
CELLAR
CIRCUIT
T H E C O M P U T E R A P P L I C A T I O N S J O U R N A L

®INK

$3.95 U.S.
$4.95 Canada

 # 96 J U L Y 1 9 9 8

MEASUREMENT
AND CONTROL
Protect Yourself from
Calibration Errors

An 8-bit AC Power Meter

Using FreeDOS
for Development

Which ’486 is for You?

E
M

BEDDEDPC
M

ONTHLY SECTION

2 Issue 96 July 1998 Circuit Cellar INK®

Professional Quirks

TASK MANAGER

j ust this week, Elizabeth and I were laughing
about how eccentric editors are. We do things like

argue about commas, apostrophes, and whether the
button name on a GUI should be in Letter Gothic or

Trump Mediaeval fonts. Essentially, it seemed to both of us
that editing is the sole profession that encourages perfectionism, obses-
sive-compulsive behavior, and hypersensitivity. In other words, to be a
good editor, you have to care a lot about a lot of little things.

Similarly, engineering encourages some rather unusual idiosyncra-
sies. Just take a meander to your coffee room—no, I stand corrected—your
Coke machine. If two engineers happen upon the poor unsuspecting
machine at the same time, what do they talk about? You’ve got it: how
many milliseconds it takes to execute 70,000 lines with 64 KB of memory.
Never mind that they can’t do anything in milliseconds, the computer can.
But, in fact, that’s not good enough, so let’s talk microseconds. When can
we advance to picos? Engineers get their Coke because their discussions
of faster and faster speed with yet less power have the poor machine
trembling in fear. It imagines itself spewing cans at a rate of 17,000,000 per
picosecond if the engineers but wish it.

The engineer’s penchant for control gets even more exaggerated
when you move into software. There you have an inflexible grammar that
refuses to cooperate at all unless your variables are referenced exactly and
your punctuation is just so. And, should there be any question about what
is intended, just look to the top of the code. Everything is defined quite
explicitly. They even tell you what library they got their source from.

When you look at all the oddities of engineers and editors, it’s a
wonder you get any creativity out of either professional. But, there you have
it: one of the Seven Wonders of the World. You weigh power and time and
make wonderfully useful widgets, while I weigh grammar and sentence flow
and make people laugh or think.

This issue is a perfect example of what I’m talking about. The issue is
about measurement and control, but in nearly all of the articles, the
engineer author applies these concepts specifically to a design or problem
that they’re fighting with. Take Mike Smith’s article. In it, Mike shows how
storing decimal numbers as binary can get you into some very messy
calibration errors. Rick May builds a power meter that gives him feedback
about where the inordinate load comes from. Carol Hovenga Fancher starts
a two-part series on smart cards, while Dan Cross-Cole uses an ADC board
in conjunction with his PC to measure and fix radon levels in his basement.

In EPC, Pascal Dornier finishes his survey of ’486 technology (he
promises an overview on Pentiums at a later date). Ingo applies networked
communication to RTOS applications, and Fred wraps up his virtual-tools
series with a real-world application.

Pat Villani completes his MicroSeries on FreeDOS by running us
through an airline ticketing application, Jeff applies a little assembly
language to Steve and his alarm monitor, and Tom looks at a new 8-bit
wonder that’s selling for less than 50¢.

And there you have it—a lot of creativity, all focusing on measurement
and control.

T H E C O M P U T E R A P P L I C A T I O N S J O U R N A L

®INK
EDITORIAL DIRECTOR/PUBLISHER
Steve Ciarcia

EDITOR-IN-CHIEF
Ken Davidson

MANAGING EDITOR
Janice Hughes

TECHNICAL EDITOR
Elizabeth Laurençot

WEST COAST EDITOR
Tom Cantrell

CONTRIBUTING EDITORS
Ingo Cyliax
Fred Eady
Rick Lehrbaum

NEW PRODUCTS EDITOR
Harv Weiner

ASSOCIATE PUBLISHER
Sue (Hodge) Skolnick

CIRCULATION MANAGER
Rose Mansella

BUSINESS MANAGER
Jeannette Walters

ART DIRECTOR
KC Zienka

ENGINEERING STAFF
Jeff Bachiochi

PRODUCTION STAFF
John Gorsky

James Soussounis

Cover photograph Ron Meadows – Meadows Marketing
PRINTED IN THE UNITED STATES

For information on authorized reprints of articles,
contact Jeannette Walters (860) 875-2199.

Circuit Cellar INK® makes no warranties and assumes no responsibility or liability of any kind for errors in these
programs or schematics or for the consequences of any such errors. Furthermore, because of possible variation in
the quality and condition of materials and workmanship of reader-assembled projects, Circuit Cellar INK® disclaims
any responsiblity for the safe and proper function of reader-assembled projects based upon or from plans, descriptions,
or information published in Circuit Cellar INK®.
Entire contents copyright © 1998 by Circuit Cellar Incorporated. All rights reserved. Circuit Cellar INK is a registered
trademark of Circuit Cellar Inc. Reproduction of this publication in whole or in part without written consent from Circuit
Cellar Inc. is prohibited.

CONTACTING CIRCUIT CELLAR INK
SUBSCRIPTIONS:

INFORMATION: www.circuitcellar.com or subscribe@circuitcellar.com
TO SUBSCRIBE: (800) 269-6301 or via our editorial offices: (860) 875-2199

GENERAL INFORMATION:
TELEPHONE: (860) 875-2199 FAX: (860) 871-0411
INTERNET: info@circuitcellar.com, editor@circuitcellar.com, or www.circuitcellar.com
EDITORIAL OFFICES: Editor, Circuit Cellar INK, 4 Park St., Vernon, CT 06066

AUTHOR CONTACT:
E-MAIL: Author addresses (when available) included at the end of each article.
ARTICLE FILES: ftp.circuitcellar.com

CIRCUIT CELLAR INK®, THE COMPUTER APPLICATIONS JOURNAL (ISSN 0896-8985) is published monthly by
Circuit Cellar Incorporated, 4 Park Street, Suite 20, Vernon, CT 06066 (860) 875-2751. Periodical rates paid at
Vernon, CT and additional offices. One-year (12 issues) subscription rate USA and possessions $21.95,
Canada/Mexico $31.95, all other countries $49.95. Two-year (24 issues) subscription rate USA and
possessions $39, Canada/Mexico $55, all other countries $85. All subscription orders payable in U.S. funds
only via VISA, MasterCard, international postal money order, or check drawn on U.S. bank.
Direct subscription orders and subscription-related questions to Circuit Cellar INK Subscriptions,
P.O. Box 698, Holmes, PA 19043-9613 or call (800) 269-6301.
Postmaster: Send address changes to Circuit Cellar INK, Circulation Dept., P.O. Box 698, Holmes, PA 19043-9613.

ADVERTISING
ADVERTISING SALES REPRESENTATIVE

Bobbi Yush Fax: (860) 871-0411
(860) 872-3064 E-mail: bobbi.yush@circuitcellar.com

ADVERTISING COORDINATOR
Valerie Luster Fax: (860) 871-0411
(860) 875-2199 E-mail: val.luster@circuitcellar.com

janice.hughes@circuitcellar.com

Circuit Cellar INK® Issue 96 July 1998 3

ISSUE
INSIDE

Unplanned Calibration Errors in Embedded Systems
Mike Smith

A PIC-Based AC Power Meter
Rick May

Designing for Smart Cards
Part 1: What’s a Smart Card All About?
Carol Hovenga Fancher

Using a PC for Radiation Detection
Modifications for Multichannel Analyzer Capability
Dan Cross-Cole

I MicroSeries
FreeDOS and the Embedded Developer
Part 2: Using the Kernel
Pat Villani

I From the Bench
An Alarming Improvement
Part 2: Assembly Language Takes the Race
Jeff Bachiochi

I Silicon Update
The Micro Price is Right
Tom Cantrell

2

6

8

95

 96

EM
BE

DD
ED

PC
12
22
28

58

66

74

80

36 Nouveau PC
edited by Harv Weiner

40 ’x86 Processor Survey
Part 2: ’486-Class Embedded CPUs
Pascal Dornier

45 RPC Real-Time PC
Network Communication
Ingo Cyliax

52 APC Applied PCs
A New View
Part 3: Sensors and Measurement Tools
Fred Eady

www.c i rcu i tce l lar .com
★ ★ ★ ★ ★ July’s Password: Power ★★★★★

9696

Task Manager
Janice Hughes

Professional Quirks

Reader I/O

New Product News
edited by Harv Weiner

Advertiser’s Index/
August Preview

Priority Interrupt
Steve Ciarcia

It’s All in How It’s Done

6 Issue 96 July 1998 Circuit Cellar INK®

READER I/O
ADA—NOT AS BAD AS YOU THINK

 “Software Development for RTOSs” (INK 93) states
that Ada is “sometimes difficult to use for expressing
real-time issues.” It’s certainly true that some real-
time and concurrency issues are hard to deal with—in
any language.

Burns and Wellings’ book Concurrency in Ada dis-
cusses many of the issues as well as the solutions de-
veloped over a decade’s experience with Ada in a large
number of real-time systems. Even those unfamiliar
with Ada may find that some of their problems have
already been faced, and better yet, working solutions
are available.

Tom Moran
tmoran@bix.com

YOU’RE BANG ON FOR DESIGNERS
The Microchip rep dropped by last week and left me

a large check. I just wanted to say thanks for holding
the Design98 contest.

It is good having a journal in our industry that
focuses on accomplishment and real-world problem
solving rather than the philosophy of embedded
systems and C++ as most of the others do!

Hank Wallace
hank@aqdi.com

IT’S NO TYPO
With respect to Figure 1 in “8x51 EPROM/Flash

Microcontroller Programmer” (INK 93, p. 19), here’s
some new information: for chip U1, use a DS275 not a
DS1275. I thought the DS1275 looked interesting for a
project I’m working on, but I couldn’t find it on the
Dallas Web site. DS275 looked like the right part num-
ber, and although at first I thought it was a typo, I soon
realized it wasn’t.

The DS1275 came out around 1992 as a line-pow-
ered RS-232 transceiver chip, and that is what’s used in
the circuit in the article. However, around 1996, Dallas
replaced the DS1275 with the DS275. There is no men-
tion of the DS1275 in the DS275 datasheet, nor is any
information to be found any longer about the DS1275.

The only difference I can see on the intro page of the
two datasheets is the older part conforms to RS-232-C

while the newer does RS-232-E. I haven’t done exten-
sive comparisons, but I am quite sure that you may
use the DS275 in place of the DS1275.

Tom Riggs
thriggs@netusal.net

NEVER SAY DIE
I must tell you, punched tape is alive and well in

the CNC machine tool industry, contrary to what I
read in “Interfaces and GUI-Building Packages” (INK
89).

Magnetic media is occasionally used on the manu-
facturing floor, but polyester (Mylar) punched tape is
usually preferred. If you were to drop a reel of punched
tape into a drum of hot machine oil, leave it there for a
week, and take it out, it could be unreeled onto a clean
surface, patted dry, and read in any punched-tape
reader. Try doing that with a floppy diskette.

Robert Michaels
robert.michaels@online.sme.org

THE PROBLEMS WITH SUPPLIERS…
I enjoyed “What You Get with a Handshake” (INK

93) and would like to make some comments on our
relationships with distributors versus catalog sales.

The greatest value of using Digi-Key as a catalog
sales company is that we can order nearly everything
to build a prototype and they usually have everything
in stock. Digi-Key is great for one-stop shopping, and
the catalog is useful for getting worst-case pricing for
feasibility studies. However, prices are a lot higher
than what we can negotiate with distributors.

With distributors, buying the first order is always an
adventure, going back and forth, playing them against
each other to get the best price. Afterward, the intensity
is much lower, usually consisting of asking, “Can you
come down a dollar?”

And, why is there the chronic shortage of Maxim
and LTC parts? We love them from an engineering
standpoint, but production has to inventory at least
four months’ worth to ensure we can ship products.

Jim Stewart
jstewart@jkmicro.com

8 Issue 96 July 1998 Circuit Cellar INK®

NEW PRODUCT NEWS
Edited by Harv Weiner

MULTIPLE-PROCESSOR DSP
The HECPCI-1 is a 3U CompactPCI board that

supports up to four Texas Instruments TMS320C4x
processors. Multiple HECPCI-1 boards can be connected
together to form a DSP network with unlimited pro-
cessing, data-acquisition, and I/O capability.

The 3U CompactPCI board configuration has a single
slot for a TIM-40 module. This modular architecture
enables a custom system to be put together to suit a
particular application, using entirely commercial-off-

PROGRAMMABLE KEYBOARD EMULATOR
The LP24 programmable keyboard emulator inter-

faces keypads and switches to the keyboard input of a
PC (’286 and higher). Each switch input may be pro-
grammed to emulate any of the standard keys found on
a 104-key keyboard. The LP24 I/O lines may be pro-
grammed as columns or rows for scanning up to a 12 × 12
matrix. This programmability provides easy interface
to existing keypads or switches. The LP24 also lets the
user execute multiple keystrokes (e.g., Ctrl-F1) from a
single input. This small (2″ × 2.5″) unit emulates all
features of a PC keyboard, so it may be used alone or
simultaneously with an existing PC keyboard.

The LP24 is priced at $59.95 in quantities of 100,
which includes programming software.

Hagstrom Electronics
(888) 690-9080 • (607) 786-7523
Fax: (607) 786-5190
www.hagstromelectronics.com

the-shelf components. A variety of plug-in TIM-40
modules for use with the HECPCI-1, including multi-
processor DSP, image-processing, data-acquisition, and
communications interfaces are available.

There are six buffered TMS320C4x Communication
Ports (Comports) on the HECPCI-1 for communicating
with other TMS320C4x hardware, so you can construct
a network of any size. These Comports can be used to
connect multiple HECPCI-1 CompactPCI boards or to
connect to other system hardware such as PCI, ISA,
PC/104, VME, SBus, and custom expansion boards.

The HECPCI-1 communicates with a host PC through
the PCI interface, with two independent communication
channels (one of which can master PCI transfers). It
includes a JTAG controller to provide support for standard
debugging software, like GO-DSP’s Code Composer.

A PC API provides transparent software support in a
consistent, structured, and user-friendly manner to ease
the use of DSP hardware from DOS, Windows 95, and
Windows NT. A variety of third-party code-generation
tools, loaders, run-time environments, function libraries,
and debugging tools are also available.

The HECPCI-1 sells for $2050, and pricing for TIM-40
modules starts at $2575.

Traquair Data Systems, Inc.
(607) 266-6000
Fax: (607) 266-8221
www.traquair.com

Circuit Cellar INK® Issue 96 July 1998 9

NEW PRODUCT NEWS
DATA-ACQUISITION SYSTEM

Featuring eight independent 24-bit ADCs, the PAR24B data-
acquisition system achieves 22-bit true single-sample accuracy at
a 20-Hz sampling rate, with a maximum sampling rate of 1 kHz.
With eight individual A/D subsystems, there are no cross-talk or
settling problems as is common with multiplexed systems.

The system is interfaced with standard bidirectional PC parallel
ports, making it ideal for laptop or desktop machines when in-
stalling ISA or PCI bus cards is difficult or impossible. Optionally, the
parallel port can be run in EPP mode for fast data transfers. Paral-
lel port cable lengths up to 30′ can be used to run the system
separated from the PC, if necessary for noise or other conditions.

Overall analog input gain may be set either by jumper-select-
able input resistor dividers or software. All eight channels have
differential inputs for maximum noise rejection. Once converted,
incoming digitized data is fully buffered with an onboard FIFO,
enabling continuous data acquisition even during heavy interrupts
or multitasking. Typical FIFO buffer depth is 8.5 s at a 10-Hz
sampling rate, which provides ample time for task switching
under Windows 95 to save the acquired data.

Complete software support is supplied, including drivers for
DOS, Windows 95, and National Instruments’ LabVIEW. Finished
application programs include SCOPE24B.EXE, a full GUI acquisition
kernel displaying acquired data as horizontal traces on screen, as
well as a full LabVIEW application displaying data from each
channel as a digital display. Extensive documentation including
circuit diagrams and source code is included with every system.

The PAR24B system sells for $800.

Symmetric Research
(702) 341-9325
Fax: (702) 341-9326
www.symres.com

THERMOCOUPLE MEASUREMENT
SYSTEM

The EZ-View-TA thermocouple measure-
ment and data-acquisition system attaches
to a standard printer port of a laptop or desktop
computer to provide an affordable approach
to portable thermocouple data acquisition.
The included software self-installs, and
there are no addresses to set or switches to
change. EZ-View-TA is compatible with all
MS-DOS 3.0+, Windows 3.0+, and Windows
95–based computers with VGA or better
screens. Operational modes include moni-
toring (oscilloscope mode) and data acquisi-
tion (record mode).

The EZ-View-TA features six simultaneous
temperature channels, as well as letting you
mix or match any common thermocouple
(B, E, J, K, N, R, S, T) gain adjustments. It
also offers bias offsets, scale selection, sam-
pling rate and run-time selection, channel
labeling, triggering, autoscaling, and remote-
start options. Data is transportable to stan-
dard spreadsheets and can be zoomed for
detailed analysis. A unique notes feature
enables you to attach a brief text description
of the data to each saved file.

The EZ-View-TA system ships complete
with the data-acquisition module, power
supply, data cable, and complete instruction
manual for only $399. Options include 16-bit
data resolution, remote battery power supply,
and thermocouple sensors.

Mid-Atlantic Systems Co.
(810) 750-4140 • Fax: (810) 629-4988
www.mid-atl-sys.com

10 Issue 96 July 1998 Circuit Cellar INK®

NEW PRODUCT NEWS
IrDA TRANSCEIVER

The UCC5343 IrDA transceiver with encoder/decoder
provides data format translation between a standard
UART and IrDA to minimize the need for external devices.
The chip supports the Physical Layer specifications of
the IrDA 1.0 standard. Applications include wireless
communication for portable devices like pagers, PDAs,
cell phones, and hand-held computers.

The UCC5343 is readily interfaced directly to a standard
UART. A limiting transresistance amplifier detects a
current signal from a PIN diode and drives RXX pulses
into a UART. Wide dynamic range enables the receiver
to detect input currents from 200 nA to 50 mA.

The receiver signal path is frequency limited by an
internal band-pass filter to reduce interference from
other IR energy sources. Receiver output is designed for
direct interface to standard UARTs and Super I/O devices at
data rates up to 115.2 kbps. Internal resistors for decoupling
the PIN diode supply minimize external components.

The UCC5343 has low current consumption in the
active mode. The transmitter section has a low-imped-
ance totem pole MOSFET output capable of sinking
300 mA from an output LED at 3 V, and 500 mA at 5 V.

The UCC5343N is priced at $4.35 in 1000-piece
quantities.

Unitrode Corp.
(603) 424-2410
Fax (603) 424-3460
www.unitrode.com

Circuit Cellar INK® Issue 96 July 1998 11

NEW PRODUCT NEWS
DIGITIZER/AVERAGER BOARD

The TD-250 digitizer/averager board from TerraData,
a division of DAS, features a sampling rate of 250 MHz
and a maximum analog bandwidth of 125 MHz. This
board is designed to operate in an IBM PC–compatible
computer and occupies one 16-bit ISA slot.

A unique, real-time hardware averaging section in-
creases its effective resolution from the native 8 bits up
to 11 bits, for repetitive signals. The number of samples
is software selectable and can be set in binary steps
over the range of 1 to 32,768.

The TD-250’s 1 MB of onboard SRAM is organized as
an array of 512-KB samples. In addition to the onboard
memory, the TD-250 is
capable of expanding its
memory capacity via DT-
Connect as well as addi-
tional memory-expansion
boards. The DC-Connect
option also offers 20-MBps
throughput.

The TD-250 operates in
one of three modes—burst,
average, and powerdown. In
burst mode, the entire SRAM
buffer is filled at the sam-
pling frequency. In average

mode, 32-KB samples of averaged data are stored in
SRAM. The power-down mode is used when the TD-
250 is not acquiring data, and it helps to reduce heat
buildup.

The TD-250 includes real-time digital scope software
that provides access to its hardware setups. LabVIEW
drivers will be available as well.

TerraData
(801) 224-8080
Fax: (801) 224-8087
info@dasengr.com

COLOR CCD CAMERA
The Hitachi KP-D8

color CCD camera is
one of the smallest CCD
cameras available with
DSP and remote com-
puter control capability.

The self-contained
camera measures 22 mm
× 22 mm × 86 mm and
offers optional remote
control via an RS-232
port. Because of its
size, excellent image
quality, and remote
accessibility, the KP-
D8 is well suited for
medical applications,
specialized monitor-
ing or process control
in factories, or under-
cover surveillance
situations.

ory, and manual adjustment
of red and blue gains and
black balance).

In the NTSC version, the
KP-D8 has a total of 410,000
pixels with a minimum
sensitivity of 4 lux at F1.2.
The PAL version has 470,000
pixels per frame with a
minimum sensitivity of 4 lux

at F1.2. The KP-D8 has
470 TV lines of

resolution.

The KP-D8’s image qual-
ity is further enhanced with
DSP technology. DSP gives
the camera an automatic
2H enhancement, auto-
matic aperture correction,
backlight correction, and
three white balance modes
(autotracking white, mem-

A 1⁄3″ CCD with a
microlens increases the
camera’s light sensitivity.
This camera has an auto-
electronic shutter and
provides composite and
Y/C outputs. A lens and
DC power source are all
you need to make the
camera operational.

The KP-D8 sells for
$1150.

Hitachi Denshi America, Ltd.
(516) 921-7200

Fax: (516) 496-3718
www.hdal.com

12 Issue 96 July 1998 Circuit Cellar INK®

Unplanned
Calibration
Errors in
Embedded
Systems

FEATURE
ARTICLE

Mike Smith

g
If bugs in your
system cause
damage, who’s
liable? Mike puts you
on the witness stand
to uncover the
problems and how
they got there.
Fortunately, he also
shows an easy-to-
implement fix that
puts you in the clear.

eneral interest in
program bugs is

obviously building
when a noncomputer

magazine features an article on em-
bedded systems. This particular article
was about the millennium bug. At
first glance, this is “just an industry
problem” and all that Joe and Jane
Public need do is bunker down in a
warm house with a bottle of wine and
toast each other into New Year’s 2000.

However, although many account-
ing systems are close to year-2000
compliance, The Economist (October
4, 1997) questions, “Just how many
embedded systems are compliant?”
You know, those little embedded
controllers that let the gas and elec-
tricity flow down the utility pipelines
into your house? In Canada, where I
am, this is rather important—New
Year’s comes in cold midwinter!

The millennium problem is one of
the many hidden defects that can be
created by well-intentioned program-
mers of embedded systems. Using two
digits to represent the year was a sen-
sible solution to a known memory
limitation of the ’60s and ’70s.

Unfortunately, unforeseen side
effects occur with many sensible solu-
tions. So, follow along to determine
whether or not your code might in-

 12

22

28

58

Unplanned Calibration
Errors in Embedded
Systems

A PIC-Based AC Power
Meter

Designing for Smart Cards

Using a PC for Radiation
Detection

FEATURES

Circuit Cellar INK® Issue 96 July 1998 13

and sensor temperatures agree. But,
just as everybody is going home, the
sensor temperature calibration error
changes to 5°F from 4°F.

The technician ponders, “Should the
calibration be fixed now or can the
program be corrected tomorrow?” The
technician heads home reasoning, “We
might get an unnecessary false alarm
if the temperature drops below 41°F,
but that’s not serious.”

Overnight, freak weather conditions
occur, plunging the temperature to
31°F. Despite this being well below
the overcompensated warning level
(41°F), no warning siren sounds and
all the beets get beat. Alf quickly calls
his insurance company, asking, “What
happened to the warning signal?”

If you think it is a problem with
using the 8-bit unsigned char vari-
ables, try casting the variables to
unsigned short int (16 bit) or
unsigned long int (32 bit). If you
have designed a newly announced
64-bit Intel processor into your next
application, then cast the unsigned
char to unsigned very_long int.

If you believe the problem should
be recoded with signed variables,
work through the following scenario.

CHINOOKS IN CALGARY
In Calgary, Canada, Chinooks don’t

mean salmon or helicopters. Chinooks
are warm winds that develop over the
local Rocky Mountains and descend
on Calgary in midwinter. Temperatures
climb 30°C (80°F) or more over a period
of several hours, stay high for hours or
days, and then plummet back to –20°C
in an equally short space of time.

Pleasant as the Chinook winds are
for most Calgarians, they play havoc
with the temperatures in greenhouses
where plants are growing for the com-
ing spring. Our second situation con-
cerns a greenhouse monitoring system
maintained by the Thomson sisters at
Green Thoms Inc.

This temperature-control system
has an eight-bit temperature sensor.
Since possible air temperatures can be
positive or negative, the device is
designed to operate in the range –32°C
to +31.75°C with a sensitivity of 0.25°C.
The hardware reports temperatures
above +31.75°C or below –32°C and

point (32°F) up to 159.5°F in 0.5°F
intervals.

The sensor hardware reports tem-
peratures of 32°F and below as the
value 0, and temperatures of 159.5°F
and above as 255. The software mea-
sures and logs the temperature every
5 min. If the temperature drops below
40°F, a warning siren sounds.

Some typical control code, written
in C, is given in Listing 1. The program-
mer chose unsigned char variables
because that type’s description matches
the eight-bit, 0–255 value range of the
temperature sensor data. This corre-
sponds to using byte instructions if the
code had been directly done in assembly.

Note that the additional software
calibration correction (4°F) is built
into the program so the thermometer

clude some unexpected defects. If
your code is valid, then what about
the ROM code in the heart monitor
when you suffer from a heart attack
caused by work-related stress?

DOWN SOUTH
In the deep south, Alf’s company

monitors the temperature of a remote
storage location for organically grown
vegetables. The vegetables must be
kept cold (above 40°F) but not frozen.

To perform the monitoring, the
company, Alf’s Beets, uses a simple
video link to observe a standard ther-
mometer plus an embedded-processor
warning system. The embedded sys-
tem consists of an eight-bit electronic
sensor at the remote site that reports
the temperature from the freezing

Listing 2 —This simple embedded-processor program reads the temperature from an eight-bit sensor and then
corrects and logs temperatures in the range –32°C to +31.5°C. A warning is issued if the temperature rises
above 26°C.

#define CALIBRATION (4 * 4) // Temperature correction needed
#define WARNING_LEVEL (26 * 4) // Operate warning at 26°C
#define DEVICE_ADDRESS 0x500000 // Memory-mapped device location

// Set device pointer
char *pt = (char *) DEVICE_ADDRESS;
char value;

for (; ;){
 Wait_5_minutes();
 value = *pt; // Read temperature
 value = value + CALIBRATION; // Correct temperature
 Log_Temperature(value); // Log temperature
 if (value >= WARNING_LEVEL) // Issue warning
 Activate_Siren();
}

Listing 1 —This embedded-processor program reads the temperature from an eight-bit sensor and then
corrects and logs temperatures in the range of 32°F to 154.5°F. A warning is issued if the temperature falls
below 40°F.

#define CORRECTION (4 * 2) // Temperature correction needed
#define WARNING_LEVEL (40 - 32) * 2 // Operate warning at 40°F
#define DEVICE_ADDRESS 0x500000 // Memory-mapped device location

// Set device pointer
unsigned char *pt = (unsigned char *) DEVICE_ADDRESS;
unsigned char value;

for (; ;){
 Wait_5_minutes();
 value = *pt; // Read temperature
 value = value - CORRECTION; // Correct temperature
 Log_Temperature(value); // Log temperature
 if (value <= WARNING_LEVEL) // Issue warning
 Activate_Siren();
}

14 Issue 96 July 1998 Circuit Cellar INK®

the companies that insure Alf’s Beets
and Green Thoms. The insurance
companies don’t want to pay if there’s
somebody they can blame.

EXPERT WITNESS
Because of your long experience

with embedded-system controllers,
you’re hired as an expert witness by

the eight-bit values 127 and –128,
respectively.

Listing 2 shows the monitoring
program used to ensure that the tem-
perature does not rise above 26°C.
Signed arithmetic is used because
temperature values can be positive or
negative. A temperature calibration
correction of 4°C is built directly into
the program by the software company
that did the original development.

Again, just before going home, a
technician notices that the sensor
temperature reads 1°C higher than it
should be. This implies that the alarm
will sound when the true air tempera-
ture rises to 25°C rather 26°C. An
earlier warning such as this is not a
problem, so the technician decides to
fix the code in the morning.

