
CELLAR
CIRCUIT
T H E C O M P U T E R A P P L I C A T I O N S J O U R N A L

®INK

$3.95 U.S.
$4.95 Canada

 # 9 9 O C T O B E R 1 9 9 8

DIGITAL SIGNAL PROCESSING
Getting Around the Nyquist Limit

Doing Filters in Software

Signal Conversion Basics

PIC-Based
Graphing Data Logger

E
M

BEDDEDPC
M

ONTHLY SECTION

2 Issue 99 October 1998 Circuit Cellar INK®

Not Exactly a Binary World

TASK MANAGER

e verybody’s got their own way of looking at
things. Fortunately—yes, fortunately—we don’t all

have exactly the same view of the world. It’s also
pretty clear that INK caters to a select audience. Not

everybody, nor even every engineer, you meet designs or works with
embedded computer systems for a living. But here’s my point: Even within
our narrow slice of the engineering universe, there are plenty of different
perspectives. It’s not all black and white, ones and zeros.

Over ten years ago, when Steve started INK, he was crafting a
publication for hands-on engineers. And while a significant percentage of
readers have been there since Day 1 (and among them will be those who
call themselves experimenters as well as others who will vilify me for even
suggesting it), INK has offered such an excellent range of editorial material
over the years that its appeal now runs from systems designers in
multimillion-dollar companies, to EE university students, to the engineering
entrepreneur starting a brand-new company (that one day may in fact
become one of those multimillion-dollar powerhouses), and beyond.

INK finds itself in a unique position, and faced with a unique problem:
how to meet the needs of such a varied group. And I do mean needs.
Nobody here is interested in putting together a magazine that gets tossed in
the Freebies-To-Be-Read-Someday (yeah, right) pile. You pay for INK; you
should get a magazine you want to read.

But, of course, there’s only so much that can fit in a print magazine
each month. That’s why Design Forum is on INK’s web site. It’s still in its
infancy, but you know, sometimes, the more you give, the more you get.
INK gives you Internet access to design hints, feature articles, abstracts
submitted to INK’s design contests (most recently, Design98, cosponsored
by Microchip), as well as monthly columns—and when you get inspired,
you give back. Becoming an active part of the larger community that INK is
fostering guarantees you’ll find what you’re looking for.

Design Forum is just one aspect of the growth here at INK. A new
editorial advisory board has started, with three experienced engineering
professionals—Ingo Cyliax, Norman Jackson, and David Prutchi—keeping
their eyes and ears open for the kinds of editorial you’re interested in. And
although Ken moved on a couple months ago, he didn’t go all that far: he
still proofreads every article and helps with Design Forum editorial. Janice,
too, has shifted roles. After doing a stellar management job for the past two
years, she is now our Project Editor, helping with Internet editorial, as well
as serving as a resource for special projects.

So, while INK is committed to its focus on providing high-quality
engineering editorial, it’s clear that we are determined to offer you a wider
range of opportunities to experience it. No question: in the computing world,
ones and zeros are a big part of the picture, but there’s a lot of value lurking
in the middle. Take advantage of it.

T H E C O M P U T E R A P P L I C A T I O N S J O U R N A L

®INK
EDITORIAL DIRECTOR/PUBLISHER
Steve Ciarcia

MANAGING EDITOR
Elizabeth Laurençot

TECHNICAL EDITOR
Michael Palumbo

WEST COAST EDITOR
Tom Cantrell

CONTRIBUTING EDITORS
Ken Davidson
Fred Eady

NEW PRODUCTS EDITOR
Harv Weiner

PROJECT EDITOR
Janice Hughes

ASSOCIATE PUBLISHER
Sue Skolnick

CIRCULATION MANAGER
Rose Mansella

BUSINESS MANAGER
Jeannette Walters

ART DIRECTOR
KC Zienka

ENGINEERING STAFF
Jeff Bachiochi

PRODUCTION STAFF
Phil Champagne

John Gorsky
James Soussounis

Cover photograph Ron Meadows—Meadows Marketing
PRINTED IN THE UNITED STATES

For information on authorized reprints of articles,
contact Jeannette Walters (860) 875-2199.

