems that give PC/104 and STD-bus embedded
systems Web access over standard telephone lines.

Application areas include Internet access for embedded
Web servers, program download, site-status information

upload, and remote-site monitoring.
The PCM-33.6M and MCM-33.6M offer effective data

throughput up to 115,200 bps by using error correction and data
compression. These units are offered in either 33.6- or 14.4-kbps
data rates. The modems support V.34bis, V.34, V.32bis, V.32,
V.22bis, V.22A/B, V.23, and V.21, plus Bell 212A and 103
communications standards.

Both devices integrate the functions of a stand-alone modem
and PC-compatible COM port to provide a single-card modem.
Each supports the industry-standard enhanced AT command set,
which works with off-the-shelf communications software for ’x86
systems. The boards support the Microcom Networking Protocol
(MNP) for detecting and correcting errors in high-speed modem
transmissions. V.42 LAPM, MNP 2–4, and MNP 10 error correction
is supported, as well as V.42bis and MNP 5 data compression.

An onboard FCC Part 68 registered Data Access Arrangement
provides the required isolation and protection, allowing direct
connection to the Public Switched Telephone Network (PSTN)
without additional circuitry. The phone-line connection is through
an RJ-11C jack.

The PCM-33.6M is a PC/104-bus module measuring 3.6″ ×
3.8″. It has a 16-bit PC/104 interface and requires a single +5-V
supply. The MCM-33.6M is an STD-bus card (4.5″ × 6.5″),

containing STD-bus and external serial RS-232 interfaces. A
speaker and eight LEDs indicate the status of the modem handshake
and data lines. A software-programmable amplifier drives an
onboard piezoelectric speaker for monitoring the phone-line signal.

List price for the PCM-33.6M module is $250. The MCM-
33.6M module sells for $350.

WinSystems, Inc.
715 Stadium Dr.
Arlington, TX 76011
(817) 274-7553
Fax: (817) 548-1358
www.winsystems.com   #510

300-MHz MMX PENTIUM SBC
The new PMXVX single-board computer with MMX and video

supports up to 300 MHz of Pentium processing power coupled
with a maximum of 384 MB of FPM-, EDO-, or BEDO-type DRAM.
This single-board PCI Pentium computer integrates ATl’s Mach
264 video chip with 2-MB memory, high-speed PCI-bus
IDE hard drive interface, and a floppy
controller. It also includes
two high-

speed 16550 serial ports, bidirectional parallel port with ECP/
EPP, mouse and keyboard ports, real-time clock, watchdog timer,
and the new USB and infrared communications port. The Award

flash BIOS with plug-and-play is autoconfigurable and
provides a full selection menu for custom setups.

The board sells for less than $500.

Interlogic Industries
85 Marcus Dr.
Melville, NY 11747
(516) 420-8111
Fax: (516) 420-8007
sales@infoview.com
www.infoview.com

#511
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KEYPAD AND LCD INTERFACE
The AIM104-KEYDISP is designed to interface to

third-party keypad and display products that form the
front panel of an industrial control system. The PC/104-
sized board can connect to an STN alphanumeric 4 ×
20 LCD (68130 controller) or an STN graphics 240 ×
64 LCD (68130 controller). A DC-to-DC converter
supplies the negative voltage for the LCDs, and a
connection for external contrast adjustment is provided.

The board also accommodates up to two 4-/12-/
16-key keypads or one 36-/40-key QWERTY keypad.
An integrated I/O software library gives instant start-
up functions in the form of C function libraries and
executable demonstrations.

The AIM104-KEYDISP is priced at $65.

Arcom Control Systems
13510 S. Oak St.
Kansas City, MO 64145
(816) 941-7025
Fax: (816) 941-7807
icpsales@arcomcontrols.com
www.arcomcontrols.com #512

DEVELOPMENT TOOL
Phar Lap’s TNT Embedded ToolSuite V.9.0 now

supports the Microsoft Developer Studio for Visual C++ 5.0 for
embedded systems development. Embedded Studio Express provides
transparent access to the Developer Studio Integrated Development
Environment (IDE) and lets you edit, compile, link and debug embedded
and real-time software.

Developer Studio targets Phar Lap’s Realtime ETS Kernel, a deterministic,
multitasking, small-footprint kernel that supports a Phar Lap-defined subset of
the Win32 API. Due to this Win32 API support, this kernel is compatible with
off-the-shelf 32-bit compilers and tools and standard 32-bit ’x86 hardware.

The Developer Studio IDE uses a multiple windowing development
environment and Embedded Studio Express. It also features the ETS Mail
Client, multihoming (two or more networks) and reading internal thread
information, and a thread-aware debugger to debug multithreaded real-time
applications. The software includes thread timing, reading internal thread
information, and naming threads, semaphores, mutexes, events, and pipes.
The ToolSuite contains card enablers for ATA flash disks, Ethernet adapters,
serial ports, and modems, as well as source code for writing enablers.

TNT Embedded ToolSuite, V.9.0 has a base price of $4995. Upgrade
pricing is also available. The host system requires a PC running Windows
95 or NT and Microsoft Visual C++ 5.0. The Realtime ETS Kernel requires
100 KB of memory (minimum) and a serial or parallel port for debugging.

Phar Lap Software, Inc.
60 Aberdeen Ave.
Cambridge, MA 02138
(617) 661-1510
Fax: (617) 876-2972
www.pharlap.com    #513
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PCI-ISA BACKPLANE
The PCI-972, a PCI-ISA industrial bridge

backplane with 12 expansion slots, is designed for
OEMs and systems integrators involved in developing

and managing PICMG PCI-ISA industrial computer
applications and systems. The PCI-972

features six 32-bit PCI slots, one dedicated 32-
bit PCI-ISA CPU slot, and six ISA slots.
Additionally, each PCI slot provides bus-mastering
capability. The unit conforms to IEEE P996 and
PICMG Rev. 2.0 specifications.

The six-layer board is designed to minimize
EMI and features a 65-Ω impedance (±15%) on
PCI and ISA signals. It also provides Baby-AT
standard connectors for hard-disk LED, power-
on LED, keyboard inhibit, reset, speaker, and a
keyboard interface. An industry-standard 12-pin
power-supply connector is included as well, and
five power-on LEDs monitor all voltages.

PCI-bus loading limits are overcome via PCI-
to-PCI bridging. This setup permits a higher PCI-
bus slot count—essential in many industrial and
telecommunications applications—and enables
concurrent bus operations on each PCI bus.

PC/104 DEVELOPMENT MODULE
The Proto-8 is an extended-length PC/104-compatible board

for assembling and evaluating circuits for the PC/104 bus. The
large prototyping area enables circuit evaluation prior to PCB
etch, so programmers can get involved earlier in the design cycle
by writing and testing software well in advance of the final
hardware. Potential problems that
occur during the merging of hardware
and software are revealed sooner
and cost significantly less to resolve
than if they were addressed later.

The Proto-8 is available in two
versions. The B version features a
solderless breadboard and easy
access to all 8-bit J1/P1 signals. The
S version provides a solder-pad/
wire-wrap grid with 2000+ holes on
0.1″ centers. It is intended for
permanent construction, particularly

when only a few articles are needed. Marks are provided so that
the length can be trimmed to standard PC/104 module size.

Both versions offer buffered data lines, clearly labeled signal
designations, and I/O decoding logic contained in a single
reprogrammable device. An optional J2/P2 connector permits

access to all 16-bit PC/104 signals.
The B and S versions sell for

$230 and $135, respectively.

Scidyne
649 School St.
Pembroke, MA 02359
(781) 293-3059
Fax: (781) 293-4034
members.aol.com/
  scidyne   #515

Teknor Industrial Computers, Inc.
7900 Glades Rd. • Boca Raton, FL 33434
(561) 883-6191 • Fax: (561) 883-6690
www.teknor.com             #514
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Figure 1�PC-based motion control cards send an analog signal
ranging from �10 to +10 V to external amplifiers. These in
turn drive the motor at the requested torque level, and
encoders feed position information back to the controller.

PC Motion
Card Amplifiers Motors

Overview of PC-Based
Motion Control

Chuck Lewin

PCs Move into Motion

PCs are used on everything from the space
shuttle to undersea submersibles. As a
control platform, the PC has gained popular-
ity because it�s cheap, highly accessible, and
available in many shapes and sizes.

Motion control, which is the art and
science of precisely moving mechanical
devices through some path or to some
exact position, hasn�t escaped this trend.
A variety of vendors today provide motion-
control products for the PC.

Motion cards are available that provide
one, two, four, or even eight axes of motion
control. These cards can control DC brush,
step, and brushless DC motors.

All of this hardware doesn�t nec-
essarily result in a control system
that�s right for your application, how-
ever. The missing ingredient is soft-
ware. Software means not only the
motion-control language or instruc-
tion set you write your application in,
it also includes tuning tools and
exercisors that let you quickly proto-
type your application.

There are several different types of
motion cards, each with its own type of
motion-instruction set that is implemented.
It�s important to understand the differences
between them so you can make the right
controls choice.

In this article, I look at the different types
of PC-based control cards and discuss
their architectural differences and their
pros and cons. I also discuss some ex-
ample applications.

Additionally, I give you a look at dis-
tributed control, which is gaining popular-
ity as it applies to motion control for the PC.

IT�S ALL IN THE CARDS
Figure 1 shows an overview of a typical

PC-based motion-control system. The major
elements of the system are the PC, motion
card, motor amplifiers, and motors.

For most motion-card products, the type
of the motor you use affects the choice of
card because the motion peripherals must
match the motor type.

For example, step motors may not re-
quire quadrature decoding, whereas servo
motors always do.

Essentially, however, there are just three
types of motion-control cards available for

the PC today. This small number of
card options may be difficult to de-
termine from the myriad of motion-
card vendor claims. Unfortunately,
there isn�t any standard industry jar-
gon in existence for these three types
of cards.

For now, I�ll refer to them as
motion-language, motion-engine,
and motion-peripheral cards. Let�s
go over each of these in turn.

PCs are reshaping motion control. Many specialized motion-language cards
are being replaced with a mix of desktop PCs, motion chipsets, and motion
peripherals, with the PC carrying much of the load.
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MOTION-LANGUAGE
CARDS

Figure 2 shows the control
flow for a PC-based card that ex-
ecutes a complete motion language
on the card. The motion language
goes beyond merely the ability to
perform trapezoidal profile and
servo control. It includes constructs
for branching and looping, just
like C++ or BASIC.

There are two major elements
in such a card. The first is a motion-
engine chipset, which performs
the raw motion calculations such as trajec-
tory generation, servo loop closure, com-
mutation, and step and direction generation
for step motors.

The second major element is a program
microprocessor that executes the motion
language. Generally speaking, this micro-
processor interprets the motion language
downloaded from the PC into the motion card.

The advantage of this type of architec-
ture is that the motion card can operate
totally autonomously from the PC. This
capability is a big advantage when the PC
has a lot of activity to perform for display,
keyboard processing, and so forth.

One disadvantage is that there are no
standards for these motion languages, so
several vendor-specific languages exist.
They run the gamut from BASIC-like sym-
bol-based languages that use two-letter
codes to more elaborate systems that bor-
row from C or Pascal.

Some motion-language cards let the user
program the motion application in the native
instruction set of the program microproces-
sor. This blurs the distinction of a motion-
language card and a motion-engine card.

What is significant here is that the
language is loaded in the card even
though it�s a standard computer language
like C or assembler. So, if the motion card
can autonomously control a machine with
decision making, branching, and looping,
you can consider it a motion-language
card.

MOTION-LANGUAGE
APPLICATIONS

A wide variety of applications can
benefit from a motion-language card ap-
proach. Nevertheless, since these cards
are slightly more expensive then the other
card types, it�s worth knowing where these
cards really excel.

Ironical ly,
there aren�t any ap-
plications that require
a motion-language�card
approach because, when
properly programmed, the PC
can handle almost any number of
simultaneous tasks. Since this is
the defining characteristic of a
motion-language card, the real
implementation question for the
designer is: Do I need or want the
motion card to run as a separate,
parallel task?

The answer to this question may be yes
in systems that are not multitasking and
require relatively simple interactions be-
tween the motion card and system software.

One application that often executes on
this type of card is CNC (computer numeri-
cal control) and other multidimensional
contouring applications. The motion-lan-
guage card is ideal here because these
applications use special file formats that
can be interpreted directly by the card. In
this mode, the motion-language card es-
sentially runs a shrink-wrapped applica-
tion that can process file formats like DXF
(AutoCAD output), HPGL (plotter control
language), and G&M codes (CNC control
language).

When running in this mode, the motion
card is loaded with the standard format
file. The card then manages the details of
controlling each motion axis to follow the
contour specified in the file.

Motion Processors Off-the-Shelf
ICs that provide dedicated motion-control functions are

available off-the-shelf from a variety of vendors. These so-
called motion processors, like the ones shown in Photo i,
provide canned motion functions like S-curve profiling, servo
control, and pulse and direction generation.

One of the advantages of buying a motion-engine card
that uses an off-the-shelf motion processor is that you can
change card vendors at a later time as long as the card uses
the same motion processor. Another advantage is that if your
product volume increases to the point that you want to
consider designing your own custom card, then by buying the
motion processor and building your own card, you eliminate
the need to rewrite your software.

Motion processors have been around for a while. When
selecting a specific product, be sure that development kit
cards and ample software and application notes are avail-
able. Designing your own card is more complicated, but the
potential cost savings of an embedded approach to motion
control can pay off quickly.

Photo i� The MC1451A chipset is not only used by designers constructing
their own embedded motion controllers, but it also serves as the basis of
several motion-engine PC-based cards.

SRAM NVRAM EPROM

User Program
Microprocessor

ISA-Bus
Interface

Motion
Engine

Motion
Peripherals

Quadrature
Decoder

D/A Output

PWM
Generation

Limit
Switches

Home
Switches

To Amplifiers
and Motors

Motion-Language Card

Figure 2�Motion-language cards execute a complete self-standing
motion program downloaded by the PC.
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as the desire for standard computer lan-
guages increases and as the availability
of multitasking OSs improves. Semiconductor
capital equipment, medical automation,
laboratory automation, packaging, print-
ing, and scientific instruments are just a
few areas that frequently use these cards.

With most of these applications, the
system software is written on the PC. So,
why not write the motion-language code
there as well? To these designers, writing
part of the application in C or BASIC and
part in a vendor-specific motion language
is cumbersome.

CNC is also a popular application,
although with this type of card, the PC
performs much more of the contour-file
processing than for a motion-language
card. Motion-engine cards cannot directly
process CNC codes, so the PC is enlisted
to perform this function and the motion
engine is downloaded with an array of
move vectors.