Overnight, the Chinook wind rises
and the temperature jumps to 32°C.
Despite this temperature being way
above the overcompensated 25°C
warning level, no warning signal sounds
and the plants shrivel and die. The
Thomsons call their insurance agent,
“Why did this problem occur?”

Listing 3 —These embedded-controller programs are simple prototypes that can be used to demonstrate the
behavior of the embedded control systems that failed.

#define TEST_UNSIGNED ???? //???? is part of the code
int Test_Alf(void)
{
 unsigned char value;
 int warning_signal = 0;
 value = (TEST_UNSIGNED * 2); // Set temperature
 value = value - CORRECTION; // Correct temperature
 if (value <= (40 - 32) * 2) // Check temperature
 warning_signal = 1;
 return(warning_signal);
}

#define TEST_SIGNED ????
int Test_Thoms(void)
{
 signed char value;
 int warning_signal = 0;
 value = (TEST_SIGNED * 4); // Set temperature
 value = value + CALIBRATION; // Correct temperature
 if (value >= (26 * 4)) // Check temperature
 warning_signal = 1;
 return(warning_signal);
}

a)

b)

Circuit Cellar INK® Issue 96 July 1998 15

A similar effect occurs with the
Green Thoms’ program in the unlikely
event that the temperature suddenly
rises into the range 32–35.75°C from a
temperature below 26°C. Unfortunately,
the unlikely event happened to them.

EXAMINING ASSEMBLY CODE
Knowing the circumstances under

which the embedded programs fail,
you now need to examine the code
execution in detail. Photo 1 shows a
screen capture of the code from List-

Possible culprits are:

• the technicians who used the WAIL
(Worry About It Later) approach

• the people who built the temperature
sensors

• the software company that developed
the original monitoring programs

• the person who, five years ago, devel-
oped one of the software tools used
during the program development. This
person has since left the development
company and now designs embed-
ded-system controllers (i.e., you?).

TESTING C CODE
As an expert witness, you need to

examine the code and run it through a
few sample sessions. If you don’t have
an embedded-processor development
environment, you might want to grab
one of the 68k or PowerPC sampler
kits from the Software Development
Systems Web site.

I discussed a version of these SDS
sampler kits in an earlier article (“The
Evaluation Board Saga Continues,” INK
70). These kits are more than adequate

for the current task. You can purchase
a full system later when you are hired
to investigate larger systems.

The first thing to develop is a couple
of simple test subroutines (see List-
ings 3a and 3b) that contain all the
essential elements of the problem,
setting, correcting, and then testing
the temperature.

Table 1 shows how the program
behaves for certain corrected tempera-
tures for Alf’s embedded processor
program. If you don’t believe the re-
sults, then try the code yourself with
various different reported temperatures
using your own compiler and debug-
ging environment.

The problem is now obvious. The
siren sounds for low temperatures 32–
40°F but not for the very low tempera-
tures 28–31.5°F.

So, if the temperature slowly drops
to 31°F (41°F, 40°F, 39°F,…, 31°F), the
program activates the siren at 40°F.
However, in the unlikely event that
the temperature drops suddenly between
temperature samples (41°F, 31°F), no
siren goes off.

Table 1—In testing the Alf company code, the expert
witness finds that low-temperature warning signals are
only given for temperatures in the range 32–40°F. No
warning signals are given for very low temperatures
such as 28–31.1°F.

Sensor Corrected
Reading Temperature Action

46°F 42°F No warning
44°F 40°F Warning
42°F 38°F Warning
40°F 36°F Warning
38°F 34°F Warning
36°F 32°F Warning
34°F 30°F No warning
32°F 28°F No warning

16 Issue 96 July 1998 Circuit Cellar INK®

It generates and stores an incorrect
value, 0xF8.

Unfortunately, the next instruction
(the compare) doesn’t know the stored
value is the result of an incorrect
operation, so it treats the value as a
valid unsigned char that corresponds
to a high positive temperature. Such
high temperatures don’t trigger the
alarm siren.

Table 2b shows the register infor-
mation corresponding to uncorrected
and corrected temperature values in
Green Thoms’ embedded program. Here,
you see that the effect of correcting a
temperature of 28°C (to become 32°C)
results in a temperature that can’t be
represented as a signed char value.
This time, the program treats the
incorrect stored value as a very low
temperature, and again no alarm sounds.

Errors like these aren’t caught by a
compiler or assembler as the values in
the registers change as the program runs.
To avoid the errors, it’s necessary for
the programmer to add out-of-range
checks after every ADD or SUB. This
approach slows down code execution

ing 3a with both C and 68k assembly
code information displayed.

It is straightforward to set a break-
point at the start of a routine and
display register and memory contents
while stepping through the instructions.
Table 2a shows the register informa-
tion corresponding to uncorrected and
corrected temperature values in Alf’s
embedded program.

It becomes obvious that hidden be-
hind the C code is the classic problem
of representing a value that can’t be
encoded in the number of bits available.
The same problem would occur if the
code was written directly in assembler.

Using normal mathematics, we can
correct a sensor reading of 32°F to be
28°F by subtracting 4°F. However, we
have represented 32°F as the bit pattern
0, so that with the one bit equal to
0.5°F accuracy available on the tem-
perature sensor, 28°F should be a bit
pattern equivalent to –8. The problem
is that negative numbers can’t be
represented as unsigned char.

However, during the SUB instruction,
the processor does the best job it can.

considerably, and a different approach
should be taken when possible.

One technique is to design an algo-
rithm where you can guarantee that
no out-of-range values can occur. This
option probably results in code that
ensures correct results but runs slower
than code using eight-bit operations.

An annoying feature of such an
approach is that the out-of-range prob-
lem will occur one time in a million in
real life. Therefore, all code must be
slowed for the sake of safety. If speed
isn’t critical, then it’s reasonable to
adopt this approach.

Using a different processor over-
comes the validity problem after arith-
metic operations without a loss of speed.
Some newer chips have the out-of-range
check capability directly built into arith-
metic instructions (“Being ASSERTive
with Your Processor,” INK 56).

There are specific SUBU and SUBS
instructions for performing subtract
operations on unsigned and signed
numbers, respectively. Exception
handlers deal with the special situa-
tions that infrequently arise.

Circuit Cellar INK® Issue 96 July 1998 17

The manufacturers of the
temperature sensors de-
signed the control logic to
avoid equivalent hardware
overflow conditions and
associated errors. Remem-
ber the specifications:

• Alf’s sensor—tempera-
tures of 32°F and below
are reported as 0, and
temperatures 159.5°F and
above are reported as 255

• Green Thoms’ sensor—
temperatures above
+31.75°C or below –32°C
are reported as the 8-bit
values 127 and –128, re-
spectively

No overrange problems
are designed into these fic-
tional devices. (I wonder what is de-
signed into actual sensors?)

BASIC COMPILER ISSUES
As a defense witness for the insur-

ance company, you come into court

prepared to explain why the programs
failed to generate the expected warn-
ing signals. You think the sensor manu-
facturer should be let off the hook.

Since the problem arose from the
temperature correction already in the

code, then the technicians
may be fired for procras-
tination but they’re not
culpable for damages. On
the other hand, the people
who added the correction
to the code shouldn’t be
sleeping so easily.

The prosecuting attor-
ney stands up (a com-
puter-engineering major
who switched over to
law to use domain knowl-
edge and make a fortune
when year-2000 lawsuits
start appearing).

Counsel begins, “How
do you know that the
compiler you’re using to
demonstrate the problems
generates the same code
as the compiler used in

developing the original code?”
Good point. Compilers must, or

rather should, follow the same basic
rules for the C language. However, that
doesn’t mean that the actual lines of
assembly code they generate are the

Photo 1 —This screen capture from the SDS 68k development environment shows both C
code and the corresponding assembly-language code for the unsigned char opera-
tions described in Listing 3.

Circuit Cellar INK® Issue 96 July 1998 19

same—just the final results from
running the code.

For convenience, let’s assume you
can reassure counsel that you have
example listings and other documents
to prove that the compilers generate
identical code.

The prosecutor then asks, “What
optimizations did you activate in the
C compiler? Were they the same as
for the original code?”

This is a key issue when using C to
develop an embedded-processor system.
Unlike normal programs that access
RAM locations, embedded programs
access memory-mapped peripherals,
whose values change from an external
influence rather than through a direct
programmed action.

Under normal situations, the code:

int temperature, number, loop;
for (loop = 0; loop < 9; loop++)
 number = temperature;

can be optimized to:

int temperature, number;
number = temperature;

The contents of temperature never
change inside the loop, so the (constant)
operation can be brought outside the
loop. The loop is now dead code and
can be optimized away.

If this type of loop optimization was
happening in the monitoring system,
then it’s not surprising that things went
wrong. The C code might be written
to continually access the temperature
sensor, but after optimization the
sensor is only accessed once and all
temperature changes are ignored.

There are various ways to solve this
problem. A programmer can inform the
compiler that external influences may
change a variable value so that operations
with this variable should be optimized
carefully. The keyword volatile
should be used in this situation:

volatile int temperature;
int number, loop;
for (loop = 0; loop < 9; loop++)
 number = temperature;

Or, the programmer can simply turn
off the optimizations.

In either of these cases, the safest bet
is to physically examine the assembly
code the compiler generates (see Photo
1) and check whether the access to
hardware is being performed correctly.
The keyword volatile is already in
Photo 1. Without it, the SDS compiler
would optimize this simple test code
down to a single instruction.

SDS suggests a third approach—
access all hardware directly using
assembly-language routines. If you use a
standard convention for register and
stack use, then it’s straightforward to
link assembly-code subroutines to the
rest of your C code.

This combination of interfacing C
with assembly code, and using assem-
bly code to access hardware, is a good
approach. If a picture is worth a thou-
sand words, then one line of C is worth
a thousand lines of assembly code,
besides being much faster and more
accurate to develop.

TECHNICAL COMPILER ISSUES
Prosecuting counsel now gets tech-

nical, “I notice in Photo 1 that the
assembly code involves only eight-bit
operations. Does this go against the C
standards for type conversion?”

Although the judge has probably lost
track of the argument, you haven’t. This
code explains the concepts referred to:

unsigned char value;
char temperature;
value = value - 8;
temperature = temperature + 16;

which the 68k compiler translates as:

SUB.B #8, value
ADD.B #16, temperature

Other compilers would do something
equivalent for any processor.

The C standard [1] states that the
default type for any value is int (which
is 32 bits with the SDS compiler unless
you specify otherwise). Thus, the value
8 in the subtraction is actually 8L.

By default then, you are subtracting
a 32-bit (signed) int (the number 8L)
from an eight-bit unsigned char (the
variable value). The ISO C standards
imply that the eight-bit unsigned
char must be properly converted to a
(signed) int before the subtraction is
performed, and the result converted
back to an unsigned char.

Counsel is hinting that this con-
version to 32-bit int values doesn’t
appear to happen during the operation
SUB.B #8, value and the ADD.B
#16, temperature instructions.
Should the compiler have generated
the code in Listing 4, which does
explicit conversions?

If you have assembly-language
experience, you’ve probably never
thought of byte (.B) operations like
this before. You start getting worried.

Fortunately, your ignorance on
bytes isn’t publicly exposed.

PIVOTAL ARGUMENTS
Table 3 shows that whether value

is the unsigned char number 7 or

Table 2a—In the Alf company code, some low temperatures are incorrectly represented as high temperatures so
that no warning signal results. b—In the Thom company code, some high temperatures are incorrectly represented
as low temperatures so that no warning signal is given.

a)

Sensor Sensor Sensor Reading Corrected
Temperature Reading After Correction Temperature Action

46°F 0x1C 0x14 42°F No warning
44°F 0x18 0x10 40°F Warning
42°F 0x14 0x0C 38°F Warning
40°F 0x10 0x08 36°F Warning
38°F 0x0C 0x04 34°F Warning
36°F 0x08 0x00 32°F Warning
34°F 0x04 0xFC 158°F No warning
32°F 0x00 0xF8 156°F No warning

30°C 0x78 0x88 –30°C No warning
28°C 0x70 0x80 –32°C No warning
26°C 0x68 0x78 30°C Warning
24°C 0x60 0x70 28°C Warning
22°C 0x58 0x68 26°C Warning
20°C 0x50 0x60 24°C No warning

b)

20 Issue 96 July 1998 Circuit Cellar INK®

Listing 4 —These code segments demonstrate how to explicitly extend 8-bit unsigned and signed byte
values to and from (signed) short int values while performing mathematical operations.

; unsigned char value � code for value = value - 8
 MOVE.L #0, D0
 MOVE.B value, D0 // D0 = (int) value
 SUB.L #8, D0 // D0 = D0 - 8
 MOVE.B D0, value // value = (unsigned char) D0

; signed char value � code for reading = reading + 16
 MOVE.B temperature, D0 // D0 = (int) temperature
 EXTB.L D0
 ADD.L #16, D0 // D0 = D0 + 16
 MOVE.B D0, temperature // temperature = (signed char) D0

the signed char number 7, then the
instruction SUB.B #8, value produces
the same eight-bit final result (0xFF)
as if the compiler had developed an
explicit series of char to int and int
to char operations (see Listing 4).
This is true despite the fact the final
unsigned char value is an invalid
representation of the result.

Similarly, it can be shown that
whether temperature is the unsigned
char number 120 or the signed char
number 120, then the operation ADD.B
#16, temperature produces the
same 8-bit final (0x88) as if the com-
piler had explicitly done conversions.
Again, the operations are equivalent
despite the signed char number
representation overflow.

However, the byte operation is
equivalent to a series of int conversions
only if you consider the final result. If
you also take into account the internal
operation of a 68k processor, then the

byte SUB or ADD operations set the C,
V, N, and Z flags, whereas the final
MOVE instruction from the series of
conversions only sets N and Z flags.
Other processors may effect their
flags in different ways.

FINAL SESSION
After hearing your explanation that

a standard SUB.B operation provides an
implicit version of the required type
conversions, the judge asks how you
would have written the temperature
controller code to avoid the no-warn-
ing problem.

With relish, you produce the already
developed solution (i.e., Listing 5) from
your briefcase. The solution is to
develop code that uses an intermediate
short int variable (signed 16 bit) to
ensure that out-of-range errors don’t
occur at any point in the algorithm.

The corrected solution adds just
one line to the original code. On the

Table 3—The same result occurs whether the operation value = value � 8 is performed directly using
eight bits or explicitly extending signed char and unsigned char type to int types. Similarly, the same
result occurs if the operation temperature = temperature + 16 is performed directly using eight bits
or explicitly extending signed char and unsigned char type to int types.

Subtracting using 8-bit operations only
Initial internal representation of value 0x??????07 Unsigned decimal 7 (8 bits)
Final internal representation of value 0x??????FF Unsigned decimal 255 (8 bits)
Initial internal representation of value 0x??????07 Signed decimal –7 (8-bits)
Final internal representation of value 0x??????FF Signed decimal –1 (8-bits)

Subtraction when directly implementing extensions to int (32-bits) types
 Assuming value was an unsigned char variable
Initial internal representation of value 0x??????07 Unsigned decimal 7 (8 bits)
D0 – (signed int) value 0x00000007 (32 bits)
D0 – after 32-bit subtraction 0xFFFFFFFF (32 bits)
Final internal representation of value 0x??????FF Unsigned decimal 255 (8 bits)
 Assuming value was a signed char variable
Initial internal representation of value 0x??????07 Signed decimal 7 (8 bits)
D0 – (signed int) value 0x00000007 (32 bits)
D0 – after 32-bit subtraction 0xFFFFFFFF (32 bits)
Final internal representation of value 0x??????FF Signed decimal –1 (8 bits)

Circuit Cellar INK® Issue 96 July 1998 21

Mike Smith is a professor in the com-
puter engineering department at the
University of Calgary. Mike is interest-
ed in applications of embedded proces-
sor systems and is currently working
with students on a voice-recognition
system for a computerized sailboat
built by the Alberta Disabled Sailing
Assn. His nonstandard approach to
teaching assembly-language program-
ming using C and C++ is viewable at
www.enel.ucalgary.ca/People/Smith/
index.htm. You may reach him at
smith@enel.ucalgary.ca.

REFERENCE

[1] S.P. Harbison and G. Steel, Jr.,
C: A Reference Manual, 4th ed.,
Prentice-Hall, Englewood Cliffs,
NJ, 1995.

SOURCE

68k or PowerPC sampler kits
Software Development Systems, Inc.
(800) 448-7733
(630) 368-0400
Fax: (630) 990-4641
www.sdsi.com

Listing 5— Making use of an intermediate short int variable temperature and changing the
function Log_Temperature() is all you need to make the embedded-processor code safe for Alf’s
control programs. Equivalent changes correct the Green Thoms’ code.

// Set device pointer
unsigned char *pt = (unsigned char *) DEVICE_ADDRESS;
unsigned value;
short int temperature;
for (; ;){
 Wait_5_minutes();
 value = *pt;
 temperature = (short int) value; // New�Cast to short int
 temperature = temperature - CORRECTION;
 Log_Temperature(temperature);
 if (temperature <= WARNING_LEVEL)
 Activate_Siren();
}

68k processor, the speed penalty is small
because the data bus is 16 bits wide,
so 8-bit (.B) and 16-bit (.W) operations
execute in the same amount of time.

You are dismissed as a witness and
go home to enjoy your fee. The case has
far to go before blame can be duly placed.

MY VERDICT
I’ve illustrated the damage done by

a simple hidden calibration fault in a
temperature sensor used to monitor the
health of a pile of vegetables. If you want
to consider a more expensive problem,
monitor the health of a $260-million
revolving stator at a generating station.

On a more personal note, I imagine
the calibration correction in the fetal-
monitor checking the heart rate while
my daughter was being born. I’m glad
that designer got it right.

But, what about the child born
January 1, 2000? Will that child’s
monitor suddenly decide it has not
been serviced for 100 years and, for
safety reasons, switch itself offline?

The calibration bugs I’ve mentioned
arise from an incomplete understand-
ing of the background behind the
embedded technology we’re using. It’s
better to avoid such defects now than
to fix them later.

This paraphrase from The Econo-
mist is applicable to many bugs other
than just the millennium one: This
bug is just that, a bug. In fact, it is a
fairly straightforward bug to fix. The
only problem is that it is going to be
time consuming and expensive to
find. Many of the problems it causes
will go unnoticed.

Many thanks to Dr. Steven Norman,
University of Calgary, who pointed out
the explicit and implicit 32-bit con-
versions using byte operations. Thanks
also to Mukesh Chitroda, a student in
my microprocessor class who delighted
in the chance to correct my work
rather than the other way around.

Make sure that you and your firm
are part of the solution—not the em-
bedded-controller problem! I

22 Issue 96 July 1998 Circuit Cellar INK®

����
����
����
����

yyyy
yyyy
yyyy
yyyy

���
���
���
���

yyy
yyy
yyy
yyy

A PIC-Based
AC Power Meter

FEATURE
ARTICLE

Rick May

w
Questioning your
power bill? Rick
shows you how to
build a tool to make
sure your power bill
stays right on
target—a portable
AC power meter that
displays the power
delivered to and
consumed by your
house.

hen I watch the
old mechanical

wattmeter on the
house spin, I marvel at

just how low tech this device is. No
fancy displays, no RF transponders send-
ing telemetry to roving meter-reader
trucks (at least not in my neighborhood).

I always wondered why I couldn’t
go out and buy a small hand-held
instrument that I could use to figure out
just what was causing that old-fash-
ioned meter outside to spin so fast.

A few years ago, I came across a
novel circuit design by Stephen Wood-
ward [1]. He used a quad optoisolator
(conventionally a nonlinear device) to
generate an analog voltage proportional
to the power consumed by a load. It
used optos for safety, and, well, it was
just neat.

So, off I set to marry some type of
micro to that analog front end. I wanted
to build a hand-held, portable AC
power meter that could display the
power delivered to a load. The result:
see Photo 1.

By tossing in a little math and
some numerical integration, I could
also display the energy consumed by a
load. For a little added challenge, I
used a PIC microcontroller that has
no multiply or divide instructions.

SYSTEM DESIGN
I want my power meter to measure

AC power, instantaneous and average,
0–1200 W, as well as measure AC
energy consumption in kilowatt-hours
(or watt-hours). Additionally, I want
it to provide digital readout of power
or energy, and it should be easy to
hook up using standard power recep-
tacles and plugs.

This device is to be packaged as a
hand-held instrument, and my budget
dictates some ultra-low-cost parts.

I designed the power meter around
the Woodward power-measurement
circuit. The power source is a 9-V
battery, instead of stealing power
from the AC line. This setup ensures
maximum isolation from the AC line
and increases safety.

I chose a nonmultiplexed LCD
because of its low power consumption. I
use a simple four-digit, seven-segment
type rather than an alphanumeric LCD
module because I only need to display
numeric data. It also costs less.

The user operates the meter using
two momentary switches. The mode
switch causes the display to cycle though
the different operational modes. Re-
gardless of what operational mode the
power meter is in, energy-consump-

DC Power Supply

Analog Interface
Subsystem

Microcontroller
Subsystem

LCD Subsystem

+5 VDC

GND

GND +5 VDC

9-V Sense

AC_Pwr

Hot

Neutral

AC Supply

Neutral

Hot

AC Load Mode
Switch

Reset
Switch

LCD Data,
LCD Clock,
LCD Load,
LCD Backplane

Figure 1 —The power
meter is broken down
into four subsystems.
The user interface is
accomplished with just
two switches and an
LCD.

Circuit Cellar INK® Issue 96 July 1998 23

Woodward’s original circuit used
±15-VDC power supplies and an OP27
precision op-amp. My goal was to modify
his circuit using a +5-VDC single
supply and a common LM358 op-amp.

The redesign for single-supply opera-
tion is straightforward: swap 2.5-V DC
bias for ground, ground for –15 V, and
+5 V for +15 V. Woodward’s circuit
indicates power delivered to and from
the load, with power delivered to the
load being below the 2.5-V bias.

Power readings range between ground
and +2.5 V, effectively reducing the
ADC resolution to seven bits. There-
fore, 128 discrete output values are
possible between no load and full scale.

A pot, P1, calibrates the full-scale
value to approximately 1200 W nomi-
nal. By adjusting the pot to give a full-
scale reading of 1280 W, the actual
power (in watts) is obtained by:

power = (0x80 – ADvalue) × 0x0A

So, if ADvalue equals 0x76, the power
is 100 W.

I initially chose the PIC16C71
because of its low cost and onboard

that no arrow indicates power mode, a
slow-flash arrow means energy mode
(1-Hz rate), and a fast-flash arrow is used
for the average-power mode (2-Hz rate).

HARDWARE DESIGN
Figure 1 shows the four subsystems

of the power meter. The power-supply
subsystem supplies DC power to the
other subsystems. The analog inter-
face contains Woodward’s circuit [1].

The microcontroller and A/D sub-
system acquire data and compute power
readings that are then displayed by the
LCD subsystem. Figure 2 shows how
the subsystems link together.

A 9-V battery connects to J6 that
feeds a 78L05 regulator. The 5.1-kΩ 1%
resistors in a voltage divider network
provide the 2.5-V bias voltage for the
analog section. They also provide the
9-V sense voltage to the microcontrol-
ler for low-battery detection.

A resistor divider network is selected
over a 2.5-V reference diode because of
cost to provide the 2.5-VDC reference
used in the analog section. I chose
5.1-kΩ resistors since I’m already using
this value in the analog interface.

tion accumulation still occurs. The reset
switch resets the energy-consumption
accumulator in any operation mode.

This power meter has four operational
modes. The power mode displays the
power consumed in watts. By accumulat-
ing power over time, the energy mode
displays watt-hours or kilowatt-hours.
The average power mode
displays energy consumed
over time in watts. The
remaining mode displays the
time elapsed since reset in
hours, minutes, and seconds.

Because the power meter
toggles through these four
modes, the user needs to
know the current operational
mode. Normally, this would
be done with annunciator
segments in the LCD. How-
ever, I want to use low-cost
stock parts, so a custom
LCD with annunciator
segments isn’t an option.

The LCD I chose is a
four-digit display with three
decimal points, a colon, and
an arrow. Because I have no
real use for the arrow, I
decided to use it as the
mode indicator.

The colon is used in the
time mode, so I only need
to discriminate among three
modes—power, energy, and
average power. I decided

Figure 2 —The power meter is imple-
mented with seven ICs. The 9-V battery
was chosen to decrease safety concerns.

Photo 1 —Here’s my dream come true—a hand-held
portable AC power meter.

24 Issue 96 July 1998 Circuit Cellar INK®

permanently damaged. To drive the LCD
correctly, a low-frequency (100 Hz)
square wave is applied to the back-
plane pin.

For a segment to be on, a segment
pin must have the inverted backplane
signal applied. For a segment to be off,
the segment pin must have the in-phase
backplane signal applied.

The AY0438 generates this back-
plane waveform and the correct seg-
ment waveforms without processor
involvement. Just hang a capacitor on
the LCDf pin to control the onboard
oscillator.

Initially, I used the onboard oscilla-
tor of the AY0438 to generate the AC
waveforms needed and to get the dis-
play up and running. However, the
AY0438 can only drive 32 segments.

I needed 33 segments to use the
arrow segment and all four digits,
three decimals, and the colon. With a
couple of unused pins on the PIC, I
figured it couldn’t be that hard to
drive the LCD directly.

And, driving the LCD is easy. Just
remove the cap from the LCDf pin,
then drive this pin (backplane) and the
thirty-third segment directly from the
PIC. Remember that you can’t drive
the LCD segment pin alone because
the AY0438 oscillator (backplane)
would be asynchronous with respect
to the PIC.

The software must toggle the back-
plane and the thirty-third segment
every 10 ms. Note that the AY0438
still manages the other 32 segments

four-channel eight-bit ADC. However,
you can save even more by replacing the
’16C71 ($12.30) with a separate ADC,
National’s ADC0831 ($3.29), in combi-
nation with the ADC-less PIC16C61
($6.15).You save $2.86, but you need
space for one more 8-pin DIP.

The National ADC0831 is a low-cost
8-bit ADC that has a simple three-wire
serial interface (chip select, clock, and
data) and a 32-µs conversion time.

Note there are no pull-up resistors
on the two momentary switches.
Pullups are provided internally by the
PIC16C61. Again, you see the 5.1-kΩ
1% resistor used as the MCLR pullup,
which means the MCLR pin can be
shorted to ground without shorting
out the +5-V supply.

This component could be replaced
with a 0-Ω jumper for production.
Currently, a crystal is used as the
microcontroller clock, but you could
replace it with a ceramic resonator for
more cost savings.

The display subsystem uses a non-
multiplexed Varitronix LCD, with a
Microchip AY0438 LCD driver. The
AY0438 operates up to 32 segments of
an LCD, providing a simple three-wire
serial interface (data, clock, and load),
and it’s capable of generating the AC
waveforms required to illuminate LCD
segments.

For a LCD segment to be on, there
must be voltage differential between
the segment pin and the backplane.
However, this voltage cannot be static
(non-time-varying) or the display gets

b)

a)
7 6 5 4 3 2 1 0

PORT_A N/A N/A N/A X ay_bp ay_arr_out 9V_sense ac_pwr

7 6 5 4 3 2 1 0

PORT_B ay_ld ay_clk ay_dat ad_dat ad_clk ad_cs res_sw mode_sw

ac_pwr Analog input Analog AC power input (PIC16C71 only)
9V_sense Analog input Analog 9-V battery sense (PIC16C71 only)
ay_arr_out Arrow segment pin of LCD
ay_bp LCD backplane input pin

Figure 3a —Here are the port A assignments. With just 13 I/O pins available, allocation is critical. b—With the port B
pin assignments, just three pins are needed for the A/D conversion, but five are required for the LCD controller.

mode_sw Active low Indicates mode switch depressed
res_sw Active low Indicates reset (or zero) switch depressed
ad_cs Active low Chip select to ADC0831
ad_clk Falling edge Data valid out of ADC on falling edge
ad_dat Data output of ADC0831
ay_dat Data input to AY0438 LCD driver chip
ay_clk Falling edge Clock input to AY0438, data is clocked into AY0438 on falling edge
ay_ld Rising edge Data is transferred from AY0438 shift register to output latches

Circuit Cellar INK® Issue 96 July 1998 25

and provides a serial interface. The
AY0438 just gets its backplane frequency
reference from the PIC. This is a case
where a watchdog timer should be used
because display damage can result if
the backplane doesn’t toggle at least
every 10–100 ms.

