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The Final Rendition

TASK MANAGER

l ike any kid, when I studied music, I had my
favorite pieces and those I practiced so many

times that the rest of the family had strains of “Happy
Birthday” or “Three Blind Mice” intermingling with

recipe ingredients, calculus assignments, crop-rotation
decisions, and so on. My mother, an accomplished pianist and organist for
one of the larger congregations in the nearby city, however, knew the real
secret to success, “Janice, let’s hear your scales.” She was equally fond of
those inane Hannon exercises, not to mention arpeggios, triads, chords,
harmony, history, etc. She had quite a list.

Surprise, surprise, with time, a little patience, and some good old-
fashioned parental supervision, I actually got to be not too bad at churning
out a little Bach, Chopin, Kabalevsky, and many Hannon exercises. In
preparation for my last music exam, I had pushed my way up to five hours
of practice a day (now there’s a new definition of tedium, eh?!).

Probably the most nerve-racking experience was preparing for recitals.
In a sense, exams weren’t quite so bad. Yeah, you could fail and spend
several more months repreparing. But, a recital happened once a year, in
front of many people, people you knew…you flub up then, that’s it!

In the weeks before a recital, I protected my fingers—no knives, no door
jams, no volleyball. As a result, I would arrive at my recital with my hands
intact, but really it did no good. At that point, nerves would strike. My hands
would be so cold that I could barely move them and they’d sweat so pro-
fusely that I’d lose my grip and slip all over the keys.

I suppose the final product sounded good, but it was always a hair-
raising experience. I finished the concert, people congratulated me, but I was
still in some kind of echo-chamber reality. So worn out from the rigors of
preparation and recital that everything sounded a little hollow and undone.

As I talk to engineers, it seems to me that embedded applications is
just about the same. There are all those years of engineering studies, then
the first few years of getting your feet wet in some lackey first-time job, and
then design, development, debugging, testing, and production. After a
product is on the market and ready to sell, many company owners have
that same exhausted, hollow look that I had following each recital. One part
of them can’t believe they actually got it finished, while another is deathly
afraid that someone, somewhere will find that fatal timing error in the sev-
enth measure, or perhaps I should say, module.

And, in many ways, the final product—the concert, the invention—is
the crowning glory. It shows how well you learned all the bits and pieces
that go into the final product. You know, how well you learned your scales.

This month’s feature articles are real concert winners. Tom Consi and
Jim Bales, researchers at MIT, launch the issue with a look at acquiring
acceleration data from rockets. Robert Lacoste, the first-place winner for
the PIC17XXX family in Design98, then unveils his audio spectrum ana-
lyzer. And, Robert Priestley is back with a car performance monitor—just
what you need for your next high-speed, high-tech car rally.

In EPC, Jim Brady introduces us to DeviceNet, a new automation
network, while Ingo checks out what we need to know about TCP/IP to
design real-time applications, and Fred shows us how to solve RF prob-
lems, even if we’re not RF experts.

Stuart Ball wraps up his two-part MicroSeries on building a PROM
programmer, Jeff pokes about in the nether-world of phosphorus, while Tom
tells us about his latest and greatest finds at Sensors Expo.

All in all, it’s a high-quality recital from engineers determined to keep
delivering what they’re the best at. I, on the other hand, having completed my
last piano exam, changed from music to English, moved from that campus
and haven’t lived with a piano since. Now when I play, my ears know what
to expect, but my fingers can no longer deliver. My many years of training
are now put to work picking out fine compositions and recordings.
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READER I/O
BEFORE YOU SPEAK, WE LISTEN

I enjoy the articles on RTOSs, but I’m surprised that
Ingo hasn’t mentioned RealTime Linux. RT-Linux
offers sub-100-ms real-time response, Posix soft-real-
time tasks, a tremendous development environment
with free compilers, RTOS, and debuggers, and remote
logging, monitoring, and debugging via a PPP link.

James Linder
jam@woozle.dialix.oz.au

Keep an eye out for upcoming articles on Linux in
Embedded PC, especially in Real-Time PC, where Ingo
will be presenting a series of applications using RT-Linux.

WITH JUST A LITTLE MORE HARDWARE...
Thanks for Dan Cross-Cole’s article about turning

your PC into a multichannel analyzer (“Using a PC for
Radiation Detection,” INK 96). The calculations to
determine the percentage of radon in a poured concrete
basement were enlightening. Working from counts to
U-235 to U-238 to radon to concentrations to flow
rates to a muffin fan is a lot more interesting than
sending a canister off to be measured by a lab.

However, a couple of significant calibration issues
weren’t addressed because there wasn’t enough hard-
ware applied to the project.

First, any pulse amplitude spectra measured by the
analyzer will be biased toward higher energy pulses. The
sample-and-hold circuit is really a peak-hold circuit, so
what’s measured is the largest pulse that has occurred
since the circuit was reset. This wouldn’t be a problem
if all the pulses were from the 185-keV gamma emission
of U-235, but as Dan notes, higher energy pulses come
from the decay chain of U-238. For example, Bismuth 214
emits 609 keV, 1120 keV, and 1764 keV gammas. These
pulses mask many of the gammas produced by U-235.

The second issue—dead time—relates to the amount
of time the analyzer is unable to detect a pulse and the
average number of pulses per second. For example, if
the C++ program portdata takes 10 µs to acquire and
store a pulse in its array and the radioactive source is
producing 6000 pulses per second, the analyzer is dead
for 6000 × 0.0000010 = 0.06 s per second, so 6% of the
pulses are lost. As Dan demonstrates, this dead time
can be compensated for by calibrating the analyzer
with a radioactive source of a known activity.

This only works if the multichannel analyzer PC
does nothing else. Anything that increases the amount

of time portdata takes to handle the data (e.g., inter-
rupts) substantially changes the dead-time and, conse-
quently, the measured pulse rate. In other words, don’t
expect good results if you run this task on Windows NT.

Minimize the first issue by using a gated peak-hold
where the gate is turned off shortly after a pulse is de-
tected. The second issue can be handled by using the
pulse detector to generate an interrupt and a timer to
track the amount of time between pulse detection and
ISR data collection.

Stephen Lloyd
slick@lanl.gov

MICROCHIP TAKES ON MOTOROLA
Tom Cantrell’s hint of a looming 8-bit OTP MCU war

in “The Micro Price is Right” (INK 96) was on target.
Three weeks after Motorola introduced the 49¢ 8-bit MCU,
Microchip Technology fired back with an 8-bit MCU priced
at 40¢ for a ROM and 49¢ for an OTP in large quantities.

The PIC16C505 OTP microcontroller provides design
engineers with a higher value solution by offering 1024 ×
12 words of program memory, 2:1 code compaction over
competitive solutions, 72 × 8 bytes of user RAM, 12 I/O
pins with 25-mA sink and source capability, wakeup on
I/O change, and 4-MHz internal clock oscillator.

According to Dataquest, Microchip now ranks num-
ber two in worldwide 8-bit MCU shipments—thanks
largely to INK readers. In turn, these leading designers
can rest assured that Microchip will respond to future
industry battle cries and deliver the most appropriate
8-bit MCUs for their design needs.

Eric Sells
eric.sells@microchip.com

BACK TO SCHOOL
I was struck at how well thought out Ken’s recent

editorial was (“A Mind is a Terrible Thing...,” INK 95). It
gives good tips and directions for helping students.

This past year, I was very pleased to have directed my
focus on one agent useful towards lymphoma. This small
success reminded me to set my goals carefully, and I am
happy to incorporate your method for reaching students.

Marc McGary
mcgama8@elwha.evergreen.edu
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NEW PRODUCT NEWS
Edited by Harv Weiner

USB JOYSTICK CONTROLLER
The FT8U24AM USB Game-Port Joystick Controller

IC incorporates a four-channel ratiometric measuring
circuit for determining the position of the analog controls.
Traditional low-cost analog joysticks track position
with an RC time constant, using low-tolerance compo-

nents (i.e., a potentiometer and a capacitor). Resulting
threshold values vary with temperature and voltage,
producing inaccurate joysticks that need frequent recali-
bration. Digital joysticks use optical sensors and elec-
tronics to eliminate these inaccuracies, but they can be
more expensive.

The FT8U24AM measures the angle of the potenti-
ometer rather than its resistance to eliminate the toler-
ance effect and provide a typical accuracy of ±1%. It
features an integral EMCU microcontroller with pre-
programmed mask ROM, 128-byte data memory and 12
I/O pins. The four ratiometric analog channels measure
x and y movements as well as throttle and rudder func-
tions. The IC supports a wide range of configurations
with up to four analog controls, four stick and four base
buttons, as well as support for a POV hat switch. The
IC is packaged in a 24-pin PDIP.

The FT8U24AM sells for less than $2 in quantity.

Saelig Co.
(716) 425-3753
Fax: (716) 425-3835
www.saelig.com
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NEW PRODUCT NEWS
OSCILLOSCOPE PROBE ADAPTER

The MicroGripper Oscilloscope Kits from Emulation
Technology provide easy probing of fine-pitched devices.
They are uniquely designed to provide testing of PQFP
and SOIC packages from 0.8- to 0.3-mm lead pitch.
Combined with a dual-lead adapter, the MicroGripper
enables hands-free testing. The devices work with all
popular oscilloscope probes.

The MicroGripper tip is insulated to prevent shorting
out when attached side-by-side and features a wire-tip
diameter of 0.08 mm. It is constructed of steel or stain-
less steel wire, nickel plated with an ABS plastic finish.
It is rated at 500 WVDC. The kit is intended for use with
voltages up to ±40 V. The probe capacitance is less than
2 pF between adjacent grippers and its inductance is

less than 1 mH (both measured at 1 kHz).
The 3-dB bandwidth is greater than 100 MHz.

Three separate kits are available, depend-
ing on the lead pitch. Each kit contains
parts for use with two probes, including
four MicroGrippers and two dual-lead
adapters.

Pricing ranges from $145 to $199.

Emulation Technology, Inc.
(800) ADAPTER
(408) 982-0660
Fax: (408) 982-0664
www.emulation.com



10       Issue 98 September 1998        Circuit Cellar INK®

NEW PRODUCT NEWS
CALLER-ID PLUG FOR PC

The PC Caller ID plug decodes caller-ID data sent
over a telephone line and delivers the name, number,
date, and time to a computer. Enhanced services, like
voice-mail notification and caller ID with call waiting,
are also supported. The PC Caller ID Plug, which mea-
sures only 2.25″ × 3″, plugs directly into any spare PC
serial port and requires no external power.

Included software (with source code) enables the user
to transform a PC into an advanced caller-ID box and to
integrate caller ID into other applications. The software
has DOS- and Windows-based programs. Windows soft-
ware source code is supplied in Visual Basic, and DOS
software source code is supplied in C. The Windows
software supports Windows 3.11, 95, 98, and NT.

The unit is FCC Part 68 certified and can supply
caller-ID information to microcontrollers, SBCs, and
other embedded systems. Full documentation, includ-
ing the data format and a schematic diagram for inter-
facing to other hardware, is included.

The ITU PC Caller ID Plug is available for $34.95. A
30-day money-back guarantee and a 90-day warranty are
supplied with each unit.

ITU Technologies
(888) 448-8832 • (513) 661-7523
Fax: (513) 661-7534 • www.itutech.com
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NEW PRODUCT NEWS
ANALOG SIGNAL CONDITIONING BOARD

The QED Analog Conditioning Board enables
direct monitoring and control of 16 analog
inputs and 8 analog outputs from thermocouples,
RTDs, strain gauges, pressure sensors, photo-
diodes, bridge sensors, analog actuators, and 4–
20-mA transmitters. Onboard amplification,
attenuation, and filtering can be easily custom-
ized with plug-in components to provide flex-
ible signal conditioning. Analog outputs range
from 0 to 10 V.

Typically controlled via a direct cable inter-
face to the C-programmable QED board con-
troller, the QED Analog Conditioning Board
also features built-in thermocouple cold-junc-
tion compensation to simplify temperature
measurement and control.

The QED Analog Conditioning Board sells
for $249.

Mosaic Industries, Inc.
(510) 790-1255 • Fax: (510) 790-0925
www.mosaic-industries.com
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Smart
Rockets

FEATURE
ARTICLE

Tom Consi & Jim Bales

m
Model rockets have
always served as
ideal vehicles for
teaching physics and
engineering basics.
With this new data-
acquisition device,
Tom and Jim show
how to trace the
rocket’s acceleration
and store the entire
flight and its data.

odel rockets
have inspired gen-

erations of students
to pursue careers in

engineering and science. Indeed, many
of you probably went through a rocket
phase in your formative years.

Model rockets are popular with
aspiring engineers for good reason.
They’re exciting, they’re fun to build
and launch, and they offer a number of
significant engineering challenges that
can be tackled with simple tools and
small budgets.

From an educational perspective,
model rockets introduce a number of
fundamental concepts in physics such
as Newton’s laws, lift, and drag. Inex-
pensive microcontrollers and solid-state
sensors add an exciting new dimension
to model rocketry.

It’s now possible to build tiny devices
that can measure and record the perfor-
mance of a model rocket in flight. This
article describes just such a device that
we designed, built, and flew as part of
our “Smart Rockets” seminar at MIT.

Our system measures just one flight
characteristic—acceleration—although
it could be easily modified to measure
other aspects of a rocket’s flight. We
designed the system to fly in a small,
single-staged, model rocket that could
be launched in a relatively small area.

Data Acquisition in
Model Rocketry

 12

24

62

Smart Rockets

PIC’Spectrum

Automotive Travel
Computer
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cord, which attaches to the 12″ diameter
parachute.

Prior to launch, an engine is inserted
into the rear of the rocket and held in
place with a spring clip. A piece of
recovery wadding (fireproof tissue) is
placed in the rocket body just forward
of the engine to protect the plastic
parachute and shock cord from hot
gasses during ejection.

Next, the parachute and shock cord
are coiled up and inserted into the
rocket. The nose cone/payload section
is inserted into the forward end of the
body, and the model is placed on the
launch pad, ready for flight.

Our launch platform—an Estes
Porta-Pad II—consists of a plastic
tripod, a steel blast deflector, and a
meter-long launch rod. The rocket has
a small tube attached to its side, the
launching lug, that holds the model to
the launch rod during the initial phase
of powered flight.

Model-rocket engines are fired
electrically using an igniter that typi-
cally consists of a piece of nichrome
wire coated with a flammable material.
A current passed through the wire
ignites this material, which then ignites
the propellant.

The igniter connects to a long pair
of wires that lead to the launch control
box at a safe distance (~20′) from the
rocket on the pad. The launch control

earth via a parachute. During this
recovery phase, the rocket is at the
mercy of the wind which can blow it
onto rooftops, into trees or power
lines, or, in our case, dump the model
in the middle of the Charles River! If
all goes well, however, the rocket is
recovered, the engine is replaced, and
the model can be flown again.

Model-rocket engines are designated
by a letter and two numbers. The
letter indicates the total impulse of
the engine, which is just the integral
of the thrust versus time curve of the
engine (the dashed line in Figure 1).

We used A-, B-, and C-sized engines
with total impulses of 2.5, 5, and 10 N,
respectively. The first number of the
engine designation is the average
thrust in newtons, and the second
number is the period of the tracking
phase in seconds.

Our rocket—the Estes Nova Pay-
loader—is a typical single-stage model
rocket. It’s about 21″ long, 1″ in diam-
eter, and weighs 1.8 oz. (50 g) without
a payload or engine.

The rocket consists of a paper tube,
balsa wood fins, and a 4¾″-long plastic
payload section topped by a nose cone.
The wood and paper parts are assembled
with wood glue, and the plastic parts
with model cement. The rocket body
and the nose cone/payload section are
connected by an elastic rubber shock

The entire system, including bat-
tery, is 4¼″ long, slightly under an
inch wide, and weighs about 1 oz.
(32 g). Photo 1 shows a picture of the
system mounted in the rocket.

Inside the payload compartment is
a small circuit board that contains an
acceleration sensor, power supply,
microcontroller, and nonvolatile mem-
ory chip. A pair of leads brought out
of the payload run down to the tips of
two fins and touch corresponding con-
tacts on the launch pad. The launch-
pad contacts attach to a cable that
leads to the launch control box.

When the launch button on the
control box is pressed, two things
happen. First, the leads brought out to
the fins are shorted together, triggering
the data-acquisition system. Second
(and electrically isolated from the
first), a current passes through the
igniter, starting the rocket’s engine
and setting the vehicle into flight.

INTRODUCTION TO MODEL
ROCKETRY

Model rockets are lightweight, low-
cost, solid-fuel rockets designed to
permit safe experimentation with the
principles of rocketry. Factory-made,
single-use, solid-fuel engines are a key
feature in model-rocket safety.

A model-rocket engine consists of,
from bottom to top, a nozzle, propellant,
delay charge, ejection charge, and an
end cap. This design governs the over-
all flight characteristics of the model.

The acceleration phase (i.e., when
the propellant burns) lasts from a frac-
tion of a second to up to 2 s for typical
rocket engines (see Figure 1). It is
followed by a longer (several seconds)
tracking phase when the rocket coasts
up to maximum altitude. The model
is not powered during this phase, as
the delay charge that generates smoke
for visibility has negligible thrust.

At the end of the tracking phase,
the ejection charge ignites at the peak
altitude, when the velocity of the rocket
is near zero. The ejection charge blows
forward, bursting the end cap, and
pressurizing the interior of the model,
which pushes the nose cone/payload
section out of the rocket body.

Both pieces, connected by an elastic
shock cord, then drift safely back to
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Figure 1 —This graph shows the predicted performance of the rocket. The thrust data was extracted from a perfor-
mance curve of the Estes C6-5 engine provided by the National Association of Rocketry. The acceleration curve for
the rocket is calculated. Note that at t = 0, the system experiences Earth’s gravity, which is equivalent to a rocket
accelerating upward at 1 g in free space.
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box has a switch (the launch button)
that connects the igniter to the 6-V
battery (four alkaline AA cells). We
discuss the details of the launch con-
trol box later.

ROCKET SCIENCE 101
Newton’s First Law, F = ma, con-

tains all the physics you need to pre-
dict the accelerations that the system
will record. All we need is the mass of
the rocket (m) and the applied force
(F), right?

The force exerted by a rocket engine
is not constant as you see in the thrust
versus time curve for an Estes C6-5
engine (the dashed line in Figure 1).
We assume the rocket moves straight
up while the thrust is applied, so the
total force is the engine thrust minus
the gravitational force (mg, g = 9.8 m/s2).

If the mass of the rocket were fixed,
then the acceleration is the dashed
line scaled by the mass. However, as
the propellant burns, the mass of the
rocket decreases.

How important is this effect? For
NASA, it’s critical—85% of the space
shuttle’s take-off weight is fuel!

In our case, only 12 g of the 105-g
take-off weight is fuel (11%). So, we
can treat the rocket mass as a constant,
which gives us the expected accelera-
tion curve shown as the solid line in
Figure 1.

Our students made this calculation
on the first day of class. Their task for
the semester was to determine, by
direct measurement, if Figure 1 is
correct.

CONTROL AND DATA LOGGING
We chose the Microchip PIC16C73

microcontroller as our data-logging
engine (see Figure 2). This chip has all
the I/O functions we need: DIO pins,
a five-channel eight-bit ADC, a USART,
and an SPI synchronous serial port.

Its 4 K words of data space (we used
the reprogrammable windowed EPROM
version) and 192 bytes of RAM easily
accommodate our application code as
well as provide some head-room for
future expansion.

Size was a key factor in determining
what microcontroller to use. The PIC-
16C73 comes in a 28-pin skinny-DIP
package that fits our space constraints.

The only thing the ’16C73 lacks is
nonvolatile data storage. This is pro-
vided by a Xicor 25F128 serial flash-
memory chip that contains 16 KB of
memory in an 8-pin DIP package.

The Xicor chip communicates with
the ’16C73 via the PIC’s SPI serial
interface. A 4-MHz crystal (Y1) was
chosen so each of the PIC instructions
executes in 1 µs, which is convenient
for calculating code-execution times.
The reset button (SW1) is a tiny SPST
momentary On push button which
grounds the MCLR pin of the PIC.

We considered two methods of
triggering data collection by the PIC.
One is to have the PIC continually
read the ADC and use the flash memory
as a ring buffer. The PIC waits for the
accelerometer output to exceed a
threshold and stops writing to the
buffer just before completing the next
loop around the ring.

The drawbacks are the added soft-
ware complexity (a concern for stu-
dents just learning PIC programming)
and the finite number of write cycles
allowed by the flash chip. Also, for
the first launch, we would have to set
the threshold based on our predicted
acceleration curve, a golden opportu-
nity for Murphy to intervene!

Instead, we chose to supply an
external electrical signal when the
launch switch is pressed. This tech-
nique removes all the objections listed
above and also provides us with data
on the lag between pressing the launch
button and the liftoff.

However, it presents a new challenge:
how to make a reliable electrical con-
nection that can be broken with very
little force. We need this type of con-
nection in two places—between the
launch pad and the rocket and between
the rocket body and the nose cone/
payload section (which must separate
during ejection). Our solution is in
the “System Construction” section.

Two digital input pins control the
system operation. When grounded, the
trigger input (RB0) starts the program
running.

On triggering, the program enters
one of two modes, determined by the
jumper on digital input pin RB1. Mode
A (RB1 low) causes the PIC to acquire
accelerometer data. In mode B (RB1
high), the PIC immediately dumps its
stored data to a host computer though
its USART.

As Photo 1 shows, the trigger lines
(RB0 and ground) are brought out of

Figure 2 —Here’s the schematic
for the model-rocket data-
acquisition system. During the
rocket’s flight, the PIC16C73
microcontroller reads the
ADXL50 accelerometer and
stores the data in the X25F128
serial flash memory.
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the payload section and down
the rocket body to the fin tips
where they contact two plates
on the launch pad, which are,
in turn, connected to the launch
control box (see Figure 3). The
launch button (SW2) shorts
these contacts together, trigger-
ing the system to start acquir-
ing data (if it is in mode A).

Green and red status LEDs
connect to digital outputs RB6
and RB7, respectively. The
green LED indicates that the
system is on and waiting for a
trigger signal. The red LED
means the system is either
acquiring data (mode A) or
dumping data through its
USART (mode B).

Four other digital outputs
(RB2–5) were used for debug-
ging purposes.

To get the data onto a PC,
we built a small interface box
that has a push button to trigger
RB0 while in mode B. This
interface box contains a MAX-
233 TTL to RS-232 level shift-
ing chip that eliminates this
chip from the payload’s circuit
board. The box also has its
own battery so the payload’s
battery isn’t drained during
retrieval of data (see Figure 3).

THE ACCELEROMETER
We chose Analog Devices’ ADXL50

accelerometer, which requires a regu-
lated +5-VDC supply and has an on-chip
amplifier. The gain of this inverting
final stage can be set by external resis-
tors, which enables us to trade off
range for sensitivity.

We selected the ADXL50’s external
resistors to condition the sensor out-
put to have a zero-g bias level of about
2.5 V. Since the maximum accelera-
tion is expected to be 14 g, we selected
the gain resistors R4–R6 to create an
inverting amplifier with a range of
±20 g.