Circuit Cellar INK® makes no warranties and assumes no responsibility or liability of any kind for errors in these
programs or schematics or for the consequences of any such errors. Furthermore, because of possible variation in
the quality and condition of materials and workmanship of reader-assembled projects, Circuit Cellar INK® disclaims
any responsiblity for the safe and proper function of reader-assembled projects based upon or from plans, descriptions,
or information published in Circuit Cellar INK®.
Entire contents copyright © 1998 by Circuit Cellar Incorporated. All rights reserved. Circuit Cellar INK is a registered
trademark of Circuit Cellar Inc. Reproduction of this publication in whole or in part without written consent from Circuit
Cellar Inc. is prohibited.

CONTACTING CIRCUIT CELLAR INK
SUBSCRIPTIONS:

INFORMATION: www.circuitcellar.com or subscribe@circuitcellar.com
TO SUBSCRIBE: (800) 269-6301 or via our editorial offices: (860) 875-2199

GENERAL INFORMATION:
TELEPHONE: (860) 875-2199 FAX: (860) 871-0411
INTERNET: info@circuitcellar.com, editor@circuitcellar.com, or www.circuitcellar.com
EDITORIAL OFFICES: Editor, Circuit Cellar INK, 4 Park St., Vernon, CT 06066

AUTHOR CONTACT:
E-MAIL: Author addresses (when available) included at the end of each article.
ARTICLE FILES: ftp.circuitcellar.com

CIRCUIT CELLAR INK®, THE COMPUTER APPLICATIONS JOURNAL (ISSN 0896-8985) is published monthly by
Circuit Cellar Incorporated, 4 Park Street, Suite 20, Vernon, CT 06066 (860) 875-2751. Periodical rates paid at
Vernon, CT and additional offices. One-year (12 issues) subscription rate USA and possessions $21.95,
Canada/Mexico $31.95, all other countries $49.95. Two-year (24 issues) subscription rate USA and
possessions $39, Canada/Mexico $55, all other countries $85. All subscription orders payable in U.S. funds
only via VISA, MasterCard, international postal money order, or check drawn on U.S. bank.
Direct subscription orders and subscription-related questions to Circuit Cellar INK Subscriptions,
P.O. Box 698, Holmes, PA 19043-9613 or call (800) 269-6301.
Postmaster: Send address changes to Circuit Cellar INK, Circulation Dept., P.O. Box 698, Holmes, PA 19043-9613.

ADVERTISING
ADVERTISING SALES REPRESENTATIVE

Bobbi Yush Fax: (860) 871-0411
(860) 872-3064 E-mail: bobbi.yush@circuitcellar.com

ADVERTISING COORDINATOR
Valerie Luster Fax: (860) 871-0411
(860) 875-2199 E-mail: val.luster@circuitcellar.com

elizabeth.laurencot@circuitcellar.com

EDITORIAL ADVISORY BOARD
Ingo Cyliax Norman Jackson David Prutchi

Circuit Cellar INK® Issue 99 October 1998 3

44 Nouveau PC
edited by Harv Weiner

48 Networking with DeviceNet
Part 2: A Weather-Station Application
Jim Brady

55 RPC Real-Time PC
The Need for Speed
RTOS and PC/104
Ingo Cyliax

61 APC Applied PCs
RF and Micros
Part 2: A Low-Power System
Fred Eady

ISSUE
INSIDE

X-Y Graphing Data Logger
Alberto Ricci Bitti

Time-Domain Filter Simulations Using C++
Glenn Parker

Breaking Nyquist—Post-Sampling Antialiasing
Gerard Fonte

Digital Frequency Synthesis
Tom Napier

I MicroSeries
Digital Processing in an Analog World
Part 1: Basic Issues
David Tweed

I From the Bench
MIDI
Part 1: It Ain’t Just for Music Anymore
Jeff Bachiochi

I Silicon Update
MegaMicro Card
Tom Cantrell

2

6

8

95

 96

E
M

BE
DD

ED
P
C

12
24
30
36
68

76

80

9999

Task Manager
Elizabeth Laurençot

Not Exactly a Binary World

Reader I/O

New Product News
edited by Harv Weiner

Advertiser’s Index/
November Preview

Priority Interrupt
Steve Ciarcia

Banking on Bugs

6 Issue 99 October 1998 Circuit Cellar INK®

READER I/O

INK ON-LINE
Your magazine enjoyment doesn’t have to stop on

the printed page. Visit Circuit Cellar INK’s Design
Forum each month for more great online technical
columns and applications. Here are some of the great
new on-line articles:

Columns
Silicon Update Online: Microchip on the March—

Tom Cantrell
Lessons from the Trenches: Get an Embedded Micro

and C Compiler off the Ground—George Martin

Forum Feature Articles
One More Wireless Trick to Stuff Up Your Sleeve—

Hank Wallace
Lost at C? Forth may be the Answer—Tom Napier

Missing the Circuit Cellar BBS?
Then don’t forget to join the Circuit Cellar INK

newsgroups! The cci newsserver is the engineer’s
place to be on-line for questions and advice on
embedded control, announcements about the
magazine, or to let us know your thoughts about
INK. Just visit our home page for directions to
become part of the BBS experience.

www.circuitcellar.com

PIC Abstractions
Design Abstracts from our Design98 Contest
X-10 Temperature Sensor—Donald Blake
Compact Optical Image Scanner—John Luo
Heating Control System—Mark R. Wheeler

Editor’s note: A corrected version of Figure 1 from
“Automotive Travel Computer” (INK 98, p. 67) is
available as a downloadable PDF file on the Circuit
Cellar web site at ftp://ftp.circuitcellar.com/CCINK/
1998/Issue_98/correction.zip.

AN ANALOG EYE ON DIGITAL DESIGN
I am an analog-oriented EE, and Mike Smith’s article

(“Unplanned Calibration Errors in Embedded Systems,”
INK 96) gave me an appreciation of the design consid-
erations for a software program for a digital instrument.
One would design an analog instrument to handle fail-
safe conditions for all potential situations. The software
code, its syntax, and the compilers used to mechanize
code handling add layers of potential ambiguity.

In analog design, the simplest approach is usually
the best, and I expect that it’s likewise in digital design.
I think your examples were picked to be a demonstra-
tion for your article, and it worked.

As an analog guy, I would be more likely to enter
the correction factor/calibration error for the trans-
ducer at a summing junction, with the reference trip
level for the fail safe at the low/high trip, to generate
a signal to be subsequently summed with that of the
conditioned transducer signal to generate a trip alarm.

I would think that, in a software design review, the
software would be simpler, more reliable, and faster if

the static correction factor were applied as the digital
sum of the static trip point, and then the correction
factor, calculated on bootup, and the resulting static
digital reference stored for comparison with the digi-
tized transducer data?

I’m sure you agree that when the failure of a design
could mean jail, or the poorhouse, the redundancy level
for each catastrophic failure mode would be doubled or
tripled, or pass the job. I’m not denigrating digital
design, but I want to point that it has peculiarities to
be considered.

Tom Callahan
tpcal@iu.net

October Design Forum password:

Filter

8 Issue 99 October 1998 Circuit Cellar INK®

NEW PRODUCT NEWS
Edited by Harv Weiner

GPS ANTENNA
Tri-M Systems’ Mighty-Mouse GPS integrates a high-

performance patch antenna and a state-of-the-art, low-noise,
low-power consumption amplifier into a compact water-
proof enclosure. Ideally suited for deployment as an exter-
nal antenna for hand-held or vehicle-based GPS receivers,
the antenna consumes less than 12 mA while producing
25 dB of signal gain.

An innovative universal adapter system enables
Mighty-Mouse antennas to mate with GPS receivers
from different manufacturers. Supported connectors
include SMB, SMA, BNC, TNC, and MCX. The
Mighty-Mouse comes standard with a 5-m RG174/U
cable and features magnetic and permanent mount-
ing. The unit measures 58 mm × 48 mm × 15 mm
and weighs 65 g.

The GPS antenna is hermetically sealed and
completely waterproof. It is manufactured with a
die-cast metal baseplate, which acts as a ground
plane, so you can mount the antenna anywhere
without sacrificing signal-reception performance. A
polycarbonate radome protects the antenna element,
low-noise amplifier, band-pass filter, and buffer
stage at operating temperatures from –30° to +85°C.

Tri-M’s Mighty-Mouse antenna comes with
everything needed to attach to the user’s GPS re-
ceiver. Pricing starts at $59 in OEM quantities,
with a suggested list price $79.

Tri-M Systems, Inc.
(800) 665-5600 • (604) 527-1100
Fax: (604) 527-1110
www.tri-m.com

REAL-TIME VIDEO IMAGE PROCESSING
BittWare has announced a new video I/O mezzanine

that interfaces NTSC/PAL video signals with SHARC
processors in real time. The bitsi-VIDEO captures and
displays composite and S-video signals, making it ideal
for real-time image-processing applications requiring
rapid scanning and peak I/O performance.