 Register definitions of external inter-
faces to the PIC are shown in Figure 3.
The PIC16C61 is an 18-pin DIP and
only has 13 I/O pins. Obviously, when
you’re using an I/O-limited micro like
the PIC, it’s important to choose periph-
erals with low pin-count interfaces.

Five pins are used for the LCD
subsystem. It could have been three if
I didn’t need the thirty-third segment.
Three pins are used for the ADC and
two for the mode switches.

SOFTWARE DESIGN
The PIC’s internal timer generates a

10-ms timer interrupt for periodic soft-
ware functions. This works well since
I need to service the LCD backplane in
the 10–100-Hz range, and it also lets
me sample power at a 100-Hz rate.

Figure 4 shows a flowchart of the
10-ms timer ISR. Every 10 ms, the LCD
backplane and arrow segment must be
toggled, the tic (0.01 s) counter incre-
mented, and power value accumulated
into S.

Every 250 ms, the fast flash of the
arrow segment is done if needed. Every
500 ms, the slow flash of the arrow
segment is done if necessary, and the
power value computed for display.

Figure 5 illustrates the main-loop
processing. Both switches are scanned
every time through the main loop,
debounced through a 50-ms delay.

Every second, the larger 24-bit energy
accumulator, E, is updated from the
local 16-bit accumulator, S. The mode
state variable directs execution to the
appropriate processing for the four
operational modes.

MEASUREMENT CONSIDERATIONS
The raw value from the ADC is

read at a 100-Hz rate or every 10 ms
and is in the 0–127 range. This value
indicates a 10-W increment of power

(so, 12 means 120 W). Let’s
refer to this raw A/D value
as having the unit of a ten-
watt (i.e., 10 W).

To display a power read-
ing, the main loop reads the
current value of power that
the ISR writes to, multiplies
this value by 10, converts
this result to a five-digit
BCD word, and then displays
the four least significant
digits of the result. The
multiply requires 16-bit math
because 10 × 127 equals
1270, which doesn’t fit into
8 bits.

A

Yes

No

No

No

Yes

Yes

10-ms timer ISR

Save registers

Reload RTCC for next 10-ms
interval

Toggle LCD backplane, ay_bp

Toggle arrow segment
ay_arr_out=ay_bp xor ay_arr

Increment TIC;
Rollover into SEC and MIN;

Upon TIC rollover set 1s_flag

TIC = 0 or
= 50

500-ms periodic tasks;
set 500ms_flag

Flash colon
slow?

Toggle LCD colon
segment, ay_L

Flash arrow
slow?

Toggle LCD arrow
segment, ay_arr

Yes

No

A

TIC = 25
or = 75

250-ms periodic tasks;
set 250ms_flag

Toggle LCD arrow
segment, ay_arr

Flash arrow
fast?

Get A/D value, Pwr

Accumulate energy, S;
S = S + Pwr;

Restore registers

IRET

Yes

No

Figure 4 —For every 10-ms period,
energy accumulates in S until the
1s_flag is set.

26 Issue 96 July 1998 Circuit Cellar INK®

of energy consumption, the 24-bit E
accumulator is in units of milliwatt-
hours. This allows a maximum value of
224 – 1 = 16,777,215 mWh or 16.77 kWh.

The conversion from tenwatt-
seconds to milliwatt hours is:

milliwatt–hour = tenwatt–second × 1 h
3600 s

× 10 W
1 tenwatt × 1000 mW

1 W
= tenwatt–second × 100

36

However, since the S accumulator
represents 100 samples over a 1-s
period, we must divide S by 100 be-
fore this conversion. So, the S-to-E
accumulation calculation (performed
only once per second) is:

E = E + S
36

in milliwatt-hours. Note that this
conveniently reduces a multiply and
divide operation to a single divide.

To filter transients in power-mea-
surement mode, a 500-ms moving
average is implemented. The S accu-
mulator is restarted every second as
part of the energy-consumption func-
tion. At 500 ms after restart, a power
value is calculated by:

At 1 s after restart, a power value
is calculated by:

To ensure that no-load situations
read zero and that noise does not cause
false readings, hysteresis is added to
cause readings less than 2 (20-W read-
ing) to be treated as zero. This also
helps in setting the zero trim pot.

DISPLAY CONCERNS
Now that I’ve discussed how the E

accumulator is maintained, I want to
turn to how the energy accumulation
is displayed.

If watt-hour readings are the finest
resolution displayed, then the user might
have to wait 2 min. to see 0.001 kWh,
depending on the load. To solve this
problem, I implemented autoranging
using three display modes.

Display mode d1 displays readings
in the range of 0.000–9.999 Wh. Once
10 Wh are accumulated, display mode
automatically switches to d2 mode.

The d2 mode displays readings in
the range of 0.010–9.999 kWh. Once
10 kWh are accumulated, the display
mode automatically switches to dis-
play mode d3, which displays readings
in the range 10.00–16.77 kWh.

Display mode d1 is implemented by
converting the low-order 16 bits of E
(milliwatt-hours) to BCD, then display-
ing the four least significant digits with
the decimal point three places to the
left (i.e., 0.000). The move of the deci-
mal point effects a multiply by 1000,
causing watt-hours to be displayed.

Display mode d2 requires display of
kilowatt-hours, and has a least signifi-
cant digit of watt-hours. Divide E (in
milliwatt-hours) by 1000 to get the result
in watt-hours. This is implemented by
using the upper 16 bits of E, effecting
a divide by 256 operation on E.

Recall that canned math routines
support 16-bit math, not 24-bit math.
So, by taking the upper 16 bits of E and
performing a divide by 4, a divide by
1024 is implemented, which approxi-

I found the 16-bit math and BCD
conversion routines on the Microchip
BBS. The routines are fairly compact
in size and require approximately 300
cycles (300 µs at 4 MHz) for an unsigned
multiply or divide.

Since the 16-bit values need to be
converted to BCD prior to display, and
the BCD routines return a five-digit
result, a divide by 10 is done just by
displaying the upper four digits instead
of the lower four digits. This fact is
taken into account when designing
scaling algorithms.

For energy consumption, a 24-bit
accumulator is required to capture a
reasonably large amount of energy
consumption, given the 100-Hz accu-
mulation rate. To keep the non-reen-
trant math routines out of the timer
ISR, the timer ISR accumulates the
power value (0–127) into an interme-
diate 16-bit accumulator, S. The main-
loop routine adds S to the master 24-bit
accumulator, E, when the 1_sec_
elapsed flag is set.

The S value is in units of tenwatt-
seconds. To accumulate a wide range

power (watts) = S
100 × 10

= S
10

power (watts) = S
50 × 10

= S
5

Circuit Cellar INK® Issue 96 July 1998 27

mates the correct divide by 1000. This
result is converted to BCD, and then
the four least significant digits are
displayed with the decimal point set
three places to the left.

Display mode d3 also requires
display in kilowatt-hours. The only
difference between the d2 and d3
modes is that d3 needs an additional
divide by 10 to provide a reading in
the range (10.00–16.77). By taking
advantage of the fact that the BCD
conversion routine returns a five-digit
result, a divide by 10 is done just by
displaying the four most significant
digits and placing the decimal point
two places to the left.

The LCD services are designed such
that the LCD routines expect data
where the BCD math routine deposits
its result. Although I don’t elaborate
on these routines in detail here, I
mention them because they cooperate
with the PIC math routines well.

MY TOP PIC
The PIC software occupies 722 of

1024 words of program memory. I
haven’t yet implemented average power

Rick May is a principal design engineer
at Raytheon Systems. He currently
designs embedded software for a Navy
communications system. You may
reach him at rmay@televault.com.

REFERENCE
[1] W.S. Woodward, “Optical isola-

tor computes watts,” Electronic
Design, 102–103, October 14, 1994.

Instantaneous
power display

Energy accumulation
display

Average power
display

Elapsed Time
Display

B

Yes

No

No

No

Yes

Yes

MIN = 0?

Set ay_1;
(non-flashing colon)

Convert TIC to 2-digit
BCD value;

Convert SEC to 2-digit

Set ay_1_flash_slow;
Convert MIN to 2-digit

BCD value;
Convert SEC to 2-digit

BCD value;

Display 4-digit value
as 00:00 (min:sec)

C D E F

Display 4-digit value
as 00:00 (sec:tic)

500ms_flag
set?

Set
Ay_arr_flash_slow

Inst Pwr = S⁄50 × 10
(in watts)

no_d1= 0?

Convert E to 5-digit
BCD value

1s_flag set?

Inst Pwr = 5⁄50 × 10
(in watts)

Display lower
4 digits to LCD

MSB digit
= 0?

Set no_d1 = 1;

Convert (E>>8)⁄4 to
5-digit BCD value

no_d2
0 =?

MSB digit
= 0?

Display lower 4
BCD digits as 0.000

Set no_d2=1;
Display upper 4

BCD digits as 00.00

Yes

No

No

No

Yes

No

Yes

No

Reset

Configure PIC; Init variables

Reset SW
down 50 ms

Clear TIME; Clear E;

Mode SW
down 50 ms

Increment MODE

1s_flag set?

E = E + S⁄36;

MODE
?

Instantaneous
power display

C

Energy accumulation
display

D

Average power
display

E

Elapsed time
display

F

B

=3

=2=1

=0

Yes

No

No

No

Yes

Yes

b)a)

Figure 5a —As you can see in the power meter’s mail executive loop, the
energy accumulator E is filled from S every second. b—Here, each module is
detailed. Note how autoranging is implemented in the energy accumulation
mode.

SOURCES
PIC16C71, PIC16C61, AY0438
Microchip
(602) 786-7668
Fax: (602) 786-7277
www.microchip.com

ADC0831
National Semiconductor Corp.
(800) 272-9959
(408) 721-5000
Fax: (408) 721-2233
www.national.com

LCD
Varitronix
(213) 738-8700
Fax: (213) 738-5340
www.varitronix.com

SOFTWARE
Source code for this article can be
downloaded from the Circuit
Cellar Web site.

measurement or low-battery detection.
And, I did the initial calibration using
incandescent light bulbs as loads.

The results appear accurate within
10 W, as Woodward’s article indicates.
Calibration using the two trim pots
was fairly easy. For easier calibration,
a multi-turn pot could replace the
single-turn trim pot.

Some possible enhancements in-
clude use of a higher resolution ADC
for more accuracy, removal of pots
altogether, larger energy consumption
accumulator, and autocalibration.

You just saw how a simple PIC
with Microchip’s math routines can be
made to do significant computation
such as numerical integration. You
can use this project as starting point
for any instrumentation-type project.

And maybe now I can figure out just
what’s making my wattmeter spin so
fast. I

28 Issue 96 July 1998 Circuit Cellar INK®

Designing for
Smart Cards

FEATURE
ARTICLE

Carol Hovenga Fancher

a
They look like a
credit card, but the
microcontroller in
them provides
computational ability
and stores
information. Carol
covers all the smart-
card basics you
need to know before
you implement them
in a design.

smart card
doesn’t look so

different from a credit
card. But, it has an embed-

ded controller that provides computa-
tional capability and protected storage.

A smart card’s most important fea-
ture is the higher level of security it
offers compared to other technologies
like magnetic-stripe or memory cards.
Smart cards are good for applications
needing a portable token and the abil-
ity to manipulate the data they carry.

Smart cards are also referred to as an
integrated circuit card (ICC), and can
interface with a point-of-sale terminal,
ATM, or card reader integrated into a
phone, computer, vending machine, or
other appliance. As Figure 1a shows, the
semiconductor devices on a smart card
attach to a module embedded in the top
left corner of the card, which provides
contacts to the outside world.

Although most smart cards require
physical contact between the card and
the pins in a reader, a growing number
of applications use contactless cards.
These cards communicate and are
powered by radio signals or inductive
or capacitive coupling (see Figure 1b).

Contactless smart cards are used in
situations requiring quick transactions
(e.g., mass-transit turnstiles). They can
be more physically robust than contact

cards because there’s no wear and tear on
the contacts and the readers aren’t as
open to wear or vandalism. Efforts are
underway to standardize hybrid cards
for contact and contactless systems.

The international standards for smart
cards have been developing since the
late 1970s. ISO 7816, the basis of most
smart card-related standards, defines the
mechanical, physical, electrical, and
handshake interface between the card
and reader without restricting the silicon
in the card or the application for the
card. More recent standards address new
technologies such as contactless smart
cards or application areas like finan-
cial cards, Internet payments, airline
ticketing, and so on (see Table 1).

COSTS AND BENEFITS
Current smart cards, made by Gem-

Plus, Schlumberger, and Bull CP8,
among others, range in price from less
than $1 to about $20. This cost includes
the silicon, OS, module (the chip pack-
age providing the connections to the
outside world), and plastic card.

In addition to the card itself, the
software and networks previously
designed to handle cash, credit, or
checks have to be modified. Let’s look
at the benefits of implementing a
financial smart card.

A stored-value card is attractive
because it reduces the amount of change
the shopper carries and can be used in
small-value transactions where credit
cards or checks are less desirable.
Retailers prefer stored value because
it increases small cash transactions,
which financial institutions currently
avoid because the overhead on credit
cards or checks are too high for profit.

The cards also reduce the hidden cost
of handling, storing, and safeguarding
cash (estimated as ~4% of the value of
all transactions).

OVERALL SYSTEM SECURITY
The security of any application

depends not just on the smart card
chip and its security features but on
the software structures implemented
on-chip and even more broadly on the
integrity of the overall system.

To design for security, first define
the entire system. Consider the oper-
ating environment, including any

Part 1: What’s a Smart Card
All About?

Circuit Cellar INK® Issue 96 July 1998 29

The EEPROM is ideal for this appli-
cation since the stored data usually
changes over the card’s lifetime or is
unique to the card, such as a card identi-
fication number, a PIN (personal iden-
tification number), authorization levels,
cash balances, credit limits, and so on.

This year, improvements to the
controller include advanced RISC cores
and increases in memory sizes to
32 KB of ROM or EEPROM.

• is the exchange or storage of infor-
mation protected?

• do the protected secrets affect the
entire system or a single user?

• is the system prepared to not only
prevent a security break but recog-
nize if one has taken place and have
the means to recover?

• can you update the system against
new attack scenarios, so the system
won’t become obsolete over time?

It’s good to evaluate system perfor-
mance using various security criteria—
those of a recognized body (e.g., ITSEC)
or industry (e.g., SET), or those defined
only for the specific application.

Also consider the exportability of
the system if the application is interna-
tional or to be exported. Most govern-
ments closely control encryption or
decryption techniques.

Once you identify the overall system
security needs and vulnerabilities,
you can use the smart card as a tool to
strengthen security.

THE MICROCONTROLLER
As illustrated in Figure 2, today’s

smart card controller typically includes
an 8-bit CPU, 128–780 bytes of RAM,
4–20 KB of ROM, 1–16 KB of EEPROM
on a single die, and (optionally) an on-
chip hardware encryption module.

expected, imagined, or feasible security
attacks. Be paranoid. If the system
involves any monetary value or secret,
proprietary, or private information, there
will be active attempts on the system.

Define the personality of the attacker
(university student hacking for the
challenge, international cartel search-
ing for industry secrets), the attacker’s
resources (home workshop, university
lab, or the resources of an entire govern-
ment), and the value of the information
to the attacker in time and money.

No security strategy is absolute.
Given enough time, resources, intelli-
gence, and luck, it’s possible to cir-
cumvent any security.

Most systems impose many barriers
so that defeating one or a few security
features does not compromise the
entire system and so that the time and
resources needed to break into the
system exceeds its value to the attacker.
But of course, system developers need
to design a reasonable and practical
system with a cost commensurate with
the value of the protected information.

An attacker will search out the
weakest link in the security chain. So,
evaluate all aspects of the system:

• is system knowledge controlled or
segregated so that no one person or
group knows all details?

Figure 1a —This is the plastic form factor and module
for a contact smart card as defined by ISO 7816. b—In
a contactless smart card, the antenna is generally
located around the perimeter of the card.

Table 1—Various organizations are involved in developing standards relating to smartcards. The Smart Card Forum has prepared an overview and description of pertinent
standards, “Standards and Specifications of Smart Cards: An Overview.”

Magnetic Stripe (on back of card)

Embossing Area

IC chip (embedded in card)

Card power and signal coil
(embedded in card)

Standard Title/Description

ISO Standards for Identification Cards
ISO 7810 Identification cards, Physical characteristics
ISO 7811 Identification cards, Recording techniques (6 parts)
ISO 7812 Identification cards, Identification of issuer (2 parts)
ISO 7813 Identification cards, Financial cards
ISO 10373 Identification cards, Test methods
ISO 7816 Identification cards, Integrated circuit(s) cards with contacts (6 parts)
ISO 10536 Identification cards, Contactless (Close Coupling) Integrated Circuit(s) Cards (CICC) (4 parts)
ISO 14443 Identification cards, Contactless (Remote Coupling) Integrated Circuit(s) Cards (4 parts)
ISO 15693 Identification cards, Contactless (Vicinity Card) Integrated Circuit(s) Cards (4 parts)
General ISO Security Standards
ISO 9796 Information technology, Security techniques, Digital signature giving message recovery
Industry-Specific Standards (Financial, Telecommunications, Airline Industries)
ISO 9992 Financial transaction cards, messages between the integrated circuit card and the card accepting device (2 parts)
ISO 10202 Security architecture of financial transaction systems using IC cards. (8 parts)
EMV Integrated Circuit Card Specifications for Payment Systems developed by Europay International S.A., MasterCard International

Inc., and Visa International Service Association (3 parts)
ETSI GSM 11.11 European Digital Cellular Telecommunications System (Phase 2): Specification of the Subscriber Identity Module—Mobile

Equipment (SIM-ME) Interface
ETSI GSM 11.14 European Digital Cellular Telecommunications System (Phase 2+): Specification of the Subscriber Identity Module—Mobile

Equipment (SIM-ME) Interface for SIM Application Toolkit
ANSI T1P1 U.S. Telecom Standard
IATA JPSC 791 International Airline Transportation Association (IATA) Joint Passenger Service Committee (JPSC) Smartcard Specification

b)

a)

30 Issue 96 July 1998 Circuit Cellar INK®

die size and use very dense memory
elements. Devices for contactless cards
use a microcontroller with analog
circuitry that conditions the data and
information transmitted over the
interface. The card includes capacitive
plates or a coil for coupling with the
reader (see Figure 3).

MCU SECURITY FEATURES
Microcontrollers in smart cards

strengthen system security. Security
features can vary, but the aim is to
restrict access to stored information
and prevent the card from being used
by unauthorized parties.

Each manufacturer includes some
unique security features. These are
never discussed to maintain security.

In general, however, a smart-card
device includes one or more of these
security features:

• multiple detectors for abnormal
operating conditions keep the device
operating in a well-characterized
operating environment or forces a
shutdown of the device or other
protective action when unusual
circumstances occur

• memory-mapped I/O under the con-
trol of the CPU restricts external
access to the device

• controlled access to certain memory
areas limits on-chip program modi-
fication of certain parameters

• unique serial numbers that track
individual cards and security keys
can be stored in protected memory

• on-chip oscillators and timers iso-
late the device from externally gen-
erated, potentially fraudulent clocks

• on-chip charge pumps program the
EEPROM under CPU control

Manufacturers may also employ
special tamper-resistant layers or
nonstandard circuit and memory topolo-
gies. Test modes are isolated to ensure
they can’t be used to gain information
and to ensure that the device executes
only from its on-chip program.

THE ROLE OF SOFTWARE
Not only does smart-card software

determine the card’s functionality in the
overall system, it also plays a huge part
in the security of the system and the

tally different because it’s
primarily designed for se-
curity. For instance, if you
compare smart cards using
the Motorola 68HC05 with
its nonsmart-card Motorola
counterparts, several differ-
ences become clear.

Most obvious is the smart
card’s single memory-map-
ped I/O. There are only five
standard ISO-defined pinouts
on a smart card: I/O, Clock,
Power, Ground, Reset.

The smart card uses only
onboard memory with rela-
tively large amounts of non-
volatile memory. EEPROM
programming is accomplished

by an on-chip charge pump so it is
controlled by the CPU and not acces-
sible directly by external command. It
appears stripped down compared to a
nonsmart-card device since it contains
no additional peripherals (e.g., ADC,
PWMs, serial or parallel interfaces).

To increase mechanical robustness,
smart-card devices are constrained by

Memory-management units are
included on devices that support multi-
application cards. Encryption and
decryption hardware accelerators
support additional algorithms with
1024 and larger key lengths.

Although it functions like a typical
micro with instruction-set compatibility,
the smart-card controller is fundamen-

Figure 2 —At a minimum, the standard smartcard microcontroller
contains a CPU and blocks of memory including RAM, ROM, and some
sort of nonvolatile memory (usually EEPROM).

ROM

EEPROM

Divide by
1 or 2
PLL

Time base
and

Watchdog

Random
Number

Generator

CLK

RST
VDD
VSS

CPU

RAM

Charge Pump

EEPROM Oscillator

Modular Arithmetic
Processor

Control Logic

Interrupt
Control

DDP Port
A

PA0

PB0
PB1
PB2
PB3

DDP Port
B

Circuit Cellar INK® Issue 96 July 1998 31

validity to the terminal
and the terminal to the
card (see Figure 4). Option-
ally, you can link the
card to the card carrier
and verify that the card
carrier is legitimate.

Currently, a PIN is
commonly used to verify
the cardholder. Unfortu-

nately, it’s not necessarily unique to
the person and far too many people
write their PIN on their card, nullify-
ing any security benefits.

Various biometrics such as voice-
prints, fingerprints, retina or iris scans,
and dynamic signature patterns are
being evaluated to provide the linking
mechanism between the card and card
carrier. The card carrier’s unique bio-
metric image captured by sensors at the
terminal or card can be compared with
the template stored on a smart card.

Such matching techniques are still
imperfect and must prove acceptable by
the card-carrying public. Depending on
the application, designers must decide
whether they’re more interested in

card in particular. Typically, as
much as 50% of a smart card
microcontroller’s ROM code
is dedicated security.

The software takes advan-
tage of the microcontroller’s
security features. It then veri-
fies the different players by
linking the terminal, card,
and card carrier. Lastly, it
encrypts and/or decrypts the data.

To use the microcontroller security
features, there are many aspects and
techniques that you should consider—
some running counter to what is nor-
mally considered good programming
practice! The following suggestions
are not all-inclusive or sufficient for
all applications, but they point out
the challenges of writing secure code.

Avoid implementing the application
functionality using a standard method
or routine. Make it unique so it’s more
difficult to understand or duplicate.

Deliberately use complex or illogical
program flow. Alternate between
having code in ROM and EEPROM to
reduce the readability of the software.
Periodically check that the EEPROM
has not been erased or altered by veri-
fying the state of some known, nonzero
bits in the array.

Use variability in the software so a
sensitive event does not always occur
at a fixed time after reset. For example,
use nonfunctional EEPROM writes to
obscure the writes that are changing
sensitive information. As well, use
time-critical routines and the built-in
watchdog function, and explicitly erase
the entire RAM, or critical portions,
whenever the device is reset.

You need to consider the conse-
quences of atypical accidental or de-
liberate actions. What would happen
if power is interrupted during critical
portions of the software?

When you’re determining state
tables, don’t assume that a set of inputs
could not occur. What would happen
if a set of conditions could be forced?

Check the state of any security flags
(hardware or software) and/or registers
before executing critical sections of code.
When you implement a counter in
software, ensure that the count is
changed before the related action (e.g.,
comparing the input PIN) takes place.

And finally, limit the ability of the
application to modify itself, but allow
for controlled upgrade or modification
of the system by the download of new
software to the EEPROM.

The software controls not only the
operation of the controller but also its
relationship and interface to the rest
of the system. There are usually three
things that must be verified or linked
before the flow of information and/or
value can take place.

The system and its network (e.g., with
the terminal) must be authenticated, and
then the card is verified. This is often
done by mutual authentication between
the card and terminal via a handshake
routine in which the card proves its

Figure 3 —Devices for contactless cards involve a microcontroller with analog circuitry that
conditions the data and information transmitted over the interface while the card includes
capacitive plates or a coil for coupling with the reader.

Secured
MCU

Divider
and sync
control

Answer
back
circuit

Signal
Conditioner

Transmitter
Drivers

Vout
Voltage

Reg
Vin

R1

C1C
L

R

Circuit Cellar INK® Issue 96 July 1998 33

SOURCES

“Standards and Specifications of
 Smart Cards: An Overview”
Smart Card Forum
(703) 610-9023
Fax: (703) 610-9005
www.smartcardforum.org

ANSI (American National Standards
 Institute) and ISO (International
 Organization for Standardization)
(212) 642-4900
Fax: (212) 302-1286
www.ansi.org
www.iso.ch/welcome.html

ETSI (European Telecommunication
 Standards Institute)
+(33) 92 97 42 00
Fax: (33) 93 65 47 16

Carol Hovenga Fancher joined Motor-
ola Semiconductor Products Sector in
1992 and is the America’s Region
Technical Marketer for the Smart
Information Transfer Division. Prior to
joining Motorola, Carol held engineer-
ing positions with Tracor, Ford Micro-
electronics, and Fraunhofer Institute
for Integrated Circuits. You may reach
her at r15544@email.sps.mot.com.

rejecting impostors or ensuring legiti-
mate cardholders are always accepted.

Encryption and decryption algorithms
are often used in smart-card systems.
Cryptographic algorithms commonly
maintain confidentiality, verifying the
data’s integrity, authenticating the
sender’s identity, or offering a way of
nonrepudiation in a financial transaction.
A variety of private key algorithms are
available, such as DES (Data Encryption
Standard), and public key algorithms
like RSA (Rivest, Shamir, Adellman).

Most algorithms can be supported in
software. However, system time con-
straints may necessitate an encryption
coprocessor integrated into the smart
card controller to accelerate perfor-
mance of the algorithms. The smart
card CPU controls the encryption copro-
cessor using various algorithm libraries.

Software can range from simple to
much more complex algorithmic authen-
tication processes. While restricting
external access to the device, the soft-
ware responds to an incorrectly entered
PIN—anything from requesting a new
attempt to completely locking up the
device on a predetermined number of
consecutive incorrect PIN inputs—or
ask for additional information when
behavior doesn’t fit expected norms.

DEVELOPMENT ENVIRONMENT
The appropriate development envi-

ronment hinges on the need for a propri-
etary versus standard solution (e.g.,
configurable off-the-shelf). You also have
to take into account the developer’s
expertise, timeframe, and resources.

The traditional, most hands-on,
resource-intensive, and time-consum-

Figure 4 —Once mutual authentication between the card and the
terminal is complete, an authorized action can take place.

Card Reader
Reset

Request Card Authenticate

Reader Authentication Data

Authenticate Card

Open Access File for Read

Request Read Access File

Write Data & Time Transaction
to Access File

Request Unload

Send Authorized Command

Answer to Reset

Send Random Number

Authenticate Reader

Transmit Reader
Authentication Data

Open Access File

Transmit Access Code

Acknowledge

Acknowledge

Smart Card
ing setup is to develop software
using development tools spe-
cific to the smart card control-
ler. This task usually requires
assembly-code development.

However, tools specific to
smart-card devices are often
treated as confidential. They
often require customer quali-
fication before being provided
(another security aspect that
limits the access to smart-
card information to those
that have a need to know).

This method results in the
most proprietary solution, is

most tailored to the application’s need,
and is most efficient in code space.
However, it restricts the available pool
of knowledgeable developers and re-
quires the longest development cycle.

You can also customize an available
operating system to the specific appli-
cation. Several companies offer OSs that
target a particular application area and
provide commonly used data structures,
functionality, security techniques, and
some customization.

These environments are provided
with a higher level development tool
and usually include the basics of a
smart-card system (i.e., a handful of
cards and a reader). This approach
supports a faster time-to-market and
requires less device-level expertise.

However, the resulting software may
not be optimal. Tradeoffs often have to
be made to fit within the customiza-
tion options available, and the result
is less efficient and proprietary code.

Advances in the smart-card
controller also offer possible solu-
tions. The advent of object-oriented
software, such as Java interpretive
code for smart cards, has radically
changed the potential development
environment.