An internal voltage reference makes
the output insensitive to variations in
the supply voltage. The output of the
accelerometer connects directly to the
PIC’s 8-bit ADC (pin RA0), giving a
resolution of approximately 0.2 g.

One potential source of error is
fluctuations in the regulated power
supply, which serves as the reference
voltage (VREF) for the PIC’s ADC. A
better design would be to use a voltage
reference chip for VREF, although that
would, of course, consume precious
circuit board space.

Another potential source of error is
misalignment of the sensor with re-
spect to the rocket’s thrust axis. This
error is small: one minus the cosine of
the misalignment. So, for a misalign-
ment of 5°, the error is less than 0.5%.

SOFTWARE
The code was written in PIC as-

sembly language. We used Microchip’s
MPASM assembler and PICStart 16C
programmer as development tools. A
block diagram of the software is shown
in Figure 4.

On powerup or after com-
ing out of a reset, the soft-
ware initializes the I/O
facilities and internal re-
sources of the PIC (DIO,
ADC, SPI interface, USART,
and Timer 0). The USART
operates at 9600 bps, and
the SPI clock runs at 1 MHz.

The program then polls
RB0, which is normally
high. A trigger signal pulls
RB0 low and causes the
program to check the mode
and execute the appropriate
code. After the selected
mode executes, the program
loops back to polling RB0
for another trigger signal
(see Figure 4a).

Mode A is the real-time
data-acquisition portion of
the program. It is entered if
pin RB0 is jumpered low.
The ADC is read during an
interrupt service routine
that is governed by Timer 0,
which provides an interrupt
every millisecond, thus
setting the data-acquisition
rate (see Figure 4b).

How data is acquired is
dictated by the behavior of
the Xicor 25F128 serial flash-
memory chip. It receives
data in 256-bit packets via

its SPI interface and stores it in one
32-byte sector of its flash memory.

Transferring 256 bits takes only
about a quarter of a millisecond at an
SPI clock rate of 1 MHz. The program-
ming operation, however, takes 10 ms.
Fortunately, this occurs automatically
after the bits are received and it requires
no further intervention of the PIC.

The program in mode A reads the
ADC 32 times at a 1-kHz rate, storing
these values in 32 bytes of buffer RAM
on the PIC chip. Between the thirty-
second and thirty-third A/D conver-
sions, it shoots the contents of the
buffer to the Xicor chip through the SPI.

It then proceeds to fill the buffer
RAM again. During the 32 ms that
the buffer is being refilled, the Xicor
chip has plenty of time to write the
data it just received into its flash
memory.

Photo 1a —Here’s our smart rocket on the launch pad. Note the clear payload
compartment containing the data-acquisition system and the copper contacts
beneath the fins. The brown streak down the right side of the rocket is one of the
two lines of conductive paint that bring the trigger signal to the payload. b—In
this view of the data-acquisition system, you see the modifications made to the
payload compartment. The brown patch on the rear bulkhead connector is
conductive paint that forms a sliding electrical connection with the rocket body.
To the left of the circuit board is a model-rocket engine.

a) b)
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In addition to sending acceleration
data, the PIC sends the sector address
that indicates where to store the data
in the Xicor chip. The sector address
is incremented after every SPI transfer.

This cycle repeats itself 256 times
until 8 KB of data are stored on the
Xicor chip. The program then ends
mode A and goes back to polling the
trigger pin.

The Xicor chip holds up to 16 KB of
data. But, we found that 8 KB of data,
corresponding to 8 s of time, was
enough to capture a rocket flight from
launch to recovery phase.

Triggering the system in mode B
presumes that a host computer is
connected to the USART of the PIC
via the interface box. The PIC reads a
single byte from the Xicor chip, con-
verts it to a three-byte ASCII decimal
number, and transmits it to the host
computer (see Figure 4a).

Each transmitted number is ap-
pended with the ASCII codes for car-
riage return ($0D) and line feed ($0A).
This cycle repeats itself until all 8 KB
of data are transmitted to the host.

Figure 3 —In the ground equipment, the interface box connects the payload to a host computer for data transfer.
Pressing the ignition switch on the launch control box (SW2) simultaneously ignites the rocket engine and triggers
the payload to record data.
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Photo 2a —The accelerometer is in the TO-100 can at the forward end of the board. Its axis
of sensitivity is along the diameter of the can that crosses the tab. The connectors are for
the trigger signal (yellow), serial communication (central three-pin connector), and power
(green), which is shown connected to the lithium battery. b—The red and green status
LEDs, the large black inductor, the mode jumper, and the reset button are visible on the wire
side of the board.

a)

b)

The user must set the
host computer to accept
this ASCII stream before
the PIC is triggered into
mode B. There is no hand-
shaking between the PIC
and the host. As with mode
A, on termination of mode
B, the program loops back
to polling the trigger input.

In the field, we used a
laptop, running a terminal
emulator set in screen-
capture mode, as the host
computer. The captured
file is a 1-column × 8192-
row matrix of ASCII deci-
mal numbers.

As soon as the rocket was recovered
and the data uploaded to a laptop, we
plotted the data to ensure that the
system worked properly. Thus, we
could correct problems on site, instead
of discovering them back in the lab.
Being able to read the data in the field
using a simple editor more than offset
the extra time needed to transfer ASCII
as opposed to binary data.

POWER
The power system, consisting of a

battery and a voltage regulator, was
one of the more difficult portions of
the design because it operates under
several constraints. First, the battery
must source 30 mA at 3 V.

Second, the regulated 5-V rail is
critical because it is the reference for
the PIC’s ADC. Any change in this

voltage translates into a
proportional error in the
recorded acceleration.

Third, the power sys-
tem must be compact
and lightweight because
50 g is the rocket’s maxi-
mum payload. Finally, it
must be reasonably effi-
cient because small bat-
teries have limited energy.

We started by looking
at high-energy batteries.
The two obvious choices
were alkaline cells and
lithium primary cells.
Lithium cells have, on
average, three times

more energy per unit mass than alka-
line cells.

We settled on a CR2-style lithium
battery designed for high-current ap-
plications. It provides 750 mAh at 3 V
and weighs 11 g.

We selected Maxim’s MAX631A
step-up switching regulator because of
its low part count (one inductor and
two capacitors) and small quiescent



Circuit Cellar INK®       Issue 98 September 1998        19

current. The selection of the inductor
is critical because its resistance must
be low (0.5 Ω or less) and it must not
saturate when the current through it
peaks. The power supply is shown in
Figure 2.

SYSTEM CONSTRUCTION
The data-acquisition system was

point-to-point wired on a 15⁄16″ × 3½″
piece of pad-per-hole perf board. The
PIC chip was mounted in a socket so
it could be removed for reprogramming.
All other components were soldered
directly to the board.

As you see in Photo 2 and Figure 2,
three connectors were mounted on
the board—two 2-pin connectors to
connect to the battery (J3) and to link
the trigger lines to the rocket body
(J1), and one 3-pin connector
for the USART connection (J2).

The big challenge in laying
out this board was minimizing
the component heights at the
edges to accommodate the
cylindrical shape of the pay-
load compartment. Thus the
PIC chip, accelerometer, and
the large capacitor and inductor
of the power supply had to be
mounted centrally on the board.

We mounted components
on both sides of the board,
which had the added bonus of
balancing the weight of the
payload. Photo 2 shows both
sides of the payload circuit
board.

A slot was cut in the rear
end of the plastic nose cone
that acts as a guide to hold the
circuit board in the payload
section (see Photo 1b). Some
material was removed from
the plastic bulkhead that forms
the bottom of the payload
compartment to make a crude
battery holder.

Pieces of foam wedged
between the battery and the
wall of the payload compart-
ment help hold everything in
place. The forward nose cone
and rear bulkhead connector
are taped to the payload tube
to prevent the electronics from
falling out during recovery.

We soldered wires onto the termi-
nals of the battery and brought them
out to a connector on the circuit board.
Beware! This is the most dangerous
part of building the system.

There is a lot of energy in the lithium
cell, and excessive heat can cause it to
catch fire or explode! Use a cell that
has integral solder tabs, and don’t
linger on them with the soldering iron.

One of the more difficult aspects of
the design was bringing the trigger
lines (RB0 and ground) out of the pay-
load compartment, down the rocket
body, and out onto the fin tips. For
this we used conductive paint, the kind
used to repair windshield defrosters.

An electrical connection was estab-
lished between the payload compart-
ment and the rocket body by applying

two patches of paint on the outside
surface of the payload bulkhead con-
nector where it slips into the rocket
body, and two corresponding patches
of paint inside of the forward end of
the body (see Photo 1a).

Conductive lines were painted
from these forward patches around
the edge of the tube and down the
exterior of the rocket to patches of
paint at the tips of two of the three fins.
These patches contact copper plates
on the launch pad that connect to the
launch control box (see Photo 1).

The paint patches on the bulkhead
connector and the rocket body provide
electrical continuity between the
payload and the rocket while the model
is on the launch pad. This connection
is easily broken by the ejection charge.
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Figure 4a —Data is acquired by an interrupt-driven routine that runs during the time indicated by the shaded diamond. Note
that the code between the points labeled A and B must execute in less than 1 ms to maintain the 1-kHz data-acquisition rate.
b—In this flowchart of the interrupt-driven data acquisition routine, timer 0 sets the sampling period. Each time the routine is
called, one A/D conversion is performed and the data byte is stored in the RAM buffer.
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Connector J1 brings the trigger
lines to the paint patches on the bulk-
head connector. It isn’t possible to
solder wires to the conductive paint, so
we essentially pasted the stripped end
of each wire to its patch with a thick
coating of the conductive paint.

Clearly, conductive paint is not
going to hold the wire. To provide
strain relief, we glued the insulated
portion of the wires to the bulkhead
connector using model cement. Still,
these connections proved quite deli-
cate and sometimes broke in the field.

LAUNCH CONTROL BOX
The launch control box shown in

Figure 3 has many of the features of
the standard Estes Electron Beam
launch controller. Between the batter-
ies and the nichrome igniter are the
safety key and the armed indicator
(LED D1). The launch switch is in
parallel with the LED.

The igniter is connected with the
safety key removed, so the clips to the
igniter are not hot. Inserting the safety
key applies the battery voltage across
the series combination of the armed
indicator and the igniter, which enables
enough current to flow to light the
indicator but not enough to ignite the
igniter’s black powder coating. A nice
feature of this design is that any break
in the wiring prevents the armed indi-
cator from lighting.

Our major modification to the
Estes design was to replace their SPST
launch switch with a DPDT momen-
tary push-button switch (SW2). The
second channel of this switch shorts
together the two contacts brought out
to the fins of the rocket. A 20′ four-
conductor cable brings the igniter
current and the payload-trigger signal
to the launch pad.

Three small blocks of wood epoxied
to the blast deflector of the launch
pad (see Photo 1a) support the rocket,
while electrically isolating the fins
from the steel blast deflector.

Copper plates are attached to each
block of wood, and two of the plates
are connected by leads to the trigger
signal lines of the launch cable. The
two rocket fins with conductive-paint
contacts are positioned over these
blocks, and the third fin rests on the
unconnected block to balance the
model on the pad.

RESULTS
Before leaving the lab, we went

through every step in the sequence of
the setup, launch (with no engine),
data recovery, and data visualization.
We even shook the rocket up and
down a few times after pressing the
launch key, just to generate accelera-
tion data. Once the procedure was
perfected, we moved outside.

The raw data from a launch with
an Estes C6-5 engine is shown in

Figure 5 —Here’s the raw data from an actual rocket mission using a C6-5 engine. Because this is the output of an
inverting amplifier, upward acceleration causes decreased output voltage. This curve was plotted in the field, and it
shows that the system functioned correctly. The spike around 4500 ms is spurious, while the structure just before
6000 ms indicates the ejection charge firing.
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Figure 6 —Here’s the processed acceleration data for the launch shown in Figure 5. The shape compares favorably
to the predicted acceleration curve in Figure 1.
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Figure 5. The acceleration appears to
be negative, but that’s because the on-
chip buffer of the ADXL50 is an in-
verting amplifier.

The initial kick and the sustained
thrust are easily seen, as is the ejection
charge (around 6000 ms). There is also
a spurious data point (around 4500 ms).
While the accelerometer output has
not been converted into acceleration
yet, this plot still tells us that the
system worked.

Turning Figure 5 into the desired
acceleration plot requires a few steps:

• removing the spurious data points
• smoothing the curve with a three-

point sliding-window average
• converting the 0–255 A/D readings

to 0–5 V
• converting the voltage to accelera-

tion, exploiting the fact that the
system saw 1 g just before ignition

The first three steps are straightfor-
ward. For the final step, we used the
published response curve of the sensor
as well as the calculated transfer func-
tion for the amplifier, given the values
of resistors R4–R6.

We know that, just before ignition,
the rocket was experiencing the 1-g
gravitational force, so we defined the
observed DC offset to be 1 g. Figure 6,
shows the final acceleration curve for
our system.

Compare Figure 6 to the solid line
in Figure 1. The general shape of the
curves agree, although the measured
curve is compressed in time. The
maximum measured acceleration was
17 g, while the maximum acceleration
predicted from the mass of the rocket
and the characteristics of the C6-5
engine was 14 g.

The correspondence between theory
and experiment isn’t bad, and it shows
our system works as designed. There
are several ways to improve the qual-
ity of the data.

First is to perform a careful calibra-
tion of the accelerometer. Calibration
procedures for the ADXL50 are dis-
cussed in the datasheet. We calculated
gains using the nominal values of our
5% resistors. Using 1% resistors in
the accelerometer circuit would give
better results.

Also, a more stable voltage source
can be used as the reference for the
PIC’s ADC. Other questions can be
addressed as well: What causes the
spurious data? What is the source of
the ripple seen even when the rocket
is on the pad?

FUTURE DEVELOPMENTS
There are many ways to improve

and expand this system. It could be
miniaturized further by using a PCB
with surface-mount components.

Earlier, we mentioned our decision
to use a wire link to the rocket to
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This effort was supported by the MIT
Sea Grant College Program and the
MIT Department of Ocean Engineer-
ing. At MIT we were helped by the
Undergraduate Seminar Office, The
Safety Office, the Campus Police, and
the Athletics Department. Analog
Devices, Maxim, Microchip, and
Xicor all donated ICs for the course.
Microchip (through S-J New England
Inc.) also provided PIC programmers
and databooks. Finally, thanks to our

trigger the data acquisition as opposed
to using a threshold acceleration to
trigger the system. Two of our students
managed to implement this idea and
got it to work quite nicely. Other
triggering schemes could use optical
or radio signals as wireless triggers.

Also, more sensors could be added.
An old model-rocket trick for measur-
ing roll rate is to install a photosensor
in the side of the model. As long as
the model doesn’t fly directly into the
sun, there will be asymmetric illumi-
nation around the vehicle, causing a
periodic signal from the photosensor
as the rocket rolls. The PIC could easily
measure the frequency of this signal.

A number of other sensors could be
added—thermistors, pressure sensors,
and even tiny gyroscopes. Another
class of sensors consists of devices
that indicate when critical events
occur during the flight of the model.

For example, a fine wire could be
placed across the nozzle of the rocket
engine. When the engine ignites, the
wire burns through and signals the PIC,
which logs the exact time of ignition.
You can imagine similar sensors that
indicate when the rocket leaves the
pad, when it clears the launch rod,
and when the ejection charge occurs.

Additional sensor data could easily
exceed our system’s capacity. Greater
memory can be obtained via high-
capacity serial flash-memory modules
(discussed by Tom Cantrell in “Serial
Flash Busts Bit Barrier,” INK 85).

We’ve only scratched the surface of
the many possibilities for smart model
rockets. We hope to explore some of
these avenues in another course. This
time we were more than satisfied that
all of the students got to fly their
rockets and collect real data. I

SOURCES
ADXL50
Analog Devices, Inc.
(617) 329-4700
Fax: (617) 326-8703
www.analog.com
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Maxim Integrated Products
(408) 737-7600
www.maxim-ic.com

PIC16C73
Microchip Technology, Inc.
(602) 786-7200
Fax: (602) 786-7277
www.microchip.com

Rocket-engine performance curves
National Assn. of Rocketry
P.O. Box 177
Altoona, WI 54720
www.nar.org

X25F128
Xicor, Inc.
(408) 432-8888
Fax: (408) 432-0640
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students, whose interest and dedica-
tion were inspirational and who were
just a lot of fun to be around!

SOFTWARE

Complete source code for this ar-
ticle is available via the Circuit
Cellar Web site.
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PIC’Spectrum

FEATURE
ARTICLE

Robert Lacoste

i
Sure, a DSP can
make the calculations
and generate the
pixel bitmap for an
audio spectrum
analyzer, but at what
cost? Robert gets
the same result from
a single PIC processor
with a design so good
he walked away with
a Design98 first prize.

remember being
quite astonished

when one of my pro-
fessors explained the

basics of frequency domain analysis,
“Every periodic signal is the sum of
pure sinusoidal signals, with given
frequencies, amplitudes, and phases.”

Hmm…every signal. That includes
the light coming from the sun, the
vibrations of my old car, even the tears
of my two-month-old baby!

And, I bet that 99% of INK readers
are like me. You want to understand,
and you understand it better if you
make it yourself.

So, years ago, I quickly wire-wrapped
an analog acquisition board and wrote
a small BASIC program on my old
Apple II to display the frequency decom-
position of an incoming audio signal.
It was my first audio spectrum analyzer.
Later, I did the same on my PCs, and
the ’x86s were soon powerful enough
to get real-time performance.

Using a PC is OK, but how about
an autonomous device? Something
small enough to bring along anywhere
but that has a VGA video output with
a decent quality image and real-time
refreshes.

My first idea was something like
the block diagram in Figure 1a. An
amplifier and low-pass filter suppress

Audio Spectrum Analyzer

out-of-the-band signals before the signal
goes to an ADC, which transforms it
into numerical samples.

A DSP can calculate the frequency
decomposition of this signal with the
classic Fast Fourier Transform (FFT)
algorithm and generate the pixel bit-
map in video RAM, which is displayed
by a CRT controller chip.

You’d need a fair amount of com-
puting power, but is it possible to do
the same with a simpler design? How
about a high-end microcontroller?
INK’s Design98 contest presented a
great opportunity to try it with one of
the newer Microchip devices—the
PIC17C756.

This chip has enough horsepower
not only to do an FFT in real time but
also to eliminate the CRT controller.
The video output can be made with
some general-purpose parallel output
lines, and the software toggles the
corresponding bits to generate the video
synchronization and color signals in
real time.

With this controller, the block
diagram of my logic analyzer (shown
in Figure 1b) is, well, as simple as
possible. PIC’Spectrum is born!

YOU SAY PIC17C756?
Before getting into more details

about PIC’Spectrum (see Photo 1),
let’s have a look at the PIC17C756
and its stripped-down version, the
PIC17C752. These new fully static
CMOS chips are an enhancement of
the existing PIC17C4X family.

The microcontroller core runs up
to 33 MHz, giving a 121-ns instruction
cycle. These chips are pure RISC design,
and thanks to the two-stage pipeline,
each instruction executes in only one
cycle, except program branches and
table reads/writes, which are two cycles
long. That makes it near 8 MIPS—not
bad for a microcontroller.

The 58 single-word instructions
(coded on 16 bits) are easy to learn for
any user of Microchip’s smaller con-
trollers. Direct, indirect, and relative
addressing modes are supported. Ex-
ternal interrupts are present, as is a
16-level hardware stack.

One interesting feature for com-
pute-intensive applications: there is
an integrated 8 × 8 bit hardware mul-
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bootstrap code is launched and waits
for orders coming from a dedicated
serial synchronous interface (RA1/
RA4/RA5 pins).

With a small interface connected to
the LPT port of your favorite computer,
you can read or write the internal
EPROM without any specific program-
mer and without having to extract the
chip from its socket.

I developed my own PC-based in-
circuit programmer based on Micro-
chip’s programming specifications [2].

Electrically, the standard-grade
PIC17C756 needs a supply voltage
from 4.5 to 6.0 V, while a special ex-
tended device (PIC17LC756) accepts
anything from 3.0 to 6.0 V. In both
cases, the minimum RAM retention
voltage is 1.5 V.

The supply current is 6 mA at 4 MHz
but climbs to 50 mA at 33 MHz. Of
course, sleep modes reduce consump-
tion down to 1 µA, depending on the
selected peripherals, but high perfor-
mances and low consumption are still
difficult to conciliate.

PIC’SPECTRUM HARDWARE
Now that we have a good microcon-

troller, let’s look at the PIC’Spectrum
hardware shown in Figure 4.

A small power supply, which is
built around U1 (78M05), generates a
clean 5 V from a standard 9-VDC power
supply (the total power consumption
is around 100 mA, which is mainly
50 mA for the PIC and 50 mA for
driving the three 75-Ω video outputs).
The LED D1 indicates powerup and
generates a pseudoground 1.9-V level
used by the analog section.

The analog input signal (from an
onboard electret measurement micro-
phone or a line input jack) is amplified
and low-pass filtered down to 10 kHz

provides 50 I/O pins with
individual direction con-
trol. As usual, each pin
may be used for general-

purpose I/O or dedicated to some on-
chip peripherals.

Have a look of the pinout of the
PLCC version in Figure 3 and you’ll
understand that this chip is quite
flexible. Both OTP and windowed
versions exist, even if they aren’t so
easy to find.

On the peripheral feature list, there
are four timers (two 16 bits wide and
two 8 bits wide, TMR0 having an inter-
nal 8-bit programmable prescaler),
four capture input pins, and three PWM
outputs with a 10-bit resolution.

Need more? Perhaps two asynchro-
nous and one synchronous serial port,
the latter configurable both in SPI and
I2C modes, master or slave? Or a 12-
channel 10-bit ADC? Or an RC-clocked
watchdog timer?

How about an integrated supply-
voltage supervision? Or a configurable
RC/crystal/ceramic clock system with
an oscillator start-up timer? Name it,
and it’s probably there.

The PIC17C756X also has in-cir-
cuit programming hardware. By pull-
ing the TEST and MCLR/VPP pins to a
13-V programming voltage before
powering up the chip, a specific ROM

tiplier, working in only one instruction
cycle. This multiplier offers a perfor-
mance boost of more than three times
(compared to a software-only version)
for a complete FFT calculation.

The internal memory is impressive
as well. The PIC17C756 has 16 K words
of EPROM program memory as well
as 902 bytes of general-purpose RAM,
which accommodates quite large
projects without the need of external
memories, even if extended modes are
available and support up to 64 K words
of program memory.

The smaller PIC17C752 has only
8 K words of EPROM and 454 bytes of
RAM. Microchip has also announced
flash-memory versions (PIC17F75X).
The memory map is shown in Figure 2.

One piece of bad news: the RAM
and registers are still banked, and the
working page is selected by some bits
in the BSR register. Even if some spe-
cific assembler instructions help, this
is a major headache for the programmer
and a major source of bugs. I hope that
Microchip switches to a linear address
mode in the near future.

