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Almost Made 100

TASK MANAGER

a few months ago, I wrote in this column about
the beginnings of Circuit Cellar INK and

described how I’ve been involved with the magazine
in some capacity since the very first issue. I suppose

that column could be viewed as a foreshadowing of what
was to come.

I’ve always been an engineer at heart. My parents like to tell tales of
how, as a child, I had a see-through bulldozer that I took apart—at least a
million pieces—and put back together without batting an eye. Through all
the years I’ve been involved with editing Circuit Cellar INK, I’ve always kept
a hand in the engineering side of things. It’s been the therapy I could fall
back on when the stresses of deadlines and printer mistakes became too
much.

I’ve reached a point now that I’ve had to make a choice: engineering or
editing? The answer has always been obvious, but not necessarily easy. As
of this issue, I’m turning over the reins to my fellow editors on the INK staff
and will be pursuing design activities full time. I’ll continue to have a hand in
the magazine’s production on the side, so you’ll continue to see my name
from time to time. Maybe I’ll actually have time to write an article or two. I’ll
also continue to be active in the Circuit Cellar newsgroups, so you haven’t
heard the last of me.

Thanks to the many of you who have become friends over the years,
providing constructive feedback and encouragement. I trust we’ll be able to
maintain the relationships even though I’ve moved on.

I’d also like to take this opportunity to thank my colleagues at INK for all
I’ve gained from them, whether it be Tom’s enthusiasm and commitment on
the West Coast, Elizabeth’s exceptional attention to detail, KC’s amazing
Photoshop capabilities, or Janice’s insistence on high editing standards in
each and every issue. Such a strong team, along with Steve’s determina-
tion to offer application-oriented, embedded-systems articles, will ensure
INK readers the same level of editorial excellence. I pass my mantle on
with confidence that the job will continue to be well done.

Now, before I start packing my files, let me show you the kind of
editorial quality I’m talking about. We lead off with the first writeup of one of
our Design98 contest winners. Norman Jackson took first place in the
PIC16XXX category with BitScope, a mixed-signal capture engine. Mike
Smith and Jason Wudkevich follow with a look at how to use virtual devices
to test and debug your system and its peripherals. Bobby Crouch finishes
the two-part series on smart cards by showing you how to juggle memory
so that your smart-card design stays secure. Don Lancaster closes our
feature section with an introductory look at how to keep vector-to-step
conversions as fast and smooth as possible.

Stuart Ball launches a new MicroSeries on how to build a PROM
programmer. His first article focuses on putting the hardware together. This
month both Jeff and Tom are bent on power. Jeff is fed up with wall warts
and is looking for transformerless power conversion, while Tom simply
wants to check out the newer brawn. He takes a look at offerings from
Linear Technology, Maxim, Motorola, and National Semiconductor.

Ernie Deel starts off the EPC section by examining interprocess
communication via anonymous pipes, and Edward Steinfeld checks out
FAT32, a file system for data-intensive applications. In the columns, Ingo
looks at real-time data acquisition and Fred checks out how to debug using
the Net186.
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READER I/O
CONSIDER THE ALTERNATIVES

INK 96 came with a surprise. It included an article
on FreeDOS, which complies to the GNU GPL and
hence is totally free. But, freedom comes with a price:
there’s still no stable version (according to freedos.org).

What about using PTS-DOS? It is over 99.99% MS-
DOS compatible, written in 80x86 assembly language,
and comes with full sources. The makers restrict users
to the extent that one user may not base a completely
new OS on it, but you can overcome this by buying one
CD with each version or by paying a fee to the makers.

PTS-DOS’s native mode is “flat real mode.” When I
load a segment register with zero, I can use EBX as a
32-bit pointer in linear address mode. Now, I only have
to load HiMem386.SYS and I’m off, with all the
freedom of real mode but the addressing of protected
mode.

PTS-DOS, with full sources, costs a mere $50.
Perhaps it’s time to look at this software masterpiece
that’s been shipping, selling, and performing for over
four years.

Jan Verhoeven
aklasse@tip.nl

AMAZING THE DIFFERENCE OF A MAGNITUDE!
After reading my article “Using the PC for Radia-

tion Detection” in INK 96, one of my colleagues, Dr.
Ed Webb, E-mailed me to point out a decimal error:
1 nCi of activity is equal to 37 disintegrations per
second, not 0.37 as I said in the article.

Therefore, my basement should reach the EPA limit
for radon in 0.388 days, not 38.8 days as I calculated.
So, I should run my fan more often, about 2 hours
every 12 hours, rather than once per month.

Dan Cross-Cole
crosscol@erols.com

WEARABLE COMPUTING—WHERE TO SHOP
The “WearCam” article (INK 95) neglected to

mention that there’s an entire community dedicated to
wearable computing. For example, HandyKey’s
Twiddler keyboard provides an off-the-shelf method for
one-handed typing and mousing at speeds up to 60
wpm. As well, there is a public mailing list for people

building wearable computers maintained at wear-
hard@haven.org.

The annual conference for wearable computing, the
IEEE International Symposium on Wearable Comput-
ers (ISWC), will meet this year October 19–20 in
Pittsburgh, PA. Details may be found at <wearables.
www.media.mit.edu/projects/wearables/>.

Thad Starner
testarne@media.mit.edu

CAN I SEE, TOO?
I was interested in Steve’s Priority Interrupt

editorial on “Design98—A Marketer’s PICnic” (INK
94). If I am interpreting his comments correctly, he
believes the Design98 contest was a huge success.

However, there’s just not enough pages in INK to
publish all those great design entries. Is there any
chance that the rest of us will be able to share in these
designs?

JR Morgan
AQFRTSTR@aol.com

For more information on the projects submitted for
Design98, be sure to check out the new Design Forum
on the Circuit Cellar Web site—especially the section
entitled PIC Abstractions.

READERS, SPEAK UP!
A lot of computing magazines used to publish

articles by people who were deeply interested in how
things work. A lot of us never built the exact projects
shown in the articles, but we learned something from
each one of them. Frequently, it’s the case that we get
our best ideas from looking at what others have done.
We improve on what we have learned, twist it, and
turn it to new purposes.

Circuit Cellar INK is great because it still has the
right elements, and I’ll continue subscribing as long as
it does. Although there may be ways INK can increase
its reader satisfaction level, I certainly think readers
have a responsibility to make their interests known.

Tom McGahee
tom_mcgahee@sigmais.com
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NEW PRODUCT NEWS
Edited by Harv Weiner

ELECTROLUMINESCENT LAMP DRIVER
The IMP803 is a high-voltage, low-power electro-

luminescent (EL) lamp driver that generates the 180-Vp-p
drive signal needed to excite an EL lamp from a low-
voltage DC source like a battery. EL lamps are used to
backlight LCDs and keypads in low-power portable
personal communications devices such as pagers, mo-
bile phones, and personal digital assistants (PDAs).

The IMP803 incorporates four EL-lamp–driving
functions on-chip: the switch-mode power supply, its
high-frequency oscillator, the high-voltage H-bridge
lamp driver, and its low-frequency oscillator. By boost-
ing an input voltage of 2–6 V up to 180 Vp-p (maximum),
EL lamps of 30-nF capacitance are driven to high bright-
ness. If the lamp-drive voltage reaches 180 Vp-p, an
internal circuit adjusts the boost converter to save energy.

Two external resistors permit the switching regula-
tor frequency and lamp-drive frequency to be adjusted.
Connecting these resistors to ground places the IMP803
into a powered-down mode.

The IMP803 is available in an eight-pin SO package
or in die form for high-volume, low-cost chip-onboard
applications. The 1000-quantity price of the IMP803LG
is $0.96 each. An evaluation board, the IM803EV1, is
available at an introductory price of $25.

IMP, Inc.
(800) 438-3722 • (408) 432-9100
Fax: (408) 434-0335 • www.impweb.com

8051-COMPATIBLE EMBEDDED CONTROLLER
The RPC-220 is a compact, 8051-compatible

embedded controller that’s designed for monitoring
or simple control applications. The 3.85″ × 2.85″
form-factor board contains flash memory to enable
remote program updates by modem or notebook, a
year-2000–compliant real-time clock (which can
wake up the card from low-power modes), and a
battery backup of its 512 KB of RAM. Power inputs
are 5.0/5.4 to 25 V, and a regulated 5 V is available
to power user circuits.

Its 19 digital I/O lines can also be used for pulse
output (two PWM and two square wave) and pulse
width measurements. Analog I/O is accomplished
through an eight-channel, 10-bit converter and a
two-channel analog output. An LCD port enables
display of current information, and hardware and
software RS-232 ports are available.

The RPC-220 development system runs on Win-
dows-based PCs. The development system includes
an RPC-220 board, hardware and CPU manuals,
cables, terminal boards, power supply, C compiler,
and more than a dozen stand-alone application pro-
grams. Prices start at under $100 in quantity. A
development system costs $435.

Remote Processing
(800) 642-9971 • (303) 690-1588
Fax: (303) 690-1875
www.remotep.com
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NEW PRODUCT NEWS
TWO-AXIS SERVO CONTROLLER

The DC2-STN is a stand-alone two-axis servo controller with two
auxiliary outputs for stepper control. Its small footprint (9.5″ × 4″ × 5″),
back-panel mounting tabs, and removable/pluggable screw terminals
make it well suited for OEM applications. It operates on universal AC
voltage (100–240 VAC, 50/60 Hz) and has an integrated DC power supply.

Features include an RS-232 communication interface for programming
and networking as well as 32 KB of nonvolatile memory to store macros,
programs, and point information. It offers optoisolated I/O at industrial
voltage levels, status LEDs, and a watchdog relay output.

The DC2-STN supports point-to-point positioning, velocity control,
master/slave and gearing, joystick input for manual positioning, circu-
lar and linear interpolation, PID filter with velocity and acceleration
feed forward, and the ability to change parameters and targets on the-
fly. The command set supports macros, sequencing, user data-registers,
and more. Its multitasking capability permits four independent tasks
or routines to run simultaneously without interrupting motion control.

The DC2-STN costs $995 in single quantities. OEM discounts are
available.

Precision MicroControl Corp.
(760) 930-0101 • Fax: (760) 930-0222 • www.pmccorp.com
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NEW PRODUCT NEWS
MULTICHANNEL DATA ACQUISITION

Point Six, an authorized software developer for Dallas
Semiconductor, has developed an RS-232-powered multi-
channel analog interface card based on Dallas’s one-
wire technology.

Features include eight channels of analog input on a
credit-card–sized board. All eight channels are individu-
ally configurable as a 0–5-V 12-bit analog input. The
T8AH7BA contains a built-in multidrop controller that
provides a unique 64-bit registration number, assuring
error-free selection and absolute identity of the device.
No two parts are alike. The unique addressing enables
inputs to be identified absolutely.

The T8AH7BA directly connects to 7B-series industrial-
standard analog isolation back panels and modules. All
necessary power is derived from the RS-232 port. The
T8AH7BA has a built-in RS-232–to–one-wire interface,
allowing network expansion to drive up to 200 one-wire
devices (e.g., temperature, pressure, force, humidity, pH)
over as much as 2000′ of Cat-5 twisted-pair cable. All
data transfers are CRC-16 error checked. A DDE driver
permits effortless interface to most Windows applications.

The T8AH7BA is priced at $99.95 in single quantities.

Point Six, Inc.
(606) 271-1744
Fax: (606) 271-4695
www.pointsix.com
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NEW PRODUCT NEWS
COMPUTER-CONTROLLED PAN-TILT UNIT

The PTU-46-70 offers high resolution at 0.771 arc
minutes (less than ¾″ at 100 yd.) with speeds at 60° per
second and a load capacity of 6 lbs. Applications include
computer vision, security, test and
measurement, and teleconferencing,
as well as photography, video, and
special effects. The PTU-46-17.5 is a
high-performance, low-cost, com-
puter-controlled pan-tilt unit that
moves over 300° per second with
3.086 arc-minute resolution at a load
capacity of over 4 lbs.

The unit features plug-and-play
using an RS-232 terminal, enabling
the host computer to accurately con-
trol pan and tilt speed, acceleration,
and position. Self-calibration on reset
ensures reliable absolute positioning.
Microprocessor control and constant
current bipolar drives provide efficient
high-speed movement, and the host

can make on-the-fly position and speed changes. Built-
in RS-485 multidrop network capabilities mean a single
host port can control up to 127 pan-tilt devices.

The 3″ × 5.11″ × 4.25″ unit has
power-management controls and
flexible input power requirements.
Host commands control power
consumption, which is 16 W peak
at full power, 7.5 W peak at low
power, and 1 W peak with motors off.

Single-quantity prices are $1800
for the PTU-46-17.5 and $2100 for
the PTU-46-70. Options include
international AC/DC power supply,
joystick interface, nodal adapter,
weatherizing, and C programmer’s
interface.

Directed Perception, Inc.
(650) 342-9399 • Fax: (650) 342-9199
www.dperception.com
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BitScope

FEATURE
ARTICLE

Norman Jackson

s
Has your office
become so cluttered
that you can’t find
your oscilloscope or
logic analyzer? No
problem, Norman will
help you build a low-
cost, mixed-signal
capture engine that
connects to your
computer via the
serial port.

ome time ago, I
had a bad experi-

ence with a bus—a
logic bus. It had six ram-

paging DSP cards and a SCSI control-
ler all trying to ride at the same time.

About once an hour, there was a
sickening crash. After going through
the usual stages of blaming the soft-
ware, I relented, admitted possible
culpability, and borrowed a mixed-
mode DSO.

This machine has a digital sampling
oscilloscope and a logic analyzer effec-
tively joined at the hip. They share a
common trigger module that enables
the user to identify a complex event
and record the state of the target hard-
ware before and after the trigger—in
both the analog and digital domains.

In the case of my erratic bus logic,
the culprit turned out to be a delin-
quent GAL with a ground bounce
problem. The offending chip had its
duties reassigned and the documenta-
tion police were alerted. Engineer
triumphs over bug.

By employing a high-tech piece of
test equipment, I could trigger on a
complex digital event and correlate this
event to an oscilloscope trace that
showed what was really happening in
the analog domain. I was saved in the
nick of time, but despite having formed

A Mixed-Signal Capture Engine

 12

22

60

66

BitScope

Simulating Micro-
Controlled Systems

Designing for Smart
Cards

Vector-to-Step
Conversions

FEATURES
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instructions are not located in memory
on the microcontroller but reside in
the user interface and are executed
atomically direct from the serial port.

If you study BitScope’s virtual in-
struction set, you see that arranging
things in this crazy way has its advan-
tages. All instructions are atomic. In
other words, there is no inherent syn-
tax associated with any command
byte.

The commands had to be
simple ASCII characters that are
intuitive and easy to learn. The
PC-based user interface can then
synthesize functionality of arbi-
trary complexity by sending
scripts of command characters
and receiving the replies.

The answer: a virtual instru-
ment where specialized hard-
ware does the electronic test job
and a PC lets the engineer drive
it. One big advantage of this
setup is that changing the way the
virtual instrument works doesn’t
usually involve reprogramming chips
(hard) but may be done by download-
ing a new program from the ’Net (easy).

As described in the sidebar “Virtual
Machine Architecture,” the microcon-
troller firmware is designed as a virtual
machine (VM). The BitScope design is
novel because it has an unusual arrange-
ment of the VM program code. The

a deep attachment to the trusty ’scope,
I had to give it back.

Following this adventure, I started
musing about how to roll my own
version of that useful electronic gadget.
After some mental tinkering and with
the added incentive of Design98, I was
soon sketching electronic stuff on the
grid pad. BitScope began to emerge
(see Photo 1).

THE BIG PICTURE
The basic idea behind BitScope is

that of a specialized piece of data-
capture hardware that doesn’t include
any user interface other than an RS-232
plug. Most engineers have more com-
puters, mice, and keyboards than they
know what to do with. If I was going
to build a cheap ’scope, I certainly
didn’t want any more of that stuff.

What I needed was an electronic
drone that could capture and disgorge
data on command. No more, no less.

Figure 1 —This block diagram of the mixed-signal capture engine
shows basic design architecture.

A B div
n

Analog
Supply

Power
Supply

Mux
Range

Flash
ADC

Digital
Pod

Data
Mux

32K × 8
SRAM

32K × 8
SRAM

Clock

PLD
Logic

Control

PIC
CPU

Serial

Figure 2a —The BitScope CPU and storage
engine includes the PIC, PLD logic, clock, data
muxes, and sample RAM.
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Virtual-Machine Architecture
A virtual machine (VM) consists of a fully functional

processor hosted on an unrelated substrate machine.
VM design has advantages over conventional coding.
Each instruction may be highly optimized for perfor-
mance—unlike a general-purpose interpreter like BASIC,
which can do anything but inefficiently. VM instructions
are compact like assembly but perform extremely
complex tasks. Once a register and command set are
devised, you can add new instructions to enhance the
machine. The original instructions remain the same,
which promotes modularity. Since the operational
definition of the VM is rigid, firmware changes tend to
be straightforward, even to the point of hosting the
target architecture on a completely new substrate.

In this design, the PIC16F84 is a substrate to imple-
ment a custom BitScope machine with its instruction set
becoming microcode to implement the VM. So, the
BitScope VM has instructions and registers but they’re
unrelated to the PIC native instruction set. The virtual
registers are hosted by PIC memory registers but have
meaning only to the BitScope. Similarly, BitScope has no
use for XOR- or DECFSZ-type instructions. Instead, it has
instructions for manipulating registers, starting sample
RAM, and dumping captured data. BitScope registers may
be option bits, timer constants, sample address, and so
on. The exact function of the register set is detailed in
Table i. Table ii shows the current command set.

Most interpreters run from a program stored in memory.
BitScope is different because it executes directly from

the serial port. BitScope’s instruction set is designed to
have no syntax, so there can be a maximum of 256 in-
structions and each is stand alone—just like a RISC in-
struction set. An atomic protocol means the software at
both ends of the serial line is simple and does not have to
preserve state information. In a PIC with 1024 words of
program, it’s advisable to be economical with code, espe-

Table i —The BitScope virtual machine has a set of 20 registers. The operation of the
machine and all its instructions refer to these registers.

R0 Byte Input Reg Assemble input data here
R1 Register Pointer Pointer to R(0–ff)
R2 Register Source Pointer to R(0–ff)
R3 Sample Preload L Low byte of RAM addr to load to Spock
R4 Sample Preload H High byte of RAM addr to load to Spock
R5 TRIG Logic Byte Logic levels for Spock to match, loaded

   during Spock Init
R6 TRIG Mask Byte Don’t Care bits in trigger match, loaded

   during Spock Init
R7 Spock OPTION byte TRIG and PG1 setup in Spock
R8 Trace Register Trace Option controls Sample operation

   of BitScope
R9 Counter capture Lo Counter low byte shifted out of Spock
R10 Counter capture Hi Counter high byte shifted out of Spock
R11 DELAY-L Post TRIG delay before halting
R12 DELAY-H Post TRIG delay before halting
R13 TimeBase TimeBase expander count
R14 Channel-A/B Channel Range settings for Chop
R15 Dump Length Counter for number of samples trans-

   mitted per request
R16 EEPROM Data Data register for EEPROM
R17 EEPROM Address Address register for EEPROM
R18 POD Transmit Register holds byte for POD
R19 POD Receive Register gets byte from POD

54  T Trace with TRIG stop Begin sample with Opt mode, until Trig
then Delay, Halt Sample Clk, and
print sample add.

5b  [ Clear R0 Reg R0 is cleared. This usually
precedes a nibble load

5d  ] Nibble swap R0 R0:(0–3) is swapped with R0:(4–7).
This command puts the entered
nibbles in the correct order.

61  a Enter nibble 'a' hex Incr R0 by 10 and nibble swap R0
62  b Enter nibble 'b' hex Incr R0 by 11 and nibble swap R0
63  c Enter nibble 'c' hex Incr R0 by 12 and nibble swap R0
64  d Enter nibble 'd' hex Incr R0 by 13 and nibble swap R0
65  e Enter nibble 'e' hex Incr R0 by 14 and nibble swap R0
66  f Enter nibble 'f' hex Incr R0 by 15 and nibble swap R0
6c  l Load R0 from @R2 Copy contents of reg pointed to by R2

toR0
6e  n Next Address Incr addr reg R1
70  p Print REG value @R1 Print <CR>ASCII,ASCII<CR>
73  s Store R0 to @R1 Copy contents of R0 to reg pointed to

by R1
75  u Update RAM pointers Copy contents of R3,4  to  R9,10.

Updates sample addr value from
sample preload reg.

78 x Exchange byte with Transmit byte in POD_TX to POD
POD      IO-0. Wait for reply byte on IO-1

and put it inPOD_RX then return it to
host.

7c  | Pass Through byte Transmit byte in POD_TX to POD IO-0.
to POD Connect IO-1 to Serial Out for host.

00  • Reset Reset the machine and print its ID
string

23  # Load Source Reg Store R0 into R2. Set up R2 which is a
source reg. A reg-to-reg move may be
done by pointing to a source (R2) and
destination (R1).

2b  +  Inc REG Incr the reg pointed to by R1
2d  – Dec REG Decr the reg pointed to by R1
30  0 Enter nibble 0 Incr R0 by 0 and nibble swap R0
31  1 Enter nibble 1 Incr R0 by 1 and nibble swap R0
32  2 Enter nibble 2 Incr R0 by 2 and nibble swap R0
33  3 Enter nibble 3 Incr R0 by 3 and nibble swap R0
34  4 Enter nibble 4 Incr R0 by 4 and nibble swap R0
35  5 Enter nibble 5 Incr R0 by 5 and nibble swap R0
36  6 Enter nibble 6 Incr R0 by 6 and nibble swap R0
37  7 Enter nibble 7 Incr R0 by 7 and nibble swap R0
38  8 Enter nibble 8 Incr R0 by 8 and nibble swap R0
39  9 Enter nibble 9 Incr R0 by 9 and nibble swap R0
3c  < Get ctr value Shift the current 16 bit ctr value from

from Spock Spock into R9, R10
3e  > Program Spock Load 5 bytes of data from R3–R7 into

from Registers Spock. Previous contents of ctr are
destroyed

3f  ? Print Machine ID Print <CR>CHAR8–CHAR1<CR>
where CHARn is part of a string
identifying the type and revision of this
device.

40  @ Load Address Reg Store R0 into R1. Use to set up reg ptr.
53  S Dump Sample Dump lines of 16 Sample RAM

 RAM (CSV) values (digital and analog)

Table ii —The command set for the BitScope virtual machine is a subset of the byte values between 0 and 255. Active commands are confined to the ASCII range from 0 to 127.
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cially given the importance of
reliably transmitting packets over
a serial link.

I decided the BitScope command
set should use common printable
ASCII commands. Since the assign-
ment of byte codes is arbitrary,
any value could mean “enter hex
nibble 3,” but obviously 3 is a
good choice. The general scheme
for allocating byte-code values and
their ASCII symbol is:

• numerals—data entry
• operators—manipulation of reg-

ister values
• lower case—general machine

operation
• upper case—major machine func-

tions
• nonprintables—reserved for fu-

ture commands

An example script for loading R6
with 0x5a is [6]@[5a]s. It may
seem obscure, but if you study it,
it should make sense. Ultimately,
a user interface will debug scripts
and writing scripts will only be
necessary if a user develops a new
mode of operation or drives it
directly from a terminal.

All BitScope operations, including
wait on trigger, may be interrupted
by any serial command. The first
part of the software UART ensures
that the sample clock is halted. When
a serial byte is assembled and
echoed, the UART turns on and,
once activated, aborts all previous
operation. In this sense, BitScope’s
command protocol is truly atomic.
Each command ends in a halt, if
not prematurely aborted. ASCII code
00 is the reset vector, so it can get
the PIC’s attention with a <break>.

Inevitably, a VM like this will
get enhanced firmware. Microchip
has devices that potentially double
the number of byte codes imple-
mented. To cope with the poten-
tial of other feature sets, ? returns
a 32-bit ID code. User-interface
software may keep a register of
feature sets supported by each
byte-code revision.
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Figure 2b— BitScope power supply and comms deal with filtering, rectification, and
regulation as well as RS-232 level shifting and indicators.

All instruction bytes are echoed to
provide a simple handshake mechanism.
And, all instructions are preemptive,
so you can always abort the previous
command and regain control simply
by sending a new command.

SERIAL CONNECTION
While a serial interface may seem a

bottleneck for a capture engine that can
potentially store 64 KB of data, this is
not a problem. Thanks to the Internet
and 56k modems, most PCs now have
fast, buffered UARTs.

The transmission speed of the
BitScope serial link can be scaled to
115 kbps using a fast microcontroller.
At this rate, you can transfer enough
samples to draw a 640 × 480 screen—
at most 640 bytes—in about 55 ms, or
18 screens per second.

For lower frequency data or simple
sine waves, it’s necessary to only send a
handful of samples to the host and have
the user interface do some curve fitting.
Small bursts of contiguous sample data
may be used to enhance a waveform
display to show high-frequency noise.

Logic analyzers don’t need to rapidly
update their display at all. After a trigger
event, the data may stay in the sample
RAM and be downloaded only when
the host needs it. At 115 kbps, the
total contents of a 16-KB buffer can

download in less than 2 s. The user
interface may then draw logic state or
timing diagrams and manipulate them
as necessary.

USER INTERFACE
Don’t think shrink-wrapped mono-

lithic Windows software for this design.
Think more about the Linux model
where the engineering community
builds its own tools and can custom-
ize them as needs arise.

Because BitScope uses simple ASCII
commands, in a pinch, you can use a
terminal program and spreadsheet to
display waveforms. For complex applica-
tions, you need more advanced software
based on C, Delphi, or Visual Basic.

A BitScope user interface can run
under many possible environments,
including Windows, MAC, Unix,
WinCE, Palm Pilot, Psion, DOS, or
Amiga. Basically, it can work on any
machine with a serial port.

No single person could write all that
software. Instead, I made the BitScope
design open and documented so you
could create what you need.

On INK’s Web site, you’ll find some
user-interface software with source
listings to start the ball rolling. Via the
Internet, you can also find existing
programs that already simulate oscillo-
scopes, logic circuits, and data displays.

DESIGN PHILOSOPHY
A good place to start designing is with

a functional specification. For BitScope,
the main issue was sample rate. While
it seemed clear that a 200-MHz sample
rate was out of reach, I could easily
get to about 50 MS/s and still be ahead
on the price/performance curve.

For the engineer dealing with micro-
controller circuits, it’s unlikely that
frequencies of interest will exceed
20 MHz—at least for the time being.
Later on, when 3-V logic becomes
more prevalent, that 50-MS/s rate can
probably stretch to 100 MS/s in an
SMT version of the design.

To make BitScope as useful as
possible, I was determined that it should
physically stand alone. It needed to be
unconstrained to a particular machine
or bus standard, and I wanted it to
communicate with any computer
using the ubiquitous RS-232 interface.