You can develop an application
applet using a commercial Java devel-
opment environment and a smart card
Java development kit, which contains
a handful of cards with the interpre-
tive code. The Java layer provides
management and partitioning for a
number of applications.

This approach minimizes time-to-
market, considerably widens the field
of potential developers, and results in

a unique solution for the system. Most
importantly, it supports the growing
demand for multiapplication cards.

The major disadvantage is that, as
a new technology, there are limited
sources for the Java cards, and current
smart-card microcontrollers are pushed
to their performance limits by the
demands of an interpreted layer. But,
both of these concerns will rapidly
change with new products coming to
the market.

SMART CARDS AND SECURITY
By combining portability, comput-

ing power, and improved security,
smart cards can be used in a growing
number of applications. This proven
technology has mature standards and
a global-components infrastructure, so
we’re sure to see major technological
advances in the next several years.

The biggest challenge to developing
a smart-card system is also its great-
est asset—security. Security pervades
every level of the system, software,
and chip design. I

Photo courtesy of RadiSys Corp.

36 Nouveau PC
edited by Harv Weiner

40 �x86 Processor Survey
 Part 2: �486-Class Embedded CPUs
Pascal Dornier

45 Real-Time PC
Network Communication
Ingo Cyliax

52 Applied PCs
A New View
 Part 3: Sensors and Measurement Tools
Fred Eady

CIRCUIT CELLAR INK JULY 199836

N
PC

PCNouveau
edited by Harv Weiner

CompactFlash PC/104 MODULE
The PCM-CFlash is a small 3.6″ × 3.8″ (90 mm × 96 mm) low-cost

adapter module designed to mount on a PC/104 stack. It links
CompactFlash CF cards to the host computer through its ATA/IDE
interface, which assures software compatibility. The module can
replace conventional rotational disk memories in applications where
floppy and hard disks cannot survive. It can also operate as the boot
disk if no other disk is installed in the system.

The CF cards support both 3.3- and 5-V operation and can be
interchanged between 3.3- and 5-V systems. CF cards include an
intelligent microcontroller with an ATA/IDE interface so it appears as
a standard IDE disk drive to the software. Virtually all OSs (including
Windows 95, Windows CE, DOS, QNX, 0S/9000, and Lynx) utilities
and application programs support an IDE interface.

The PCM-CFlash is offered in an alternative configuration called the
ADP-CFlash if PC/104 stack mounting is not desired. The ADP-CFlash
permits remote mounting in a system to provide designers with
maximum flexibility for accessing the CF card in their application.

The PCM-CFlash sells for $59 (no CompactFlash card supplied).

WinSystems, Inc.
(817) 274-7553
Fax: (817) 548-1358
www.winsystems.com

LOGIC ANALYZER FOR
NOTEBOOK COMPUTER
MobiLogic is a PC-based logic analyzer

that operates through the enhanced parallel port
of a computer. MobiLogic uses an external ISA

chassis with two full slots, containing one or two PA600
PC-based logic analyzer cards installed, which gives the

user a portable 400-MHz logic analyzer. The unit features
transitional sampling, which greatly increases the effective
memory depth by only storing data when one of the channels
has changed. A time stamp is stored with every sample so that
the time between samples is known.

MobiLogic is available in 48- and 96-channel versions with
a standard memory depth of 64 Kb (as well as an optional
256 Kb) per channel. The case measures 3″ × 6″ × 15″ and
weighs approximately 7 lbs. Its universal NC input power
supply accommodates line voltages anywhere in the world. A
parallel port cable connects the MobiLogic to either a
notebook or desktop PC. The system operates under Windows
NT or 95. Computer requirements are a ’486 or better with
minimum of 8 MB of RAM.

Pricing for MobiLogic ranges from $3995 to $8995
depending on number of channels and memory. Current users
of the PA600 can make their units portable by purchasing the
empty MobiLogic for $1000 and using it with their own
laptop computer.

NCI
(256) 837-6667
Fax: (256) 837-5221
www.nci-usa.com

 JULY 1998 EMBEDDEDPC 37

N
PC

PCNouveau

SCALABLE FLASH DISK DRIVE
The MD104 scalable flash disk drive combines up to eight

DiskOnChip2000 drives on a single board. The DiskOnChip2000 devices
range in storage capacity from 2 to 40 MB, enabling MD104 configura-
tions with capacities from 2 to 300 MB on a single PC/104 card. The
anticipated 72-MB DiskOnChip2000 devices will expand the capacity to
more than 500 MB.

The MD104 can be used for embedded applications in harsh environ-
ments such as aviation, robotics, and vehicle-mounted computers. Also, its
plug-and-play capability frees you from needing external software drivers,
as well as providing 100% hard-disk emulation and compatibility.

The MD104 is priced at $99, not including the M-Systems
DiskOnChip2000, which presently costs between $12 and $22 per
megabyte, depending on the device capacity chosen.

Tri-M Systems Inc.
(604) 527-1100
Fax: (604) 527-1110
www.tri-m.com

233-MHZ SBC
The VIPer821 is a fully integrated 233-MHz MMX industrial

single-board computer that features full desktop/workstation
functionality packaged into a half-size ISA-bus form factor. The
computer supports PC/104, ISA-bus, and stand-alone operation.
Onboard features include 256 MB of DRAM, 512 KB of L2
synchronous cache, onboard PCI video, PCI 10/l00Base-TX
Ethernet, CompactFlash card technology, and USB support. A
64-bit PCI graphics engine delivers high-resolution video to
1280 × 1024 × 256 using 2 MB of EDO video memory. Both flat
panels and CRTs are supported, and V-port compatibility enables
real-time video as well as graphics over video overlays.

CompactFlash technology currently permits the addition of up
to 24 MB of user-upgradable flash memory to the VIPer821. Also,
because its interface is IDE-compatible, virtually any operating
system can access—or even boot from—the flash card without
requiring a special BIOS or driver. Flash memory is critical for
storing data in mobile and data-collection applications.

The VIPer821 is fully integrated with all the standard I/O,
including support for serial and parallel ports, hard disks, floppy
disks, and USB. Supervisor circuitry includes a watchdog timer,
power-fail/low-battery detection, and a CPU-temperature sen-
sor/alarm. The board also supports advanced power manage-
ment and features a CPU-temperature monitoring and control
algorithm. The VIPer821 is compatible with all popular operating
systems including MS-DOS, Windows 95 and NT, OS/2 Warp,
QNX, SCO Unix, and Novell.

The VIPer821, with an Intel 133-MHz micropro-
cessor, PCI 10/100Base-TX Ethernet, 2-MB EDO
video memory, and 512-KB L2 cache installed (but no
memory) sells for $1640.

Teknor Industrial Computers, Inc.
(800) 387-4222
(561) 883-6191
Fax: (561) 883-6690
www.teknor.com

CIRCUIT CELLAR INK JULY 199838

N
PC

PCNouveau

PCI ADC WITH ONBOARD CPU
The PD-MF-330/12 family of A/D boards

consists of four models with a “processor based”
Motorola 56301 PCI DSP interface. These boards let

the user offload the host CPU data-acquisition functions to
the onboard DSP, thus giving the user two CPUs in one PC.
Each board features four subsystems—analog input, analog

output, digital I/O, and counter/timers. The analog input features
16/8 or 64/32 channels, 12-bit resolution, 1-KB FIFO, 330-kHz
throughput, and programmable gains of 1, 2, 4, 8 or 1, 10, 100,
1000. The analog output consists of two 12-bit 200-kHz per
channel DACs. The digital I/O consists of eight digital-input lines,
which can generate interrupts, and eight digital-output lines.
Three 8254-type counter/timers are available.

The PowerDAQ technology lets all the subsystems run simulta-
neously or independently with one or more boards in the same PC.
Multiple subsystems can be started or stopped as required. All of
these A/D boards feature extensive hardware and software
triggering. Additionally, the data-transfer methods include slave-
mode and bus-mastering operation.

PowerDAQ software for Windows 95 and NT features “clean”
32-bit code, full event-driven multithreading support, and source
code for the DLL. The software supports Visual C++, Visual BASIC,
LabVIEW for Windows, LabWindows CVI, TestPoint, and HP VEE.

The 330-kHz 16-channel board is priced at $895, and the
64-channel version costs $1395.

United Electronic Industries, Inc.
(800) 829-4632 • (617) 924-1155
Fax: (617) 924-1441
www.ueidaq.com

 JULY 1998 EMBEDDEDPC 39

N
PCCE-READY BIOS
Embedded BIOS 4.1 initializes an industrial PC or embed-

ded target as it would for DOS, Windows 95, or Windows NT,
and then boots Windows CE from ROM, flash memory, or disk.
This new capability—CE Ready—enables industrial PCs and
targets using Embedded BIOS to boot the entire range of industry-
standard OSs. No ad hoc third-party loader or launcher software
is required, nor is DOS required,
to boot Windows CE in a CE
Ready system. This innovation
keeps the system software simple
and standard, while reducing costs
by eliminating DOS and loader
royalties in a Windows CE system.

Embedded BIOS 4.1 has a built-
in debugger for checking out ad-
dress and data paths, memory,
and flash-memory components. The
manufacturing mode enables the
system’s disk drives and flash-

memory disks to be managed remotely and per-
mits the BIOS or Windows CE to be reflashed in the
system over a standard RS-232 connection to a host PC.
Remote console redirection lets you redirect traditional
keyboard and screen I/O over an RS-232 connection to a host
PC running terminal-emulation software, so you can debug targets

without keyboards or screens.
Embedded BIOS 4.1 comes

with royalty-free copies of Embed-
ded DOS-ROM and its Resident
Flash Disk software, which emu-
lates floppy or hard disks with
solid-state flash media.

General Software, Inc.
(800) 850-5755
(425) 454-5755
Fax: (425) 454-5744
www.gensw.com

PCNouveau

EP
C

CIRCUIT CELLAR INK JULY 199840

Pascal Dornier

’x86 Processor Survey
Part 2: ’486-Class Embedded CPUs

H ow do you pick a CPU?
First priority: good software develop-

ment and operating environment. A cheap
CPU isn�t much good if you then waste a lot
of time and money dealing with weird
tools or operating systems.

Evaluation boards are important, too.
You can configure them to closely resemble
your target configuration,
and test your software in
parallel with hardware de-
velopment. Many embedded
applications require long-
term availability, which may
rule out some parts that
mainly target the consumer
market.

Just as important is a com-
mitment to engineering sup-
port. CPU performance, fea-
ture set, power, and PCB real
estate have to match your
application and budget.

BIOS adaptation is an-
other consideration. The

more configuration options a CPU has, the
more time it will take to configure and
debug everything. Once you consider all
of these issues, it shouldn�t be hard to
make a decision.

In Part 1, I covered �386-class embed-
ded CPUs. The �486-class CPUs I discuss
this month build on the experience gained

from these earlier products. You�ll see how
the �486s are usually quite an improve-
ment over their predecessors.

AMD ÉLAN SC400
The AMD Élan SC400 was designed to

provide a fully integrated solution for hand-
held devices such as PDAs and wireless

terminals. Design wins in-
clude a Windows termi-
nal, a portable navigation
system, and several Web-
browser and set-top box
designs.

The CPU core is based
on AMD�s �486 and runs
at up to 100 MHz. For
lowest power consump-
tion, the core voltage can
be reduced down to 2.7 V.

As depicted in Figure
1, integrated peripherals
include a LCD controller
(frame buffer stored in the
first 16 MB of main

Last month, Pascal compared �386 CPUs so you�d have a feel for which one
would suit your design specs. However, there are times you need the extra
oomph of a �486 machine. Find out whose CPU best meets your needs.

Figure 1�Like its predecessor, the SC300, AMD�s Élan SC400 includes all the
functions you require in a hand-held computer.

RS-232
Buffer

Matrix
Keypad

LCD

AMD Élan
SC400 /

SC410 CPU

DRAM
1–2 banks

SC300
only

SC300
only

PCMCIA
control
SC300

only

ISA
control

D0–15

SA0–12

MA0–10 /
A3–SA23

32,768-Hz
crystal

*RAS
*CAS *WE

MA

B
U
F

B
U
F

B
U
F

B
U
F

B
U
F

SPP/EPP
printer
port

Flash
Memory

PCMCIA
slot A

PCMCIA
slot B

option

MD0–15

EPC

 JULY 1998 EMBEDDEDPC 41

memory), a PCMCIA controller,
one serial and one parallel port,
a real-time clock, and a XT key-
board interface. Instead of an
external keyboard, a keyboard
matrix can be scanned by soft-
ware, and the 8042 interface
emulated through *SMI or NMI
routines.

As you�d expect from a part
designed for mobile use, the
Élan SC400 has a sophisticated
power-management unit (PMU).
Power management can run fully in hard-
ware, without software intervention, or as
a combination of the PMU and NMI- or
*SMI-based software. The digital I/O pins
can be programmed to change based on
the power state. With the right peripherals,
the PMU could be set up to brew coffee,
bake croissants, wake up the CPU�.

One hand gives, the other takes away.
Not all features are available at the same
time, owing to pin count and other limita-

tions. One of the �features� is that the LCD
controller can only be used with 16-bit
DRAM, not with 32 bit (just when more
bandwidth is needed).

Most pins are 5-V tolerant. Unfortunately,
one half of the DRAM bus is not, which
requires either 3.3-V DRAM or level shifters.

AMD�s Élan SC410 is a lower cost,
stripped-down version of the Élan SC400.
This device has the LCD and PCMCIA
controllers removed.

CYRIX
MediaGX

The Cyrix GX
CPU was originally de-
signed for low-cost PCs and
notebooks. So far, it has been
designed mainly into low-end
desktop PCs, such as Compaq�s
Presario 2100 and 2200 mod-
els, but some recent design wins
include notebooks like the
Compaq Presario 1220. The
MediaGX is also designed into

COM1�s SurfTV set-top box.
The GX is a two-chip solution, as you

see in Figure 2. The main chip includes the
CPU core, a simple CRT controller and
graphics accelerator, and a fast 64-bit
memory controller. It connects to the compan-
ion chip (Cx5510) through the PCI bus.

The companion chip includes the PCI-
to-ISA bridge, the usual ISA-bus peripher-
als, the PMU, and some Sound Blaster
emulation logic. The idea behind this

Figure 2�With few additional components, you can build a complete
multimedia PC around the Cyrix GX chipset.

EDO
DRAM

Cyrix
MediaGX

CPU
64

PCI bus

IDE

ISA

TFT
LCD

SYNDACVGA

Cx5510
Core
Logic

Clock
gen.

Audio
Codec

Video Clock

Figure 3�The National NS486SXL
can be used like a microcontroller
in this minimal configuration. (This
design has not been tested.)

EP
C

CIRCUIT CELLAR INK JULY 199842

partitioning is to mini-
mize the die size of the

CPU chip (built in a relatively
expensive high-performance pro-

cess) and use lower cost generic
technology for the companion chip.
The GX is based on a fast 5x86 core,

running at up to 233 MHz. The high speed
enabled Cyrix to dispense with a lot of
legacy hardware.

VGA and Sound Blaster functions are
emulated through SMI interrupts. Cyrix
calls this Virtual System Architecture (VSA).
The native Windows drivers access the
linear frame buffer directly and don�t incur
any emulation overhead.

To reduce cost and pin count, the main
memory and graphics frame buffer are
unified. To minimize the memory band-
width required for screen refresh, frame

buffer data is automatically compressed in
a shadow frame buffer if possible.

The EDO memory controller integrated
in the CPU runs at the same frequency as
the CPU core. Therefore, DRAM timing can
be optimized with a very fine granularity.

To minimize DRAM page misses, the
GX CPU lets the user set aside a portion of
the cache as a scratchpad. Special instruc-
tions can copy DRAM data to the
scratchpad. The bit block transfer engine
can copy this data to the frame buffer. Part
of the scratchpad is also used by the SMI
handlers to reduce SMI overhead.

An external RAMDAC/clock genera-
tor is required to drive a CRT. The GX can
directly drive TFT LCD panels. Unfortu-
nately, it can�t drive DSTN panels, which
would have been more appropriate for a
low-end notebook product. Because of

this, the Compaq Presario 1220 notebook
disables the on-chip video controller and
uses an external controller instead.

Sound input and output can be sup-
ported by connecting a audio codec to the
Cx5510. This solution can be quite cost
effective for simple wave audio output. If
sound synthesis is required, I recommend
using one of the many Sound Blaster�
compatible controllers. Most likely, they�ll
cost less than the CPU performance re-
quired to perform the emulation.

A new version of the companion chip
(the Gx5520) includes the RAMDAC and
audio codec on chip. What�s the catch?
It�s the most expensive CPU in the group.
Also, I�ve had a lot of difficulty getting
detailed information and support for this
part. I hope the merger of National and
Cyrix will improve this situation.

AMD SC400 (*SC410) Cyrix MediaGX National NS486SXF(*NS486SXL) SGS STPC Consumer

CPU core AMD ’486 Cyrix 5x86 National ’486SX Cyrix ’486
CPU frequency 33/66/100 MHz 166–233 MHz 25 MHz 66–133 MHz
CPU cache 8-KB code/data 16-KB code/data 1-KB code only 8-KB code/data
Input clocks 32,768-Hz crystal 60–66 MHz, video clock 50-MHz crystal, 14.318-MHz crystal

 32,768-Hz crystal
Coprocessor not supported internal not supported internal
Maximum power 1.5 W (3.3 V, 66 MHz) 5.8 W (2.9 V, 180 MHz) 1.0 W(*0.8W) 3.2 W (3.3 V, 66 MHz)

 0.94 W (2.7 V, 66 MHz)

Voltage range 3.0–3.6 V (CPU core can 3.0–3.6-V I/O, 4.75–5.25V 3.0–3.6V
 run down to 2.7 V) 2.9-V core

Idle power 63 mW standby 1.3 W standby 40 mW standby TBD
 0.17 mW suspend 29 mW suspend 0.1 mW suspend

Temperature range 0–70°C Tambient 0–70°C Tcase 0–70°C Tambient –40–85°C Tambient
Price $54.16 (*$49.12)@ 100–1000 $45 (OEM, 180 MHz, $33.70 @ 100(*$25.30) $40

 (Hallmark) 5510/5520 extra) (Hallmark) (10k OEM)
Package 292 BGA 352 BGA + 208 QFP 160 QFP(*132) 388 BGA
DRAM support 16 or 32 bit, FPM or EDO, 64 bit, EDO or SDRAM, 16 bit, fast page mode 64 or 32 bit, EDO, up to

 up to 64 MB up to 128 MB or EDO, up to 16 MB 128 MB; 32-bit no VGA
Timer channels 3 (8254) 3 (8254) 3 (8254) 3 (8254)
Watchdog no no yes no
Interrupts 2 × 8259 + *SMI 2 × 8259 + *SMI 2 × 8259 + NMI 2 × 8259
DMA channels 7 (2 × 8237) 7 (2 × 8237) 4 channels(*none 7 (2 × 8237)

 (nonstandard) + ECP)
Keyboard interface XT interface, matrix scan no no no
RTC yes no yes no
Serial port 1 × 16550 with IrDA no 1 × 16550 with IrDA; no

 Microwire/Access.bus
Parallel port 1 × SPP/EPP no 1 × SPP/ECP(*no) no

 (requires buffer + latch)
Programmable chip up to 15 no up to 29(*up to 28) 1
 selects
LCD/CRT controller yes, monochrome/color LCD CRT (external DAC) and up to 480x320 LCD,(*no) CRT and TV out,

 (up to 16 colors/gray shades TFT support (linear frame 4 gray shades integrated RAMDAC,
 max. 128-KB frame buffer)(*no) buffer with 2D graphics 2D graphics accelerator,

 accelerator) VGA compatible, video input
PCMCIA 2 sockets, 82365 no 1 socket, 82365 no

 compatible(*no) compatible(*no)
IDE interface use programmable *CS yes, PCI bus master use programmable *CS PCI bus master
Bus interface ISA, VL optional PCI, ISA ISA PCI, ISA
Bus masters not supported PCI, ISA ISA, needs buffers PCI, ISA
5-V tolerant I/O partial yes yes yes
PC compatible yes yes, using SMI no yes
Testability JTAG no limited pin scan no

Table 1�Take your pick among these �486-class CPUs�fast, cheap, or low power (you can�t have it all).

EPC

 JULY 1998 EMBEDDEDPC 43

NATIONAL NS486SXF
The National NS486SXF CPU was

designed for real-time operating systems
and is only partially PC compatible. The CPU
core is stripped down and doesn�t support
real-mode or virtual memory paging.

The NS486SXF includes a complete set
of peripherals�a serial and parallel port, a
gray-scale LCD controller, a PCMCIA con-
troller, and a Microwire/Access.bus (I2C)
interface. Also, one of the timer channels can
be reprogrammed as a watchdog timer.

The 25-MHz clock speed and small 1-KB
cache size mean this CPU is the slowest in
this group. However, its low price and inte-

grated peripherals still make it attractive
for applications such as simple industrial
user interface/control functions or small
network appliances like print servers. This
CPU comes closest to the simplicity of a
microcontroller, as Figure 3 illustrates.

Since the DRAM address lines are
multiplexed with the ISA address bus, ISA-
bus mastering requires external buffers.
The NS486SXL is a stripped-down version
of the NS486SXF, with the LCD and
PCMCIA controllers removed.

The NS486SXF runs at 5 V, so power
dissipation is rather high relative to CPU
performance. The clock can be driven
either by a 50-MHz fundamental crystal
(hard to get) or a crystal oscillator.

SGS-THOMSON ST PC CONSUMER
The ST PC Consumer CPU diagrammed

in Figure 4 is designed primarily for TV set-top
box and consumer PC applications. However,
its cost should also be competitive for many
embedded applications that don�t require
the video support it offers.

The CPU is based on the �486 core
licensed from Cyrix, running at up to
133 MHz. All clock generators are built

in. The only thing required
is a 14.318-MHz crystal.

The integrated video control-
ler is VGA compatible with an inter-
nal RAMDAC and TV out (NTSC/PAL)
encoder. The frame buffer is stored in
main memory. The ST PC Consumer has a
video-input port as well as a video-output
pipeline (scaler, chroma, and color key).

The PCI-to-ISA bridge is also built in. To
reduce the pin count, it uses external multiplex-
ers for the ISA-bus IRQ, DRQ, and DACK pins.

BGA PACKAGES
Most new embedded CPUs use ball grid

array (BGA) packages. Many embedded
designers are concerned about this since
BGA packages can�t be soldered or desol-
dered reliably without expensive hot-air
tools (starting around $3000). Also, most
pins of a BGA package cannot be in-
spected visually, but only by x-ray.

I recommend a pad size of 24 mil and a
solder mask opening of 28 mil. Two traces
can be routed between each pin by using
5-mil traces and spaces. Outside of the BGA
area, the traces can expand to a more
conventional 6- or 8-mil design rule.

Figure 4�The SGS ST PC Consumer was de-
signed for set-top boxes, so it includes video-
in and TV-out functions.

EDO
DRAM

SGS
ST PC

Consumer

14.318 MHz

64

PCI

IDE

ISA

Video
In

VGA
TV Out

+ 4 TTLs for IRQ/DRQ/DACK mux
+ 4 TTLs for XD, SA, IDE buffers

EP
C

CIRCUIT CELLAR INK JULY 199844

SOURCES
Élan SC400, Élan SC410
Advanced Micro Devices, Inc.
(800)538-8450
(408) 732-2400
www.amd.com

MediaGX
Cyrix Corp.
(800) 462-9749
(972) 968-8388
Fax: (972) 699-9857
www.cyrix.com

NS486SXF, NS486SXL
National Semiconductor Corp.
(800) 272-9959
(408) 721-5000
Fax: (408) 746-3096
www.ns486.com

ST PC Consumer
SGS-Thomson Microelectronics
(617) 259-0300
www.st.com

Pascal Dornier is president of PC Engines,
a design house for embedded PC hard-
ware and firmware. You can reach him at
pdornier@pcengines.com.

For reliable results,
have your prototypes pro-

fessionally assembled using
a solder paste stencil. It costs more

than hand assembly, but it�s worth it.
X-ray inspection is of limited use. It

can spot shorts but not opens. Shorts can
be avoided through clean processing.

Remember that BGA packages are mois-
ture sensitive (popcorn effect). Don�t open
the sealed bag until the parts are to be
soldered, or you�ll have to bake them accord-
ing to the manufacturer�s recommendations
to remove moisture from the package.

BGA packages should be rugged
enough for most applications, but they
may be problematic when they encounter
frequent temperature extremes. The solder
balls ensure a large distance between the
component and the board, and they en-
able much easier flux removal than most
other surface-mount packages. With a
good process, BGA assembly yield should
be close to 100%.

IN THE CRYSTAL BALL
In the second half of 1998, Cyrix plans

to introduce the MXi integrated processor.

The MXi is based on Cyrix�s next-genera-
tion CPU core with a 64-KB cache. Thanks
to a 128-bit SDRAM interface, memory
bandwidth will be up to 2 GBps, which
should enable MXi to provide high 2D and
3D graphics performance.

SGS-Thomson is also working on other
versions, including ST PC Industrial, which
adds serial and parallel ports, PCMCIA/
Cardbus, and TFT support and deletes the
IDE, TV-out, and video-in functions. They
also offer customer-specific configurations
for a substantial volume commitment.

And what about Intel? I didn�t cover its
embedded �486 and Pentium products be-
cause they don�t integrate the core logic on
chip. The embedded Pentium module might be
interesting for some applications. However,
the Pentium Pro is being phased out rapidly,
and the packaging of the Pentium II is a
poor fit for embedded designs.

WHICH CPU FOR YOU?
Table 1 lays it all out. If your product runs

off batteries or if high integration is essential,
the AMD Élan SC400 series is the most likely
fit. The National NS486SXF and NS486-
SXL are best for cost-sensitive applications
where the designer fully controls the software.

The SGS-Thomson ST PC Consumer
and the Cyrix MediaGX are both strong
contenders for set-top box designs. They
also do well for applications needing high
CPU or PCI expansion bus bandwidth, such
as networking.

Good luck finding the best �486 fit for
your design. EPC

 JULY 1998 EMBEDDEDPC 45

R
P
C

Real-Time PC

Ingo Cyliax

Network Communication

I enjoy getting out to the embedded-
systems conferences. For one thing, it gives
me the chance to scrounge around for more
hardware and software for this column.

But, it also gives me an opportunity to
communicate and network, as it were, with
fellow engineers. In talking to you, I get feed-
back, I get ideas, I get to know you better.

So this month, let�s communicate some
more. In this context, though, I�m talking
about a different kind of communication.

It used to be that embedded-systems
engineers devised their own protocols so
their systems could communicate with each
other. These days, however, we like to
reuse as much as possible, and this trait is
clearly evident in the communications area.

Writing your own protocol, although it
seems easy at the beginning, is not so
simple. I started out thinking this column
would be about implementing protocols
(e.g., frames, checksums, and sliding-win-
dow protocols). But in fact, it�s much more
cost effective to use TCP/IP for many
applications.

If you don�t want to take my word for it
and still want to implement your own proto-
col, check the networking books in the refer-
ence section. They go through excruciating
pains to show you how to implement a sliding-
window protocol with checksums and so on.

Before we get into TCP/IP, let�s look at
some communications hardware. There
really isn�t that much common hardware
out there. There are serial ports such as RS-
232 and RS-422/-485 and network inter-
faces like Ethernet.

There are device buses like CAN and
so forth, too. But, these are application
specific, and they�re complex enough to
require their own column.

After we take a look at these, I�ll check
out TCP/IP and show you an example that
illustrates how simple it can be.

RS-232
You�re probably most familiar with RS-

232. It has been around for, well, forever.
Every PC has usually at least two RS-232
ports. They�re standard.

RS-232 only defines the electrical speci-
fication of the interface and the bit-level
coding. What you send isn�t defined by
the standard, so it�s up to the application.

However, RS-232 has some limitations.
The data rate is typically limited to less
than 115 kbps, and the maximum distance
you can effectively run the connection is
quite limited (50′ max., less at 115 kbps).

Also, the signaling isn�t isolated. It uses
a common ground between the devices.
This setup can be a problem, especially in
high-noise environments (e.g., factory
floors). The noise-immunity and length limita-
tions can be improved by using line drivers
and modems that translate the RS-232
signaling to a different electrical, or some-
times even optical, signaling method.