Hosted in 64- (DIP) or 68-pin pack-
ages (PLCC and TQFP), the PIC17C75X

Figure 1a —Here’s a classic block diagram for a spectrum analyzer. The signal is amplified and low-pass filtered before going to an ADC. A DSP calculates the FFT and drives
the VGA screen through a video controller. b—The PIC’Spectrum block diagram is much simpler. The microphone signal is amplified and low-pass filtered and goes directly to
the PIC, which calculates the FFT and directly generates the video. It’s all in the software.
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Photo 1 —The PIC’Spectrum proto-
type is built on a 1″ × 3″ PCB. A good
ground plate is mandatory on a mixed
digital/analog design like this one. I
used a transparent box to prove that
there are very few components inside.
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chronization signals are TTL compat-
ible, so there’s no problem there. For
the R, G, and B lines (0–2 V/75 Ω), a
150-Ω series resistor does an adequate
5-V to 2-V/75-Ω adaptation, thanks to
the high power capacity of the PIC
outputs (20 mA/line, 100 mA total for
ports A and B).

The 8-pin header J4 handles in-circuit
serial programming. Four additional
output pins (including one UART out-
put) are connected to a debug header.
This provision is useful during the
debug phase because it enables you to
send debug information to a serial
terminal to find out what’s happening
inside the box when you don’t have an
in-circuit emulator.

ON THE SOFTWARE FRONT
Of course, when you choose the

simplest possible hardware, the soft-
ware has more to do. Here, the software
must:

• do the acquisition of a burst of the
analog signal (typically 256 samples
at a sampling frequency of 16 kHz)

these frequencies, this crys-
tal is a 3× overtone model.

I needed a damper circuit
(L1/C8) to select the correct
resonant frequency. Without
it, the crystal would oscillate

on its fundamental frequency, and I’d
end up with a 10.66-MHz clock!

Two switches (K1 and K2) control
the current mode (run or hold) and the
scaling of the display (linear or logarith-
mic). They connect directly to RB6
and RB7 because the PIC has select-
able internal pullups.

The VGA-compatible video-output
connector is directly driven by the
PIC. The horizontal and vertical syn-

by four operational amplifiers (U2,
LM324). A potentiometer lets you
adapt the amplifier gain to the ambient
sound level and serves as an on-off
switch. The output signal, centered on
the 1.9-V pseudoground level, connects
directly to one of the PIC’s analog
inputs.

The PIC processor is clocked by a
32-MHz crystal (I wasn’t able to find a
33-MHz crystal in time). As usual for

Program Memory Data Memory

Reset Vector

Interrupt Vectors

User Program
(16 KB)

Configuration
Flags

Test EPROM

Boot ROM

BK0  BK1 BK2 BK3 BK4 BK5  BK6 BK7

0000

0008

0021

3FFF

FDFF
FE00
FE0F

FE10
FF5F
FF60
FFFF

Unbanked System Registers

Banked System Registers

Unbanked System Registers

Unbanked User RAM

Banked
User RAM

00

0F
10
17
18
19
1A
1F
20

FF

Figure 2 —From this memory map of the
PIC17C756, you see that the program
and data areas are separated, as usual
on a Harvard architecture. The ’17C752
has the same memory map, except that
there is only 8 KB of user program
memory and two user RAM banks.
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Figure 4 —Around the PIC, there is only a quad operational amplifier, a regulator, and some discrete components.
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Figure 6 —The top
part shows the timings
of the video and
horizontal synchroniza-
tion signals, while the
bottom part shows the
conversion of these
timings in number of
instructions as well as
what the PIC is doing
during this time.

• calculate the FFT of
these 256 samples, giving
an amplitude for each of
the 128 frequencies

• calculate the power of
each frequency and scale
it (depending on the
position of the log/lin
switch)

• manage the run/hold
switch

• do the generation of the
VGA video signal in
parallel

To do all these tasks
while keeping real-time
requirements, PIC’Spec-
trum software is divided
into two tasks. The main
program is in charge of
initialization, device con-
trol, and numerical algo-
rithms. The interrupt
routine, executed each
31.77 µs (corresponding to the VGA
horizontal video synchronization
period), is in charge of analog signal
acquisition and video generation.

These two tasks dialog through
three RAM shared structures:

• FFT buffer (256 words, 16 bits each),
filled by the interrupt routine with
analog samples and used by the main
program for FFT calculation

• display buffer (128 bytes), filled by
the main program with the length
(in pixels) of each of the 128 horizon-
tal frequency bars, and used by the
interrupt routine for video generation

• synchronization variables

Figure 5 illustrates the information
flow. Since you can get the complete
source code from the Circuit Cellar

Web site, I’ll focus here under on the
more specific codes, like FFT calcula-
tion and software video generation.

A standard FFT algorithm works
on complex numbers (real plus imagi-
nary parts). It takes as an input an
array of n complex samples and gives
an array of n complex frequency am-
plitudes. Here, the input signal is of
course only real numbers.

The immediate solution to get its
FFT is to add a zero imaginary part to
each sample and to use the standard
complex numbers algorithm. If you do
that, only half of the n frequencies in
the result are useful (in fact, each
value is found twice).

This is a consequence of the well-
known Nyquist rule. If you sample
your signal at a period of 1/n, you can
only analyze frequencies with periods

above 2/n. More problem-
atic, this simple approach
uses twice as much memory
as is useful and we have
only 902 bytes of RAM.

Fortunately, you can use
a more sophisticated algo-
rithm, known as real-mode
FFT. The idea is to pack two
real samples in each complex
input value, do a standard
complex FFT, and decrypt
the resulting complex values
to find back the good real
figures. You can get the
details from Numerical
Recipes in C: The Art of
Scientific Computing [3].

To implement this FFT
algorithm on the PIC, I de-
veloped a fixed-point math-
ematical library (source file
is fixed.inc). It implements
a virtual fixed-point machine
operating on two 16-bit

floating-point registers (RA and RB).
Routines are available for addition,

subtraction, multiplication, division,
sine, and logarithm, as well as access
to the banked RAM. The fixed-point
format used is S/2/13 (one sign bit, 2
bits for the integer part, and 13 bits
for the fractional part). In fact, writing
sinus and logarithm calculation rou-
tines in assembler is quite an interest-
ing experience.

OPTIMIZING VIDEO INTERRUPTS
Writing the interrupt routine was

another interesting exercise. One
interrupt is generated by timer 0 each
31.77 µs. This period equals the hori-
zontal refresh period of a VGA signal
in mode 7 (640 × 350).

Because 31.77 µs translates into
254 instructions only (even at 32 MHz),
the number of instructions used to do
the analog signal acquisition and the
video generation must be carefully
optimized.

Figure 6 shows the VGA horizontal
timing specifications, the correspond-
ing number of instructions that the
PIC17C756 could execute at 32 MHz,
and the operations done by the interrupt
routine in the corresponding time frame
(more information on VGA timings is
available on the Web [4]).

Shared RAM

FFT buffer

Display buffer

Synchronization
variables

Reset

Initialization

Calculate
spectrum and

scaling
(lin or log)

Hold
mode?

Request
analog

acquisition

Wait for end
of acquisition

Calculate FFT
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(31.77 µs)
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Request?

Get one
sample

Finished?

Signal it to
main prog

Increment
video line

index

Generate
video line

Return

Interrupt routineMain Program

H-Sync

Video signal

Timings

Number of
instruction

Analog
acqu: 37

Video signal
generations: 5 to 169

Registers restoring: 10
Video line increments & selection: 11

Housekeeping: 15

Interrupt Interrupt

1 
µs

3.7 µs

1.
9 

µs

25.1 µs

Figure 5 —The main task is in charge of the numerical
algorithms, while a timer-driven interrupt routine
handles analog signal acquisition and video generation.
The tasks communicate through a shared memory.
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The interrupt routine starts with
housekeeping (register saving, timer
reload, etc.) and switches on the hori-
zontal synchronization signal. During
the 3.7 µs needed by this synchroniza-
tion, the software manages the acqui-
sition of an analog sample (one signal
sample is taken every two interrupts,
giving a 15.7-kHz digitization rate).

The current video line number is
then incremented and used as an index
into a table, giving the address of the
routine to use for displaying each scan
line (vertical synchronization virtual
lines, blank lines, frequency display
line, scale or title display, etc.). Each
routine manages the switching on and
off of the three RGB video signals with
good timing.

This brute-force programming
method is needed to achieve the result
in Photo 2. The longer the program
takes between the interrupt and the
start of the video display, the more
black areas you have onscreen.

Real-time requirements have to be
managed very carefully. In particular,
the execution time from the interrupt
to the start of the video display must
be rigorously constant, whatever the
results of the if/then tests are.

If it isn’t, the video lines do not
align. I was forced to add NOPs every-
where—in particular, in the analog
acquisition routines—to ensure that
the same number of instructions is
executed whatever the situation is.

To get the best result, I implemented
some strange programming practices.
For example, to get a specific delay
with 125-ns resolution, I do a calcu-
lated jump in the middle of a long
sequence of NOPs. It’s the only solu-
tion I’ve found, because managing a
loop consumes several instructions.

DEVELOPMENT AND DEBUG
Debugging a signal-processing em-

bedded application isn’t easy. And, I
don’t have access to an adequate ICE.
Since it might be useful for similar
projects, let me briefly explain my
methodology (which must not be too
bad: PIC’Spectrum actually works!).

After some timing calculations to
ensure the feasibility of the concept, I
started with a prototyping phase on a
PC using a PC sound board as input. I

used floating-point calculations, with
everything in C (see Listing 1). I then
translated the software to use exclu-
sively integer numbers and debugged it.

The third step was to develop a
fixed-point library (still on the PC)
that prefigures the future PIC-based
fixed-point library. I also modified the
FFT code to do all calculations exclu-
sively through this library. It was
quite easy to write this fixed-point
library in PIC assembler, debug it on
Microchip’s simulator, and translate
the FFT routine from C to assembler.

Using the simulator is useful for
numerical-calculation software. In fact,

Step 1: C code on PC, float numbers:
float data[NMAX],h1r;
�
data[j]=(data[i]-h1r)/2; /* calculation step of FFT routine */

Step 2: C code on PC, integer numbers:
word data[NMAX], h1r;
�
data[j]=(data[i]-h1r)/2;

Step 3: C code on PC, use of pseudoregister based on fixed-point
        library:
fixed.h:
  word ra, rb; /* pseudoregisters A and B */
  �
  m_sub () /* subtraction function a-b->a */
  {ra=ra-rb;};
  �
main program:
  �
  /* data[j]=(data[i]-h1r)/2 */
  m_ldai(i); /* load data[i] in A register */
  m_ldb(h1r); /* load h1r in B register */
  m_sub(); /* A = A-B */
  m_div2(); /* A = A/2 */
  m_stai(j); /* store A in data[j] */

Step 4: Last, translation in PIC assembler
Fixed.inc:
  �
  ; m_sub : subtract B to A (A = A-B)
  m_sub macro

movfp rb+1,WREG ; low byte first
subwf ra+1,1
movfp rb,WREG ; and high byte with borrow
subwfb ra,1
endm

main program:
; data[j]=(data[i]-h1r)/2
m_ldai i ; m_ldai(i)
m_ldb h1r ; m_ldb(h1r)
m_sub ; m_sub()
m_div2 ; m_div2()
m_stai j ; m_stai (j)

Listing 1— Here you see my step-by-step process from traditional float C code on a PC down to integer
assembler code on a PIC.

it was possible to open two windows
on my PC, the first being a standard
PC debugger with my C-code FFT, and
the second the PIC simulator with the
manually translated assembler code.
Single stepping between the two codes
with a test signal as an input helped
me quickly find the more tricky bugs.

When the signal-processing part
was completed and debugged, I wrote
the real-time part (signal acquisition
and video generation) and debugged it
as much as I could on the simulator.

This phase was helpful for correct-
ing timing issues related to video syn-
chronization. For example, with a
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Photo 2 —This video image was generated by
PIC’Spectrum. Here, we have a quite clean 1.6-kHz
signal. The third and fifth harmonics are visible
under the fundamental frequency.

breakpoint set on each access to the
horizontal synchronization pin, it’s
easy to verify if the timings on this
pin meet the VGA specification.

I waited until this phase was
successful before cabling the proto-
type. The first EPROM I burned didn’t
work 100%, but I got a working video
image and something resembling a
spectrum display.

Thanks to the in-circuit program-
ming and some debug pins, the software
was working soon. In fact, 90% of the
bugs found in this last step were related
to banking register issues, which are
tough to simulate because hardware
ports are involved.

WRAP UP
I got the display looking quite good,

with an interrupt routine taking ~50%
of the available CPU time for video
generation. The main program has time
to do more than 10 FFT calculations per
second, giving a true real-time display.

With my technique, the time spent
in the video-generation code depends
greatly on the image being displayed.
If the screen is full of information, the
time left for the main program is near
zero. So, you can’t use this technique
for all video-based projects.

To get satisfactory results with the
video-display code, I sacrificed main-
tainability. Changes to the display may
require tremendous efforts in keeping
the real-time constraints unchanged.
However, it works, and the basic prin-
ciples may be used to get cheap video
display devices like PIC’Spectrum.

For your next video-based project,
try to do it with a software video only.
If you have strict maintainability
requirements, add a CRT controller
chip or select a microcontroller with
one built in. On the other hand, the
FFT implementation is easily reused.

A final note: I’m sure this project
wouldn’t be possible without a good

simulator or an ICE. Thanks to Micro-
chip for providing a good simulator
for free on the Web! I

SOURCE
PIC17C756
Microchip Technology, Inc.
(602) 786-7200
Fax: (602) 786-7277
www.microchip.com

SOFTWARE

Complete source code for this
article and freeware for the PIC-
17C756 in-circuit programmer is
available via the Circuit Cellar
Web site.
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SOLID-STATE DISK
The FCLite is a small form-factor, add-in, solid-state flash-memory–based disk emulator that uses an IDE interface.

The drives are compatible with any operating system, without requiring special software drivers or onboard BIOS ROM
sockets. The drives aren’t mapped into any BIOS or extended memory space. They are currently available in capacities
from 2 to 32 MB and have MTBFs exceeding one million operating hours.

The FCLite drives plug into either a PCI or ISA slot from which they derive power. They consume 3 mA in sleep mode
and less than 100 mA when writing or erasing. The data transfer rate is 4.0 MBps reading, 2.5 MBps writing/burst,
and 50 kbps writing/cont. Flash-memory write endurance is in excess of 300,000 write/erase cycles. The FCLite drives

can withstand operating shock of 500 G, temperature range of
0–700°C and 5–95% noncondensing humidity environments.
Board dimensions are 4.3″ × 1.7″.

List prices for the FCLite drives range from $129 to $599.

Curtis, Inc.
(612) 404-9081
Fax: (612) 404-9175
www.mncurtis.com

MULTIFUNCTION SBC
The Élan104 has been designed for a wide

range of embedded control applications with func-
tions specific to the implementation of PC-based, low-

cost, medium-scale man-machine-interfaces (MMIs).
Its Eurocard-format board features the AMD 100-MHz

Élan486 microprocessor (full power management) with fully
licensed ROM-DOS running in flash memory, 4–16 MB of EDO
DRAM, 4–8 MB of flash memory, and 128 KB of battery-backed
SRAM.

Other features of the board include dual DMA controllers,
interval timers, real-time clock, clock generation circuitry,
DRAM controller, and ROM interface. Also included are a
bidirectional IEPP/ECP parallel port, 16550-compatible serial
port, ISA-bus interface, speaker interface, and JTAG test access
port.

Interfaces typically suited to MMI design include matrix
keyboard interface, mono LCD graphics (with ¼ VGA, 320 ×
200 to 640 × 480 pixel resolution) interface, and SVGA CRT/
LCD for interfacing to CRT monitors or color flat-panel displays.

Standard peripheral I/O ports include 16-bit PC/104
expansion interface, floppy and hard disk drive interfaces, two
RS-232 serial ports, one RS-485 port for multidrop serial
applications, and a single LPT parallel printer port. Standard
PC-type mouse and keyboard ports are supplied via PS/2 mini-
DIN connectors.

Arcom Control Systems, Inc.
(816) 941-7025
Fax: (816) 941-0343
www.arcom.co.uk
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PC/104-COMPATIBLE AUDIO MODULE
WinSystems’ PCM-AUDIO-DLX offers 16-bit stereo

audio functions that can simultaneously record and playback
(full duplex) voice, sound, and music on a PC/104-compatible
module. Based on the ESS Technology ES1888 AudioDrive chip, this
module supports PC audio that is AdLib and SoundBlaster Pro compatible.

A four-channel record mixer blends three 16-bit stereo and one micro-
phone input under software control. An independent seven-channel mixer
supports playback. Stereo output from the playback is up to 2 W per
channel. The volume can be adjusted by software, an external 64-step push-
button audio control, or onboard potentiometers. Two joystick inputs
provide more input and control options.

The ES1888 chip operates at sample rates of up to 44.1 kHz to provide
CD-quality sound. It has a 20-voice, 72-operator music synthesizer. The FM
synthesis is backward compatible to the OPL-3 mode. An MPU401 serial
port can be used to interface with external wave table synthesizers and MIDI
devices.

Special drivers are not needed for newer OSs like Windows 95 and
Windows NT. Windows 3.x is supported through supplied drivers.
WinSystems offers a utility that allows record and playback of audio or voice
with control of sample speed, volume, and compression for use with DOS
or non-DOS applications. It also supports playback of Windows .WAV audio

files in a non-Windows
environment.

An optional KIT-PCM-
AUDIO-DLX consists of a
PCM-AUDIO-DLX board,
microphone, two speakers,
PC Bus Sound Blaster–
compatible board, Win-
dows audio-applications
user guide, and DOS/
embedded-systems tools
and drivers. This kit enables
the designer to develop
and debug the applica-
tion code on either a desk-
top PC or the target
embedded CPU running
in a Windows or DOS
environment.

The PCM-AUDIO-DLX
sells for $250.

WinSystems, Inc.
(817) 274-7553 • Fax: (817) 548-1358
www.winsystems.com

SINGLE-BOARD COMPUTER
The CMi586DX133 cpuModule is an ultra-

compact, high-speed, fully integrated PC/104-
compliant CPU. The cpuModule features a high-
performance 133-MHz Am5x86 processor, inter-
nal math coprocessor and cache, 8 MB of 32-bit
wide surface-mounted DRAM, IDE, and floppy
controllers.

Also included are two software-configurable RS-
232/-422/-485 serial ports, Extended Capabili-
ties Parallel (ECP) port, keyboard and speaker port,
and a watchdog timer. A 32-pin solid-state disk
socket supports 1-MB EPROM or 512-KB flash
memory, SRAM, NVRAM, or MSystems’ Disk-
OnChip.

The services and functions provided by its Em-
bedded BIOS ensures PC/AT compatibility. BIOS
enhancements include quick boot, virtual devices,
and solid-state disk support with flash file system. A
virtual device mode allows the operator to use the
keyboard, video, floppy, and/or hard disk on
another PC-compatible computer through the serial
port. A nonvolatile configuration EEPROM stores
the system setup without needing a battery.

The CMi586DX133 sells for $598.

Real Time Devices USA, Inc.
(814) 234-8087
Fax: (814) 234-5218
www.rtdusa.com



CIRCUIT CELLAR INK SEPTEMBER 199836

N
PC

PCNouveau

PC/104 PERIPHERAL MODULE
The MM686 is a PC/104 form-factor board

featuring two PCMCIA slots, four A/D video input
channels, 5-W SoundBlaster–compatible stereo sound,

and support for optional PCMCIA-based Zoom Video MPEG
decoding. It also accommodates two joysticks or a MIDI input.
The video inputs support PAL, NTSC, and SECAM decoding

and real-time video capture ability. The YUV video output plugs
into the YUV connector on 686LCD/S or 686LCD/MG SBCs,
allowing for extremely high frame rate video display and capture
handled directly by the video controller.

The PCMCIA interface is PCMCIA-2.1 and JEIDA-4.1 compli-
ant and supports all common PCMCIA cards (e.g., modems, ATA
flash cards, MPEG decoders, and hard drives).

The SoundBlaster–compatible port has stereo-line and head-
phone output as well as a direct output from the onboard 5-W
amplifier. The MM686 supports a microphone input, analog line
input, and direct input from CD playback devices via the Zoom
Video port. Volume control is supported in software or via the built-
in up-down-mute plug.

This PC/104 board is fully scalable for applications that don’t
require all of its features. It can be provided as just a SoundBlaster
board, just a dual-slot PCMCIA interface, just a video/image
processing board, or in any combination.

Inside Technology USA, Inc.
(972) 390-8593
Fax (972) 390-8609
www.inside-usa.com
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Jim Brady

Networking with DeviceNet
Part 1: How DeviceNet Stacks Up

Reading articles on networks raises a
lot of questions�like whether to call Device-
Net a network, a bus, a fieldbus, or what?

The term �bus� is used for industrial
networks that control things, as opposed to
general office networks that move data. I
decided to forget about impressive terms
and stick to basics. I want to cover the meat
and potatoes of what a developer needs to
know to implement a Device-
Net network.

Why are there so many
network protocols? Figure 1
shows 15 of them. Why not
just use Ethernet?

In the beginning, I didn�t ask.
I developed DeviceNet interfaces
because customers requested
them. Then Profibus, then others.
However, with time, I won-
dered: is there an ideal net-
work for a given application?

This month, I show how
DeviceNet compares to other
device networks and explain

how it works. In Part 2, I�ll look at a real
DeviceNet device, code and all.

Better dust off your C++ books because
DeviceNet is object oriented all the way.
C works, but C++ fits like a glove.

SORTING THEM OUT
Where does DeviceNet fit into the

network menagerie? At first glance, all the

networks look quite similar. However, each
one has a unique set of features and is
designed to move a specific type of data
between certain kinds of equipment.

Here, �device� refers to small to mid-size
equipment with multiple integrated sensors
and/or actuators. Device networks are
designed to interconnect these devices.

As devices get smarter and processing
power cheaper, even simple
devices may have high-level
network ports, producing a
consolidation toward the high
end of Figure 1. But there will
always be a need for more
than one level of network. Plant
engineers don�t want to share
their Ethernet office network
with assembly robots!

NEW BREED
DeviceNet represents a

new breed of device networks
that offer nifty features, such as
hot-plug capability, network-

With all the debate on networks these days, it�s easy to get confused about
the differences between networks, buses, and field buses, particularly when
a new technology comes along. Join Jim for the lowdown on DeviceNet.

Figure 1�Automation networks at the low end move on/off messages
between simple sensors and actuators. At the high end, complex equipment
transfers large blocks of data plant wide. DeviceNet handles the middle
ground.
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tion for reliable real-time
communication. At least five
IC vendors make CAN control-
lers that handle all the details of
the CAN protocol for you.

What makes CAN so good for real-
time messaging? Short message length
and priority-based collision resolution.

The latter feature is a major reason for
CAN�s popularity. If a collision occurs, the
higher priority message still gets through
intact! In fact, the lower priority colliding
node ends up receiving the higher priority
colliding node�s message.

With most other protocols, if a collision
occurs, no data gets through, and this can
happen over and over. Not cool for a
message to an automobile brake!

CAN requires nodes to listen before
sending. If two or more nodes decide to
send at the same time, it�s the same time to
within a small fraction of a bit time. That
means the messages line up bit-for-bit.

Because the network line is essentially
wire-ORed (see Figure 3), a low bit over-
rides a high bit. Nodes listen to what they
send, and the node sending the high bit
will realize that it�s receiving a low bit.