From my experience, the most
commonly required features of this
type of test equipment are two analog
input channels and eight digital logic
inputs. Combine those features with a
flexible trigger capability, and you get
a pretty useful instrument. I set a
design goal of about $100 for the cost
of required components, all of which
should be readily available.

For the core of BitScope, I selected
a PIC16F84 micro tightly coupled with
a Lattice 1016 PLD. The PIC controls
the serial port and implements a VM
architecture. The Lattice counts RAM
addresses and waits for a trigger.

These chips are cheap and solid
performers. Both are flash-memory
based for easy upgrades, and they have
excellent entry-level development
software. Sample RAM is provided by
two 32-KB 15-ns cache memories.

These devices will take the design to
50 MS/s and have the great advantage
that about eight of them are perched
on every ’486 motherboard ever built.
That should put their head count at
about one billion, so don’t tell me you
can’t find any!

Every DSO must be built around a
flash ADC. These chips were exotic
until a few years ago when digital ma-
nipulation of video became popular.

Now, several companies have devices
that can provide 40 MS/s or better for
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Photo 1 —BitScope was prototyped on a two-layer PCB. Notice that the components are
arranged to separate analog and digital sections of the circuit.

less than $10. Even an older
device like Motorola’s
MC10319P can sample
from DC to 25 MS/s and is
available in a DIP package.

In fact, I used this device
for BitScope. By selecting a
600-mil DIP package, I could
accommodate any of the new
SMD devices as a plug-in
module and avoid the need
for multiple PCB versions.

For vertical amplifiers
that process analog signals
to the ADC, the video
industry again provides a
solution. Maxim and Ana-
log Devices both have cheap, stable
300-MHz op-amps that make wide-band
amplifier design easy.

Using these devices lets the verti-
cal-amplifier bandwidth get close to
100 MHz, matching the input specs on
the new flash ADC chips from Analog
Devices and TI. For an insight into
why we need such wide-bandwidth
vertical amplifiers, see the sidebar
“Subsampling—Bending Nyquist.”

WALKING THRU SCHEMATICS
Before delving into the schematics,

take a look at Figure 1, which overviews
the functionality of the BitScope design.

The PIC, the Lattice PLD, and the
SRAMs are shown in Figure 2a. These
chips are closely coupled to form the
sample capture functions at the core
of this design.

By using a synchronous tristate
clocking circuit, the PIC is able to stop,

start, and preload the
Lattice PLD using just a
handful of signals. Notice
that it’s necessary to read
in data from the RAM
chips one bit at a time
because there are no spare
eight-bit ports available.

One fundamental rule in
mixing analog and digital
circuits is to avoid con-
tamination of the analog
grounds. Figure 2b shows
that great care was taken
to isolate the analog and
digital sections of this
circuit at high frequencies.

Similarly with the RS-232 port, it’s
best not to allow PC noise to have
any path to a test circuit.

Digital test signals and two spare
analog signals are shown on Figure 2c
connecting to the DB25M pod connec-
tor. Logic levels are latched and condi-
tioned ready for storage in the digital
sample RAM.

You might guess from the extra
signals on the pod that it’s not just
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eight logic levels in. As well
as fused balanced power
supplies, there is a digital I/O
communication port. Every-
thing you need is there to
connect an active, program-
mable extension module.

Most of the analog condi-
tioning circuits and the
flash ADC are shown in
Figure 2d. The circuit con-
sists of an amplifier chain
driving through a pair of 4:1
analog mux devices.

Modern video op-amps
help here. They give you
high input impedance, low
output impedance, and
unity gain stability.

The PIC controls the
mux sources that allow
implementation of range switching and
channel chop functions. To accommo-
date different ADC chips, there are
adjustment pots for both the range

and offset voltages as required by the
manufacturers.

Figure 2e shows the final part of the
analog conditioning circuit. Channels

A and B are standard 1-MB
input impedance AC/DC
BNC connectors. A classic
source follower tree driving
a unity gain buffer for each
channel completes the
vertical-amplifier section.

For engineers who like
to measure high frequencies,
I added a small 1-GHz pre-
scaler circuit, which includes
a switchable 50-Ω terminator
hanging off the Channel B
input circuit. Note that
BitScope has a couple of
ways to measure the fre-
quencies of applied signals.
I explain the motivation
behind this in the sidebar
“Subsampling—Bending
Nyquist.”

THAT IS LOGICAL, CAPTAIN
PLDs such as the Lattice 1016 can

swallow a whole swag of logic func-

Subsampling—Bending Nyquist
In data-acquisition applications, there is often some

confusion about the relationship between bandwidth and
sample rate. The Nyquist rate of half of the sampling
frequency (Fs) is well known to be the maximum fre-
quency that can be captured by periodic sampling at Fs.
Given that mathematical constraint, why would we
want an instrument that has a bandwidth of 100 MHz
and yet samples at a maximum rate of only 50 MS/s?
The answer lies with subsampling.

The Nyquist rate applies to continuous time varying
signals. In that general case, the highest-frequency com-
ponent should be less than half of Fs (25 MHz at 50 MS/s)
to avoid aliasing. Repetitive waveforms are a different
matter. They’re the only high-frequency waveforms you
ever see on an analog CRO. The same waveform is redrawn
each sweep, and the eye sees a solid trace. Subsampling
is similar. You use multiple samples and overlay them
to build an image. Providing that your ADC has a wide
bandwidth and a small aperture, it is possible to sample
a repetitive waveform over many cycles and build up a
snapshot of the exact waveform, limited only by the
bandwidth of the signal path. This technique, known as
subsampling, is just an example of the RF mixer in the
digital world.

Subsampling has a few constraints. It isn’t possible to
subsample a waveform that’s harmonically related to the
sampling frequency. Practically, this means that if the
waveform of interest is related to the sample frequency,
the sample points always fall at the same relative position

on the waveform and the regions between will forever
remain a mystery.

Another concern has to do with resolving the am-
biguous period of the subsampled waveform. Let’s say
you have a signal of 28 MHz and are sampling at 40 MS/s.
In the sample buffer, you’ll see a sequence of values
with components at 12 and 68 MHz. How can these be
plotted to build up a profile of the original 28-MHz
signal? Well, if you can measure the fundamental fre-
quency of the sampled wave, that will imply period.
Since you know the sample rate accurately, you can
fractionally chop the sample buffer up into segments of
n wave periods and then plot them overlaid. You will
have traded the freedom for those n waveforms to vary
in exchange for n different points on the waveform. It
may now be apparent why the BitScope design has pro-
vision to measure the frequency of any signal presented
to the ADC.

Even if you can’t measure the frequency of a subsampled
waveform directly, all is not lost. DSP engineers have
some fancy autocorrelation algorithms that can be let
loose on a chunk of acquired data to pull a waveform out of
meaningless numbers. It is important to note, however,
that for resolving single event (such as high-frequency
pulses like logic glitches), there is only one solution:
oversample by at least a factor of 10. This performance
is exclusively in the domain of specialized test equip-
ment using state-of-the-art circuit techniques to resolve
samples to 1 ns or better.

Figure 2c— The BitScope digital capture unit has a logic pod circuit with latching buffer
and pod I/O switches.
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Figure 2e— The BitScope Input
Channel Buffers are high-
impedance voltage followers
and op-amp buffers with a
1-GHz prescaler circuit.

tions. In this case, about 18 medium
TTL devices with all their wiring
disappear into a 44-pin PLCC device.

Radial PLDs like the Lattice are
like eight PALs in a circle surround-
ing a big breadboard. This architecture
favors the tight timing requirements
of counters and glue logic.

Mostly, this PLD is a 16-bit
shift register and counter with
a configurable comparator for
triggering. The PIC can load a
five-byte configuration word
that sets the operation of the
chip, after which it may be
clocked at full speed.

THRU THE LENS
MEASURING

The SLR lens-mount system
from the photographic world
is a great design that has
stood the test of time. You
start with a camera body with
a general-purpose 50-mm
lens, and for specialized work,
you screw in any of a hundred
matching lens types. From
fisheye to telescopic, as long
as the mounts match, you
have a new camera.

I tried to use the same SLR
principle in the BitScope
design. The device on its own
is an extremely useful DSO

and logic analyzer, but it is not every-
thing.

The pod connector provides an
electronic lens mount for test equipment.
Think of the sample RAM in BitScope
as a roll of 35-mm film, and the data
you store there may come from either
built-in connectors or any weird and

wonderful “data lens” you
care to attach via the data
pod. Because the pod
architecture and protocol
is open and documented,
anyone may design a
specialized data lens for
BitScope.

VOLTAGE RANGES
The BitScope DSO

includes four internal
attenuation ranges and
four channel inputs.
Channel A and B are BNC

connectors that may have ×1 or ×10
probes connected. Channel C and D
(pod inputs) have a fixed attenuator,
and possibly, there’s some extra cir-
cuitry in the pod.

Table 1 details the range sensitivities.
The ranges aren’t nearly as compre-
hensive as a bench CRO, but it covers

Figure 2d— The BitScope analog
capture features the vertical channel
muxes, attenuation switch, ADC
buffer, and ADC.
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SOFTWARE

The Circuit Cellar Web site has
downloadable software listings,
technical documents, programmable
binaries, and PCB overlays. Informa-

Range BNCx1 BNCx10 POD

00 ±130 mV ±1.30 V ±632 mV
01 ±600 mV ±6.00 V ±2.90 V
10 ±1.20 V  ±12.00 V ±5.80 V
11 ±3.16 V ±31.60 V ±15.28 V

Table 1—Here are the BitScope input ranges for an ADC
span of 2 V. Resistor attenuators can be found in the
schematic.

Norman Jackson is principal hardware
design engineer for Discrete Time
Systems P/L in Sydney, Australia. He
designs DSP-based digital audio systems
for use in film and TV postproduction.
You may reach Norman at normj@
discrete.net.

SOURCES
PIC16F84
Microchip Technology, Inc.
(602) 786-7200
Fax: (602) 786-7277
www.microchip.com

1016 PLD
Lattice Semiconductor Corp.
(503) 681-0118
Fax: (503) 681-3037
www.latticesemi.com

MC10319P ADC
Motorola SPS
(800) 521-6274
Fax: (602) 897-5725
www.mot-sps.com

Preprogrammed PIC, 1016 PLD,
  MC10319P ADC, and PCB
Discrete Time Systems
+612 9212 3469
Fax: +612 9212 3470
bitscope@discrete.net
www.discrete.net

those most useful to digital and analog
circuits. As well, I intended for the
pod connector to deal with unusual or
high voltage signals by way of an
active pod adapter.

It’s also possible to alter the gain of
some ranges. Since the ADC output is
an eight-bit number that ranges from
00 to FF, the final interface just needs
to ratiometrically apply this hex value
to the voltage range of each stage.

A little thought reveals that for a
digital oscilloscope, volts per division
and microseconds per division are quite
arbitrary notions. Provided that the
signal under consideration is within the
ADC range and the sample-buffer size, a
display can be of any size and grid spac-
ing. Similarly, the notion of y offset

becomes a display function, which has
nothing to do with the sample engine.

IN YOUR HANDS
With this design, I hope to have

presented a low-cost solution to the
engineer’s needs for sophisticated test
equipment. I have heeded the call for
more open designs and liberation from
the single-platform juggernaut.

In the coming months, I look forward
to hearing from any of you who can
think of applications for this device
that I haven’t even dreamed of. I

tion about BitScope is available at
www.discrete.net or via bitscope@
discrete.net.
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Simulating
Micro-
Controlled
Systems

FEATURE
ARTICLE

Mike Smith &
Jason Wudkevich

a
When you’re short of
cash, you’re always
looking for less
expensive ways to
build embedded
systems. If you’re
like Mike and Jason,
you’ll use virtual
devices to test and
debug your system
and its peripherals.

re you wanting
to use some hard-

ware you don’t have
(or can’t afford)? Many

useful embedded-system ideas wither
on the vine at the development stage
for lack of resources.

Virtual devices, however, provide
an avenue to the leading edge in the
embedded-system market. They let you
test how the embedded system controls
all its peripherals, even if every periph-
eral isn’t physically available.

In recent years, at least two tutorials
on generating such hardware emula-
tors have appeared—Mike’s “Develop-
ing a Virtual Hardware Device” (INK
64) and an article by Larry Mittag [1].

These tutorials produced usable
virtual devices. But, the concepts now
appear outdated when compared to
devices that can be developed with
newer commercial virtual-device
construction packages like the micro-
processor simulators and debugging
environments from Software Develop-
ment Systems (SDS).

SDS’s GUI packages can be used to
debug embedded systems based on the
PowerPC and 68k processor families.
ColdFire 5102 and Z80 processor sup-
port is present on the most recent
release (V.7.11).

The Single Step Peripheral API
development diskette option in SDS’s

full 68k development system enables
a software engineer to quickly create
realistic and sophisticated virtual
devices. The sophistication available
is easiest to demonstrate using an SDS
UART virtual device which can be
controlled as a peripheral from within
any SDS microprocessor simulator.

The lowest two levels of virtual
devices that can be generated with the
Peripheral API interface roughly cor-
respond to the capabilities of the vir-
tual devices developed by Smith and
Mittag [1].

Basic read and write operations
change the values of the virtual UART
registers. Information from a file or a
keyboard dynamically changes the
device registers to represent the UART’s
interaction with the outside world.
Writing to a virtual UART register
places the transmitted characters into
a GUI window or file.

The API’s third sophistication level
enables simulation of time-dependent
hardware register changes in a straight-
forward fashion not possible with the
Smith and Mittag approaches. You
can use a time specification file to
produce UART-driven interrupts and
update registers (e.g., timer registers)
on-the-fly.

We particularly liked the Periph-
eral API system’s ability to handle the
fourth level of virtual-device sophisti-
cation.

Imagine running an SDS processor
simulation on a PC. At the flick of a
software switch, the virtual UART
takes control of the PC’s UART to send
information into the real world from
within the simulation. You can emulate
communication with a networked
embedded system or control a physi-
cal device over a real serial interface.

All the functionality required to
produce a sophisticated virtual device
is in the C++ classes provided with
the SDS Peripheral Interface. So, why
are we writing this article?

Unfortunately, this clever develop-
ment interface is poorly documented.
And to complicate matters, there was
a hidden defect in the concepts for
developing virtual devices using the
approaches of both Smith and Mittag
which makes it difficult to transfer
the knowledge gained from building
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these devices into construct-
ing an SDS virtual device.

DEVICE CONCEPT
Suppose you see a market

for the McVASH—a micro-
processor-controlled, voice-
activated shower head. It
synchronizes the water pulse
rate to the voice of a person
singing in the shower and
even offers a prerecorded beat
of solemn music stored in
EEPROM for those Monday
morning blues.

For safety, the microprocessor is solar
powered and communicates to the
shower head over an IR link driven from
a serial port. A small water impeller
provides power for the shower head.

Before seeking venture capital, you
want to get a feel for the associated
software size and required hardware
control. A virtual device seems to fit
the bill.

Table 1 shows a simplified pro-
grammer’s model of the hardware
registers. To make the problem a little
more realistic, not all the registers
have the same byte size. Offsets from
the base address (0x20000) are given.

OPERATIONAL DEMONSTRATION
This virtual device should simulate

the operations expressed by the pseudo-
code in Listing 1. In the code, the
device is reset, and the waterstream
turns on and off in synchrony with the
peaks and valleys of the notes in the
bather’s voice.

Most embedded-processor develop-
ment environments on the market can
directly debug code using information
from the original C source file. So, you
may be tempted to build a virtual
device using a direct C-code approach.

Listing 2a illustrates this approach
for function ResetMcVASH() which
initializes the virtual device’s 8- and
32-bit registers. We represent the
virtual device registers using the array
device_reg[].

All read and write operations are
handled via #define statements. This
technique is more natural than directly
manipulating device_reg[].

But, this approach only simulates
the most basic reads and writes. For
example, problems occur with simu-
lating a simple while loop. This loop
never exits since TIMER_REGISTER
never changes! These operations must
be translated by the tester as in List-
ing 2b.

ADDING SOPHISTICATION
Listing 3 shows a more sophisticated

virtual device that handles time-depen-
dent register operations with a realistic
addressing mode. With the peripheral
access function—paccess()—this
virtual device can differentiate between
memory-mapped accesses to itself or
to other system devices.

Managing the required time-depen-
dent register changes (e.g., incrementing
TIMER_REG) as part of paccess() is
straightforward. The different sizes of

memory operations (byte, word, and
long word) are also handled in a man-
ner reflecting the real device registers’
structure.

Such an implementation works with
any processor—simulated or real—and
any debugging system that handles C
code. Changing the #define statements
into macros that place parameters on
the stack before calling subroutines
lets the virtual device be manipulated
directly from assembly-language code.

This simple approach is usable with
code running on an evaluation board
or in a processor simulator, providing
a device with the sophistication level
of the Mittag virtual device [1].

However, the programmer is still
open to many fundamental errors if
the simulation code has significant
length. How long before the developer
attempts to access the virtual-device
registers using the same format as any
other C variable (e.g., *device_reg
= value) when a contrived form (e.g.,
WriteByte(device_reg,value)) is
needed?

A successful simulation implies
that accessing any virtual-device reg-
ister should occur transparently!

VIRTUAL-DEVICE COMPLEXITY
Minimal virtual-device sophistica-

tion should let us code the use of the
device directly in C. Direct manipula-
tion of the virtual device in assembly
code should also be possible—at least
at the level of the 68k section in List-
ing 4.

This higher level of sophistication
is available with the Smith virtual
device, which runs by producing ex-
ceptions produced when the processor
accesses the virtual-device registers.

Table 1—The McVASH device registers offer a wide range of functionality and bit sizes.

Offset from
Register Size Base Address Action

Water Valve Control 8 bit 0x00 Turns waterstream on and off
Timer 32 bit 0x04 Indicates number of milliseconds since system startup
Period 16 bit 0x08 Gives period of bather’s current vocal rendition
Infrared Receive 8 bit 0x0C Permits communication between solar-powered

  microprocessor (on bathroom window) and
  water-impeller-powered shower head

Infrared Transmit 8 bit 0x10 (Same)
Shampoo 8 bit 0x14 Puts shampoo and conditioner into waterstream at the

 command of voice-recognition circuit (patent pending)
DSP 1 32 bit 0x18 Example of available DSP register
DSP 2 32 bit 0x1C Example of available DSP register

long int initial_time
ResetMcVASHdevice() // set device regs to known value
initial_time = *timer_register // Synchronize water  with voice
while (initial_time + *voice_register > *timer_register)
         *transmit_reg = ON;
initial_time = *timer_register // Synchronize water with voice
while (initial_time + *voice_register > *timer_register)
        *transmit_reg = OFF;

Listing 1 —This pseudocode for the McVASH device demonstrates initializing the device registers and
controlling the water flow according to period of the note being sung.
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RISC VS. CISC
Developing a sophisticated virtual

device using the bus-exception approach
is straightforward for the simple load/
store architecture of a RISC processor
(e.g., the AMD 29k family). Values
needed during exception handling

REGISTER ACCESSES
It’s necessary for the processor,

rather than the programmer, to recog-
nize that virtual-device register ac-
cesses are occurring.

Table 2 shows a simplified (but
typical) memory map for an embedded
processor system running in real life or
from within a simulation. Some address
ranges are associated with physical
memory chips, while others aren’t.

Memory accesses to the RAM asso-
ciated with the user program and vari-
able space (0x30000–0x3FFFF) are
handled properly by the processor.
But, memory accesses in the 0x20000–
0x2FFFF range attempt to read nonex-
istent memory locations, triggering a
BUS ERROR exception and a jump to
the system exception handler.

You can use this exception-handling
capability to create a more sophisti-
cated virtual device that manages
standard coding practices in a user-
friendly way. The new virtual device
captures all BUS ERRORs produced by
memory access in the 0x20000–0x2001F
range.

In INK 64, Mike explains how a
virtual device can run on RISC (AMD
29200) and CISC (Motorola 68332) micro-
controller evaluation boards. Obviously,
such implementations require detailed
processor-dependent knowledge, but
Listing 5 captures the main concepts.

Listing 2a —The ResetMcVASH() function is simulated with an unsophisticated virtual device. However,
even the simplest while loop (b) from Listing 1 will fail.

long int device_reg[8]; // Array to represent device registers
#define WATER_REG 0 // Pointers to device registers
#define TIMER_REG 1 // Functions handle op on registers
#define ReadByte(reg_name) {device_reg[reg_name] & 0xFF}
#define WriteByte(reg_name, value) {device_reg[reg_name] = value&0xFF}
#define ReadLong(reg_name){device_reg[reg_name]}
#define WriteLong(reg_name, value){device_reg[reg_name] = value}

void ResetMcVASH(void) // Reset device registers
{
WriteByte(WATER_REG, 0); // *water_reg = 0;
WriteLong(TIMER_REG, 0); // *timer_reg = 0;

}

b)

a)

while (initial_time + ReadWord(VOICE_REGISTER) >
                         ReadLong(TIMER_REGISTER))
  WriteLong(TRANSMIT_REG, ON);
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were available from dedicated regis-
ters rather than stored on an external
memory stack.

The regular format of the 29k RISC
instructions, together with special
“indirect register” registers, enabled
simple recognition of the source and
destination registers involved in the
virtual-device operation. We generated
virtual devices that ran directly on the
AMD evaluation boards and within
AMD debugging simulators [2].

Generating a virtual device for a
CISC processor (e.g., Motorola 68k)
using the bus-exception approach was
more problematic. One major diffi-
culty was the different stack frames
for BUS ERROR exceptions across a
processor family (compare those from
the Motorola 68332 and 68020 proces-
sors) and for a given processor (e.g.,
Motorola 68020).

Also, some processors move onto
the next instruction after an excep-
tion is handled. Others expect the
addresses on the stack frame and data
values to be corrected so the instruc-
tion execution can continue on return
from the exception.

Such complexity means several
BUS ERROR exceptions can be triggered
in one instruction. An example is the
68k instruction MOVE.L OFFSET1(A0),
OFFSET2(A0).

Other problems arise with any
processor pipeline occurring when the
exception is forced. Take the follow-
ing instructions:

MOVE.L D0, OFFSET1(A0)
MOVEQ.L #5, D0

The second instruction will have com-
pleted loading register D0 before the
processor handles the BUS ERROR
associated with storing the original D0
register value from the first instruction.

In theory, these different cases must
be handled in the virtual-device code. In
principle, you must construct a complete
CISC-processor simulator as part of
the exception handler. But in practice,
the situation wasn’t too problematic
for virtual-device write operations.

Most C compilers don’t produce a
wide range of instructions when access-
ing a fixed memory location that may
represent the absolute address associ-
ated with a peripheral. Since such
instructions aren’t produced by the
compiler, you don’t need a virtual
device that handles them.

By contrast, even the simplest CISC
reads on the virtual device proved
troublesome. Without significant
decoding, it’s hard to determine the
instruction’s destination register.

Despite this fact, we developed
some useful virtual devices that only
respond to reads sending values to one
specific register, as in:

MOVE.L (address_reg), D0
MOVE.L OFFSET(address_reg), D0

Of course, this approach works if
you write assembler code where you

Photo 1 —Water levels,
water and heater
temperature, and an
elapsed time clock are all
animated. It was no small
feat to develop a virtual
device with this level of
animation.
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can specify the D0 register. Surprisingly,
it also typically works with auto-
mated code generation since typical C
compilers reuse D0 as a temporary or
volatile register.

EXCEPTION-HANDLER PROBLEMS
The exception-handling approach

to virtual-device development works
user-transparently. We’ve produced
several virtual devices that work with
Motorola 68020 and 68322 CISC pro-
cessors running in the SDS simulation
and on evaluation boards.

However, some serious problems
remain. For one, you need to develop
different virtual-device code for each
processor your company plans to use.

Also given how time-dependent
register operations are implemented,
no register changes occur unless the
device is being accessed by the program-
mer’s code. So, it’s difficult to ensure
that the timing of device operations

has a proper relationship to the proces-
sor clock.

It’s also hard to debug virtual devices
unless you know where the array
representing device-register values is
located. Direct access to the “physical”
device-register locations doesn’t work
because many debuggers modify the
processor’s exception handling, block-
ing virtual-device operation.

Complicating the issue is the fact
that some processor simulators don’t
properly handle all processor exceptions.
The appropriate exception stack frame
is constructed, but you can’t recover
from the interrupted instruction. So,
operation becomes more complicated
because you need to modify the stack
frame to represent an exception handled
by the debugging environment.

Finally, an unsophisticated virtual
device can’t simulate real-time opera-
tions. An instruction that should
interact with the real peripheral over

several processor clock cycles takes
several thousand cycles due to the
exception-handler code needed to
cause the virtual device to function.

DLL VIRTUAL DEVICE ADVANTAGES
These problems pale in comparison

with the fact that you can never be
completely sure that you, or the com-
piler, haven’t used processor instructions
your virtual device can’t handle. This
snag becomes more likely as the project
code size and optimization level increase.

A virtual device generated using
the SDS Peripheral API offers a good
solution. This device takes the form
of a DLL, so one virtual device can be
used in conjunction with simulators
from any processor family.

The DLL acts in conjunction with
the SDS processor simulation rather
than being parachuted on top of it. So,
access to the device registers occurs
user-transparently.

Time-dependent operations, includ-
ing complex concepts like triggering
the virtual-device interrupts at specific
times, are easily linked to the proces-
sor clock because the DLL becomes
part of the processor simulation.

Since operations on the virtual-
device registers are handled identically
to other memory operations, any in-
struction sequence the compiler can
generate from your product code is
guaranteed to work.

The virtual-device DLL is developed
using C++ peripheral classes provided
by SDS. Through the DLL interface, the
virtual device can access any physical
peripheral belonging to the PC the
simulation is running on.

A UART virtual-device demonstra-
tion illustrates the power of this DLL
approach. Connect the UART to the
processor simulation at memory loca-
tion 0x20000 by adding mem 0x20000
periph=c:\sds\periph\xuart.dll
to the simulation start-up file.

Random- or fixed-period timing for
UART character transmission is achieved
by changing options or activating a
timing file. Incoming characters can
be made to produce interrupt events.
Another command causes the UART
virtual device to take over an actual
serial port for more in-depth simula-
tion and debugging.