Although it sounds complicated, this
approach is quite popular because a PC is
an ideal platform to compute complex
shapes and paths. These calculations are
performed in floating point�something
the PC excels at!

MOTION-PERIPHERAL CARDS
As you can see in Figure 4, the key

distinguishing characteristic of motion-pe-
ripheral cards is that there�s no motion

Typically, motion-engine cards offer
complete point-to-point moves, servo con-
trol, and most functions that motion-language
cards provide. However, the motion-en-
gine card doesn�t attempt to create an
environment to execute the user�s applica-
tion code. This code resides in the PC.

Motion-engine cards have become more
popular recently because they�re less ex-
pensive than motion-language cards
(there�s less hardware) and because they
encourage the use of standard languages.

Many vendors of motion-engine cards
provide C- or BASIC-compatible libraries
which, in effect, become their own sort of
motion language, except that the resulting
language, by definition, is known to many
people and is not vendor specific.

MOTION-ENGINE APPLICATIONS
Motion-engine cards are used in an

increasing variety of applications, particularly

MOTION-ENGINE CARDS
Figure 3 shows a different architec-

ture known as a motion-engine card.
The primary distinction between this
card and the motion-language card is that
there is no program microprocessor.

In this type of card, the motion engine
is usually an off-the-shelf motion-processor
chip that directly accepts instructions from
the PC (see sidebar �Motion Processors
Off-the-Shelf�). The motion engine pro-
vides a motion-instruction set, and the PC
provides the high-level language control.

This setup is an advantage when the
control application will be written on the PC.
The PC application simply sends a sequence
of motion instructions to the motion-engine
card, and the motion-engine card executes
them, notifying the PC when the moves are
complete. The PC coordinates a variety of
resources on the bus, motion and otherwise.

By comparison, in a motion-language
card, this type of coordination is more
difficult because the card operates as a
sort of parallel processor which must be
explicitly synchronized to the PC code.

ISA-Bus
Interface

Motion
Engine

Motion
Peripherals

Quadrature
Decoder

D/A Output

PWM
Generation

Limit
Switches

Home
Switches

To Amplifiers
and Motors

Motion-Engine
Card

Figure 3�Motion-
engine cards execute

high-level motion se-
quences sent by the PC. The

PC provides the looping and
branching language facilities.

Programming for PC-based Motion Control
How do you program a PC-based motion card? The

answer depends on the type of card. Motion-language cards
have facilities for branching and looping and executing the
user�s code directly on the motion card. One popular vendor
implements a complete motion language using two-letter
codes that implement a BASIC-like language.

Motion-engine cards require that the PC provide the
language while the card provides motion instructions for tasks
such as trapezoidal profiling, servo loop closure, and so on.
Most of these cards implement some sort of packet-oriented
commands.

Programming these cards is easy once you are familiar
with the commands. To load and execute a trapezoidal
profile for axis 1 on a PMD MC1401A chip-based motion-
engine card, you need to program:

SET_1

SET_POS 12345 ; set final-destination position

SET_VEL 3344 ; set maximum velocity

SET_ACC 456 ; set acceleration value

UPDATE ; make the move

The next example loads servo parameters and makes them
active (the parameters currently being used) for axis 4.

SET_4

SET_KP 123

SET_KD 1234

SET_KI 100

UPDATE

Motion-engine cards provide far more capabilities than just
these examples show. Nevertheless, the basic concept of
sending the card motion instructions, which are buffered by the
card and then executed, is at the heart of all motion-engine type
cards.

Which language approach is best for you depends on your
application and your control architecture. Motion-engine cards
enable you to construct elaborate control systems of which the
motion card may just be one component. Motion-language
cards are adept at offloading chunks of the control problem,
so the PC can focus on other tasks.
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motion language or motion cards are
between 1000 and 5000 Hz.

Properly scheduling the servo calculation
on the PC at this speed is important. Other-
wise, motion jitter may result. PC operating-
system software was never designed to
work with these low latencies and system-
access subroutines (e.g., hard-drive ac-
cess, screen updates, etc.). Therefore, it
must be managed so that it does not affect
the low-level motion code.

Another potential drawback of this tech-
nique is the safety concern associated with
a potential PC-application crash. With a
motion-language or motion-engine card,
this concern doesn�t arise because there

are enough brains on the card to safely
handle the system even if the PC stops
sending commands.

MOTION-PERIPHERAL
APPLICATIONS

Despite these challenges, there has been
some recent interest in this type of card,
particularly for �canned� motion applications
like CNC or contouring. Because the con-
trol problem has been worked out by the
software vendor, it�s worthwhile to check
out this interesting, low-cost solution.

For other applications where the user
must write the software, this type of card isn�t
a good match. When you use a motion-
peripheral card, a short 10-line program for
making a move on a motion engine becomes
a complex exercise in algorithm develop-
ment and timing management on the PC.

The ultimate solution in the direction of
reduced card complexity is to use no
physical card at all and instead use the
PC�s parallel port to generate motor com-
mand signals. This kind of configuration is
commonly performed with step motors,
which use digital pulse and direction sig-
nals to drive the motor amplifier.

Figure 4�Motion-
peripheral cards pro-

vide access to low-level
motion hardware. The PC

must perform high-speed tra-
jectory and servo algorithm ex-

ecution.

engine or program microprocessor on
the card at all. There are only motion
peripherals such as incremental encoder
feedback, analog output, digital I/O,
and so forth.

In some ways, motion-peripheral cards
aren�t motion cards at all. They implement no
motion-specific language or instruction set.

What they do offer is low-cost flexibil-
ity. As long as the user is willing to write the
software required to perform trajectory
generation, servo loop closure, and other
typical motion tasks, motion-peripheral
cards are a viable solution.

Unfortunately, in a typical PC-Windows
environment, providing the low latency
responses required for servo control and
other typical motion tasks is daunting. The
programmer must be a wizard at interrupt
management. Typical servo-loop rates for
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As for servo applications, the only
canned software packages that work in
this mode are for CNC and contouring. If

you�re looking for the ultimate in low
hardware cost, you may want to consider
this approach.

DISTRIBUTED
CONTROL

Figures 5a and 5b overview
centralized- and distributed-control
schemes, respectively, as applied to
motion control. The centralized scheme
represents the historical method of achiev-
ing motion control. In fact, all three board
types I just described fall into this category.

The distributed approach organizes the
control problem so that a motion-control
card is not needed in the PC. In this scheme,
the PC talks to each distributed motion
module and provides instructions, which the
module autonomously carries out. A standard
network card is used in the PC instead of
a dedicated motion card.

Similar to PC-based motion-control cards,
distributed modules come in motion-language
and motion-engine varieties. In the context of
distributed control, motion-language modules
are usually referred to as stand-alone control-
lers and motion-engine modules are called
distributed or network-based controllers.

The primary advantage of distributed
control is the reduction in wiring. This helps
reduce both the installation cost and the
service cost once the product is in the field.

Figure 5a�Centralized-control ar-
chitectures are widely used today.
They simplify servicing of the elec-
tronics at the expense of wiring
cost and complexity. b�By locat-
ing the controller near the motors,
a distributed-control scheme re-
duces wiring via a high-speed
network like CAN bus.
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IRS
413 Very Useful

414 Moderately Useful
415 Not Useful

Chuck Lewin is president of Performance
Motion Devices. He has been working in
motion control for the past eight years and
designing DSP-based motion systems for
the past five years. He has written articles
for various engineering magazines, pro-
viding practical, application-oriented ad-
vice on the implementation of motion-control
systems. You may reach Chuck at lewin@
pmdcorp.com.

SOURCE
MC1451A
Performance Motion Devices, Inc.
12 Waltham St.
Lexington, MA 02173
(781) 674-9860
Fax: (781) 674-9861
www.pmdcorp.com

Table 1�The motion card you choose depends on the structure of your software and other design
considerations.

Card Description Advantages Disadvantages

Motion provides ability to download popular more expensive
  Language   motion code into card and easy to program vendor-specific language

  execute autonomously stand-alone operation
  without PC interaction

Motion provides motion instruction low cost can’t run stand alone
  Engine   set for profiling, servo, etc. easy to program

  PC provides “language” standard language
  facilities and sends motion easy synchronization
  commands to card

Motion provides peripherals only lowest cost not easy to program
  Peripheral   such as encoder feedback safety questionable if PC

  and analog signal output.   crashes
  PC provides all motion
  software, including profiling,
  servo control, etc.

Distributed control system located low wiring cost requires better standards
  Control   in intelligent modules flexible few motion vendors

  close to motor. Reduces more reliable
  wiring and eliminates motion scalable
  card in PC

Another big advan-
tage is increased flexibil-

ity. Most motion cards
implement the same type of mo-

tor control (e.g., all step-motor con-
trol or all DC servo control). In a

distributed scheme, it�s easy to mix and
match motor types since each module is
generally single axis.

In particular, large systems with 8, 12,
or more axes benefit from distributed con-
trol. Large systems often require a variety
of motor types. As for wiring, as long as
the distributed motion module is located
close to or even physically attached to the
motor, cabling is greatly reduced and the
MTBF of the system improves.

Distributed control is in its infancy and
there are relatively few standards, vendors, or
installed systems. One popular distributed
motion protocol known as SERCOS imple-
ments a motion-engine approach.

However, SERCOS is a very low-level
motion-engine approach. In this distrib-
uted system, which is popular with CNC
vendors, each module can execute only a
short motion vector and a central host
performs all high-level path planning.

A major problem with SERCOS for gen-
eral-purpose applications, however, is that
in many ways, it is fundamentally a cen-
tralized system with a distributed approach
to the wiring only. SERCOS cannot be
controlled without a motion card because
the modules can only perform short vector
moves of a few milliseconds� duration.

True distributed control, where modules
can share information peer-to-peer and
where a substantial amount of intelligence
resides in the module, has been imple-
mented here and there by specific ven-
dors, but no standards exist.

Along these lines, several data network
protocols are available for the PC. In
motion control, CAN bus is leading the
pack because of its low cost and high level
of acceptance in other industries. CAN
bus is fast enough to perform synchronized
moves for a modest number of axes and
flexible enough to support devices like
motion-control modules, digital I/O, and
analog input all on the same network bus.

SOFTWARE RULES THE DAY
Motion-card vendors are notorious for

claiming the highest servo-loop rate, the
fastest update time, and the most complex
profiles. For most users of motion technol-

ogy, these features have little meaning.
Electronics have become so powerful that
most popular motion cards provide more
features than you really need.

A bigger issue for many designers is
ease of use. And, ease of use means good
software.

In the context of motion control, soft-
ware has two meanings. The first is the
software that you must write to develop
your application. Motion-language cards
provide a dedicated vendor-specific lan-
guage, and motion-engine cards use BA-
SIC or C as the language and provide
callable libraries to access the motion
card�s capabilities (see the sidebar �Pro-
gramming for PC-based Motion Control�).

Sometimes overlooked is the software
that most vendors provide for setup, servo
tuning, and profile selection. Often called
�exercisors,� these packages can be run
out of the box and enable the user to
interact with screens and menus to control
the motion card.

Another important software item is li-
braries. When you buy the card, will you
get the source code? Does it cost extra?
Does the vendor provide DOS-, Windows
95- and Windows NT-compatible librar-
ies? If not, you may have a hard time
transitioning your application to a new
platform.

Be careful when selecting a motion-
control card vendor, and don�t be overim-
pressed with all those claims of megacounts,
kilohertz, and pulse rates. Sometimes what
really counts is ease of use!

WEIGH THE OPTIONS
Table 1 summarizes the pros and cons

of the different PC-based motion-control
systems I�ve discussed.

The PC has gained widespread accep-
tance because of its low cost, flexibility,
and ease of use. And now, motion-control
users can take advantage of its popularity
to build their machine controller with a PC
as the core processor.

The type of motion card and motion
architecture that�s best for a given applica-
tion depends on the nature of your control
system and software. In the end, ease of
use and cost determine which approach is
best for you. EPC
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Real-Time PC

Ingo Cyliax

Software Development

 for RTOSs

Last month, I looked at the issues behind
selecting an RTOS. My sample application
needed an RTOS to generate precise
timing signals for the actuators in a six-legged
robot, while at the same time requiring soft
real-time processes to run in the system.

This month, I discuss the typical software
development environments encountered
when building embedded-PC applications.
I use some of the sample code presented
last month to show how I ported it to two
popular RTOSs�QNX OS and Phar Lap�s
ETS Realtime.

What do we need to develop code for
an embedded real-time application? Most
RTOSs provide libraries for the API, which
are linked with your application. So, you
need a compiler, which compiles the code
into an object to be linked with your RTOS
library, and a linker, which links your
compiled code with the RTOS libraries.

Let�s take a look at some programming
languages used to develop real-time
applications for embedded PCs.

REAL-TIME PROGRAMMING
LANGUAGES

The most common development language
for real-time PC development is C. As you
already know, C was developed originally
to implement Unix in a portable way and
has now been around for quite some time.

C has been a favorite with embedded-
systems developers, too. While not as
efficient as coding in assembler language,
C is portable and enables the programmer
to access memory and I/O port resources.

C compilers exist for almost any micro-
processor from Cray supercomputers to
64- and 32-bit processors like Pentium and
PowerPC, all the way down to PICs. Well,
OK, I haven�t seen one for a DEC PDP-8.

While it�s possible to use assembly in
all PC-based RTOSs, it is probably wise to
avoid coding in assembly unless absolutely
necessary. Most modern C compilers are
good at optimizing code for particular
architectures (i.e., i486 vs. Pentium).

It is almost never necessary to code in
assembly language for speed. Besides,
unless your application is very high volume,
the increased time and costs associated
with developing in assembly are almost
always higher than just going with a faster
processor.

For example, it may take 80% of the
development effort to squeeze that last
20% of speed from an application by
coding up critical routines in assembly
language and hand-optimizing them.
Speed increases achieved via a faster
CPU and bigger, faster cache architecture
are usually cheaper.

Reusability is critical to software development. So, this month, Ingo shows us how
to port programs written in our favorite programming languages into two popular
RTOSs. He then debugs the code with target- and host-based debuggers.
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developers are working in different
organizations, but it�s sometimes difficult
to use for expressing real-time issues.

That�s not to say that there aren�t some
RTOSs for embedded systems which are
written in Ada. For example, RTEMS,
which is developed by the US Army and

distributed for free, is available in Ada or
C source.

Also, there�s trend towards using high-
level behavioral modeling language for
systems. In these systems, the modeling
language describes what the system
components do. Typically, hardware

About the only time you
want to code in assembly is

when you�d like to implement
low-latency interrupt service routines,

or stubs for ISRs, which let you set up
the environment necessary to call C
routines. Luckily, many RTOS vendors have
done a good job providing these stubs as
part of their API.