At that instant, it knows there is a
collision and switches from sending to
receiving. The most significant bit of the
Connection ID is sent first, so the message
with the lower-numbered ID wins the bit-
wise arbitration and gets through intact.

For this to work, nodes at opposite ends
of the cable must have their bits line up to
within about half a bit-time. Thus, the
round-trip delay of the cable is limited to
1.0 µs at the maximum DeviceNet speed
of 500 kbps. The corresponding cable

Figure 2�The new producer-consumer model
identifies the data rather than the source and
destination.

powered devices, peer-to-peer, fiber optics,
and fault containment. And if you do it
right, your device will be interchangeable
with your competitor�s. This may not seem
good to you, but your users will like it.

Most device networks, including Device-
Net, are deterministic. In this context,
�deterministic� simply means that the net-
work can guarantee a drop-dead maxi-
mum delivery time for a critical message.
Many peer-to-peer networks can�t claim
this because of the possibility of multiple,
destructive collisions.

Ethernet using standard hubs, for ex-
ample, is collision-based and therefore not
deterministic. But it can be made so,
thereby becoming a contender for real-
time control automation.

If you have a fast processor, combined
with Java, and perhaps Windows CE,
most of the network code is done for you.
I�m more of an 8-bit man myself, but with
�386EXs at $16, it�s worth considering.

Most new networks, again including
DeviceNet, use a producer-consumer (also
called data-centric) model as opposed to
the older source-destination model. The
data is considered central to the message
and is what is identified, rather than the
source and destination.

This situation increases the effective
bandwidth of the network by permitting
one-to-many broadcast messaging and
time synchronization. Figure 2 illustrates
the difference between the two message
models.

MOTIVATION
Automation-equipment designers are

eliminating old-style point-to-point wiring.
They want devices from various suppliers to
coexist on the same network. Ultimately,
they want interchangeability between same-
type devices made by different suppliers.

They�re also asking suppliers to make
their devices smarter, with better diagnos-
tics. Idiot lights are no longer enough.
Diagnostic sensors should provide both
alarm and warning levels.

The hope is that the device warns of
abnormal levels before it�s too late. If a
device does fail, it can easily be swapped
out for another, possibly one from a different
manufacturer, without powering down the
network. When the new device comes up
on the network, it tells you what it is, what
it can do, and lets you know if it�s OK.

Table 1 compares features of some
popular device networks. At this level of
comparison, many differences emerge.
CAN-based networks have limited range
because they are sensitive to time delay on
the line. Most other networks use repeaters
to extend their range.

With a 500-m range and a 64-node
limit, you wouldn�t use DeviceNet to network
a large hotel. But, it is an excellent fit in a
wide range of applications. The CAN
protocol that DeviceNet was built on was
originally designed by Bosch for use in autos
and trucks. This harsh environment isn�t so
different from semiconductor fab tools and
other automation equipment.

With a short message length, DeviceNet
is well suited for time-sensitive messaging.
At 500 kbps, a node doesn�t have to wait
more than 0.26 ms to send.

CAN
There is much literature on CAN [1],

including articles by Brad Hunting (�The
Solution�s in the CAN,� INK 58) and
Willard Dickerson (�Vehicular Control Mul-
tiplexing with CAN and J1850,� INK 69).
Here, I�m only going to cover the most
important points.

Network protocols such as DeviceNet,
SDS, and CANopen�all built on top of
CAN�inherit a well-established founda-

Source-destination model:

Producer-consumer model:

identifier

source destination data crc

data crc

Table 1�Repeaters are required for Profibus and LonWorks to achieve this range and node
count. DeviceNet and SDS are two popular CAN-based networks. Others exist, too, such as
CANopen and CAN Kingdom. Profibus is a master-slave protocol that is popular in Europe and
gaining support in the U.S. LonWorks, widely used in building automation, is now seeing use
in the equipment automation field.

DeviceNet SDS Profi bus DP LonWorks

Max. range 500 m at 500 m at 9600 m at 2700 m at
125 kbps 125 kbps 94 kbps 78 kbps

Max. speed 500 kbps 1 MBps 12 MBps 1.25 MBps
Max. nodes 64 128 126 32,385
Max. message length 8 bytes 8 bytes 244 bytes 228 bytes
Bus access Peer, M/S Peer, M/S M/S Peer, M/S
Error resistance 15-bit CRC 15-bit CRC 16-bit CRC 16-bit CRC
Deterministic yes yes yes in M/S mode
Hot-plug capability yes yes yes yes
Fault confinement yes yes yes yes
Line-powered devices 24 VDC, 8 A yes optional optional
Media twisted pair twisted pair twisted pair, twisted pair, fiber,

fiber, RF   RF, power line
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length can be deter-
mined by:

0.5 (1.0 µs × 300 m/µs × 0.72) = 108 m

where 300 m/µs is velocity of light
and 0.72 is the velocity constant of the

DeviceNet cable. That�s why you have the
100-m limit on cable length at 500 kbps.

MESSAGE RELIABILITY
The CAN controller calculates a 15-bit

CRC value for the received data and
compares it against the CRC it received. If
an error is detected, the node originating
the message is notified so it can resend the
message.

If the originating node sends too many
messages for which it gets an error back,
it goes offline. That way, a bad device
won�t crash the entire network.

Your CPU detects this event by reading
the CAN chip�s status register. You have
the option of staying offline or initiating an
error-recovery sequence.

If the CAN controller originating a
message doesn�t hear back from at least
one other device that the message was
correctly received, it will resend. Thus, a
lonely node will just sit there and send over
and over.

When you do get a message from your
CAN controller, you know it�s correct.
And when you tell the CAN controller to
send a message, it keeps trying until the
message gets through. Pretty good, con-
sidering all this is handled by one $8 chip.

To make CAN into a usable network,
you need a way to string messages to-
gether, establish connections, and handle
errors. That�s where DeviceNet comes in.

DeviceNet CONNECTIONS
DeviceNet provides a structure for es-

tablishing logical connections between

devices, releasing connections if they go
unused for too long, and stringing messages
together if you need more than 8 bytes. It
also provides an object-oriented frame-
work to tell you how to structure your
network code.

If your device-type is in the DeviceNet
library, it even tells you how your device
should behave. That part is necessary to
make devices completely interchangeable.

Central to DeviceNet is a concept called
a connection. Think of it as a telephone
connection. When you call someone, you
establish a connection. That connection is
yours, and other people talking on the
same fiber have different connections. The
connection breaks when you hang up or in
some cases if you stop talking for a while.

In DeviceNet, each connection is identified
by an 11-bit number called a message identi-
fier or connection ID. This number includes
your device�s Media Access Control Identifier
(MAC ID), which is a number from 0 to 63,
usually set by a switch on your device.

DeviceNet provides a set of 11 pre-
defined connections, called the predefined
master/slave connection set (see Table 2).
Wait a minute�master/slave?

Yes, that�s a letdown after expecting
peer-to-peer, but most DeviceNet products
on the market today are slave-only de-
vices. The implementation is much simpler
and less memory consuming.

A peer device must include a lot of
code to dynamically establish and con-
figure connections. If you really want to
include peer capability, the standard

enables you to put it in a device along with
the predefined connection set.

In fact, the DeviceNet standard distin-
guishes between a slave device that also
has peer capability, and a slave-only
device. In this article, I�m sticking to the
simpler slave-only device, which uses only
predefined connections.

DeviceNet MESSAGES
DeviceNet has two basic message

types: explicit and I/O. The predefined
connection set includes one explicit con-
nection as well as four I/O connections of
different kinds.

Explicit messages include the path to
locate the data of interest. This consists of
the class ID, instance number, and at-
tribute ID. They also specify an action to be
taken (e.g., set or get). Finally, they in-
clude the master�s MAC ID because a
slave must respond only to its master.

With of all this baggage, explicit mes-
sages aren�t efficient. They are used mainly
for initial configuration, although in theory
they could be used for everything. Your
device must support this connection, but
others are optional.

In an I/O poll connection, the master
periodically sends a request saying in
effect, �Hey! Send me your data.� It is an
efficient exchange because the master
doesn�t need to send any baggage.

When the slave device sees a message
with this connection ID, it returns a prear-
ranged set of data. On more complex
devices, the master can usually select from
various data sets. If only one I/O connection
is supported, it�s usually this one because
it is general purpose.

In an I/O change-of-state (COS) con-
nection, the device sends its data when it
changes more than a selected amount. This
choice is good for slowly changing data.

The I/O cyclic connection uses the
same connection ID as the COS connec-

From CAN
controller
(inverted)

V-

DeviceNet
twisted pair line120 Ω

From CAN
controller

V+

DeviceNet
twisted pair line 120 Ω

Figure 3�A DeviceNet line with a one-line
driver uses a low output from the CAN
controller to turn both transistors on while a
high output turns both off. It works like a
wire-OR, where any low output dominates
all other nodes� high outputs.

             Connection ID Bits                                      Description
10 9   8   7   6   5   4   3   2   1   0 
        Message

              ID            Slave’s MAC ID                    Group 1 Message

0 1   1   0   1 Slave’s I/O Change-of-State/Cyclic Message
0 1   1   1   0 Slave’s I/O Bit-Strobe Response
0 1   1   1   1 Slave’s I/O Poll Response

             
Slave’s MAC ID

    Message
                                               ID                         Group 2 Message

1 0       0   0   0 Master’s I/O Bit-Strobe Request
1 0       0   0   1 Reserved
1 0       0   1   0 Master’s Change-of-State/Cyclic Ack.
1 0       0   1   1 Slave’s Explicit Response
1 0       1   0   0 Master’s Explicit Request
1 0       1   0   1 Master’s I/O Poll Request
1 0       1   1   0 Unconnected Port
1 0       1   1   1 Duplicate MAC ID Check

Table 2�These 11 connections
come from two DeviceNet mes-
sage groups, with the Connec-
tion ID made up differently in
each case. Group 1 messages
are higher priority, used for the
slave�s I/O messages. All mes-
sages originate from the mas-
ter, except for the Duplicate
MAC ID Check and the slave�s
COS/cyclic message.
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like a regular message, except the first part of
the data field contains fragment information.

For an explicit-message fragment, the
first byte contains a fragment flag, and the
second byte specifies the fragment type
(first, middle, last) and the fragment count.
The fragment count is only a six-bit value
but can roll over any number of times,
allowing for messages of unlimited length.

For an I/O-message fragment, only
one byte is used for fragment information
(the one specifying fragment type and
count) to maximize the space for actual
data. In this case, the fragment flag is
implied if the produced connection size is
greater than 8.

For explicit or I/O fragments, the receiver
simply concatenates the data obtained
from each fragment, stopping when it sees
the flag indicating the final fragment.

With fragmented messages there is the
question of whether the receiving device
needs to send an acknowledge for each
fragment received. It does for an explicit
message but not for an I/O message. I/O
message fragments are sent back-to-back
for maximum speed.

SOME REAL MESSAGES
Figure 4 shows some real DeviceNet

messages based on a typical out-of-the-
box slave MAC ID of 63 and a master ID
of 1. This situation is typical because it gives
the slave device the lowest priority and the
master the highest.

For clarity, Figure 4 shows only the connec-
tion ID and data fields of the CAN message
frame. There are two additional fields.
One is a length field that tells the receiver
how many bytes of data to expect.

tion. The master chooses between the two
when it allocates the connection. With the
cyclic connection, the device sends its data at
a selected rate. This choice works well for
rapidly changing data.

In an I/O bit-strobe connection, the device
sends only a few bits of data in response
to the master�s bit-strobe request. This is a
good choice for simple on/off sensors.

With DeviceNet, no connections exist
until they are allocated. How do you
allocate a connection in the first place? I
think the designers of DeviceNet must
have struggled with this.

It turns out that a special connection
always exists�the unconnected port. The
master sends an allocate message to the
unconnected port to allocate connections
and specify which of the predefined connec-
tion set it wants to use. Once you have connec-
tions, you can send messages over them.

Many CAN controllers have individual
mailboxes for incoming messages. You
can assign each connection ID to a differ-
ent mailbox. The Intel and Siemens chips
have 15 and 16 mailboxes, respectively,
enough for the predefined connection set
with room to spare.

This makes your program modular from
the start. Different messages come in dif-
ferent boxes.

STRINGING MESSAGES TOGETHER
An explicit message from the master uses

five bytes of the eight bytes available for
the path, service, and master MAC ID. This
leaves only three bytes for actual data.

If the master sends a four-byte long int,
two separate messages are needed. These
messages are called fragments and are just

F i g u r e
4 � T h e s e

are messages
you see on a

DeviceNet ana-
lyzer during a typical

start-up sequence. The
Connection IDs are based

on a slave MAC ID of 03Fh.
Note the variable-length data
field. All message values are
in hex, and the least signifi-
cant bit is always sent first.

The other field is used for acknowledg-
ment. The node receiving the message
sends an ack bit if the message was OK.

CAN messages are variable length.
Depending on the number of data bytes
sent, a frame can range from 44 to 108 bits.

The first message your device deals
with is a duplicate MAC ID check mes-
sage. Before going online, your device
must make sure it has a unique MAC ID.

To do this, your device broadcasts two
duplicate MAC ID check messages, 1 s
apart, addressed to its own MAC ID. All
devices receive this message, but none
respond unless your device addresses them!

After sending the duplicate MAC ID
check message twice and hearing no
response, you can go online.

But since you have no connections yet,
you must ignore all messages with two
exceptions�a message to your uncon-
nected port to allocate connections, or a
duplicate MAC ID check message that
contains your MAC ID.

Duplicate MAC ID check messages
would be from another device hoping to
go online but set to the same ID as yours.
Your response to this message prevents the
offending device from going online.

When you get a message to your
unconnected port it will be the master
specifying which connections out of the
predefined connection set it wants to allo-
cate. The allocation choice byte contained
in this message will have bits set which
correspond to the connections it wants.

If you support these connections, allo-
cate them and return a success response.
Otherwise return an error and don�t allo-
cate any connections.

Slave’s success response to master’s allocate request

     5FB         01  CB  00

5FB = Connection ID for slave’s explicit response
01   = Echo master’s MAC ID
CB  = Service code OR’d with response flag
00   = Wants 8-bit message format

Master’s explicit request to set packet rate of
Explicit connection to 500 ms

     5FC         01  10  05  01  09  F4  01

5FC = Connection ID for master’s explicit request
01   = Master’s MAC ID
10   = Service code for “Set Attribute”
05   = Class ID of connection class
01   = Instance ID (explicit connection)
09   = Attribute ID of packet rate
F4   = Desired packet rate  LSB
01   = Desired packet rate  MSB

Slave’s duplicate MAC ID check message. 
Vendor ID is 0851h, Serial No. is 01020304h

      5FF        00  51  08  04  03  02  01

5FF = Connection ID for dup. MAC check
00   = Device’s physical port number
51   = Vendor ID  LSB
08   = Vendor ID  MSB
04   = Device’s serial number  LSB
03   = Device’s serial number
02   = Device’s serial number
01   = Device’s serial number  MSB

Master’s allocate connections message to 
allocate the explicit and poll I/O connections

     5FE         01  4B  03  01  03  01

5FE = Connection ID for unconnected port
01   = Master’s MAC ID
4B   = Service code for “Allocate”
03   = Class ID of DeviceNet class
01   = Instance ID
03   = Allocation choice (explicit and I/O poll)
01   = Allocator’s MAC ID

Slave’s success response to master’s request to 
 set packet rate. Actual packet rate was set to 512 ms

     5FB         01  90  00  02

5FB = Connection ID for slave’s explicit response
01   = Master’s MAC ID
90   = Service code OR’d with response flag
00   = Packet rate actually set  LSB
02   = Packet rate actually set  MSB

Master’s I/O poll request

    5FD 

5FD = Connection ID for master’s I/O poll request
The data field is empty!

Slave’s I/O poll response

     3FF         00  20  0F

3FF = Connection ID for slave’s I/O poll response
00   = Slave’s error status (OK)
20   = Temperature of 32˚F
0F   = Humidity of 15%
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Routes
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Keep track of the
master MAC ID that allo-

cated these connections, be-
cause from now on this is your

master. A message containing a
different master MAC ID is ignored.
For each connection allocated, start a

timer that deletes the connection if it times
out. For the explicit connection, the timer
defaults to 10 s. For the I/O poll connec-
tion, it defaults to zero and must be set by
the master before the connection is used.

The time-out value is controlled by an
attribute called the expected packet rate
(EPR), which the master can set. Your time-
out value, in milliseconds, equals the EPR
× 4. Thus, the EPR for the explicit connec-
tion defaults to 2500.

In the I/O message example shown in
Figure 4, note that no data, path, or
service code is sent with the master�s
request. The data set returned with the
slave�s response is already specified in the
manufacturer�s device profile or electronic
datasheet.

More complex devices may have many
sets of data the master can choose from.
The Master selects the set it wants by
changing the slave�s produced connection
path.

Because no baggage is involved in the
I/O message, it�s an efficient process. A
device such as the one modeled in Figure
5 can send its entire sensor and status data
in one I/O message. With explicit mes-

saging, many full-length messages would
be needed.

OBJECT LIBRARY
With DeviceNet, a device is modeled

as a collection of objects. Each object has
attributes and behaviors, and can be
implemented directly as a C++ class.
Figure 5 shows the object model for a
DeviceNet device with two analog sensors.

Each class has a class ID, objects have
an instance ID, and attributes have an
attribute ID. By specifying these three ID
numbers, any attribute in the device can
be addressed.

The DeviceNet Object Library is con-
tained in Volume II of the standard. In
addition to network-related objects, it in-
cludes about 25 objects that model real-
world switches, sensors, actuators, PID
loops, position sensors, and controllers.
There are more on the way, including an
Analog Sensor Object that models ad-
vanced sensors, with capabilities such as
calibration, auto-zero, offset, gain, and
setpoints.

CONFORMANCE TESTING
When you complete your DeviceNet

product, how do you know it meets the
standard? The University of Michigan will
test your product to see if it conforms to the
rigors of the DeviceNet protocol.

If this sounds too intimidating, you can
avoid embarrassment by getting the soft-

Figure 5�Here�s the Object Model for a DeviceNet device with two analog sensors. These objects
can be implemented as instances of C++ classes, based on the detailed models provided in the
DeviceNet Object Library.

REFERENCE
[1] J. Schill, �An Overview of the CAN Protocol,�

Embedded Systems Programming, p. 46, Sept 1997.

ware and a DeviceNet interface card so
you can test it yourself. When you do go
to the test lab, bring your laptop and
compiler along. The process is designed
to be a fix-it-as-you-go experience.

DeviceNet STANDARDS
The DeviceNet standard keeper is the

Open DeviceNet Vendor Association
(ODVA). It manages the evolving stan-
dard and assists vendors in developing
their products and the Device Profiles for
them. Within the association are 14 active
special-interest groups, organized along
product lines. The ODVA Web site lists
these groups.

You can get your feet wet by getting a
DeviceNet catalog at no charge from
ODVA. The first chapter has an excellent
overview of CAN and DeviceNet. If you
decide to jump in, you can purchase the
full DeviceNet specification (the CD ver-
sion includes a good search engine) from
ODVA. Later you can become a member,
join a SIG, and play a part in defining
network standards for your industry.

Next month, I�ll turn some DeviceNet
objects into C++ classes, embed them in a
�386EX, and hang a DeviceNet interface
on it. EPC
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Figure 1�Each layer in a TCP/IP stack has a
specific function and adds a header to the
data from the application layer.
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Ingo Cyliax

TCP/IP Networking

When I discussed network communi-
cation last month, I mentioned that Ethernet
is starting to be viewed as a device
interface bus. I also told you about the
increasing availability of Ethernet-based
data-acquisition devices. This month, let�s
see what it takes to build a prototype of an
Ethernet-based device.

First question: what do I define as an
Ethernet-based device? Basically, a device
that has an Ethernet port as its primary
interface. A temperature sensor with an
Ethernet port is one example, but I�m not
sure about the economics of such a project.

To make developing such a device
more interesting to me, it needs to solve
one of my problems. So, here goes.

I frequently use a prototyping system
called a logic engine, which is essentially
a system tester. It has 128 I/O ports and is
controlled via a PC-compatible parallel port.

The protocol used over the parallel port
needs nonstandard software to drive it.
This situation wasn�t a problem when a
DOS-based machine controlled this board.

I simply wrote a program to make the
parallel port perform the function I wanted.

With the advent of Windows 95 and
Windows NT�based systems, controlling
the parallel port becomes an issue. I now
need to write a device driver just so my
program, which wants to control the logic
engine, can talk to it. What�s worse, this
device driver will probably break when I
try it with Win98 or when NTS comes out.

The device I want to discuss is a Ethernet-
to-parallel port device that controls the
logic engine. In a sense, the parallel port�
based logic engine becomes an Ethernet-
based logic engine.

This technique has several advantages.
First of all, I don�t need to write and install
a device driver on the system controlling the
logic engine. Secondly, I can share the logic
engine between workstations or over the
Internet.

Finally, I can use a variety of programming
languages on many platforms to talk to this
device. All my language on the worksta-
tion needs now is a network library. I don�t

With Ethernet chips becoming a dime a dozen, it�s a lot easier to justify having
your network Ethernet driven. Ingo walks you through all the nitty-gritty steps of
how to get your Ethernet-based device working with real-time capabilities.

have to write various libraries like I did for
the old parallel-based interface.

But before getting started on this project,
I want to take a look at one of its major
components�TCP/IP.
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that the data, once received, is not cor-
rupted by noise, arrives in order, and
nothing is missing or duplicated.

A virtual circuit is kind of like a phone
connection. Once the connection is made,
it is maintained until disconnected.

TCP implements this reliable virtual
circuit by maintaining a state on each end
of the connection. There is state information
for each active (or connected) port. The
status information maintains the connection
state (i.e., whether the circuit is being set up or
torn down and whether it is connected).

Sequence pointers are kept to indicate
which byte of the stream has been received,
acknowledged, and delivered to the receiver.
The transmitter also tracks which byte it
sent, how much data is left to send, and the
last byte acknowledged by the receiver.

Each time one side of the connection
has data to send (TCP is full-duplex, by the
way), it bundles up the data into a packet
and adds a TCP header to the packet.

The packet header includes an end-to-
end checksum to make sure that the TCP
packet is received intact, a copy of the
sequence pointer of the sent data, and a
copy of the sequence number for the data
it last received, which serves as the acknowl-
edgment. Including the acknowledgement
for the data received, while transmitting
data in the other direction, is referred to as
piggybacking the acknowledgment.

The header also contains the destina-
tion port number this TCP packet goes to
and the source port number from which it
was sent. Figure 2 shows how the various
sequence pointers are related.

Once the TCP header has been added,
the TCP packet is passed to the Internetwork
layer. This layer gets packets to and from
other hosts using the network interface.

This layer adds an IP header to the TCP
packet. This header contains the destination
host address and the source host address.

These addresses along with the port numbers
from the TCP header let us uniquely identify
which TCP connection this packet belongs
to as well as the direction it needs to go.

The Internet layer needs to send the
packet out over a network using one of the
one or more network interfaces. Internet
packets can be up to 8 KB long, but most
network interfaces can�t handle packets of
that size. For example, an Ethernet interface
can only handle packets 1506 bytes long.