Listing 3 —A more sophisticated virtual device can handle memory-mapped I/O and time-dependent register
operations in a realistic manner.

char device_reg[32]; // Array to represent device regs
// McVASH base address is 0x20000
#define BASE_ADDRESS 0x20000
#define WATER_REG 0x20000 // Device reg addresses
#define TIMER_REG 0x20004
// Functions to handle operations on registers
#define ReadByte(address) {paccess(address, NULL, READ, BYTE)}
#define WriteByte(address, value) {paccess(address, value, WRITE, BYTE)}
#define ReadLong(address) {paccess(address, NULL, READ, LONG)}
#define WriteLong(address, value) {paccess(address, value, WRITE, LONG)}

long int paccess(long address, long data, short operation, short
                   data_size){
// Determine if manipulating virtual device or system component
  if (address < BASE_ADDRESS) Other_Memory_Operation();
  else {
    accessed = address - BASE_ADDRESS;
    if (operation = = READ)
      switch(data_size) {
        case BYTE: value = device_reg[accessed]; break;
        case WORD: value = device_reg[accessed];
        value = (value * 0x100) + device_reg[accessed +1]; break;
        � }
    else if (operation = = WRITE)
    �
    Handle_Time_Dependent_Register_Operations();
    return(value);
  }
}    // Return reg value as required

void Handle_Time_Dependent_Register_Operations(void)
{
  device_register[TIMER_REGISTER - BASE_ADDRESS]++;
  // Increment device TIMER_REGISTER
  �
}
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FIRST ATTEMPT
The Single Step Peripheral API

offers generic UART and timer sup-
port, but it’s easy to expand peripheral
support by creating DLLs. We followed
SDS’s advice of “modify a copy of
either DLL” provided as examples,
and we deleted all code associated
with UART capabilities we deemed
unnecessary.

However, our limited knowledge of
Windows and DLL interfacing, com-
bined with the absence of a generic
template, meant this approach was
incorrect for producing a working
virtual device.

THE SECOND TIME AROUND
Our second prototype attempt was

more successful. We modified the API
routine Iperipheral::paccess()
(see Listing 6), which is called when
the peripheral’s memory is accessed.

The SDS API peripheral virtual
device operates much like the Smith
and Mittag devices. Details of each
memory operation are passed to
paccess() and used to manipulate
device registers.

Note that the DLL interface auto-
matically provides all the information
that needs to be laboriously decoded
from the Smith device’s exception
stack or hard coded into the Mittag
device. Thus, the virtual device can be
coded processor independently.

We ported the existing C code in an
exception handler from a Smith-designed
virtual device into paccess(). The
prototype device was quickly up and
running, responding to code written
in C and assembler.

The device ran well, but only if we
didn’t use any debugging tools to check
it—a sort of Heisenberg Uncertainty
Principle for microprocessors! For
example, using the MEMORY window to
examine the virtual registers slowed
the simulation and caused crazy op-
erations in the virtual device.

After spending weeks attempting
to get around the problem, we discov-
ered a defect in both the Smith and
Mittag virtual-device concepts. These
virtual devices change their internal
state register values whenever a regis-
ter is accessed. If no access occurs, the
device doesn’t operate.

They can’t distinguish between a user
program and a debugging tool accessing
the registers. Viewing the device registers
through the MEMORY window uninten-
tionally changed the register values.

Of course, the fix was straightforward
once we found the problem. The API
interface function IPeripheral::
pkick() enables regular, random, or
file-driven updates of the virtual-
device registers.

pkick() is used in conjunction with
an internal DLL variable pstate that
controls when the next device internal-
state change occurs. Debugging-tool
access doesn’t change pstate, but
normal user access does. The problem
disappears when the two types of
memory access are distinguishable.

pstate is also used in conjunction
with IPeripheral::irquack, which
performs the hardware interrupt ac-
knowledge cycle for interrupts gener-
ated by the virtual device.

ADDING A WINDOWS GUI
We added a graphics interface to dis-

play properties of the peripherals (e.g.
temperature gauges, elapsed time, etc.).
Photo 1 shows the GUI for the COF-
FEEPOT virtual device.

Since the current SDS documenta-
tion doesn’t explain how to add basic
graphics to a device, we recommend
Charles Petzold’s book [3]. He leaves the
wimpy, specialized, integrated-devel-
opment environment behind and uses
makefiles to generate Windows programs
in C using a Visual C++ compiler
directly from the command line.

With Petzold’s help, we developed
an operating GUI prototype with all
the graphics routines necessary to
display the virtual device’s behavior.
These routines were placed in a C
source file and linked to the virtual-
device code.

Unfortunately, no documentation
reminded us how impossible it is to

Listing 5 —This pseudocode demonstrates the basic operation of a virtual device handled through the
generation of memory BUS ERRORs on device register accesses.

BUSERROR_HANDLER:
  Save Volatile Registers to stack to prepare to jump into C code
  Access Information from Exception Stack Frame {
    Find Exception Address information
    if (Memory Access outside of device range)
      Do Normal Exception Handling( );
    else {
      Determine from stack frame if need READ or WRITE operation
      Determine WRITE value (from the stack frame) if appropriate
      Determine manipulated DATA size from stack frame
      Launch paccess routine(address, value, operation, data_size)
    }
  }
  Recover Volatile Registers from the stack
  Clean and/or transform the Exception Stack Frame
  Perform actions informing processor of completed inst
  Return From Exception

Listing 4 —A more sophisticated device should be capable of handling while loops in assembly code
using a variety of addressing modes.

MOVEA.L #BASEADDRESS, A0 // Set pointer to virtual device
MOVE.L TIMER(A0), D2 // initial_time_D2 = *timer_reg

WHILE:
MOVE.W VOICE(A0), D3 // while (
EXT.L D3
ADD.L D2, D3 // initial_time + *voice_reg
CMP.L TIMER(A0), D3
BLT END_WHILE // > *timer_reg)
MOVE.B #OFF, TRANSMIT(A0) // *transmit_reg = OFF;
BRA WHILE

END_WHILE:
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link Windows C code to API
C++ code without some back-
ground on how both languages
are implemented at a low level.

We were unable to persuade
pkick() to access our GUI
routines. The graphics rou-
tines it requested were per-
ceived at link time as being
different than the actual rou-
tines present in the working interface!
It wasn’t a question of hidden charac-
ters in the function names. Both code
sets appeared to recognize the graph-
ics function prototypes from a com-
mon .h include file.

Fortunately, a colleague reminded
us of name mangling. Name mangling
is a technique used in C++ to permit
overloading of function names.

Function overloading lets you make
calls to both void Some_Function
(int, int) and void Some_Func-
tion(int). C doesn’t let you use the
same function name under different
circumstances.

When these functions are trans-
lated with a C++ compiler to the as-

sembler-code level, the first function
name is modified (i.e., mangled) to
the equivalent of _Some_Function_
void_int_int, and the second name
becomes _Some_Function_void_
int.

Thus, the two similar function
names are distinguished at the assem-
bler level. With a plain C compiler,
they both generate _Some_Function
and are not distinguishable.

Something along these lines ex-
plained what was occurring at link
time with the combined GUI inter-
face and API code. However, it wasn’t
obvious how the problem was caused
as we weren’t using function over-
loading.

Even though we only used one
compiler, we had somehow
compiled one code set with a
Visual C++ compiler and the other
with another compiler. No won-
der the object files wouldn’t link!

We had stored the API source
code with the extension .cpp
and the Petzold GUI code with
.c. But, the Microsoft compiler

acts as a C++ compiler for files with
the first extension and as a C com-
piler for the second type.

The problem occurs when the func-
tion names are mangled as C++ func-
tions when they are called from the
virtual-device code and are being
treated as nonmangled C functions in
the GUI. Modifying all file extensions
to .cpp cleared the problem.

VISUAL C++ V.4.0
The SDS user manual describes

various Microsoft compiler options
needed to create a peripheral using the
DLL approach. However, those op-
tions are for an earlier Visual C++
compiler than V.4.0.

0x60000 Interrupt vectors and exception code
0x50000 Stack
0x40000 Empty
0x30000 User program and variable space
0x20000 Empty; Future site of the McVASH device
0x10000 System working space
0x00000 Start-up ROM code

Table 2—This simplified memory map for an embedded microprocessor
system shows filled and empty memory ranges. The future location for the
McVASH device, with a base address of 0x20000, is also shown.
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Mike Smith is a professor of electrical
and computer engineering at the Uni-
versity of Calgary, Canada. He teaches

SOURCE
Microprocessor simulator
Software Development Systems
(630) 368-0400
Fax: (630) 990-4641
www.sdsi.com

We were successful using these
options when compiling the V.7.02
peripheral classes:

/nologo
/W3
/GX
/D "WIN32"
/D "_WINDOWS"
/D "MSDOS"
/D "MSWINDOWS"

But, we had our share of difficul-
ties. When adding the graphics inter-
face to the SDS peripheral code, you
must add a WM_PAINT case statement
to DWORD FPASCAL UARTWndProc()
which controls the virtual-device
operation (original file xuartdev.
cpp).

This option is activated when your
graphics window is resized or uncov-
ered. It should cause the repainting of
the GUI for the virtual device.

You can’t animate graphics at a
regular interval using a built-in Win-
dow’s timer (e.g., WP_TIMER inside the
WndProc() loop). When running in-
side SDS processor simulations, this
timer has a very low priority. Normally,
it doesn’t generate any interrupts for
controlling animation features.

We brute-forced over this problem
by updating the graphics screen any-
time changes might occur. This solu-
tion decreased the simulation speed
and caused significant screen flicker.

It would be useful to pause the
animation at regular, controlled inter-
vals, but a Window’s timer doesn’t
work here, either. One workable ap-
proach is the SDS Breakpoint window
debugging tool, which provides break-
points that briefly stop the simulation.
It’s straightforward to set a “pause
and resume” breakpoint at a point in
a loop where the embedded system’s
code is continually accessing the de-
vice registers.

We also had to add a series of glo-
bal variables to pass the virtual-device
register values from the SDS virtual
device to the graphics functions. A
similar problem occurred with the
pointers to the various graphics win-
dows generated during the virtual-
device initialization but used by our
peripheral GUI screen.

Thanks to Geoff Revill, Louis Meadows,
and Joeseph Fao for their donation
and support of the SDS development
environments. Many thanks to Bob
Davidson of Microsoft for a significant
donation from Microsoft to the ECE
Dept. at the University of Calgary.
Thanks to NSERC and the University
of Calgary for their continued support.
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Listing 6 —A virtual device developed using the SDS Peripheral API is driven by code that shares a common
heritage with the Smith and Mittag [1] devices.

IFCFUNCTIONDEF(int, McVASH::paccess)
  (PSTATE *pstate, ulong offset, uchar *ptr, int size, int write){
  rulong  rid; // Register being accessed
  // Access the memory-mapped registers one byte at a time.
  while (size) { // Manipulate value of size bytes
    rid = offset;
    offset++; // Advance offset to next byte
    if (write)  switch (rid) { // Is WRITE operation requested?
      // Manipulate 8-bit virtual device register�rvalve
      case VALVE: rvalve = *ptr++;// ptr is DLL-related parameter
        break;
      // Manipulate 32-bit virtual device register�rcontrol
      case TIMER: rcontrol=(rcontrol&0x00FFFFFF) + ((*ptr++)<<24);
        break;
      case (TIMER+1): rcontrol=(rcontrol&0xFF00FFFF)+((*ptr++)<<16);
        break;
     �
      default: ptr++; // Ignore value written otherwise
        break; }
    else /* read */  switch ( rid ) {
      // Manipulating an 8-bit virtual device register
      case VALVE:  *ptr++ = rvalve;
        break;
      � }
      Handle_Time_Dependent_Register_Operations(); }
    return(1); }

Jason Wudkevich graduated from the
University of Calgary and now works
in the area of telecommunications
software with Nortel, Calgary.

about CISC, RISC and DSP processors
and researches many aspects of image
and signal processing. You may reach
him via smith@enel.ucalgary.ca.

FUTURE PLANS
Although its documentation was

poor, we’re impressed with the capabili-
ties of the SDS Peripheral API interface
option. It’s useful to compare other
embedded-system debuggers to it.

April 1998 saw the finish of a new
fourth-year computer-engineering team
project course. Two projects involved
the development of an Ethernet virtual
device using the SDS peripheral API
interface [4].

We created Ethernet virtual devices
capable of taking over the PC’s Ethernet
device. We’ll be using the Ethernet
DLL in future classes.

As for the real McVASH device,
well, maybe we’ll enter it in the year-
2000 INK design contest! I
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DEBUGGING SOFTWARE
The OSE Illuminator is a toolsuite for debugging and

analyzing real-time embedded systems applications during runtime.
Integrating OSE’s Evact Handler, System Browser, and Memory
Profiler, Illuminator provides application-level debugging for
complex applications such as high-availability systems in telecom-
munications or safety-critical fault-tolerant systems in industrial
process control and medical instrumentation.

Operating at a higher abstraction level than source-code
debugging, Illuminator’s application-level debugger examines
events in the application (e.g., messages sent between processes).
Additionally, Illuminator offers clear overviews of a system’s run-
time characteristics, including memory usage.

The Evact Handler enables the user to combine a specific event
with a specific action, and the action is performed when the event
occurs. Any combination of events (e.g., sent message, switched
context, created or terminated process) and actions (e.g., moni-
tor, trace, catch) can be used, so the user can track a complicated
sequence of events in a system and collect detailed information
about the specific event of interest.

The System Browser gives a clear overview of an entire
distributed system and allows the user to easily spot errors that
lead to starvation or data overflow.

The Memory Profiler lets users analyze and debug run-time
memory usage in an OSE system even if the system uses many
distributed processors. The Memory Profiler presents all available
targets on a distributed system’s network and enables the user to

PALM-SIZE MULTIMEDIA
EMBEDDED PC
The PCM-4825 is an ultra-compact,

’486-processor–based SBC with onboard
32-bit SVGA and LCD interfaces, as well as a

16-bit audio controller. Its small size (about the size
of a 3.5″ hard disk drive) makes it ideal for limited-

space embedded applications such as car PCs, GPS
devices, and portable instruments.

The PCM-4825 includes an onboard CPU (AMD’s
5x86-133) and 16-bit Sound Blaster Pro–compatible au-
dio interface. An onboard socket provides for flash-disk
expansion up to 72 MB using M-System’s DiskOnChip2000
flash-disk module. A PC/104 interface is also provided.
The PCM-4825 is based on the PC/AT architecture, so it
is compatible with most off-the-shelf software.

An optional case, measuring 7.48″ × 4.49″ × 1.56″,
allows for flexible expansion. The PCM-4825L is identical
to the PCM-4825 except that is has no onboard audio.

The PCM-4925 sells for $332 in 100-piece quantities.

Advantech Co., Ltd.
(800) 800-6889 • (408) 330-9399
Fax: (408) 330-9393 • www.advantech.com

perform a number of functions that range from fine-tuning memory
use to locating major programming and design errors.

The OSE Illuminator starts at $2000, with versions available
for Windows NT, Windows 95, and Solaris, as well as any system
with a Java virtual machine. The OSE RTOS and related tools are
also available for the Motorola 68k and PowerPC families.

Enea OSE Systems, Inc.
(214) 346-9339 • Fax: (214) 346-9344
www.enea.com
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The Micro-Plus ’188EB and ’386EX CPU
cards are designed to be the engine of a typical high-
performance embedded system. Their small size, low
power, and high-performance operation make them ideal
for compact, low-power, rugged applications such as portable
equipment, factory automation, or controlling a remote field site.

The Micro-Plus is expandable like a bus system via the two
onboard RS-485 network connectors and stackable ABS frame.
Using network expansion offers a more compact, cost-effective
solution to many embedded applications.

Micro-Plus offers a choice of a ’188EB 16-bit or ’386EX 32-bit
CPU chip. Onboard memory includes up to 512-KB battery-
backed SRAM and 512-KB flash memory (new boot-block).
Additional onboard functions include interrupt controller, three
16-bit counter/timers, two RS-232/-485 ports, watchdog timer,
software-selectable jumpers, and LEDs. The two RS-485 network
expansion ports can interface directly to a wide variety of off-the-
shelf network I/O expansion modules for analog I/O, digital I/O,
serial I/O, parallel I/O, opto I/O, relay modules, relay drivers,
motion control, and LCDs.

Software development using Microsoft and Borland C/C++
and/or assembly language is supported, as is a full symbolic
target debugger that can be used with the flash memories. A
resident BIOS is factory programmed into the protected area of the
flash memories to enable their downloading and programming.
Embedded OS device drivers, program downloader, start-up
code, demo programs for the onboard functions, and quick-start
procedures are provided as well.

The Micro-Plus SBCs are priced at $249 for the ’188EB
version and $312 for the ’386EX version. SRAM, flash memory,
lithium battery, real-time clock, and extended temperature ranges
are all standard features. Connector kits, mounting hardware,
and a desktop power supply are
also available.

PCNouveau

VIRTUAL CPU SOFTWARE
V-CPU 3.0 provides a virtual environment for designers to

debug hardware and software early in the design process by
enabling simulation of the full system prior to silicon.

V-CPU replaces the target processor with a bus functional
model (BFM) that can be an existing Verilog, VHDL, or C model
of the processor bus interface. By attaching the V-CPU bus-
independent driver to the BFM and linking the embedded
software development environment with the V-CPU API library, a
virtual environment is created that gives high-performance system-
level simulation with full software and hardware debug capability.

V-CPU 3.0 offers added logic simulation support for Verilog
VCS from Synopsys on the Windows NT platform. Added features
include improved synchronization between the software applica-
tion and hardware design via asynchronous interrupt handling
and support for Denali memory models.

V-CPU’s memory-map capability, coupled with its implicit
access technology, makes it an extremely flexible coverification
tool that is nonintrusive for the designer. After the design is
partitioned, V-CPU’s memory map lets the user configure to the
hardware or the software side, enabling the designer to control
performance and accuracy.

The memory map also supports configuring C and C++ based
software functional models (SFMs). An SFM can model external
environments and peripheral devices or replace incomplete
portions of the hardware design.

V-CPU has solution support for a wide range of embedded
processors and cores, including various MIPS, Intel, Motorola,
and ARM processor models. Single-quantity floating licenses for
the V-CPU 3.0 cost $40,000.

Summit Design, Inc.
(503) 643-9281
Fax: (503) 646-4954
www.summit-design.com

R.L.C.
Enterprises

(888) RLC-TECH
(805) 466-9717

Fax: (805) 466-9736
www.rlc.com
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66-MHz PCI-BUS ANALYZER
The PBT-415 is an advanced 32-/64-bit

self-contained 66-MHz bus analyzer for the PCI bus
with an onboard exerciser, its own processor, and

firmware. It operates via an RS-232 serial line or USB port
from either a standard ASCII terminal

or a PC with BusView for Windows.
The unit can capture and trigger on

all bus activity in 32-bit as well as 64-bit
PCI-bus motherboards through a PCI
expansion slot at speeds up to 66.7
MHz. The unit may also act as a 32-bit
33.3-MHz PCI master or target, con-
trolled fully through the user interface or
with the built-in script capability.

Features include 10–66-MHz sampling
using CLK, transfer, or CLK transfer syn-
chronous sampling, as well as an
onboard 32-bit, 33-MHz PCI-bus exer-
ciser with DMA capability. It has a trace

buffer up to 256 KB, demultiplexed address/data and command/
byte enables, and real-time statistics, which include event count-
ing and bus utilization. The PBT-415 offers 128 sampling channels
for 32- and 64-bit PCI support as well as a 16-level sequencer that

can trigger after count or delay.
An optional piggyback module

(PTIMBAT400-PB) uses a combination of
two diagnostic tools for analyzing the
PCI bus. A 64-channel 400-MHz PCI
timing analyzer and a PCI anomaly
trigger unit automatically detect up to 68
PCI protocol or timing violations.

Pricing for the PBT-415 starts at
$8750.

VMetro, Inc.
(281) 584-0728
Fax: (281) 584-9034
www.vmetro.com
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PISA-BUS SINGLE-BOARD COMPUTER
The SBC-554V is a half-size PISA (PCI + ISA) bus CPU card

with onboard CRT/LCD controller and the revolutionary new
DiskOnChip flash disk. The PISA-bus architecture supports both
ISA and PISA-bus expansions on a single half-size CPU card.

The onboard C&T 65554 video controller is a high-perfor-
mance LCD/CRT Windows ac-
celerator. It supports a wide
range of flat-panel displays, in-
cluding 36-bit TFT panel dis-
plays. The DiskOnChip supports
system boot-up and memory stor-
age up to 72 MB.

The onboard VGA/LCD con-
troller and DiskOnChip flash
disk free expansion slots for
peripheral devices. They also
eliminate the need for addi-
tional boards and their compat-
ibility problems.

The SBC-554V also includes two high-speed
serial ports (one RS-232/-422/-485 and one RS-
232), one multimode (ECP/EPP/SPP) parallel port, a
floppy-drive controller, an Ultra DMA/33 enhanced IDE
controller, and a keyboard/PS/2 mouse interface.

The SBC-554V supports ISA-
and PCI-bus expansion cards
and accepts Intel Pentium P54C
and P55C, AMD K5 and K6,
and Cyrix M1 and M2 processors.

In low quantities, prices range
from $470 to $490 (not in-
cluding CPU, RAM, or Disk-
OnChip).

Aaeon Electronics, Inc.
(732) 203-9300
Fax: (732) 203-9311
www.aaeon.com
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Ernie Deel

Interprocess Communication

Using Anonymous Pipes

In his article �Interprocess Communica-
tion� (INK 87), Craig Pataky presented a
technique for building a local, high-speed
communication link between a DOS pro-
gram and a Win32 application.

As he noted, such a link is handy for
many purposes, including extending the
lifetime of older DOS code by grafting on
a modern GUI face with only minimal rework.
Craig�s solution involved installing and
interfacing with a custom virtual device
driver (VxD) to build a wormhole that
bridges the disparate universes of DOS
and Windows.

On the surface, DOS and Windows may
appear to be worlds apart, but not only
did they originate in the same universe,
they come from the same planet, even in
the same neighborhood�Redmond,
Washington. Surely there is a more down-
to-earth way to connect the two.

In this article, I examine an alternate
approach to building a Win/DOS com-
munications link using nothing more than
native Win32 and DOS features. This low-

tech solution is sufficient for most common
needs involving user interface and simple
data transfer.

INFOSTRUCTURE
Science fiction aside, in the real world

of the twentieth century, we�re still strug-
gling to connect distant points using such
mundane technology as roads, bridges,
and pipelines.

Pipelines are a vital part of the infra-
structure, providing an efficient means of
transporting materials from place to place.
The basic pipeline concept can be ap-
plied to the transport of information as
well��infostructure� as opposed to �infra-
structure,� if you will.

As an example, most computer operat-
ing systems support a localized form of
information piping. Remember the DOS
redirection symbols < and >?

Using these symbols on the command
line, a user could control and direct informa-
tion flow to and from other programs and
disk files. The only requirement was for

software that used the standard system I/O
devices and avoided direct hardware I/O.

With Win32, the command line has all
but disappeared, but pipes still persist.
Not only are pipes still available, but they
have been significantly improved and
enhanced to include user-defined, two-
way, multiuser pipes with buffering, net-
work communications, and other features.

BLUEPRINT
At this point, you�ve probably surmised

that I plan to use pipes to build my Win/
DOS communication link. In this discus-
sion, the applications to be linked (both
DOS and Win32) are running locally in a
multitasking mode on the same computer.

Under these conditions, I don�t need
any of the newer, more advanced Win32
pipe features. All that�s required are simple,
unnamed, one-way pipes, similar to those
found in DOS.

Reflecting their lack of a user-specified
name, these are known as �anonymous
pipes� in Win32, and as I will show you,

While you can link DOS and Win32 applications using a virtual device that
creates a wormhole between the systems, Ernie proposes a much simpler
way�the anonymous pipes already native to any Win32 environment.
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The handles for one pipe should be
named or somehow designated for use
with STDIN, and the other with STDOUT.
In the interest of simplicity, the STDOUT
pipe can also serve STDERR.

To help keep the terminology straight,
I identify the pipes as STDIN and STDOUT
from the perspective of the DOS app. The
individual ends are identified as STDIN/
Read, STDIN/Write and STDOUT/Read,
STDOUT/Write.

Once the pipes are created, the next
step is to launch the DOS app as a child
process using CreateProcess() with
DOS STDIO redirected to the appropriate
pipe handles. To achieve this, the previ-
ously created handles must be provided in
the STARTUPINFO structure used by
CreateProcess().

The hStdInput element should con-
tain the STDIN/Read pipe handle. Both
hStdOutput and hStdError should
contain the STDOUT/Write handle.

If everything goes according to plan,
once the DOS app is up and running, what
it recognizes as DOS STDIO will in fact be
the Win32 pipes.

It�s not enough to merely place handle
values into STARTUPINFO. Unless explic-
itly told otherwise, Windows assumes that
any data in the handle elements of
STARTUPINFO is the result of a lack of
initialization.

To indicate that the handle elements
are in fact valid handles to be connected
to the app being launched, the handle
inheritance flag in CreateProcess()
must be set to TRUE.

If CreateProcess() is successful,
the Win32 app should be able to transmit
a message to STDIN of the DOS app by
piping info to the STDIN/Write handle
using the WriteFile() API function.

Likewise, the Win32 app should be able to
receive whatever the DOS app writes to
STDOUT by using the ReadFile() API
function and the STDOUT/Read handle.
Thus, it�s possible to establish a complete

Listing 1a�The MS-BASIC source code for a simple DOS reflector application redirects STDIN
to STDOUT. b�Here�s the same code in C.

they are compatible with DOS. Win32
provides an alternate, more powerful pipe
known as a named pipe. However, they
aren�t fully supported under Win95 or
DOS, so I will avoid them here.

For my purposes, anonymous pipes offer
adequate generic communication links that
work in any Win32 environment (NT or 95)
with any type of application (DOS or Win32).

One other Win32 feature figures promi-
nently in my pipeline infostructure�the
ability of a Win32 application to manipu-
late and control the standard I/O chan-
nels of any child process launched via the
CreateProcess() API call.

A general understanding of these two
fundamental Win32 constructs�anonymous
pipes and processes�are all you need for
basic Win/DOS communications.

In my setup, the Win32 app serves as
the master and must be launched first. The
DOS app acts as a slave and is launched
by the Win32 app as a child process using
CreateProcess().

As you�ll see, the majority of the com-
munication effort takes place on the Win32
side of things. In fact, given a DOS app that
supports standard I/O, communication may

not require any code changes at all on the
DOS side. This is a definite advantage when
you�re working with third-party applications
where source code is not available.

With this in mind, let�s turn to my
proposal�a generic blueprint for the con-
struction of a Win/DOS pipeline.

To build a Win/DOS pipeline, the Win32
app must start by creating two anonymous
pipes using CreatePipe(). Win32 pipes
are buffered to help prevent data loss
during read/write latency. If no buffer is
requested, a default buffer is used. A 4-KB
buffer should be sufficient for most purposes.

Every pipe has two ends, so a call to
CreatePipe() returns two handles. One
handle identifies the �read� end of the
pipe, the other the �write� end.