The bitsi-VIDEO mounts to SHARC-based host
boards and uses a tightly integrated interface to trans-
mit video signals to the processor on the host. Using
square pixel or CCIR601 data formatting, the device
encodes from, and decodes to, 8-bit YCrCb-format digi-
tal data. It delivers the signals to the SHARC processor
on the host board for immediate processing or frame
storage. Two link ports return processed video data to
the bitsi-VIDEO for conversion back to analog video.

The bitsi I/O mezzanine standard is optimized to
match the SHARC DSP’s sophisticated I/O capabilities.
A variety of off-the-shelf bitsi I/O mezzanines, includ-
ing audio, control, video, and telephony interfaces, are
available. The interface consists of 32 data bits, 26
address bits, 10 control signals, two DMA channels,
four SHARC link ports, and three serial ports.

Pricing for the bitsi-VIDEO starts at $1495.

BittWare
(800) 848-0436 • (603) 226-0404
Fax: (603) 226-6667
www.bittware.com

Circuit Cellar INK® Issue 99 October 1998 9

NEW PRODUCT NEWS
VERSATILE SINGLE-BOARD COMPUTER

The SBC2000-074 single-board computer is a
compact, low-power unit that features a Microchip
Technology PIC16C74 running at 20 MHz. It is
equipped with two RS-232 serial ports that run to
19.2 kbps, a real-time clock, watchdog timer, an
8-KB EEPROM, and five 8-bit A/D inputs. It also
includes five programmable DIO lines, a low-
power sleep mode, a PWM generator, an LCD port,
and a keypad port. All this comes on a 2.8″ × 1.3″
board. Expansion of the SBC2000-074’s hardware is
facilitated by the board’s VAST (Vesta Addressable
Synchronous Transfer) network connector, which
lets the user select from over 20 peripherals.

The SBC2000-074 includes Vesta Basic V.2, which
is a Windows-based, IDE-driven compiled BASIC.
The single-tasking software features floating-point
calculations with 16-bit precision. The unit operates
at temperatures between –40°C and +85°C and
consumes 15 mA at 5 VDC. A low-dropout
onboard voltage regulator creates optional direct
connection to unregulated supplies ranging from
5.5 V to 24 VDC.

The SBC2000-074 sells for $64.

Vesta Technology, Inc.
(303) 422-8088
Fax: (303) 422-9800
www.sbc2000.com

HARDWARE SIMULATOR
The SIMICE hardware simulator provides low-cost

system debugging for the Microchip Technology PIC-
12C5xx, ’12CE5xx, and ’16C5x eight-bit RISC micro-
controllers. It works in conjunction with Microchip’s
MPLAB-SIM software simulator to provide non-real-
time I/O port emulation.

SIMICE enables a developer to run simulator code
for driving the target system. The target system can
also provide input to the simulator code, enabling
simple and interactive debugging. SIMICE features
unlimited software breakpoints and PC communication
via serial interface at speeds up to 57 kbps. It also
supports source-level debugging.

The MPLAB Integrated Development Environment
(IDE) gives users the flexibility to edit, compile, emu-
late, and program devices from a single-user interface.
MPLAB software offers a project manager and program
text editor, a user-configurable toolbar containing four
predefined sets, and a status bar, which communicates
editing and debugging information. A dynamic error
capability creates rapid application development.
MPLAB is available at no cost by downloading the
software program from Microchip’s Web site.

The complete SIMICE hardware-simulator system
features a hardware I/O port emulator board, RS-232
cable, PICmicro target probe cables, and MPLAB IDE
software. SIMICE is priced at $129.

Microchip Technology, Inc.
(602) 786-7668
(602) 786-7200
Fax: (602) 899-9210
www.microchip.com

10 Issue 99 October 1998 Circuit Cellar INK®

NEW PRODUCT NEWS
LCD MICROTERMINAL

The ILM-216L is an LCD mod-
ule with a built-in serial interface.
It works like a terminal, receiving
text via RS-232 at 1200–9600 bps
(8N1) and displaying it in large
5.9-mm (0.23″) characters on a
supertwist 2-line × 16-character
LCD.