C++ has been popular in desktop
systems for quite some time now and is
starting to become more popular in
embedded systems. While there is nothing
magic about using C++, tool support for
C++ in development systems for RTOSs
has been slow in coming. However,  many
RTOS vendors currently have tool and
library support for C++.

However, just because you code your
applications in C++ doesn�t mean you�re
necessarily using object-oriented program-
ming (OOP) methodology. You can also
do OOP in C or assembly language. C++
is just a tool.

Another OOP language getting a lot of
press lately is Java, developed by Sun
Microsystems as a new network program-
ming technology.

The Java programming language can
be used to develop code, which gets
compiled into byte code to be executed in
an interpreter on a target system. It promises
architecture-independent application
development.

Several RTOS vendors offer Java
support, but there are still some issues to be
worked out. In particular, the Java run time
relies on garbage collection, which in its
current reference implementation from Sun
is nondeterministic and thus not suitable for
hard real-time applications. Work is being
done on this, but more about Java in a later
column.

FORTRAN is still used in embedded
systems. In particular, there are numerical
libraries which are coded in FORTRAN.
These libraries represent much time in
development, testing, and tuning.

Since it�s harder to find a FORTRAN
compiler that can be hosted on current
development platforms, some libraries are
being converted to C. One solution is to
use FORTRAN-to-C converters, which you
can find on the Internet.

Unless you code for the government or
systems that need to be flight qualified,
you probably won�t see Ada. Ada is good
for implementing large systems where many

Listing 1a�Here�s the main routine for Phar Lap�s ETS. You program the timer using
EtsSetTimerperiod() and install the servo interrupt service routine (ISR) as a timer call back
using EtsRegisterCallback()from the ETS application programming interface. b�In QNX,
setting up the ISR is done much like in ETS. clock_setres()sets the timer period, and
qnx_hint_attach()attaches an ISR to the timer call-back chain. Since QNX is an operating
system, which persists after we get done running our program, we want to make sure to
remove our ISR when done.

#include "global.h"
#include "servo.h"
main(){
  int Servo_Isr();
  EtsSetTimerPeriod(1);
  EtsRegisterCallback((WORD)ETS_CB_TIMER,
    &Servo_Isr, 0, ETS_CB_ADD);
  GaitThread();}

#include "global.h"
#include "servo.h"
main(){
  pid_t far Servo_Isr();
  int id,i;
  struct timespec st;
  st.tv_sec = 0;
  st.tv_nsec = 500000;
  clock_setres(CLOCK_REALTIME, &st);
  if((id = qnx_hint_attach( 0, &Servo_Isr,
      FP_SEG(&SetTime[0]))) == -1 ){
    printf("can't attach interrupt\n");
    exit(2);}
  GaitThread();
  qnx_hint_detach(id);}

Photo 1�In this screen shot, you see a command-line�driven compilation and linking session
under Windows. I�d probably make sure the warning didn�t occur in a production version of my
program.

a)

b)
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Listing 2�The gait-thread implementation is the same for both OS environments. Here, I use
macros to map generic constructs like GetMutex() and Sleep() to OS-specific calls. Using C
macros is one common technique for making C source code portable between different OS
environments.

#include "global.h"
#include "servo.h"
#include "gait.h"
int Command;    /* current command */
int LastCommand;
int cmdmutex;
int MaxSteps[nCMD] = {4,4,4,4};  /* number of steps in pattern */
/* gait patterns */
int Pattern[nCMD][nSTEP][nCHAN]=
{
{{2,4,2,4,2,4,2,4},{4,2,4,2,4,2,4,2},{2,4,2,4,2,4,2,4},{4,2,4,2,4,2,4,2}},
  {{2,2,2,2,2,2,2,2},{2,2,2,2,2,2,2,2},{2,2,2,2,2,2,2,2},{2,2,2,2,2,2,2,2}},
  {{2,2,2,2,2,2,2,2},{2,2,2,2,2,2,2,2},{2,2,2,2,2,2,2,2},{2,2,2,2,2,2,2,2}},
  {{2,2,2,2,2,2,2,2},{2,2,2,2,2,2,2,2},{2,2,2,2,2,2,2,2},{2,2,2,2,2,2,2,2}}
};
/* generate leg actuations depending on current command */
GaitThread(){
  int CurrStep;
  int i;
  GetMutex(cmdmutex);
  Command = CMD_STOP;
  LastCommand = Command;
  ReleaseMutex(cmdmutex);
  CurrStep = 0;
  while(1){
    Sleep(STEPTIME);
    GetMutex(cmdmutex);    /* check whether command mode changed */
    if(LastCommand != Command) CurrStep = 0;
    LastCommand = Command;
    ReleaseMutex(cmdmutex);
    for(i=0;i<nCHAN;i++)
      SetTime[i] = Pattern[LastCommand][CurrStep][i]-1;
                           /* set servo channels */
    CurrStep = (CurrStep + 1) % MaxSteps[LastCommand];}}
                           /* next step */

components modeled in
these systems are then syn-

thesized into hardware-descrip-
tion languages like VHDL or Verilog,

and software components with lan-
guages like Ada or C, which are then
compiled using standard compilers.

A REAL-TIME EXAMPLE
So, enough theory. Let�s look at a real

example. Remember the RC-servo�based
robot controller I told you about last month
for the six-legged Stiquito II robots? If you
recall, I presented some sample code to
illustrate the idea of interrupt latency.

To illustrate two kinds software develop-
ment environments�target and host
based�I ported the interrupt-based servo
driver and gait generator to two popular
RTOSs, Phar Lap ETS and QNX. While the
original example also included a network-
based command interpreter, I�ll save it for
another column.

I replaced the main module with a new
module, test1.c (Listings 1a�b), which
does the necessary initialization and starts
GaitThread(), which is implemented
in module gait.c (see Listing 2).

GaitThread() is a high-level process,
which computes the necessary patterns for
the legs actuators. The RC-servo�based driver
is implemented using an interrupt service
routine in gait.c. Just like test1.c, ISRs
are RTOS specific, so I have two versions,
which are given in Listings 3a and 3b.

MOVING SOFTWARE
Software development for ETS is done

using a Windows NT or 95 host. Since ETS
is Win32 compatible, we can actually use
the same 32-bit C and C++ compilers to
develop code for ETS as we do for our
regular Windows software development.

In particular, I used Visual C++ V.5.0
(VC), which is part of Visual Studio for Win-
dows 95 and NT. I used my notebook, which
runs Windows 95, as the development host.

Since I�m more comfortable using com-
mand-line�oriented tools, I will use the
command-line version of VC to build my
code. If you�re more familiar with Visual
Studio, use it instead. In V.9.0 of ETS, Phar
Lap added support for building applica-
tions using VC under Visual Studio.

To start off, I developed a short
Makefile, given in Listing 4a. Here I call
cl, which is the command-line interface to
compile and link using VC. By using the /C

switch, I instruct cl to only compile each
source module.

Once the modules are compiled into
object modules (test1.obj, gait.obj,
and servo.obj), linkloc links the modules,
using the required ETS libraries into an
executable image rctl1.exe. Linkloc
also generates the symbol table for the
debugger, which is loaded in the execut-
able. A sample compile and link run in a
command-line window under Windows 95
produces the output seen in Photo 1.

Once we have the executable, we
need to get it to the target system. Phar Lap
provides a monitor and kernel, which can
be booted from a floppy, called disk-
kern.bin. It can be configured to load
the application either from disk or remotely
over serial or parallel port.

In my example, I connected the target
system to my notebook via a serial connec-
tion. The target system was another note-
book�a 25-MHz 386SX-based notebook
I keep around for just this purpose.

I use the target�s floppy drive to boot
diskkern.bin configured to load the
application from the serial port. Once the
target has loaded the monitor from floppy,
I can use the command -com 1 rtcl1.
exe to download and start executing my
program.

GaitThread()simply cycles eight
servo channels, one on each of the paral-
lel ports data pins between full extensions
of the actuator. I verified the timing with an
oscilloscope, which also gave me a good
indication of the jitter, which was minimal.

Now, doing the same thing for QNX,
where we compile the program running
on the OS, is a bit different. QNX can be
configured as a full-featured RTOS.

Once installed on hard disk, QNX boots
and presents a login screen. After supply-
ing the login and password needed to get
into the system, we get a command-line
prompt. (QNX also has a windowing
system, Photon. For now, I�m just going to
focus on the command-line interface.)
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The command-line interface in QNX is
Unix-like, which is not surprising, since many
software developers (me included) are
familiar with Unix and feel mostly at home
using arcane commands like vi and ls.

Also, QNX offers TCP/IP support,
including remote login facilities for telnet,
rlogin, and file-transfer facilities (e.g., FTP
and rcp). In fact, once you have a QNX
machine fully configured, it�s much like
having a Unix machine or server.

There is, however, one major difference
between Unix and QNX. QNX is a hard
real-time OS. It has deterministic timing
behavior for interrupt latency and operating
system calls and implements preemptive
multipriority scheduling. It also presents us
with a rich set of process synchronization
and communication mechanisms.

QNX is also a network distributed OS.
Nodes can be used for remote execution of
processes. It�s probably overkill for this
example, but it does a good job of illustrat-
ing the idea of host-based development.

Since QNX is so Unix like, I had to
adapt the makefile I used for ETS (see

#include "global.h"
#include "servo.h"
volatile int SetTime[nCHAN]; /* value for timer */
volatile int Ticks; /* value for current output */
volatile int CurrChan; /* current channel */
volatile int servomutex;
int Servo_Isr(ETS_INPUT_RECORD *r, DWORD dummy){
  /* only do something when we run out of ticks */
  if(!Ticks--){
    setport(SERVO_PORT, (1<<CurrChan));
    Ticks = SetTime[CurrChan++];
    CurrChan %= nCHAN;}
  return(ETS_CB_CONTINUE);}

#include "global.h"
#include "servo.h"
volatile int SetTime[nCHAN]; /* value for timer */
volatile int Ticks; /* value for current output */
volatile int CurrChan; /* current channel */
volatile int servomutex;
#pragma off (check_stack)
pid_t far Servo_Isr(){
  /* only do something when we run out of ticks */
  if(!Ticks--){
    setport(SERVO_PORT, (1<<CurrChan));
    Ticks = SetTime[CurrChan++];
    CurrChan %= nCHAN;}
  return(0);}
#pragma on (check_stack)

Listing 3a�To make the servo ISR behave well with other ISRs at the same interrupt level,
Phar Lap�s servo ISR returns ETS_CB_Continue to indicate that other ISRs chained to the same
interrupt should run as well. b�In the QNX version of the ISR, we need to use a compiler
directive #pragma off (check stack) to disable run-time stack checking since the ISR runs
on its own interrupt stack and not the normal user stack.

Listing 4b). Here I use cc, the usual name
for a Unix-based C-compiler/linker front end,
and instruct it to simply compile and link all
modules and produce an output binary
rctl1 with the -o flag. I also specified
the -g flag to generate an extensive
symbol table, to be used with the source-
level debugger available under QNX.

Since QNX supports remote logins via
TCP/IP, I can simply use telnet from my
notebook to log in to the system and build
my application using make. I use a wireless
LAN PC Card in my notebook, so I can
connect to the Ethernet in my house.

The target system is a 66-MHz 486DX2-
based systems, with a small 120-MB hard
disk that hosts QNX OS and is wired into
my Ethernet using an NE2000-compatible
Ethernet card. Being able to log in to my
target to develop real-time applications
from my notebook anywhere in my house
or on the Internet is quite nice.

Photo 2 shows what a session looks
like. Once the application is built, the
executable becomes one of the commands
of the system. Simply by executing ./rctl1,

a)

b)
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I can generate waveforms under real-time
control.

Since QNX�s timing resolution goes
down to 500 µs, I can generate the timing
pulses with 0.5-ms resolution. And, I can
achieve all this while remote users log in
and compile applications.

DEBUGGING TECHNIQUES
Development systems for real-time appli-

cations usually have debuggers available
for application code. These debuggers vary
from being simple monitors, which examine
or modify memory and control execution of
the application, or sophisticated source-
level debuggers.

Source-level debuggers let you correlate
the instructions and data in the application

with the source code from which it was
built. You can set breakpoints by simply
locating a specific line in the source code
module, and examine the variables.

Debuggers, just like the development
system in general, can be target or host
based. Target-based debuggers run on the
target in conjunction with the RTOS and
the application to be debugged. It com-
municates with the system or, if the RTOS
supports it, via a network connection.

Target-based debuggers usually have
the best performance since they run on the
same machine, which reduces the communi-
cation latency for reading and writing
memory. Tracing execution flow of an
application, where the program is single
stepped showing what instructions are being

# Makefile for Phar Lap ETS
RCTL1=test1.c servo.c gait.c
RCTL1HDR=global.h servo.h gait.h
rctl1.exe: $(RCTL1) $(RCTL1HDR)
  cl /c /Z7 $(RCTL1)
  linkloc @vc.emb  -exe rctl1.exe -cvsym \
    test1.obj servo.obj gait.obj �cvsym

# Makefile for QNX
RCTL1=test1.c servo.c gait.c
RCTL1HDR=global.h servo.h gait.h
rctl1: $(RCTL1) $(RCTL1HDR)
  cc -o rctl1 $(RCTL1)

Listing 4a�Here�s the makefile for compiling the program using Visual C++ in command line
mode and linking it with Phar Lap�s linklocl linker. b�In contrast, the QNX makefile looks
like a Unix makefile, calling cc to both compile and link the program.

a)

b)

Photo 2�Here�s a telnet session to a target-based development system. Don�t be fooled into
thinking this is a generic Unix machine. The user interface is similar, but when the program,
rctl1, executes, it runs in a real-time environment and is able to generate 1�2-ms pulses with
±±±±±50-µµµµµs jitter.
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executed, is also fastest
using the target-based debug-

ger, since it has access to the
software interrupts necessary to

implement this.
Sometimes when running target-based

debuggers, we have to deal with a reduced
level of functionality for the user interface.
For example, when I run a target-based
debugger on QNX over telnet, I may only
have access to a basic character-based
interface.

Host-based (or remote) debuggers have
two components. The actual debugger,
which runs on the host, manages the user
interface and reads and writes the symbol
table. It communicates with the target, which
runs a monitor, using a communication chan-
nel. Usually, this is a serial interface or a
parallel interface with the target. Photo 3
shows a screen shot of codeview, a remote
debugger used with Phar Lap�s ETS.

If you remember, in the ETS example, I
used diskkern.bin, which was booted
from the floppy disk. With diskkern.bin,
the command-line program runemb was
used to download and run the application
to the target.