Therefore, the Internet layer often needs
to fragment the IP packet into smaller
packets. It splits the packet into smaller chunks
and copies the IP header into each one.

A field in the IP header tells at what
offset in the original packet the fragment
packet belongs. The receiving host�s Internet
layer reassembles the fragments into the
original packet before passing it on to the
receiving transport layer.

For the Internet to work, we need to be
able to connect various networks together
via special hosts that have more than one
network interface. These hosts are called
routers or Internet gateways.

On a router, the Internet-layer imple-
mentation also needs to decide which
network interface a packet needs to be
sent on. A routing table does this job.

Figure 2�
TCP uses a vari-
ety of sequence
pointers to track how
much data is sent and
acknowledged out of the
32-KB window. TCP uses a
sliding-window protocol,
where each sequence number
identifies a single byte.

TCP/IP NETWORKING
PRIMER

Recall that TCP/IP implemen-
tations use the socket API for
application programs to inter-
face to the stack (see �Network
Communication,� INK 96). In a
nutshell, when two programs
want to establish a TCP/IP con-
nection, they set up a socket
which is identified with an
Internet address and a port.

Once the connection is set
up, the programs write data to the socket
as if it were a file, and the data comes out
the other end of the socket, where the other
program reads it like a file. The protocol stack
treats the TCP/IP as an unstructured byte-
stream, so it�s easy to program for TCP/IP.

But as you probably know, the actual
network interface between computers usually
consists of a LAN or serial interface, with
data being transferred in packets. Let�s
look at what goes on in the TCP/IP stack to
give us this illusion of a connection.

The protocol stack for TCP/IP is illustrated
in Figure 1. At the top, we have the application
layer, which is followed by the transport and
Internetwork layers. The network interface
and the network are at the bottom.

The application program, in the applica-
tion layer, is considered part of the protocol
stack. The application usually implements
some kind of protocol on top of the unstruc-
tured bytestream provided by TCP/IP.

For example, Internet mail uses the
Simple Mail Transport Protocol (SMTP) to
exchange E-mail messages between dif-
ferent hosts on the Internet. You may also
be familiar with the Hypertext Transport
Protocol (HTTP) that Web browsers and
servers use to communicate.

Note that application-layer protocols
are implemented in the application and
that the interface between the application
layer and the transport layer is the socket
API. The rest of the protocol stack�the
transport layer through the network inter-
face�is usually implemented in the OS
because its implementation is the same for
any application.

The transport layer implements the
bytestream abstraction of the transmission
control protocol (TCP) over the packet-
switched Internetwork protocol (IP).

TCP implements what networking folks
call a reliable virtual circuit. It is reliable
because the implementation makes sure

Write data Read data

ack last seq last ack read by app
TCP header

seq len

Data

TCP packet

ack

TCP header

Packet
buffer

Packet
buffer

Packet
buffer

System memory
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ptr2

ptr3

...

Status/Control

Buffer chain

Bus mastering
Ethernet registers

Figure 3�Bus-mastering Ethernet controllers
can DMA the packets directly from system
memory. The device driver simply sets up a
DMA chain to tell the controller where to find
the packets.
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Now we�re at the business end of the
protocol stack, the network interface layer,
which has the device drivers for the network
devices. A network device may be an Ethernet
card, a serial port, or wireless Ethernet inter-
face that connects the host to the network.

Probably the most common network
device is the Ethernet interface. Its versatile
LAN architecture can be connected to
twisted pair, coax, or fiber-based media.
An Ethernet card usually has some memory
in which the outgoing Ethernet packet is
constructed and received. The actual trans-
mitting and receiving is done with hard-
ware on the card.

The network interface driver copies the
packet it received from the Internet layer
into the Ethernet card�s memory, adds an
Ethernet header to it, and tells the card to
send the packet. When the card transmits
the Ethernet packet, it interrupts the net-
work interface driver. Of course, the card
also interrupts if a packet was received
from the Ethernet.

The network interface usually communi-
cates with the network driver queues. The
transmit and receive queues decouple the
upper level network code from the interrupt
service code for the driver. In a real-time
application, this task is especially impor-
tant because we don�t want to spend a lot
of time in the interrupt service routine.

The receive interrupt routine simply
pulls the packet from the Ethernet card�s
memory, puts it in the receive queue, and
signals the upper level code. The transmit
interrupt routine checks the transmit queue.
If it has something to send, it pulls off the
packet from the queue, copies it to the
card�s memory, and starts the transmission.

Newer cards�especially PCI-based
cards that can do bus mastering and access

system memory�use DMA to send the
packets directly from system memory. For
these cards, the network driver simply
maintains a list of buffer pointers that point
to receive and transmit buffer memory.
These cards don�t require the CPU to copy
the data around during interrupt time.
Figure 3 shows the basic idea.

TRANSFERRING DATA
We also need to discuss transferring

data via TCP/IP. There are two Ethernet
speeds, 10 and 100 Mbps.

Most100-Mbps cards automatically detect
if the network they�re plugged into is 100
or 10 Mbps. At 10 Mbps, Ethernet can trans-
fer almost 1 MBps of data in one direction.

However, you most likely won�t see that
high of a throughput. In many cases, if
there�s more than one host on the Ethernet,
there will be some overhead in trying to
access the media and deal with contention.

For Ethernet, this situation can be really
bad. The utilization may be as low as 30%
when Ethernet is saturated with tens of hosts.

That means all hosts together are only
able to transfer about 300 kbps on a
highly congested 10-MBps Ethernet. Of
course, if only two hosts are involved, we
should be able to achieve almost full
utilization of the Ethernet.

Another problem is latency. To send
data to another host, the data has to
traverse the protocol stack, possibly get
copied into the Ethernet card�s memory,
be transmitted over the Ethernet, be re-
ceived and copied form the receiving
card, and passed back up the protocol
stack on the receiver and then reverse this
to get an acknowledgment back.

On a lightly loaded 10-MBps network
with high-performance Ethernet cards, you

Photo 1�This is the logic engine. It�s a
large wire-wrap area with a bunch
(128 bits) of I/O registers that can
be controlled via a PC parallel
port. It�s essentially a
chip and system
tester.
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R
PC might see latencies down

to 1.0 ms. However, if the
network gets loaded, the latency

can easily reach 10�20 ms or more.
Basically, make sure the Ethernet is

not very loaded if you expect high utiliza-
tion or throughput. Also, this means there
are upper bounds to what can be done
with Ethernet as a device bus.

PUTTING IT TOGETHER
Let�s look at the nuts and bolts of imple-

menting a network-based logic-engine de-
vice. As I mentioned, I need to build an
Ethernet device. In this case, it is an
interface to the logic engine, a prototype
developed by the Computer Science De-
partment at Indiana University.

The logic engine (see Photo 1) is used
in an undergraduate digital design lab
and for research projects. In both cases, it
serves as a sort of chip/system tester.
Figure 4 gives an overview of the system
we plan to build.

The logic engine is an array of 8-bit I/O
registers which are read and written by a
host via a parallel port interface. Figure 5
illustrates the logic engine�s basic design.

The protocol controlling the logic engine
is simple. An 8-bit address is latched by
first writing it to the data port of the PC
parallel port interface and then strobing
the address strobe, which is one of the
control signals on the parallel interface.
Once the address has been latched, the
host reads and writes the register.

Writing it is simple�the host sets the
data in the data port of the parallel inter-
face and strobes the write strobe. Reading
is a little harder. The content is read by

selecting the nibble (upper/lower) of the
I/O register and reading the status port of
the parallel port. It takes two transactions
to read the port in the interface.

Now you have an idea of how the logic
engine interface works, so let�s go to work.
As a minimum, you need a CPU board
with a PC parallel port interface. You also
need an Ethernet interface and enough
memory to hold the system software.

For the prototype, I chose Versalogic�s
VSBC-1 motherboard and their PCM-3660
NE2000-compatible Ethernet module.
While it�s overkill for this application, I had
one on hand. Using a PC-compatible single-
board system with integrated Ethernet,
such as Versalogic�s PCM-4890, would
be more economical.

Next, I selected an RTOS. My biggest
concern was that it has a TCP/IP protocol
stack and supports the Ethernet card.

I chose an NE2000-compatible Ethernet
card, which is the most common. Nearly all
TCP/IP implementations have a driver for
it. Eventually I want to ROM this applica-
tion, so a ROMable RTOS would be good.

For the prototype, I chose QNX, mostly
because I can develop the code on the
system while prototyping by booting the
OS from the network or hard disk. Once
it�s done and I don�t need the development
system components, I can just ROM the
essential modules needed from the OS.

Another OS to consider is RT-Linux,
which is a freely available Unix-like Linux
OS with a real-time extension. This also lets me
develop software online and then embed it.

Although RT-Linux is not as easy to ROM
as QNX, it is possible. I can also boot RT-
Linux over the network.

I also need to talk
about the application-
layer protocol I imple-
mented for this project.
Recall that the applica-
tion-layer protocol uses

the socket API to communicate with the remote
system�here, the logic engine interface.
The protocol for the logic engine is simple.

The command is of the form:

<cmd><port><wdata>

where <cmd> can be r for read, w for
write, or q for quit. <port> and <wdata>
are two-digit hex numbers. Even though
only the w command needs data, always
send a data byte along. For the r and q
commands, the data has no meaning. It
just makes each command the same length,
which makes buffer management easier.

For every command received, the logic-
engine interface sends back a byte again
in a two-digit hexadecimal encoding. If the
command is a read, it�s the value of the
register addressed. So, the response is:

<rdata>

Listing 1 shows all of the application-
specific code for this project. The program
starts off by setting up a server port. When
a connection from a client comes in, you
spawn a process to handle the connection
and it sits in a loop waiting for commands.

For each r and w command, you perform
the transaction on the parallel port and
return a byte. If the connection is broken or
q is received, the process terminates.

What about the client side? Here, I use
a task control language (TCL) program to
test the interface. You can find free TCL

Figure 4�This is the system diagram of my
Ethernet device. By putting devices on the
Ethernet, I make devices more portable and
accessible.
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Figure 5�You can think
of the logic engine as a
big array of 8-bit regis-
ters that can be written
and read via a PC paral-
lel port. It serves as a test
bed for digital circuits at
Indiana University.
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#include <sys/wait.h>
#include <netinet/in.h>
#include <stdio.h>
#include <asm/io.h>
#define LPTDAT 0x278
#define LPTSTAT 0x279
#define LPTCTL 0x27a
#define MyPort 4321

main(){
  int s,ns;
  struct sockaddr_in sin;
  int slen;
  /* establish command port using TCP/IP */
  s = socket(AF_INET, SOCK_STREAM, 0);
  sin.sin_addr.s_addr = htonl(0);
  sin.sin_port = htons(MyPort);
  bind(s,(struct sockaddr *)&sin,sizeof(sin));
  listen(s,1);
  while(1){
    slen = sizeof(sin); /* wait for connection */
    ns = accept(s,(struct sockaddr *)&sin,&slen);
    if(ns < 0)
      continue;
    if(!fork()){ /* spawn off process to deal with connection */
      process(ns);
      exit(0);
    }
    close(ns); /* close off socket in parent */
  }
}
#define CMDLEN 5
process(fd)
int fd;{
  char buf[128];
  int n,l;
  char req;
  int port, data;
  iopl(3);
  while ( 1 ){
    l = 0;
    while ( l < CMDLEN ){
      n = read(fd,&buf[l],(CMDLEN-l));
      if(n < 0) goto done_err;
      l += n;
    }
    buf[CMDLEN] = '\0';
    sscanf(buf,"%c%02x%02x",&req,&port,&data);
    switch(req){
      case 'q':
        goto done_normal;
      case 'w':
        le_write(port,data);
        break;
      case 'r':
        data = le_read(port);
        break;
      }
      sprintf(buf,"%02x",data);
      if(write(fd,buf,2)<0)
        goto done_err;
    }
  done_normal:
    close(fd);
    return(0);
  done_err:

Listing 1�Here is all the application-specific code I need for the Ethernet device. The rest
of the system implements the TCP/IP stack.

(continued)
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    close(fd);
    return(-1);
}
le_read(p)
int p;{
  int x;
  outb(p,LPTDAT); /* address */
  outb(0x01,LPTCTL); /* address strobe */
  outb(0x00,LPTCTL); /* reset address strobe */
  outb(0x02,LPTCTL); /* read high nibble */
  x = inb(LPTSTAT)>>4;
  outb(0x0a,LPTCTL); /* read strobe lower nibble */
  x |= (inb(LPTSTAT) & 0xf0);
  outb(0x00,LPTCTL); /* reset read strobe */
  return(x);
}
le_write(p,x)
int p,x;{
  outb(p,LPTDAT); /* address */
  outb(0x01,LPTCTL); /* address strobe */
  outb(0x00,LPTCTL); /* reset address strobe */
  outb(x,LPTDAT); /* data */
  outb(0x04,LPTCTL); /* write strobe */
  outb(0x00,LPTCTL); /* reset write strobe */
}

Listing 1�continued

Listing 2�Since the device is now accessible via TCP/IP, I can use scripting languages like
TCL to control the device from several platforms. This program also runs under Windows
or Linux without changes to test the logic engine interface.

# start socket to logic engine
set fd [socket "tmp2" 4321]
# turn on tristate buffers
puts -nonewline $fd "w00ffw01ff" ; flush $fd
puts [read $fd 4]
# now loop through a bunch of numbers
for {set d 0} {$d < 256} {incr d}{
  # write the sequence
  set p 4
  while { $p < 16 } {
    puts -nonewline $fd [format "w%02x%02x" $p $d ];
    flush $fd; read $fd 2;
    incr p;
  }
  # read and compare
  set p 4
  while {$p < 16}{
    puts -nonewline $fd [format "r%02x00" $p ];
    flush $fd
    set y [read $fd 2]
    set x [format "%02x" $d]
    if {$y != $x}{
      puts "data at $p read $y doesn't match written $x ."
    }
    incr p;
  }
  puts -nonewline "." ;  flush stdout
}
puts ""
# OK, all done.
puts -nonewline $fd "q0000" ; flush $fd
puts [read $fd 2]
exit
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www.versalogic.com

implementations for Windows, Unix, and
Macintosh.

Listing 2 offers a simple test program. It
connects to the server and tests some of the
logic engine ports. That�s all there is to it.

Well, almost. It�s OK for a prototype,
but there are some things that need to be
addressed. As I have mentioned, the pro-
totype is overkill for this application.

You only need a low-end �386-based
CPU. Also, I haven�t ROMed the application.
Some of that depends on the RTOS we use
as well as the particular CPU module.

I also haven�t addressed how an Ether-
net-based device finds out its Internet ad-
dress. My development system boots from
disk, so it�s easy to configure the Internet
host address in one of the start-up scripts
via the console I use for development. In an
embedded Ethernet device, however, there
probably isn�t a console.

But don�t despair. There are solutions.
One option: include a serial port on the

Ethernet device, which would run a small
command-line-based interface that lets you
configure things like the Internet host ad-
dress and store data in a flash file system.
But, this solution mars the beauty of having
an Ethernet device�it would have a con-
sole and seem more like a computer.

A better solution is to use one of the
protocols available for this purpose. There�s
the dynamic host configuration protocol
(DHCP) and the boot protocol (BOOTP).
The idea: you can use a Windows or Unix
machine as an Internet host address clear-
inghouse.

When turned on, the Ethernet device
sends a DHCP or BOOTP broadcast over
the Ethernet. A workstation configured to
be a DHCP or BOOTP server then assigns
an Internet address to the Ethernet device
and sends a response. The Ethernet device
uses this address until it�s turned off.

Photo 2�The PCM-3335 is a complete i386
computer module that includes common PC/
AT devices such as floppy and IDE controllers
and serial and parallel ports. Add an NE2000
PC/104 Ethernet module, such as the PCM-
3660, and you�re in business.

ON THE SEARCH
Although the logic engine inter-

face isn�t a very general example, it
shows you the essentials for building

an Internet device.
It would be easy to replace the logic

engine interface with a PC/104 A/D
board that plugs into to the Ethernet de-
vice, then change the code to read out the
data from the A/D board and send it to the
workstation using a TCP/IP stream. Voilà,
an Ethernet-based data-acquisition device.
I�m sure you can think of other applications
as well.

One thing that bothers me is that it�s still
kind of expensive to implement this sort of
thing. At one end of the spectrum, you can
find reasonably priced �386-based PC/
104 cards that require an Ethernet module
to be added. Photo 2 shows a PCM-3335
module like this from Versalogic. There
are also high-end �486- and Pentium-based
super cards with integrated Ethernet and
SVGA and so forth, but that�s overkill.

It seems like there should be a no-frills
i386-based PC/104 module with inte-
grated NE2000-compatible Ethernet con-
troller. Well, I�ll keep looking. RPC.EPC
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Fred Eady

Ever take on a contract, then realize it�s a speck over your head? Fred, too.
However, DVP�s RF  devices are out-of-the-box solutions. They let you operate many
transmitter/receiver pairs just like an Ethernet network. No need to be an RF guru.

Back in the early 1970s (before some
of you youngling engineers were born), I have
fond memories of traveling by car to the
FCC field office in Atlanta, Georgia. Be-
lieve it or not, I used to be an RF head.

All those road trips weren�t just for fun.
I was taking FCC licensing exams. I cut my
teeth in professional electronics by work-
ing in radio.

Yep, as you can tell from my writing, I
did a lot of talking in my early years of
broadcasting. I started out by doing the
nightly rock show and the weekend grave-
yard shifts on the local AM station.

I tried television as a cameraman and
even auditioned at WSM-TV in Nashville,
Tennessee. Good thing I was young, dumb,
and ugly. Couldn�t see myself now doing
weekend weather! However, I did manage
to land a job at the big-city FM station
working for National Public Radio.

By then I was a newsman, but manage-
ment saw too much of me in the innards of
the consoles. If you couldn�t find me, just
call the chief engineer. I was usually hang-

ing out with him at the antenna site way up
on the mountain.

Well, one thing led to another, and I
finally made a trip to Atlanta to test for
what was then called First Class Phone.
Over the years, the First Class was re-
placed with General. I still have that rag
hanging in the Circuit Cellar Florida room.

With all that, you�re probably scratch-
ing your head wondering why all of a

sudden you need to know my life story.
Well, my point: there�s a lot of mystery in
RF product design and implementation.
Odds are, if you don�t do RF every day,
you most likely can�t do RF at all.

If you think like I do, you see RF as a
bunch of plumbing tied together with ca-
pacitors and coils. Yet RF is very much in
our everyday lives.

Take your garage door opener, for
instance. It�s probably not infrared con-
trolled. I bet it�s RF. You can�t use your TV
remote control to disable your car alarm.
That�s RF, too.

I could go on and on about what is and
what isn�t RF. The fact is that in the end-user
community, RF technology is used as much
as microprocessor technology.

To stir in a little mud, RF and micros
make a cute couple. So, if you�re a micro
head and need to develop an application
that assumes you know RF, should you get
in the car and head for Atlanta? Nope.
Just pick up the phone or get on the �Net
and contact DVP.

Photo 1�Even I could implement these tricky
little RF modules.

Radio Frequency and Micros
Part 1: Transmitter and Receiver Modules
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NO-BRAINER RF
RF stuff always fascinated me. When

I was a kid, I souped up my walkie-
talkies by adding power stages and home-
made antennae. It still amazes me that elec-
tronic components pumping electrons through
listless wire become something useful.

In fact, I was so enthralled with RF, every
year I purchased a copy of the Radio
Amateur�s Handbook. I even tried to build
some of the RF circuits shown in its pages.

I had lots of fun with my two-way toys,
but I was unknowingly breaking every
FCC rule that applied to those types of
devices. Now that I�m sorta a responsible
adult and a professional, I can�t afford to
break the rules to make an RF application
work.

To add pain to my RF misery, I write
code. I don�t design RF. About the closest
RF energy thing I come into contact with is
microprocessor clock speeds.

There must be a lot of people like me out
there because DVP developed a line of
what I call no-brainer RF modules that let
me apply my micro knowledge in the RF
galaxy. DVP offers off-the-shelf, out-of-the-
box, work-right-away RF solutions.

I happen to have a few of their tricky RF
modules in the INK Florida room. So, let�s
talk about them before we apply them.

SENDING IT OUT
These transmitter modules are low

power and are designed for unlicensed
wireless operation conforming to FCC Part
15 regulations. They�re commonly used in
car alarms and keyless entry systems.
Micro heads like us are most likely to use
these modules for telemetry and data-
collection applications.

DVP�s transmitter modules operate at
five different frequencies�303, 315, 418,
433, and 916 MHz. Transmitter modules
are designated as TXyyyAT or TXyyyAS.
The yyy is the frequency and �AT� denotes
through-hole. �AS� represents the surface-
mount version.

The smaller module in Photo 1 is a
TX418AT. As you can see, the transmitter
module is contained within a rugged RFI/
EMI shield. This puppy can go anywhere
our embedded engines can.

The no-brainer design eliminates any
tuning and requires no external compo-
nents to effect the RF field. The only com-
panion components needed are an an-

Figure 1�I�m pretty
sure there�s more

than three parts in that
little box.

Figure 2�The documentation states that the
33-kΩΩΩΩΩ resistor here is really a 20 kΩΩΩΩΩ�. Any-
way, note the SAW oscillator and superhet-
erodyne front-end.
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For a cut-off frequency of
16 kHz, a 0.001-µF capaci-
tor is connected across pin
6 to ground. This also es-
tablishes a maximum data
rate of 5 kbps.

A second external ca-
pacitor (C3) uses an internal
20-kΩ resistor and 0.1-µF

cap to form a low-pass filter that finds the
average value of the datastream. This sets
the signal slicing level of the comparator.

The idea here is to avoid lengthy pre-
ambles. However, a preamble of some
sort is necessary to assure that the com-
parator threshold is set above the noise
level when the data is received.

This capacitor must be sufficiently large
to prevent the comparator threshold from
falling into the noise during dead periods

tenna, power, and some sort of data
encoder.

All of the transmitter modules employ
100% on-off keyed (OOK) amplitude modula-
tion. Also, each transmitter module is SAW
stabilized and uses an internal harmonic
filter to ensure compliance with spurious
emissions limits. Figure 1 shows you that
simple is as simple does.

The transmitter modules operate with
power sources as low as 2 VDC and as high
as 12 VDC. Power consumption at 3 VDC
is around 5 mA. When used with a quar-
ter-wave antenna and the matching DVP
receiver module, this device can achieve
transmission distances of up to 1000′ with
a transmitter output power of 1 mW.

TAKING IT ALL IN
Matching receiver modules, like the larger

module in Photo 1, are available for all DVP
transmitter modules. Like the transmitter mod-
ules, the receivers are no-brainer components,
too. They�re designated by an RX prefix.

These little packages are extremely
sensitive (�112 dbm) with good superhet-
erodyne front-end circuitry that provides
high selectivity. This feature is an absolute
requirement if you plan to use these mod-
ules in heavy RF-traffic areas.

Unlike the transmitter modules, these
may require a couple external capacitors
in addition to the power source and an-
tenna to effect RF reception. These added
external capacitors let you tweak the sen-
sitivity and lower the bit error rate. You
select the values of these caps depending
on the data rate, transmission length, and
dead period between transmissions.