DEFINT A-Z
OPEN "CONS:" FOR OUTPUT AS #1
PRINT #1,"*********************************"
PRINT #1,"*** DOS Reflector On-Line"
PRINT #1,"*** Pipe a tilde (~) to Exit."
PRINT #1,"*********************************"
PRINT #1,
DO
  A$=INPUT$(1)
  PRINT #1,A$;
LOOP UNTIL A$="~"
PRINT #1,"Goodbye!"
CLOSE
END

#INCLUDE <STUDIO.H>
INT CH;

VOID MAIN()
{
PRINTF("*********************************\N");
PRINTF("*** DOS REFLECTOR ON-LINE\N");
PRINTF("*** PIPE A TILDE (~) TO EXIT.\N");
PRINTF("*********************************"\N\N");
DO {
  CH = GETCHAR();
  PUTCHAR(CH);
}
WHILE(CH !='~');
PRINTF("GOODBYE!\N");

}

a)

b)

Photo 1�Text
input on the com-
mand line at the
bottom is sent to the
hidden DOS app and re-
flected back for display in
the window above.
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two-way communica-
tion link between DOS and

Windows.
Once they�re finished communi-

cating, the apps must be shut down in
reverse order. The last to start must be the

first to end. In this case, it�s the DOS app.
Why? Windows won�t release an anony-

mous pipe if it�s connected to a live, external
application. Also, Windows won�t properly
terminate a Win32 application that owns
a pipe which hasn�t been properly released.

These factors combine to dictate an
orderly shutdown procedure controlled by
the Win32 side of things. The DOS app
must be closed first, then the pipes, and
finally the Win32 app.

That�s it�four easy steps. Admittedly, I
haven�t addressed all the details and minutiae
of using the necessary API function. How-
ever, you can find that in the many avail-
able books on Windows programming.

PERFORMANCE
I haven�t conducted any definitive, quan-

titative tests on the communication speed
of a Win/DOS pipeline like what I just
described. However, simple observation and
experience suggests that its performance
is quite adequate for a user interface and
simple interapplication data transfer. I�d
hesitate to recommend using such a pipe for
time-sensitive network data transfer, but
for many lesser tasks, it performs quite well.

As with all areas of programming, poor
design can lead to poor performance. So to
avoid performance problems, take into
account these design considerations.

When writing to a pipe, Write-
File()may not finish if the pipe buffer is
full. In this case, WriteFile() waits for
a read operation to remove data from the
buffer and make more space available.

Obviously, for maximum speed, you
want to avoid this situation. Make sure the
pipe buffer appropriately reflects the size
of the data packets being used. And, it
should go without saying that the applica-
tions need to be in sync with regard to
packet transfer.

When working with pipes, the overhead of
the ReadFile() and WriteFile() API
calls may be significant. The best way to
minimize overhead is by using larger data
packets.

Also, if possible, avoid reading data
from a pipe in a piecemeal manner.
Always try to remove all data currently

Listing 2�This Object Pascal source code for a Win32 application demonstrates two-way
communication with a hidden DOS reflector program using pipes.

unit pipe1;
interface
uses
  Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
  Dialogs, StdCtrls, ExtCtrls, HyperStr;
type
  TForm1 = class(TForm)
    Panel1: TPanel;
    Edit1: TEdit;
    Timer1: TTimer;
    ListBox1: TListBox;
    procedure FormCreate(Sender: TObject);
    procedure Edit1KeyPress(Sender: TObject; var Key: Char);
    procedure FormClose(Sender: TObject; var Action: TCloseAction);
    procedure Timer1Timer(Sender: TObject);
    procedure FormActivate(Sender: TObject);
    procedure CloseDOSApp;
  private
  public
  end;
var
  Form1: TForm1;
  S,T:AnsiString;
  Flg:Boolean=False;
implementation
{$R *.DFM}

procedure TForm1.FormCreate(Sender: TObject);
var
  I:Integer;
begin
  FlashSplash(Application.Icon,'Welcome');
  I:=GetTickCount+2000;
  try
    PipeExec('dospipe.exe',sw_Hide);
    SetLength(S,1024);
    FillStr(S,1,#32);
  except
    KillSplash;
    ShowMessage('Error opening pipe!');
    Close;
  end;
  Flg:=True;
  repeat until GetTickCount>I;
  KillSplash;
  KillOle;
end;

procedure TForm1.Edit1KeyPress(Sender: TObject; var Key: Char);
begin
  if Key=#13 then begin
    T:=Edit1.Text;
    Edit1.Clear;
    if CompareText(T,'Exit')=0 then
      CloseDOSApp
    else if Flg then begin
      Flg:=ScanF(T,'~',1)=0;  //check for manual shutdown, set Flg
      WritePipe(T+#13+#10);
    end else SpeakerBeep;
    Key:=#0;  //swallow the enter key
  end;
end;

procedure TForm1.FormClose(Sender: TObject; var Action: TCloseAction);
  {Take steps to insure DOS app closes first; otherwise, the Win
     app will  not close properly.}
begin

(continued)
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available from the pipe before attempting
to sort things out.

DEMO
You can download the source and

executables for a demo application that
illustrates a working Win/DOS link. The
demo consists of a Win32 app that simu-
lates a simple console screen with a com-
mand line at the bottom (see Photo 1). A
real-world application would probably

have a more sophisticated interface, but
the underlying communication aspects
would be pretty much the same.

At startup, the Win32 app builds the
necessary pipes and connects them to a simple
DOS app that is launched in a hidden DOS
VM (virtual machine) window. The DOS
window could easily be made visible.

For the demo, however, I chose to keep
the DOS app out of sight and create the
illusion of a Win32-only app. With a well-

  if Flg then begin
    Action:=caNone; //abort the close temporarily
    CloseDOSApp; //shut down DOS app
  end;
end;

procedure TForm1.Timer1Timer(Sender: TObject);
{For demo purposes, a timer event checks the pipe once a second.
   A real app would undoubtedly use a different approach.}
var
  I,J,K,N:Integer;
begin
  I:=ReadPipe(S); //check the pipe
  if I>0 then begin //data available ?
    J:=DeleteC(S,#10); //get rid of any line feeds
    if J<Length(S) then I:=I+J-Length(S);
    if I>0 then begin
      with ListBox1 do begin //add the text to listbox
        K:=1;
        if Items.Count=0 then Items.Add('');
        repeat
          N:=Items.Count-1;
          J:=ScanF(S,#13,K);
          if (J>0) and (J<=I) then begin
            Items.Strings[N]:=Items.Strings[N]+CStr(S,K,J-K);
            Items.Add('');
          end else begin
            J:=I+1;
            Items.Strings[N]:=Items.Strings[N]+CStr(S,K,J-K);
          end;
          K:=J+1;
        until J>=I;
      end;
    end;
  end;
  Form1.Edit1.SetFocus;
end;

procedure TForm1.FormActivate(Sender: TObject);
begin
  BringToFront;
  Form1.SetFocus;
end;

procedure TForm1.CloseDOSApp;
{Do a quick and dirty shutdown of the DOS app to close the pipes.
 A more proper shutdown would wait for confirmation.}
begin
  WritePipe('~'); //send shutdown command
  Sleep(1000); //give it time to take effect
  Flg:=False; //clear flag
  Close; //manually retrigger the close
end;
end.

Listing 2�continued
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designed application,
the average user would

probably be none the wiser.
I refer to the provided DOS

app as a �reflector� because it
merely reads data from STDIN and

reflects it back to STDOUT. When the user
presses Enter, whatever has been typed at
the simulated command line in the Win32
app is taken and piped to the DOS
program�s STDIN.

In turn, the DOS app reflects the data
back to STDOUT. It is then received back
by the Win32 app and displayed on the
console screen. This effectively demonstrates
full-circle communication from Win32 to
DOS and back.

 Strictly for illustration purposes, the
hidden DOS app can be manually shut
down prior to the Win32 app by piping in a
tilde (~) and receiving back a �Goodbye!�
message. Once the DOS app is shut
down, any further attempts at communicat-
ing are met with a simple beep response.

In a more typical application, the DOS
app would terminate as part of the stan-
dard Win32 shutdown, which was initi-
ated in response to a normal user close

request. The demo includes the necessary
code to address this situation as well.

When working with the demo, response
time may occasionally seem a little slug-
gish. This situation is more a reflection of
the simplistic nature of the demo rather
than the speed of the communication link.

In the interest of simplicity and conve-
nience, the demo uses a simple timer to
check the pipe for incoming data once
every second. Occasionally, this setup
may produce a small but noticeable delay
from the time a message is sent to the DOS
app until it is retrieved again from the
incoming pipe and redisplayed.

A real-world application probably requires
a different approach to pipe management.
One simple approach is to only check the
pipe when data is expected. The main execu-
tion thread simply enters a loop where the
pipe is continuously checked until the
expected data arrives or a failsafe timeout
occurs, indicating some sort of problem.

A more sophisticated approach, which
may or may not be warranted, is to use the
WaitForSingleObject() API function
in combination with a separate back-
ground execution thread to continuously

monitor the pipe and generate a custom
Windows message whenever data is avail-
able. An associated message handler then
retrieves the data from the pipe.

SOURCE CODE
I made the source code to both the DOS

and Win32 demo applications available
to provide a first-hand look at the construc-
tion of a working Win/DOS pipeline.

The DOS reflector app in Listing 1a was
compiled using MS BASIC V.7. The source
code is simple, brief (just over a dozen
lines), and generic. Listing 1b presents the
same code in C.

My preferred Win32 development system
is Borland�s Delphi, so I compiled the Win32
app using Delphi V.3 (see Listing 2) and my
HyperString library. In addition to providing a
wealth of string manipulation functions,
HyperString offers a set of three simple
functions�PipeExec(), ReadPipe(),
and WritePipe(). These functions fully
encapsulate all the details of building and
using a Win/DOS communication link.

THE TOOLS AT HAND
The Win32 API is vast, broad, and a

little overwhelming at first. It has lots of func-
tionality�much more so than DOS.

However, the documentation can be a
little sparse, particularly where interfacing
with DOS is concerned. You�re often left to
discover the best way to apply the avail-
able resources to the problem at hand.

Nevertheless, my preferred approach
is always to use native functionality if
possible. Only when no satisfactory solu-
tion can be found should a more drastic
and invasive approach be explored. EPC

SOURCES
Borland Delphi
Inprise Corp.
(800) 457-9527
(408) 431-1000
www.inprise.com

HyperString
EFD Systems
efd@mindspring.com
www.mindspring.com/~efd

REFERENCE
B. Ezzell and J. Blaney, NT4/Windows 95 Developer�s

Handbook, Sybex, Alameda, CA, 1997.

SOFTWARE
The source and executable code (PIPEIT.ZIP) for this
article can be downloaded from the Circuit Cellar Web
site.

Ernie Deel owns and operates EFD Sys-
tems, a software design and development
firm located in Marietta, GA. You can
reach him at efd@mindspring.com.
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Edward Steinfeld

FAT32
File System for Data-Intensive Applications

Writing multiple streams of high-speed
data to a disk can be a frustrating program-
ming experience. But, you can reduce some
potential loss of data due to head seek
times by using double buffering and pipes.

However, you have to deal with complex
programming and rely on either a high-
level kernel or your expertise to handle the
data. An easier method is to use the Windows
95 FAT32 file system along with a
contiguous file system to write these
high-speed streams of data to a disk.

In this article, I show you how this
task is accomplished and then discuss
how the data can be presented to a
Windows 95 application for presenta-
tion or manipulation. The application
records a multichannel audio input
stream to a disk for later use by a
Windows 95 application.

It demonstrates the use of contiguous
block allocation for embedded systems. It
also demonstrates the convenience of
using standard file-system API calls to
manipulate the files.

In this application, n (here, n = 10)
audio channels are multiplexed in the time
domain. A DSP front-end digitizes the
input into discrete 512-byte packets, which
are then written to a contiguous section of
the disk.

This section of the disk is assigned to n
files that are interleaved in a cyclic pattern,
so each block is assigned to a separate file

representing the channel. Every nth block
is owned by a file assigned to channel n.

Once the data is collected, it must be
demultiplexed and each channel must be
streamed through an audio player. Due to
the high data rates involved, it isn�t possible
to perform disk seeks during the record or
the playback sessions. The multiplexed data
must be stored contiguously during collec-

tion and then demultiplexed to con-
tiguous per-channel audio streams so
the sound files can be played back.

Both the record and playback ses-
sions require real-time response. Dur-
ing the transition from a record to
playback session, you have time to
move the data around. The resulting
sound files must be accessible by a
sound-editor application running un-
der Windows 95.

I use programmed I/O to demon-
strate the technique. In your applica-
tion, the record and playback routines
could use DMA to transfer the data to
and from the contiguous regions of the

When used with contiguous files, the FAT32 file system enables you to read
and write high-speed datastreams to disk. Edward demonstrates this with
multichannel audio input which he needs to edit and play back in real time.

Figure 1�This system collects high-speed streaming
audio data and efficiently stores the data to disk.
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disk, and the file-system
code could be executed by
the DSP front end.

To accomplish these goals simul-
taneously, I use an embedded real-
time file system, the ERTFS V.1.0 from
EBS. This embedded file system is Win95
compatible, has contiguous file support,
and has direct block manipulation routines.

Many embedded applications and
kernels have support for contiguous files
and may have routines to directly manipu-
late disk blocks. ERTFS has all this plus
Win95 FAT32 support, and the functional-
ity can be added to either a stand-alone
application or to an existing kernel.

Because the data sets are quite large
and my blocking requirements are small
(512 bytes per block), this application
uses a 2.1-GB hard disk formatted with the
FAT32 file system. This format provides a
cluster size (minimum allocation unit) of
one block per cluster.

FAT32 FILE SYSTEM
The FAT16 file system�the file system

of the MS-DOS, Windows 3.1, and most
versions of Windows 95 operating systems�
is 21 years old. It was first developed for
floppy disks.

Over the years, the FAT (file allocation
table) has been modified to accommodate
ever larger disks. It finally reached its limit
with the 2-GB drives.

The FAT32 file system is an enhance-
ment of the FAT16 file system and now
supports larger hard drives with improved
disk space efficiency. What makes the space
usage more efficient is the smaller clusters
used on the larger disks.

For disks up to 8 GB, the default cluster
size is a modest 4 Kb compared to the 32-Kb
cluster size for a 2-GB drive using the FAT16
format. For this application, I formatted a
disk with ERTFS to specify a 512-byte
cluster size.

There are some drawbacks to using the
FAT32 format. Windows NT doesn�t use
this format, and converters aren�t avail-
able for Windows NT 3.5 and 4.0 systems.
Windows NT 5.0 systems are supposed to
have a conversion utility to convert from
FAT32 format to NTFS (the native NT file
system).

Another drawback is that there are
some compatibility problems with existing
application programming interfaces (APIs)
and older MS-DOS utilities. The cluster

Listing 1�The MAIN routine includes the audio streaming definitions, an interface to the
hypothetical DSP front end, and some error-message print routines.

#define DRIVENUMBER  0 /* Assume drive #0. We only have one drive*/
#define FREELISTSIZE 200 /* Assume max. 200 discontiguous free

   segments */
#define NUM_CHANNELS 10 /* Collecting 10 audio channels */
#define NUM_BLOCKSPER 1000/* 512 KB per channel is collected */
#define SAMPLESIZE 100 /* 100 blocks per DSP sample */

FREELISTINFO free_list[FREELISTSIZE];
/* Global array to hold free segment list */
unsigned char big_buffer[10240]; /* Buffer for moving data */

char *infile_names[NUM_CHANNELS] = {
  "input_file_0.snd",  "input_file_1.snd",
  "input_file_2.snd",  "input_file_3.snd",
  "input_file_4.snd",  "input_file_5.snd",
  "input_file_6.snd",  "input_file_7.snd",
  "input_file_8.snd",  "input_file_9.snd"};

char *outfile_names[NUM_CHANNELS] = {
  "output_file_0.snd",  "output_file_1.snd",
  "output_file_2.snd",  "output_file_3.snd",
  "output_file_4.snd",  "output_file_5.snd",
  "output_file_6.snd",  "output_file_7.snd",
  "output_file_8.snd",  "output_file_9.snd"};

/* Hypothetical DSP subsystem */
extern void dsp_start(int n_samples, int samplesize);
extern char *dsp_get_sample();
extern char * dsp_get_play_buffer(int samplesize);
extern void  dsp_play_play_buffer(char *pdata);

/* Capture and play n channels of multiplexed audio.
   Returns 0 on success and -1 on failure.*/
int record_and_play(){
  int return_value;

 /* Check space then load coordinates into global array free_list */
  if (find_session_free_space() == -1){
    printf("Not enough contiguous disk space for session\n");
    return(-1);}
  return_value = -1; /* If we break out before completion report error */

  /* Create n interleaved files for incoming multiplexed datastream */
  if (create_input_data_files() == -1)
    printf("Failed to create input files\n");

  /* Create n contiguous files for outgoing audio streams */
  else if (create_output_data_channels() == -1)
    printf("Failed to create output files\n");

  /* Collect mutiplexed data to the interleaved files */
  else if (collect_data() == -1)
    printf("Failed while collecting data\n");

  /* Demultiplex the data by copying it from the interleaved files
       to the contiguous files */
  else if (copy_input_to_output() == -1)
    printf("Failed copying input to contiguous output files\n");

  /* Stream demutiplexed data from contiguous files to audio system
      for playback */
  else if (copy_output_to_audio() == -1)
    printf("Failed while playing back audio\n");

  /* If no subsystems failed report success */
  else
    return_value = 0;
  delete_all_files(); /* Clean up */
  return(return_value); /* And leave */
}
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Listing 2�This code calls ERTFS and asks for a list of free segments. The first argument is
the drive number, second is the size of the free_list array, third is the free list, and fourth
is minimum size of contiguous regions to report.

int find_session_free_space(){
  int freelist_size;
  int i;

  /* Try to get all space in one chunk */
  freelist_size = pc_get_free_list(DRIVENUMBER, FREELISTSIZE,
                 &free_list[0],(2 * (NUM_BLOCKSPER*NUM_CHANNELS)));
  if (freelist_size >= 1)
    return(0); /* Got it */
  /* Couldn't get it in one chunk. Try it in two */
  freelist_size = pc_get_free_list(DRIVENUMBER, FREELISTSIZE,
                    &free_list[0],(NUM_BLOCKSPER*NUM_CHANNELS));
  if (freelist_size >= 2)
    return(0); /* Got it now */

  /* Not enough contiguous space. Dump free list to console.
       Return failure */
  /* Threshold of one returns all free regions */
  freelist_size = pc_get_free_list(DRIVENUMBER,FREELISTSIZE,
                                   &free_list[0], 1);
  printf("Free List\n");
  printf("CLUSTER     LENGTH\n");
  for (i = 0; i < freelist_size; i++){
    printf("%8ul    %8ul\n", free_list[i].cluster,
    free_list[i].nclusters);
  }
  printf("Storage allocation failed\n");
  return(-1);
}

values for FAT32 now use four bytes as
compared to two bytes in the FAT16
system. The Win32 APIs aren�t affected,
and all disk utilities bundled with Windows
95 have been updated.

It is this four-byte cluster value that
makes the FAT32 format so relevant to
high-speed contiguous files. You can define
clusters that are small enough to be equal
to the size of the data blocks being col-
lected and written to disk.

The older FAT16 cluster size value
couldn�t accommodate a large number of
clusters, so as the disk size increased, it had
to use ever-larger cluster sizes. This kept the
value of the cluster size small enough to fit
into the two bytes provided for the value.

CONTIGUOUS FILES
The normal disk structure has data

written in the first available space. When
that space is filled, a link is created to the
next available disk space. When writing to
the disk, the disk head is constantly going
back and forth between the FAT and the area
on the disk where the data is being written.

If a program could know beforehand
that the entire file could be written in a
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Listing 3a�This routine creates n interleaved files over a contiguous segment of the disk.
b�This code creates 10 contiguous 512-KB files which store the output to stream to the
playback application.

int create_input_data_files(){
  int n, j;
  PCFD fd;
  long cluster;
  for (n = 0; n < NUM_CHANNELS; n++){  /* Open channel n */
   fd = po_open(infile_names[n], PO_BINARY|PO_RDWR|PO_CREAT,

          PS_IWRITE|PS_IREAD);
    if (fd < 0){
      printf("File creation error \n");
      return(-1);
    }
    /* Cluster offset for files is 0,1,2,3,� for channels 0,1,2,�, */
    cluster = free_list[0].cluster + n;
    /* Allocate one block every nth block for data channel */
    for (j=0; j < NUM_BLOCKSPER; j++) {
      if (po_extend_file(fd, 512, cluster, PC_FIXED_FIT, FALSE) < 0){
        printf("File extend error \n");
        po_close(fd);
        return(-1);
      }
      cluster += NUM_CHANNELS;
    }
    po_close(fd); /* Close this file and do another */
  }
  /* Created 10 512-KB input files. Blocks are
     CHAN0|CHAN1|CHAN2|CHAN3�|CHAN0� */
  return(0);
}

int create_output_data_channels(){
  int n;
  PCFD fd;
  long cluster;
  long file_size;
  /* Get cluster in contiguous region.
     If we get here, there are enough free blocks */
  if (free_list[0].nclusters >= (2*NUM_BLOCKSPER*NUM_CHANNELS)){
    /* If input and output files allocated in one segment,
       use second half of segment for allocation. */
    cluster = free_list[0].cluster + (NUM_BLOCKSPER*NUM_CHANNELS);
  }
  else{
    cluster = free_list[1].cluster; /* Use beginning of 2nd segment */
  }
  file_size = (long)NUM_BLOCKSPER; /* Byte size of each data file */
  file_size = (long) (file_size * 512);
  for (n = 0; n < NUM_CHANNELS; n++){ /* Open channel n */

    fd = po_open(outfile_names[n], PO_BINARY|PO_RDWR|PO_CREAT,
                  PS_IWRITE|PS_IREAD);
    if (fd < 0){
      printf("File creation error \n");
      return(-1);
    }
    /* Allocate one contiguous chunk for output channel
       Final argument specifies device driver to preerase data
       p blocks if device supports preerase */
    if (po_extend_file(fd, file_size, cluster, PC_FIXED_FIT, TRUE) < 0){
      printf("Outut File extend error \n");
      po_close(fd);
      return(-1);
    }
    cluster += NUM_BLOCKSPER; /* Next file offset by NUM_BLOCKSPER */
    po_close(fd); /* Close file; do another */
  }
  return(0); /* Created 10 512-KB output files, contiguous */
}

a)

b)
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contiguous portion of the
disk and if it knows the

address of this space, the
program could issue direct read

and write commands. This is what
the ERTFS, LynxOS, and SMX products

provide to the developer. (Note that ERTFS
and SMX are MS-DOS compatible,
whereas LynxOS is Posix compliant.)

A contiguous file is a section of the disk
consisting of sequential physical blocks which,
after being allocated, are treated as a
high-performance raw device. A contiguous
file usually doesn�t use the normal buffered
file system but is accessed in block units of
the file system.

The FAT32-compatible format in this appli-
cation uses a 512-byte cluster size. Using this
cluster size, I can interleave the 10 channels in
a contiguous region of the disk. Because
the DSP collects data in 512-byte blocks per
channel, this design is as efficient as possible
in disk writes of one cluster per write.

The ERTFS has functions to read and
write up to 128 blocks directly to and from
a disk. With these functions, you specify
the starting block number and the number
of blocks to transfer.

Although DOS APIs may happen to
create contiguous files, there is no way to
specifically request a contiguous file with-
out contiguous or sequential file support.
Any contiguous file created, however, can
be read by DOS-compatible utilities.

PROGRAM STEPS
The algorithm implemented for the n-chan-

nel audio datastreaming application illustrated
in Figure 1 requires these seven steps:

• allocate a contiguous segment of the disk
to store the incoming datastream

• interleave the blocks in the contiguous
segment, so that every nth block is asso-
ciated with the same file. n is the number
of input channels (in this case, 10)

• for the output files, allocate another con-
tiguous segment of the disk to store a
copy of the input stream in n contiguous
files (one for each channel)

• collect the data and store interleaved in
the contiguous segment of the disk cre-
ated for the input data

• demultiplex the data by copying the
data from the interleaved input file to the
contiguous output files

• play back each channel
• clean up the disk

The main routine and the definitions
are in Listing 1. The code in Listing 2 scans
the disk drive for enough free space to run
the application. If it finds the space, the
size will be returned in the free_list
array. If it does not find enough space, it
analyzes the disk and prints the free map
for informational purposes.

Two contiguous regions on the disk are
needed to hold the data collection of size
(NUM_CHANNELS * NUM_BLOCKSPER) blocks,
which is 512,000 blocks. The routine first
tries to allocate all the data from one region.
If that does not work, it tries to allocate the
data in two segments. All of the routines
return 0 on success and �1 on failure.

Listing 3a creates n interleaved files over a
single contiguous segment of the disk. Here,
my routine creates space for 10 interleaved
files, each containing 1000 blocks of data.

The data is laid out so that every nth
block belongs to a specific input channel
(see Figure 2). In other words, CH0 is a
member of INPUT_FILE_1, CH1 is a
member of INPUT_FILE_2, and so on.

In Listing 3b, the routine creates the n
contiguous files to hold data to be streamed
through an audio playback system. These files
are used by the embedded system or copied
to the Windows 95 application system.

All blocks within a file should be contigu-
ous to minimize disk head movement and

Listing 4�This routine enables you to collect the audio data.

int collect_data(){
  PCFD fd;
  long blockno;
  char *pdata;
  FILESEGINFO fileinfo;
  int n_samples;

  /* Open channel 0 and get block number of first block in file.
     Beginning of contiguous region allocated */
  fd = po_open(infile_names[0], PO_BINARY|PO_RDWR,0);
  if (fd < 0){
    printf("File open error\n");
    return(-1);
  }

  /* Ask for list of block extents that make up file. Only need
      first block. raw_io flag is false since partition mapping
      included when we write file */
  if (pc_get_file_extents(fd, 1, &fileinfo, FALSE) < 0){
    po_close(fd);
    printf("Error getting file extents\n");
    return(-1);
  }

  /* Close file. */
  po_close(fd);
  blockno = fileinfo.block; /* Here it is */

  /* How many samples to collect (total # of blocks/SAMPLESIZE) */
  n_samples = (NUM_CHANNELS*NUM_BLOCKSPER/SAMPLESIZE);
  /* Tell DSP to Collect n_samples of SAMPLESIZE */
  dsp_start(n_samples, SAMPLESIZE);
  /* Loop. Wait for samples and write to disk */
  while (n_samples--){
    pdata = dsp_get_sample(); /* Wait for sample */
    /* Write SAMPLESIZE blocks from pdata to the block at blockno.
       raw_io argument is false because we want partition mapping */
    if (pc_raw_write(DRIVENUMBER, pdata, blockno, SAMPLESIZE,

FALSE) < 0){
      printf("Error writing to disk\n");
      return(-1);
    }
    blockno += SAMPLESIZE; /* Wrote SAMPLESIZE blocks. Increment

               block pointer. */
  }
  return(1);
}
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Listing 6�This code enables you to play the audio data back.

int copy_output_to_audio(){
  PCFD fd;
  long blockno;
  char *pdata;
  FILESEGINFO fileinfo;
  int i;
  int channel;
  for (channel = 0; channel < NUM_CHANNELS; channel++){
    /* Open channel */
    fd = po_open(outfile_names[channel], PO_BINARY|PO_RDONLY,0);
    if (fd < 0){
      po_close(fd);
      printf("File open error \n");
      return(-1);
    }  /* Get starting block of file. We know it is contiguous */
    if (pc_get_file_extents(fd, 1, &fileinfo, FALSE) < 0){
      po_close(fd);
      printf("Error getting file extents\n");
      return(-1);
    }
    else blockno = fileinfo.block; /* Here it is */
    po_close(fd); /* Close file. Play all data in one channel */
    /* How many samples is (total number of blocks/SAMPLESIZE)? */
    for (i = 0; i < (NUM_BLOCKSPER/SAMPLESIZE); i++){
      pdata = dsp_get_play_buffer(SAMPLESIZE); /* Call DSP */
      if (pc_raw_read(DRIVENUMBER, pdata, blockno, SAMPLESIZE,
           FALSE) < 0){ /* Read contiguous blocks from disk */
      printf("Error reading output sample\n");
      return(-1);
      }
      dsp_play_play_buffer(pdata); /* Tell DSP it's loaded */
      blockno += SAMPLESIZE; /* Increment block pointer. */
    }
  }
  return(0);
}

reduce disk access times.
This setup is not necessary for
the application to function, but
it makes it simpler to implement
and also eliminates fragmentation
and ensures the output data will be
streamed smoothly (no breaks while wait-
ing for disk head movement).