When we want to use the debugger,
we simply use cvemb, which also lets us
download the image. Once it�s downloaded,
we can control our application and exam-
ine memory/registers using the debugger
running on the development host.

In this environment, the debugger is
also capable of attaching to an already
running application. This makes it possible
to debug real-time applications running
from a boot ROM. I�ll explain more about
how to run the application from boot ROM
a little later.

One thing to keep in mind�when we
debug a real-time application, the application
may not perform in real time once the
program stops at breakpoint or when we
trace or single step through the application.
In our servo example, the system simply
stops and the scope displays flatlines.

To debug real-time applications running
in real time, you need hardware-based
debugging facilities like an in-circuit emu-
lator (ICE). With an ICE, you can replace the
CPU in the embedded system with a system
that emulates the CPU running in real time.

ICE systems are usually attached to a
development host through a serial or paral-
lel interface, but some are network based. The
user interface on the development host is

Photo 3�In this typical debugging session to an RTOS target, the debugger has several windows:
one to trace execution flow in assembly language, one to trace variables, and a command
window. Even though it�s not shown here, the debugger can also trace program flow in the C
source code.

usually the same as software-based debug-
gers and has about the same functionality
of downloading code and examining mem-
ory and registers. However, ICE-based debug-
gers allow real-time tracing of the target.

WRAP UP
So, software development for RTOSs is

not that different from writing code for your
favorite desktop system. In some cases, you
can even use the same development envi-
ronment you�d use to develop Windows
applications.

Other systems let the developer log in
to their RTOS system just like a full-featured
operating system and develop there. Either
way, it�s usually easy to set up a develop-
ment environment for the RTOS you want
to use.

Also, by doing the software develop-
ment in C and isolating OS-dependent API
features in a single module or using macros
defined in header files, it�s possible to write
applications that are relatively portable
between RTOS architectures.

To learn more about writing software
for a particular RTOS, check out the docu-
mentation. It�s usually full of example code
illustrating how to use the specific APIs.
Also many RTOSs provide on-line examples,
which you can compile and run to illustrate
certain features about an RTOS�s API.

Now, you�ve got the software down.
Next month, we�ll move on to take a look
at some GUIs used in real-time embedded
PCs. RPC.EPC
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Fred Eady

Embedding PC Card
Part 2: Getting in Touch

You�ve got a service console with no ports for a printer, display, keyboard, or
mouse. How do you talk to this thing? Using diagnostic code, a PC Card, and a
touchscreen controller, Fred puts together an interface that�s just what you need.

Last time, we examined the innards of
PC Card technology. Hopefully, you saw
how beneficial PC Cards can be to em-
bedded solutions.

Although some of you may design PC
Cards, most of us won�t be building PC
Cards for our embedded solutions. Instead,
we usually procure PC Cards for embedded
applications as the need arises.

With that in mind, let�s take a look at an
embedded touchscreen application that
employs a PC Card coupled with an
embedded PC.

TOUCHING ON THE PROBLEM
Many times, the applications we write

aren�t doing the real work. Sometimes, it�s
necessary to implement code that supports
the overall embedded solution but that
isn�t part of the main program or applica-
tion. In this case, the supporting code is
diagnostic code intended to help the field
engineer identify and repair peripheral
hardware connected to the core embed-
ded system.

In a standard environment, this diag-
nostic code can be loaded from existing
magnetic media and manipulated via key-
board or mouse. In an embedded environ-
ment, the keyboard and mouse may not
exist. There may not be any spinning disks
in the area, either.

Let�s assume that we know these extra
goodies don�t exist and we can design an
embedded system with diagnostic capability
that matches the limits or absence of hard-
ware in the final embedded hardware suite.

The first question to be answered is how
to interface the technician to the hardware. If
external test equipment is required
and no special hardware ports
exist to connect the test equip-
ment, the usual route is to plug
stuff into existing serial or par-
allel ports on the embedded PC.

But what if the available ports
are all being used? If the embedded
PC needs to talk to remote devices, at
least one of the serial ports is most likely  an
interface to a modem.

It�s also possible that the embedded appli-
cation may need to provide printed output.
A printer could use either the second serial
port or tie up the standard parallel port.

If I designed the application, the paral-
lel port would probably be doing unnatural
things in the I/O world, and if print was
desired, I�d use the remaining serial port.
Depending on the location
of the embedded de-
vices, there may
not be

Photo 1�Any-
one for touchscreen?

MicroTouch�s Serial/SMT
controller converts capacitive

CRTs into touchscreens.
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enough service area
to  attach and use a stan-

dard PC keyboard or mouse.
Many embedded applications

don�t require a display, but in this
case, we need a service console.

Assuming this solution isn�t one of a kind,
it would be impractical to have the field
technician carry a display from site to site.

Depending on the application software,
you may need a display anyway. Either way,
the display ends up being the only user
interface, so we must use it to its fullest
capacity functionally and diagnostically.

OK. So far, it�s clear. The embedded
design will most likely use all of the avail-
able standard I/O and there is but one
user interface port�the display.

Last time, I talked about how PC Cards
could be thrown into an embedded system
to enhance their usability. To provide
suitable diagnostic capability, this embed-
ded solution needs extra I/O, which can
be provided by including PC Cards in the
initial design. Using a PC Card and the
appropriate driver, we can now effect
almost any type of I/O interface our diag-
nostic routines require.

It stands to reason that
if we can generate any
type of I/O interface we
need by simply plugging
in a PC Card, we can
use any piece of test
equipment to trouble-
shoot problems with the
embedded system. That�s
great if you have an
unlimited budget. Good
test equipment costs lots
of money. And, if your
product is in the field,
there�s probably more
than one technician ser-
vicing it. More money.

The good news�you
probably have all the test
equipment you need in
your embedded suite. All you have to do is
write code to enable it. External test equip-
ment is necessary if the problem lies in the
embedded hardware itself, but the testing
and exercising of peripheral equipment
connected to the embedded I/O ports can
be tested with user-written routines that exist
within the embedded PC�s firmware.

Within the boundaries of our embedded
system, we know that the only user diag-
nostic port is the display because no key-
board, mouse, or external test equipment
can be attached. Other than talking to the
display (like Scotty did when cooking up
some transparent aluminum), there�s only
one other means of manipulating diagnos-
tic routines via CRT�touch.

REACH OUT AND MICROTOUCH
A company called MicroTouch produces

the touchscreen technology I�ll use in this
diagnostic application. MicroTouch spe-
cializes in the conversion of standard CRTs
and flat-panel displays to touchscreens.
MicroTouch offers controllers for both ca-
pacitive and resistive touchscreens.

Because this solution is embedded and
specific, I�m not going to consider most of
the controller configurations you see in
Table 1, but I thought you�d like to know all
the possibilities. Table 1 is the entire list of
MicroTouch touchscreen controllers, includ-
ing name, technology supported, and mount-
ing options. Let�s take a look at each one.

The Serial/SMT controllers are RS-232
serial controllers. The controller can be inter-
nally mounted in a standard monitor or
enclosed in a molded plastic case, which
is typically mounted to the back or side of
the monitor. This is the configuration I�ll use,
and the touchscreen controller is mounted
inside the CRT.

The daughterboard controller is a CMOS
serial add-on board that can be mounted
onto an embedded CPU board. This option is
normally taken when you wish to integrate

Table 1�Looks like if you can see it, you can touch it.

Controller Technology Mounting

Serial/SMT2 Capacitive External or internal
Serial/SMT3 Capacitive External or internal

Serial/SMT3V Capacitive External or internal
Serial/SMT3R Resistive External or internal

Serial/SMT3RV Resistive External or internal
Serial/SMT2 Capacitive On CPU board

Daughterboard
Serial/SMT3V Capacitive On CPU board
Daughterboard
PC Bus SMT2 Capacitive In 16-bit PC expansion slot

PC Bus SMT3V Capacitive In 16-bit PC expansion slot
PC Bus SMT3RV Resistive In 16-bit PC expansion slot

TouchPen 4 Capacitive Internal
Digitizer

TouchPen 4+ Capacitive Internal
Digitizer

MousePort Capacitive External or internal
Chipsets Capacitive Integrated into the design

Resistive of your system board
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the daughterboard controller onto a sys-
tem board you�re designing from scratch.

The PC Bus controller is a half-slot bus
card that is installed in systems capable of
accepting standard PC-bus cards. If the
embedded PC for this solution was ISA-slot
capable, this option would be a good choice.

The PC Bus controller has its own serial
communications port, which enables you
to use existing embedded COM ports for
external peripherals. The touchscreen cable
connects to the port on the controller.

The TouchPen controller offers the same
features as the Serial/SMT capacitive control-
ler, with the addition of pen support. The
controller can accept touch input from a
finger or touch pen.

This RS-232 serial controller is designed
to easily fit inside flat-panel displays and
CRTs. Unlike the Serial/SMT controller shown
in Photo 1, which can be mounted internally or
externally, the TouchPen controller is always
mounted internally.

The MousePort controller has an attached
8′, six-pin mini-DIN PS/2 connector. This
option is worth considering because you can
connect this controller to a PS/2 mouse
port, leaving extra serial communication
and bus slots available for peripherals.

Chipsets are available if you want to
integrate a MicroTouch touchscreen con-
troller directly into your own circuitry. These
chipsets include an optimized controller
circuit that can be used with a MicroTouch
capacitive or five-wire resistive touchscreen.

That about does it for the hardware I�m
writing diagnostic code for. The application
calls for PC Card capability and a touch-
screen diagnostic interface. And because
I am going to use MicroTouch touchscreen
controllers, I also know the PC Card inter-
face must be RS-232.

So, I�ll select a serial PC Card with the
necessary drivers to implement the touch-
screen serial interface. As you can see, using
PC Card technology has taken much of the
complexity out of the design, enabling us
to concentrate on the application at hand�
building a touch-based diagnostic interface.

KEEP IN TOUCH
The diagnostic application consists of

placing targets on the touchscreen that corre-
spond to diagnostic routines. Once a target is
touched, the diagnostic software is notified
by the touchscreen controller and the
touched diagnostic routine is kicked off. To
effect this, it�s pretty obvious that the soft-
ware must communicate with the touch-
screen controller. Let�s see how that�s done.

Commands to the touchscreen control-
ler are provided via the diagnostic soft-
ware on the Receive Data (RXD) signal pin
as a serial datastream. This software must
also be capable of receiving responses
from the touchscreen controller.

Touchscreen-controller responses are
data sent from the controller to the embed-
ded host system in response to the commands

received by the touch-
screen controller. These re-
sponses to the embedded host
system are provided on the trans-
mit data (TXD) signal pin.

To successfully send a command to
the controller, it�s imperative that you use
the correct command format. The general
format is broken into three parts�header,
command, and terminator.

The header is the first character in the
command string and is the ASCII start-of-
header character <SOH>. The ASCII <SOH>
character is equivalent to 01 hexadecimal.

The command, which always follows
the header, consists of ASCII uppercase
letters and numbers. The terminator, the last
character of each command string, is an
ASCII carriage return <CR>, which is
equivalent to 0D hexadecimal.

Thus, a standard MicroTouch touchscreen
controller command looks like <SOH>
Command<CR>. After executing a command,
the controller returns a response or acknowl-
edgment to the embedded host system.

Similar to the outbound commands, each
touchscreen-controller response consists of
a header, command response, and termi-

Reset <SOH>R<CR>
AutoBaud Disable <SOH>AD<CR>
Parameter Set <SOH>PN812<CR>
Format Decimal <SOH>FD<CR>
Mode Stream <SOH>MS<CR>

Listing 1�It really is this simple to initialize the touchscreen controller. Impressive, huh!
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nator in the same for-
mat as the outbound

touchscreen-controller com-
mand that emanates from the

embedded host system.
The header and terminator in the

response string are identical to their
counterparts in the outbound command
sequence. The response, which always
follows the header, is a little different. It�s
a range of ASCII characters that depend
on the type of command received.

Responses can be in many forms. An
example of a standard response is <SOH>
0<CR> (ASCII character �0� or 30 hexadeci-
mal), which indicates successful command
completion. When this response is returned
to the embedded host system, the touch-
screen controller received a valid com-
mand and executed the command properly.

On the dark side of that, <SOH>1<CR>
(ASCII character �1� or 31 hexadecimal)
indicates that the command failed. When
this response is returned, the controller
received an invalid command and did not
execute the command. If this happens,
usually the command wasn�t formatted cor-
rectly, system parameters weren�t set up for

command execution, or the touchscreen
controller doesn�t support the command.

You now have enough background on
the embedded hardware and the Micro-
Touch touchscreen controller to visualize the
diagnostic application software routines.
All we have to do is send the appropriate
commands to the touchscreen controller
and interpret the responses. Depending on

the received response, we initiate particular
diagnostic routines. With that, let�s exam-
ine the MicroTouch command set shown in
Table 2.

Take a look at a command sequence for
initializing a touchscreen controller (see
Listing 1). The first command�Reset�
initializes the touchscreen-controller hard-
ware and firmware. On receiving this
command, the controller stops sending data
and recalculates environmental conditions.

Reset also cancels the Format Raw
and Calibrate Raw commands and
returns the controller to normal operation.
Reset should be issued whenever the
embedded host system is powered on and
is attempting to establish communication
with the touchscreen controller.

Depending on the controller, the amount
of time needed to execute Reset ranges
from 225 to 800 ms. Therefore, we must
code the diagnostic application program
to wait and then be sure it receives a positive
command response before issuing another
command to the touchscreen controller.

The AutoBaud Disable command
follows Reset. AutoBaud Disable turns
off the automatic data-rate�detection fea-
ture. When AutoBaud is disabled, the
touchscreen controller maintains the com-
munication rate currently set in nonvolatile
RAM (NVRAM). The touchscreen controller
continues to use this communication rate
until it is changed by the Parameter Set
or AutoBaud Enable command.

Once AutoBaud is disabled, the logi-
cal thing to do is set the desired communi-
cations parameters. Parameter Set lets
you adjust the communication parameters

Photo 2�Here�s a good example of Mode Stream. Notice the datastream is continuous when I
hold my finger in one place.
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(parity, data bits, and stop bits) of the
touchscreen controller.

You can also change the communica-
tion rate by appending a character to the
command string. On execution of Param-
eter Set, the controller automatically
stores the new settings, current operating
mode, and current data format in NVRAM.

Just one gotcha. The communication pa-
rameters of the embedded host system must
match the present settings of the touchscreen
controller when the command is given for it to
be accepted and the changes implemented.
Otherwise, we�re spittin� into the wind.

Thus, the process of changing the param-
eters implies that our embedded host system
must first communicate with the touchscreen
controller using a matched set of parameters.
Once Parameter Set is issued with new
parameters to the touchscreen controller,
the new settings immediately take effect.