Formatting text for
the display is a simple
matter of using familiar
terminal-control charac-
ters such as carriage
returns, linefeeds, tabs,
and so forth. Additional
instructions control the
backlight, position the
cursor, define custom
characters, and read four
switch contacts. The
ILM-216L automatically
right-aligns selected

text, which is ideal for updating nu-
meric fields with minimal program-
ming overhead.

A unique feature of the ILM-216L
is its nonvolatile configuration mem-
ory (EEPROM). Users can set the ILM-
216L to perform any of the following

tasks at startup—display a custom
splash screen, define custom char-
acters, and turn on the backlight.

The ILM-216L draws only 5 mA
with the backlight off and 40 mA
with it on. The device measures
80 × 50 mm (3.15″ × 1.97″), so it

fits into most standard
2 × 16 LCD mounting
locations with a small
overhang at the bottom.

Pricing for the ILM-
216L ranges from $49
in single quantities to
$29 in 100+ quantities.

Scott Edwards
Electronics, Inc.
(520) 459-4802
Fax: (520) 459-0623
www.seetron.com

Circuit Cellar INK® Issue 99 October 1998 11

NEW PRODUCT NEWS

Logic Analyzers

THICK-FILM SMART FORCE SENSOR
The DX-300 is an all-metal, thick-film sensor de-

signed for high-precision, multiaxis force sensing in
harsh environments. Typical applications include
coordinate measurement and robotics feedback controls,
as well as precise multiaxis force measurement and
fly-by-wire motion control.

The DX-300 has a network of conductive thick-
film strain-sensitive elements (on a steel substrate) to
measure microscopic strain. This network creates a
force-measurement device that produces many times
the output of even the best ceramic-based sensors.

Advantages of this construction include thermal
stability, ESD protective design, high output, rota-
tional accuracy, chemical stability with different cap
chemistries, and no crack-propagation problems. So,
the sensor circuitry will never fatigue or change output
with time. The DX-300 features noncompliant palm-
or finger-activated motion and force-sensing capabili-
ties in a high-output, precise smart-sensor design.

The sensors are offered in two smart-sensor systems—
the cursor control Integrated Block system that pro-
vides an RS-232 or a PS/2 sensor output for precise
cursor control, and the force measurement/motion

control package that provides a 0–5-V output in all three
distinct axes of input.

The DX-300 costs $165 in quantities of 500, and it is
available with full signal-conditioning electronics for a
slightly higher price.

Bokam Engineering
(714) 513-2200 • Fax: (714) 513-2204
www.bokam.com

12 Issue 99 October 1998 Circuit Cellar INK®

X-Y Graphing Data Logger

FEATURE
ARTICLE

Alberto Ricci Bitti

l
With more data than
he can handle (and
always in some in-
convenient place),
Alberto constructed a
powerful, handheld,
programmable data
logger from his Casio
pocket calculator. And
as a reward, Design98
judges made it their
“first PIC.”

ike any other
designer, I have to

cope with lots of data
everyday. Raw data in

need of analysis comes from every
design phase and from all related
sites. From writing specifications to
development, from production tests to
on-site verification, we end up with
tons of measurements.

A graph is often the best way to
point out the key features of what you
measure. It’s useful for instantaneous
communications and easy to document
for later reference. It’s accepted for
corporate quality system records, too.

PCs are powerful graphing tools,
and maybe that’s why almost all recent
instruments have some kind of PC
interface. So, you just take out your
dazzling new computer-interfaceable
meter, connect it to nearest PC, and
start measuring. Right?

Wrong. Sometimes you want to
take measurements in the field, and
you can’t take the instruments out of
the lab. Something other than the PC
can collect the data, but it’s fooled by
grounding problems.

Other times you need a battery-
operated instrument, but a laptop is

 12

24

30

36

X-Y Graphing Data
Logger

Time-Domain Filter
Simulations Using C++

Breaking Nyquist

Digital Frequency
Synthesis

FEATURES

Circuit Cellar INK® Issue 99 October 1998 13

too expensive, or it has to be
used elsewhere, or the batteries
don’t last long enough. And
don’t forget that you have to
convert data to spreadsheet
format to get the graphics.

What if you need to collect
data for a whole week? Can
your precious equipment be
locked for such a long time?

My solution: a simple yet
powerful graphical data-acquisi-
tion unit built from a pocket
calculator. I applied a compo-
nent-oriented approach that resulted
in a shortened development cycle and
overall quality improvement.