The routine in Listing 4 collects the 10
channels of multiplexed audio data into n
interleaved files. It collects data from a DSP or
any other front-end data-collection system
and writes the raw blocks to the interleaved
data block region. The DSP system provides
100 block buffers of data at a time to the
upper layers of the application software.

The buffers are in a ring buffer, so the
application calls the DSP software layer to
provide a buffer. When it returns a buffer,
the data is written to disk. Once the write is
completed, the buffer is given back to the
DSP layer. The DSP system and the appli-
cation run asynchronously.

In Listing 5, the contents of the input
data files are copied to the output files. The
data is automatically demultiplexed, be-
cause the input files are interleaved and the
output files are contiguous.

This process doesn�t happen in real time
because the disk must seek as it reads the
data blocks from the input files. The interesting
thing about this routine is that a simple file
copy using standard API calls demultiplexes
the data into contiguous output files.

Next, we finally get to stream the contigu-
ous data to the audio player. This can be
either done by the embedded system or
through a Windows 95 application.

In Listing 6, the routine assumes that the
embedded system is used to play back the
audio streams. It reads blocks from output files
that are contiguous and commits the blocks
to the DSP system to be played as audio.

A final routine (not shown here) deletes
all the input files and output files to release
the contiguous space. This routine calls
pc_unlink() for each file that may have
been created.

If the algorithm runs to completion, it
deletes every file. If it doesn�t run to comple-
tion but leaves some files on the disk, it
deletes only those files. The unlink call will
fail on the files that we did not create,
which doesn�t cause any harm.

MAIN PROGRAM
The main program, which you see in

Listing 1, makes sure there is enough

Listing 5�Once the data is demultiplexed into separate contiguous files, the input data
may be streamed to the audio player.

int copy_input_to_output(){
  int n,i;
  PCFD in_fd;
  PCFD out_fd;
  for (n = 0; n < NUM_CHANNELS; n++){ /* Open channel n */
    in_fd = po_open(infile_names[n], PO_BINARY|PO_RDONLY,0);
    out_fd = po_open(outfile_names[n], PO_BINARY|PO_WRONLY,0);
    if ((in_fd < 0) || (out_fd < 0)){
      if (in_fd >= 0) po_close(in_fd);
      if (out_fd >= 0) po_close(out_fd);
      printf("File open error \n");
      return(-1);
    }
    /* Read from input and write to output */
    /* Work 20 blocks at a time, given 10,240-byte buffer */
    for (i = 0; i < NUM_BLOCKSPER; i += 20){
      if (!((po_read(in_fd, big_buffer, 10240) == 10240) &&
          (po_write(in_fd, big_buffer, 10240) == 10240))){
        po_close(in_fd);
        po_close(out_fd);
        printf("File copy error \n");
        return(-1);
      }
    }
    po_close(in_fd); /* Close files and loop back for next pair */
    po_close(out_fd);
  }
  return(1); /* Copied all files */
}
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contiguous disk space to
collect the multiplexed data

in a contiguous section and
to store the demultiplexed data files

in contiguous sections. Then it creates
NUM CHANNEL interleaved files so the

multiplexed input stream can be collected
to contiguous sectors and later demultiplexed.

After it collects the data, it demultiplexes
it by copying the data on a per-channel
basis from the interleaved input files to the
contiguous output files. It then plays back
each channel and deletes all the files.

FAT32 AND ERTFS
Using the Windows 95 FAT32 file system

with its smaller cluster sizes and your
embedded application to allocate contiguous
files and to read and write directly to disk
blocks can make for a fast data-collection
system for continuous datastreams.

The reduced head seek times made
possible by using contiguous files mean
you will not lose incoming data. The ability
then to copy the input file into any number
of contiguous output files means the output
device can stream the data without breaks
due to disk head movement.

SOURCES
ERTFS V.1.0
EBS, Inc.
(978) 448-9340
Fax: (978) 448-6376
www.etcbin.com

FAT32
Microsoft Corp.
(206) 882-8080
Fax: (206) 936-7329
www.microsoft.com/windows/pr/fat32.htm

LynxOS
Lynx Real-Time Systems, Inc.
(498) 879-3900
Fax: (408) 879-3920
www.lynx.com

SMX
Micro Digital, Inc.
(714) 373-6862
Fax: (714) 891-2363
www.smxinfo.com

Edward Steinfeld has over 25 years� expe-
rience in real-time and embedded comput-
ing. He has marketed embedded and real-
time products to OEMs and resellers for
DEC, VenturCom, and Phar Lap Software.
He now heads his own company, Au-
tomata International Marketing. You may
reach Edward at stein@ma.ultranet.com.The ERTFS product has a unique function

that may be required when the length of
the datastream is not known. If the file size
you preallocated was not sufficient to con-
tain the datastream, the ERTFS product has
a function to extend the contiguous file.

The ERTFS API provides for calls to get the
first available contiguous chain of clusters
of sufficient size to contain the extension
(fastest method), the chain of clusters that
allows for the best fit, or the longest chain
of available clusters. The extension may not
be contiguous with the first allocated space
but might be linked like noncontiguous files.

Some embedded kernels have contigu-
ous (sequential) file capability. The ERTFS
file system from EBS can be used with

|
C

h1
|

C
h2

| CH3 | . . .
| . . . . . . | Ch9 | Ch10 | Ch1

| C
h2|

. . . | . . .

Figure 2�In the 512-KB block/channel layout
on the disk, the data from the channels are
interleaved every nth block in a single con-
tiguous file.

kernels that do not possess this feature or
it can be incorporated easily into embed-
ded products that do not contain a file
system. EPC
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Real-Time PC

Ingo Cyliax

Data Acquisition

When I discussed networking last
month, one of the things I mentioned was
data-acquisition devices over Ethernet. This
time, let�s take a look at the business end
of that data acquisition.

In particular, I want to talk about
PC/104-based data-acquisition solutions.
After filling you in on the terminology, I
discuss some of the issues that arise when
you�re dealing with data acquisition in
real-time systems.

In the Sources section, I list a number of
vendors that make PC/104-
based data-acquisition mod-
ules. There are a lot! But, that�s
not surprising. After all, most
real-time systems interface with
the real world, which is very
analog in nature.

ANALOG ACQUISITION
With data acquisition�

and analog data acquisition,
in particular�you need to
know some terminology be-

fore we can look at issues and techniques.
It�s pretty simple, so let�s dive right in.

The A/D sampling rate is the speed at
which you sample the analog signal. Typical
numbers are 30 kHz or 100 kS/s (kilo-
samples per second).

 The maximum sampling rate depends
on the particular A/D chip or technique,
and it�s related to the resolution of the
ADC. In general, the higher the resolution
(i.e., the number of bits in the converted
digital word), the lower the sampling rate.

The resolution defines how many steps
there are in the signal range to be sampled.
For example, if the analog signal range is
0�10 V and the resolution is eight bits, the
step size is 10/256 or 0.039 V. If the
resolution is 12 bits (a typical size), the
step size goes down to 0.0024 V.

The resolution can also be expressed in
dynamic range. A 12-bit ADC has a
dynamic range of 4096:1 or 20log(4096),
which equals 72 dB.

The dynamic range published by a
manufacturer for a particu-
lar device is a figure of
merit. It also has to take into
account the converter�s ana-
log performance. It�s not that
uncommon for the dynamic
range of a converter to be
smaller than the resolution
might indicate.

The input bandwidth of
a converter, which describes
its analog performance, is
important as well. To make

Collecting data in real time is tricky. You have to consider the response to real-
time inputs as well as the delay introduced by data buffers. Ingo gets us up to
speed on possible solutions,including DSP- and FPGA-based PC/104 modules.

Figure 1�Aliasing occurs when a signal is undersampled. To sample a base-
band signal, the signal needs to be band-limited to half the sampling rate. The
minimum sampling rate should be twice that of the maximum frequency
component present in the signal.

t=0 1 2 3 4 5 6

Actual Signal Aliased Signal
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sure that all of the sig-
nal is present, the con-
verter�s input bandwidth
should be larger than
the signal bandwidth
you�re interested in.

In most applications, the input band-
width to the converter should be less than
half the sampling rate. The converter�s
sampling rate should be the Nyquist rate,
which is at least twice that of the highest
frequency component you�re interested in.

Sampling at less than two times the
signal rate introduces aliasing to the sig-
nal. Figure 1 gives you an idea of what
aliasing looks like.

To measure a signal that has a band-
width of 0�20 kHz, you need to sample it
with at least 40 kS/s. Audio CDs are
sampled at 44.1 kS/s to reproduce high-
fidelity audio with high-frequency compo-
nents over 20 kHz.

However, a converter may have much
higher input bandwidth than half the sam-
pling rate. For example, a 40-MS/s con-
verter might have an input bandwidth of
100 MHz. That way, you can undersample
to capture signals with higher frequency
components than the sampling rate.

How is this possible? Digitizing an
analog signal or sampling it at discrete
time steps is much like heterodyning, or
mixing, a signal.

That�s what the aliasing effect is, and
you can use it to your advantage. For
example, sampling a signal at 20 MS/s
will downconvert a 25- or 45-MHz signal
to a 5-MHz signal.

To select the signal band you wish to
convert, you first need a band-pass filter to
select the desired band you want imaged
in the sampled signal. Figure 2 shows what
this looks like in the frequency domain.
Filtering the base-band signal at half the
sampling rate to get the actual signal
without aliasing is just a special case [1].

Delay or latency is the time it takes to
convert the analog signal and have the
converted digital value of the signal ready.
The latency may be longer than the sam-
pling rate because some converters have
pipelines and FIFOs. Therefore, the data
may appear several sample times later.

You must account for the latency in real-
time�based systems because it affects the
system�s response to an external stimulus.
Be sure to add the converter latency to
your total system-latency budget.

Some converters are able to convert
several signal sources with one ADC. This
task is achieved via an analog input
multiplexer (see Figure 3). This device
selects one of the inputs as a source for the
ADC input. In this case, you sacrifice
sampling rate for the number of inputs.

If you want to sample eight channels at
40 kS/s each, you need an ADC that�s
capable of sampling at 8 × 40 kS/s (or
320 kS/s) because it has to service each
channel in order. Another way to look at
the situation is that a 40-kS/s ADC can
only sample 16 channels at 40 kS/s
divided by 16 (or 2.5 kS/s).

Figure 2�Undersampling can be used to ac-
quire signal in frequency bands that are
higher than the sampling rate. The aliasing
works in my favor here, down-converting the
desired frequency band into a base-band
signal. For example, the images of F2a and
F2b can be found in the base band F0.

F0 F1a F1b F2a F2b F3a F3b

0 1FS 2FS 3FS

freq

Photo 1�The PF2000
from Derivation Systems
can be configured to
have up to three Xilinx
FPGAs and up to 512 KB
of SRAM, EPROM, or
flash memory. Up to four
boards can be used in
one system. Complex
algorithms can be imple-
mented in the FPGA on
this PC/104 form-factor
board to offload the sys-
tem bus and CPU.
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ISSUES
Latency usually isn�t a big problem with

nonreal-time applications, like test and
measurement, where we want to collect
some data and then store it for later
analysis. In real-time systems, however,
you typically want to control something
based on the signals acquired, so latency
becomes a critical issue.

A flight simulator is a good example of
a demanding data-acquisition applica-
tion. It measures pilot inputs to the system
(e.g., pedal and yoke positions) and com-
putes the response to the control inputs.

Typically, the computation models the
aerodynamics of the aircraft to be simu-
lated and then updates the hydraulic ac-
tuators that move simulator�s cockpit so
that the pilots feel like they�re flying the
aircraft. Also, the simulator has to update
the displays to be realistic facsimiles.

It turns out that if the update rate is too
sluggish, the pilots in the simulator get sick.
In this case, then, there�s an upper bound
on how much system latency can occur.

If the acquisition system has too much
latency, it isn�t possible to meet this end-to-
end latency requirement, even if there is
enough processing power to handle all the
computation required.

A flight simulator is just one example of
a control loop that illustrates the effect of
latency in acquisition systems. Other con-
trol examples (e.g., factory process con-
trollers or robot actuators) have even higher
latency requirements.

Another issue that arises in data acqui-
sition is the data throughput based on
sensor inputs. In a real-time system, the
device has to respond to inputs in a
bounded amount of time. Therefore, it has
to acquire all the data it needs for the
computation at the required sampling rate.

For example, if you have to sample
data at 500 kS/s, the system must be able

to handle that amount of data. At 500 kS/s
with a resolution of 16 bits, your system
has to read and process 1 MBps of data.

This situation can be problematic for a
PC/104 system. Such a system might be
able to just handle this data rate, but there
wouldn�t be any excess bandwidth to do
anything else on the PC/104 bus (e.g.,
drive a graphics board).

Obviously, one way to increase perfor-
mance is to use a faster bus. PC/104+,
which runs at 33 MHz, allows burst trans-
fers of up to 132 MBps. That certainly
helps. Even if you don�t have to transfer

Figure 3�An analog multiplexer increases
the number of inputs to a converter. This
multiplexer is typically incorporated on the
converter chip.

huge amounts of data,
PC/104+ permits much
higher bus utilization because
the device is on the bus for much
shorter periods of time.

Another approach to the data-band-
width problem is to preprocess the col-
lected data. In many cases, the raw data
must be sampled at high rates so that
information (e.g., the derivative or fre-
quency spectrum of the signal) could be
extracted. Or, perhaps you want to re-
cover an interesting signal by filtering out
noise instead.
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Figure 4�An FPGA can be used to preprocess data acquired
before passing it on to the CPU. In this example, I oversampled
a signal and the FPGA averaged it to increase the resolution and
reduce traffic over the system bus.

ADC
Signal

reg reg

div 2

FPGA

Add reg Data

IRQ

2 × FS

Some of the pro-
cessing can be done

near the converter. Rather
than converting the data and

letting the system CPU process
all the data, try using a DSP-based
board that interfaces to the ADC.

The DSP can then preprocess the
data and extract the essential infor-
mation. In this case, the data is
reduced before being transferred
over the system bus.

A related approach is to use FPGAs
for signal preprocessing. In addition to
implementing DSP function in FPGAs,
FPGAs can also be used for customized I/O
functions and acquisition architectures.

Two vendors have FPGA modules in
PC/104 format. The module shown in
Photo 1 is one I built, and it�s available
from Derivation Systems Inc.

Nova Engineering also offers a PC/104-
based FPGA module built around the
Altera FPGA. The Nova�s FPGA module is
available in a variety of options, including
low-voltage FPGA. Both Altera and Xilinx
provide libraries of DSP core functions that
can be embedded in an FPGA.

You might wonder what kind of prepro-
cessing you can do in a FPGA- or DSP-
based acquisition system. Recall that I
mentioned using undersampling to down-
convert signals at higher frequencies. You
can also try oversampling.

In oversampling, you sample the signal
at a higher rate than the Nyquist rate,
which provides more samples than you
need to reconstruct the signal. It also gives
an improved dynamic range�that is, it
increases the effective resolution.

The sigma-delta converter is an extreme
case of this technique. It uses a one-bit
ADC and oversamples to get the desired

resolution. If you oversample the
signal with a 2× sampling rate, you
must reduce the signal by averaging
the two samples you get for every
one sample you�re interested in:

y(t) = x(t1) + x(t2)
2

The resolution increase comes
from the add operation. Since you�re
dealing with integers, you don�t
perform the divide-by-two opera-
tion, which would truncate the re-

sult. The add operation introduces a carry
bit when the result overflows the original
sample size.

If the averaging operation is performed
in the CPU, the higher sampling rate
increases the system�s bandwidth require-
ment. To lower this requirement, you can
use FPGAs for this operation. Figure 4
shows a system that downconverts and
averages the signal. You can also use a
DSP for this.

The FPGA interfaces to the ADC and
the PC/104 bus. In this case, you can also
derive the ADC clock and divide it by two
to get an interrupt signal (IRQ) for the CPU.
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PC/104 DSP Modules
Dalanco Spry
(716) 473-3610
Fax: (716) 271-8380
www.vivanet.com/~dalanco

Lila Fabriken AB
+46 8-287286
Fax: +46 8-288802
www.lillfab.com

Traquair Data Systems, Inc.
(607) 266-6000
Fax: (607) 266-8221
www.traquair.com

PC/104 FPGA Modules
Derivation Systems, Inc.
(760) 431-1400
Fax: (760) 431-1484
www.derivation.com

Nova Engineering, Inc.
(513) 860-3456
Fax: (513) 860-3535
www.nova-eng.com

PC/104 high-speed acquisition cards
Chase Scientific Co.
(408) 464-2584
Fax: (408) 479-8572
www.chase2000.com

PC/104 acquisition modules
Aaeon Electronics, Inc.
(732) 203-9300
Fax: (732) 203-9311
www.aaeon.com

Ajeco Oy
+358 9.7003.9200
Fax: +358 9.7003.9209
www.ajeco.fi

Analogic Corp.
(978) 977-3000
Fax: (617) 245-1274
www.analogic.com

Arcom Control Systems, Inc.
(888) 941-2224
(816) 941-7025
Fax: (816) 941-0343
www.arcomcontrols.com

Axiom Technology, Inc.
(888) GO-AXIOM
(909) 464-1881
Fax: (909) 464-1882
www.axiomtek.com

14-channel 18-bit A/D module
Computer Dynamics
(803) 627-8800
Fax: (803) 675-0106

Real Time Devices USA, Inc.
(814) 234-8087
Fax: (814) 234-5218
www.rtdusa.com

The data from the ADC is shifted into
two holding registers�one holds the cur-
rent value, and the other the previous
value. An adder then adds these two
registers and stores the result in a hold
register. The divide-by-two clock interrupts
the CPU, which reads the averaged result.

Perhaps this example isn�t so drastic,
but you can see how this technique works
well if you oversample by 8 or perhaps 16
times to increase system resolution, while
keeping the system bus bandwidth down.
One advantage to using an FPGA is that
you can use nonstandard word sizes, like
nine-bit results from adding two eight-bit
samples, and perform operations, like a
four- or eight-way adds in parallel.

Oversampling relies on the fact that the
signal contains noise. By oversampling,
you time-average the signal and the noise.
The noise then gets averaged out, since it
has a zero mean.

A sigma-delta converter typically adds
noise to the input signal to dither it, in-
creasing the resolution and decreasing the
overall converter signal-to-noise ratio [2,3].

WHAT ELSE IS OUT THERE?
DSP- and FPGA-based PC/104 modules

can be used to offload the bus by prepro-
cessing data. But, you can also find con-
ventional acquisition modules.

Acquisition boards are abundant for
PC/104 module format. Some range from
8 to 16 bits and even 18 bits at rates from
20 to over 100 kS/s. Some have up to 16
input channels. And, some high-speed
acquisition modules from Chase Scientific
go as high as 200�250 MS/s.

The wide selection in I/O devices makes
it attractive to use PC architectures for
embedded real-time applications.

Naturally, there�s a lot more to real-
time data acquisition than I can possibly
cover here. But, I�m sure the vendors can
fill you in on what might work best for your
application. RPC.EPC

for several universities and as an indepen-
dent consultant. You may reach him at
cyliax@derivation.com.
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Fred Eady

Debugging & the Net186
Sure, for basic debugging, you can fix this baby with AMD�s E86MON. But, if what
you need to do is more challenging, you might want to check out a full-fledged
debugging package like Paradigm�s. Listen up while Fred walks you through it.

I  don�t get to watch a bunch of televi-
sion, so when I do get the chance, the
show had better be really good. Just the
other night while I was mentally preparing
to write this piece, I was taking in some
�this is how the Pharaoh did it� on
The Learning Channel.

It dawned on me. We all know
what an ancient Egyptian is, but do
we really know as much as we think
we do about them?

The light got brighter. We all
know what debugging is, but do we
really know as much as we think we
do about it? For instance, there are
at least two ways to implement de-
bugging techniques on the AMD
Net186 board, shown in Photo 1.
Can you name them?

NETTING THE Net186
Now that the questions have been

presented, let�s proceed with finding
out how much debug energy we can
throw at the Net186. (You can go to

The Learning Channel later for the ancient
Egyptian answers.)

Before diving into the software, I want
to talk some about the Net186 hardware.
The AMD Net186 is really a demo board

measuring 3.5 in.2 This

little board is fascinating. There are only
ten circuit packages onboard.

The Am186ES microcontroller runs at
40 MHz and is accompanied by AMD�s
Am79C961A PCnet-ISA II Ethernet con-
troller. There�s Am29F400 flash memory
and 512 KB of SRAM, too. Throw in a

couple of MAX232 RS-232 ICs and a
PALCD22V10, mix in some E86MON
monitor software, and there it is.

Notice that I didn�t mention any
glue parts. Good reason. There aren�t
any. The PAL provides what little glue
functionality is needed because the
Ethernet controller IC doesn�t require
bunches of interface parts. A simplified
block diagram of the Net186 is shown
in Figure 1.

The Am186ES micro is much like its
Intel cousins. This part combines twelve
16-bit memory chip-select controllers,
two async serial controllers, three timers,
32 programmable I/Os, an interrupt
controller, and a watchdog timer. The
part is self-adhesive, supporting a glue-

Photo 1�Not bad for an embedded application not much
bigger than a deck of cards.
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less connection to SRAM,
flash memory, and EEPROM.
Serial ports and Ethernet

capability point the Net186 demo
board at developers thinking of inte-

grating the Am186ES and supporting
cast into what we all have come to know
as �Net appliances.

With that thought, the Net186 board
comes loaded with a Web-server applica-
tion that uses a TCP/IP stack and applica-
tion provided by US Software. I found this
to be of great interest until I discovered that
the source code for the application was
not furnished because of licensing.

Of course, that put a damper on things,
but the application was good and really
showed off the muscle the Net186 board
possesses. The Web-server application
enables the Net186 to respond to HTTP
requests over the Ethernet network and
return Web pages to a Netscape browser
running on a separate machine on the
network.

I didn�t have any trouble getting the
home site to appear. The instructions were
clear and even included some refreshing hu-
mor. I threw in some IP addresses, added
TCP/IP to my Win95 test machine, and bound
it to my Ethernet card, and it all appeared
in my Win95 HyperTerminal window.

Some time ago, I wrote some text on
emWare (�Interfaces and GUI-Building
Packages,� INK 88 and 89). emWare is a
software product that lets the programmer
simulate real hardware interfaces via an
Internet connection.

The Net186 Web-server application
has a piece that is very close to that
concept. A page is set aside that emulates
the LED array on the Net186 board.

By clicking on an LED in the Netscape
window, you can turn the physical LED on

or off on the Net186 board. The Net186
application does this a little differently
than the emWare implementation.

Instead of using objects, the Net186
app sends a request with an attached
parameter. A CGI (Common Gateway Inter-
face) is present at the Net186 and accepts
the parameter.

The state of the selected LED (which is
attached directly to the Am186ES pro-
grammable I/O pins) is determined and
toggled. A new Web page is then built
around the toggled state and returned to
the browser. The idea here is to convey the
ability to control anything over Ether-or-
Internet.

Access to the Ethernet can be accom-
plished via telnet and the serial ports or by

using its onboard Ethernet capability. The
serial process is as usual.

On the other hand, the Ethernet imple-
mentation is rather unique in that the
PCnet-ISA II Ethernet controller uses DMA
and the processor local bus to transfer
packets directly into SRAM.

The Ethernet controller can be memory
mapped or I/O mapped. The Net186 board
allows either. The four LEDs indicate the status
of the PC-ISA II Ethernet controller interface.

If you decide to I/O map the Ethernet
controller, you must sacrifice two pins on
the second async port. The Ethernet con-
troller is mapped in I/O space 0x200�
0x21F on the Net186 card. Figure 2 is a
representation of the PCnet-ISA II Ethernet
controller.

Photo 2a�Setting the baud rate is a piece of cake. b�Notice the init code is commented out. The Net186 start-up code does this initialization.

a) b)

Figure 1�Lots of stuff is left out, but the important thing to note is the lack of glue.
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There�s nothing special about its com-
mand structure. E86MON has the usual
DUMP and DISPLAY commands that all
good monitors should have.

One interesting quirk�if you want to
call it that�is that Intel hex files are used
exclusively by E86MON. The trick is to
compile your file to a .EXE and use the
EXE- to-hex utility to do the conversion.

E86MON sees the colon that begins all
Intel hex files and knows to go into down-
load mode.

CHANGING THE PARADIGM
While E86MON is fun to play with, a

serious developer doing real work would
have to get things cooking another way.
Fortunately, the Net186 folks realized this
and allowed third-party vendors to apply
their wares to the Net186 architecture.

As I was perusing through the box full
of docs that came with the Net186, I came
across a familiar name�Paradigm. Wait
a minute. I think I have this stuff in the
Circuit Cellar Florida Room library.

I read through the requirements and sure
enough. Paradigm Locate, check. Paradigm
PDREM, check. Paradigm Debug/RT-186,
check. Microsoft C/C++ V.1.5, check.
Microsoft Assembler 6.1, check. Net186
demo board, check. Let�s go!

The first order of business was to load
Bill�s C compiler and his assembler. No
problem. One CD-ROM and five diskettes
later, C and Assembler are done deals.

Next, I installed Paradigm Locate. While
the disk is spinning, you probably want to
know what Locate is and what it does for us.
As its name implies, it�s a locator.

Locate gets its input from a relocatable
.EXE file that results from the compile and
link process and assigns memory addresses
defined in the .CFG file. This action produces
what is termed an .AXE file that has embed-
ded written all over it. Figure 3 shows you
what I just said.