At this point, our embedded host must
be changed to the new parameters to talk
with the touchscreen controller again. If we
don�t follow these rules, we could wind up

in the ditch with no way to communicate
with the touchscreen controller.

The good news�there�s a way out of the
ditch. MicroTouch provides a diagnostic
tool called Microcal that could be used to
winch us out. You can download Microcal
from the MicroTouch Web site.

Parameter Set is pretty straightfor-
ward. Its command syntax is:

<SOH>Ppds[b]<CR>

where p is parity type (N is no parity, O is
odd, and E is even), d equals the number
of data bits (7 or 8), s is the number of stop
bits (either 1 or 2), and b stands for the
communication rate. The communication rate
is expressed by 1 equaling 19,200 bps, 2
as 9600 bps, 3 as 4800 bps, 4 as 2400 bps,
and 5 as 1200 bps.

The next command causes the touch-
screen controller to output the x,y touch
coordinate data as a nine-byte packet in a
decimal format. The packet consists of
nine bytes arranged as:

SMT3, SMT3RV
ASCII SMT2 PC Bus SMT3RV SMT3, SMT3R TouchPen 4

Command Name  Code PC Bus SMT2 PC Bus SMT3V MousePort TouchPen 4+

Default Settings N72, 9600 N72, 9600 N81, 9600 N81, 9600
AE, FD, MS (AD/AE), FC, MS FT, MS FT, MS, PF

AutoBaud Disable AD X
AutoBaud Enable AE X
Calibrate Extended CX X X X X
Calibrate Interactive CI X X
Calibrate New CN X X
Filter Number FNnn X X
Finger Only FO X
Format Binary (Stream) FB(S) X X
Format Decimal FD X X
Format Hexadecimal FH X X
Format Raw FR X X X X
Format Tablet FT X X X X
Format Zone FZ X X
Frequency Adjust <Ctrl C>Fnn X
Get Parameter Block GPn X X X X
Mode Down/Up MDU X X
Mode Inactive MI X X
Mode Point MP X X
Mode Polled MQ X X
Mode Status MT X X
Mode Stream MS X X X X
Null Command Z X X X X
Output Identity OI X X X X
Output Status OS X X
Parameter Lock PL X X
Parameter Set Ppds(b) X X
Pen Only PO X
Pen or Finger PF X
Reset R X X X X
Restore Defaults RD X X X X
Sensitivity Set SEn X X
Set Parameter Block SPn X X X X
Unit Type UT X X
Unit Type Verify UV X

Table 2�Wow! This command set is powerful and easy to remember.
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• one header byte
• three bytes of x-coordinate data
• an ASCII comma
• three bytes of y-coordinate data
• a terminator byte

Data is sent as a string of decimal ASCII
characters (0�9). The output range for the
x and y data is 000�999.

When activated, Format Decimal re-
sets the Mode Status to report the stan-
dard <SOH> header. Resetting to the standard
header implies that Format Decimal does
not contain touchdown and liftoff informa-
tion like Format Tablet.

To obtain this type of information, the
Mode Status command is issued:

<HDR>Xxx,Yyy<CR>

Let me go through each command. <HDR>
is the start-of-header marker (hex 01). If
you send a Mode Status command after
a Format Decimal command, this first
byte becomes a status byte. The status byte
defines whether the x,y coordinates are
generated from a touchdown, a touch con-
tinuation (when the finger is resting on the
screen), or a touch liftoff.

Xxx stands for the x (horizontal) coor-
dinate data. It has a total of three bytes.
Then, there�s an ASCII comma separating
the x data from the y (vertical) coordinate
data, which also has a total of three bytes.
Finally, <CR> is the terminator (hex 0D).

The final command in our init string is
Mode Stream, which instructs the touch-
screen controller to send a continuous stream
of x,y coordinate data on touch. The con-
troller continues to send data as long as the
user touches the screen, even if the touch
is stationary and unchanging.

I�ve pretty much touched on every aspect
of enabling the diagnostic software, so let�s
put it together and assemble the application.

TOUCHING UP
You know me. The first thing I con-

nected to the touchscreen was an RS-232
datascope. I wanted to see the bits flow.

After playing, I decided I�d rather per-
form some commands and capture the
results on the datascope�basically, emu-
late the diagnostic program�s outbound
command sequence�than describe bit
flow. To effect this emulation, I put the
datascope in RS-232 monitor mode and
tapped into the datastream flowing be-

tween the MicroTouch touchscreen and
the PC Card-enabled embedded PC.

Photo 2 is the result. The DTE side of the
trace is outbound data from the PC Card
serial port, and DCE data is from the
touchscreen controller.

I said earlier that a reset sequence should
be done on powerup. Well, look closely.
At the beginning of the trace, the DTE issues
<sh>RD<cr>, which translates to <start
of header>Restore Defaults<car-
riage return>. Restore Defaults
copies the MicroTouch factory-default pa-
rameters from ROM to the NVRAM and
then executes Reset.

Notice the right side of the DCE trace.
The touchscreen controller gives a positive
acknowledgement with <sh>0<cr>. As
you scroll right, you see three more DTE
commands, followed by controller ACKs.

The fun begins just after the Mode
Stream command. That�s when I touched
the screen. Just like the MicroTouch tech
manual says, I got nine bytes of position
info starting with <sh> and ending with
<cr>. As you move through the trace, you
can see that I moved my finger and then
held it there.

TOUCH AND GO
Now you have it all with a means of

getting position data from a MicroTouch
touchscreen via a PC Card serial port. All
that�s left to do is to place some targets on
the touchscreen and poll for coordinates
tied to particular diagnostic routines.

Once again, we�ve proven that it doesn�t
have to be complicated to be embedded.
APC.EPC
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the performance
differences.
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From the Bench

Silicon Update

DEPARTMENTS

4

o far in this
MicroSeries, I’ve

given you a look at
the most common causes

of electrical transients affecting elec-
tronic equipment and systems. These
threats include lightning, electrical fast
transients/bursts, and electrostatic
discharge.

I’ve shown you their waveforms
and specifications, which provided a
starting point for designing protection
for circuits and systems. After all, the
first step in protection is to understand
what you’re protecting against.

Last month, I discussed two classes
of protection components—crowbar and
clamp. Arcing devices are of the crow-
bar class, but MOVs are of the clamp-
ing class. And of course, both classes
have advantages and disadvantages.

In this installment, I continue by
looking at more components used to
protect against transient threats—the
ubiquitous zener diode, TVS thyristors,
TVS diodes, and positive temperature
coefficient resistors. I also compare
the performance of zener diodes to
TVS diodes and MOVs. And, I present
a specification table of the devices I’ve
talked about.

Of course, my list of transient
protection devices is by no means
complete. There are many more tran-
sient-suppression components. I’m
simply attempting to present the
most commonly used and easily ob-
tainable devices.

3
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ZENER DIODES
The inherent characteristics of

zener diodes make them popular as
transient suppressors. Used within their
limits, zener diodes provide good protec-
tion against some transient threats.

Zener diodes have a high impedance
in the off state. When conducting (i.e.,
in the on state), they clamp the shunt
voltage to a maximum zener voltage,
Vz, by dramatically reducing their
impedance. Although zener diodes are
directional, they can be placed back to
back as shown in Figure 1 to give a
bidirectional VI characteristic curve.

Zener diodes are available in low
clamping voltages, well below 5 V.
Their transition from the off state to
the clamping or on state is relatively
fast and hard. This is in contrast to
MOVs, which have a soft transition to
the on state. Zener diodes turn on in
only a few nanoseconds. Unlike MOVs,
zener diodes do not degrade when
used within their ratings.

Because of these characteristics,
zener diodes are one of the few compo-
nents suitable for protecting individual
ICs and I/O lines, particularly for low-
voltage applications. However, like all
clamping devices, zener diodes exhibit
capacitance and draw leakage current
in the off state. Depending on your
application, this could be a problem.

Since zener diodes are clamping
devices, they must absorb the transient
pulse energy and dissipate it as heat.
Recall from last month, I mentioned
that a MOV dissipates the transient
throughout its total area, whereas a
zener diode must dissipate the transient
energy at its junction.

A special class of zener diodes
designed to absorb short-duration high-
energy pulses is also available. To
increase their power-handling capabil-
ity, these zener diodes have large
junction areas.

Like any suppression device, zener
diodes exhibit overshoot. This is nor-
mally due to a transient with a dv/dt
too fast for the zener diode to follow
or due to lead inductance that delays
the turn on of the zener diode.

Since zener diodes have such fast
turn-on times, they can follow most
transients. However, zener diodes have
problems with electrostatic discharge

(ESD). The rising edge of an ESD wave-
form as set out in the test specifica-
tions is less than 1 ns.

When subjected to an ESD, zener
diodes exhibit enough overshoot to
cause concern. I’ll take a more careful
look at this when I compare zener
diodes and TVS diodes.

When a zener diode dissipates a
transient, its junction temperature
increases. There is a finite time required
for the junction temperature to return
to its steady-state value.

If a zener diode were subjected to
repetitive surges, there would be a
surge-repetition frequency at which
the zener diode could not dissipate the
heat from the previous surge before the
next surge arrived. This raises the
zener diode’s temperature above the
steady-state value, thereby reducing its
maximum power-handling capability.

This is not unique to zener diodes.
MOVs and in fact all other clamping
devices exhibit this behavior, although
it’s somewhat more pronounced in
zener diodes. I discuss this phenom-
enon further in the TVS-diode section
of this article.

TVS TERMINOLOGY
The term “transient voltage sup-

pressor” can be applied to any of the
protection devices we have seen so far.

However, TVS normally refers to a
specialized class of zener diodes or
thyristors. TVS diodes and thyristors
are devices whose characteristics are
tailored to the suppression of voltage
transients.

TVS THYRISTORS
A TVS thyristor is a monolithic

device consisting of an SCR-type thy-
ristor whose gate region contains a
specially diffused region that behaves
like a zener diode. The combination of
the zener diode’s fast turn on and the

thyristor’s current-handling capability
makes the TVS thyristor a unique and
useful protection device.

The construction of the TVS thyris-
tor is shown in Figure 2. Note the N-P-
N-P construction and the zener-diode
gate region. The VI curve of the TVS
thyristor is shown in Figure 3. The
thyristor’s VI curve is similar to other
crowbar devices except that the TVS
thyristors has a zener voltage, Vzener.

The TVS thyristor is normally used
across the line to be protected and
ground. As long as the voltage across
the device does not exceed Vzener, the
device is in the off or high impedance
state. When the voltage across the
TVS thyristor exceeds the avalanche
breakdown voltage, the zener diode
clamps the voltage at Vzener. This ac-
counts for the TVS thyristor’s fast
turn on, (e.g., low-nanosecond range).

Once the zener diode starts conduct-
ing, current flows into the gate of the
thyristor and causes the thyristor to
begin conducting. When the thyristor
is fully conducting, the device is in
the low-voltage region of its VI curve.

In effect, the thyristor once turned on
by the zener diode diverts current away
from the zener diode, thereby giving the
device higher current capabilities than
a lone zener diode would have. Once
the surge has passed, the current in
the TVS thyristor must fall below the
holding current, IHold, before the device
returns to it high impedance state.

TVS thyristors can be unidirectional
or bidirectional with voltage ratings of
25–270 V. TVS thyristors do not degrade
with applied transients as MOVs do.

Their fast turn on means that they
have low overshoot, unlike the large
overshoot associated with gas tubes.
When using TVS thyristors or any crow-

Figure 1 —By placing two zener diodes back to back,
we get a bidirectional VI curve. The transition region
has some jagged edges, which delays the turn-on time.
But since zeners are relatively fast devices, this charac-
teristic normally isn’t a problem.

Figure 2 —Here’s how a TVS thyristor surge suppres-
sor is constructed.
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bar devices in DC circuits, ensure that
the short circuit current is less than
IHold. Otherwise, the device won’t turn
off. The holding current of TVS thyris-
tors is fairly high (e.g., 130-mA range).

Since TVS thyristors are crowbar
devices, they have better current-han-
dling capabilities than MOVs but not
as good as gas tubes. When TVS thy-
ristors fail, they usually fail as shorts.
Consider fusing them in some manner.

TVS thyristors have relatively low
shunt capacitance and low leakage cur-
rents when in the off state. They are
used mainly for telecommunications
applications.

TVS DIODES
TVS diodes are often referred to as

silicon avalanche suppressors, and they
are produced by several manufacturers.
Basically, they’re very large junction
zener diodes specifically designed for
transient suppression. The most attrac-
tive characteristic of these devices is
their extremely fast turn-on time (e.g.,
subnanosecond range).

Avalanche breakdown occurs in
picoseconds, but due to lead inductance
and test equipment limitations, it’s
difficult to quote actual picosecond
turn-on time. The extremely fast
response of TVS diodes means there’s
very little voltage overshoot in com-
parison to other suppression devices.

The clamping voltage, Vc, for TVS
diodes ranges from 3 to 400 V, making
them ideal for protecting individual
ICs. Since they are clamping devices,
they do not have high-current handling
capabilities, but at the individual IC
level, this is not an issue.

Unlike MOVs, TVS diodes do not
degrade when subjected to transients.
TVS diodes come in unidirectional or
bidirection configurations. The IV
curve for a typical TVS diode is quite
similar to that of the zener diode.

Like most other protection devices,
TVS diodes are normally employed
across the line to be protected and
ground. The TVS diode, like the TVS
thyristor, has low shunt capacitance
and low leakage currents when in the
nonconducting state.

When a surge across the devices
causes the TVS diode voltage to reach
its breakdown voltage, the TVS diode
clamps to Vc almost instantaneously
(i.e., in less than a nanosecond). Any
overvoltage is normally due to lead
inductance.

Power ratings for TVS diodes range
up to 5 kW on a 10/1000 surge and up
to 400 W on a 8/20 surge. These power
ratings are derived from the product of
the peak voltage across the device and
the peak current conducted through
the device.

If TVS diodes are subject to pulses
other than 8/20 or 10/1000, their power
ratings must be adjusted. Figure 4 shows
a typical device pulse power rating
versus pulse width graph for a TVS
diode rated for 1000 W on a 10/1000
waveform.

As would be expected when the TVS
diode is subjected to a 10/1000-µs pulse,
it can dissipate 1000 W of transient
pulse energy. If the pulse width is
greater than 1000 µs, the power rating
of the TVS diode is deceased. Likewise,
if the pulse width is less than 1000 µs,
the power rating of the TVS diode is
increased.

Figure 3 —The VI curve of a TVS thyristor is similar to
other crowbar devices. However, the TVS thyristor turns
on faster due to the zener-diode action.