The unit doesn’t just collect data.
It also displays it for further investiga-
tion, and it offers plenty of analytical
and statistical built-in functions.

I applied low-power techniques and
components to squeeze all the power
out of a 9-V battery. By the way, I’ll
also tell you how I found the communi-
cation protocol used by the calculator.

While this design doesn’t pretend
to solve all your measurement problems
at once, it’s simple, cheap, and powerful
enough to be useful in the situations I
described above.

Its flexibility makes it ideal for
acquisition in the lab, on the produc-
tion line, in the field, or wherever you
need a clear, graphical, and immediate
(yet sophisticated) data display.

MACHINE MUSCLE
The data logger consists of the

graphic calculator—with its 64 × 128
LCD screen and keyboard—and the
analog interface. I left the calculator
untouched, and the analog interface
fits in a small, separate plastic box
(see Photo 1). They are joined only by
the umbilical serial data connection.

The interface enables me to read
the voltage at up to eight inputs with
1-mV resolution in the 0–4096-mV
range, thanks to a 12-bit ADC. The
data is converted to the right protocol
by a PIC microcontroller and sent to
the calculator for display and storage.

Once the data is received by the
graphing calculator, it’s immediately
available for graphing, viewing, zoom-
ing, panning, or listing. You can apply
all the calculator’s functions to your

data set, either by hand or through
simple programs.

Statistical (e.g., linear, exponential,
polynomial regressions, mean, or devia-
tion) and mathematical (e.g., integration,
derivation) analyses are only a few key-
strokes away. All of this can be done
in the field with no other hardware
except the logger itself—a capability
not found in the most expensive data
loggers available today.

The unit is battery powered and
works for more than 200 h on standard
batteries while retaining more than
20 KB of data for at least one year. I
use separate batteries for the calculator
and analog interface. Batteries make
this device suitable for mobile use, as
well as eliminating ground loops, which
is a common nuisance for PC users.

USING COMPONENTWARE
Componentware is a popular

buzzword in the IT community. It
stands for software entities (some-
times as big as a full-featured word
processor) that you can reuse as
building blocks for other pro-
grams without having to know
too many details.

What does componentware
have to do with hardware design?
A lot. A 16 × 2 LCD, an RF tuner,
and a stamp-sized controller (e.g.,
Basic Stamp, Domino, PicStic, or
Basic Tiger) comprise the hard-
ware counterpart of component-
ware techniques.

Once upon a time, we had
libraries of subcircuits that
worked well. But today, we have
fat, white-box components. The
list goes on to include DC-to-DC
converters, modem on a chip,

LCD voltmeters, wall-wart power
supplies, and even a whole PC!

Is the componentware a good
design technique? I think so.
When you have a 16 × 2 LCD,
you don’t need to know the
details about LCD polarizers or
backlighting problems. Just
leave these problems to LCD
specialists, and concentrate on
your specific application.

Adding components together
increases the abstraction level
and, consequently, the designer’s

freedom and power. With so many prob-
lems already solved, you can concen-
trate on solutions to new problems.

All of this comes at no extra cost.
Most white-box components are derived
from high-volume consumer devices.
Everyone benefits from the optimized
price, industrial quality, uniformity,
and reduced time to market.

In this design, I go a step further
and use a graphic calculator as a
white-box component to build a data
logger. Admittedly, thinking of a
pocket calculator as a component is a
little wild, and we may never see such
a component as a standard.

Nevertheless, the general approach
is effective, and the benefits can apply
to a number of designs. For one thing,
it increases designer power, putting a
graphical LCD, a programming language,
lots of memory, and PC connectivity
at your disposal.

Using a calculator also cuts develop-
ment time, so it takes just days (not
weeks or even months, if you include

Figure 1 —The unit can accommodate a variety of sensors. Up to eight
sensors can be read at the at the same time with 1-mV steps from 0 to
4096 mV. a—This setup reads temperatures ranging 0–100°C with a
resolution of 0.1°C. b—The light sensor is placed in front of an LED to
nonintrusively monitor a device’s on/off status. The diodes reduce the
maximum output to a safe 3.6 V.

LM35

+

–
100 nF

out 10 mV/˚C

Pin 8 (+5 V)

Pin 1 (X)

Pin 9 (GND)

1 µF

Pin 8 (+5 V)

Pin 7 (Y)

Pin 9 (GND)

10 k

LDR

2 × 1N4148
a) b)

Figure 2 —Here is the main flow of the Casio communication
protocol. Apart from reversed-TTL logic levels, it’s a familiar
half-duplex with 9600 bps, no parity, eight data bits, and two
stop bits. A level converter and inverter like the MAX232 is all
that's needed to interface the Casio to a PC serial port.