The data-recovery circuitry converts a
variable-amplitude analog input signal to
a fixed-amplitude analog signal. The am-
plitude of the incoming analog signal
depends on the signal strength.

Because the data received is digital
and thus time related, pulse width distor-

tion and noise must be minimized during
conversion. The capacitor connecting to pin 6
(C6) of the receiver module sets the low-pass
filter cut-off frequency. Keeping the cut-off
frequency as low as possible without dis-
torting the data gives the best sensitivity.

The receiver modules have an internal
RC filter consisting of a 10-kΩ resistor and
100-pF cap. The cut-off frequency is de-
rived from:

Fcut�off = 0.16
RC

Figure 3�My antenna boards didn�t come
with the phone jack. Looks like its intended
purpose was to accept higher voltages.

Photo 2�
Two cans of
RF whip-butt.
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within transmission
packets. If the transmission

duty cycle is exactly 50%,
then no cap is necessary across

pin 3.
Interestingly enough, no cap is

needed if the selected cut-off frequency is
16 kHz. At 16 kHz, the maximum data
rate is 10 kbps. Otherwise, some experi-
mentation is necessary to choose the cor-
rect value for the slice cap depending on
the format of the data you�re receiving.

The databook mentions a value of 2.2 µF
for C3 and 0.001 µF for C6. A block
diagram of the receiver module is shown
in Figure 2.

BOARDS FOR ANTENNA HEADS
For us embedded types, the real work

is done by the program. In RF, the real work
is done by the antenna. Simply stated, RF
performance is directly tied to the proper
design of the antenna system.

Things I used to know about like gain,
polarization, impedance matching, and cov-
erage patterns all play a unique but important
part in antenna design. Fortunately for you, I
won�t go into an antenna-crazed monologue.

Figure 4�Note the circuitry to boost a couple of batteries to +5 VDC.  Also notice the transistor
level shifter/buffer.

But, I do want to point out some antenna
tidbits as they relate to these DVP modules.

First of all, the FCC and European
regulations place no restrictions on the
receiving antenna in low-power unlicensed
devices. However, the bad news is that the
transmitting antenna must be integral or
internal, or it must use a unique connector.
In other words, no BNC or RCA connec-
tors from Radio Shack.

Radiated power is the key here, so you
could pump a kilowatt into the antenna as
long as the radiated power is within regu-
latory limits. This means that you as the
designer cannot use an antenna that can
be altered or replaced by the end user.
The differing antennae may (and prob-
ably will) exhibit different characteristics
that would alter harmonic and spurious
emission levels.
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DVP supplies what they call Antenna Boards
to ease the pain. I happen to have a pair
of 315-MHz antenna boards, and they
appear in Photo 2.

Antenna boards are ready-to-roll,
matched-pair transmitter and receiver
modules with integral loop antennae. All
that�s needed to put these little babies into
operation is a +5-VDC power source and
a data encoder or data input source.

These devices are perfect for the em-
bedded RF designer because TTL-compat-
ible data can be entered into and re-
trieved from the antenna boards directly.
There is no onboard encoder or decoder,
so the embedded designer must code his
or her own data-transmission scheme.

Figure 3 shows the innards of the trans-
mitter board. Figure 4 blows up the sur-
face-mount components for the receiver
board.

RF RELIEF
Thus far, I�ve discussed the basic build-

ing blocks necessary to get the RF-im-
paired embedded design engineer into
the bounds of RF-ville. For those of you

needing to travel into interstellar RF-space,
DVP has the vehicle for you.

Photo 3 shows you a matched set of
receiver and transmitter evaluation boards.
These boards differ from the antenna
boards in that they are complete out-of-the-
box units that include onboard hardware
encoders and decoders from Holtek.

As an accomplished embedded coder
or engineer, you�re probably giggling at

the thought of using a hard-
ware encoder or decoder.
As we all know, you can
code that kind of stuff. I
agree. But in this case, it�s

pretty neat what these guys and gals at
Holtek and DVP have done.

To eliminate reinvention of the rolling
device, the Holtek encoder/decoder per-
forms neat little hardware tricks. Instead of
the rushed-for-time embedded engineer
writing data format code and preambles
and worrying about timing, Holtek provides
jumper-selectable address logic coupled
with data entry logic on one IC.

Photo 3�
The batteries
are included,
and there are
even blinking lights
for me! Don�t overlook
the loop antenna etched
onto the board.
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SOURCE
TX418AT, Antenna Boards
DVP, Inc.
(818) 541-9020
Fax: (818) 541-9423
www.dvp.com

Fred Eady has over 20 years� experience
as a systems engineer. He has worked
with computers and communication sys-
tems large and small, simple and com-
plex. His forte is embedded-systems de-
sign and communications. Fred may be
reached at fred@edtp.com.

Figure 5�Sure, you could write the code, but in this case why?  Just plug in at the switch points.

switches in Figure 5 with logic levels from
your embedded masterpiece.

This type of addressing and data assurance
scheme makes it possible to operate many
transmitter/receiver pairs like you do an
Ethernet network. Oh yeah, timing is a
simple matter of placing a resistor across
the encoder/decoder OSC pins.

FLOOBYDUST
Floobydust was a term coined by National

Semiconductor in its Audio Handbook. It

The transmitter eval
board uses the Holtek

HT6014. The 6014 encodes
12 bits of info organized as 8 bits

of address followed by 4 bits of data.
For the blinking-lights types, a trans-

mission in progress LED pin is also pro-
vided. The four 6014 data inputs are
active low, and when any input goes low,
data transmission starts. It gets better.

The 8-bit address and 4-bit data packet
are assembled automatically and sent to
the input of the TX module on the eval
board. This pattern is sent until there are
no active-low signals on the data pins.

No preamble is needed. You don�t have to
write one and you don�t have to send one.

The 6014 sorta fakes a preamble by having
the receiving decoder read the data twice
for accuracy. Yep, you send double data,
but it�s dependable and, even better, the
hardware saves development time.

The receiving decoder reads the eight-bit
address twice to ensure it�s picking up the
correct data. If the addresses match, then
the four bits of data are decoded and a
data-available pin is enabled. All you, the
embedded genius, must do is replace the

has no real meaning. It merely categorizes
elements that have no category or that fit
most everywhere you wouldn�t expect them.
So, with that, here�s some RF floobydust.

First, even though the DVP modules are
unlicensed, you still need FCC approval
for your product. The antenna boards are
designed to be implanted into your project,
and DVP can assist you with getting your
product approved.

Second, I wasn�t able to get my paws
on a 916-MHz radio set. The significance
of this is that, at 900 MHz, lots of things
can be done with the modulated informa-
tion that can�t be done below 900 MHz.

For instance, continuous transmission is
okay at 916 MHz in the U.S., but 433.92 MHz
isn�t. However, European embedded types
can transmit till the cows come home on
433 MHz. Hopefully, I�ll be able to show
you the 916-MHz radio set next time.

It would be an injustice to squeeze an
RF app into the space left, so next time I�ll
have some RF apps using the DVP products
and some wild embedded goodies.

In the meantime, get yourself a copy of
the DVP databook and the Holtek remote-
control databook. Next month, tune in as
I prove that it doesn�t have to be compli-
cated to be embedded. APC.EPC
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Automotive
Travel
Computer

FEATURE
ARTICLE

Robert Priestley

iStart your engines!
It’s time for a high-
tech car rally. This
computer figures out
your gas usage,
distance, speed,
RPMs, fuel, and
more. It even has an
alarm that lets you
know when your heavy
foot is tempting local
police.

originally got
involved with this

project when some
friends asked me to build

a device for their rally car to help them
navigate during rally events.

They needed an accurate and reliable
trip meter because, amazingly enough,
their 1966 Ford Falcon XP Rally car
didn’t have an accurate odometer or
speedo! They also mentioned that
their fuel-tank gauge wasn’t working,
so I combined both of these requests
and ended up with a trip computer
that’s suitable for all kinds of vehicles.

Sure, it would have been simpler to
install an analog trip meter and fuel
gauge, but they figured that installing
something high-tech in their car was a
surefire way to grab everyone’s atten-
tion. I was certainly up to the task at
the time, and now that the project has
grown over the years, I want to give
you a look at what I created.

FEATURES
The main features of the trip com-

puter include a custom-designed four-
color membrane keypad (see Photo 1)
with acoustic feedback of each key
press and a specially designed black
anodized case, which gives a rigid
construction that is shock, dust, and
splash proof. The trip-computer di-
mensions are 145 × 70 × 55 mm.

The computer is programmed to
make various calculations:

• distance—distance traveled journey,
distance remaining journey, trip meter,
and distance to empty based on aver-
age fuel consumption

• speed—current speed, average speed,
and peak speed

• tachometer—RPM and peak RPM
• fuel—fuel used journey, fuel remaining

in tank, liters per 100 km, kilometers
per liter, average liters per 100 km,
average kilometers per liter, liters
per hour (flow rate), total fuel cost,
and journey fuel cost

• timer—journey timer, time remaining
to complete journey, time remaining
at average speed to complete journey,
and trip timer

All values can be displayed in metric,
U.S., or Imperial formats on the 24 × 2
backlit LCD unit.

The computer also has a standing
distance timer accurate to hundredths
of a second typically used for quarter-
mile sprint timing, and an over-speed
alarm, which helps you avoid those
speeding fines.

OPERATION
The computer performs its calcula-

tions by measuring the fuel flow and
distance traveled and by counting the
engine revs.

Engine revs are sensed by either
making a connection to the engine
distributor (for carburetor engines) or
fuel injector (for electronically fuel
injected [EFI] engines).

Regardless of the function being
displayed, the computer continually
updates all of these calculations. To
show these functions, the computer is
initialized at the start of each journey.
Pressing the Clear key zeros the distance
counters, the amount of fuel used, the
internal timers, and the peak speed/
tachometer display.

All distances are displayed with a
resolution of 0.1 km (or miles), and
time calculations are displayed with a
resolution down to seconds. Fuel
calculations are displayed with a reso-
lution of 0.1 l (or gallon).

The over-speed alarm is an especially
useful feature of the trip computer.

Adding a Performance/Trip
Monitor to Your Car
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When you’re driving, the Speed Alarm
key can be pressed, which causes the
current speed to be stored in memory.
If you exceed this speed by 5 km/h
(miles), an alarm sounds and the com-
puter automatically displays your
current speed until you slow down.

MEASURING FUEL FLOW
Fuel flow can be measured with a

flow sensor for carburetor engines or
by measuring the injector pulse of an
EFI engine.

EFI engines work on the principle
that a pressurized fuel line feeds the
fuel injectors that are controlled by a
computer. The fuel injectors are electro-
mechanical devices that deliver precise
amounts of fuel to the engine. By vary-
ing the injector-open time, the engine-
management computer can precisely
control the engine’s performance.

With EFI engines and diesels, a flow
sensor is typically unsuitable. The
pressure of these fuel lines can exceed
the specifications of the flow sensor,
and fuel injector lines usually have a
return feed back to the tank.

Therefore, measuring the actual
fuel used by the engine requires two
flow sensors (differential measurement)
to measure the fuel being used. That
is, you need one sensor to measure
fuel flow into the engine and other
sensors to measure the fuel returned
to the tank.

The principle behind the flow sensors
used is a coil that gives out sine-wave
signals which are induced by permanent
magnets. The sensor is an inductive
type with a range of 1.5–200 l/h. The
frequency of the output signal is pro-
portional to the measured volume.

The flow sensor produces 780 pulses
per 0.1 l of gasoline or 1100 pulses per
0.1 l of water. The sensor has a continu-
ous pressure of 10 bar
at 22°C and a bursting
pressure of over 30 bar.
It has a measurement
accuracy of ±3%. The
sensor is made out of
Hostaform C, has a high
resistance to chemicals,
and weighs 25 g.

The V.1.1 firmware
is used with one or two
flow sensors, whereas

the V.2.0 firmware is
used for EFI engines
only. However, the
hardware is the same.
Here, I want to focus
on the V.2.0 computer.

SPEED SENSORS
Many types of sen-

sors can measure the
speed of the vehicle by
detecting the rotation of
a wheel. A proximity sensor or a Hall-
effect device are two examples.

Most modern vehicles already have
a suitable pulse which is generated by
the speedo sensor. For optimum per-
formance, the computer requires 2–4
pulses per wheel rotation.

CALIBRATION
Before you can use it, the trip com-

puter needs to be calibrated. To cali-
brate the distance, a known distance
is driven (usually 1–5 km [or miles])
and the computer counts the number
of pulses that are produced by the
distance (speedo) sensor. The com-
puter then calculates how far the car
travels for one pulse of the sensor.

The V1.1 firmware requires a cali-
bration factor to be entered into the
computer for the flow sensor (supplied
with the sensor). This number repre-
sents the number of pulses produced
per 0.1 l of fuel used.

The V2 firmware is calibrated by
measuring the total open injector time
of a known quantity of fuel, such as a
full fuel tank. The computer then cali-
brates itself over the time it takes to
use up a full tank.

THE SOFTWARE
The microcontroller has a special

timer input pin that is ideal for mea-

suring pulses because it can capture
the exact time at which a transition
occurred on its timer input pin. Once
the open time of the injector is calcu-
lated, it is added to a total.

Every second, the amount of fuel
used is calculated based on the mea-
sured open-injector time. Listing 1
shows you a sample of the code required
to measure a pulse for the 68HC705C8.

A 5-ms internal timer interrupt
keeps track of the various timers and
the keypad scanning routine. The
sample program in Listing 2 generates
200 timer interrupts a second and
increments a timer counter in 5-ms
increments and a seconds counter.

The speed sensor generates a pulse
that triggers the external interrupt pin
(EXT) on the controller. When a nega-
tive edge is detected, an interrupt is
generated which services the distance
subroutine. In addition to the timer
routine, Listing 2 demonstrates incre-
menting a simple counter (at RAM
location $70) when the IRQ pin is
triggered.

These routines are available for
downloading from the Oztechnics
Web site along with a simple PC pro-
gram that simulates an injector pulse
using the parallel port of a PC. You
can use this program to check the
trip-computer operation on the bench

before installation.
Oztechnics’ 68HC05

development system
provides many features
essential for developing
applications for the ’HC05
series of controllers. The
development system
software, user manual,
and trip-computer 68HC05
routines are available via
Oztechnics’ Web site.

Photo 1 —A specially manufactured color membrane keypad gives the car
computer a professional look and feel.

Photo 2 —The two compact boards solder together with the LCD mounted on the back of the
processor board.
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headlights are on. A jumper on the
PCB selects the required option.

The matrix keypad also connects
directly to the controller. The three
input signals to the computer are
buffered by the emitter-follower stages
(TR1, TR2, TR3) and are then shaped
and inverted by the Schmitt trigger
inverters of IC3d, IC3e, and IC3f.

The distance and fuel pulses are
interfaced to the controller via JK flip-
flops (IC2) to give, in effect, an extra
interrupt line. Serial data is available
at pin 30 of the controller for interfacing
to a PC via a level shifter (the MAX232
is ideal).

The simulator, which forms part of
the ’HC05 software package, can run
Listings 1 and 2 on a PC.

CIRCUIT DIAGRAM
The heart of the circuit shown in

Photo 2 is a Motorola 68HC705C8.
Figure 1 shows you a schematic.

The display is operated directly by
the controller. You can connect the
display backlighting to either the
incoming 12 V from the ignition switch
(backlighting is therefore on when the
ignition is on) or to the vehicle’s head-
light switch. The latter option means
that the backlighting is on when the

Listing 1 —Two 8-bit registers make up the 16-bit input capture register, which latches the value of the free-
running counter after the corresponding input-capture edge detector senses a defined transition. The level
transition that triggers the counter transfer is defined by the corresponding input edge bit (IEDG) in the TCR.
Use the E key to toggle the timer input pin in the simulator.

TCR EQU $12 Timer control register
TSR EQU $13 Timer Status register
ICAPH EQU $14 Input capture register high
ICAPL EQU $15 Input capture register low

EDGE1 EQU $51 RAM: LSB 16-bit negative edge
EDGE2 EQU $50 RAM: MSB 16-bit negative edge
PULSE1 EQU $61 RAM: LSB 16-bit measured pulse
PULSE2 EQU $60 RAM: MSB 16-bit measured pulse

ORG $160 Start program from $160 in EPROM
START LDA #%10000000

STA TCR Enable input capture interrupt
CLI Enable interrupts
BRA * Loop here/Do nothing

TIMER_INT BRSET 1,TCR,POS_EDGE Determine which edge caused Int
NEG_EDGE LDA TSR TSR must be accessed to clear flag

LDA ICAPH Get MSB of timer counter
STA EDGE2 Store MSB of timer counter
LDA ICAPL Get LSB of timer
STA EDGE1 Store LSB of timer
BSET 1,TCR Set input edge/Positive capture
RTI End timer interrupt

POS_EDGE LDA TSR TSR must be accessed to clear flag
LDX ICAPH Temp store ICAPH/Freeze timer
LDA ICAPL Load input capture register LSB
SUB EDGE1 (Time LSB - Pulse_Width LSB)
STA PULSE1 Store LSB pulse
TXA Move ICAPH into accumulator
SBC EDGE2 (Time MSB - Pulse_Width MSB)
STA PULSE2 Store MSB pulse
BCLR 1,TCR Set input edge/Negative capture
RTI End-of-interrupt pulse measure

EXT_INT NOP Do nothing
RTI End external interrupt

**** EPROM vectors
ORG $1FF8 Timer interrupt vector
FDB TIMER_INT
ORG $1FFA External interrupt vector
FDB EXT_INT
ORG $1FFE Reset interrupt vector
FDB START
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Listing 2 —Two 8-bit registers make up the 16-bit output compare register (OCR), which indicates when a
period of time has elapsed. The OCR contents are compared with the contents of the free-running counter
continually, and if a match is found, the corresponding output compare flag bit is set in the timer status
register. The corresponding output level bit (OLVL) is also clocked to an output level register (TCMP pin).
The I key in the simulator toggles the External IRQ pin.

TCR EQU $12 Timer control register
TSR EQU $13 Timer status register
OCMPHI EQU $16 Output compare register high
OCMPLO EQU $17 Output compare register low
MOR EQU $1FDF Mask option register

SECONDS EQU $50 Number of elapsed seconds
MILLI_SEC EQU $51 Number of milliseconds

EXT EQU $70 Counter for external IRQ

ORG $160 Start program from $160 in EPROM

START LDA #%01000000
STA TCR Enable output compare register IRQ
LDA #$00
STA MOR Enable neg trans on IRQ pin
CLR SECONDS Reset seconds counter
CLR MILLI_SEC Reset 10-ms counter
CLI Enable interrupts
BRA * Loop here/Do nothing

* A 4-MHz crystal produces 2-µs internal tick, 2500 ticks = 5 ms
* 200 x 5 ms = 1 second count, 2500 = $09c4
TIMER_IRQ LDA TSR Clear OCMP flag by accessing TSR

LDA OCMPLO   and OCMPLO reg
ADD #$c4 Lower half hex equivalent of 2500
TAX Temp store lower half of new OCMP
LDA #$09 Upper half hex equivalent of 2500
ADC OCMPHI
STA OCMPHI Update upper half of OCMP reg
STX OCMPLO Update lower half of OCMP reg
INC MILLI_SEC Add 1 to millisecond counter
LDA #200 200 * 5 ms = 1 s
CMP MILLI_SEC Test if reached 200 yet?
BNE TIMER1 Branch if not equal to 1 s
CLR MILLI_SEC Clear 5-ms counter
INC SECONDS Increment seconds counter

TIMER1 BRSET 0,TCR,TOGGLE Toggle OCMP pin
BSET 0,TCR Set TCMP pin to 1 on next compare
RTI End-of-timer interrupt

TOGGLE BCLR 0,TCR Set TCMP pin to 0 on next compare
RTI End-of-timer interrupt

EXT_IRQ INC EXT Increment RAM
RTI End-of-timer interrupt

**** Define EPROM vectors
ORG $1FF8
FDB TIMER_IRQ Define timer IRQ vector
ORG $1FFA
FDB EXT_IRQ Define external IRQ vector
ORG $1FFE
FDB START Define reset vector

The Reset signal is applied to the
controller via the +12-V supply from
the ignition switch.

The piezo buzzer is operated by the
oscillator around IC3a, which is pulsed
on by the Beep signal from the control-
ler. A regulated 5-V supply is provided
by IC4 and filtered by C3, C7, and C8.

CONSTRUCTION
Constructing the trip computer is

quite simple. The circuitry is contained
on two small double-sided, plated-
through, component masked PCBs,
which solder together at right angles.

The LCD mounts on the back of the
processor PCB and is held in place with
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Figure 1 —The schematic for V.1.1 of the car computer is almost identical to V.2.0. The same PCB was used for both versions of firmware.

SOURCE
V1.1 Trip Computer (requires flow

sensor) .................................. $110
V2.0 Trip Computer (EFI) ....... $110
Flow Sensor ................................ $75
Speed Sensor .............................. $25
Oztechnics Pty. Ltd.
P.O. Box 38
Illawong NSW 2234
Australia
+61-2-9541 0310
Fax: +61-2-9541 0734
www.oztechnics.com.au

Robert Priestley is an electronics
engineer specializing in embedded
systems for Oztechnics, a producer of
embedded system products and devel-

SOFTWARE
Complete source code for this ar-
ticle is available via the Circuit
Cellar Web site.

opment tools for Motorola 68HC05
and 68HC11 microcontrollers. You
may reach him at robert@oztechnics.
com.au.

four metal thread screws and nuts. The
display is about 3 mm from the PCB.

The membrane keypad fixes to the
clear Perspex front panel of the case
using its self-adhesive back, and it
connects to the PCB via a special mem-
brane ZIF connector. The PCB assembly
slides into the aluminum case, and
the front and rear panels snap into place.

Use PCB pins to connect the wiring
harness to the computer. Heat-shrink
sleeving over each soldered connection
increases reliability.

INSTALLATION
Installation is also straightforward.

You need to locate permanent 12 V,
ignition 12 V, Ground, and an optional
headlight connection (for the backlit
LCD). The back of the digital clock is
a good source for these signals.

Once power is established, run a
wire to an injector and connect the
computer to the switched (grounded)

side of the injector or install the fuel
flow sensor in the fuel line. Make a
connection to the electronic speedo.

You’ll need 2–4 pulses per wheel
revolution. If more are produced, either
install a separate speedo sensor or divide
the pulses down using a divider chip
arrangement.

You need a digital pulse (0–5 V) to
run the computer inputs. Inductive
pickups won’t work because they need
to be amplified and signal conditioned.

APPLICATIONS
Of course, this system doesn’t have

to be used as a trip computer. Any
application requiring a counter or quan-
tity of liquid to be measured can be
accommodated by this kind of device. I
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MICRO
SERIES

Stuart Ball

l

Build a Serial
Port PROM
Programmer

After Stuart
checks out
the hardware

setup for the low-cost
serial port programmer
he put together last
month, he gives us an
up-close look at how
the software and pro-
gramming algorithms
make everything tick.
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MicroSeries

From the Bench

Silicon Update

DEPARTMENTS

2

ast month, I
gave you a look at

the programmer hard-
ware, construction, and

operation for building a serial port
PROM programmer. Now, let’s check
out the hardware and see how the
programmer works, how it interfaces
to the programming modules, and how
the software handles the tasks required.