OK, the diskette drive light is out, so
back to the Locate install. The first thing I
was asked to input to the install procedure
was what compiler if any I was using. C/
C++ was not an option, but C++ V.8 was.

Well, as it turns out, C/C++ 1.5 is the
same thing as C++ V.8. Go figure.

The next step was to define a library
directory. This directory is used to house the
ROMable run-time libraries. The libraries in
this particular directory are scanned during
linker time to build the ROM object file.

E86MON
For those developers wishing to evalu-

ate the AM186ES and its peripherals,
E86MON was written just for you.
E86MON is a software utility included
with the Net186 system that allows the
downloading and execution of applica-
tion code.

E86MON also can assist in basic debug-
ging. Applications can be downloaded to
SRAM or flash memory. There�s even a limited
DOS emulator that can execute small .EXE
files written in your favorite language.

I could take up a lot of space describing
the detail of every E86MON command,
but that would absolutely bore most of you.
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Figure
2�This is
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gonna come

back to this part
when I have more

pages.
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environment variables correctly,
these libraries are built during Lo-
cate install time by Bill�s C/C++
compiler. If you don�t, like I didn�t,
you can make them after the fact
with a batch file included with
Locate.

I ran into one problem here.
Seems that some of the LIB files
didn�t transfer during the C/C++
installation. The Locate installer pro-
gram bombed out with an error.

So, after dropping a couple of
bombs, I simply inserted the C/
C++ CD and copied all of the LIB files
over. Problem solved, Locate installed.

PDREM, short for PDREMOTE, is next
on the install list. PDREM is Paradigm�s
target system compliment to Debug/RT-
186. PDREM serves as the eyes and ears
of Debug.

The first thing PDREM wants to know is
what processor will be used. It was really
good to be able to select the exact piece
of hardware you are actually using. As
you know, sometimes it�s a guessing game
between the software switches and what
they really mean and really do.

Because PDREM is the communications
channel, the data rate for communications
between the debugger and the target
system is set in this install. This is done by
setting a parm within the dcomms.c file in
the PDREM directory as shown in Photo 2a.
Now to install the debugger, Debug/RT-
186.

After setting the baud rate and COM
port to match the dcomms.c configura-
tion, Debug/RT-186 installed before I could
finish this paragraph. At this point, I made
sure everything was correctly inserted in
the path statement of the AUTOEXEC.BAT
file.

OK. Everything is installed. It�s time to
build and download PDREM. I will ulti-
mately end up with a pdrem.hex file that

SOURCES
Net186
AMD
(800) 222-9323
(512) 385-8542
Fax: (408) 749-4753
www.amd.com

Locate, PDREM, DEBUG/RT-186
Paradigm Systems
(607) 748-5966
Fax: (607) 748-5968
www.paradigm.com

Fred Eady has over 20 years� experience
as a systems engineer. He has worked
with computers and communication sys-
tems large and small, simple and com-
plex. His forte is embedded-systems de-
sign and communications. Fred may be
reached at fred@edtp.com.

Figure 3�As Spock
would say, �Logical.�
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Debug/RT

Target RAM

Makefile
User

is downloaded to the target flash. This will
provide a high-level source and data de-
bugging environment for the Paradigm
Debug/RT-186.

The first modification is done on the
target.h file in the PDREM directory to
define interrupt-driven I/O. This was done
by changing the COMMINIT parm to
0x14 to define the interrupt vector. The
next file modification was done on the
PDREM.cfg file.

Basically, all of the Net186 memory
mapping was defined here as you can see
in Photo 2b. After correcting a minor
mistake, (taking the underscore out of
MASM_611 in the path statement) I was
able to realize a pdrem.hex file in the
PDREM directory. This is good.

The next step in the process is to down-
load the pdrem.hex file to the Net186
flash memory. As the Web-server demo is
residing in the flash application area, it
would be a good idea to remove it before
I download the new PDREM code.

A connect with HyperTerminal and a
quick X A command does the trick. Time
to download the pdrem.hex file and fire
up some debugging screens. Not!

Well, its been a couple of hours and
more compiles, tests, and downloads then
I want to talk about. All I get is Remote Link
Timeout. OK. Been here before. Time to

call Paradigm
support. Maybe I�m
missing something.

Rick at Paradigm says,
�Hmm� Fred, never heard of
that problem. What�s your E-mail
address? I�ll send you some code.�

OK! I�ll be back in a minute after
I check my mail. Stay put.

First of all, I received a package
of code from Rick at Paradigm that
contained a different pdrem.hex
file. Seems that this pdrem file uses
the other async port and flashes the
LEDs violently to let you know some-

thing is going on inside the silicon. The
pdrem.hex I built didn�t indicate that
anyone was home.

Rick also included a load program to
put the pdrem.hex file on the Net186
board. No difference there.

NETTING IT OUT
Not only have you had kid�s day at work

with Dad, you have been introduced to a new
hardware tool and a couple of equally nifty
software debugging tools for the new toy.

Photo 3 says it all to any of you who�ve
ever written code. The Net186 package also
includes all of the necessary engineering
drawings to implement your own product
using the AMD parts as a reference. And as
you saw, technical support for the prod-
ucts is very good.

I don�t know which bird (Mom or Dad)
teaches the new ones to fly, but I�m gonna
push you out of the nest. Hopefully, my
experiences will give you a head start on
developing your AMD186 appliance.

You know, I tried my best to complicate
this. But in the end, it wasn�t complicated
and it is embedded. APC.EPC

Photo 3�Thank you, Rick! Bananas on the banana tree.
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Designing for Smart Cards

FEATURE
ARTICLE

Bobby Crouch

a
The difficulty in
smart-card design
always hinges on
security. After showing
us how to implement
transactions, Bobby
walks us through the
memory authentication
procedures that keep
the cards shipshape
and secure.

typical smart-
card session involves

some form of transac-
tion, such as a purchase,

information transfer, or perhaps authori-
zation for entry or access.

In Part 1, Carol Fancher presented
smart-card basics and the history of the
industry. This month, I consider the
software, command structure, and secu-
rity concerns of a smart-card developer.

I first discuss some of the software
coding considerations involved in smart-
card transactions. Later sections detail
some common ISO 7816 commands
used in smart-card transactions.

Most technical information from
each smart-card silicon vendor is propri-
etary, and the considerations pertinent
to secure technical information focus
on hardware security features. Although
the CPU cores are the same as their
nonsecure counterparts (e.g., ’HC05 or
80C51 microcontrollers), the other
silicon implementations that improve
security must remain secret.

The software development tools
are also secretive in nature, although
vendors do give out memory size
(RAM, ROM, and EEPROM), operat-
ing voltage, and, of course, pricing
information. As another obstacle, the
U.S. government requires export licenses
for smart-card devices using cryptog-

raphy (these devices fall under the
control of armament laws).

PHYSICAL CONSIDERATIONS
To implement a smart-card system,

first consider the size of the pertinent
changing data, which will be in the
EEPROM, and the size of the applica-
tion software or OS, which is imple-
mented in ROM. Both are commonly
touted features of smart-card vendors.

The price of the silicon is propor-
tional to the EEPROM array, but like
other devices, smart cards are evolv-
ing into larger EEPROM array sizes
and cheaper prices. Most vendors are
currently using 0.6–0.8-µm geometries
and die with areas less than 25 mm2.

The physical resources of the silicon
should be carefully considered when
developing the functions of the OS or
application software. Specifically,
think about the RAM.

How many levels deep will subrou-
tines or interrupts go into the stack? If
software doesn’t use the entire stack,
those free RAM bytes are available to
the OS.

Cryptographic algorithms use large
amounts of RAM, affecting the selec-
tion of silicon (and the algorithm), as
well as the number and size of perti-
nent RAM variables. The I/O buffer of
received and soon-to-be transmitted
data is likely to consume the most
RAM.

SOFTWARE DEVELOPMENT
Once the nonvolatile memory size

is agreed on and a vendor chosen, you
can begin software development. Over
the past 10–15 years, OSs in smart cards
have evolved from simple, single-
application cards to current GSM SIM
cards with multiple applications (see
Figure 1).

The goal of the OS is to ensure a
simple application that can be used
anywhere. The software must be es-
sentially error free because it is com-
monly implemented in ROM and,
thus, is expensive and timely to repair.

The OS needs to provide communi-
cations with card readers, execute only
predefined ISO commands (as pertinent
to the card’s application), manage data
and authorization, and ensure execution
of encryption algorithms.

Part 2: Practical Implementation
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or secret information. In an electronic
purse, for example, the balance of an
account or the transaction amount aren’t
secret, but account numbers, keys, and
passwords shouldn’t be transmitted
(in the clear) across the I/O channel.

The card’s software should allow only
necessary commands. Commands that
aren’t in the card’s instruction set should
return the appropriate ISO error code and
reset the card after several attempts by a
card reader to issue invalid commands.

Basically, that’s the default procedure
for any illegal action—just reset the card.

ISO COMMANDS
The ISO commands are explained in

ISO 7816-4, which is similar to other
data-transmission specifications like
those for OSI 802.2 and 802.3. Due to the
relatively simple environment of smart
cards, 7816 is easy to understand.

The types of commands contained
in the standard include file selection,
file reading and writing, file searching,
file operations, identification, authen-
tication, file management, program
execution, and special instructions only
implemented in an individual applica-
tion. Obviously, not all commands are
necessary for every application.

Careful thought should be given to
the transaction process, as well as a sys-
tem of checks that the process transpired
properly. Transactions concern user
identification, verification of the user’s
account or access privileges, the actual
transaction, verification that the trans-
action was successful, and verification
that a history entry was made of the
transaction.

One important point is that EEPROM
bytes are cleared to their erased state
prior to being written (this may be
improved by only writing or erasing
bits that need changing). Intruders
shouldn’t be allowed to remove power
in the middle of an EEPROM write
sequence and thus alter error counters
or other sensitive variables. So, any
EEPROM updates shouldn’t be signaled
to the reader until after they complete.

SYSTEM TYPES
There are two types of smart-card

systems—open and closed. In an open
system, the card may be used for trans-
actions between many operators. In

and execution time are less important
than in the smart-card environment.

Smart-card memory management
must combine the best concepts of
existing MMU strategies within a
stringent silicon, performance, and
power budget if such solutions are to
be practical in the high volumes and
low costs demanded by distributors.

Another way to limit access to
secure data is by introducing complex
sequences to enable access to certain
memory areas. Control register bit
manipulation and other operation-
sequence–dependent methods make a
hacker’s job much more difficult and
time consuming. They also prevent
rogue code from accessing data it
shouldn’t, even if it’s trusted code
like an operating system.

Currently, several system providers
offer smart cards with Java operating
systems onboard. The security of Java
on a smart card is enforced by virtue
of the Java Virtual Machine (JVM),
which prohibits program access to
anything the JVM hasn’t allocated.

These cards load the JVM in ROM
and permit Java applets to be loaded
and run in EEPROM. This type of data
security enables reuse of the card for
different applications.

An added benefit to Java-based smart
cards is the ability to load applications
on smart cards from various vendors.
No longer are applets tied to a specific
manufacturer or architecture.

The I/O channel is a prime target
for hackers, so be careful when select-
ing what data to transmit across the
channel. It would be simple to solder
a wire, record the transmitted data, and
examine it for clues.

Also, design the data so that an
attacker with access to the I/O channel
would not be able to obtain any valuable

SYSTEM SECURITY
Obviously, access to the smart card

should be limited only to authorized
users. But, that’s only the first level of
security for the total system.

The software should ensure that
external, logical addresses aren’t the
same as the card’s physical address. This
interpretation of logical and physical
addresses should be coded into the OS
or application software, so an intruder
can’t breach the first layer of card
security, issue an ISO read command,
and access sensitive information.

MEMORY MANAGEMENT
Another way to provide file security

is via a memory manager, which limits
access to other memory areas by a
running application or software. Vari-
ous vendors call these features by
different names (MMU, CCMS, etc.).

These features enable you to select
areas that an application may reside and
operate in, as well as exclude other
areas from accessing that particular
application. Essentially, an application
assigned a certain memory space is also
prevented from reading or modifying
another application’s space or data.

With cryptographic keys, for example,
the card issuer can protect or prohibit
access of this particular area of memory
by any software or application other
than a unique, authorized file or pro-
gram. Enhanced memory-management
features may permit dynamic allocation
or updating of memory areas and their
respective applications.

Memory management units (MMUs)
are essential for multiapplication OSs,
where dynamic loading of new tasks
in Java or other interpreted languages
is possible. In these environments,
memory and address management
ensures that applications from unrelated
tasks (e.g., loyalty and electronic purse)
don’t interfere with each other, even
if bugs exist in the task or OS code. It
also limits ways that hackers can
inject uncontrolled behavior into a
smart-card device.

Memory management developed in
sophisticated 32-bit environments, where
operating systems such as Unix and
Windows demand a way for hardware
to isolate tasks. But in these environ-
ments, issues like silicon area, power,

Figure 1 —The memory needs of multiapplication cards
are much greater than for single-application cards, and
so are the needs to isolate each application from the others.
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closed systems, the cards are used
with one operator (usually the issuer).

Examples of an open system include
phone cards and electronic purses. In
those cases, the card establishes a
unique identity and eligible services for
use with a phone system or for making
debits at various point-of-sale terminals.

The simplest case—a closed smart-
card system—involves one type of
card and one type of reader (e.g., a
card used with one mass transit car-
rier). And, there is a known identifica-
tion procedure between them, which
can be implemented in the answer-to-
reset (ATR) string.

The ATR is the first message in a
smart-card session with a reader and
is sent by the card immediately after
powerup (provided that a clock is
supplied along with the power). The
ATR message contains data that defines
relevant transmission protocols and
other information.

ISO defines the ATR to have a
maximum length of 33 bytes, although
this length is seldom reached. As you
see in Figure 2, the ATR consists of:

• an initial character, TS
• a format character, T0
• several interface characters
• a maximum of 15 historical charac-

ters
• a check character, TCK

TS defines the conventions to code
data bytes in all subsequent transmis-
sions. There are two conventions—
direct ($3B) and inverse ($3F). All
terminals can read both, and most card
manufacturers are capable of both.

The format character consists of
two parts. One part indicates the
subsequent interface characters, and
the other indicates the number of
historical bytes to follow (1–15).

Information transmitted via the
interface characters includes the trans-
mission protocol (e.g., T=0 or T=1),
the maximum current the reader should
supply to the card, and any other trans-
mission parameters pertinent to com-
municating with the card.

The historical characters may con-
tain any information, such as the
manufacturer of the card, software
version on the chip, or traceability
data. The number of historical bytes
is indicated in the least significant
half of the interface character.

The last byte of the ATR string is
the check character. This byte is de-
fined by ISO 7816-4 to be “a value
such that the exclusive ORing of all
bytes from T0 to TCK included is null.”

SMART-CARD SESSION
After the identification of the card

and reader is completed and the proper
transmission protocol established, the
session begins. The initial procedures
should include authentication of the
reader and card, the granting of access
privileges to data areas, and the actual
transaction.

Authentication is the act of validat-
ing the reader (or user) and granting
file access. File security can be as
simple as assigning file-access author-
ity at card personalization or as complex
as the more comprehensive memory-
management schemes.

File-access rights can consist of
defining the file structure and authori-
zation policies. This can be performed
explicitly at the vendor’s factory or at
the card issuer’s location.

Data access may be contingent to
the reader asking for, and passing, a
challenge. A common challenge sce-
nario is for the reader to issue the
command get challenge to the
card, and the card then sends a ran-

dom number to the reader for manipu-
lation.

Manipulation may consist of encrypt-
ing or decrypting the data with an
algorithm that uses a fixed key, set of
fixed keys, or changing keys that are
coordinated with keys on the card. Once
the manipulation is performed, the
result is sent to the card for comparison.

The card compares the reader’s result
with its own and, if they match, grants
further communication to the card.
Certain predefined files (whose access
rights were defined at personalization)
may necessitate further authentication
(e.g., user PIN or password) for access.
Once identification and authentication
are satisfied, a transaction commences.

As an example, consider a debit-
card application. The basic transaction
information—identity and authoriza-
tion—are the first steps. A transaction
amount is selected, followed by some
form of signature (e.g., signature algo-
rithm or other authentication) from
the requesting device.

Once the desired transaction type
and amount are selected, funds are
debited or credited appropriately. This
task involves writing to EEPROM to
record the transaction in a history file
and modifying the correct account.

If the requested transaction is a
purchase from a reader, the crediting
message should also include a signa-
ture. The last step is to confirm the
transaction.

 In this example, the signature
authenticates each critical step of the
transaction process. The complete
data set is digitally signed, so it can-
not be altered during transmission.

You should consider implementing
various checks for each step of the
transaction. These checks may include
control bits or bytes of EEPROM vari-
ables that verify each step of the trans-
action process (because of the critical
nature of the EEPROM write sequence
mentioned earlier).

Also, think about possible transac-
tion failures or hacking attempts. What
happens if the card is withdrawn from
the reader during the transaction? What
happens if the reader fails to supply
the proper power voltage to the card?

What happens if the reader’s en-
cryption of the random number is

Initial
Character

TS

Format Character

T0

Subsequent
interface

characters

The number
of historical

bytes to follow

Interface
Characters

(e.g., transmission
protocol, maximum

current, transmission
parameters)

Maximum of 15
historical characters

(e.g., card
manufacture,

software version,
traceability data)

Check
character

TCK

Figure 2 —The ATR string, which has a maximum of 33 bytes, is broken down into five main sections.
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Figure 3 —These are the
current and projected
market needs for smart-
card applications. Clearly,
purse applications are the
dominant need.

incorrect? How many times should the
card accept authorization attempts, and
what action should be taken when the
allowed number of attempts is violated?

How does the card or reader know
if a transaction completes properly?
Also, what action should be taken,
and by what part of the system, if
there is a transaction failure?

A hacker may try to cheat the system
by withdrawing the smart card after a
transaction but before it could be
recorded onto the card. Put simply,
authorizing any transaction should be
the last procedure of a smart-card
session. Recording procedures onto the
smart card should be completed prior to
external verification of a transaction.

One possible method of monitoring
a transaction’s progress is to define a
transaction status byte in EEPROM.
Different values indicate transaction
in progress, failed transaction, success-
ful transaction, last successful trans-
action, last unsuccessful transaction,
and place of failure of the last transac-
tion. This information may require
more than one EEPROM byte.

Monitoring this transaction control
byte should be the first and last acts
of a smart-card session. Certain states
then reflect successful completion of
various stages of a transaction.

Most silicon vendors implement a
manual or automatic programming of
EEPROM. Possible hacker attacks
include reducing the power level (Vdd)
to the card during critical (EEPROM
programming) stages of a transaction.

The manual or automatic program-
ming of EEPROM is acknowledged by
some event that the smart card can
check. It should be included in every
EEPROM programming procedure.

Implementing this check in the
EEPROM procedure helps defeats low-
voltage attacks. The transaction control
byte is the smart card’s check on every
transaction and should be included in
the software.

Possible reactions to a fraudulent
reader—one that fails the authentication
procedure—should include a reset of
the card. There should be a limit to the
number of times a smart card fails
authentication. This would likely be a
RAM variable since no transaction
takes place prior to authentication.

Of course, there should be allowances
for one or two failed attempts, possibly
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due to reader software failure. How-
ever, at some point, the smart card
should shut down and refuse further
communication.

Some smart-card features may not
require authentication—for example,
the wallet account of an electronic-
purse application. Small transactions
are normally paid for with pocket
change or small-denomination currency
can be completed much faster with a
smart card.

The wallet account of a smart card
can be limited to a small, fixed amount,
which is similar to the amount of
cash you’re comfortable carrying with
you. The risk to this account, just like
the risk to your wallet, is that if you
lose it, you’ll probably lose all your
cash.

However, you can immediately
cancel your credit cards and prevent
unauthorized use. Similarly, a smart-
card wallet could contain an account
intended for small purchases or trans-
actions. This account should allow a
check of recent transaction (history),
as well as the current balance.

SOURCE

ISO 7816 and other standards
International Standards Organization
www.iso.ch

Bobby Crouch is a smart-card appli-
cations engineer at Motorola. You
may reach Bobby at r23001@email.
sps.mot.com.

More critical and sensitive areas of
the smart card (e.g., credit/debit accounts
or sensitive personal information)
should only allow access after authen-
tication of one or more levels. Such
purse accounts are commonly checked
by small, key-ring-size readers.

The primary elements of a smart-
card transaction are card power-on reset,
card/file authentication, transaction
type selected and approved, transaction
history parameters initialized and
checked (for prior incomplete transac-
tions), transaction effected on the card,
transaction history parameters modi-
fied (to signify a successful transac-
tion), transaction approval sent to the
reader, and transaction terminated.

All of these actions may be formu-
lated in pseudocode and then modified
to the actual instruction set of the
chosen smart-card microcontroller.

GETTING SMARTER
Developing a smart-card system

involves all of the points I’ve dis-
cussed—and many more. I didn’t even
talk about the infrastructure of the

reader network, reader software, the
card manufacturer, graphics, or the
silicon module.

But, you now have some more
ideas about designing solutions into
smart-card programs at an early stage
of development, when the cost is low.

Smart cards offer incredible security
and can greatly minimize fraud and
theft, so they’re a valuable and cost-
effective solution to many applications.

Figure 3 illustrates the shift in use
of smart cards that is expected over
the next few years. Many of today’s
single-use applications are likely to be
cost effectively incorporated onto
future multiapplication smart cards.
I
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Vector-to-Step Conversions

FEATURE
ARTICLE

Don Lancaster

o
Whether in video,
graphics, or
automation, vector-
to-step conversion is
a critical computing
need. Don takes a
look at some of the
factors that enable
you to keep those
steps as fast and
smooth as possible.

ne of the most
fundamental needs

for video displays,
robotics, or laser printers

is vector-to-step conversion. That’s
where a random line or motion direc-
tion gets broken down into the precise
number of needed pixels or incremen-
tal robotic steps.

As Figure 1 illustrates, a vector can
input at any arbitrary angle. The needed
output steps get locked into specific x
and y positions.

There are several methods for han-
dling vector-to-step conversions. Exten-
sions of these algorithms enable you
to do higher dimensions, curved paths,
and circles, and they even provide for
image or object rotations.

The method you pick depends on your
choice of language, programming skills,
available system resources, and the
speed of operation. In 2D or 3D ani-
mated graphics, speed might be of
utmost importance, but it wouldn’t
be such a big deal on a wood router.

A high-level language offers ease of
programming and end-user friendliness.
A lower level one usually increases speed
and reduces costs but it severely limits
your use of fancy math or trig functions.

In a low-end PIC robotic application,
minimizing memory space or costs
might dominate your decision making.

BASIC CONVERSION
It’s often simplest to break the 2D

vector-to-step conversion process down
into the eight cases of Figure 1. Solve
one of them, and the rest fall in place.

Consider octant 0, which goes from 0
to 45°, and assume a process that accepts
x and y values as inputs and provides
discrete pixels or locked mechanical
steps as outputs.

In octant 0, the value for x is always
positive. Your value for y should also
always be positive. And, x always
ends up greater than or equal to y.

In this octant, you always step by x.
You may step by y if you get less error.

One solution is to always take the
next x step. Then, measure your errors
of stepping by y and of not stepping by
y, and then take the result that gives you
the error with the lowest absolute value.

Alternatively, you can step by one half
of y and see if you end up above or below
the required vector. If you’re low, step
both x and y. If high, step only by x.

You end this process when you use
up all the needed x steps. The other
seven octants are similar, except that
y might dominate x or negative values
may be involved.

Any vector-to-step routine might
create positioning and closure errors
caused by those discrete steps. Your high-
level software should track any fractional
pixels, as well as accommodating
fancier options, such as grid locking
or adjusting optical widths.

BRESENHAM’S ALGORITHM
I was happy with my vector-to-step

routines until I found I was clumsily
and inefficiently going over well-plowed
ground. An often optimum solution is
known as Bresenham’s Algorithm [1].

By creating a double-sized error value,
only simple adds and shifts are needed
for calculations. The double-sized error
function lets you test for a simple
sign rather than for a half-unit change.

In octant 0, first calculate the error
value of 2y – 2x. At each step, test and
modify your error value. Then, decide
where to go:

IF e < 0

  THEN e = e + 2 y

ELSE e = e + 2 y � 2 x

  STEP x

An Introductory Tutorial
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Vector
input

Raster ( color) or
step ( black )

outputs

Closure
error

x

y

vspat exch get exch get

delivers the ASCII string pattern to
the stack top.

As you see, using a PostScript table
lookup is simple and fast. The output
is a string optimized for robotic flutter-
wumper uses.

The size of the lookup tables depends
on whether you use pattern bits or ASCII

ε = –12 + 8 = –4 ∆y = 0

ε = –4 + 8 = 4 ∆y = 1

ε = 4 – 12 = –8 ∆y = 0

ε = –8 + 8 = 0 ∆y = 1

ε = 0 – 12 = –12 ∆y = 0

ε = –12 + 8 = –4 ∆y = 0

ε = –4 + 8 = 4 ∆y = 1

ε = 4 – 12 = –8 ∆y = 0

ε = –8 + 8 = 0 ∆y = 1

ε = 0 – 12 = –12 ∆y = 0

The final x step pattern
is 11111111111. The y step
pattern is 0101001010,
which exactly agrees with
my clumsier method.

TABLE LOOKUP
Can Bresenham be beaten

at his own game? His solu-
tions are fast and extremely
compact. Many programmers
have spent a lot of time
further optimizing them.

In theory, a simple table
lookup of the pattern you
need for a given x and y
might end up faster and
simpler. On the other hand,
variable length words and
additional storage space
could be required, as might
the overhead of step extrac-
tion. The table length de-
pends on the maximum
number of pixels or steps to be handled.

Figure 2 is a 2D PostScript array that
has all of the needed vector-to-step
patterns for x equals 0 up through x
equals 16. Longer vectors are done by
repeated looping until the input vec-
tor is completely used up.

For quadrant 0, enter with x on
stack top and y immediately below.
The command:

IF e >= 0

  THEN STEP y

This process continues for your needed
number of x steps. As before, the other
octants are handled alike, except that
the signs and roles of x and y change.

You can find a lot of language-specific
examples of this algorithm on the Web,
especially for Java, C++, and PICs. One
version requires seven machine cycles
per x pixel plus 31 overhead cycles.
Thus, a 16-step Bresenham conversion
might take 144 machine cycles.

You can also find extensions to
Bresenham’s Algorithm. One lets you
rotate an image without using trig
functions by taking each scan line and
remapping its position. Another varia-
tion draws circles by use of an ancient
digital differential analyzer scheme.

AN EXAMPLE
Let’s look at a somewhat detailed

Bresenham example. Say you decide to
travel east by 10.134 pixels and north
by 3.65 pixels.