But even with line drivers and modems,
RS-232 is a point-to-point communication
standard. To hook up an RS-232�based de-
vice, you need a pair of serial ports�one on
each device for a link. Also, PC architectures
are usually limited to four USARTs (COM ports)
before you have to do something special.

With the advent of cost-effective TCP/IP, gone are the days of writing your own
communication protocols. Ingo shows how easy it is to set up a real-time network
whether you choose to use a serial connection or the Ethernet.

CIRCUIT CELLAR INK JULY 199846

R
P
C

RF Modem

USART

RTOS

Gait Thread Server Thread

Embedded RTOS on Robot

RF Modem

USART

Tcl/Tk

Client

Workstation

Ethernet VGA Keyboard/Mouse

Network CRT Keyboard/Mouse

OS

Serial Drivers

TCP/IP

Serial Drivers

TCP/IP

Eth. Drivers Drivers

GUI API

And because Ethernet is a standard, many
systems speak it. It�s possible to build real-
time�based systems that can communicate
with desktop systems and nonreal-time
servers without adding extra software.

Sometimes, however, you may want to
use Ethernet for a real-time application. But,
it�s inherently nondeterministic. Every time
a node connected to the Ethernet wants to
transmit data, it has to wait to make sure
there�s no traffic before sending its data.

Also, it does not know if another Ethernet
device is doing the same thing at the same
time. Occasionally, two devices simultaneously
decide the network is free, so they transmit
at the same time, resulting in a collision.

Of course, there is a mechanism for
dealing with this, but as a result, Ethernet
can�t guarantee deterministic delivery of
data. This effect gets worse the more nodes
and traffic are on the Ethernet segment.

The most common method for getting
around this situation is to make sure the
Ethernet segment is not very loaded. In
fact, if there are only two nodes on the
segment, then performance is predictable.

To increase utilization, you can use faster
than necessary Ethernet implementations.
In other words, using 100-Mbps Ethernet
instead of 10 Mbps makes it 10 times less
likely to be congested for the same traffic.

Finally, you can implement pseudo-token-
passing or polling protocols over Ethernet.

This technique introduces a lot of over-
head but makes the network deterministic
if every node participates in the algorithm.

ETHERNET PROTOCOLS
The most common protocol used over

Ethernet is TCP/IP. But, TCP/IP is kind of a
misleading term, so let�s discuss it a bit.

TCP/IP can mean the suite of protocols
used in IP implementations (e.g., TCP/IP
stack) or the combination of the terminal
control protocol (TCP) over Internet proto-
col (IP), which implements a reliable peer-
to-peer windowing protocol, commonly
referred to as a stream. Most of the time,
the protocol-suite usage is implied be-
cause stream-based connections are the
typical communication mechanism.

IP, which is the foundation of the Internet-
protocol suite, refers to the layer respon-
sible for switching packets between networks
and addressing individual nodes in a net-
work. The IP layer is implemented on top of
Ethernet frames, which is the basic packet
type implemented by Ethernet controllers. The
IP header addresses nodes using an Internet
address, which is a 32-bit number represented
as a dotted quad (e.g., 193.76.43.1).

For applications to use IP, they need to
be able to address specific resources within
a node. This task is accomplished with a host
address and a port number (introduced by
UDP and TCP). Besides enabling you to

RS-422/-485
RS-422/-485 addresses

some of the shortcomings of RS-
232. It uses differential signaling to

improve noise immunity and distance
(up to 4000′). RS-422/-485 also runs
faster, typically into the 1-Mbps range.

Besides this, RS-485 allows multidrop
connections. So, more than two devices can
be attached to an RS-485 bus.

But, like RS-232, the RS-422/-485 stan-
dard doesn�t define the protocol for speak-
ing over the link. To implement a multidrop
network, the application must implement
an arbitration scheme to be used by the
device on the network.

Also, since the electrical interface is more
sophisticated, RS-422/-485 cards are gener-
ally much more expensive than RS-232 cards.

ETHERNET
Although device buses like CAN and Lon-

Works exist, controllers for Ethernet are be-
coming quite inexpensive. Therefore, some
implementations use Ethernet as a device
bus for communication between controllers,
acquisition devices, and other systems.

Ethernet runs on a variety of physical
media, such as twisted-pair cables, coax,
and fiber. In other words, it�s suitable for
many applications and environments.

Also, Ethernet is available in two
speeds�10 and 100 Mbps. Faster, giga-
bit Ethernet implementations are expected
on the market soon.

Since cards for Ethernet are driven mostly
by the desktop market, they have really
dropped in price. You can find Ethernet cards
for less than $20, and chips that can be
embedded on a motherboard or applica-
tion are available for under $10. Since the
low cost of Ethernet equipment is mostly
due to consumer applications, compo-
nents are available from many sources.

Figure 1�Using a
point-to-point link
over a wireless mo-
dem, you can control
a robot running a
real-time application.
The user interface
runs on a notebook
but could run on any
system supporting
Tcl that has a net-
work interface.

Photo 1�In the GUI for the client appli-
cation, each direction has a button.
When the user presses the button, the
program sends a command to the ro-
bot. a�A green background indicates
an established connection. Although
this was running on my notebook un-
der Linux, it would look similar under
Windows. b�The red background in-
dicates the connection to the robot was
lost. The program tries to reinitiate the
connection until it succeeds.a) b)

CIRCUIT CELLAR INK JULY 199848

address individual resources on a node,
TCP implements a connection-oriented com-
munication path between two resources.

In Internet terminology, sockets are com-
munication endpoints and streams (in the
case of TCP) or data grams (in the case of
UDP). The API commonly used to write
applications employing these protocols is
called the Socket API. Socket API is imple-
mented in almost all OSs these days,
including many PC-targeted RTOSs.

TCP/IP offers other advantages as well.
For one, it is network-interface independent,

so with appropriate network drivers, you
can use the same protocol to communicate
over Ethernet, serial (point-to-point or multi-
drop), and wireless communication channels.
The application using Socket API to inter-
face to the TCP/IP stack does not care (or
even know, in most cases) what kind of
link-layer communication channel is used
to get off the node.

TCP/IP OVER SHARED MEMORY
Since TCP/IP insulates the application

from the link-layer communication chan-

Listing 1�After the main thread of the server process spawns off the gait generator, it
initializes the socket it uses to listen to connections. Once a connection is received, the
accept() call will unblock and the thread enters the command interpreter loop. This
particular server only allows one connection to be active at a time.

#include <netinet/in.h>
#include <stdio.h>
#include "global.h"
#include "servo.h"
#include "gait.h"

int cmdmutex;
int servomutex;
extern int Command;
main(){ /* main thread: init system, start GaitThread, */
int s,ns; /* set up TCP/IP port, accept connections and */
struct sockaddr_in sin; /* do command loop */
int slen;
int GaitThread();
int n;
char buf[256];
SpawnThread(GaitThread);
servomutex = CreateMutex();
cmdmutex = CreateMutex();
s = socket(AF_INET, SOCK_STREAM, 0); /* cmd port via TCP/IP */
sin.sin_addr.s_addr = htonl(MyIPAddress);
sin.sin_port = htons(MyPort);
bind(s,(struct sockaddr *)&sin,sizeof(sin));
listen(s,1);
while(1){ /* main loop */
slen = sizeof(sin); /* wait for connection */
ns = accept(s,(struct sockaddr *)&sin,&slen);

#ifdef DEBUG
fprintf(stderr,"Connect from %s.%d\n",
 inet_ntoa(sin.sin_addr),

 ntohs(sin.sin_port));
#endif

while(1){ /* do command loop */
if((n = ReadLine(ns,buf,sizeof(buf))) < 1)
 break;
GetMutex(cmdmutex);
Command = DecodeCommand(buf);
ReleaseMutex(cmdmutex);}

#ifdef DEBUG
fprintf(stderr,"%s.%d Disconnected.\n",
 inet_ntoa(sin.sin_addr),

 ntohs(sin.sin_port));
#endif

GetMutex(cmdmutex); /* remote process has closed connection */
Command = CMD_STOP;
ReleaseMutex(cmdmutex);
close(ns);}}

 JULY 1998 EMBEDDEDPC 49

R
P
Cnel, you can also use it to communicate

with processes on the same system. In a
sense, the TCP/IP stack can be used as an
interprocess communication protocol.

Several schemes, such as the remote
procedure call (RPC) and network file
system (NFS) protocols, use this feature.
Applications can then communicate with
each other whether they are on the same
or different processors.

Multiprocessor systems can also use the
TCP/IP stack and the Socket API to commu-
nicate via shared memory over buses. This
is particularly interesting in multimaster bus
systems like VME or PCI. You can even build
distributed systems using shared-memory
communication by connecting crates, a
backplane with boards, or bus-repeaters
over fiber or other links.

The distinction between shared-memory
distributed systems and traditional network-
based systems becomes a little fuzzy when
you use the Socket API and TCP/IP to
communicate between processes. I�m
mentioning it because it points out how
flexible and widespread the use of TCP/IP
and Socket API has become.

VENDOR SUPPORT
So, what�s available from vendors? As

I mentioned, just about any PC RTOS has
TCP/IP support these days. About the only
difference is the network interface device
they have support drivers for.

One fairly common protocol, SLIP for
asynchronous serial application, uses stan-
dard PC-architecture UARTs over RS-232
and modems. Point-to-point protocol (PPP) sup-
port is also available for many systems and is
quickly becoming the standard serial-based
IP for many Internet service providers.

Ethernet support is a little trickier. Most
RTOSs support NE2000-compatible Ether-
net cards, but many kinds of Ethernet cards
are on the market. Pick one that fits your
budget and is supported by your RTOS.

Writing an Ethernet driver is not for the
faint of heart, but it can be done if the card
vendors give you programming information
for the card. Several RTOS vendors have
some sample drivers available in source
form, which is a good starting place.

Since Ethernet is becoming a de facto
device bus, suitable for many applications,
Ethernet acquisition devices are becoming
quite cost effective. Keithley features a line
of acquisition devices with Ethernet interfaces.
Expect more to come from others.

I�m still waiting for inexpensive Stamp-
like devices with an Ethernet interface. A real-
time system could use these for remote data
collection and control. One of the Design98
winners implemented components of the
TCP/IP stack on a PIC (see �PIC of the Lot,�
INK 95), so such devices aren�t far off.

ROBO CHAT
By using the TCP/IP suite, I can write

applications independent of the communi-
cation channel used. If your OS imple-
ments the Socket API, your application is
also insensitive to the OS used.

Let�s look at the commu-
nication system of the robot
controller I introduced in INK
92. This controller uses an RTOS
to manage several tasks.

The robot is legged, so the system
has to control the gait (i.e., the sequence
of leg activations) to make the robot move.
To drive the actuators (hobby servos com-
monly used for radio-control models), the
system needs to generate 12 channels of
programmable pulses that lie within 1.0
and 2.5 ms under program control. Clearly,
I�m dealing with hard real time.

CIRCUIT CELLAR INK JULY 199850

R
P
C

#! /usr/bin/wish
grab destination address and port number form command line
set addr [lindex $argv 0]
set port [lindex $argv 1]

if none were specified, make up something
if {$addr == ""}{set addr "localhost"}
if {$port == ""}{set port "4321"}

app_init establishes connection
proc app_init { }{
global chan addr port
after cancel app_init
puts "Connecting to $addr.$port"
set rc [catch {set chan [socket $addr $port]}]
if {$rc == 0}{
.top configure -bg "green"}

else{
set chan 0
after 1000 app_init}}

call app_done when ready to tear down connection
proc app_done { }{
global chan
if {$chan != 0}{
close $chan
set chan 0
.top configure -bg "red"}

exit}

app_cmd is command button callback for sending command via
communication channel to robot. If error occurs, close channel
and try to reestablish communication.
proc app_cmd {cmd} {
global chan
if {$chan != 0} {
puts -nonewline "."; flush stdout
set rc [catch {puts $chan "$cmd" ; flush $chan}]
if {$rc != 0}{

.top configure -bg "red"
close $chan
set chan 0
after 1000 app_init}}}

start widgets and render them to remote-host display
frame is a container for the rest of the widgets
frame .top -bg red
pack .top

create command buttons
button .top.forw -text "^" -command {app_cmd "forw"}
grid .top.forw -column 2 -row 1
button .top.back -text "v" -command {app_cmd "back"}
grid .top.back -column 2 -row 3
button .top.righ -text ">>" -command {app_cmd "right"}
grid .top.righ -column 3 -row 2
button .top.left -text "<<" -command {app_cmd "left"}
grid .top.left -column 1 -row 2
button .top.stop -text "||" -command {app_cmd "stop"}
grid .top.stop -column 2 -row 2

create status indications
label .top.status -text "status" -bg "red"
pack .top.status
button .exit -text "exit" -command {app_done}
pack .exit -side bottom

start connection
after calling app_init, interpreter enters even loop
app_init

Finally, the system has
a communication channel to

an external controller, which is
responsible for the high-level control

behavior (e.g., move forward and back-
ward, turn). The external controller is a worksta-
tion, like an NT or Unix machine, that has
a network connection as well as a serial
port to use for the robot communication.

The communication channel between
the robot and workstation is RS-232 and
uses wireless modems to achieve about
19.2 kbps. To ease system programming
and make the robots accessible from any-
where, the RS-232 channel runs SLIP to
enable it to carry TCP/IP traffic.

Figure 1 illustrates how simple it is to write
a TCP/IP application that communicates
over a network where SLIP and the TCP/IP
stack are already implemented on both
the workstation and the robot�s RTOS. The
instructions for installing and configuring the
networking code is standard and you can read
the vendor�s literature, so I won�t cover it.

There are two programs I need to look
at�the TCP/IP server application, which runs
on the robot, and the TCP/IP client appli-
cation, which runs on the workstations.
The terms �server� and �client� describe
the semantics of the programs.

In IP speak, a server is simply a program
that listens for connections from a client
program and starts communicating. Since
the server program usually keeps running
after the client disconnects, it is sometimes
also called a server demon process.

My server program (see Listing 1) is a
simple loop that listens for a connection
using the accept() call. accept() blocks
until a client connects. When this happens, the
RTOS fills in the sin structure with the
identity, address, and port number of the
client socket and returns a new file handle
to use for the life of the connection.

The server then enters the command
loop, where it waits for data from the client
and sets the current command mode for
the gait controller. The commands are
simple, like CMD_FORW and CMD_STOP.

When the client is done, it initiates a
close on the connection. ReadLine()returns
a zero, indicating the connection is gone.
The program then closes the connection and
returns to listening for new connections.

The client program is written in task control
language (Tcl) and runs on my notebook,
which runs Linux for this project. Tcl is an
interpreted language, which enables you

Listing 2�Here is the client program, which implements both the GUI and command
generator. The program is written in Tcl, which is a portable language available for MacOS,
Unix/Linux, and Windows for free.

 JULY 1998 EMBEDDEDPC 51

R
P
Cto quickly write a program that has access to

system resources, like files, timers, and
most importantly here, the network interface.

Tcl has been ported to several OSs, includ-
ing MacOS, Windows, Unixs, Linux, and
DOS. It has a graphics toolkit-based wid-
get library called Tk (see �Graphical User
Interfaces in RTOSs,� INK 94).

The client program tries to establish a
network connection with the robot and
implements a simple GUI using six buttons
that let me send commands to the robot
and exit. Photo 1a shows you what it looks
like. The source code is given in Listing 2.

Notice that the screenshot in Photo 1a
has a green background. The background
switches to red, as seen in Photo 1b, when
the client loses its network connection with
the robot. When this happens, the client tries
to reestablish the connection with the robot
and turn the background green again.

The status and watchdog facilities are
important, too, because these robots may
run out of battery power or the RF may be
too noisy because of interference or fad-
ing. It�s convenient to have the GUI retry
the connection, rather than having to re-
start it by hand.

Ingo Cyliax has been writing for INK for
two years on topics such as embedded

REFERENCES
D.E. Comer and D.L. Stevens, Internetworking with

TCP/IP: Volume III, Prentice Hall, Upper Saddle
River, NJ, 1997.

E. Foster-Johnson, Graphical Applications with Tcl and
Tk, M&T Books, New York, NY, 1997.

J.K. Ousterhout, Tcl and the Tk Toolkit, Addison-Wesley,
Reading, MA, 1994.

A. Tannenbaum, Computer Networks, Prentice-Hall,
Upper Saddle River, NJ, 1996.

B.B. Welch, Practical Programming in Tcl and Tk,
Prentice Hall, Upper Saddle River, NJ, 1997.

REACHING OUT REAL TIME
Communication in real-time applica-

tions is simple today. Everyone used to
implement their own protocols, which made
sense when common communication libraries
like TCP/IP weren�t available or if you
needed a mainframe computer to do it.

However, now that TCP/IP libraries are
implemented with nearly every RTOS you�re
likely to find on 32-bit PCs, it makes sense
to use it, even when you end up using a
point-to-point, serial, or wireless link.

Although my robot uses a serial connec-
tion for its communication channel, that
isn�t the standard anymore for many appli-
cations. Ethernet is quickly becoming the
standard communication interface on many
SBCs and embedded peripherals. Most
networked desktop PCs have an Ethernet
port or it can be added inexpensively.

We�re certain to see more Ethernet
devices, and programming using the TCP/
IP protocol will be standard. It maybe
hidden, for example, when we use Web-
based interfaces, but it�s still there. RPC.EPC

SOURCES
Tcl/Tk Software
Scriptics Corp.
(650) 843-6900
Fax: (650) 843-6909
sunsoft.sun.com/tcl

Scriptics Corp.
(650) 843-6900
Fax: (650) 843-6909

systems, FPGA design,
and robotics. He is a re-
search engineer at Derivation
Systems Inc., a San Diego-based
formal synthesis company, where he
works on formal-method design tools for
high-assurance systems and develops embed-
ded-system products. Before joining DSI, Ingo
worked for over 12 years as a system and
research engineer for several universities
and as an independent consultant. You
may reach him at cyliax@derivation.com.

CIRCUIT CELLAR INK JULY 199852

A
PC

Applied PCs

Fred Eady

A New View
Part 3: Sensors & Measurement Tools

In Fred�s shop of virtual instruments, he installs a data-acquisition card and
oscilloscope on his EXPL2, using VirtualBench. As a result, he can make just about
any instrument he needs�and it�s all in software.

I �ll be the first to admit I�m wrong. May
the i386EX gods and goddesses have
mercy on my poor little 16-bit soul.

Last time, I scoffed at installing Bill�s
Windows 3.11 on my EXPLR2 because I
figured it would be a waste of my paper
and your time. I needed Windows 95 for
my app. I�m big. I�m bad. I�m stupid.

It nagged me all month. Drove
me nuts. That EXPLR2 board is
perfect except for the processor
type and speed. It has PC Card
and everything else I need to put
together a virtual instrument on that
board. The i386 is the problem.

Wrong. I read so many data-
sheets that I tend to put everyday
functions into datasheet form. So, I
decided to scrap the datasheet
search and install the Win95 hard
drive I used for the National Instru-
ments DAQ board on the EXPLR2.

It�s been a while since I used the
old EXPLR2, so I had to scrounge
for some memory and haul out all

the peripherals I used for the Tempustech/
VIPer marriage. I plugged the EXPLR2 into
the Vetra MegaSwitch and applied 60-Hz
sine waves.

Well, look at that! Bill�s logo is on the
screen! This is gonna be fun!

I won�t have to wade through the letters
and E-mail telling me how �i386 stupid� I

was today, so I can without conscience
write this feature with extreme prejudice.
(Remember that line from Apocalypse
Now? I always thought it to be very
military.)

Anyway, back to work. I�ve got a CD-
ROM drive, 2.5-GB hard drive, mouse, and
floppy on the EXPLR2. Only one problem

exists. The floppy won�t work.
I swap drives. I swap power

connectors. I give up. It�s got to be
something I disabled when I did the
first article with the board.

The last time I included EXPLR2
in a column, I used flash memory,
and I really don�t want to do the
EXPLR2 doc search. I�m gonna fly
by the seat of my Dockers this time!

Besides, I don�t need that darned
floppy drive anyway. I�m a CD
kind of guy. I would normally use the
floppy to move the screenshots to my
Internet machine, but I can always
tie the EXPLR2 to my Florida Room
network and effect the transfer.

Photo 1�Even the almighty Merlin would not have been my
choice at this point.

53JULY 1998 EMBEDDEDPC

A
PC

Photo 3�And they said it couldn�t be done.

Meanwhile, I found the EXPLR2 manual.
I looked up floppy and hard disk installa-
tion. I read the manual. You know how
drive A is always on the �twisted� end of
the floppy cable? Yeah, that�s OK for
desktop monkeys, but the EXPLR2 likes the
no-twist connector.

So, I plugged that floppy into the right
connector�and boom! Floppy action. It
was a good time to find the i386 datasheet,
too. Things are rolling.

Hmm�. A cursory look at the features
shows that the i386 is equipped with a full
32-bit internal architecture. (I�ve got to start
reading my own stuff!) I really don�t think the
i386 was designed to do what I�m doing
with it, but that�s why I make the big bucks.

Photo 1 was like finding water in the
middle of the dessert after the camel died.
We�re going to bring a National Instru-
ments voltmeter and oscilloscope to life on
the EXPLR, and the PC Card interface is the
only way to go.

Using Bill�s 3.11, I�d need to load Card
and Socket Services. With Win95, I can
forget about loading stuff I don�t have.
Besides, I don�t have the ISA equivalents to
the PC Card interfaces. They�re at INK for
photos. So, as my mom always says,
�When in Rome, do spaghetti.�

LET�S COOK
Last time, we put together a

DAQ configuration that could
acquire and generate digital and
analog signals on command. This
time, let�s assemble the receiving
end of that proposition. National
Instruments also provides �instru-
ments in a box,� and I happen to
have a couple of them here.
We�ll start with the voltmeter.

The documentation
is a little flimsy, only
0.464″ including ad-
vertisements, but when
a CD-ROM is included,

you can bet things will get very particular
once that little guy starts to spin. There�s
even a trio of diskettes in the package. I
can use that floppy if I want to!

Nope, wait. There�s another CD-ROM.
Things looking a little complicated.

OK. Let�s get a grip. This series is
supposed to introduce you to National Instru-
ments� way of doing things. So, with that
in mind, I pick up the manual. Here we go.

THE VOLTS ARE IN
I love the way the National Instruments

folks start their written dialog. �Thank you
for buying a National Instruments
DAQMeter DAQCard-4050. The DAQ-
Card-4050 is a digital multimeter card for
computers equipped with Type II PCMCIA
slots.� Couldn�t have said it better myself.

The DAQCard-4050 I�m installing is a
5.5-digit DC voltage, true root mean square
(RMS) AC voltage, ohm, and diode measure-
ment device in PC Card form. In other words,
this is a hand-held DMM in a PC Card.

Reading further, the DAQCard-4050
doc points out that the small size and low
power consumption of the PC Card makes
this little ditty ideal for portable computers
in the field. Yep, and embedded computers in

the field, too. A 24-bit
ADC with digital filtering
gives the DAQCard-4050 high
resolution and accuracy while pro-
viding excellent noise rejection.

My application uses the VirtualBench-
DMM software that�s included with the
package. VirtualBench is another name for a
LabVIEW VI (virtual instrument) you would
create except that it�s already supplied by
National Instruments in a canned, ready-
to-roll format. You can still use LabVIEW
and all other National Instrument program-
ming packages to manipulate the DMM.

VirtualBench-DMM is preconfigured,
and the intent of the prewritten VI is to make
the DAQCard-4050 a voltmeter out of the
box without you writing (or drawing, in
this sense) any instrument code. You can,
however, use C or even Visual Basic in
conjunction with LabVIEW to program
your own DMM instrument if you wish.

As you know, I tend to get a bit crabby
about documentation when it�s not quite
up to par. Well, the folks at National
Instruments must be reading my stuff be-
cause the documentation is very good.

The Read Me First doc is a flowchart
that asks what National Instruments soft-
ware platform or package you�re using.
The choices are VirtualBench-DMM, Lab-
VIEW, or DAQCard-4050 Instrument Driver.
Easy. I�m doing the VirtualBench thing.

The flowchart points me to the Getting
Started with VirtualBench document. Well,
the first thing it tells me is that I can�t be
here. This puppy requires a 33 MHz or
higher �486 processor with floating-point
capability. Hmm�.

I may be in trouble here, but let�s go
after it anyway. After all, I�m still wearing
my Dockers. But if this doesn�t work for me,
don�t you try this at home.

Insert VirtualBench CD and select Run.
Easy enough. It asked for the instrument I

wished to install, and I selected
the VirtualBench Suite. I�ll in-
stall the scope hardware later.

As I was waiting for the
software to install, I started think-
ing out my screenshots. I thought
I�d better check out how high I
could get the resolution to go on
the EXPLR2.

It works out to 1024 × 768
with 16 colors or 800 × 600
with 256 colors. I ended up
using the 800 × 600 setting.

Photo 2�First the PC Card
was found, and now the
electronics have been
identified. This is good.

CIRCUIT CELLAR INK JULY 199854

The EXPLR2 doc states that a Cirrus
Logic CL-GD6245 is present, but Bill�s
software showed a CL-GD6235 Rev. F.
The IC imprint reads 6245. A quick Internet
search for any special drivers I could
install yielded nothing.

The VirtualBench software finally in-
stalled. I checked the directories and ev-
erything looked OK.

Installing the hardware was real tough.
Inserting the PC Card and attaching the
probe cable took all of 10 seconds. I
powered up the EXPLR2 again with the
new hardware and waited for smoke.

No smoke, but no DMM PC Card,
either. The software informed me that I
needed to run the NI-DAQ Configuration
utility to install my hardware. Good thing
I used the old LabVIEW drive, huh? The
correct NI-DAQ software is included with
the DMM. Using the LabVIEW drive just
saved some time and effort.

Run NI-DAQ. Your wish is my com-
mand. Lo and behold, the NI-DAQ utility
found my PC Card DMM. Photo 2 is legal
documentation.

The detected base I/O address is
0x110�0x11F with an interrupt request
setting of 10 in PC Card socket 1. There is
a test button on this screen, and since I�m
exploring with the EXPLR2, I clicked it. The
test passed.

Smiling, I closed the NI-DAQ windows
and restarted VirtualBench. Waiting.
Waiting. Waiting�there�Photo 3!

Well, I�ll show it to you as soon as I can
fix my screen-capture software. Looks like
I�ll have to revert to the 16-bit version, as
the 32-bit version is acting squirrelly.

HiJack for Win95 never works well for
me. I end up loading the previous Win 3.11
version under 95. It worked better. Go figure.

Why don�t you go to the fridge and get
a drink and a sandwich while I load this?
By the way, the EXPLR2 is equipped with
16 MB of memory and seems to be running
OK for what it�s loaded with. To be honest,
I�m pretty amazed right now as to how
well it is running.

The voltmeter refresh is slow but usable.
After all, this really isn�t supposed to be
working at all.

I couldn�t resist. I probed the +5-V line
on the power supply feeding the EXPLR2.
Photo 4a popped up after about 5�10 s.
Pretty close, I�d say.

From the looks of Photo 3 and 4a , there
are lots of things you can do with the

55JULY 1998 EMBEDDEDPC

canned version of the DMM. The front
panel is broken down into areas. The
range-selector area consists of the typical
voltage range settings you find on your
hand-held meter.

The measurement display area is obvi-
ous, as is the mode-selection area. The main
control area resides under the display are
and consists of a cluster of math buttons
and the run and log buttons.

One of the more interesting math but-
tons is the max/min button depicted by a
graphic of a full and not-so-full vessel.
When pressed, a minimum and maximum
value of voltage input is displayed above
the current voltage reading, as you see in
Photo 4b.

I did a little digging and found that the
DMM was set for 50-Hz operation. I
changed that and took some readings.
Didn�t seem to change anything.

The documentation says that the Power
Line Frequency control reduces measure-
ment inaccuracies caused by line noise and
interference from AC-powered equipment
and overhead light-
ing. Also, the digits of
precision can be
changed to increase
or decrease accuracy.
The more digits, the

higher the accuracy and the slower the
measurement time.

The math buttons enable you to scale
the readings in almost any way you like.
Basically, you input a multiplier value and
an offset value, and the DMM calculates
the output value accordingly. The decibel
measurement can be altered by manipu-
lating the percent of reference and the
impedance. The data-logging option lets
you take a reading at a specific interval
and store it in a file.