Figure 4 —When TVS diodes are subject to
pulse widths other than the 10/1000 µs, their
power ratings must be adjusted. This graph
shows a typical derating for a 1000-W TVS
diode. At 1000 µs, the TVS handles a peak
pulse power of 1000 W (its rating). As the
pulse width increases, the power rating de-
creases, and as the pulse width decreases, the
power rating increases.
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This behavior can be seen in all other
clamping devices. Since peak pulse
power is peak current multiplied by the
clamping voltage (which is constant
after overshoot), the maximum peak
current the device can handle varies
directly with the applied transient
pulse width.

TVS diodes, like clamping devices,
dissipate the transient as heat and trans-
fer that heat to the ambient environ-
ment. Therefore, ambient temperature
determines the amount of power a TVS
diode can dissipate. The higher the
ambient temperature, the lower the
power rating, as illustrated in Figure 5.

The rating for peak pulse power is
given for a single pulse, but what hap-
pens if the TVS diode is subjected to
repetitive pulses such as electrical
fast transients/bursts (EFT/B)?

The key is whether or not the repeti-
tive pulses raise the device’s tempera-
ture, thereby requiring derating as
shown in Figure 5. For example, con-
sider a TVS diode with a clamping volt-
age (Vc) of 10 V subjected to a pulse
train with a pulse width of 10 µs, pulse
amplitude of 100 A (Ip), and pulse period
of 10 ms.

Peak pulse power (Ppp) is the clamp-
ing voltage multiplied by the peak
current:

Ppp = Vc × Ip

= 100 A × 10 V
= 1000 W

The average power (Pavg) would be
the peak pulse power times the ratio
of the on and off times of the pulse
train:

Pavg = Ppp
Ton
Toff

= 1000
10 µs
10 ms

= 1 W

A TVS diode with a steady-state
power rating of 1 W or higher is able to
handle the repetitive surges without
having its power specification derated.

TVS diodes are the fastest suppres-
sion components and therefore exhibit
the lowest overshoot of any suppression
components. TVS diodes also have low
leakage current and low capacitance
in the off state. The combination of
these factors makes TVS diodes the
device of choice when protecting
individual IC and low-level I/O lines.

ZENER VS. TVS DIODES
As we have seen, the transient

suppression devices that have a hard
and fast transition from the off to the
on state rely on the zener/avalanche
phenomena. TVS diodes are a special
class of zener diodes.

However, the significant difference
between zener diodes and TVS diodes
is in their junctions’ ability to dissi-
pate heat. TVS diodes are specifically
designed for very fast heat dissipation
at their PN junctions.

On the other hand, zener diodes are
designed for voltage regulation, which
does not require fast heat dissipation
at their junctions.

Recall that both devices are clamp-
ing devices that must dissipate transient
energy as heat. The faster the heat
transfers out of the PN junction, the
larger the surge current the device can
handle and still maintain a low junction
impedance, thereby reducing overshoot.
This is extremely important when
protecting circuits from ESD.

When we are dealing with transients,
the peak pulse power is important—
not the average power-handling ability.
For this reason, it is possible for a 1-W
TVS diode to provide better protection
than a large 50-W zener. By the time
the heat even begins to travel through

Figure 5 —This graph shows a typical percent of power
versus operating temperature curve for a TVS diode.
Most TVS diode power ratings are specified at 25°C. If
the TVS diode is operated at temperatures above 25°C,
its power rating must be derated.

the package of the ordinary zener diode,
the transient may be long gone.

An experiment to test this was
performed using a 6-V zener diode and
a 6.8-V TVS diode. Both devices were
subjected to a simulated 5.568-kV
ESD waveform.

The voltage across the zener diode
reached 144 V before it clamped. As
Lee points out, the TVS diode clamped
when the voltage across it was only
33.5 V.

Since most ICs can withstand a
momentary ESD of ~200 V, both devices
provided protection. However, a person
walking on carpet can easily build up
a charge greater than 20 kV, which is
much more than the 5.586 kV used in
the test and much too large for the
zener to provide protection.

POSITIVE TEMPERATURE
COEFFICIENT RESISTORS

I would like to briefly mention one
last component—the positive tempera-
ture coefficient (PTC) resistor. A PTC
resistor has low resistance at room
temperature.

As the current through the PTC
resistor increases, its temperature
increases. When the device’s temperature
reaches the Curie temperature (between
50°F and 120°F), the resistance of the
PTC resistor increases dramatically.

When the current through the PTC
resistor is reduced, the temperature
returns to normal and the resistance
of the PTC resistor returns to its low
level. PTC resistors are essentially
self-resetting fuses. These devices are
intended for applications where a fuse
would be a nuisance.

Be careful, however, because the
PTC resistors may not return to their
original resistance after they cool
down. This could be a problem in
sensitive analog circuits.
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Table 1—In order to select transient-suppression components, you need to compare their critical specifications.
Note there is always a tradeoff to be made when selecting components.

Turn-On Leakage Current Capacitance Voltage Current
Time Off Off Clamping On

MOV  50 ns 5–250 µA 10–60,000 pF 14–1200 V 4 A–60 kA
TVS diode <1 ns 0.5–10 µA 10–10,000 pF 3–440 V up to 50A
TVS thyristor Few ns 50 nA 50 pF 25–270 V >3 kA
Zener diode Few ns 1-1000 µA 100 pF  3–275 V up to 200A
Gas tube 100 ns 1 × 10–20 A 1–5pF 0.1–<10 kV >20 kA
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Using a PTC resistor as a transient
suppressor is quite simple. An incoming
transient increases the voltage across
the PTC resistor, which leads to an
increase in both the current through and
the temperature of the PTC resistor.

When the PTC resistor’s temperature
reaches the Curie temperature, the
dramatic increase in the PTC resistor’s
resistance protects against the incom-
ing transient.

The problem with using PTC resis-
tors for transient suppression is that
they are far too slow to protect against
transients. By the time the device’s
temperature increases to the Curie
temperature, the transient is long gone.
In fact, with ESD, the transient is very
fast, but the energy content—its abil-
ity to heat—is relatively small.

Table 1 gives a summary of the pro-
tection components are most com-
monly used to protect equipment and
circuits from transient induced EMI.

There is always a tradeoff made
when you select a component. Your
protection scheme therefore normally
requires several of these components
placed at different points in the circuit
and/or equipment. You wouldn’t use a
coarse protection device such as a gas
tube to protect an IC. Nor would you
expect that a TVS diode could handle
a lightning strike.

Also important are the off-state
parameters of the transient-suppression
devices. Some parameters are more
important depending on the type of
circuit or system you need to protect.

For example, when you need to
protect digital lines, the leakage current
of the device isn’t a major concern.
However, you do need to think about
the device capacitance and lead induc-
tance. They tend to round the edges of
the digital signals.

If you’re protecting an A/D input,
the leakage current of the device in the
off state may cause an expensive 16-bit
ADC to be an expensive 10-bit ADC.

Table 1 offers a general guide. The
values given are only typical. Also,
review datasheets carefully to deter-
mine the test conditions.

For example, the device junction
capacitance varies with the applied
reverse bias. The greater the reverse
bias, the less the capacitance. The

device capacitance also varies with
the test frequency, which ranges from
1 kHz to 1 MHz. And given that:

Xc = 1
2πfc

then there is a 1000× difference.
For current and power ratings, be

sure you understand the test waveforms
used to determine the ratings. Was an
8/20, 100/1000, or another pulse used?

PUTTING THEM TOGETHER
When designing for transient protec-

tion, it’s important to consider each
device’s characteristics. Next month,
I’ll look at protection scheme that takes
advantage of the strengths of each
suppression component while account-
ing for their weaknesses. I
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FROM THE
BENCH

Jeff Bachiochi

i

Rebirth of
the Z8

It’s been
a while
since
Jeff got
up close

and personal with
Zilog’s Z8 micros. He
almost forgot how
comfortable this old
friend can be. Part 1
brings us up to date
with the Z8 family
developments.

lost my jacket.
Well, that’s not

exactly true. I still
know where it is. It’s just

that the outside temperature while
I’m writing this has once again reached
the mid-40s and I don’t need it. Even
though it’s now midwinter, the snow
has melted, the lake has thawed, and
it feels like spring.

I tried to continue running indoors
on a treadmill this winter because the
weather outside made our roads un-
safe, but I haven’t been able to keep
up the enthusiasm. It’s just not the
same as running outdoors.

Getting dressed this morning, how-
ever, I noticed my running shoes quietly
resting right where I left them after my
last run, but this morning was different.

Like the trees who are thinking
about budding and the geese who keep
circling wondering whether it’s now
time to fly north, I’ve got my mind on
warmer weather. (Of course, it has
nothing to do with the fact that I
weighed myself twice this morning
thinking the scale was in error.)

Slipping on those running shoes
felt good. You know, like old friends.
Like that old shirt hanging in the
closet—you wonder why you haven’t
tossed out until you put it on and
remember just how comfortable it is.

We all keep things from the past
just because of the comfort they bring

us. It doesn’t have to be clothing. It
might be a knickknack, baseball cap,
motorcycle phone, or some old photo
of you back home. Point is, if you’ve
had a pleasant experience in the past,
the feeling is easily rekindled by a
simple object or thought.

YOU NEVER FORGET YOUR FIRST
My first experience with computers

was so distracting that I became its
slave to unusually late hours. Only
stopping for a quick catnap, I must
have perfected a dozen routines that
first night. I was hooked.

You couldn’t separate me from my
first computer. It took quite a while
before I got the urge to open it up and
get inside. What’s a Z80? It meant
nothing at the time.

Zilog was started by some Intel
employees with an alternate vision. I
thank them for the years of pleasure
they gave me with the gray box. The
open architecture provided many
adventures. And, as you know, I chose
to let microcontrollers take up much
of my life.

Steve had begun designing with
microcontrollers (called microcomputers
back then) in the early ’80s. Again,
the name Zilog appeared and I imme-
diately had this warm fuzzy feeling.
This time it was a Z8. Over that year,
I cut a few new teeth on the Z8.

Some of you might remember an
article I did back in INK 36 on the Z8
(“Breathing New Life Into an Old
Friend—Revisiting the Z8”). Having
come across some early 2- and 4-KB
Z8 circuitry, I explored how it still fit
into the larger applications appearing
at the time.

It’s been only in the last few years
that designers have been willing to look
hard at the benefits of smaller solu-
tions—other than the obvious fact that
smaller pieces of silicon cost less.
Now, manufacturers have begun to sit
up and take notice of a steadily increas-
ing movement of designers toward the
use of smaller “picocontrollers” (i.e.,
controllers that don’t require the typi-
cal external code and data space).

Recently, Digi-Key started distrib-
uting Zilog parts. What’s even more
interesting is that these new OTP parts
have affordable development tools.

Part 1: An Old Friend Comes To Visit
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Are these Z8 parts new? Truth is, my
preliminary datasheets of the Z86C08
(an 18-pin part), for example, are dated
April 1988.

Although OTP is new to Zilog, the
Z8 architecture has been around a long
time. The problem with the original
18-pin parts is that they were available
as ROM parts only. You had to have a
rather big project before you would
consider working with the part.

Now, however, OTP parts let us
code a project using a small Z8 with-
out incurring the masking costs and
volume buys necessary, making it finan-
cially feasible to use masked parts.

BOTTOM UP VS. TOP DOWN
When chip designers today have no

product base, they are free to design
from the bottom up. Because they use
the latest technologies, innovative
designs naturally capture every new
user’s attention.

On the other hand, chip designers
with an already well-established prod-
uct line can easily manipulate existing
winners into new forms to take advan-
tage of a market’s most recent direction.
This top-down approach is comfortable
for all involved. There’s little educa-
tion necessary for that core audience.

When I consider new parts to work
with, I want to know two things—one,
that there are (small quantity) parts
available, and two, that development
tools are priced reasonably.

Well, someone at Zilog has seen
the light. They’re hitting hard via
product exposure in new markets as

well as the one closest to home—the
Internet.

NOT NEW, JUST DIFFERENT
For those of you already familiar with

the Z8, you can pass Go and wait by
your mailbox for next month’s column
while I spend some time this month
laying down a Z8 foundation.

Figure 1 shows the memory map of
the Z8 microcontroller. Since the
program counter is 16 bit, a full 64 KB
of code space is available, although
only 0.5–16-KB OTP parts are avail-
able now and can be programmed
with the low-cost emulator.

My point here is the family uses
only one core and path with all parts
using the same 46 instructions. The
program or code space begins at 0000H
with six predetermined two-byte
interrupt vectors.

The location of the first byte of the
instruction to be executed after reset
is 000CH. (Larger parts like the Zilog
8671 with BASIC/Debug masked into
the first 2 KB use external code and data
spaces requiring external address latch
and memory devices. This setup re-
quires two 8-bit ports for external
addressing. The smaller OTP parts use
only internal code space and therefore
don’t need any of the I/O ports for a
multiplexed address/data path.)

Internal register space consists
of 256 consecutive bytes, which
include up to 239 general-purpose
RAM registers, up to four 8-bit I/O
port registers, and up to 16 control
and status registers.

Unlike other processors where
you have a single accumulator or
data pointer, any of the Z8 general-
purpose registers can function as
accumulators or address or index
pointers. These registers can work
as 8 bit or in pairs as 16-bit registers.

Another option is to treat groups
of 16 registers as banks allowing
shorter instructions that work
within a 4-bit address. Figure 2
shows the Z8’s internal register
organization.

Stack operation uses as little or as
much of the general-purpose RAM as
the user wishes to set aside. Although
registers 254 and 255 are used as the
16-bit stack pointer, only 255 is needed
when you use the internal general-
purpose registers for the stack (it’s an
8-bit address).

Stack operations can be two-byte
addresses, as with a CALL, one-byte
values, as with a PUSH/POP operation,
or three bytes, as with an interrupt
(which saves both the return address
and the FLAGS register). The stack
grows downward.

Most bits within the port I/O regis-
ters can be configured as both inputs
and outputs. Many have alternate
functions such as analog comparator,
interrupt or counter/timer inputs, or
handshaking I/O.

Z8 counter/timers are eight-bit pro-
grammable. They can be driven exter-
nally or by the internal clock and its
six-bit prescaler. The counters can start,
stop, and be set to autoreload the
initial value. Each counter/timer can
run in single pass or continuous mode.

The internal clock source for T1 can
be externally retriggerable, nonretrig-
gerable, or gated. Reading the counter/
timer registers does not disturb their
value or count.

Figure 1 —Zilog’s OTP cores begin at 1⁄2 KB and
presently extend to 16 KB of internal code space.