Because you can only work in whole
pixels, it’s a good idea to shoot 10 over
and 4 up in quadrant 0. Save the 0.134
and –0.350 as spare change somewhere
to prevent error pileups.

First, calculate and save the initial
error value of –12 (i.e., 2 × 4 – 2 × 10).
Also calculate and save 2 × y = 8. Note
that you can multiply by two simply by
doing a left shift. Therefore, you need
to start with an error value of –12.

If your error value is negative, add 8.
If your error value is 0 or positive,
subtract 12. When your new error value
is positive or 0, step both x and y. If
the new error value is negative, step
only by x. Continue for the needed
number of x steps. It looks something
like:

Figure 1 —Here are some vector-to-step fundamentals along with a
brute-force algorithm.

Correct the input vector so it starts at your actual initial
position, which prevents closure errors from piling up.
Resolve your input vector into x and y components. For a
vector of length Z and an angle θ:

x = Z cos (θ)
y = Z sin (θ)

Calculate the slope y / x. Round x and y off to the nearest
integer values to get  the actual steps needed. Compare
the signs of x and y, and the absolute sizes of x and y to
find an octant:

x+  y+ x>y  octant 0 (0–45°)
x+ y+  x<y octant 1 (45–90°)
x– y+  x<y octant 2 (90–135°)
x– y+ x>y octant 3 (135–180°)
x– y– x>y octant 4 (180–215°)
x– y–  x<y octant 5 (215–270°)
x+ y–  x<y octant 6 (270–315°)
x+ y–  x>y octant 7 (315–360°)

In octant 0, always step by +x and sometimes step by +y.
In octant 1, always step by +y and sometimes step by +x.
In octant 2, always step by +y and sometimes step by –x.
In octant 3, always step by –x and sometimes step by +y.
In octant 4, always step by –x and sometimes step by –y.
In octant 5, always step by –y and sometimes step by –x.
In octant 6, always step by –y and sometimes step by +x.
In octant 7, always step by +x and sometimes step by –y.

Figure 2 —This 2D PostScript vector-to-step table lookup is of order 16.

/vspat [ [(0)]
[(0)(1)]
[(00)(10)(11)]
[(000)(010)(101)(111)]
[(0000)(0100)(1010)(1101)(1111)]
[(00000)(00100)(01010)(10101)(11101)(11111)]
[(000000)(001000)(010010)(101010)(101101)(111011)(111111)]
[(0000000)(0001000)(0100010)(0101010)(1010101)(1101101)(1111011)(1111111)]
[(00000000)(00010000)(01000100)(01010010)(10101010)(10110101)(11011101)(11110111)(11111111)]
[(000000000)(000010000)(001000100)(010010010)(010101010)(101010110)(101101101)(110111101)(111110111)(111111111)]
[(0000000000)(0000100000)(0010000100)(0100100010)(0101001010)(1010101010)(1010110101)(1011101101)(1110111101)(1111110111)(1111111111)]
[(00000000000)(00000100000)(00100000100)(01000100010)(01001010010)(01010101010)(10101010110)(10110110101)(11011011101)(11101111011)(11111101111)(11111111111)]
[(000000000000)(000001000000)(001000001000)(010001000100)(010010010010)(010101001010)(101010101010)(101011010101)(101101101101)(110111011101)(111011111011)(111111101111)(111111111111)]
[(0000000000000)(0000001000000)(0001000001000)(0010001000100)(0100100010010)(0101001001010)(1001010101010)(1010101010110)(1011010110101)(1011101101101)(1101110111101)(1111011111011)(1111111101111)
  (1111111111111)]
[(00000000000000)(00000010000000)(00010000001000)(00100010000100)(01000100100010)(01001010010010)(01010100101010)(10101010101010)(10101011010101)(10110110110101)(11011011101101)(11011110111101)
  (11110111111011)(11111111011111)(11111111111111)]
[(000000000000000)(000000010000000)(000100000001000)(001000010000100)(010001000100010)(010010010010010)(010100101001010)(100101010101010)(101010101010110)(101011010110101)(101101101101101)(110110111011101)
  (111011110111101)(111101111111011)(111111111011111)(111111111111111)]
[(0000000000000000)(0000000100000000)(0001000000010000)(0010000100000100)(0100010001000100)(0100100100010010)(0101001001010010)(0101010100101010)(1010101010101010)(1010101101010110)(1011010110110101)
  (1011101101101101)(1101110111011101)(1110111101111011)(1111011111110111)(1111111111011111)(1111111111111111)]
] def
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SOFTWARE
A complete set of PostScript proce-
dures for vector-to-step conversions
are at www.tinaja.com/psutils/
flutools.ps.

values, as well as on overhead and how
efficiently you pack odd pattern lengths.
However, tables grow at an n3 rate.

The minimum bit table size for a
16-pixel lookup is 1632 bits or 204 words
of eight bits each. This table fits into
the smallest of PIC, but it might be a
real challenge to access.

For 32 pixels, allow 11,968 bits or
1496 bytes. For 64 pixels, you need
87,360 bits or 11,977 bytes. Beyond this
point, look-up sizes get out of hand.

Breaking a longer vector into short
ones may introduce minor placement
errors. While nearly all of these end up
negligible, it’s best to avoid the worst
case of a vector one more than a mul-
tiple of the table length (17, 33, 49, etc.).

Instead, try a different split. For
instance, an 8 then a 9 lookup may
give you modestly more positioning
accuracy than a 16 then a 1 lookup.

ADDING DIMENSIONS
Vector-to-step conversions are easily

extended into the three axes needed for
3D animation rendering. They can even
work up to the six or more axes used
in fancy robotic moves.

In 3D, there are eight possible x
dominant sectors of x + y + z +, x + y
+ z –, and so on through x – y – z –.
Similarly, there are eight possible y-
dominant sectors and eight possible z
dominants, giving a total of 24 sectors.
Each of these 24 sectors can be dealt with
in the same way as the eight 2D octants.

For six-axis robotic motions, a two-
step (coarse/fine) approach might useful.
Otherwise, use all 384 of the 6D sectors.

Desired vector (le
ngth = 1 )

θ u 45°
0.707 v 0.293 v

0.414 sin θ
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v
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0
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n
θ
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10 %
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b)

a)
Figure 3 —Cardinal moves can
sometimes simplify low-end
robotics systems. Here is the
math behind the minor speed
penalties involved. a—Assume a
quadrant zero vector of length 1
and angle θ. Approximate this
with an east move of u and a
northeast move of v. The vertical
rise will be both 0.707 v and sinθ.
Thus, v = 1.414 sinθ. Extend the
baseline by (1 – 0.707) v = 0.293
v = 0.4140 sinθ. The baseline will
now be u + v long and equal
cosθ + 0.4140 sinθ. The excess
length (and time penalty) is cosθ
+ 0.4140 sinθ – 1. b—Extending
and plotting produces this error
curve.

Don Lancaster is the author of 35 books
and countless articles. Don maintains
a U.S. technical help line at (520)
428-4073 and also offers books, reprints,
and consulting services. You may reach
him at don@tinaja.com.

CARDINAL MOVES?
Let’s wrap up with some fun. When

you put pixels on a screen or machine
a path, you want a smooth path.

On a simple move, you may only
be able to travel in the eight cardinal
directions. Such a restriction may
simplify your code and shorten your
file lengths—at least this is the case in
several low-end flutterwumper sys-
tems I’ve worked with recently.

How much time penalty is there in
positioning only in directions of E, NE,
N, NW, W, SW, S, and SE? As Figure 3
reveals, the penalty is surprisingly small.

The worst-case scenario gives a tad
over 8% at 22.5°. The average for all
random positions is around 5%, and
there is almost no penalty for the
usual axis or near-axis moves.

Good luck in your future steps! I
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MICRO
SERIES

Stuart Ball

d

Build A Serial
Port PROM
Programmer

Stuart’s low-
cost PROM
programmer

takes Intel-format and
raw ASCII hex data,
holds it in an internal
64-KB buffer, and pro-
grams it into an EPROM
or PIC processor via a
serial port. He starts
off by focusing on
hardware issues.
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Silicon Update

DEPARTMENTS

2

o you need to
program EPROMs

or PIC microcontrol-
lers, but you don’t want

to pay $500 for a commercial program-
mer? Read on.

When I started writing Debugging
Embedded Systems, I needed a simple
embedded system to illustrate certain
concepts. The project had to be practical
as well, so I built a PROM programmer.

My programmer had to:

• use an embedded processor. After
all, the book is about embedded
systems.

• connect to a PC serial port
• support intelligent programming

algorithms
• use a simple command line interface,

so it can be used with a standard
communication program (e.g., Pro-
Comm), without requiring a compli-
cated control program for the PC

The resulting programmer, shown
in Photo 1, can program EPROMs
from the 2764 through the 27256. It
also programs 18- and 28-pin PIC micro-
controllers, including the ’16C61,
’16C620/21/22, ’16C62/63, ’16C71/
710/711/72/73, and the EEPROM-
based ’16C84. Other devices can be
accommodated with appropriate code
changes and new adapter modules.

The programmer accepts Intel-
format hex data and raw ASCII hex
files. Motorola format is not supported

1

Hardware Construction
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but could be added with code changes.
The programmer has an internal 64-KB
buffer to hold the programming data.

A commercial PROM programmer
typically uses a single socket to program
many devices. This task is accomplished
by using pin drivers, which permit
any pin to be driven to any voltage the
programmer is capable of.

Pin drivers make a programmer
flexible, but they add considerable cost.
In the serial programmer, the device
to be programmed is installed on a
programming module that plugs into
a 50-pin connector on the programmer
PC board.

There are currently two modules—
one for EPROMs and one for PIC de-
vices. These modules connect the
various programming signals to the
proper pins on the device socket. Using
a different module for each family of
parts significantly reduces the cost
and complexity of the programmer.

COMMAND LINE INTERFACE
The programmer uses a simple

command structure, designed so any
standard PC communication program
can control it. When the pro-
grammer is turned on, the
command list is sent to the
PC. Table 1 lists the commands
and their descriptions.

The #T command is followed
by a two-digit hex code to
select the device type.

The #R command sets an
internal 16-bit variable to the
specified value. This variable
is added to the ROM address
for all operations. The addition
is limited to 16 bits. If the

result of the addition is
greater than 16 bits
(64K), it is truncated.

#M works the same
as #R, except that the offset is added
to the address for placing downloaded
data into the internal buffer memory.

#S sets the size of operations on a
device. If no #S is specified, opera-
tions take the size of the device. A
blank check on a 2764, for example,
will check the entire 8-KB device.

#R, #M, and #S permit data to be
manipulated for special situations. For
example, the upper 8 KB of data in a
27256 could be programmed by:

#S 1FFF
#R 6000
#P

The first line sets the operation size
to 2000h (8 KB). The second sets the
device offset to 6000h, and the last
line programs the device.

To aid in developing new program-
ming algorithms, these debug com-
mands are supported:

#XM xxxx—displays 64 bytes of internal
memory starting at address xxxx

#XB xxxx—displays 64 bytes of buffer
memory starting at address xxxx

#XF—clears an internal rotating trace
buffer to all zeros

#XV—sets the VPP and VCC voltages to
programming levels

#XR—turns off VPP and VCC

The #Q command enables you to stop
a download or a device operation (pro-
gram, blank check, or verify).

Commands that require data (#F,
#T, #S, etc.) fill with leading zeros. So,
if you want to enter an address of
005A for the fill command, you can
just enter 5A and the programmer fills
in the upper eight bits with zeros.

PROGRAMMER HARDWARE
Figures 1–4 show the schematic of

the programmer main board. The
programmer is based on an 80C188
microprocessor, which is essentially
an enhanced 8086 microprocessor core
with a number of integrated peripher-
als, including three timers, a DMA
controller, and a programmable chip-
select decoder. The processor can
access a megabyte of memory.

The 80C188 has a 16-bit CPU core,
but the external bus is 8 bits. A 16-bit
version—the 80C186—is also available.

For simplicity, I chose the 80C188
over the 80C186. The 8-bit data bus
means that only one EPROM and
SRAM are needed. The penalty for this
choice is throughput, since word opera-
tions require two external bus cycles.

The 80C188, marketed for embedded
applications, is manufactured by Intel
and second-sourced by AMD. The
programmer uses a single 27C256
EPROM for program memory, and a
128K × 8 SRAM. Half of the RAM
(64 KB) is allocated for variables needed
by the program, and half is used for

the buffer to hold data to be
programmed.

The 80C188 has a multi-
plexed address/data bus, which
is a scheme used by a number
of Intel processors. A pair of
74HC373 latches captures the
lower eight bits and the upper
four bits of the 20-bit processor
address, which is presented
during the first part of each
machine cycle.

The EPROM and RAM are
selected using chip selects

Table 1—The programmer commands, listed here with their descriptions,
are entered from your PC (using a communication program) to control
programmer operation.

Photo 1 —Here’s the completed
programmer with the EPROM
module installed and the PIC
module beside it. There are no
buttons or knobs. The entire thing
is controlled from the serial port of
your PC.

#P Program the device with data in buffer
#B Blank check the device
#V Verify the device against data in buffer
#DI Download Intel-format hex file to buffer
#DH Download raw (ASCII) hex file to buffer
#R xxxx ROM offset = xxxx
#M xxxx Memory (buffer) offset = xxxx
#S xxxx Operation size = xxxx
#T xx Select device type xx
#F aaaa bbbb cc Fill buffer from aaaa to bbbb with data cc
#L List the available device types
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from the internal 801C188 chip-select
decoder. UCS (Upper Chip Select)
selects the EPROM. LCS (Lower Chip
Select) selects the RAM.

Although the 27256 EPROM is
32K × 8, the firmware programs the
chip select for a 64-KB space. Similarly,
the chip select for the 128K × 8 SRAM
is programmed for 256 KB.

The 80188 also has chip selects for
peripheral devices, and these select
the UART and 82C55 PPI. A 74HC138
completes the I/O selection logic by
decoding one of the peripheral chip
selects with address lines A3–A5 to
produce write strobes for the DAC
and the control register. Table 2 shows
the memory and I/O maps for the
circuit.

The processor uses a 14.746-MHz
crystal, which is internally divided by
two to produce a 7.37-MHz clock.
This signal, available at the CLKOUT
pin on the 80C188, also connects to
the clock input on the UART.

I chose 7.37 MHz because it is an
integer multiple of standard data rates.
Higher frequencies provide more
throughput, but the maximum 16550
input clock frequency is 8 MHz. I’d
need an additional divider if I used a
faster processor clock.

The microprocessor is reset by an
LM393 comparator. The original 80188
had significant hysteresis on the reset
input, so I could use a simple RC
circuit. However, the 80C188 has less
hysteresis, so an external circuit gives
a more reliable reset.

Communication with the host PC
is handled with a 16550 UART and a
MAX232 TTL–to–RS-232 converter IC.
An INS8250 UART also works because
the firmware does not use the unique
features of the 16550. Some versions
of the 80C188 have an internal UART,
but I wanted this device to be external.

An 82C55 PPI chip provides 16 bits
of address and 8 bits of data to the
device being programmed. Four bits of
status are returned from the program-
ming module via a 74LS244 and can
be read by the CPU.

An eight-bit 74HC374 register
controls a bicolor (red/green) LED to
indicate status. The two LED leads
each connect to one bit of the register,
so the software can turn the LED off
or display either red or green. The
remaining six bits in that register
provide additional control functions
to the device being programmed.

PROMs require a high voltage (+12 V)
for programming, and the intelligent

Figure 1 —This part of
the programmer main
board schematic
includes the CPU,
EPROM, and address
decoding logic.
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programming algorithms require a
variable VCC supply as well. To accom-
modate this, the programmer uses a
Maxim MAX505 quad 8-bit DAC.

One DAC output is used to drive a
VPP (programming voltage) supply from
zero to about 22 V. A second DAC
output provides the PROM VCC supply,
and can be adjusted over the same range.

The DAC outputs for VCC and VPP

swing from zero to about 5 V, so they
are amplified and buffered to provide
the correct voltages at the programming
connector. The remaining two DAC
outputs connect to the programming
connector for future use.

Each DAC has a holding register,
so data for all four DACs can be loaded,
one at a time. Then, the data is trans-
ferred to all the DACs with a single
write command.

The DACs are 8 bits, and the DAC
output voltage is amplified by 4.48.
Consequently, the output voltage to
the VCC or VPP pins on the 50-pin con-
nector is given by:

Vout = x
255 × 5 × 4.48

where x is the DAC control value.
A DAC value of 44h (68 decimal)

produces a voltage of 6 V. The voltages
can be set in increments of ~90 mV.

The programming connector is a
50-pin header, which provides all of

the programming signals, as well as
+5 and +24 V from the programmer
power supply. Each type of device to
be programmed uses a programming
module, which contains the device
socket and plugs into the 50-pin header.

The programming module for the
PIC devices has an additional header,
consisting of two rows of 12 pins each.
A socket plugs into this header to
select either 18- or 28-pin PIC devices.
This arrangement is necessary because
the programming signals, including
power and ground, are on different
pins of the 18- and 28-pin parts.

INTERRUPTS
The programmer uses one of the

80C188 external interrupts, INT0.
This interrupt connects to the inter-
rupt output of the 16550 UART and
notifies the processor when the UART
is ready to send data as well as when
data is received.

Two other 80C188 interrupts, INT2
and INT3, connect to shunt jumpers
and determine the serial-interface data
rate. INT2 and INT3 do not generate
interrupts but are treated as input bits.

PROGRAMMING MODULES
The programming module for the

2764–27256 EPROMs consists of a
28-pin ZIF socket connected to the
address and data lines from the pro-

Photo 2 —The clear plastic strip to the left on the programmer’s main circuit board is a hold down to prevent exces-
sive flexing of the board when programming modules are installed.
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gramming connector. Two LEDs indi-
cate when VPP and VCC are active.

The PIC programming module also
uses a 28-pin ZIF socket. The PIC is
programmed by serially loading address
and data, so not all the programmer’s
address and data lines are used. Instead,
one address line provides a clock for
serial data, and one data line provides
bidirectional data to and from the PIC.

Descriptions of the programming
algorithms and schematics for the pro-
gramming modules are coming in Part 2.

COMMUNICATION PROGRAM
The programmer requires a commu-

nication program like ProComm. The
HyperTerminal program that comes
with the communications package of
Windows 95 works just fine.

Most communication programs
start up in a mode where received
data is displayed on the screen. If
yours doesn’t, put it in that mode.

The communication program should
be set up as follows:

• local echo on
• eight data bits, no parity
• no handshake
• same data rate as programmer (9600

or 19,200 bps)

If you’re using HyperTerminal, set
it for a direct connect to the serial
port the programmer is connected to
(as opposed to modem communication).

USING THE PROGRAMMER
Let’s say you want to program a

2764 EPROM. Start the communication
program and turn on the programmer.
The main menu should be displayed.

First, select the device type. Since
you’re doing a 2764, select type 01:

#T 1

If you forget the device codes, #L lists
them. (Of course, I don’t have them
all memorized myself. Why do you
think I included this command?).

Next, fill the memory from 0000 to
FFFF with FF so unused locations will
program faster:

#F 0 FFFF FF

Then download the file. Let’s say it’s
an Intel-format hex file:

#DH

The LED on the programmer goes
from green to red, which indicates

Figure 2 —This page includes the RAM
and the 8255 that provides control
signals to the programming connector.
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CONSTRUCTION
The prototype was built on perfboard

(see Photo 2), but the PC board is
recommended. Note the orientation
of polarized components (diode, elec-
trolytic capacitors) and ICs.

The 80C188 is installed in a PLCC
socket. Be sure to install the socket
the right way on the board, and the IC
the right way in the socket. Although
the 80C188 is keyed with enough force
it’s possible to deform the socket and
install it wrong. If you do that, you’ll
let all the magic smoke out of the
chip when you turn it on.

The bicolor LED and the 50-pin
device connector all install on the back
(solder) side of the board. The device
connector field is laid out for a Hirose
50-pin DIN connector, but you can use
any 50-pin connector with pins on
0.1″ centers.

The holes for the PLCC socket are
smaller than for a standard DIP socket,
so some PLCC sockets won’t fit. Use
one with small pins, or you can install
a machined-pin 68-pin PGA socket
(which has narrow pins) onto the
board and plug your PLCC socket into
that. The PLCC socket specified in
the parts list (on the Circuit Cellar Web
site) has pins that fit onto the board.

If you use the DIN connector, attach
it to the board with nuts and bolts
before soldering it in. If you solder it
first and the connector is not com-
pletely seated, you may break the
connector when you tighten it down.

The DE-9 connector that connects
the programmer to your PC is mounted
on a ribbon cable and connected to the
board with a 10-pin connector. Mount-
ing the DE-9 connector directly to the
board, although simpler, complicates
mounting the board. Using the ribbon-
cable method enables you to mount
the DE-9 connector in a convenient
place on your chassis.

POWER SUPPLY
The programmer needs 5 V at about

1 A and 24 V at about 200 mA. The
best solution is to buy a power supply
with the correct voltages. Marlin P.
Jones carries suitable surplus supplies.

As an alternative to an off-the-shelf
supply, get a single 24-V supply and
use a 1-A DC-DC converter to produce
5 V. Another way is to do the reverse:
get a 5-V supply at about 2 A and use
a DC-DC converter to produce 24 V.

The last alternative is to buy trans-
formers and build a supply. Whichever

method you use, be sure to
include appropriate fusing
on the AC side of the supply.

ADAPTER MODULES
On both adapters, the

50-pin header mounts on
the solder side. All other
components go on the top
side. I recommend adding
standoffs to the corner holes
to support the module when
it is plugged into the pro-
grammer.

The PIC module has a
circuit board that holds the
12-pin socket to select 18-

Figure 4 —This page includes the
programming voltage DAC and
amplification circuitry.

that it’s waiting for data. Use the
communication program to send the
hex file to the programmer.

Tell the communication program
that you’re sending an ASCII file.
Don’t try to use a modem protocol
like XModem. If you are using Hyper-
Terminal, select Send Text File.

As the programmer receives each
byte, the LED toggles between red and
green. If you are downloading a raw hex
file (instead of Intel format), you need
to use #Q after the download to tell the
programmer that there is no more data.

Install the EPROM to the ZIF socket,
and then you can program the device:

#P

The programmer then blank checks,
programs, and verifies the part.

While programming, the LED toggles
between red and green, giv-
ing a (sort of) amber result.
If a programming error occurs,
a message is displayed.

The programmer doesn’t
have any editing capabilities,
so if you make a mistake
when entering a command,
just hit Enter and start over.

If there is a certain pro-
gram sequence that you use
regularly (e.g., while develop-
ing code for a new project),
you can set up a script file
that contains the commands
and send it from the commu-
nication program.

Figure 3 —This part of
the programmer main
board schematic
includes the serial
interface and reset logic.
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SOURCES

Digi-Key Corp.
(800) 344-4539
(218) 681-6674
Fax: (218) 681-3380

80C188
Arrow Semiconductor
(800) 777-2776
(516) 391-1676
www.arrowsemi.com

Surplus supplies
Marlin P. Jones and Assoc.
(800) 652-6733
(561) 848-8236

SOFTWARE

Source code for this article is
available via the Circuit Cellar
Web site.

Stuart Ball works at Organon Teknika,
a manufacturer of medical instruments.
He has been a design engineer for 18
years, working on projects as diverse

as GPS and single-chip microcontroller
designs. He has written two books on
embedded-system design, both avail-
able from Butterworth-Heinemann
(www.bh.com). You may reach Stuart
at sball85964@aol.com.

Memory Address Chip Select Function
00000–1FFFF *LCS 128-KB SRAM
F8000–FFFF *UCS 32-KB EPROM

I/O Address Chip Select Function
000–007 *PCS0 16550 UART
080–083 *PCS1 82C55 PPI
100–103 *PCS2 Write DAC data registers

108 *PCS2 Latch DAC data into DAC
110 *PCS2 Write control/LED register
118 *PCS2 Spare I/O strobe to

  device connector
180 *PCS3 Read 4 status bits of

  device connector

or 28-pin devices. The socket mounts
on the solder side of the small board.

After building the PIC module, clip
pin 7 on both sides of the 12 × 2
header. Then, insert a wire or other
plug into pin 7 of the 12-pin socket to
provide a keying mechanism to pre-
vent the header from being installed
upside down.

Before applying power, check for
solder bridges on the bottom of the
board, make sure the ICs are installed
the right way, and verify the wiring to
the power supply to make sure the
correct voltages go to the right places.

WRAP UP
That about does it for the hardware

construction. By next issue, you’re
going to have the hardware together
and mounted in a case, right?

Next month, I’ll check out the hard-
ware, and take a closer look at the
programming modules, the program-
ming algorithms, and the programmer
software. I

Table 2—The signals that
select specific devices are
generated by the internal
80188 chip select decoder.
The remaining memory
decodes (MCS0–MCS3) and
I/O decodes (PCS4–PCS6) are
unused.
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FROM THE
BENCH

Jeff Bachiochi

a

Transformerless
Power Conversion

Power to
the
project!
The
question

is: How to get it
there? Jeff’s tired of
wall warts, so instead
he checks into AC
and shows you how
to eliminate the
transformer via a
Harris voltage regulator.

lthough I admire
Thomas Edison for

the many inventions
his idea factory produced

in the New Jersey workshops of Menlo
Park and West Orange, he wasn’t
always right.

Thomas’s drive to market DC power
distribution just wasn’t practical. He
wouldn’t listen to Nikola Tesla’s
arguments for AC distribution, and he
spent big bucks demonstrating how
unsafe alternating current was.

Today, we’re willing to live with
that risk for the benefit of plentiful
and inexpensive power. We are con-
stantly reminded to either stay clear
of power lines or run the chance of
flatlining.

There are, in fact, appliances we
use everyday that perform just fine
without converting AC, thank you
very much. But, the majority of these
appliances like to eat DC for break-
fast. Is Thomas having the last laugh?

If it weren’t for our dismal advances
in the battery field, I’d have to chuckle
a bit myself. Storage devices, like
“green” energy sources, aren’t high on
the R&D agenda. So, what’s left?

WALL WARTS
Every time we build a little project,

we’re forced into tethering it with
some AC/DC power supply. You know
the wall warts I’m talking about.
They come with everything from the
cordless phone and answering machine
to portable power-tool rechargers and
external modems.

That ugly black blob hangs on
many of our AC wall outlets and
power strips converting the (some-
times) useless AC into low-voltage
DC power. I think these things are on
the same evolution branch as stock-
ings. They can disappear with the
efficiency of a single sock, yet they
rise with others to the surface in a pile
without any indication as to where
their mates are.

The cryptic labeling is often no
help in determining where the device
came from. It just offers specs on the
voltage and polarity output.