I recall writing a battery-analysis appli-
cation that took months to complete. In less
than two hours, I loaded the DMM, and it
can do more battery analysis than what I
wrote in all those months.

I could go into the datasheet specifics of
the virtual DMM, but let me sum it all up by
telling you the virtual DMM specs look like
your hand-held specs.

SCOPE IT OUT
The introduction to the DAQScope 5102

thanks you for your participation and goes

a)

b)

Photo 5�Notice the
cursors. This thing
looks just like my big
ol� Tek, which by the
way is supplying the
waveform from its
calibration output.

Photo 4a�Yes! It�s
pretty accurate for
hardware that�s not
supposed to be run-
ning this app. b�
This DMM is really
tricky.

CIRCUIT CELLAR INK JULY 199856

Photo 6�Here�s a shot
of the EXPLR2 with the
various PC Card instru-
ments.

on to tell you
what a magnificent instrument

you just purchased. The DAQScope 5102
features two 8-bit resolution analog-input
channels with a real-time sampling rate of
20 MS/s to 1 kS/s.

The input bandwidth is 15 MHz with
multiple trigger options. If you need more
than two channels, you can synchronize
multiple devices using RTSI (real-time sys-
tem integration) bus triggers or PFI digital
triggers on the I/O connector.

I installed the DAQScope PC Card and
did the smoke test. No smoke and, again,
no PC Card. NI-DAQ to the rescue. The
DAQScope weighed in at base address
0x120�0x13F on interrupt 10 in socket 1.

The documentation guides you through
the hardware and software installation
and then tutors you on digitizing basics.
They just want you to know the environment
you�re measuring in.

Photo 5 is the justification. I could go on
extolling the virtues of the DAQScope, but
like the DMM, it behaves much like the
monster on your bench. Is this neat or what?
The main hardware sans cables and com-
mon peripherals is shown in Photo 6.

WHERE ARE WE GOING?
As an engineer, I�m thrilled with the pos-

sibilities the National Instruments package
offers. I can now put just about any instrument
I can imagine on an embedded platform. I�m
no longer choked by size and power con-
sumption. The software is the instrument.

The way my virtual instruments behave
depends entirely on the platform I choose.
Here, I put together a system using a combina-
tion of components you�d probably never
use in a real-world situation. The point is that
it worked and it wasn�t supposed to.

As a writer, I can now give you a better
perspective. I can show you waveforms. I
can show you the front panels of the
instruments in relation to the waveforms
that instrument may acquire or generate. I
can assemble a virtual-instrument suite
and show you every aspect of each par-
ticular instrument of interest. As you�ve
probably guessed, I�ll continue to use
these virtual instruments in future articles.

This time around, we combined the
resources of an old friend, the EXPLR2,
with a new friend, LabVIEW, to prove
once again it doesn�t have to be compli-
cated to be embedded. APC.EPC

SOURCES
EXPLR2
RadiSys Corp.
(800) 950-0044
(503) 646-1800
Fax: (503) 646-1850
www.radisys.com

LabVIEW
National Instruments Corp.
(512) 794-0100
Fax: (512) 794-8411
www.natinst.com

VMAX SBC 301
Tempustech
(941) 643-2424
Fax: (941) 643-4981
www.tempustech.com

VIPer806
Teknor Microsystems, Inc.
(800) 387-4222
(561) 883-6191
Fax: (561) 883-6690
www.teknor.com

MegaSwitch
Vetra Systems Corp.
(516) 434-3185
Fax: (516) 434-3516
www.vetra.com

Fred Eady has over 20 years� experience
as a systems engineer. He has worked
with computers and communication sys-
tems large and small, simple and com-
plex. His forte is embedded-systems de-
sign and communications. Fred may be
reached at fred@edtp.com.

58 Issue 96 July 1998 Circuit Cellar INK®

Using a PC
for Radiation
Detection

FEATURE
ARTICLE

Dan Cross-Cole

o
Having a problem
with radon? Using a
ADC board and his
desktop computer,
Dan can measure
radon levels as well
as the energy of the
incoming radiation.
The program even
shows him what to do
to keep radon levels
within EPA limits.

f all the radiation
detectors available

for home computers,
you’ll find the cheapest

are Geiger-tube types costing under
$200. But, these devices give limited
information about what’s causing the
radiation because they provide only a
constant amplitude output pulse with-
out any data on the energy of the
incoming radiation.

A typical Geiger tube consists of a
metal cylinder at one voltage (usually
near ground) and a thin wire along the
axis inside the cylinder at a high voltage
(e.g., 700 V). In the tube, a mixture of
gases causes an ava-
lanche of electrons
when a pulse of elec-
trons enters the cylin-
der. That is, one
electron hits a gas
molecule and knocks
off several more elec-
trons, each hitting
another gas molecule
and knocking off more
electrons.

As a result, the tube
appears as a low resis-
tance for an instant
(~100 µs). A high-value
resistor in the power
supply causes the

voltage across the tube to decrease,
which, combined with the effects of
the gas mixture, halts the avalanche.

The pulse of electrons starting all
this comes from an interaction between
the metal cylinder and a gamma ray.
The gamma ray acts like a high-speed
billiard ball, knocking electrons into
the gas inside the cylinder.

The Geiger tube is usually coupled
to a counter via a capacitor that passes
the pulse generated by the Geiger tube
to the counting electronics. Geiger
tubes can furnish pulses that directly
drive small LCD counters available
from Radio Shack.

A standard setup consists of a Geiger
tube, power supply, and pulse-count-
ing circuit. This circuit only tells you
how many gamma rays were detected.
It doesn’t give you any information
about the energy of the gamma rays.

Gamma rays originating in the
nucleus of the atom are emitted with
known energies. So, you can use the
patterns to determine what types of
atoms are the source of the radiation.

Radium, for example, has a well-
known pattern of energies given off at
609, 352, 295, and 242 kilo-electron volts
(keV). (Actually, the energy is given
off by the lead in the decay process.)
Similarly, cesium has characteristic
emissions at 184 and 662 keV.

The detector for a gamma spectrom-
eter provides an output pulse propor-
tional to the energy of the incoming
gamma ray. You can expect to pay
about $800 for the detector and $200
for the power supply. The result is a

Photo 1 —On this modified Prairie Digital Model 30 ADC board, the white wire is
the clear (charge dump) signal and the shielded wire is for the pulse input. Note
the two 1⁄8″ phone jacks.

Modifications for Multichannel
Analyzer Capability

Circuit Cellar INK® Issue 96 July 1998 59

242

295

352 609
Energy (keV)

stop and check the clipboard
to see that the hardware is
working, and then graph the
single-sample data. From the
control screen, you can store
the data in a text file or
retrieve a file for display.

The device has storage for
two channels—P1 and P2.
This storage is used both for
energy calibration and for
summing the counts under
an energy peak.

For energy calibration,
constants are entered for two
peaks of known energy value

in the blocks labeled P1 and P2 under
Calibration Points (keV). For
example, a radium dial watch has two
well-known peaks at 352 and 609 keV.

When I place the mouse on the
channel corresponding to the lower
energy peak (P1) in the graph display
area, the channel number appears in
the CHANNEL # block and then I have
to Store P1. When Calibrate keV
is clicked, the energy corresponding to
any channel selected by the mouse is
displayed in the keV block.

P1 and P2 can also obtain the signal
counts under an energy peak. In this
case, P1 and P2 not only contain the
channel number but also the counts per
channel corresponding to the vertical
coordinate of the mouse cursor in the
graph.

In this way, the cursor can be placed
at the noise level of the graph, so only
the signal counts are summed by the
program. After I select P1 and P2, Find
Counts in Peak causes the total
number of counts under the selected
peak to appear.

Listing 1 shows code for Command5,
the Auto Sample button. All of the
Visual Basic code operates on a single
string of data taken from the clipboard.

The Visual Basic program calls the
C++ routine (Portdata), which oper-

circuit as well as the charge dump
signal to the same circuit. You can also
see the position of the jumper pins.

The phone jacks are secured to the
board with two thin sheets of alumi-
num—one on each side of the steel
bracket that comes with the board. In
its literature, Prairie Digital states
that it can provide customized inputs.

The pulse-clear signal comes from pin
B9 of the user connector. This single wire
also attaches to one of the 1⁄8″ phone
jacks (Clear). The voltage input connects
via a shielded cable to pin A24. Pin A0
is for grounding the shield of the cable.
The shield is also connected to the
ground of the other 1⁄8″ phone jack (Vin).

PUT IT IN THE SOFTWARE
The key to this Visual Basic applica-

tion is that events happen when you
click an object onscreen with a mouse.
Photo 2 shows the control screen for
the gamma spectrometer.

You enter the vertical scale of the
graph and the number of samples to
collect in the input boxes. Auto Sample
causes the computer to take 65,500
data points for each sample and display
them onscreen.

Push buttons let you add the data to
previous samples or display each sample
separately. You can take a single sample,

gamma spectrum (see Figure
1), which you can use with
standard handbooks to iden-
tify the source of radiation
(e.g., radon).

A typical gamma spectrom-
eter consists of an NaI crystal
coupled to a photomultiplier
tube. Gamma rays entering
the crystal knock a pulse of
electrons into higher energy
states in the crystal. When
the electrons return to their
lower states, light photons
are given off.

The number of photons
emitted is proportional to the energy
of the incoming gamma ray. The photo-
multiplier tube amplifies this photon
pulse to give a voltage pulse, which is
amplified and sent to the ADC. The
ADC has a range of 0–5 V.

Remember, the peak voltage of the
output pulse is proportional to the energy
of the incoming gamma ray. If you
vary the amplifier gain so the peak of
the cesium energy peak (662 keV)
corresponds to 3.31 V, then a pulse at
1 V is equivalent to a gamma ray with
an energy of 200 keV.

The added cost for the ability to iden-
tify radiation sources is out of reach
for almost everyone except professional
labs. But here, I show you how to
modify an inexpensive (under $100)
ADC board for your computer. Using
Visual Basic for Windows, you can
obtain the functions of a multichannel
analyzer at a more reasonable cost.

Of course, you’re still stuck with
the high price of the detector. But,
reduced funding for the supercollider
may result in an abundance of these
detectors hitting the surplus market.

The program operates in both Win-
dows 3.1 and 95. But, the specs on the
Prairie Digital board limit the sampling
rate to 40,000 samples per second.

On a 20-MHz ’386, the program
performs about 6000 samples per sec-
ond. Source code for the C++ sampling
loop is also provided. Processors with
higher speeds may require delay loops.

MODIFY THE BOARD
To the ADC board (see Photo 1), I

added two 1⁄8″ phone jacks for the
voltage input from the sample-and-hold

Photo 2 —Clicking the
mouse while the cursor
is on the controls causes
the system to sample
and display data on this
control panel for the
gamma spectrometer.

Figure 1 —The vertical scale is 100 counts in this channel-versus-energy graph.
This is a typical spectrum for radium. The spectral lines shown are from the daugh-
ter products of radon. The ADC board has eight-bit resolution, giving 256 channels.

60 Issue 96 July 1998 Circuit Cellar INK®

The detector measures the activity of
my basement floor (~10″ of concrete).
The detector face looks straight into the
floor (~ 2.5″ above it). A lead sheet
reduces stray radiation from the side.

The Cesium button gives 2631 counts
under the 662-keV peak. The activity
of the button is 5.053 µCi with 50
samples (of 65,500 data points each).

After taking 5000 samples, I mea-
sured 134 counts under the U-235
peak at 185 keV. Radiation handbooks
say 54% of the U-235 is changed by
emitting the 185-keV gamma ray.

So, the activity of U-235 is:

I can calculate the number of U-235
atoms that give rise to this activity.
Given the diameter of my lead shield
(2.5″), the activity per area is:

resistor of the pulse amplifier. Higher
resistance yields higher gain.

The system can be calibrated for
activity if a source of known intensity
is available. Schools and laboratories may
have these types of calibration sources.

Using a separate hardware program
has one good design advantage. You can
change the hardware and a relatively
simple C++ program without changing
the Visual Basic application.

For example, the present C++ routine
clocks the data out of the ADC chip.
A faster design is to have an onboard
clock on the ADC board, which would
provide 30,000 data points per second.
The C++ routine is simpler because
the hardware clocks the data.

MEASURING RADON SOURCES
First, let’s calibrate the system. My

detector is wrapped with a lead sheet
approximately 3⁄32″ thick to form a tube
about 2.5″ in diameter, with the detec-
tor crystal photomultiplier tube tucked
inside. The wrapping extends about
2.5″ past the end of the detector crys-
tal, so that’s where I place the check
source (5.0 µCi of Cesium-137).

ates the hardware ports, collects the
samples, and stores the data in the
clipboard. Visual Basic then displays
that data on the gamma spectrum.

Listing 2 shows the source code for
Portdata, which I wrote in Borland’s
Turbo C++ for Windows. It is furnished
to the Visual Basic program as a dy-
namic linked library (DASADC.DLL).

If you’re thinking of taking on this
project, there are two things to note:
You don’t need to know a lot of Win-
dows programming. But, you do need
to know some C++ syntax.

The C++ port commands (inportb,
outportb) receive or send individual
bytes of data to the ADC board. Port-
data collects 65,500 data points and,
depending on the digitized pulse am-
plitude, increments one of 256 bins.

After each data point is digitized, a
positive trigger signal is applied to the
sample-and-hold circuit to dump the
charge and prepare for the next pulse.
After all data points are taken, the
data is converted to a string of 256
numbers and sent to the clipboard.

Using a 20-MHz ’386, this system
takes data at a rate of about 6000 data
points per second. This speed is about
100 times faster than the detector pulse
rate at environmental radiation levels.

WHAT GOOD IS IT?
This system gives a gamma spectrum

from 100 keV to 1.1 MeV, but the range
can be adjusted by varying the high volt-
age and the pulse amplifier gain. The
present range detects common gamma
emitters and is especially suited to
monitor the daughter products of radon.

The present detector (a 1″ diameter,
1″ long crystal) is suitable for monitor-
ing an area to see if levels significantly
exceed environmental guidelines. Mea-
surements from this system helped
me determine that all I needed was a
small muffin fan to keep my basement
below EPA radon levels.

The easiest way to calibrate the sys-
tem for gamma energy is to find an old
radium watch—the kind that glows in
the dark without being put under a
bright light. One that is painted green
but doesn’t glow anymore may still
provide a good calibration signal.

The easiest way to adjust gain (i.e.,
energy range) is to change the feedback

Listing 1 —In this Visual Basic subroutine, Command5 is activated when the Auto Sample button on the
control panel is clicked with the mouse. The subroutine then takes the number of samples that were entered into
the Samples to be taken box .

Sub Command5_Click () 'Auto Sample is clicked
 RunNum = Val(Text1.Text) 'Samples to be taken
 For J = 1 To RunNum
 X = 1
 Call PORTDATA(X) 'Call C++ procedure
 Command3.SetFocus 'Call Draw Graph subroutine
 Command3.Value = -1
 Text2.Text = Str$(J) 'Write to Samples Completed Box on
 control panel
 Next J
End Sub

Listing 2 —This C++ program for portdata operates the hardware ports that control the ADC board.

(continued)

#include <windows.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <dos.h>

 static HINSTANCE hInstance; //Windows variables and constants
 static HINSTANCE hPrevInstance;
 static HINSTANCE hGlobalMemory;
 const HWND near hClip = 0;
 static LPSTR lpGlobalMemory;

134 counts
5.05 µCi

2631 counts
1

0.54
50

5000
= 0.00476 µCi

0.00476 µCi

3.1416
2.5 × 2.5

4

= 1 nCi / in.2

= 0.37 Be / in.2

= 0.37 disintegrations/ s / in.2

62 Issue 96 July 1998 Circuit Cellar INK®

Listing 2 —continued

 static LPSTR lpSzBuffer;
 static int nCmdShow;
 static int MessageLoop(void);
 static short nLength;
int FAR PASCAL LibMain(HINSTANCE hInstance, WORD wDataSeg, WORD
 wHeapSize, LPSTR lpszCmdLine){
 if (wHeapSize > 0) UnlockData (0) ;
 return 1;}
//Routine is inserted into standard DLL format
extern "C" void FAR PASCAL _export portdata(int){
 int portc = 774; /these are specific to the
 int portd = 775; /Prairie Digital ADC board
 unsigned char reset = 129;
 unsigned char clkhi = 64;
 unsigned char clklo = 0;
 unsigned char adcstart = 192;
 unsigned char bitget = 8;
 unsigned char adcdata;
 unsigned char adcbin;
 unsigned char adcbina;
 unsigned char bitbin;
 unsigned char bitbina;
 unsigned char bitbinb;
 char SzBuffer[5200]; /buffer for data
 unsigned int SampCnt;
 unsigned int BinNum;
 unsigned int TimeCnt;
 unsigned int n = 0;
 unsigned int SpecData[257];
 char TmpBuffer[20];
 unsigned Sample = 65500;
 for (BinNum = 0; BinNum <= 256; BinNum++){
 SpecData[BinNum] = 0;}
 asm cli
 outportb(portd,reset);
 outportb(portc,adcstart);
 for (SampCnt = 1; SampCnt <= Sample; SampCnt++){
 adcbin = 0;
 adcbina = 0;
 outportb(portc,clkhi);
 for (BinNum = 0; BinNum <= 7; BinNum++){
 adcdata = inportb(portc); /get data from ADC board
 bitbin = adcdata & bitget;
 bitbina = bitbin << 4;
 bitbinb = bitbina >> BinNum;
 adcbin = adcbina | bitbinb;
 adcbina = adcbin;
 outportb(portc,clklo);
 outportb(portc,clkhi);}
 outportb(portc,adcstart);
 ++(SpecData[adcbin]);}
 asm sti
 for (BinNum = 0; BinNum <= 256; BinNum++){
 itoa(SpecData[BinNum],TmpBuffer,10);
 lpSzBuffer = lstrcat (SzBuffer, TmpBuffer); /add data to buffer
 lpSzBuffer = lstrcat (SzBuffer, "\n");} /add return, line feed
 hGlobalMemory = GlobalAlloc(GHND,(DWORD) 5200);
 (void far *)lpGlobalMemory = GlobalLock(hGlobalMemory);
 for (n = 0; n < 5200; n++){
 *lpGlobalMemory++ = *lpSzBuffer++;}
 GlobalUnlock(hGlobalMemory);
 OpenClipboard(hClip);
 EmptyClipboard();
 SetClipboardData(CF_TEXT,hGlobalMemory); /put data in clipboard
 CloseClipboard();
 *SzBuffer =NULL; }

Circuit Cellar INK® Issue 96 July 1998 63

I relate this to the number of atoms
through the radiation-decay formula:

N = N0 e– 0.693 t / T [1]

where T is the half-life of the element. I
then differentiate this formula to obtain:

At dN/dt is 0.37 disintegrations per
second, I get:

N = 0.37 T
0.693

atoms

where T is the half-life of U-235 in
seconds:

The number of atoms N seen through
the 2.5″ diameter disc of concrete floor
is 1.2 × 1016.

The range of gammas detected
extends several inches into the concrete,
but I want to get the atoms near the
surface that could emit radon. Atoms

further into the concrete stay embed-
ded as they change.

Let’s consider the range of alpha par-
ticles in concrete. Most alphas are
stopped by about 0.03 mm of concrete.
Radon is stopped more easily because
it’s larger and slower. I’m being conser-
vative by using the alpha-particle range.

For now let’s consider the concrete
as a series of discs 2.5″ in diameter and
0.03 mm thick. Eventually, I’ll use the
surface of the basement walls and floor.

Each disc has the same activity, but
the detector sees less of it because of
the shielding effect of the discs. Essen-
tially, we’re looking at an effective vol-
ume that gives the total detector reading.

Determining this effective volume
gives a density of atoms. From that, I
derive the density of atoms on the
surface of the concrete, which are the
ones that can emit radon.

To get the effective volume, I looked
up the half-value layer for concrete and
used the formula for shielding, which
is similar to that for radiation decay:

Intensity = I0 e– 0.693 x / X

where X is the half-value layer or the
thickness of material needed to lower
the intensity by half.

For concrete at 200 keV, the half-
value layer is about 1″. By integrating
the exponential between 0″ and 10″, I
found that the effective depth is 1.44″.

If As equals the surface activity
counted by the detector and Av is the
activity of the effective volume, then:

Figure 2 — I used 9-V batteries for my power supply in
the detector’s pulse amplifier circuit. This circuit converts
the millivolt-sized pulses from the photomultiplier tube of
the detector to volt-sized pulses for the ADC board.

7.1 × 100,000,000 yr.
365 day

yr.
24 h
day

3600 s
h

= 2.239 × 1016 s

dN
dt

= –0.693
T N

As 3.1416 × 2.5
2

2

=Av 3.1416 × 2.5
2

2
× 1.44

64 Issue 96 July 1998 Circuit Cellar INK®

In other words, the activity is the
same whether I treat it as a surface
(disintegrations per in.2) or volume
(disintegrations per in.3). I measured
surface activity and can calculate
volume activity using this formula:

Av =
As

1.44

Since the surface activity is:

A = 1 nCi / in.2

= 0.37 disintegrations/ s / in.2

the volume activity Av is:

0.37
1.44 = 0.257 disintegrations/ s / in.3

= 2.7 × 10–10 Ci / in.3

Let’s focus on the thin disc of surface
concrete (2.5″ diameter, 0.03 mm thick)
seen by the detector. From Av, the
total activity of the disc equals:

Recall equation 1 which relates activ-
ity to the total number of radioactive
atoms. Using 0.003 for dN/dt and 2.239 ×
1016 seconds for T (the half-life of U-
235), I obtain:

Now, I can find the number of U-238
atoms.

Fortunately, the ratio of U-235 to
U-238 atoms is known. In natural
Uranium, the abundance of U-235 is
0.7196%. The rest is mostly U-238.

Figure 4 —The ADC board and Visual Basic function as
a multichannel analyzer. The ADC board plugs into the
computer’s ISA bus. The detector, amplifier, and sample-
and-hold circuit are external to the computer. The ADC
board is modified to contain two 1⁄8″ phone jacks for the
pulse input and the charge dump signal.

Detector Pulse Amplifier Sample and Hold

Charge Dump

Pulse Input to ADC Board

Computer with
ADC Board

Monitor with
Control Panel

I want to calculate U-238 because
radon comes from the decay of U-238.
Given the amount of U-235, the amount
of U-238 is:

N238 = 9.69 × 1013

.007196
= 1.35 × 1016 atoms

The activity of these atoms can be
calculated, again using equation 1. In
this case, T equals the half-life of U-238
(1.42 × 1017 s):

dN
dt

= –0.693
1.42 × 1017

1.35 × 1016

= –6.59 × 10–2 atoms / s

Dividing this total U-238 activity
in the disc by the area of the disc
gives me the rate of radon production:

dN
dt

/ in.2 =
–6.59 × 10–2

3.1416 × 2.5
2

2

= – 1.34 × 10–2 atoms / in.2

Since each U-238 atom becomes a radon
atom, this is the rate of production of
radon per square inch of concrete surface.

In my basement, two walls measure
20′ × 8′, two walls 24′ × 8′, and a floor
of 24′ × 20′, which makes a total of
170,496 in.2. In 1 s, the total number of
radon atoms produced at the surface is:

1.34 × 10–2 × 170,496 = 2.285 × 103 atoms

Using equation 1, let’s compare
this with the EPA recommended
limit for radon (4 × 10–12 Ci/l). Here,

T is the half-life of radon, 3.82 days or
330,048 s:

dN
dt

= –0.693
330,048 2.285 × 103

= –4.8 × 10–3 atoms / s

= –4.8 × 10–3 1 Ci
3.7 × 1010 Beq

= 1.3 × 10–13 Ci / s

Given the typical basement’s volume
of 1.09 × 105 l, how long does it take to
reach the EPA limit? The total activity
for the EPA limit is:

4 × 10–12 Ci / l × 1.09 × 105 l = 4.36 × 10–7 Ci

and the time t to reach this activity is:

t = 4 × 10–7 Ci
1.3 × 10–13 Ci / s

= 3.35 × 106 s

or in a more useful unit:

3.35 × 106 s = 3.35 × 106 1 h
3600

1 day
24 h

= 38.8 days

To clear your basement every 40 days,
you need a fan that exhausts at least
1.09 × 105 l in that time. To convert to
units normally used for fans (ft.3/min.),
first note that the typical basement
(24′ × 20′ × 8′) is 3840 ft.3 The minimum
capacity, then, is 3840 ft.3 in 55,872
(38.8 × 24 × 60) min.:

3840
55,872

= 0.069 ft.3 / min.

Typical muffin fans are about 30 ft.3

per minute in airflow. You can evacuate
the 3840-ft.3 volume in 128 min., which
is just a little over 2 h. Since half the
radon decays in 3.82 days, you certainly
stay below the EPA limit by running
the fan for a couple hours each month.

You see, if you have a poured con-
crete basement, you may not need an
expensive solution to radon buildup.

ADDITIONAL HARDWARE
A pulse amplifier raises the milli-

volt-sized pulses from the detector to
pulses with amplitudes between 0 and
5 VDC. A suggested pulse-amplifier
circuit is shown in Figure 2.

It should be assembled in a shielded
enclosure, with no more than 1′ of
shielded cable between the detector
output and the amplifier input. This

Figure 3 —In this sample-and-hold circuit, the transistor
is normally off while the circuit is waiting for a pulse from
the pulse amplifier. The diode keeps the peak voltage
of the pulse on the capacitor long enough for the ADC
to sample the voltage and send a clear signal to the CS
input of the 74LS123, which pulses the transistor,
dumping the charge to ground.

N =
0.003 2.239 × 1016

0.693

= 9.69 × 1013 U–235 atoms

Av 3.1416 × 2.5
2

2
0.03 × 1

25.4

= 0.257 × 9.87 × 0.00118
= 0.003 disintegrations/ s

Circuit Cellar INK® Issue 96 July 1998 65

The views expressed in this article do
not necessarily reflect the views of the
Department of Navy or the United
States government.

Dan Cross-Cole has worked as an
electronics engineer for the Navy for
almost 18 years. His interest in instru-

amplifier also inverts the polarity of the
negative detector pulses to the positive
pulses required by the ADC board.

A sample-and-hold circuit captures
the pulses and holds them for the ADC
board. The clear (charge dump) signal
from the modified ADC board grounds
the pulse voltage after its peak is
measured (see Figure 3).

Figure 4 shows the entire setup. To
reduce background radiation, the detector
was surrounded with a 3⁄32″ lead sheet.

Standard shielded audio cable con-
nects the sample-and-hold circuit to the
ADC board and the pulse amplifier. The
length here isn’t critical—up to 10′ is
fine. The cable between the detector and
the pulse amplifier input shouldn’t be
longer than 1′ and should be RG-58–type
cable or similar.

CIRCUIT USES
In addition to serving as a gamma

spectrometer, the circuit can act as a
multichannel analyzer to measure the
height of pulses between 0 and 5 V. It
can detect irregularities in pulse heights
from a signal generator. The ADC board

digitizes audio waveforms without
the sample-and-hold circuit.

The sample-and-hold circuit is biased
toward larger pulses. It records the
highest pulse received between charge
dumps. This is not a problem for back-
ground radiation with its relatively
few pulses per second. But for audio,
the distortion would be unacceptable.

If you’re serious about measuring
radon, however, you should use several
methods of measurement. One highly
recommended option is to use a carbon
canister that is then sent to a laboratory
for testing. You use a piece of filter
paper with a known quantity of air
passing through it, measure for radon
daughter products, and determine the
air concentration of radon.

Or, you can just install a fan. I

SOURCES
NaI detector assembly, voltage divider
Bicron Corp.
(216) 564-2251
Fax: (216) 564-8047
www.bicron.com

HVPS MOD 1-kV POS OPT 3
Bertan Associates
(516) 433-3110
Fax: (516) 935-1766
www.bertan.com

Model 30 general-purpose data-
 acquisition board
Prairie Digital, Inc.
(608) 643-8599
Fax: (608) 643-6754
prairdig@bankpds.com
www.prairiedigital.com

mentation for personal computers
dates back to the Altair 680b (circa
1976), using an A/D conversion routine
and hardware to display the recorded
data on an oscilloscope. Dan is also the
author of 26 Hardware Projects for Your
Home Computer. You may reach him
at crosscol@erols.com.