PROGRAMMER CHECKOUT
My first task is to verify that all

the programmer functions are work-
ing. I start by applying power to the
programmer and checking the +24 and
+5 V to be sure they’re correct.

Pin 2 of U10 (MAX232) should be
–8 to –10 V, and pin 6 of U10 (MAX232)
should be –8 to 10 V. I then verify that
the bicolor LED is green.

Next, I connect the programmer to
the PC and start the communication
program on the PC. (For a description
of setting up the communication pro-
gram, see the section on “Using the
Programmer” in Part 1.) I then install
the 27xx EPROM programming module.

When I cycle power on the program-
mer, the command menu should come
up on the PC screen. I select a 2764
by entering #T 1 and turn on the VPP

and VCC voltages by entering #XV.
The LEDs on the programming mod-

ule should be on. The voltage at pin 1
of the ZIF socket should be ~12.5 V,
and the voltage at pin 28 of the ZIF
socket should be about 6 V.

2

Two Adapter Modules
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I turn off the programming voltages
by entering #XR. My next task is to
program an EPROM to make sure the
programmer works correctly.

The 80C188 is somewhat picky
about crystals. With some crystals,
I’ve found that the oscillator doesn’t
always start. If you turn on the program-
mer and sometimes the LED stays off
and the startup menu isn’t sent, the
oscillator may not be starting.

To fix this problem, lower the values
of capacitors C3 and C4. Some crystals
start best with C3 and C4 removed.
Or, try installing a 1-MΩ resistor in
parallel with the crystal. As a last
resort, try a different brand of crystal.

INTELLIGENT ALGORITHMS
The programmer supports intelligent

programming algorithms. In the early
days, when a 2K × 8 2716 was a large
EPROM, programming took a constant
50 ms per location.

When there are 2048 locations,
programming this way takes only
100 s. But when there are 32,768 loca-
tions, programming by this method
takes 30 min.

To reduce this programming time,
the PROM manufacturers developed
adaptive algorithms. First, apply pro-
gramming signals to the device for a
specified time (1 ms, 0.1 ms, etc.) and
read the device to see if data is correct.
Repeat these two steps until the data
is correct. Once the data verifies, apply
an overprogram pulse (typically 2×).

Consider an example where an
EPROM uses a pulse width of 1 ms and
a 2× overprogram pulse. In a typical
programming sequence, you might
first attempt to program four times,
and the device programs on the fourth
attempt. Then, you apply an over-
program pulse of 8 ms (2 × 4 × 1 ms).

The total program-
ming time for this loca-
tion in the device is the
original 4-ms plus the

8-ms overprogram pulse time, for a
total of 12 ms.

These algorithms also provide for a
maximum number of retries before
the location is considered bad. If this
hypothetical EPROM allows up to 20
retries, then programming one location
can take anywhere from 3 to 60 ms.
Of course, most locations in most
EPROMs take less than the maximum.

Different manufacturers use different
voltages and program pulse widths.
The 27xx devices can be broken down
into broad categories—12-V program-
ming voltage versus 21-V, and 1-ms
program pulse width versus 0.1-ms.

The programmer simplifies things
by using essentially the same algorithm
for all devices. So, there are just a few
generic devices to select:

2764, 12 V, 1 ms
2764, 12 V, 0.1 ms
2764, 21 V, 1 ms

There are similar generic selections for
the 27128 and 27256. A commercial
programmer may have a dozen different
(but very similar) algorithms for
programming PROMs from different
manufacturers.

PROGRAMMING MODULES
As I mentioned in Part 1, the

programmer saves cost by using
adapter modules for different de-
vices. There is one module for 27xx
EPROMs and one for PIC devices.

Each module connects the program-
ming signals from the 50-pin connector
to the ZIF socket holding the device to
be programmed. Table 1 defines the
signals for the two modules.

To program a location in an EPROM,
the VCC and VPP pins are raised to the
values needed for programming—
typically around 6 V and 12.75 V,
respectively. The VCC voltage for pro-
gramming is usually higher than for
normal operation.

Figure 1 shows the timing to program
and verify a location in a 2764/27128
and a 27256. For the 2764/27128, after
the voltages are stable, the address is
placed on the address pins, and the
data is placed on the data pins. In the
programmer, this amounts to writing
the address and data values to the
appropriate 82C55 ports.

The *CE and *PGM signals are then
driven low. This condition is maintained
for 1 ms, or 100 µs, depending on the
algorithm you’re using. Then, the *PGM
and *CE pins are driven high.

To verify the location just pro-
grammed, the data port of the 82C55
(port C) is switched to input mode.
The *CE and *OE pins are driven low,
while the *PGM pin is left high.

The EPROM reads the selected
location and places the data on the
data lines, where the programmer
reads it by reading the 82C55 port. If
the data does not verify, the programmer
must program and verify the location
again.

The timing for the 27256 EPROM
is identical to the 2764/27128, except

Table 1—This table maps out the
8255 and control register bits on
the two programming modules. The
PIC module only needs two bits
from the 8255 and does not use
the control register at all.

Signal Usage

EPROM module
A0–A14 (82C55 ports A and B) A0–A14 (A14 is *PGM

  on 2764 and 27218)
D0–D7 (82C55 port C) D0–D14
*OE (control register bit 2) *OE
*CE (control register bit 3) *CE
Control register bits 4-7 Unused

PIC module
A0 (82C55 port A, bit 0) Clock (RB6)
D0 (82C55 Port C, bit 0) Bidirectional Data (RB7)

2764-27128 Program Timing

ADDRESS

Data

*CE

*PGM

*OE

Write Read

27256 Program Timing

ADDRESS

Data

*CE

*OE

Write Read

Figure 1 —In programming the 2764/27128 and
27256 EPROMs, the timing is identical, except for
the *PGM signal, which is address input A14 on the
27256.
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3. Send Begin Programming
4. Wait 100 µs
5. Send End Programming
6. Send Read Data
7. Check the returned data against the

original programming data

Repeat steps 2–7 until the data verifies.
Like the 27xx EPROM devices, the

PIC EPROM devices need an over-
program pulse after the data verifies.
After the overprogram pulse, the address
is incremented using Increment
Address and the next location is
programmed.

The PIC devices don’t have a way
to randomly select a specific address,
other than to reset the internal address
pointer to zero. So, these devices must
be programmed sequentially from loca-
tion 0 to the top of program memory.

Because each PIC location is 14 bits
wide, two bytes in the buffer are re-
quired to hold each location. A PIC
program that is 1 K words long takes
2-KB locations in the buffer. The pro-
grammer expects data to be loaded
least significant bit first, which is the
sequence generated by the Microchip
assembler.

CONFIGURATION MEMORY
The PIC devices have an additional

feature that the EPROMs do not have—
configuration memory. The configura-
tion memory programs the type of
oscillator that the PIC expects to use,
the power-up reset characteristics, and
other features. The programmer will
program the configuration locations.

After the entire PIC
program memory is veri-
fied, the programmer
programs the value in
buffer locations 400E and
400F to the configuration
location (2007) in the PIC
device.

Again, the address in
the buffer is 2× the device

address because the device counts
words and the programmer buffer
counts bytes. Like normal program
data, the programmer expects the
least significant bit of the configura-
tion word to be first (in 400E).

To get the configuration memory
programmed, you must include the
configuration information in the hex
file. The Microchip assembler provides
for this with the .CONFIG directive.

If you’re using an assembler that
doesn’t support the configuration
memory, you can manually build a
hex file that contains your configura-
tion data and send it to the program-
mer prior to programming the device.

The PIC devices also provide loca-
tions that can be defined by the user
for tasks like adding a serial number to
each device. The programmer doesn’t
support this (although the necessary
code changes would be fairly minimal).

PIC16C84
The PIC16C84 is an EEPROM

device that is similar to other 18-pin
PIC devices and that uses a similar
command set. The primary difference
in how the ’16C84 is handled by the
programmer is that the ’16C84 per-
forms an internal erase of the EEPROM
location prior to programming, so no
blank check is needed.

The ’16C84 internally times the
program cycle, so only one programming
pulse is required, and no overprogram
pulse is needed. Each location in the
’16C84 takes a little over 10 ms to
program.

that there is no *PGM
signal. On the 27256,
the pin that had the
*PGM signal on it car-
ries address bit A14.

The EPROM pro-
grams when *CE is low
and reads when *CE and
*OE are both low. To
read a location, *OE
must be driven low first so the EPROM
doesn’t see the *CE-only condition
and try to program the location with
the data lines floating.

PIC PROGRAMMING
The PIC devices use a different

method of programming, which uses
only five pins—Power, Ground, MCLR
(which receives the VPP voltage), RB6,
and RB7. The PIC devices use a serial
scheme where a six-bit command is
clocked into the device. Some com-
mands are followed by 14 bits of data.

Figure 2 shows the scheme for
sending data to a PIC device. Pin RB6
functions as a clock, and pin RB7
serves as a bidirectional data pin.

The EPROM devices support six
commands (listed in Table 2). The
16C84, an EEPROM device, has addi-
tional commands for bulk erasure and
programming the user memory, but
these are not used by the programmer.

The Load Configuration and
Load Data commands are followed
by data, and Read Data is followed
by data read from the device. The data
is 14 bits, but 16 bits are clocked in
and out of the device, since the data is
preceded and followed by a zero bit.

The programming sequence for the
PIC devices goes like this:

1. Set VPP (MCLR) and VCC

2. Send Load Data, followed by the
data to be programmed

           Command                 Code

Load Configuration 000000
Load Data 000010
Read Data 000100

Increment Address 000110
Begin Programming 001000
End Programming 001110

Table 2—These PIC programming commands are
loaded serially using two pins on the PIC device.

Figure 2 —The PIC devices are programmed and verified with commands that are transmitted
serially. Each command is six bits long, and some commands are followed by 14 bits of data.

PIC Command Timing

DATA (RB7)

CLOCK (RB6)

PIC Data Timing

DATA (RB7)

CLOCK (RB6)

D0   D1   D2   D3   D4   D5

    D0   D1   D2   D3   D4   D5   D6   D7   D8   D9   D10  D11  D12  D13   00

Pin Number Pin Number
18-pin devices 28-pin devices Name Function

13 28 RB7 Serial data I/O
12 27 RB6 Serial clock
4 1 MCLR VPP (prog. voltage)
5 8, 19 VSS Ground
14 20 VCC +5 V

Table 3—With the PIC
programming connector, the
18- and 28-pin devices are
programmed the same way
but use different pins. The
12-pin header on the module
selects the type of device.
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Figure 4 —The 50-pin connector mounts on the
back of the PIC programming module and the
mating connector on the programmer.

18- AND 28-PIN DEVICES
As I mentioned last month, the

PIC module has a 12 × 2 pin header
that connects the programming signals
to the proper pins for 18- or 28-pin
devices. A socket is installed on the
header, on one side or the other, to
make the connections. The PCB set
includes a small circuit board for this
purpose.

If you decide not to use the PCB to
wire the circuit, you need to wire a
socket header for this purpose. The
header is wired as follows:

1 to 6
2 to 8
3 to 9
4 to 10
5 to 11 and 12

Pin 7 is a key to prevent reversal of
the socket on the header. To prevent
voltage from being applied to the wrong
pins, the software checks to be sure
the socket is installed in the correct
position on the header before program-
ming. Table 3 shows which pins serve
which functions on the PIC devices.

Figure 3 shows the schematic of
the EPROM module, and Figure 4
shows the schematic of the PIC module.

FILE FORMATS
The programmer accepts

two formats—Intel hex and
raw hex. The Intel hex format
consists of a line like:

:nnaaaattdddddd�dddcc

where nn is a data byte count
(the number of bytes in the
line), aaaa is a 16 bit address
(the location in memory where
the first data byte goes), tt is a
record type, dd�dd is the data
in hex, and cc is a one-byte
checksum.

The programmer can accept
raw hex files, which consist of
two ASCII-hex characters for
each byte to be downloaded.
The programmer always places
raw hex data at location 0000
in memory, unless #M is used
to force a different offset.

The programmer accepts
raw hex data with or without

spaces or commas for delimiters. There-
fore, these three lines are the same to
the programmer:

AA 55 12 34 56 78
AA5512345678
AA,55,12,34,56,78

The programmer also ignores car-
riage returns and linefeeds, so the data
can be formatted for better readabil-
ity. In short, almost any combi-
nation of raw ASCII-hex data is
accepted in this format.

The one drawback to the raw
hex format is the lack of an end-
of-file indicator. The Intel format
has an EOF record type to indi-
cate when all the data has been
transferred, but there is no such
universal indicator for the raw
hex files.

Some conversion programs gener-
ate an ETX at the end of a raw hex file,
and the programmer can recognize this.
In other cases, you have to terminate
a raw hex download when the computer
has sent all the data by entering the
#Q command.

SOFTWARE
The programmer software can be

broken down into five general compo-
nents. First, the initialization code
sets up the peripheral components,
the 80C188 internal chip selects, and
the data transfer rate.

Next, an interrupt service routine
(ISR) handles UART I/O. Output data
is buffered in a software FIFO and
transmitted a byte at a time as the
UART transmitter becomes available.
Similarly, input data is read and buff-
ered in a software FIFO for processing
by non-ISR code.

A background loop performs one
device operation (e.g., program, verify,
blank check a byte) per pass. The back-
ground loop also checks for and pro-
cesses data received from the PC.

Device support routines handle
device operations (e.g., blank check,
verify, program, setup) as well as
generic operations like setting and
clearing the control bits, writing a
new address to the device, and so
forth. Finally, device-specific routines
perform the program, blank check,
and verify operations.

Figure 3 —The 50-pin connector mounts on the back of the
EPROM programming module and plugs into the mating connec-
tor on the programmer.
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Each device is described in a 16-word
table. The table contains information
like the device size and word width, a
blank value, the device-specific routines
to use, the DAC values to set correct
voltages, and whether to perform
blank check prior to programming.

The software can support both 8- and
16-bit wide devices. The 27xx EPROMs,
for example, are all 8 bits wide. The
PIC processors are 16 (really 14) bit
devices. (The PIC itself is an 8-bit
processor, but the programmer is
concerned with instructions that go
into the PROM, which are 14 bits wide).

Figure 5 shows the hierarchy of the
main programmer routines. When I
decided to turn this project into an
article, I needed to break the software
up in such a way that readers could
assemble it with whatever assembler
they have. Not all assemblers support
modular assembly, and I didn’t want to
tie the source code to just one assembler.

As a result, the software source
code is broken into text files that are
assembled into one large source file by
running a batch file (which is called,
appropriately, COPYIT). With minor
modifications, this source file should
be compatible with just about any
assembler.

The only catch is that the constants
and variables are defined in separate
files (due to a limitation in my assem-
bler). If you need to have them included
in the source file, you’ll have to make
some edits so they match your assem-
bler format.

If your assembler supports modular
assembly, you can modify the text
files with the appropriate header infor-
mation for your assembler and make
each text file a separate module.

EXPANDING THE PROGRAMMER
The programmer is designed for

expansion to include new device types.
To do this, you have to design and
build a new adapter module and write
device-specific routines for the new
device.

You then include the new device in
the device tables, include it in the
vector tables for setup, program, blank
check, and verify, and include it in
the message that’s printed with the
#L command. More detailed instruc-
tions are included in a text file with
the source code.

The programmer includes a few
features to simplify development of
new modules. You’ll remember that
last month I mentioned the #XB and

Polling
Loop

(FIFO)

STOPEQ

RxProcess RxMode

RxOPMODE

POINTER,DMODE
FDCOUNT, PRCODE, PRFIRST
BLCODE, BLFIRST
VCODE, CFIRST, MOFFS,
ROFFS, DEVTYPE, OPSIZE

Rx
Command
Processing

Rx
Data
Processing

BLFIRST
VFIRST
PFIRST
PRCODE
STOPREQ
POINTER
MOFFS
OPSIZE
DEVTYPE

BLCODE
VCODE
PRCODE
POINTER

Device
Processing

BLANKC
PROGRAM
VERIFY

ROFFS, PROGBYTE, POINTER

DEVDATA, PERROR

Device
Specific
Drivers

READROM
PROGROM
READSET
PROGSET
READCLR
PROGCLR

Support Functions

Device Parameter request
Set LED red/green
SeND MeSsaGe
ASCii to HEX
HEX to ASCii
Set/Clr control register bits
WRADDR
WRDATA
TIMER
CHARNUM
DIAGNOSTIC

SOFTWARE

Complete source code for this
article is available via the Circuit
Cellar Web site.

Stuart Ball works at Organon Teknika,
a manufacturer of medical instruments.
He has been a design engineer for 18
years, working on projects as diverse
as GPS and single-chip microcontroller
designs. He has written two books on
embedded-system design, both avail-
able from Butterworth-Heinemann
(www.bh.com). You may reach Stuart
at sball85964@aol.com.

#XM commands. #XB lets you look at
any 64-byte area of the 64-KB buffer,
and #XM lets you look at any 64-byte
area of the program RAM, so you can
look at the variables and software FIFOs.

One specific software area—a rotat-
ing trace buffer—deserves special
mention. Located from 1600 to 16FF,
the buffer can give you a sequential
history of what the software was doing.

You can write one-byte values to
the buffer by calling a subroutine
named DIAGNOSTIC. Your trace value
is stored in the next buffer location,
followed by a byte of FF.

You could also develop a Windows-
based GUI to control the programmer.
This type of approach could probably
let you select devices by name, elimi-
nating the #L command, as well as
doing additional error checking (e.g.,
preventing you from specifying an
operation size that is bigger than the
device).

The programmer was intended to
accommodate such expansions, and
the only modifications you’d need to
make to the programmer code would
be to replace the return messages with
numeric codes.

For this project, I needed 27xx
EPROMs and PIC devices. You may
have other devices you want to program.

Send me E-mail describing what
PROMs or microcontrollers (no PLDs,
please) that you would like to see the
programmer support. If there is a con-
sensus, I’ll look at adapting the pro-
grammer to the most popular one or
two choices.

That’s it. Go forth and program. I

Figure 5 —The programmer
software uses a round-robin
method of scheduling tasks.
The only interrupt is for the
UART.
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FROM THE
BENCH

Jeff Bachiochi

e

The Next
Step in EL
Driver
Technology

An alien?
No, it’s
just Jeff
wearing
his new

electroluminescent
nametag. After
debriefing us on the
fundamentals of EL
panels, he tells us
how we too can get
that strange green
glow.

ven though I’ve
converted to CDs, I

just can’t toss out my
old vinyl LPs. Some have

more than just sentimental value. Some
of my favorites aren’t even music.

Have you ever heard any of Bill
Cosby’s comedy albums? Albums like
To Russell, My Brother Whom I Slept
With keep me smiling even today.

Of course, back then it was different.
I had to have a nightlight because of
Bill and his storytelling. You see, a
nightlight was the one thing that pro-
tected you from the snakes that slither
around under your bed at night.

Bill told how if you put one foot on
the floor after lights out you were done
for. Daring the snakes to just take a
little lick was foolishness. Thank
heavens for nightlights! They had the
power to keep those snakes under the
bed where they belong.

I didn’t think of our
family as high tech at
the time, but we didn’t
have a bulb nightlight—
we had a mysterious
panel that gave off the
kind of light you’d
expect from a full green-
cheese moon. And it
emitted no heat, unlike
any other light source
I’d ever seen. For years,
I wondered what it was.

In my early teens, I did a lot of
camping with the Boy Scouts. One night
while camping far from civilization, I
had my first encounter with an alien
life form. What else could it have been?

It was glowing in the woods. Noth-
ing I knew of on this planet could
glow without batteries. I touched it,
expecting to be transformed to another
dimension. Nothing happened. It wasn’t
even warm. Flashback of snakes—yikes!

Nightlights, hmm…. Light and no
heat. I needed to know more. But, the
following morning, it was gone.

Well, as with many other mysteries
of the world, Mother Nature had a
hand in this one. The chemical process
of a decaying tree stump had produced
a phosphor that glowed continually.

During the day, the glow was unde-
tectable, but at night, the phosphores-
cent glow was significant. Today, you
find phosphorescent sticks and neck-
laces in your local store. The magic has
gone commercial.

EL LAMPS
Electroluminescent (EL) lamps are

everywhere. They are used to back-
light devices ranging from IR remotes
to lot of the audio and video equip-
ment we own—pagers, cell phones,
GPS receivers, and, yes, even some
wristwatches.

It’s no surprise that these light
sources are being used more frequently.
They’re low in power, thin, flexible,
and lightweight. They produce negli-
gible heat and can be easily manufac-
tured in custom shapes. You’d think,
with all that going for it, EL lamps
would be used even more than they
are already.

There are two major drawbacks to
EL backlights. First, EL panels experi-

Figure 1 —High-voltage AC is needed to drive photons of light from phospho-
rous particles suspended between electrodes.

Rear Electrode ZnS Phosphor
Particles Dielectric

Transparent
Front Electrode

High-Voltage
AC Drive

Light
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ence a typical brightness half-life due
to aging. This half-life (i.e., the active
life until the brightness diminishes to
half its initial output) can be as little
as a few thousand hours.

At 24 hours a day, that’s roughly
9000 hours in a year. So, an EL panel
running day and night at maximum
brightness may deteriorate to half its
brightness in only a few months.

Second, the EL panel often requires
100–200 VAC to operate. For portable
battery-powered devices, this has been
the EL panel’s ball and chain.

Before we look at the support cir-
cuitry, let’s see how EL panels are made.

THE EL SANDWICH
Mechanically, the EL panel looks

like a large capacitor—typically, a few
nanofarads per square inch.

As you see in Figure 1, two inner
layers—a dielectric layer and a phosphor
layer—are sandwiched between two
conductive surfaces. The dielectric layer
prevents the two conductive layers
from shorting out while being subjected
to high voltages.

When a high-voltage potential is
placed across the two conductive layers,
an electric field is generated. The phos-
phor particles are encouraged to give
off photons (i.e., luminesce) as the elec-
tric field alternates.

During a voltage rise, the phosphor’s
electrons are excited from the valence
band into the conduction band. Con-
versely, when the voltage decreases,
these electrons return from the con-
duction band to the valence band.

Electrons moving to the lower energy
bands can give off photons. If one con-
ductive surface is transparent, the light
escapes and produces the familiar glow.

ZnS phosphor, the most common
compound used in the dielectric layer,
is responsible for the blue-green glow
of most EL panels. The spectral emis-

sions of the phosphor can be altered
by doping ZnS, CaS, or SrS with transi-
tion metals or nonmetals like magne-
sium or europium.

Ongoing EL development hopes to
rival color LCDs someday. But, much
of that is in the hands of chemists.

The two most significant variables
used to generate light output from EL
panels are voltage and frequency. Panel
brightness is directly proportional to
voltage and frequency.

Although each panel has maximum
and minimum values for voltage and
frequency, typical ranges are from 100
to 200 VAC and from 60 to 1000 Hz.
An EL panel used as a nightlight at
120 VAC at 60 Hz may have a typical
luminance output of a few candelas.