14 Issue 99 October 1998 Circuit Cellar INK®

the calculator math) to go from ideas to
prototype. This technique also simpli-
fies the problem-solving path: a simple
concept, simple electronics, and simple
software yield a complex result.

You also get lower power consump-
tion (at least 200 h on standard batter-
ies), which is more than 20 times a
comparable PC-based solution.

Also, using the calculator cuts cost.
Just one, off quantity, sells for the
price of an LCD alone. Overall costs
are more than 20 times less than any
PC-based solution of comparable power.

You get increased flexibility, low
cost, and an easily replaceable flash-
reprogrammable input board, enabling
you to retain the calculator. Plus, only
data acquisition and transmission need
to be tested, and you save on production
costs because you don’t need compli-
cated plastics and electronics.

Documentation is simpler, too.
Just add a “Capturing data” chapter to
the calculator’s manual.

Size and weight are also reduced.
Even prototypes are handheld, weighing
only 290 g (including batteries), and
series production sizes can be reduced
further.

LOW-POWER GUYS
Every successful project relies on

component selection, especially battery-
operated designs. Maxim’s MAX186 is
a low-power 12-bit ADC. It needs

minimal external hardware and features
a nice internal 4.096-V reference that
sizes each step to a handy 1 mV.

The MAX186 sports eight single-
ended inputs, which is more than
enough for most applications. The
same inputs can be reconfigured as
four bipolar and pseudodifferential
inputs by simply changing the com-
mand word. It’s suitable for reading
data directly from a large variety of
sensors (see Figure 1).

The MAX186 generates its clock
internally, and the entire operation is
controlled through a four-wire SPI,
QSPI, or Microwire serial interface.
The device is put in standby mode via
a three-level input pin or with a soft-
ware command word.

It consumes 1.5 mA typical while
operating, which drops to a mere 2 µA
in full power-down mode. There is
also an interesting fast power-down
mode (not used in this design) that
consumes 30 µA with a wake-up time
as short as 5 µs.

If 10 bits are enough for your taste,
you can replace the MAX186 with the
MAX192. It’s fully pin- and software-
compatible with the MAX186. Price
aside, the only difference resides in the
precision of the two lower bits, which
aren’t guaranteed for the MAX192.

The chip needs a single 5-V power
supply. With such a low power require-
ment, the drain of the power regulator

itself becomes important. Ordinary
regulators such as the 78L05 can eas-
ily drain more current than the whole
circuit.

You need specific low-dropout
regulators like the LM2936 to get
maximum battery life. The LM2936
has a quiescent current of only 9 µA,
and it’s internally protected from
reverse battery connection.

FLASH RISC GLUE
An eight-bit RISC microcontroller

glues the ADC to the Casio serial
input. Because my goals included
rapid development time and low cost,
I focused on small flash- or EEPROM-
based RISC microcontrollers.

The simplified RISC architecture is
easy to learn, and erasable parts let
you concentrate on the problem in-
stead of the UV eraser. As a bonus,
these parts usually have simple, ultra-
cheap PC-port-based programmers.

I chose the PIC16C84 (an EEPROM
part) and the newer PIC16F84 (an
improved flash version) from Micro-
chip. A useful characteristic of the PIC
architecture is its support of data
tables that are as long as the program
memory. This characteristic is a result
of the RETLW instruction.

These PICs are powerful enough to
handle serial communications entirely
in software with a 4-MHz clock. A
faster part (you can find 50-MHz PIC
clones) is unnecessary.

The PIC draws only a few microamps
when sleeping (even with the watch-
dog timer enabled), and best of all, it’s
cheap and available. MPLAB, a profes-
sional grade assembler and simulator,
is distributed for free by Microchip,
along with lots of useful libraries.

THE GRAPHIC ENGINE
The Casio FX-9750G graphing

calculator has 32 KB of RAM for data
or programs and a 64 × 128 black and
white LCD. The FX-9750G is a member
of a larger family that includes mod-
els with color LCDs and up to 64 KB
of memory. It’s a powerful and enjoyable
math tool, but it costs about the same
as a graphic LCD module alone.