66 Issue 96 July 1998 Circuit Cellar INK®

Using the Kernel

MICRO
SERIES

Pat Villani

c

FreeDOS and
the Embedded
Developer

Last month,
Pat gave us
the rundown

on FreeDOS, a royalty-
free operating system
for embedded systems.
This month, he shows
us how to make it fly
with an intelligent
printing application for
airline tickets and
boarding passes.

P
ar

t

of2
2

 66

74

80

MicroSeries

From the Bench

Silicon Update

DEPARTMENTS

2

ommercial OSs
such as MS-DOS

clones come with a
hefty initial license fee

and per-copy royalties that buoy the cost
of your final product. These royalties
often range from a few dollars to tens
of dollars per copy. In a competitive
market, these costs are significant.

Last month, however, I introduced
you to FreeDOS. Under the terms of
the GNU public license, you can write
an application and take advantage of a
royalty-free environment, which lowers
recurring costs on the final product.

I discussed how the FreeDOS kernel
becomes compatible by localizing com-
patibility code to the interface layers.
I showed how to load the kernel into
memory.

The kernel is a standard DOS .EXE
file, which eliminates special relocation
code usually found in other DOS systems.
FreeDOS and DOS-C accomplish this
via an intermediate program loader that
is aware of the .EXE file format and that
performs all the necessary relocation.

Using an OS like FreeDOS simplifies
your design by handling the device

2

Figure 1 —The passenger record for the boarding-pass
software includes the passenger’s name and sequence
number, as well as seat, flight, and gate numbers.

Abe Lincoln |012345|12 J|123|23
Passenger

Nam
e

Sequence

Num
ber

Seat
Flight

Gate

Circuit Cellar INK® Issue 96 July 1998 67

drivers and offering a standard API to the
embedded application. It’s quite similar
to a typical DOS system, except it’s
embedded.

This month, I want to take this knowl-
edge and apply it. An intelligent ticket
printer provides a great opportunity to
see the possibilities for using FreeDOS
and DOS-C in an embedded system.

ATB PRINTERS
At one time, airline tickets were

multipart tickets requiring a typewriter
or impact printer to create an image
on all parts of the form. The airlines
manually tracked passengers and com-
puted revenue by counting the tickets
collected. This slow, manual procedure
was labor intensive and costly.

As computers became part of their
daily operations, air fares lowered and
more flights were scheduled. But, more
flights means more passengers. To
continue to offer low-cost fares, the
airlines needed to improve passenger
movement through airports or they’d
lose revenue because unhappy custom-
ers would find other ways to travel.

Improving passenger movement
required a change in the ticketing proce-
dure. It needed to be automated with
tickets that could be produced quickly
and efficiently. Also, passengers had to
be able to board quickly and efficiently.

These factors led to the development
of intelligent ticketing printers. The
printers produce tickets and boarding
passes on cardboard-like stock of Photo
1. Information is encoded on a mag-
netic stripe on the tickets’ reverse side.

Now, airlines can use magnetic read-
ers in their ticket accounting systems,

which speeds up ticket
handling and reduces
costs.

Unlike the printer
attached to your devel-

opment system, these printers handle
data in an encoded record where each
field in the record contains information
regarding placement.

The record may also contain embed-
ded control information. One airline
even created an interpreted language
like Pascal p-code or Java VM byte code
to customize record handling. These
schemes shift the workload of format-
ting the documents to the printers, free
CPU time to handle other tasks, and
reduce cost through lowered overhead.

HARDWARE ARCHITECTURE
The hardware required to generate

this type of document can be quite
complex. For example, a full ATB
document requires two distinct pro-
cesses—one to encode the magnetic
stripe on the reverse of the document
and another to print the information
on the obverse of the document.

Discussing such a printer is beyond
the scope of this article, nor am I
going to cover the theory behind the
paper handling. I do want to discuss a
representative printer that prints a
simpler boarding-pass docu-
ment. It takes a record like
Figure 1 and creates a docu-
ment like the ones shown
in Photo 2.

A good place to start is
to conceptually break
apart the functionality
required to build an in-
telligent printer. As you
see in Figure 2, there is,
of course, the print mecha-
nism and the surrounding
electronics. This so-

called print engine is the most funda-
mental part of the printer.

Also, the communications interface
connects the printer with a host. And
in between, there is the processing
required to interpret the data records
and image the documents.

In many traditional designs, all this
functionality is rolled up into a single,
custom-designed board. This board is
usually large and expensive to produce.

This approach also suffers from a
lack of flexibility when changing print
mechanisms and communications
interfaces. The board designer could
improve extensibility by providing
plug-in boards for communications
and print-mechanism interfaces, but
this solution still falls short when
considering up-front development
costs and time-to-market.

As soon as we consider designing a
separate communications interface
and print mechanism interface, the
next logical alternative to designing
the main board is purchasing one off-
the-shelf. A number of PC/104 single-
board computers on the market make
good candidates for a substitution.

PC/104-based SBCs are compact
versions of the IEEE P996 PC and PC/
AT bus computers. These boards are
generally useful for designs where
mechanical room is not available for a
traditional PC. While the cost of periph-
erals may run slightly higher, the
hardware involved is electrically iden-
tical to standard PC peripherals in
many cases, so you can use familiar
DOS development tools in the project.

Alternatively, if space permits,
you can use an off-the-
shelf PC

Photo 2 —These
simplified boarding passes
were generated by data records like
the one shown in Figure 1.

Photo 1 —This sample ATB
document shows all the preprinted
fields. Note the magnetic stripe on
the reverse side.

68 Issue 96 July 1998 Circuit Cellar INK®

motherboard, further reducing develop-
ment and recurring costs. The choice
is entirely dictated by packaging needs.

However, there are some tradeoffs
made with this design. For example, you
are limited in the choice of processors
available with these boards. Typically,
only 80x86-based processors are avail-
able in these form factors. This means
your software developer may face the
challenges of segmentation in real-mode
80x86 code. This may not seem signifi-
cant at first, but consider the math.

Let’s look at a document that is 4″ ×
7.5″, with an image area of 3.5″ × 7″. If
our resolution is 200 dpi, that’s 700 ×
1400 pixels for a total of 980,000 pixels.

Assuming a single bit per pixel, the
image buffer area is 122,500 bytes—
nearly 120 KB. Unfortunately, segmen-
tation limits you to 64 KB for the
simple offset-only read-modify-write
cycles needed for imaging and forces
you to more complex segment:offset
imaging techniques.

In practice, the consequence could
be as much as a 4× performance degra-
dation. Using an 80386+ running in
protected mode or 68k processor will
improve on this but at an
increased recurring cost.

Other design issues also
must be addressed. For example,
transferring data from the
system memory to the engine
may also place restrictions on
the choice of processor boards.

You may want to design a
custom engine that uses DMA
for image transfer. This is part
of most 80x86 boards, especially
PC/104 boards, so it may not
be a problem.

However, other low-cost
boards may not include a
DMA controller and may not
have enough memory for an
image buffer, making them

unsuitable for this applica-
tion anyway.

Another consideration is
the type of print mechanism used. You
can use almost any printing method—
dot matrix impact, thermal transfer,
direct thermal, inkjet, and so forth.
Each method has some advantages
and disadvantages.

The mechanism you choose is a
function of the application. If the printer
is in relatively harsh environments such
as an airline terminal, which tends to
be dusty and poorly ventilated, the
impact of a dot matrix printer tends
to generate a lot of paper dust.

You also need to think about con-
sumables like ribbons or toner. Imag-
ine being stopped while boarding a plane
because they have to change a ribbon
or add some toner—what a nightmare!

Therefore, I’ve always chosen direct
thermal transfer for my designs. In
direct thermal transfer, there are no
ribbons or toner to contend with. The
print head makes direct contact with
the ticket stock. Heat is generated by
individual elements on the head, caus-
ing salts coating the stock to change
from translucent to black.

There are commercially available,
low-cost mechanisms that can be

used to implement direct thermal
imaging. However, you must carefully
consider these mechanisms because
they may wear out sooner than some
custom-designed mechanisms.

On the other hand, maybe that’s a
feature. Before you accuse me of “mar-
keting talk,” consider the repair issues.

A self-contained print mechanism
is easier to replace for field service
personnel than replacing a head or set
of rollers. In the former, the entire
mechanism is aligned at the shop or
factory as opposed to aligning a head or
setting roller pressure while crouch-
ing behind an airline counter.

One hidden issue for print mecha-
nism choice is print speed. For example,
direct thermal can be reasonable but
may entail working with thermal
history. Figure 3 graphs the paper
motion under the print head.

Adjacent dots may affect the
amount of energy required to change
that dot from clear to black. Those
adjacent dots in the same column
each contribute the amount of energy.

In addition, the preceding dot in
the same row also contributes because
of the thermal time constants in the
head. This is the effect known as
“history” and may cause a dot to
spread, bloom, or smear.

To overcome this, a typical tech-
nique is to break up the application of
energy into a number of smaller, se-
quential “burns” and decrease the
number of “burns” applied to any dot
by dynamically changing the bit pat-

tern for each column of
dots.

This may require
either special hardware
or a faster processor to
create the modified bit
pattern.

Alternatively, you can
print at a slower rate if
your application can
accept slower print speeds.

Another mechanism,
such as laser ion-deposi-
tion, may be faster but at
a higher cost. And, it
requires consumables.

Again, the choice is
dictated by your applica-
tion.

Figure 3a —Pulses applied to the head cause an individual element to heat as shown in
(b). b—Successive pulses do not allow the temperature to return to ambient tempera-
ture and cause more of the pulse of energy to exceed burn temperature. This causes
successive dots (c) to appear to stretch and smear.

b)

a)

c)

Host
Comm
Card

PC/104
or Low-Cost
Motherboard

Front-
Panel

Interface

LCD

Keypad

System Bus

Parallel Port
or

DMA Port

Engine
Electronics

Print
Mechanism

Figure 2 —The bus-oriented design is
evident in the hardware architecture.

Circuit Cellar INK® Issue 96 July 1998 69

Figure 4 —The FreeDOS/DOS-C kernel sits between the various
drivers in the software architecture for the boarding-pass printer.

SOFTWARE ARCHITECTURE
Typical ATB applications are gen-

erally quite complex and need many
communication modules and interface
emulation modules, all needing differ-
ent types of interface drivers. We’ve
seen that our application may require
different print mechanism drivers for
the various types of stock that may be
used by the printer or family of printers.

To meet these needs, let’s look at an
architecture that makes use of the
embedded kernel for storage of multiple
applications. Last month, I described
the FreeDOS kernel and looked at the
FreeDOS project as a source for royalty-
free source code. Let’s build on that.

Figure 4 represents a potential archi-
tecture for an ATB printer. As you can
see, the ATB printer is designed to work
on top of the OS. In this way, the

combined application and OS
appear as a seamless package
to the outside world.

The kernel, combined with
custom device drivers, becomes
the primary interface to the
hardware. We now use stan-
dard operations such as write
to output the image to the print
engine and read and write for
interfacing to the front panel.

The heart of my ATB ap-
plication is a small graphics

package I call Light Weight Graphics
(LWG). This package contains the
simple set of APIs listed in Table 1.

It is also designed to be modular,
breaking out the actual imaging to a
graphics device driver. I use this to
my advantage by doing development
with a screen driver and then replac-
ing it with a printer driver for the
final application. In many ways, this
is similar to the Windows Device
Context abstraction.

Listing 1 shows a simple loop that
monitors the data port and then images
the ticket. It’s simple yet powerful.
You can easily replace the application
portion and adapt the design to any
airline specification.

The graphics package is initialized
with a single call to LWGinit(). From
there, you can select any font you

Table 1—The Light Weight Graphics (LWG) API is part of a simple, efficient graphics package that’s suitable for
embedded applications.

BYTE *ParseIni(BYTE *pszBuffer, Parses.INI file
 BYTE *pszSection, BYTE *pszEntry)
VOID LWGinit(VOID) Initializes LWG package
VOID SetMargin(WORD wLeft, WORD wTop) Sets page margins
WORD GetSystemFont(VOID) Get default system font
WORD RemoveFont(WORD f_no) Remove font from font cache
WORD LoadFont(BYTE f_name) Load font into the font cache
WORD SelectFont(WORD f_no) Select font to print/display with
VOID SetBkColor(WORD nColor) Set background color
VOID SetFgColor(WORD nColor) Set foreground color
VOID TextOut(WORD x, WORD y, Output string to printer/display
 BYTE *s, WORD mode)
VOID BitBlit(WORD x, WORD y, Image single character
 WORD ch, struct fon fp)
VOID Delay(WORD n) Delay n seconds
VOID HorzLine(WORD x, WORD y, Draw horizontal line
 WORD len, WORD wid)
VOID VertLine(WORD x, WORD y, WORD len, Draw vertical line
 WORD wid)
VOID DrawLine(WORD x1, WORD y1, WORD x2, Draw line in any direction
 WORD y2, WORD (*f)(WORD, WORD)) using paintbrush
VOID Update(VOID) Update display or print page
VOID ShutDown(VOID) Terminate LWG package
VOID ClearDevice(VOID) Clear display/printer by

 repainting background

Host

ATB Application

Print
Mechanism

LCD

Keypad

Console
Driver

Printer
Driver

FreeDOS/
DOS-C
Kernel

Communi-
cations
Driver

Disk
Driver

EPROM
EEPROM

70 Issue 96 July 1998 Circuit Cellar INK®

#include <stdio.h>
#include "portab.h"
#include "lwg.h"
#include "barcode.h"
#include "ui.h"

#define MAX_PASSNAME 32
#define MAX_NUMBER 6
#define MAX_SEAT 4
#define MAX_FLIGHT 4
#define MAX_GATE 4

VOID Image(VOID);
VOID CommInit(VOID);
static WORD
 nLeftMargin = 0,
 nTopMargin = 0,
 nSysFont,
 nPassFont,
 nPassFont1,
 nOldEngFont,
 nThinFont;
static FILE *pInputDevice;
static struct Record{
 BYTE szPassengerName[MAX_PASSNAME+1];
 BYTE szRecordNumber[MAX_NUMBER+1];
 BYTE szRecordSeat[MAX_SEAT+1];
 BYTE szRecordFlight[MAX_FLIGHT+1];
 BYTE szRecordGate[MAX_GATE+1];}
DataRecord;
VOID main()
{
 LWGinit();
 CommInit();
 nSysFont = GetSystemFont();
 nThinFont = LoadFont("s16x16.fon");
 nOldEngFont = LoadFont("oe7.fon");
 nPassFont = LoadFont("s6x8.fon");
 nPassFont1 = LoadFont("s8x8.fon");
 SetBkColor(WHITE);
 SetFgColor(BLACK);
 SetMargin(30, 0);
 FOREVER{
 if(OnLine()){
 COUNT nRead;
 nRead = fread(&DataRecord,1,sizeof(DataRecord),pInputDevice);
 if(nRead < 1){
 ShutDown();
 exit();}
 else{
 DataRecord.szPassengerName[MAX_PASSNAME] = '\0';
 DataRecord.szRecordNumber[MAX_NUMBER] = '\0';
 DataRecord.szRecordSeat[MAX_SEAT] = '\0';
 DataRecord.szRecordFlight[MAX_FLIGHT] = '\0';
 DataRecord.szRecordGate[MAX_GATE] = '\0';}
 ClearDevice();
 Image();
#ifdef DEBUG
 Delay(15);
#endif
 Update();}
 else{}}}

VOID Image(VOID)

Listing 1 —This sample application makes use of DOS-C and LWG. The entire application is coded in a few
hundred lines, significantly reducing the resources needed.

(continued)

wish with calls to LoadFont(). This
call returns a font handle that is defined
as a 16-bit integer.

This handle is used in subsequent
calls to SelectFont() to set the font
to be used by the text imaging functions
or to RemoveFont() to delete the
font from the font cache.

Text to be printed is handled by
TextOut(), and lines can be drawn
with DrawLine(). However, for bar-
codes, there are two optimized line-
drawing functions—HorzLine() and
VertLine().

When imaging is complete, a single
call to Update() causes the image to
transfer to the print engine. The process
may be repeated by clearing the image
buffer with a call to ClearDevice()
and doing it all over again.

The graphics driver is separate from
the imaging package. In LWG, the driver
is typically a single file that exports a
single data structure, GDriver, that
contains data pertaining to document
height, width, and resolution.

It also contains pointers to various
driver entry points. This structure is an
abstraction similar to a C++ class and
is the method used to make the pack-
age work with various print engines.

The package also contains support
functions to set color, if needed, and
margins. It also contains a function to
parse a Windows-like initialization.
This function, ParseIni(), opens and
reads a file, looking for a section con-
tained in square brackets, and then
returns the string starting with string=.

This additional customization
enables the printer to be even more
flexible by passing information to your
application. Your application then
uses this information to customize its
operation such as selecting different
font formats, communication proto-
cols, and so on.

By this time, you’re wondering
why I’m putting a hard drive into a
printer. I’m not adding any drive. I
can replace the drive with a simple
device driver that maps an EPROM or
EEPROM to a pseudo-disk drive.

I’ve used this technique before and
kept the FAT format. Although it adds
overhead, all I had to do to create an
EPROM was to copy the application
to a floppy disk. Next, I read the floppy

72 Issue 96 July 1998 Circuit Cellar INK®

SOURCES

PC/104 Specifications
PC/104 Consortium
(415) 903-8304
Fax: (415) 967-0995
www.controlled.com/pc104/
 conspl.html

IEEE P996 Specifications
IEEE Standards Office
(800) 678-4333
(732) 981-0060
Fax: (732) 981-0225
www.ieee.org

SOFTWARE

Source code for this article is avail-
able via the Circuit Cellar Web
site and <www.iop.com/~patv>.

and converted it to Intel hex records.
Finally, I downloaded it into an EPROM
programmer. Simple and effective.

I’ve also written special device drivers
that created a simple memory file sys-
tem but now it involves adding code
to the kernel, so you must keep GPL
in mind. Either way, all your code goes
into EPROM or EEPROM, eliminating
the need to write firmware.

DEVELOPMENT ENVIRONMENT
It should be apparent that this design

offers strong advantages for development.
For example, you don’t need special
compilers to generate code for firmware.

You can use standard compilers
that run under MS-DOS and Windows
95 to generate your code. You only
need to make sure that your compiler
can generate code for MS-DOS.

You also debug your entire applica-
tion under MS-DOS, burn it into ROM,
and do only final system testing on
the host. No mess, no fuss.

In the sample code provided for this
article, I created a project that accepts
data from standard input and creates
an image. This project includes two
drivers: one for a VGA display and
another for an HP laser printer.

The application reads standard input
and looks for a start record. Once found,
it reads each record and creates a docu-
ment for the record. Check out both
the VGA and laser-jet code. It will help
you see how easy this type of develop-
ment can be.

TAKING OFF
Now you’ve seen an application based

on FreeDOS that takes advantage of the
OS’s standard system calls and device
drivers. I only talked about intelligent
printers, but you can extend the design
to other areas.

For example, you can expand the
front-panel keyboard to a full keyboard
and make it into a modern teleprinter.
If you remove the print mechanism and
add ADCs, the same basic architec-
ture can become a remote monitoring
system or data-acquisition system.

Or, you can use the graphics pack-
age combined with a cable converter
to make an intelligent set-top con-
verter. The possibilities are limited
only by your imagination. I

Listing 1 —continued

{
 SelectFont(nOldEngFont);
 TextOut(0, 56, "Frankenstein Air", X_INC);
 SelectFont(nThinFont);
 TextOut(20, 60, "Where do you want to", X_INC);
 TextOut(20, 80, "fly today?", X_INC);
 SelectFont(nSysFont);
 TextOut(220, 190, "Boarding Pass", X_INC);
 TextOut(400, 25, "Frankenstein Air", X_INC);
 TextOut(400, 190, "Boarding Pass", X_INC);
 TextOut(400, 60, "Passenger", X_INC);
 TextOut(400, 90, "Flight", X_INC);
 TextOut(400, 120, "Gate", X_INC);
 TextOut(400, 150, "Seat", X_INC);

 SelectFont(nSysFont);
 TextOut(40, 180, DataRecord.szRecordNumber, X_INC);
 vbar(DataRecord.szRecordNumber, 40, 100);
 SelectFont(nPassFont);
 TextOut(170, 100, "Passenger:", X_INC);
 SelectFont(nPassFont);
 TextOut(170, 110, DataRecord.szPassengerName, X_INC);
 SelectFont(nPassFont1);
 TextOut(400, 65, DataRecord.szPassengerName, X_INC);
 SelectFont(nPassFont);
 TextOut(170, 125, "Flight:", X_INC);
 SelectFont(nPassFont);
 TextOut(170, 135, DataRecord.szRecordFlight, X_INC);
 SelectFont(nPassFont1);
 TextOut(400, 95, DataRecord.szRecordFlight, X_INC);
 SelectFont(nPassFont);
 TextOut(250, 125, "Gate:", X_INC);
 SelectFont(nPassFont);
 TextOut(250, 135, DataRecord.szRecordGate, X_INC);
 SelectFont(nPassFont1);
 TextOut(400, 125, DataRecord.szRecordGate, X_INC);
 SelectFont(nPassFont);
 TextOut(170, 150, "Seat:", X_INC);
 SelectFont(nPassFont);
 TextOut(170, 160, DataRecord.szRecordSeat, X_INC);
 SelectFont(nPassFont1);
 TextOut(400, 155, DataRecord.szRecordSeat, X_INC);}

VOID CommInit(VOID)
{
 pInputDevice = stdin;
}

Pat Villani has 22 years of industry
experience in both hardware and
software, most recently developing
firmware and real-time kernels. He
currently works for a major computer
company writing portions of OS ker-
nel and system management tools.
You may reach Pat at patv@iop.com.

74 Issue 96 July 1998 Circuit Cellar INK®

FROM THE
BENCH

Jeff Bachiochi

h

An Alarming
Improvement

Engineers
are never
satisfied!
Jeff’s
been

thinking about the
alarm monitor he and
Steve built and he
wants to speed it up.
Check in to see how
a little assembly code
and some utilities get
things rolling.

ave you ever
finished a project

only to wish you could
have a second chance at

it? Engineers are known for continually
wanting to tweak things. Nothing’s
ever perfect.

Well, I’m taking the time to improve
on the project Steve and I presented
last month (“Gotcha! Alarming the
Alarm System,” INK 95). A couple
routines in that BASIC-only program
have been bothering me.

The local keypad and the LCD were
manhandled by bit-manipulating digital
I/O on the Domino’s coprocessor.
Similar to bit-banging a software UART,
BASIC made communicating with the
peripherals sluggish.

The BASIC language masked into
the Domino has some terrific advanced
features that make it extremely pow-
erful. While the ease of programming
in BASIC is great for the novice, em-
bedded hooks enable the experienced
programmer to call on assembly routines
when the going gets rough (or slow).

The console serial port is used as the
primary interface for user I/O. The
PRINT statement sends data out the
serial port, while the INPUT and GET
statements gather data coming in the
serial port.

Domino’s BASIC command set has
a pair of user commands that let you
redirect the data path. On the input

side, UI0 tells the processor to accept
data from the serial port, while UI1
lets the processor get input data from
a user-written routine encountered at
a predefined location. On the output
side, UOO sends the output data to the
serial port, while UO1 redirects the
output to a user-written routine lo-
cated at a predefined location.

Although the keypad and LCD are
connected to the Domino’s I2C copro-
cessor, they look like digital I/O to it,
not a keypad or LCD. To talk with
them using BASIC, each device must
be manhandled in order to get a look
at the keypad or write to the LCD.

The I2C communications are quick,
but all the BASIC code that must be
executed slows things down. So even
though the alarm-monitor project didn’t
require fancy programming or speed, I
cringed while waiting for the LCD to
paint a message one character at a time.

Although that project is finished, I
still feel there’s something to be learned.
Using these advanced hooks, I can make
the directly connected keypad and LCD
a pleasure to use, instead of a pain. And,
I can speed up the whole shebang. But
first, let me say a few words about two
useful shortcuts.

OP-BYTES
BASIC-52 provides access to indi-

vidual assembly-language routines
located in its masked processor. Almost
every function available as a BASIC
command can be called directly, elimi-
nating the interpreting, which is where
the snails clog up the execution.

To use these assembly-language
routines, place a value (which identi-
fies the function) in the accumulator
and call address 0030h. This method
can really cut down on the code nec-
essary to write powerful routines.

DOMINO UTILITIES
Because the original BASIC-52 was

written to support EPROM devices and
the Domino uses flash memory, new
program-save algorithms were required.
At the same time, other functions were
added to support the novice programmer.

In fact, the I2C routines added to
the utilities significantly expand the
Domino’s I/O capability. The utilities’
code takes full advantage of the op-bytes

Part 2: Assembly Language
Takes the Race

Circuit Cellar INK® Issue 96 July 1998 75

available through the BASIC interpreter.
In the same way, I can use the op-bytes
and utilities to write keypad and LCD
functions.

USER INPUT
Here’s how I was able to take advan-

tage of both BASIC op-bytes and the
Domino utilities. Note that I did have
access to the utilities source code and
could have skipped the op-bytes by
placing the data being passed on the
stack into the appropriate registers
and jumping into the utilities code
after the stack-removal routines.

However, if the utilities ever change,
the jump into the utilities could change.
By using the routine at its documented
entry point, my routines stay compat-
ible even if the utilities change in the
future. Check out the pseudocode in
Listing 1 as I go through it.

The BASIC command INPUT collects
variable or string data until a <CR> is
received. It then continues program
execution.

The BASIC command GET looks for
a single character and then continues
with program execution. Unlike INPUT,
GET doesn’t suspend the program’s
execution if no input is available.

These commands use two routines.
First, a status-check routine checks
the serial port’s input buffer to see if a
character has been received. The carry
flag is set if a character is ready. Other-
wise, the carry is cleared. A second
routine gets the character and places
it into the accumulator.

When the input is redirected using
UI1 to the user’s input routines, a

jump is made to 4030h or 4033h in code
space. At these locations, you need to
place a jump to your own code.

The standard console input has a flag
you can test to see if a character has
finished coming into the UART. The
keypad has no built-in flag we can check
with. We must go through the same
routine originally written in BASIC to
determine whether a key was pressed
and to find out which one it was.

Figure 1 shows that the four column
inputs have weak pullups to provide a
logic 1 on the upper nibble inputs in
the idle state. The rows are driven
from the lower four bits. Normally, a
high on these outputs doesn’t change
any of the upper nibble inputs even if
a key is pressed.

To scan the keypad, each row is
driven low, one at a time. While the
row is low, the column’s inputs are read.
Any key pressed passes the row’s

logic 0 to the appropriate input. Series
resistors (or diodes) in the row outputs
prevent multiple keys from directly
shorting out two row drivers.

Note that the only way to see if a
key is pressed is to go through the
same steps that determine which key
was pressed. Therefore, the two input
routines can be pretty much the same.

The get_key routine must return
the pressed key’s value in the accumula-
tor. I’ll start by describing that one.

When UI1 is executed, the proces-
sor redirects the program flow to the
vector location 4033h, which is right
in the middle of RAM. MTOP should
be set below this address (I usually set
it to 3FFFh).

Since the program now expects to
execute an assembly-language operation
at this address, you need to place a
short or long JMP here that again redi-
rects program flow to the beginning of
your routine. I ORG’d the code to start
at 4030h, the first of the jump vectors.
The routines follow these jumps.

To use the I2C routines that set and
read the digital I/O of the coprocessor
from BASIC, you need to push an I2C
address, a register number, and a value
on the stack. Then, a call is made to
address F128h, where the utilities
perform the I2C bit-banging routines
to communicate with the coprocessor.
To use the same call to the utilities
from assembly language instead of
BASIC, you must again place the ap-
propriate values on the stack.

One small hitch. The BASIC push
places a floating-point equivalent of

Listing 1 —To keep everything straight, 16-bit values are converted to floating point by op-byte routines.
These then become a setup for the calls to the utility routines.

Keypad
Initialize column counter, column mask, and key deposit
Loop
call BASIC op-byte (16-bit integer to floating point)
call utility (I2C retrieve registered byte)
call BASIC op-byte (floating point to 16-bit integer)
call BASIC op-byte (16-bit integer to floating point)
call utility (I2C send registered byte)
call BASIC op-byte (floating point to 16-bit integer)

Check byte
If no low bits (key pressed)
Decrement column count
If more columns goto Loop

Exit

Figure 1 —Simple interfacing keeps the costs low but places higher demands on the software.