Should your appliance become an
orphan, many electronics departments
offer universal DC power supplies.
Some of these come with a slide switch
for selecting output voltage and a slew

Figure 1a —Here’s what
you’re not supposed to
do—an impractical straight-
forward linear design! b—
A preregulation zener
needs a very high wattage
series resistor. c—Half-
wave preregulation
reduces wasted current.

a)

b)

c)
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of connectors (for matching the socket
on your appliance), which you can
reverse to change the connectors’
polarity.

Whew! The possibility of success
for the consumer comes close to your
chances of winning the lottery. You’d
think somebody would have come up
with an alternate approach by now.

TRANSFORMER—NOT
Besides the obvious advantage of

isolation, transformers are generally
used to reduce the AC down to a level
where the ratings of components will
not be challenged and where minimal
power is wasted.

Eliminating the transformer is
more easily said than done. Most
linear and switching regulators have
maximum input voltages way below
line voltages. It’s instant death for
them to be used without some kind of
voltage dropping preregulator.

Let’s look at a simple 5-V supply.
In Figure 1a, you can see that, follow-
ing a typical rectifier stage, the capaci-
tors need extremely large ratings, so
they would not only be physically
large but also expensive.

The DC voltage available on the
capacitors would also be above what
most 5-V regulators could handle as a
maximum input voltage. So, other
than for special high-voltage supplies,
this approach isn’t going to hack it.

Figure 1b shows a zener regulation
stage that precedes the smoothing
capacitor. This approach dumps most
of the voltage across the series zener
resistor. The capacitor fills in the
narrow gaps between the full-wave
rectified signal across the zener.

In a situation where the circuit
current is fairly constant, the
zener remains happy. How-
ever, if the circuit’s current
set by the zener’s series
resistor isn’t needed by the
circuit load, the zener has to
handle the excess current.

A standard 1-W zener is
going to self-destruct rather
rapidly as it takes on what
the load isn’t using. Addi-
tional current can also be
generated by an increase in
the input voltage.

In addition to
the balancing act
to prevent zener
failure, the voltage
dropped across the
zener’s series resis-
tor can add up to
very large power
dissipation—power
dissipation of about a watt for every
5 mA of circuit current. Those are
some heavy losses.

You can quickly cut that waste in
half by using half-wave rectification,
as shown in Figure 1c. Only half cycles
of the line voltage get through, so
there’s only half the waste. Unfortu-
nately, since we’re now dealing with a
much choppier input, more capacitance
is required to fill in the valleys. The
costs go up to keep the ripple at an
acceptable level.

By adding a preregulation stage, the
size (and rating) of the input capacitor
is drastically decreased and the input
voltage is sufficiently reduced such
that a linear or switching regulator
can now be used. Heat dissipation can
now be shared between the two regu-
lating stages.

You can adjust the preregulation
voltage level (zener voltage) to place
more of the burden on the first or
second stage. This setup also lets you
choose the most cost-effective parts
based on working voltages.

Getting rid of heat can be a major
problem. Small- and medium-wattage
resistors generally depend on free air
radiation and have no heatsinking
(other than the component leads). TO-
220 (tabbed) linear regulators can be
affixed to a heatsink. The best idea is
to raise the efficiency of the supply so
there is less heat to worry about.

PREPACKAGED HIGH-VOLTAGE
LINEAR REGULATOR

Harris Semiconductor packages
much of these features in a TO-220
adjustable output regulator. Similar to

the LM317, the HIP5600 has
additional circuitry, so it
can connect directly to AC
line voltages (50–280 VAC).
The output voltage is set by
a resistor divider, connected
between the voltage output,
the adjust input, and ground.

In the block diagram in
Figure 2, the series rectifier
on the input blocks the
negative half cycle of the
AC line voltage. A high-
voltage pass transistor is

Photo 1 —Without bulky
transformers, many small
circuits can be manufac-
tured with a smaller price
tag.

Rectifier for
AC Operation

HIP5600 Pass
Transistor

Short-Circuit
Protection

Bias
Network

Thermal
Shutdown

Feedback
or Control
Amplifier

Voltage
Reference

C1

VIN

C2

RF1

RF2

VOUT

ADJ

– +

–+

– +

–

+

Figure 2 —The HIP5600 is a TO-220 regulator with very high voltage input specifications.
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controlled by a com-
parator that attempts to
maintain an output
voltage 1.18 V higher
than the adjust-input
voltage. The device has both short-circuit
and thermal-shutdown protection.

I prototyped the HIP5600 for use at
120 VAC and found the documentation
a bit lacking. Most of the discussion
was about regulating high DC voltages.
Yes, the rectified AC input was DC or
more clearly pulsating DC (half-wave)
but all the examples showed a 10-µF
capacitor across Vout. That’s 100 times
too small for a load of 10 mA.

The TO-220 dissipates 0.7 W in free
air with no heatsink. Because P equals
(Vin – Vout) × Iout, 0.7 W equals:

0.7
120 VAC × 0.707 – 5

~ 8 mA

By attaching the device to the PCB
(as the heatsink), you can get twice the
output current. With a maximum output
current of 40 mA, the HIP5600 isn’t
considered a high-current device, even
if it’s attached to an adequate heatsink.

SINGLE-CHIP POWER SUPPLY
Let’s look at another approach, again

from Harris Semiconductor. The HV-
2405E is an eight-pin DIP, which offers
a pre- and postregulator (see Figure 3).

The preregulator is a switcher, which
tries to keep the charge on capacitor C2
about 5 V above Vout. This gives the
linear regulator sufficient overhead to
operate properly.

Unlike the HIP5600, the HV-2405E
needs a series current-limiting resistor.
It limits the in-rush current to 2 A on
startup and dissipates power. The switch-
ing preregulator improves the efficiency,
which reduces the power dissipation
when compared to the HIP5600.

This time, documentation was clear
about the values needed for clean opera-
tion with AC line input (15–275 VAC),

Fuse

R1
AC

High

8

C1

RA4

RA5

AC
Return

4
DA3

ZA1

SA2

HV-24-5E

–+

Bandgap
Reference

Q1

RB11

RB10

2(1,3)

C2

VOUT

DA1 SA1 DA2
VOUT

6

5

(1,3)

Sense

AC
Return

Switching
Preregulation

Linear
Postregulation

Jeff Bachiochi (pronounced“BAH-key-
AH-key”) is an electrical engineer on
Circuit Cellar INK’s engineering staff.
His background includes product design
and manufacturing. He may be reached
at jeff.bachiochi@circuitcellar.com.

SOURCE

HIP5600, HV-2405E
Harris Semiconductor
(800) 4-HARRIS
(407) 729-4984
www.semi.harris.com

Figure 3 —The Harris HV-2405E
switcher eliminates much of the
wasted current by preregulating
it to a level in which the post-
regulator stays happy.

although Vout is adjustable from 5 to
24 V. By tying Vout and the Sense
input together, the device regulates to
5 V. Photo 1 shows you the two proto-
types.

I found the efficiency of the HV-
2405E to be about twice that of the
HIP5600. With a 30-mA load, the power
dissipation on the series resistor R1
was about 1.5 W. Maximum output
current for the HV-2405E is 50 mA.

An advantage of the HV-2405E is the
minimum input voltage. At a 10-mA
load, the device needs only 15-VAC
input. This minimum input doubles
to 30 VAC at the maximum load.

DANGER, WILL ROBINSON
Getting rid of the bulky transformer

means circuits are not isolated from the
power line. Exercise extreme caution if
devices aren’t isolated. Don’t use these
circuits if the user may be directly or
indirectly exposed to any part of the
wiring. Safety is always the top priority.

There are plenty of designs where
these devices can be effective. A trans-
formerless supply lets you design a
smaller, lighter, and ultimately cheaper
circuit. But for heaven’s sake, don’t
put your life on the line. I
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DC Input

Q2
P-Channel

D1
Parallel Schottky

Q1
N-ChannelControl IC

U1

Cout

Lbuck

Rload

+

–

SILICON
UPDATE

Tom Cantrell

t

Power Trip

You
thought
B&B
stood for
“Bed &

Breakfast.” Not
anymore. Tom has
redefined the term to
mean “Brains &
Brawn.” Run this
through the chip
translator and you get
“smart power chips.”

hese days, there’s
an embedded con-

troller available to
suit just about any fancy.

Everything from the perennially popu-
lar 8-bit chips, now sporting sub-$1
price tags, to multimillion transistor
32-bit systems on a chip.

Same goes for memory which, with
prices ever plummeting, can handle the
most gaseous vaporware and then some.
All in all, there’s enough intelligence to
deal with some rather grand challenges.

With so much smart silicon to choose
from, there’s a shift of emphasis from
brains to brawn. In other words, the
success of a micro-based product in-
creasingly depends on the pragmatism
and utility of the system design, rather
than what flavor of chip it uses.

Consider the PDA saga, the Silicon
Valley equivalent of a Keystone Kops
comedy. Without getting into a reli-
gious flame-fest, it’s clear that even
the first-rate ARM CPU was unable to
salvage the Newton. Lesson: It’s all
too easy to make a weak product with
a strong chip.

Subsequently, the PDA market has
seen more practical units like the 68k-
based Palm Pilot take the lead. Yeah,
it may not have the whizziest tech-
nology, but it fits in a pocket and the
batteries last more than 30 minutes.

In fact, with a dozen chips that can
do the job at hand, these days a de-
signer is likely to spend as much time
headscratching over power generation
and management issues as pondering
architectural arcana.

I THINK, THEREFORE I AMP?
Fortunately, the leading linear IC

providers are keeping pace with clever
solutions that go way beyond yester-
day’s low-tech discretes.

On the desktop, the latest wunder-
chips’ power demands have left behind
the days of getting by with a cheap
+5-V regulator. Between the CPU and
the rest of the system, nearly half a
dozen different voltages are required.

The matter is complicated by “green”
regimes that call for explicit control
of each supply practically down to the
individual chip level. At the same time,
when the pedal hits the metal, antici-
pate power surges more akin to start-
ing a car than a chip.

In particular, the newest Pentiums
have such finicky demand, they’re
spawning an entire power niche unto
themselves served by parts like Linear
Technology’s LTC1553, the Maxim
MAX1638, and Motorola’s MC33470.
These chips all work similar to the
brains of DC-DC converters that take
the plain +5-/+12-V output of silver-box
power supplies and step it down to the
1.8–3.5 V required by the latest CPUs.

In fact, Intel has gone to a scheme
in which the CPU chip outputs a
digital five-bit code specifying the
optimal voltage in 50-mV increments.
Keep in mind that even though the
voltage is reduced, overall power re-
quirements continue to escalate am-
pere ratings into double digits.

Figure 1 —The DC-DC
converters that power the
latest CPUs include dual
MOSFET power transistors,
a diode, and an inductor
controlled by a synchronous
rectification IC.
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gate drives must be held
in check until input power
ramps up and stabilizes.

Soft start is a power-
friendly characteristic
that minimizes the ex-
treme power-up surge by
slowly ramping the PWM.
It’s something akin to
getting woken by sooth-
ing music versus being
doused with a bucket of
ice water.

Current limiting is
important when you’re
dealing with chips that
think they’re a kitchen
appliance. After all, your
chip will certainly be
toast if something goes
wrong and the silver box
dumps a 100+ W onto
your pricey sliver of silicon.

Therefore, you also
need to monitor the cur-
rent draw. In the case of
the ’33470, you do this by

measuring voltage drop across the
main switching transistor and com-
paring against a limit set by external
resistor. If the current limit is ex-
ceeded, the chip shuts down and then
tries to soft restart.

Besides automatic over-current
shutdown, the ’33470 includes an
output enable pin (OUTEN) that enables
external logic to flick the on/off chip.
It could be under the control of a dedi-
cated power-monitoring and -manage-
ment chip or even (at least for turnoff)
the CPU itself.

With or without such supervision,
another safeguard against catastrophic
failure (e.g., short circuit) is to connect a
negative tempco thermistor monitor-
ing the main switch transistor to
OUTEN. When the OUTEN pin drops
below 2 V, the controller drives an
OT (over temperature) output as a
warning. If below 1.7 V for more than
50 µs, the device shuts down.

DC IN A DIP
The same buck-converter design

that handles hot desktop chips is
downsized by National to serve middle-
of-the-road MCU apps. The LM2825’s
big claim to fame is packaging. It

HARSH ENVIRONMENT
Yes, it’s possible to whip up a quick

and dirty controller for a low-ball power
supply with little more than a voltage
ramp and comparator, but that won’t
cut it for fancy chips or finesse the
fine points. For example, the PWM
needs some dead time (about 100 ns)
when switching between the transis-
tors lest they fight each other.

Maintaining output regulation in
response to radically (as in 0–10+ A)
changing load isn’t trivial. This isn’t
just a power-up or power-management
issue but an ongoing concern. Power
demand fluctuates significantly in
normal operation, particularly as
activity moves on (cache hit) and off
(cache miss) chip.

Like traditional designs, the controller
senses the voltage level to servo the
output (i.e., vary PWM duty cycle).
However, a control loop that achieves
good stability can’t respond quickly
enough to the most extreme surges.
Thus, the controller includes a special
override circuit that steps in to expe-
dite recovery when the output falls
more than ±4% out of range.

Powerup is a special case with gotchas
for the unwary. First, the MOSFET

To deliver the juice, a
complete synchronous
rectification buck con-
verter combines the
controller with a pair of
power MOSFETs, an
inductor, and a Schottky
diode (see Figure 1).

Motorola is offering a
kit that includes their
MC33470 controller (see
Figure 2), the other parts
(power transistors,
Schottky diode, induc-
tor), and a PCB. The
price is certainly right.
At the time of this writ-
ing, the kit is free and
can be ordered via their
Web site.

You can refer to previ-
ous articles for complete
explanations (e.g.,
“Power Systems for
Autonomous Robots” by
Ingo Cyliax in INK 92),
but the basic buck-con-
verter concept is quite simple, at least
on the surface. The controller need
merely switch the load between the
main (or high side) MOSFET (Q2) and
the rectifier (or low side) MOSFET
(Q1). The proper output is established
by varying the switching duty cycle
(i.e., PWM).

When the main (Q2) switch is on,
power is delivered to the load and also
builds a magnetic field in the inductor.
With Q2 off and Q1 on, the inductor
magnetic field breaks down, generat-
ing current and maintaining voltage
across the load. A good analogy is the
way a coil (inductor), distributor (tran-
sistor), and spark plug (load) work in
an automotive ignition.

Actually, the simplest buck-con-
verter designs don’t need Q1. However,
adding it significantly improves the
efficiency (i.e., reduced power loss
from input to output) by sharing con-
duction duties with the diode.

The diode handles the initial high
current but suffers excessive losses
from forward voltage drop. The tran-
sistor takes over as current falls off,
with less power loss because of low
resistance (mere milliohms) through
the switch.
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Figure 2 —A DC-DC controller IC like the Motorola MC33470 handles the basics of voltage
conversion and also deals with practical issues like thermal and overcurrent limiting, on/off
control, and soft start.
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units’ MTBF is over 20 million hours,
and they even meet rigorous Class-B
EMI specs.

When you’re talking 35-W/in.3 power
density, thermal issues are a concern
and in fact impose some operating
limits. To avoid adding heatsinks or
fans, using a lot of copper on the PCB
is an effective way to dissipate heat
via the pins (see Figure 3).

Even so, with the junction tempera-
ture maximum specified at 125°C and
a thermal resistance of 30°C per watt,
the 1-A output spec must be derated
(by as much as 50% in the worst case)
for temperature and input/output
differential extremes.

Along with the tiny package, the
LM2825 offers a similarly shrunk
price (around $10 in hundreds). It’s
quite competitive with the run-of-the-
mill modules, which are not only
bulkier but usually lack the built-in
features (shutdown, soft start, etc.).

IRREGULATORS
The highfalutin switchers may be

grabbing all the headlines, but the
good old three-terminal linear regula-
tor is still the best choice for the sim-
plest and lowest-cost apps.

The basic design hasn’t changed in
decades. Slowly but surely, the specs
and usability continue to improve.

Most obvious is dropout voltage
(the minimum required input/output
differential), which, formerly a few
volts, is now down to fractions of a
volt. Cutting the voltage headroom
means more efficiency and longer
battery life (remember, excess input

voltage is simply wasted
generating heat).

Another big plus is the
shift from funky three-pin
through-hole packages to
remarkably tiny surface
mounts, which are typically
eight-pin. The so-called
SOT23 handles 100-mA
class loads in a package only
about 1⁄8″ on a side and the
slightly larger SOIC up to
0.5 A. The extra pins are put
to good use with the addition
of shutdown inputs and low-
battery detect outputs.

Extending battery life is
job one, so quiescent and shutdown
power consumption are both targets.
The former refers to the power con-
sumed by the regulator itself, indepen-
dent of the load. Obviously, the less
power consumed by the regulator, the
more available for useful work.

Yes, during normal operation, the
overhead is only a small fraction of
the total (e.g., tens of microamps
regulator supply current for a hun-
dreds of milliamps regulator). How-
ever, these days, most MCUs offer
low-power sleep and standby modes,
which cuts their own power con-
sumption to tens of microamps. At
that point, the regulator’s own de-
mands loom large, perhaps consuming
more power than the chip it’s con-
nected to.

In fact, unless there’s a reason not
to, it’s best to take advantage of the
shutdown feature. Shutdown cuts
power by another order of magnitude.

Tiny regulators with such on/off
control lend themselves to distributed
power schemes for multichip designs.
Few applications actually require all
the chips to be doing something all of
the time. Why not partition the design
based on power activity and give each
subset an insert switchable regulator?

Good idea. In fact, it’s so good the
chip suppliers are already way ahead
of me. Maxim offers the MAX8865
with dual 100-mA LDO (low dropout,
only 110 mV) regulators, each with
independent on/off control, in 2.8-V,
2-V, and adjustable versions.

Motorola takes the concept further
with the five-output MC33765. Oper-

comes in a 24-pin DIP (see
Photo 1) rather than the
unwieldy modules, boards,
or boxes typically used.

Power capability is 1 A,
which isn’t a lot by desktop
standards but more than
enough for simpler single-
board designs. Fixed 3.3-, 5-,
and 12-V versions are offered
as are two adjustable (via
external resistor) versions—
one covering 2–8 V and an-
other covering 7–15 V.

Despite lesser power
pretensions, the LM2825
shares some of its desktop
counterpart’s bells and whistles, in-
cluding external shutdown pin, auto-
matic thermal shutdown, automatic
(but nonadjustable) current limiting,
and soft start.

Electrical specs are easy to work
with. First, the input voltage can vary
anywhere from about +2 V over the
output (e.g., 7 V for a 5-V output) all
the way up to 40 V. Nice to have a
single unit that can work handheld (9 V),
in a car (10–18 V), and in a telecom
environment (24 V), or with practically
any wall mount.

Output accuracy is adequate at
±5% guaranteed across a wide –40°C
to +85°C ambient operating tempera-
ture range since most chips only require
±10% tolerance these days. Load regu-
lation is excellent with less than 10-mV
output glitch in response to a 0.1–1-A
load step.

The unit’s conversion efficiency is
up there at 75–85% and beyond, de-
pending on the input/output differential.
To top it all off, National says the

Figure 3 —Packing an entire multiwatt DC-DC con-
verter in a 24-pin DIP does raise thermal concerns. The
first line of defense is to use the pins as a thermal
conduit to copper on the PCB.

Note: Holes are not shown.
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MAX847

ating from a single 3–5.3-V input, each
channel delivers a tightly regulated
(2.7 V min., 2.85 V max.), low-noise
(40 µVRMS) output with independent
enable, supplemented by a global on/
off control.

Each output has its own current
rating (30, 40, 50 60, and 150 mA) and
features thermal and overcurrent
protection. As usual, the total com-
bined output is limited by thermal
concerns (e.g., 250 mA at 25°C, 130
mA at 85°C).

DUALING BATTERIES
Combine ever-lower power chips

with improving battery technology
(e.g., NiMh, Li), and many designs are
candidates to go totally wireless. Just
run the gizmo on batteries and throw
’em away (or recharge externally)
when they’re tapped out. No need for
charger electronics, a connector, or a
power cord.

The only problem with such a
scenario comes when it’s time to
change batteries. Unless the design is
nonvolatile, it’s going to take some
deft shuffling to get the old batteries
out and new ones in before the bits
evaporate.

Linear Tech has come up with a
novel solution in the LT1579, which
is shown in Figure 4. It’s a lot like the
previously described linears—a 300-mA
LDO (400-mV dropout) with adjust-
able output (1.5–20 V) and shutdown
in small 8-pin (SO) and 16-pin (SSOP)
packages.

The big difference is that the ’1579
accommodates dual battery inputs,

automatically switching between
them as appropriate. The 16-pin
unit goes further with an explicit
battery select input (SS), an output
flag (BACKUP) that indicates which
battery is currently in use, and
pairs of low-battery in (LBI) and
low-battery out (LBO) pins.

The LBI and LBO scheme uses
an on-chip 1.5-V reference feeding
one side of a comparator. An exter-
nal resistor divider connected to
the LBI pin sets the trip voltage,
with hysteresis built in to prevent
chattering. Once tripped, the corre-
sponding LBO is driven to give the
system early warning.

The low-battery–detect feature is
especially useful in conjunction with
the previously mentioned battery
select (SS) to protect batteries from
deep discharge. Set the threshold to a
safe limit and switch using SS before
sucking the battery totally dry, and
you won’t have to worry about short-
ening battery life.

POWER TO THE PEOPLE
It’s rather clear that power genera-

tion and management have come a
long way. Nevertheless, I expect we’ll
see even more progress.

Maxim provides a hint of things to
come with their preannounced complete
power-management solution. Even
without the detailed specs in hand,
it’s easy to see from Figure 5 that this
28-pin gadget pushes the limits with
digitally programmed output step-up
(MAX847) or step-up/down (MAX769)
DC-DC converters combined with

multiple linear regulators, charger
control, automatic battery switching,
shutdown (RUN/COAST), power-on
reset, and even an optional ADC.

Just remember, even the fanciest
design isn’t worth a hoot without an
efficient, reliable, low-cost source of
power. Yeah, a luxo-chip may make
for a nice ride, but not if it’s always
stuck on “E.” I

Figure 4 —For battery-powered–only apps, the dual-input
LT1579 provides a novel solution to the problem of chang-
ing batteries on-the-fly.
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Tom Cantrell has been working on
chip, board, and systems design and
marketing in Silicon Valley for more
than ten years. You may reach him by
E-mail at tom.cantrell@circuitcellar.
com, by telephone at (510) 657-0264,
or by fax at (510) 657-5441.

Figure 5 —If the
forthcoming
MAX847 is any
indication, ever-
fancier and more
highly integrated
power solutions
are just around
the corner.
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PRIORITY INTERRUPT

steve.ciarcia@circuitcellar.com

When Boilerplates Won’t Do

w hen a niche magazine like Circuit Cellar INK promotes a message, it’s called an eccentricity. When a major
trade magazine promotes a message, it’s called an industry trend.  It is often only in hindsight that a cause

championed by the minority gains due respect.  Let me explain.
        Like Circuit Cellar INK, many technical magazines have Web sites that offer supplemental materials. It’s no

secret. The object is to create traffic and sell advertising. The difference is, trade magazines are now discovering
     something we’ve known all along.
           All magazines base their advertising charges on circulation and audience demographics.  In the case of the electronic trade
     magazines, large companies pony up $12,000 per advertising page to supposedly reach 100,000 engineering managers, department
     heads, and CEOs (everyone a purchasing-decision maker, mind you), Given that most of us who fall in one of these categories have piles
     of unread trade magazines on the corner of our desk, I suspect that real readership is considerably less.  Of course, since circulation is
     based on the number sent and not the number actually read, the mailbox continues to overflow.
           The digital realities of Web advertising throw a major wrench in the works, however.  The statistical packages from most ISPs track
     the physical number of visitors to a site, a page, and even to specific advertisements, The potential circulation might be infinite (the whole
     Internet), but the real circulation is only the record of who actually comes to the site or a page.
           With banner ads on some of these trade magazine sites going for $6000 per month, they have a vested interest in getting you to
     their site.  But, that’s the rub!  Searching the Internet for relevant technical information is not the typical activity of engineering managers,
     department heads, and CEOs. Most of the Web surfers I meet aren’t delegating the tasks; they’re performing the tasks.  They’re most
     attracted to sites that offer application information that simplifies that task.
           It takes guts to buck tradition.  A specific example is the online news and technical resource publication, EDTN (www.edtn.com).
     EDTN is a joint venture betwe n Aspect Development Inc. and CMP Media Inc.  You’re probably more familiar with CMP.  In addition to
     their recent purchase of BYTE, they publish EE Times, Electronic Buyers News, Semiconductor Business, and about 40 other trade
     magazines. In the process of building their Web site, EDTN came to the inevitable conclusion that the typical trade-magazine boilerplate
     won’t satisfy this crowd.  They have to avoid the traditional trade-magazine-formula approach to editorial in the all-important design
     sections, That’s when our name came up.
           Beginning this month, Circuit Cellar INK will be providing the editorial content for the embedded-systems section of EDTN’s EE
     Design Online. I applaud EDTN’s boldness in the face of obvious politics. Ultimately, the marriage of their wide audience and our real-
     world content should benefit both of us. It also demonstrates what others, like Hamilton-Hallmark which posts my editorial each month,
     have known all along: Circuit Cellar INK offers high-quality technical information.
           Electronic media changes don’t stop there, however. It has always been frustrating to me that we have considerably more editorial
     than we have pages available in the magazine.  This month we inaugurate a new section on our Web site called Design Forum. It’s a
     subscriber bonus section that contains new monthly articles, feature columns, and design projects.
           Each month will contain an additional Silicon Update from Tom Cantrell. We’ve always felt that one column a month hardly covered
     his West Coast investigations, so now there are two.  Lessons From The Trenches is a new column by George Martin.  George and I have
     worked together on many projects over the years, He’s the guy I call when I need help.  Lessons From the Trenches documents some of
     the design lessons he’s learned the hard way. Design Forum will also contain design hints and new feature articles.  Because we aren’t
     limited for space, these projects will typically contain more example listings and ilIustrations.
           Finally, Design Forum solves a real problem for me. When we conduct a contest with the overwheiming success of Design98, it
     results in a lot of publishable projects. We print the winning projects in the magazine, but there are dozens of others of equal value.  As
     only one of the judges, my top picks weren’t necessarily always the winners.  As the publisher, however, I get a way to show my top
     choices to you. PIC Abstractions is a selection of PIC projects from our Design98 contest.
           One of the first projects is a personal favorite of mine.  It is for a 128 x 240 LCD graphing weather monitor that displays a 48-h
     moving graph of pressure and temperature.  Even if you don’t build one yourself, stop by and take a look at the pictures.  You’ll be amazed
     at the sophistication and performance of this little device.
           So, is anything really different?  Our message has remained the same through the years.  The people who build all the electronic
     gadgets we take for granted want a source of reliable design information, and we have provided it. Some may call our mission an
     eccentricity, I’d rather think of it as an industry trend.