Interrupt
Vector

(Upper Byte)

Location of
first byte of
instruction

executed
after reset

12
11
10

9
8
7
6
5
4
3
2

0

IRQ5
IRQ5
IRQ4
IRQ4
IRQ3
IRQ3
IRQ2
IRQ2
IRQ1
IRQ1
IRQ0
IRQ0

511/1023/2047/
4095/8191/16383

On-Chip ROM

Interrupt
Vector

(Lower Byte)

Dec
255
254
253
252
251
250
249
248
247
246
245
244
243
242
241
240

127

4
3
2
1
0

Stack Pointer (Bits 7–0)
Stack Pointer (Bits 15–8)

Register Pointer
Program Control Flags
Interrupt Mask Register

Interrupt Request Register
Interrupt Priority Register

Ports 0–1 Mode
Port 3 Mode
Port 2 Mode
To Prescaler

Timer/Counter 0
T1 Prescaler

Timer/Counter 1
Timer Mode

Serial I/O

Not
Implemented

General-Purpose
Registers

Port 3
Port 2
Port 1
Port 0

Hex
FF
FE
FD
FC
FB
FA
F9
F8
F7
F6
F5
F4
F3
F2
F1
F0

Identifier
SPL
SPH
RP
FLAGS
IMR
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IPR
P01M
P3M
P2M
PRE0
T0
PRE1
T1
TMR
SIO

Figure 2 —The Z8 general-purpose registers
contain I/O ports, RAM, and control registers.
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Table 1—Many of these simple instructions have multiple addressing modes, yielding a multitude of permutations.

Mnemonic Operands Action

Load Instructions
CLR dst load dst with zero
LD dst,src load dst with src

LDC dst,src load dst with constant
LDCI dst,src load dst with constant and increment dst and src
LDE dst,src load dst with external data src
LDEI dst,src load dst with external data src and increment dst and src
POP dst load dst with stack value

PUSH src load stack with src

Arithmetic Instructions
ADC dst,src add (using carry) src to dst
ADD dst,src add src to dst
CP dst,src compare src with dst
DA dst decimal adjust on dst (BCD data)

DEC dst decrement dst (byte)
DECW dst decrement dst (word)

INC dst increment dst (byte)
INCW dst increment dst (word)
SBC dst,src subtract (using carry) src from dst
SUB dst,src subtract src from dst

Logical Instructions
AND dst,src logically AND src and dst
COM dst complement src
OR dst,src logically OR scr and dst

XOR dst,src logically XOR src and dst
TCM dst,src logically AND the src and the complement of dst altering dst
TM dst,src logically AND the src and the dst without altering dst

INSTRUCTION SET
The Z8 instruction set has 43 in-

structions which can be divided into
six groupings: load (8), arithmetic (10),
logical (6), program control (6), rotate
and shift (6), and CPU control (7).

Each instruction has up to two
operands associated with it. Instructions
with no operands perform a function
one specific way. Single-operand in-
structions perform a function using a
source or destination operand in one
or more of the addressing modes.

Double-operand instructions can
perform a function applying the source
operand to the destination operand
using a combination of one or more of
the addressing modes. Some double-
operand instructions (for program
control) are based on condition codes
(as you’ll see later on). These instruc-
tions are listed in Table 1.

ADDRESSING MODES
Instruction-wise, this set is not so

overwhelming. Its flexibility becomes
apparent when you understand the
various ways in which many of these
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odd locations, whereas 16-bit register
pairs always begin on an even address.

When you’re working within a
register group (a group of 16 sequential
registers), addressing can be simplified
by using just four bits to point to any
one of those 16 registers within that
working-register group.

The Z8 knows which group you are
working with by the value stored in
the RP register (R253), which is the
working (group) register. Using the
working registers is generally an op-
tion for optimizing your code.

Direct addressing is used by the
conditional JUMP and CALL instruc-
tions. This destination is a 16-bit
address loaded into the PC (program
counter) to redirect the program flow.
Figure 3a shows an example of direct
addressing.

Relative addressing is similar to
direct addressing in that it redirects
program flow. Instead of using a direct
16-bit destination address to replace
the 16-bit value in the program counter,
a direct 8-bit destination value is
added to the PC.

Mnemonic Operands Action

Program-Control Instructions
CALL dst push PC onto stack and load PC with dst
DJNZ r,dst decrement r and jump to dst if r NOT zero
IRET pop flags and PC from stack
JP cc,dst conditional load PC with dst
JR cc,dst conditional add dst to PC

RET pop PC from stack

Rotate and Shift Instructions
RL dst rotate dst left

RLC dst rotate dst left through carry
RR dst rotate dst right

RRC dst rotate dst right through carry
SRA dst shift dst right into carry most significant bit remains unchanged

SWAP dst swap dst nibbles

CPU Control Instructions
CCF complement carry flag
DI disable interrupts
EI enable interrupts

NOP no operation
RCF reset carry flag
SCF set carry flag
SRP src set register pointer with scr

instructions can be used with various
addressing modes.

The Z8 has six possible addressing
modes—direct, relative, indirect,
register, indexed, and immediate.

Although most addressing is done
through the eight-bit register file,
multiple registers can be used to con-
tain larger 16-bit words. Eight-bit
registers can occur at both even and

(Table 1—continued)
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INSTRUCTION TIMING
The Z8 processors accept RC, LC,

crystal, ceramic resonators, or exter-
nal clock drive and run at speeds up to
16 MHz (depending on the part). The
on-chip oscillator is divided by two to
produce one instruction cycle.

Instruction completion time re-
quires a minimum of three instruc-
tion cycles for each fetch and three for
each execution cycle (even for single-
byte instructions). The first instruc-
tion requires a fetch and an execution
cycle, whereas the following instruc-
tions are executed one after the next,
thanks to pipelining. Pipelining pre-
fetches the next instruction while the
last one is executing.

Three-byte instructions require an
extra fetch cycle to be added. When
the PC is changed by an instruction,
the pipe is automatically flushed and
the next instruction takes an addi-
tional fetch cycle to refill the pipe.
Most instructions take only six instruc-
tion cycles, but CALL (the longest
instruction) takes 20 instruction cycles
due to extra stack manipulations.

Figure 3e gives you a picture of indexed
addressing.

The last mode, immediate address-
ing, can only be used as source data
because it is essentially a constant
predefined in the code memory area.
An example of this mode is shown in
Figure 3f.

SALUTING THE FLAG
If it weren’t for the status flags in

every microcomputer, little process-
ing would actually be done. Z8 flags
reside in the flag register (R252) and
consist of six process flags and two
user flags. From most to least signifi-
cant bits, they are carry, zero, sign,
overflow, decimal adjust, half carry,
user2, and user1.

In addition to these flag bits, there
are 16 condition codes, which can be
used for conditional jumps. Although
all the flags are covered within the
conditional codes, the extra codes
make life easier by giving conditions
for both signed and unsigned values
greater than, greater than or equal to,
less than, and less than or equal to.

This value is actually a two’s com-
plement signed displacement in the
range of –128 to +127. Therefore, the
program flow only moves a short
distance relative to where it was prior
to the instruction. Figure 3b gives you
a relative addressing example.

The next three addressing modes
can be used for either source or desti-
nation data. Indirect addressing uses
an 8-bit pointer to find the 8-bit address
of the register of interest or a 4-bit
working register pointer to find a 16-bit
address of the program or data memory
location of interest. See Figure 3c for
an indirect addressing example.

Register addressing, illustrated in
Figure 3d, is the simplest form of
addressing. An 8-bit address points to
the 8-bit register of interest.

Indexed addressing is similar to
register addressing and used solely
with the load instruction. However,
an offset is first added to an 8-bit
address, which then points to the
8-bit register of interest. The offset (or
index) is found at a location pointed
to by a 4-bit working register pointer.
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Program Memory
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8-Bit Register
File Address

Value Used in
Instruction Execution

Operand

Opcode
One-Operand

Instruction
Example

Register File

Program Memory

Address

Opcode
dst/src          x

Points to One of the
Working Registers

Two-Operand
Instruction

Example

RP

Address
Value

Offset
Value

Value Used in
Instruction Execution

Offset 40H
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Instruction
Execution
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Figure 3 —You can address memory by direct addressing (a), relative
addressing (b), indirect addressing (c), register addressing (d), indexed
addressing (e), or immediate addressing (f).
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Jeff Bachiochi (pronounced“BAH-key-
AH-key”) is an electrical engineer on
Circuit Cellar INK’s engineering staff.
His background includes product design
and manufacturing. He may be reached
at jeff.bachiochi@circuitcellar.com.
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ADDITIONAL FEATURES
The CMOS I/O can source 2 mA

and sink 12 mA while safely staying
within logic output specification, even
though the maximum current can be
much higher. Internal brownout pro-
tection places the Z8 in reset if VCC

drops below ~3 V.
No external reset is necessary be-

cause power-on reset delays execution
~70 ms. An independent internal watch-
dog timer is available to restart opera-
tions should execution stray from its
normal course.

Halt and Stop modes allow the Z8
to reach standby currents of milliamps
and microamps, respectively.

The Z8 has a flexible interrupt struc-
ture. You may choose to use vectored
(and prioritized) interrupts or poll the
interrupt request register directly.
Nested interrupts are also allowed.

UP TO SPEED
The Z8 comes from a company that

was founded back in ’74 and that
within a year introduced the Z80 to
the world. The Z80 rapidly became

the most popular and best-selling
microprocessor in the world.

Based on its big brother, the Z8 was
first produced as an NMOS device.
Later, in the ’80s, the CMOS process
was introduced and now OTP parts
are available.

The flexible addressing modes of the
Z8 enable coding shortcuts like context
switching via working register groups.
Load and increment instructions pro-
vide for block moves with an absolute
minimum of coding.

The open use of the stack for passing
parameters to and from subroutines is
a welcome sight. And, the ability to
prioritize interrupts reduces coding
within the interrupt routines.

The Z8’s instruction set lends itself
well to multiply, divide, conversion, and
BCD arithmetic algorithms. Now with
OTP parts and low-cost tools, Zilog
has become a force to be reckoned with.

We’re now through with introduc-
tions. Next month, I’ll start a simple
project using one of the OTP members
of the Z8 family of processors. If you
want more info now, visit the Zilog

Web site and download some of the
available Z8 tools.

In the meantime, my week of mid-
winter Indian summer must be over.
It’s now more like the winter I know—
it’s starting to snow. Guess I’ll need
my jacket after all. I
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SILICON
UPDATE

Tom Cantrell

h

VolksArray

Xilinx’s
Spartan
reminds
Tom of a
VW Bug—

simple, good value.
However, it also
offers the style and
good design of a
high-end Porsche. It
even provides user
RAM and a flexible
interconnect system.

ave you heard
that Volkswagen’s

introducing a new
Beetle?

I still remember my first car, Dad’s
hand-me-down ’63 VW Bug. Yeah,
with something on the order of 60 hp,
it wasn’t a speed demon (probably just
as well). It had other notable foibles
as well, including a rubber-band–like
shifter and a heater that didn’t.

Yet, the Beetle’s simplicity and
purity of purpose overcame all. Lack
of amenities like power anything, air
conditioning, a cooling system, and so
forth simply meant less to break. And
if a problem did occur, it was usually
cheap and easy to fix or even ignore. I
once went a couple of weeks relying
on solo push starts. Don’t try that
with your SUV!

Though perhaps
remembered for
its cuteness, in
fact, the Beetle’s
legacy is much
more profound. It

was the first economy car (both in terms
of price and operating cost) that could
reach deep into the middle class, with
used ones trickling down to poor stu-
dents, surfers, hippies, and the like.

What’s all this reminiscing got to
do with silicon? Let’s check out the
recently introduced line of economy
FPGAs from Xilinx, and I think you’ll
see the connection.

GO SELL THE SPARTANS
Referring to ancient Greek tough

guys (males were drafted at age 7), my
encyclopedia observes that “the word
Spartan has since become a byword
for endurance and rugged simplicity,”
words aptly describing that ’63 bug—
and the new chips from Xilinx shown
in Photo 1.

Until now, reflecting the inexorable
onward and upward march of silicon,
most FPGA activity has been focused
at the high end. Indeed, the same Xilinx
press kit includes the announcement
of their Virtex line, touting 0.25-µm
five-layer metal chips that deliver
millions of gates and 100+ MHz.

Of course, such capabilities don’t
come cheap, with rarefied prices into
the hundreds and thousands of dollars.
Targeting bleeding-edge signal-process-
ing and reconfigurable-computing
apps, performance-at-any-price FPGAs
are the equivalent of a 911 Turbo.

By contrast, pricing for the Spartan
line busts the single-digit barrier with
volume projections, making FPGAs
an option for the huge middle class of
cost-sensitive high-volume designs.

Just as the VW shared more than a
bit of heritage with the pricey Porsche,

Photo 1 —High pin count
yet small form-factor
plastic packages are key
parts of the Spartan cost-
cutting equation.
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you’ll find that the Spartan repackages
the essence of the FPGA concept, while
cutting sticker price to the bone.

AIR COOLED
Table 1 summarizes the lineup,

which consists of various permutations
of logic and I/O density, duplicated in
5- and 3.3-V (XL) versions. Cost savings
start with plastic packages from 84 to
256 pins.

To ease migration, packages are
footprint compatible across logic
density. For instance, a single 100-pin
layout can accommodate an XCS05,
’10, ’20, or ’30.

Although it may not have the chrome
and tail fins of a high-end FPGA like
the XC40125XV (560 pin, $1500!), a
look under the hood reveals a lot of
similarity (see Figure 1). Both chips
rely on a matrix of configurable logic
blocks (CLBs) surrounded by
a ring of I/O blocks (IOBs,
one for each pin), all lashed
together with a three-tier
(single-length, double-length,
and long lines) program-
mable interconnect.

Additional circuits handle
start-up initialization of the
SRAM switches that define
the logic and interconnect.
The internal state, including
SRAM and other key nodes,
can be read back unobtru-
sively (i.e., during normal
chip operation) for in-system
debug. The chip also sup-
ports JTAG (IEEE 1149.1)
boundary scan as an alterna-
tive debug and configuration
mechanism.

Though fewer in number,
the Spartan CLBs (see Figure
2) match the sophistication

of those found in upscale FPGAs. Each
CLB comprises a pair of four-input
function generators feeding a third
three-input function generator.

The function generators are imple-
mented as simple SRAM look-up tables
(LUTs). For example, the four-input
function generators are essentially
16 × 1 SRAMs, with the inputs serving
as address lines and the output reflect-
ing the logic function. For instance, a
four-input AND is achieved by storing
a 1 at address 1111 and a 0 at 0000–
1110, and a four-input OR by storing a
0 at address 0000 and a 1 at 0001–1111.