76 Issue 96 July 1998 Circuit Cellar INK®

the parameter on the stack (six bytes
for each parameter). Even though all
parameters are 16-bit words, be sure
to place the floating-point equivalent
on the stack just the way BASIC did
or the utilities won’t speak the same
language when they’re removed from
the stack.

This task is done quite easily with-
out having to write the conversion,
thanks to the op-bytes. The initializa-
tion of the coprocessor’s digital I/O
becomes just a bunch of register setups
and op-byte calls followed by utility
calls to handle the I2C bit banging. Three
temporary registers handle the routine’s
variables—a column counter, column
mask, and key-down input value.

During the column loop, the column
mask is sent to the coprocessor and
the row values are read back from it.
Since the utilities use the same tem-
porary registers I need, they must be
pushed and popped on either side of
the calls to the coprocessor (missing
that little tidbit caused me some pain
during development).

Knowing which column is active
and the value returned enables you to
determine if a key was pressed and
which one it was. The column loop
repeats for all four columns if no key
press is detected.

Since this routine deals with both
the detection and identification of
keys pressed, I divide the remaining
routine into two functions. The first
branch sets the carry flag if a key is
detected and clears it if no key press
was found. The second branch takes
the key value (1–16) and adds 2Fh to
make it a printable character.

Then, this code makes a compare
to what was stored in the last sample
permanent register. If it’s the same, it
zeros out the accumulator. Otherwise,
it places the key value into the accumu-
lator. (This step prevents multiple
detections of the same key press.) After
some register cleanup, you’re done.

When BASIC wants to know if a
character is ready, program execution is
redirected to the status-check routine’s
vector at 4036h. Here, you must place
a short or long jump redirect execution
to the beginning of your routine.

key_stat calls the key_get routine
with two small additions. First, a flag

Listing 2 —LCD print routines make heavy use of both op-bytes and utility routines.

LCD
If character is '0'
Clear RS output bit
call BASIC op-byte (16-bit integer to floating point)
call utility (I2C retrieve registered byte)
call BASIC op-byte (floating point to 16-bit integer)
call BASIC op-byte (16-bit integer to floating point)
call utility (I2C send registered byte)
call BASIC op-byte (floating point to 16-bit integer)

Goto Exit

If character is 'FF'
Set RS output bit
call BASIC op-byte (16-bit integer to floating point)
call utility (I2C retrieve registered byte)
call BASIC op-byte (floating point to 16-bit integer)
call BASIC op-byte (16-bit integer to floating point)
call utility (I2C send registered byte)
call BASIC op-byte (floating point to 16-bit integer)

Goto Exit

Clear R/W bit
call BASIC op-byte (16-bit integer to floating point)
call utility (I2C retrieve registered byte)
call BASIC op-byte (floating point to 16-bit integer)
call BASIC op-byte (16-bit integer to floating point)
call utility (I2C send registered byte)
call BASIC op-byte (floating point to 16-bit integer)

Send upper nibble of character
call BASIC op-byte (16-bit integer to floating point)
call utility (I2C send registered byte)
call BASIC op-byte (floating point to 16-bit integer)

Set E bit
call BASIC op-byte (16-bit integer to floating point)
call utility (I2C retrieve registered byte)
call BASIC op-byte (floating point to 16-bit integer)
call BASIC op-byte (16-bit integer to floating point)
call utility (I2C send registered byte)
call BASIC op-byte (floating point to 16-bit integer)

Clear E bit
call BASIC op-byte (16-bit integer to floating point)
call utility (I2C retrieve registered byte)
call BASIC op-byte (floating point to 16-bit integer)
call BASIC op-byte (16-bit integer to floating point)
call utility (I2C send registered byte)
call BASIC op-byte (floating point to 16-bit integer)

Send lower nibble of character
call BASIC op-byte (16-bit integer to floating point)
call utility (I2C send registered byte)
call BASIC op-byte (floating point to 16-bit integer)

Set E bit
call BASIC op-byte (16-bit integer to floating point)
call utility (I2C retrieve registered byte)
call BASIC op-byte (floating point to 16-bit integer)
call BASIC op-byte (16-bit integer to floating point)
call utility (I2C send registered byte)
call BASIC op-byte (floating point to 16-bit integer)

Clear E bit
call BASIC op-byte (16-bit integer to floating point)
call utility (I2C retrieve registered byte)
call BASIC op-byte (floating point to 16-bit integer)
call BASIC op-byte (16-bit integer to floating point)
call utility (I2C send registered byte)
call BASIC op-byte (floating point to 16-bit integer)

Exit

78 Issue 96 July 1998 Circuit Cellar INK®

is set so key_get knows it is being
called from key_stat. Second, the
accumulator must not be altered, so it
is pushed prior to the call and popped
after returning from it.

Later on, I’ll compare the code space
and execution times of the BASIC
routines with the assembly routines,
but first, let me give you a look at the
output side of things.

USER OUTPUT
Again, I make extensive use of both

the BASIC op-bytes and Domino utili-
ties routines. Most routines here do a
read-modify-write to change individual
bits (see Listing 2), so these routines
can’t write incorrect data to any I/O
not being directly used by the keypad
or LCD.

Although it may not look like it,
the user output routine is much less
complicated than having to scan and
sample the columns and rows of keys
making up the keypad of switch con-
tacts. After all, with the output, you
only have to strobe out the data to a
parallel connected LCD.

Well, that’s marketing talk. The
engineer’s mind is questioning nibble
transfers, busy status, and control regis-
ters. While none of these items is insur-
mountable, the last is cause for concern.

The standard console output routine
merely places data to be transmitted
in the UART’s buffer and—whoosh—
out it goes. UO1 directs program execu-
tion to address 4030h, where a jump
vector will again redirect it to the user’s
output routine.

Once the LCD is initialized by
some means of writing to the LCD’s
control register, the redirected execu-
tion can write to its data register.
Now, all characters just pop onto the
LCD, one after another.

But, to position the cursor some-
where else or to clear the screen, you
need to be able to talk to the control
register. A UART doesn’t need this
complexity, but the LCD does. How can
the output routine process both data
and control information without being
confused about what it’s handling?

My solution is similar to using the
special character modes in a word-pro-

cessor document. To force a word pro-
cessor into (or out of) this mode (be it
underline, bold, superscript, etc.), you
use a special character—one that isn’t
ordinarily used as a text character.

In this program, the characters 0 and
255 are not necessary alphanumeric
characters, nor are they useful control-
register data. So, I used them as mode
signals.

If a 0 is received by the user output
routine, the RS (register select) bit is
cleared. So, characters are interpreted
as control-register data. If a 255 is
received by the user output routine,
the RS bit is set and characters are
interpreted as display data.

Neither of these characters is passed
to the LCD. They can be embedded
into print strings to add screen control
within the print data.

BASIC hands off characters to the
user routine via PRINT. Each character
goes through the user routine, which
interrogates it. Once the character is
broken into nibbles and strobed into
the LCD, the routine exits. An eight-bit
LCD mode would be faster because

Circuit Cellar INK® Issue 96 July 1998 79

the data bus is twice as wide, but I
wanted to leave four I/O bits free for
other things.

To slim the routines, an initialize-
ports routine sets up the direction
registers for Port A and Port B and
places the outputs into an idle logic
state. If the routine is passed a 0 or
255, then the RS output bit is set or
cleared accordingly and the routine
exits without passing any data to the
LCD.

The RS output bit instructs the
LCD to direct data to either the con-
trol registers or display. Since screen-
position data can be easily placed
with display data into BASIC’s PRINT
statement, the user can position text
anywhere on the LCD screen.

FITTING IT TOGETHER
I now have this chunk of assembly

code that needs to get pushed into
RAM starting at 4030h. The Intel hex
file can’t be easily loaded.

I like using DATA statements to
XBY the data (code) into the appropri-
ate locations. To make the data entry
easy, I wrote a GWBASIC program to
read in the hex file and output BASIC-
formatted DATA statements that can
be downloaded along with the rest of
a BASIC program into the Domino.

As a plus, other BASIC statements
are automatically added to provide a
for-next loop that places data into the
Domino’s RAM at a location based on
the hex files’ instructions. When the
BASIC program is run on the Domino,
a call is made to this routine, which puts
the assembly code into place before
the rest of the program needs it.

TIME TRIALS
Table 1 shows the execution times

for the keypad’s scan rate and the LCD’s
character rate. The communications
with the I2C coprocessor require only
about 4 ms total for a keypad scan or
character transmission.

Jeff Bachiochi (pronounced“BAH-key-
AH-key”) is an electrical engineer on
Circuit Cellar INK’s engineering staff.
His background includes product design
and manufacturing. He may be reached
at jeff.bachiochi@circuitcellar.com.

SOURCES

Avocet 8051 Assembler
Avocet Systems, Inc.
(207) 236-9055
Fax: (207) 236-6713
www.avocetsystems.com

Domino2
Micromint, Inc.
(800) 635-3355
(860) 871-6170
Fax: (860) 872-2204
www.micromint.com

Keypad LCD

BASIC 300 ms 140 ms
Assembly 28 ms 44 ms

Table 1—Assembly routines offer significant speed
increases over interpreted BASIC.

Since both BASIC and the UI1 and
UO1 routines use these communica-
tions, the time savings is the direct
difference between the BASIC and
assembly-language times. The LCD
increase was only 3:1, but the keypad
routine increased the scan speed ten-
fold. Although these speed increases
aren’t overly dramatic, the easy of use
alone is worth the time investment.

In the total-BASIC version, the cur-
sor-position and character sequences
had to be sent and strobed into the
LCD a nibble at a time. Then, the
character string had to be parsed,
split, and strobed into the LCD by the
nibble as well.

When you use UO1, this task is
handled in the background and you
only need PRINT CHR(0), CHR(64),
CHR(255),"Hello World" to posi-
tion the cursor to column one of the
second row and display a message.

To improve the speed even more,
you could use a smart I2C peripheral,
such as a serial LCD. This type of
device offloads all of the display con-
trol to a local processor. However, in
low-budget operations, the minimum-
hardware approach often saves real
dollars.

In this case, I was able to improve
speed and ease of use, while maintain-
ing a certain level of harmony between
the embedded BASIC interpreter and
the extended assembly-language utili-
ties—and I didn’t add to the parts cost.
I

80 Issue 96 July 1998 Circuit Cellar INK®

SILICON
UPDATE

Tom Cantrell

n

The Micro Price is Right

Motorola’s
launch of
an 8-bit
OTP for
less than

50¢ takes Tom down
memory lane. Although
the 68HC705KJ1 uses
an ’HC05 core, it adds
a surprising amount
of I/O and support
logic. Hear the call of
another 8-bit war?

o sooner did I
finish last month’s

’51 flashback than a
press release from Moto-

rola drops on my desk announcing
“what is believed to be the world’s
first 8-bit OTP microcontroller avail-
able for less than 50 cents.” Well, the
price may be new, but the ’HC05—in
this case, the 68HC705KJ1—is as old
as the hills.

Worth covering? I might be accused
of trying to relive my youth except for
the fact that the old-timers still make
up the bulk of 8-bit shipments. Also, I
try to remind myself that each new
crop of engineers is less likely to re-
member these chips that trace their
heritage 20–25 years back to the dawn
of micros.

In fact, I realized with a twinge of
mid-life crisis that stuff like disco, bell
bottoms, and The Brady Bunch is
apparently riding some kind of
nostalgia wave (I guess you
had to be there to know bet-
ter), so why not ’51s and ’68s?

HISTORY LESSON
As best I can recall, it was the early

’70s when the micro wars began in
earnest. Intel, having pioneered with the
4004 and 8008, was moving quickly
out of the blocks with the 8080 when
Motorola responded with the 6800.

It’s interesting to reflect on the
showdown’s specifics in light of sub-
sequent events. Fact is, the 6800 was
technically superior to the 8080.

And we’re not talking technical
minutiae, but rather major functional
advantages. For instance, the 6800 was
+5-V-only operation while the 8080
required three supplies (+5, +12, –5 V).
Worse, most 8080 setups called for at
least two other chips—the 8224 clock
generator and 8228 bus controller.

As for architecture and programming,
the 8080 was rather eccentric. All those
weird nonorthogonal instructions,
registers, and addressing modes. Can
anyone remember what the heck instruc-
tions like XTHL and SPHL do? In fact,
the story goes that Intel engineers Faggin
(later to start Zilog) and Mazor kept
adding instructions until the normally
circumspect Shima cried, “Enough!”

SIMPLER TIMES
By contrast, the 6800 programming

model was much simpler. As you see in
Figure 1, it lives on little changed in
today’s ’05. It’s real easy to describe
and understand.

Start with the fact there are five
basic types of instructions: register/
memory, read-modify-write, jump and
branch, bit manipulation, and control.

Most register/memory instructions
(e.g., ADD, CMP, OR, LD/ST, and even
MUL) use two operands—one a memory
location and the other either the accu-
mulator (A) or index register (IX).

Figure 1 —Other than deletion of a second
accumulator and limited memory address-
ing, the ’HC05 programming model is little
changed from the ’70s-era 6800.

CPU Control Unit Arithmetic/Logic Unit

Accumulator (A)

Index Register (X)

Stack Pointer (SP)

Program Counter
(PC)

Condition Code
Register (CCR)

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0
1 1 H1 I N Z C

Half-Carry Flag
Interrupt Mask
Negative Flag

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Carry/Borrow Flag
Zero Flag

Circuit Cellar INK® Issue 96 July 1998 81

price to the bone, but it won’t be by
trimming any architectural fat.

For most embedded micros these days,
the CPU core only consumes a fraction
of the die area. To paraphrase that old
political wisdom, a few million transis-
tors here (for memory) and a few million
there (for I/O) and pretty soon you’re
talking real silicon.

So it goes with the ’KJ1, which packs
the ’HC05 core in the silicon equivalent
of a plain brown wrapper. It’s best
summed up by reviewing the block
diagram in Figure 2.

Memory-wise, the ’KJ1 comes with
1240 bytes OTP EPROM and 64 bytes
of RAM. Yes, it’s minimalist, but not
ludicrously so. I figure you can cram
10 pages or so of ASM or even a few
pages of C (as long as you stay away
from floating point).

A clock input running at up to
8 MHz (5 V, 4.2 MHz at 3.3 V) is di-
vided by two on-chip, which yields a
4-MHz cycle time. Since instructions
take from two to six cycles (except MUL,
which takes 11 cycles), that works out
to just about a 1-µs instruction aver-
age. If you want something faster, be
prepared to pay more because there’s
no such thing as a free lunch—or free
MIPS either, for that matter.

Though the clock setup eschews
fancy PLL schemes found on higher
priced chips, it is workmanlike. Options
include the usual crystal, external
CMOS input, and ceramic resonator.

There’s also a special RC version of
the chip that reduces external compo-
nents to just a resistor, which itself
can be eliminated if you’re willing to
accept whatever clock the chip delivers,
typically between 1 and 3 MHz depend-
ing on voltage, temperature, and manu-
facturing variations. There’s also an

LC version that runs at 32 kHz
off a watch crystal.

Low-power operation is
largely a matter of clock con-
trol, via STOP and WAIT in-
structions. STOP completely
shuts off the oscillator and thus
the CPU and peripheral (e.g.,
timer, watchdog) clocks. Power
consumption is cut to a few
microamps, and CPU RAM
and register data are retained
all the way down to 2 V.

on the state of any bit
in the bottom 256 bytes
of the address space.
Specific instructions
set and clear the carry
(C) and interrupt mask
(I) bits in the condition
code register.

Perhaps the most
noticeable compromise
(shared with many
popular 8-bit chips) is

restricted access to the stack. Only one
instruction directly modifies SP (RSP),
and it merely resets the stack pointer to
the power-up default. It’s best to use SP
as the hardware stack and synthesize
a software stack with X, assisted by
instructions (TAX and TXA) that move
data between X and the accumulator.

It may not be RISC, but the address-
ing modes are simple enough. The data-
sheet says there are eight modes, but
it’s really only five if you combine like
variations. For instance, there are three
versions of indexed addressing mode
with 0-, 8- and 16-bit offset.

Similarly, there are 8- and 16-bit
versions of direct addressing. Otherwise,
there’s inherent (i.e., argument address
specified in the op-code, as with TAX
and TXA), immediate (8-bit), and relative
(which is only used for branches).

MINI-MICRO
Clearly, the ’HC05 is one of the

simplest and easiest to understand chips
ever. Motorola may cut the ’HC05

Read-modify-write instructions,
including shifts, rotates, increment,
decrement, negate, complement, clear,
and so forth, work not only on registers
but also directly on memory.

I know CISC is out of favor, but for
simple ops, it’s quicker and easier to
modify a memory (or memory-mapped
I/O) location directly than to load it
into a register, twiddle it, and then
store it back. As a precaution, avoid
using read-modify-write instructions
on memory-mapped I/O locations
with write-only bits.

Conditional branches (plus 127,
minus 128 bytes) query the condition
codes (carry, half-carry, zero, etc.) as
expected. There are also variants that
branch based on the state of a bit in
memory or the *IRQ pin. For going
beyond the short displacement, an
unconditional JMP is provided that can
reach anywhere in the program space.

Similarly, subroutine calls are
handled with unconditional branch (BSR)
and jump (JSR) instructions. They’re
just like regular branches and
jumps, except they push the
return PC on the stack.

The SWI (software interrupt)
executes the equivalent of a
subroutine call via a dedicated
vector location, except stack-
ing all register contents in-
stead of just the PC. Two
variants of return (RTS and
RTI) unstack accordingly.

Bit operations include the
ability to set, clear, or branch

Internal
Oscillator

Divide
By 2

15-Stage
Multifunction
Timer System

Watchdog and
Illegal Address

Detect

CPU Control ALU

68HC05 CPU

CPU
Registers

Accumulator

Index Register

0 0 0 0 0 0 0 0 1 1 STK PTR

Condition
Code Register

1 1 1 H I N Z C

SRAM—64 Bytes

User EPROM—1240 Bytes

Mask Option Register (EPROM)

Program Counter

D
at

a
D

ire
ct

io
n

R
eg

is
te

r
B

P
or

t B

D
at

a
D

ire
ct

io
n

R
eg

is
te

r
A

P
or

t A

PA7

PA6

PA5

PA4

PA3(1) (2)

PA2(1) (2)

PA1(1) (2)

PA0(1) (2)

10-mA sink capability on all I/O pins
Notes:1. 5.5-mA source capability
 2. External interrupt capability

PB3(1)

PB2(1)

OSC1

OSC2

*RESET

*IRQ/VPP

Table 1—The Mask Option Register is a special byte of EPROM that defines key
operating characteristics of the watchdog timer, interrupts, ports, and oscillator.

Feature Option

COP watchdog timer Enabled or disabled
External interrupt triggering Edge-sensitive only or

 edge- and level-sensitive
Port A *IRQ pin interrupts Enabled or disabled
Port pull-down resistors Enabled or disabled
Stop instruction mode Stop mode or halt mode
Crystal oscillator internal register Enabled or disabled
EPROM security Enabled or disabled
Short oscillator delay counter Enabled or disabled

Figure 2 —The 68HC705KJ1
combines the ’HC05 core with
1.2-KB EPROM, 64 bytes of
SRAM, timer, and parallel I/O—
all in a 16-pin package.

82 Issue 96 July 1998 Circuit Cellar INK®

Both timer interrupts (overflow and
real-time) go through a single interrupt
vector. To determine the source, sim-
ply check the corresponding interrupt
flags in the timer status register.

That leaves 10 pins organized as one
8-bit I/O port (Port A) and one 2-bit
I/O port (Port B). Each bit is program-
mable as input or output.

When configured as inputs, each line
has an optional pull-down resistor. Note
how one of the mask option register bits,
SWPDI (software pull-down inhibit),
disallows software enabling of the pull-
down resistor. As outputs, they can
handle LEDs or transistors with up to
10 mA per pin.

Mask option register setting, PIRQ,
enables four pins of Port A (PA0–3) to
function as additional external interrupt
inputs (see Figure 4). Another mask
option register bit, LEVEL, configures
all external interrupts (i.e., IRQ and, if
enabled, the PA lines) as either edge-only
or edge- and level-sense. However, the
polarity of each source is fixed (active
low for *IRQ, active high for PA0–3).

LESS IS MOORE?
Moore’s law, and the entire IC revo-

lution, is often summed up as “more for
less.” However, it’s really more subtle
as in “more or less for less or more.”

On the desktop, Moore’s
law historically means getting
more chip for the same bucks

as last year. This makes sense since it
takes as many MIPS and megahertz as
can be mustered to boot the latest
bloatware.

The embedded world is a bit differ-
ent. Much the same scenario, more per-
formance at a given price, is seen in the
emergence of 32-bit chips, fancy RTOSs,
and IP stacks, and so on. However,
there’s a huge segment of the market
that wants the cheapest possible micro,
even if it can barely compute its way
out of a paper bag.

The name of the game is “how low
can you go?” and I think 50 cents is
pretty darn low. Remember, besides
the die, they package, assemble, test,
and ship, not to mention pay salaries.

A 50-cent micro sounds grand, but
heed this caution: the low-cost OTP
micro market is periodically wracked
with shortages in which the latest
darling suddenly disappears, inciting
panic in the food chain.

If you ever took an economics class,
maybe you remember there really is
no such thing as a shortage—just a lack
of means or the will to pay enough to
balance supply and demand. When a
capacity crunch hits, will IC suppliers
start wafers filled with your 50-cent
chips or someone else’s $5 ones?

Chip companies long ago learned the
folly of the “lose money on each one
but make it up with volume” strategy.
So tell your purchasing department to
go easy. The “I got such a great price,
they won’t deliver” strategy is a loser.

My advice: Don’t be greedy, but do
take advantage of econo-chips like the
’KJ1. They may not do much more
than chips of yore, but they do it for a
lot less. I

However, the only way to wake up is
by external interrupt or reset input. An
optional oscillator stabilization delay
(see Table 1) holds the chip in reset
for a few thousand clocks after wakeup.

Wait mode keeps everything except
the CPU clock running. So, in addition
to external wakeup, a watchdog reset
or timer interrupt can provide an inter-
nal wake-up call. This cuts already low-
active run-mode power consumption
(<10 mA) by more than a factor of two.

I/O U
Considering the price and pin-count

constraints (see Figure 3), the ’KJ1 comes
with a surprising amount of I/O and
support logic. For instance, there’s both
a RESET pin and an external interrupt
input (IRQ, which doubles as a VPP

EPROM programming voltage). Either
or both of these are sometimes sacri-
ficed on other penny-pinching micros.

Reset includes a power-on circuit and
Schmitt trigger input. It also is driven
in response to an internally generated
reset via the watchdog or—a plus for the
safety conscious—if the MCU attempts
to execute code at an illegal address.
However, it takes a bit of clever soft-
ware to figure out the origin of a par-
ticular reset because there are no cause
bits and everything funnels through
one reset vector.

A single 15-stage ripple counter is
preceded by a prescaler that divides the
internal clock by four (e.g., 1-µs time-
base with 4-MHz internal clock). The
first eight stages function as an 8-bit
timer with maskable overflow interrupt.

The next four stages, preceded by
some extra dividers, generate what’s
called a “real-time” interrupt with four
options—16k, 32k, 64k, and 128k clock
cycles. The chosen option defines the
watchdog time-out period (one-eighth
the real-time interrupt rate).

Figure 3 —Although it has only 16 pins, the ’KJ1
includes handy signals like *RESET and an external
interrupt (*IRQ) along with 10 bits of I/O.

OSC1

OSC2

PB3

PB2

VDD

VSS

PA7

*RESET *IRQ/VPP

PA0

PA1

PA2

PA3

PA4

PA5

PA6

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

Reset
IRQ Vector Fetch

PIRQ
(MOR)

IRQE

IRQF

PA3
PA2
PA1
PA0

IRQ
Level-Sensitive Trigger

(MOR Level Bit)
VDD

D
IRQ

Latch
CK

Q

CLR

To BIH & BIL
Instruction
Processing

External
Interrupt
Request

IRQR

Tom Cantrell has been working on
chip, board, and systems design and
marketing in Silicon Valley for more
than ten years. You may reach him by
E-mail at tom.cantrell@circuitcellar.
com, by telephone at (510) 657-0264,
or by fax at (510) 657-5441.

SOURCE

68HC705KJ1
Motorola
(512) 328-2268
Fax: (512) 891-4465
sps.motorola.com/csic/

Figure 4 —In addition to the dedicated
*IRQ pin, four pins of Port A can be
configured as interrupt inputs. The BIH
and BIL instructions enable fast and
easy monitoring of the *IRQ pin in
software.

96 Issue 96 July 1998 Circuit Cellar INK®

PRIORITY INTERRUPT

steve.ciarcia@circuitcellar.com

It’s All in How It’s Done

r ecently, a small manufacturing company approached me about designing an embedded controller to replace
one they currently used. The present unit and its operating software were purchased as an off-the-shelf

commercial product. When the OEM product doubled in price, the company simply decided to eliminate the supplier
and make an equivalent unit. They asked me if I would reverse engineer the whole thing for them.

I made up a plausible excuse about having too many design jobs in the works and gracefully declined the opportunity.
The task had some obvious challenges, but experience has taught me that reverse engineering involves considerably more than just
technical issues.

On the surface, I don’t have a philosophical objection with reverse engineering. Properly done, it’s completely legal. In fact,
evaluating a competing commercial design is an established practice in any new product design or product improvement. Certainly,
everyone has heard the story about the BMW plant with all the disassembled Lexus cars in the corner. Unfortunately, in today’s litigious
society, designers and consultants have to beware of becoming so mesmerized by the technical challenge that they get oblivious to
important legal issues. In the electronics industry, producing a clone of a piece of hardware or software is an established practice. It’s
using the proper technique to make a work-alike clone design that’s the real issue.

First of all, be aware that a commercial product can be simultaneously covered by patent, trade secret, copyright, and contract laws
(God bless those lawyers!). For reverse engineering to be legal, it must be legal under all these different laws. Here’s what I typically
watch out for.

Frankly speaking, reverse engineering won’t help you as a defense against patent infringement. If your clone still infringes a patent,
it won’t make any difference what technique you employed to make it. The only solution here is to make sure that your design doesn’t still
include all the elements of the patented device.

As far as trade secrets go, it’s more often an issue of misappropriation than reverse engineering. If you’ve got super taste buds and
legitimately arrive at the formula for Coca-Cola, it should be defensible. However, if a disgruntled employee E-mails it to you, you had
better think about the consequences before getting into the soft-drink business.

Copyrights are the primary protection for the software industry. It is permissible to dissemble object code in order to understand the
functional operation of programs, but any effort should have a substantial paper trail showing how any clone was designed. Most
importantly, the people responsible for disassembling code can only use it to produce a written specification. It should be a completely
separate design team that uses that spec to create the new work-alike product. This was how the PC BIOS got into all those clones.

Finally, contract law seems to be the way most software companies fill the legal loopholes. These contracts usually contain so much
legalese they could fill a law book. Perhaps you’ve noticed the shrink-wrapped impolite and severely worded licensing agreements on
most software packages: “By opening this wrapper, I agree to…(give my first born, etc., etc.)…” Normally, whatever a contract says goes.
The only exceptions are edicts that would be challenged under a standard contract defense.

The specific intention of a software license is to prohibit the licensee from disassembling or decompiling distributed code and to
keep the licensee from discovering any unique programming techniques or secrets. In my opinion, overstressing the threats is counterpro-
ductive. There is also some argument whether banning decompilation can really be upheld.

 Interestingly, microcomputer chip layouts can’t be patented or copyrighted. They aren’t considered novel enough for patent
protection, and their utilitarian nature and application makes them ineligible for copyright protection. That doesn’t mean they’re an easy
knockoff, however. To prevent chip piracy, manufacturers frequently use manufacturing techniques that make tracing the microcircuitry
very difficult, as well as including nonfunctional patterns that help identify a copied layout. Reverse engineering is legal—copying isn’t.

Financial reward is the obvious incentive that drives protection as well as innovation. Finding a middle ground that accommodates
free expression without denying profit motive requires a careful balance between property rights and fair use.

You certainly don’t have to get uptight every time someone mentions decompiling code or cloning a piece of hardware. In my
experience, the copyright police aren’t going to kick in your door if you disassemble Windows 98 “to better understand it.” However, you
can probably expect Bill Gates and about a hundred lawyers to personally get in your face if you try to sell what you find.