HIGH-VOLTAGE DRIVE
Unlike the couple of volts DC that

are required for LED backlighting,
their high-voltage requirements make
EL panels far more difficult to use. In
the past, transformer inverters were
needed to translate low-voltage DC
into useful high-voltage AC. Figure 2
shows a typical DC to unregulated
high-voltage AC converter.

In this push-pull configuration, the
transformer is not only a step-up device
but also an integral part of the primary’s
oscillator. Normally, these devices
were purchased for a particular-sized
EL panel because there were no
user-selectable components for
adjusting the output.

Recent innovations have
reduced the circuitry, so that a
single IC can now act as a volt-
age step-up converter and a com-
mutating bridge driver. Figures
3a and 3b show the IMP803 and
SP4428 high-voltage lamp drivers,
respectively.

The IMP803 step-up converter
uses an internal high-frequency
oscillator to gate a MOSFET
switch (50–90 kHz). An external
coil, L1, and diode, D1, combine
with the MOSFET switch to
step up Vin (as little as 3 V) to
as much as 90 V across capacitor
Cs (Vcs).

The coil’s stored energy is
released through the diode into
the capacitor each time the

MOSFET switch opens. The switching
frequency is controlled by external
resistor RSW, and the efficiency varies
with the selection of L1 and RSW.

The second section of the circuit
applies the high-voltage potential to a
full H-bridge. The EL lamp is placed
across the bridge. A second oscillator,
tuned by external resistor Rel and
running at 300–400 Hz, alternately
gates diagonal sections of the H-bridge,
producing an alternating potential on
the EL panel twice that of the high-
voltage input.

IMP’s high-voltage EL lamp-driver
IC comes with and without a high-
voltage regulation section. When Vin
is a battery whose output drops with
age, Vcs (and the lamp’s brightness)
can remain constant if the device has
regulation circuitry. When the lamp is
driven from a Vin that remains con-
stant, using the lamp driver without
regulation has an advantage.

Since the EL lamp’s capacitance goes
up as the lamp approaches its half-life,
an unregulated circuit self-compensates
by creating a higher Vcs. Design con-
siderations should be based on the type
of power used and the duty cycle of
the lamp (how often it needs to be on).

The Sipex SP4428 uses slightly
different circuitry. Only a single oscil-
lator is used, and its frequency is set
by an external capacitor.

Figure 2 —As an integral part of this oscillator, the
primary of T1 also boosts the voltage via its secondary.

Figure 3a —The IMP803 has separate oscillators for more user
control. b—The SP4428 uses a single oscillator to provide both
high voltage DC and switching for the EL panel.
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Energy developed
in an external coil
by removing it
from ground at the
20-kHz (nominal
frequency) rate is
directed toward the
second stage by a
diode similar to the
IMP device. But, instead of charging a
separate external capacitor as in the
IMP803, the SP4428 uses the EL lamp
as the capacitor being charged.

In the second stage, the H-bridge is
switched by a second clock. Six flip-flops
generate a second clock (~300 Hz) from
the primary oscillator (frequency/64).
The SP4428 requires more than 1.1 V
to produce a minimum of 120 VAC
across a 5-nF EL panel (roughly 1.5 in.2).

NOT JUST LCD BACKLIGHTING
More and more uses for EL panels

are arriving on the scene. I’m sure
you’ve seen joggers or other people out
at night wearing apparel fitted with EL
panels for high visibility. Portable
emergency and hazardous warning
signs are gaining popularity, too, thanks
to some of the new driver technologies.

At one point, I’d planned on making
an LCD nametag. Now, with an EL
panel and some circuitry, I can do the
job more easily and less expensively.

I started with the basic circuit (see
Figure 4), but I needed to add a couple
of capacitors to get the best output.
Using an IMP803, I found the HV sec-
tion to work as advertised. Selecting a
coil with low Rs gave higher Cs voltage.

The peak current draw from the 3-V
lithium coin cell was above what the
cell could sustain. Major voltage sags
occurred at maximum currents, so I
added a capacitor across Vbat, which
also improved the high voltage on Cs.

On the H-bridge side, I saw spurious
output that was insufficient to light
the EL lamp. A note suggests adding a
Cbp if the backlight flickers. Flicker
wasn’t the problem, but a capacitor here
cured whatever noise was preventing
the H-bridge from oscillating correctly.

These few parts fit easily on the
back of a 1″ × 3″ PCB. I chose the size
to fit across the back of an LCD bezel.

Because the parts were surface
mounted to the PCB, I was able to use

Jeff Bachiochi (pronounced“BAH-key-
AH-key”) is an electrical engineer on
Circuit Cellar INK’s engineering staff.
His background includes product design
and manufacturing. He may be reached
at jeff.bachiochi@circuitcellar.com.

SOURCES

IMP803
IMP, Inc.
(408) 432-9100
Fax: (408) 434-0335
www.impweb.com

SP4428
Sipex Corp.
(978) 667-8700
Fax: (978) 667-8310
www.sipex.com

EL lamps
Durel Corp.
(602) 917-6000
Fax: (602) 917-6049
www.durel.com

Lumitek International, Inc.
(800) 992-5149
(301) 831-1001
Fax: (301) 831-8221
www.us.net/quantex

MetroMark, Inc.
(800) 680-5556
(612) 935-8844
Fax: (612) 935-5718
www.metromark.com

Figure 4 —My EL circuitry needed a bit of capacitance from RSW to Ground. This
situation may be due to the layout currents.

the other side of the PCB for mounting
the EL panel with double-sided tape
without worrying about protruding
leads puncturing the EL panel. Extra
holes in the PCB enable the bezel to
sandwich the panel tightly to the PCB.

For the finishing touch, small ad-
hesive or rub-on lettering lets me
create any message I deem necessary.

So, if you happen to see a strange
green glow at the next electronics
show you attend, don’t be alarmed. It
won’t be an alien…. It’s just me. I
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SILICON
UPDATE

Tom Cantrell

Sensory Overload

Sensors
Expo
always
offers the
latest in

sensor technology,
and Tom’s here to
report. Whether it’s
position sensing, voice
recognition, or strain
gauge devices, get a
sense of what’s best
for your application.

ve always en-
joyed the Sensors

Expo. After all, sensors
are at the heart of most

embedded control apps, whether it’s a
simple thermostat or a highfalutin
vision system.

I’ve been there before (“In the Realm
of the Sensors,” INK 49). However,
the show is on a 10-city cycle (keep
an eye out since it includes nontradi-
tional venues like Cleveland, Baltimore,
and Philadelphia), so it’s been a while.

Anyway, I was a bit surprised at
the sea of booths I encountered. Sure
seems like sensors are getting to be a
big deal. More power (and ground) to
’em, I say.

PCs WAKE UP
Even PCs are getting into the act

with temp sensors, fan tachs, and
intrusion and motion detectors. If
chips like the National LM80, shown
in Figure 1, are any indication, anybody
thinking of lightfooting a laptop or
lifting some SIMMs can expect the
MIS police to come a-knockin’.

The chip starts with an eight-channel
eight-bit ADC. Seven channels are
brought out while one is devoted to
an on-chip temp sensor.

Unlike a typical 0–5-V ADC, the
LM80 A/D input range is 0–2.56 V
(i.e., 10 mV/bit). This happens to be a
perfect match with popular three-pin
linear temp sensors like the LM50.

You can use the LM80 to monitor
the temp of various components scat-
tered around inside the box. There’s
also a digital input (BTI, which stands
for Board Temperature In) that is
suitable for connecting to thermostat
temp chips like the LM56 or LM75.

The ADC is also intended to moni-
tor the half dozen or so system volt-
ages (e.g., 2.5, 3.3, ±5, and ±12 V) at
work on the latest motherboard. It’s a
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Figure 1 —Whether it’s the various power supplies, fans, external and internal temp sensors, or even the chassis,
the LM80, like Big Brother, is always watching.



Circuit Cellar INK®       Issue 98 September 1998        79

magnetoresistive sensors. The basic
advantage is higher sensitivity and
bandwidth for less size and power.

The technology is offered at various
levels of integration, starting with the
HMC1001 and ’1002 (and less-sensi-
tive, lower cost HMC1021 and ’1022),
which are just the single- and dual-
axis MR bridge in 8- and 16-pin IC
packages.

 Combining the ’1001 and ’1002
with amplifiers, the hybrid HMC2003
shown in Photo 2 is a three-axis unit
with high-level 0.5–4.5-V output (±2 G,
which is 1 V/G vs. 15 mV/G for the
bridge alone). The HMR2300 throws
in the ADCs and a micro to deliver
digital output via RS-232 or RS-485 at
either 9600 or 19,200 bps.

Notable for virtual-reality applica-
tions, the unit can deliver samples at
over 100 Hz, which is faster than the
CRT refresh rate. That’s good because
if you update too slowly, the virtual gets
out of sync with the reality, which
results in an altogether unpleasant
situation.

Another way of tracking movement
is a gyro. As with compasses, the
emergence of electronic equivalents
to yesteryear’s mechanical lashups
promises to proliferate applications.

Consider, for instance, the Micro-
Gyro100 from Gyration. This little
goodie uses the electromagnetic equiva-
lent of the Coriolis effect, perhaps
best known for causing water to drain
with a different spin north and south
of the equator.

The MG100 outputs a voltage pro-
portional to angular velocity (about

The strain-gauge technology is
basic, but Bokam’s implementation is
clever. The strain gauges are screened
onto the joystick mounting platform,
which acts as a substrate.

Besides low cost, this setup enables
easy integration of conditioning elec-
tronics. For instance, versions with
built-in amplifiers for high-level 0–5-V
output are available, as well as ones
with built-in micros for digital serial
output (e.g., RS-232 or PS/2 keyboard).

Another advantage of this technique
is that the substrate can be almost
anything. For instance, there’s a totally
ceramic model that’s especially well
suited for harsh environment and
temperature conditions. Meanwhile,
solid-steel noncompliant units might
be a boon for truly ham-fisted hackers
but are more likely found in industrial
force-measurement and motion-control
applications.

WHERE AM I?
Oh well, two booths down

means that I’ve got hundreds
minus two to go, so I’d better
get moving.

Digital compasses are all
the rage. Most notably, they’re
finding homes in most new
cars, boats, and presumably
any other vehicle that can get
lost. You can check out “Do
You Know the Way to San
Jose” (INK 53) for a refresher
on the technology.

Honeywell has come up
with a solid-state (i.e., no coils
or flux gates) upgrade of the
technology in their HM line of

simple matter of using resistor divid-
ers to attenuate and center each volt-
age in the A/D range.

Whether it’s the power-supply levels,
external temperature, or on-chip tem-
perature, the LM80’s role is the same.
It sits in a loop, scanning the inputs
and comparing them against host-
programmed (via I2C) limits, raising
an interrupt on excursion. The on-
chip temperature sensor gets a little
extra attention—a 12-bit conversion
option, programmable hysteresis, and
more versatile alarm modes.

If things are heating up, fans are a
likely culprit, so the LM80 keeps an
eye on them by monitoring the fan
tach (note that fans with built-in tach
outputs are available from major sup-
pliers like NMB, Mechatronics, and
Sanyo) and comparing against a user-
programmed minimum-RPM limit.

Oh yeah, don’t forget the ominous-
sounding Chassis Intrusion (CI) line.
Even when the LM80 isn’t powered, it
can be safely driven by an external
circuit (National shows an example
using an optosensor).

On powerup, the LM80 dutifully
denounces any poor fool that deigns to
pop the lid of their PC. Of course, the
fate of such a subversive is left to the
system designer. It could get ugly.

Another type of PC sensor that’s
close at hand, literally, are force sen-
sors like those designed by Bokam
Engineering for the IBM Trackpoint
(see Photos 1a and 1b). I’m no expert,
but I fiddled with the arrangement,
which plants a small pencil-eraser–
like fingertip joystick between the G,
H, and B keys. It seems to work well.

Photo 1 —Force joystick technology finds its way from laptops to the factory floor. The Bockam Engineering con-
cept, screening strain gauges onto a substrate, is the same whether it’s ceramic (a) or solid steel (b).

Photo 2 —The Honeywell solid-state magnetoresistive sensor cuts
the size of their electronic compass modules. This unit, the
HMC2003, provides three-axis high-level (0.5–4.5 V) analog
output in a footprint smaller than 1-in.2.

a) b)
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power consumption from a few milli-
amps to only a few microamps, yet it
can wake up and get going in less than
a second.

If they aren’t showstoppers, these
spec foibles are a small price to pay
because you’re only paying a small
price for the MG100  ($15 in high
volume).

THE SHAPE OF TAPE
TO COME

Measurand puts another
twist on the position-sensing
angle with its Shape Sensor
(see Photo 3) and Shape Tape.

These sensing devices rely
on treated optic fiber (lami-
nated into a flexible tape-like
ribbon) that modulates light
intensity quite accurately,
depending on the curvature.
By mounting the tape to a
cantilever beam of some sort
(versions are available with
integral spring steel beam),
the unit can help measure
force, acceleration, flow, and
so forth.

The Shape Sensor comes with
modular optoelectronics that handle
the details and provide a high-level
output (1–4 V for a 5-V supply).

Shape Tape goes further, managing
up to 64 sensors in a single piece of
tape by multiplexing eight LEDs and
eight detectors. The sensors are paired
to extract both twist and bend info.

1 mV per degree per sec-
ond) in each of two axes.

The MG100 does ex-
hibit some spec limits
you should be aware of.
First, the response rate is
limited with maximum
angular velocity of 150°
per second and a 10-Hz
bandwidth.

Also, the unit is rather
sensitive to temperature
over its –5°C to 45°C
range, and it needs com-
pensation. To help your
design achieve the high-
est possible accuracy, the
MG100, which runs on
anything from 2.2 to 5.5 V,
provides a 1.225-V reference output
and includes a temp sensor.

There is also a lengthy power-up
delay (almost 3 min., which is itself
temperature dependent), and during
this delay the output may drift a few
degrees.

Instead of power cycling, consider
using the sleep mode. This mode cuts

Photo 3 —Measurand Shape Sensors put a unique twist on position detection by
translating curvature to force, acceleration, velocity, and flow.
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After a calibration exercise (flat,
coil, twist) and a bit of number crunch-
ing (Win95 software is provided), it’s
possible to determine relative position
in free space between the ends of the
tape. It works because the free-floating
tape drapes into circular arcs between
sensors, which along with known
position, bend, and twist, make the
geometry workable.

Truth is, I’m not so sure what the
best application is for this technology.
The company makes a case for all
manner of positioning apps of the sort
served by electromechanical LVDTs
(Linear Variable Distance Transducers),
with particular mention of biometrics,
VR, crash testing, and so on.

However, I am pretty sure that, in
the hands of a clever and imaginative
designer, this stuff has got to be real
good for something.

TALK IS CHEAP?
Talking chips have been around for

many years, which is not to say the
technology has always been well ap-
plied. I can still remember a ’70s-era
car that kept insisting its “door” was
“a jar” until I taught it a lesson with
some wire cutters.

While talk is cheap, listening is
another story. In fact, practical voice
recognition remains one of the holiest,
and most elusive, grails.

On the desktop, I understand the
technology has made great strides, I
imagine largely as a result of PC-MIPS-
to-burn brute force. Nevertheless, I
don’t foresee trading in my QWERTY
for a microphone anytime soon.

However, other applications have
quite different functionality and cost
criteria that may lead to the accep-
tance of less grand, but more feasible,
technology.

A suitable app is one that truly
demands voice input (i.e., key entry is
not an option) yet can sacrifice one or
more blue-sky aspirations such as
speaker independence, continuous
speech, or huge vocabularies. Likely
candidates include voice dialers, toys,
security, appliances, and PDAs.

For example, while speaking to my
desktop might be nice, the downside
of QWERTY isn’t exactly life threat-
ening. By contrast, hand dialing a car
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phone is something that will probably
be illegal in your area soon, if it isn’t
already. What’s next, designated dialers?

Sensory Inc. (formerly Sensory
Circuits) has carved a niche by sup-
plying low-cost middleweight voice-
recognition technology. The RSC-164
in Figure 2 starts with an 8051-like
(without the accumulator and data
pointer bottlenecks) MCU running at
14.342 MHz (a 32-kHz oscillator is an
option for timekeeping).

It then adds the analog front and
back ends, which enable the chip to
both listen and talk. Both 10-bit DAC
and PWM are output options, the latter
able to direct drive a small (32 Ω)
speaker.

The key to low-cost recognition is
the use of neural-network software
techniques rather than fancy hardware.
The preprocessed patterns are stored
in on-chip ROM (speaker independent,
standard vocabulary) or external flash
(speaker dependent, custom vocabulary).

In addition to recognition, a bit
more software enables the chip to
handle other useful audio tasks, in-
cluding voice and MIDI-like music
synthesis as well as DTMF and digital
voice record and playback.

Sensory makes the RSC-164 available
both for custom programming and
preprogrammed for standard apps. An
example of the latter is the Voice Dialer
IC, which targets the previously noted
drive-and-dial dilemma.

Figure 3 —HP answers
the field-bus question
with a Network Capable
Application Processor
(NCAP) that bridges the
gap between IEEE
1451.2 sensors and
standard networks.
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Figure 2 —The Sensory
RSC-164 is a micro
that talks and, more
importantly, listens.
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The Voice Dialer is designed to act
as an autonomous and smart subsystem
connected to a host CPU by a simple
three-wire serial interface. The host
merely sends high-level commands
(e.g., adding a name to a directory),
and the chip takes care of all the details,
including voice prompting the user
along the way.

As for handling a 60-name telephone
directory, Sensory says the recognition
rate exceeds 97% even in noisy envi-
ronments. That’s not bad at all for a
chip that sells for under $5 in volume.

AN E TICKET
I remember going to Disneyland as

a kid, way back when Walt was still
in charge. Maybe you too remember
how Disneyland used to sell tickets for
each ride denominated A through E.

The A tickets were losers, kind of
like pennies, good for only the wimpiest
rides. Ahh, but the E tickets were
good as gold, opening the door to high-
speed thrills.

Much is being made of the various
field buses that purport to bring order
to the digital-control world. To tell the
truth, I have trouble keeping up with
them all. Like those Disneyland tickets,
though, I’m sure the market will decide
that some are an A and others an E.

In a rational world, nobody would
think of specifying Ethernet as an
industrial control network. But, who says
anything in this business is rational?
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Photo 4 —In addition to a $995 IEEE 1451.2 developers
kit, HP showed this prototype NCAP connecting 1451.2
(and RS-232) sensors to Ethernet and via built-in
microserver onto the Web.

Fact is, I think Ethernet is well posi-
tioned from a pragmatic, if not theo-
retical, point of view. A lot of PCs are
finding their way onto the factory floor,
and the incremental cost of an Ethernet
port is approaching zero. In the real
world, people just want to plug stuff in.

I feel less squeamish about going
out on the Ethernet limb, thanks to
backing from heavyweight HP. Their
view of the world (see Figure 3), com-
bines the recently finalized IEEE 1451.2
sensor interface standard with Ethernet
as a field network.

For a view of what’s to come, check
out the prototype NCAP (Network
Capable Application Processor) in
Photo 4. It not only makes the IEEE
1451.2 connection but includes a micro
Web server (i.e., easy browser access and
control of the sensor subsystem).

SO MANY SENSORS, SO LITTLE TIME
Oops, out of pages already. Needless

to say, there’s plenty of neat stuff that
has to go on the back burner for now.

How about the new line of mixed-
signal ICs just introduced by Maxim?
Judging by the company’s success in
other endeavors, I expect great things.

Then there’s the cute IR-linked
data logger from Lascar, not to mention
a dizzying array of temperature, pres-
sure, optical, and tilt sensors.

Whether or not I hit on just the
gadget you need, I think there’s one
lesson we can all learn. Your next
design can, should, and will be more
sensational than your last. I
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Which Numbers Count

w hen it gets too deep around here, I start threatening to turn this rag into a controlled-circulation trade journal! Well,
not really. In truth, it’s not where I want to go, but even I get to rant and rave once in a while.

Being a trade magazine would have some definite advantages. I wouldn’t have to worry about editorial direction—
PR/marketing-generated vaporware is readily available. I wouldn’t have to worry about advertising—PR submissions typically

include an advertising contract and at least one or two power lunches. I wouldn’t have to worry about circulation—heck, when the magazine is
free, what’s the jeopardy in subscribing to a hundred of them? The worst that could happen is getting caught in a magazine avalanche.

All levity aside, the one ingredient that I didn’t mention was readers. I think that if you focus a magazine on attracting loyal readers, it
can’t use the formula approach represented by traditional trade magazines. In an off-the-record conversation at a recent trade show, the editor-
in-chief of a major trade magazine said that he envied our readership loyalty. He also lamented about the continuous solicitation process
necessary to maintain high circulation numbers in support of advertising revenues. We both laughed about the typical pile of unread trade
magazines on every engineer’s desk.

When he volunteered that the real readership of a typical issue probably wasn’t more than 20% of the distribution, I was floored. Of
course, he didn’t have to worry about his “stats.” He was audited on how many they mailed, not on how many were read. Wow. I guess that
wishing I was in his business meant it was time for a reality check.

When it comes to advertising, big-company PR departments always want solid stats. Certainly, the agencies have to justify their commis-
sions, but I believe that the lack of these stats is frequently an excuse to avoid making decisions. If the editor I talked to is accurate, the value
of circulation audits is not only questionable, it’s pure advertising extravagance.

I think the only real measure of a magazine is the active readership. Traditional auditing methods monitor potential, not performance.
When we get past the PR department obstacles, INK is always a proven performer. Want solid stats? Go ask your embedded system design-
ers what they read.

Ultimately, the traditional commercial clique is in for a jolt. The Internet has proven to be a valuable resource for extending the reach of
print magazines. But, like all things digital these days, Internet pathways are an accounting exposé. Virtually all servers include statistical
packages that register things like user sessions, total hits, page views, and advertiser click-throughs.

Web stats offer a representative demonstration of real performance and perhaps a new undeniable truth. The readership of a small
targeted magazine can easily equal the significant value of a larger controlled-circulation audience (in spite of its overwhelming potential) when
real reader activity is the measure. The bombshell is in the numbers.

One electronic trade magazine recently went public with their Web stats. They claimed an astounding 350,000 hits per month. Ordinarily I
wouldn’t care, but I was on our Web stat page at the time—I was looking at 1000 user sessions and 30,000 hits just for the day! Admittedly,
that day was above average, but it offers an interesting comparison. Overall, our documented Web traffic with 30,000 circulation easily equals
and often exceeds that of the large trade magazine with 150,000 circulation. If you factor in the opinion that only 20% of their 150,000 distribu-
tion are active anyway, you coincidentally arrive at 30,000!

You’d think somebody would read the fine print by now. A Web-advertising executive recently told me that big companies think nothing of
spending hundreds of dollars for each click-through. Obviously, that PR department isn’t walking down to engineering again.

Truth be told, I wouldn’t want to do this magazine any other way. Describe us however you want. My goal is to continue publishing a
magazine that nurtures an active, involved readership. Occasionally, I have to rant and rave about the obvious insanity of the people and
companies in the business. Controlled-circulation offers a wealth of potential, but I believe it comes up short in performance. Of course, when
you get right down to it, there’s a bit more incentive to read a magazine you’re willing to pay for. We certainly appreciate your support.