One benefit of the scheme: the delay
(i.e., SRAM access time) is the same
regardless of the function programmed.
For example, turning AND and OR
into NAND and NOR is simply a
matter of complementing the SRAM
data, rather than adding an inverter.

The output of the CLB is via a pair
of signals (x and y) made available in
both combinatorial and registered form.
The latter uses a pair of flip-flops which
offer a degree of flexibility even though
they share common clock (CK), clock
enable (EC), and set/reset (SR) lines.

For instance, although the clock is
common, each flip-flop can be indepen-
dently configured to trigger on the
rising or falling edge. Similarly, the
active-high SR input can be configured
to either set or reset each flip-flop
independently. The clock enable can
be left disconnected at either or both
flip-flops, in which case it defaults to
enabled.

In between the input and output, a
number of multiplexers do their best
to get the signal you want where you
want it. One mux selects between
direct (i.e., SR and DIN) or function

generator (F-LUT, G-LUT)
inputs to the H-LUT. Com-
binatorial output choices
are limited to F-LUT or H-
LUT for the x output and
G-LUT or H-LUT for y.

However, for registered
outputs, 4:1 muxes steer
any of the three LUT outputs
or DIN to either flip-flop.
Furthermore, though not
shown in Figure 2, each CLB
is fronted by four general-
control inputs (C1–C4), any
of which can drive any or
all of the direct inputs SR,
H1, DIN, or EC.

Put it all together, and you
find the CLB is rather agile
in the turns. Obviously, it
can handle two functions of
four inputs and a third of
three inputs (corresponding
directly with the G-, F-, and

Table 1—The new Spartan line from Xilinx, featuring 5- and 3.3-V (XL) versions from 5k to 40k gates, positions FPGA technology squarely in the high-volume application arena.

Max. Typical
Logic System Gate Range CLB Total Max. Price Projection

Device Cells Gates (Logic and RAM)* Matrix CLBs Flip-flops User I/O Packages ’XL 100k ’99

XCS05 (XL) 238 5000 2000–5000 10 × 10 100 360 80 84, 100 $2.95
XCS10 (XL) 466 10,000 3000–10,000 14 × 14 196 616 112 84, 100, 144 $4.45
XCS20 (XL) 950 20,000 7000–20,000 20 × 20 400 1120 160 100, 144, 208 $5.45
XCS30 (XL) 1368 30,000 10,000–30,000 24 × 24 576 1536 192 100, 144, 208, 240, 256 $6.95
XCS40 (XL) 1862 40,000 13,000–40,000 28 × 28 784 2016 224 208, 240, 256 $9.90

*Note: Max. values of Typical Gate Range include 20–30% of CLBs used as RAM.

Figure 1 —Despite entry-level pricing, Spartan’s architecture, comprising configurable
logic blocks (CLBs), I/O blocks (IOBs), and programmable interconnect, isn’t stripped
by any means.
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frustrating to have the CLBs you need
but no way to get at them. Fortunately,
Spartan doesn’t skimp on the wiring.

There are eight horizontal and eight
vertical single-length lines for each CLB.
They provide fast and flexible connec-
tion between adjacent CLBs, but accu-
mulating switch delays rule them out
for longer distances. Similarly, each
CLB has four horizontal and four ver-
tical double-length lines that run
twice as far between switches.

Long lines form a grid of intercon-
nect segments running the entire length
and width of the CLB array. Each line
has a programmable splitter halfway
that can turn it into two independent

routing channels, each traversing half
the array. Also, every CLB includes a
pair of tristate buffers that can drive
onto adjacent horizontal long lines,
which facilitates the creation of bidi-
rectional or multiplexed buses.

Additional lines (eight double-length
and four long) ring the chip to connect
CLBs and IOBs. They help decouple pin
assignment from logic so the pinout
can remain locked across design changes
or be tweaked to facilitate PCB layout.

For clocks and other high fan-out
control signals, global buses (four verti-
cal lines in each CLB column) are
driven by primary and secondary buffers.
Primary buffers connect to dedicated
pins and offer the least skew, whereas
secondary buffers connect to either
dedicated pins or internal logic.

Finally, each CLB has carry-in and
carry-out lines that weave their way
from one corner of the chip to the other.
This logic greatly improves performance
for arithmetic functions like adders,
comparators, and counters.

WHERE THE PIN MEETS THE PAD
Once the logic and interconnect are

worked out, the IOBs (see Figure 3),
one for each pin, come into play.

With two wires (I1 and I2) available,
inputs can be routed directly to inter-
connect, via an input register, or both.

Figure 2 —The CLB is the heart and soul of FPGAs. It’s composed of three SRAM-based look-up tables (LUTs) and
two flip-flops connectable in a myriad of ways. Not shown in this simplified view are additional selectable input
sources and dedicated carry chains.

H-LUTs). However, clever wiring lets
a CLB alternatively deliver any function
of five inputs, any function of four in-
puts, plus some functions of six inputs,
and even some of up to nine inputs.

RAM CHARGER
One big advantage Spartans have

over competing econo-chips (including
Xilinx’s own XC5200) is the specific
provision for user RAM.

It’s ironic that although they were
built on the foundation of SRAM, the
earliest FPGAs could barely deliver a
few bytes when needed for an on-chip
FIFO, register file, or constant (e.g.,
filter coefficient table). The designer
might have to blow a whole CLB for just
a few inelegantly brute-forced bits or,
worse, take a costly excursion off-chip.

By contrast, Spartan incorporates the
Select-RAM concept pioneered on the
upscale XC4000, in which a CLB is
decomposed to expose its SRAM under-
pinnings. Relying on the function gen-
erator LUTs for storage, a CLB can be
configured as one or two 16 × 1 RAMs, a
32 × 1 RAM, or a 16 × 1 dual-port RAM.
In fact, the Spartan Select-RAM betters
that on the original XC4000 with syn-
chronous timing that eases design and
speeds access.

Although it’s not dense or cheap by
memory IC standards, the Spartan’s
ability to pack at least a weekend’s
worth of RAM will prove popular when
designers come in to kick the tires.

WIRING HARNESS
Copious and flexible interconnect

is critical for efficient utilization. It’s
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Figure 3 —I/O blocks feature programmable registered, combinatorial, TTL/CMOS level, slew rate, and pull-up options.
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I  R  S
428 Very Useful
429 Moderately Useful
430 Not Useful

The input register can be
configured as either a level-
sensitive latch or edge-
triggered flip-flop. An
optional delay can be in-
serted to allow zero hold
time for the input relative
to the global clock.

Similarly, either a direct
or registered output (0) can
be delivered to the pin and
optionally inverted. The
individual output can be
tristated with an active-
high or -low control signal
(T), while a dedicated
global tristate signal (GTS)
turns off all outputs.

Each flip-flop can be
individually configured to
set or clear after powerup
and in response to the GSR (global
set/reset) signal. Much like the CLB,
the clocks for each flip-flop are sepa-
rate and invertible, whereas the clock
enable, though common, can be dis-
abled at either or both flip-flops.

Input and output levels are separately
programmable as either TTL or CMOS
(i.e., rail to rail), with the resulting
compatibility matrix shown in Table
2. There’s also an output slew-rate
control to trade off switching speed
for reduced power and noise spikes.

The slew rate is automatically
limited after powerup, when all out-
puts are simultaneously driven to
their initial state. Also, unused pins
are automatically pulled up to reduce
noise sensitivity and minimize power
consumption.

YOUR MILEAGE MAY VARY
Part of the Xilinx marketing premise

is that FPGAs can encroach on the low
end of the gate-array market. According
to Dataquest, nearly half of gate-array
design starts are 50k gates or less, and
thus subject to attack by the Spartans.

However, gate count is the ASIC and
FPGA equivalent of MPG (or MIPS for
CPU chips). Drive with a lead foot (i.e.,
sloppy design) and you get one number.
Drive downhill with a tailwind and tires
inflated to 60 PSI (i.e., artificial example)
and you get another.

To help make sense of it all, I put
in a call to a local expert on the subject.

Thanks to Phil Freidin (fliptron@
netcom.com) for sharing his consider-
able FPGA experience and insight.

The most optimistic (i.e., snake
oil) interpretation of gate count is to
imagine how many gates it takes to
duplicate the FPGA. For instance, the
four-function generator could be built
with banks of AND, OR, and XOR
gates plus an inverter.

However, the count would also
include all the configuration SRAM
(about 500 bits per CLB), not to mention
the multiplexers and other support logic
that isn’t accessible to the designer.
Fortunately, even the most aggressive
marketer knows that overstating real-
ity by about 10× won’t fly.

Even ignoring support logic, the
Select-RAM feature introduces its own
bias. As mentioned, it’s easy to blow a
lot of gates brute-forcing RAM onto a
chip with no specific provision for it.
That’s the reason for Table 1’s note.
Compared to a no-RAM ASIC, the Spar-
tan equivalent gate count increases to
the degree you use the Select-RAM.

Comparison within the Xilinx
product line is easy enough using CLB
count. However, competitors have
introduced their own flavors of FPGAs
that offer logic blocks of differing
complexity. Enter the concept of logic
cells, roughly equivalent to a four-
function generator plus flip-flop.

According to Phil, in ASIC terms a
logic cell is worth about 16 gates (6–8

for four-input LUT plus 8
for a flip-flop with CE and
S/R). RAM takes about
four gates per bit. And,
don’t overlook the fact
that JTAG is worth about
70–100 gates per pin.

Plugging in the num-
bers for the Spartan chips,
I come up with something
close to the middle of the
claimed gate-count range.
To Phil, optimistic gate-
count specs are often
best interpreted as “guar-
anteed not to exceed.”

One thing that’s for
sure is you’ll get more
gates for less bucks today
than yesterday (and tomor-
row than today). When I

wrote my first article about FPGAs way
back in ’89 (“Beyond ASICs,” INK 10),
prices were about 10 cents per gate.
Today, it’s about 10 gates per cent!
The new Beetle may well qualify as
an economy car, but I guarantee it
won’t cost less than the old one.

 Ultimately, gate mileage and even
the prospects for acceptance of FPGAs
in mainstream designs depend as much
on tools as the chips themselves. Next
month, we’ll take a look at FPGA tool
trends and see what it takes to jump
start your design. I

Table 2—Most applications interface requirements can be met, thanks to the availability of 5-
and 3.3-V (XL) versions and programmable TTL or CMOS I/O levels.

Spartan Spartan-XL
TTL (5.0 V) CMOS (5.0 V) CMOS (3.3 V)

Source Inputs Inputs
  Any device, VCC = 3.3 V Y Unreliable data Y
    CMOS outputs
  Spartan series, VCC = 5 V Y Unreliable data Y
    TTL outputs
  Any device, VCC = 5 V Y Unreliable data Y
    TTL outputs (Voh <= 3.7 V)
  Any device, VCC = 5 V Y Y Y
    CMOS outputs

Destination Outputs Outputs
  Any device, VCC = 3.3 V Y Some* Y
    CMOS-threshold inputs
  Any device, VCC = 5.0 V Y Y Y
    TTL-threshold inputs
  Any device, VDD = 5 V Unreliable data Y Unreliable data
    CMOS-threshold inputs

*Note: Only if destination device has 5-V tolerant inputs.
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What You Get with a Handshake

i  had a very interesting dinner last night with a distributor salesman and a couple manufacturers’ representa-
tives. For those of you who aren’t familiar with the relationships, the simplest description is that a distributor sells

and a rep facilitates. Distributors stock many competing components and, except for very high-volume purchases,
they are the place where you physically spend the money when you order parts. Like cross-brand car dealerships, if you

walk in the door to look at a BMW and choke at the price, they have little hesitation to lead you over to the Buicks they also sell. Their
sales approach is oriented toward building dealership loyalty rather than strict brand loyalty.

Manufacturers’ reps facilitate the sale of a specific brand. When you check a bingo card, fill out a literature request, or otherwise ask
for specific product information, your name and vital statistics are sent to the manufacturer’s rep for that product in your geographical
area. Even though the datasheets may come to you directly, generally you can expect a call from the manufacturer’s rep. His job is to
help you find brand loyalty. If he comes to you because you asked about Teccor triacs, Teccor expects that he’s not going to talk to you
about the Motorola triacs even though he might also represent Motorola.

For an engineer, getting product information and samples are important. Years ago, unless your literature requests had a major
company name on it, they would be ignored. You might get a call from a rep, but the first question had to do with your intended volume
rather than your intended application. For many of us, it was tough to get the parts we needed.

This obvious discrimination was the result of thinking that only $100-million companies ever design something with a product volume
of interest. Fortunately, the advent of personal computers changed that assumption. Traditionally, only large companies could afford to
design products that might be manufactured in volume. The advent of low-cost personal-computer–based design and development tools
ultimately made physical location and company name less relevant.

When I mentioned this at the table, everyone agreed that what I described was a historical fact but they also believed the situation
was quite different today. What I found interesting was that the catalyst for change was basically the same for all of them. The typical
story always seemed to involve some seedy-looking guy with a parts list. He has this little widget he’s putting together but can’t get a
distributor to sell him a few pieces or a manufacturer’s rep to take him seriously. Finally, the guy finds a bunch of parts from nontraditional
sources and makes his product. Later on, when requests for pricing this widget in 20-million quantities are floating around the industry,
everyone comes to find out that he was designing it for Milton-Bradley in his basement. Of course, the design is locked in, and most of
them are locked out.

They went around the table laughing as they described similar experiences where a little guy turned out to be something unex-
pected. Today, they’re very careful not to prejudge a customer’s qualifications simply by appearances.

Today, information and product support is abundant. Call distributors like Hamilton Hallmark or Future Electronics, and they have
ways to satisfy small orders. Additionally, outside salespeople have become more knowledgeable. The good ones aren’t just order takers.
They complement traditional reps without as much brand prejudice. So, now that it all seems to be working well, what happens in the
future?

Much to my surprise, they were concerned. Both reps and salespeople applauded the instant availability of manufacturer datasheets
via the Internet. It certainly reduced the workload of satisfying requests. However, the anonymity of most of these requests was a major
concern. While a distributor probably still gets to sell parts, the rep justifies his existence by appearing to enhance brand loyalty among
the contacts he makes. If the majority of sales appears to be straight from anonymous Internet download to production order, who needs
reps?

The picture isn’t all that clear for the distributors, either. Without them specifically admitting it, I think their nemesis is high-volume
catalog outfits. Distributors feel they add personal service and support to sales. Catalog outfits just take orders and ship. Distributors hate
to compete with catalog pricing.

For the most part, I agree with them. I believe very much in distributor loyalty if not always in brand loyalty. Whatever the prognosis,
history has taught us to expect the unexpected. I can’t wait for the next episode.