It runs on four LR03 batteries for
200 h, and sensitive data and programs
are maintained for up to one year by a

High impedance*SHDN

*CS

SCLK

DOUT

DIN

MSB LSB
1 XX

> 1 ms > 1.5 µs > 10 µs

 Input
selection

 0 0 0
 0 0 1
 0 1 0
 0 1 1
 1 0 0
 1 0 1
 1 1 0
 1 1 1

 Single
 ended

channel 0
channel 2
channel 4
channel 6
channel 1
channel 3
channel 5
channel 7

differential
(+) (–)

ch. 0 ch. 1
ch. 2 ch. 3
ch. 4 ch. 5
ch. 6 ch. 7
ch. 1 ch. 0
ch. 3 ch. 2
ch. 5 ch. 4
ch. 7 ch. 6

Acquisition-mode
selection

0 0 bipolar, differential
from –2.048 V to +2.048 V

0 1 not allowed

1 0 unipolar, differential

1 1 unipolar, single ended

Figure 3 —The analog inputs of the MAX186 can be switched to bipolar and pseudodifferential mode by changing
the control word. In bipolar mode, the input spans between ±2.048 V instead of the usual 0–4.096 V. The last two bits
in the control word select the power-down mode. Here, they are overridden, forcing the shutdown pin (*SHDN) low.

16 Issue 99 October 1998 Circuit Cellar INK®

separate lithium battery. I’m
glad the Casio folks elected to
use a standard miniature stereo
jack as the serial port connec-
tor for external peripherals.

The data protocol is built
around a standard 9600-bps
half-duplex serial stream,
with one start bit, two stop
bits, and eight data bits with no parity.

Interfacing the FX-9750G to a PC is
a matter of adapting TTL–to–RS-232
levels. A MAX232 can do the job. I
built one of the dozens of similar
circuits I found on the Internet,
coupled with the FA-122 Windows
backup software.

I haven’t tested the compatibility
with other calculators (besides the
FX9750G), but I don’t expect any
differences in the protocol between
similar models.

CASIO PROTOCOL
The Internet is now an invaluable

resource for designers. After a night of
browsing, I found some commented
programs for loading calculator pro-

grams to and from a PC. I found only
partial information about how to trans-
mit or receive single variables instead
of programs, but it served as a good
starting point.

I assumed that the variable transfer
format probably wasn’t so different
from the program transfer format.
Notably, even the official Casio FA-122
backup software can be found online.

I knew that the communication
was a 9600-bps half-duplex TTL serial
stream, and I knew communications
should start with ACK/NACK-style,
single-character messages. Packets
follow, starting with colons ($3A) and
terminating with checksums.

I also had PIC samples, some good
ready-made serial and BCD routines,

Photo 1 —The circuit fits inside a small
plastic box just as large as the calculator.
The micro jack connector hangs out,
connecting to the calculator serial port. The
box is stuck to the bottom of the calculator
for operating. This arrangement gives the
calculator a stable and comfortable slope.

Photo 2 —I used Visual Basic to
discover the inner secrets of the
Casio protocol. With VB5 it’s
easy to set up a quick and dirty
serial protocol debugger. Tasks
responding automatically to a
control character, trying various
serial speeds, or sending packet
strings are left to a simple
program loop. Thanks to Visual
Basic’s interpretative nature, you
can stop the program, issue any
other command manually, then
continue execution. This way
you avoid writing lots of code.
Here, the characters sent by the
Casio are in red, and the analog
interface response is in black.

18 Issue 99 October 1998 Circuit Cellar INK®

ii)

iii)

viii)

vii)

iv)

v)

Straightening Curves—Linearizing a Tank-Level Sensor
Most sensors’ outputs are nonlinear. To use them practically, they must be

straightened using interpolation tables or analytical models.
Regression models are popular analytical tools for substituting data tables

with clean, continuous functions that are elegant and practical. During calibration,
function substitutes require only three or four points to be measured, as compared
to the many more points that tables require.

The volume of liquid in the 25-l tank in Figure i is measured using a float
and potentiometer. The output is proportional to the angle. The tank’s irregular
shape makes an analytical approach im-
practical. It’s better to measure the sensor
output at known liquid quantities.

Photo i—The output is connected to
the x input, and the program in Listing 1
is run. Each cycle, exactly 1 l of liquid is
added until the tank is full. At the end,
List1 stores the liters of liquid, and List2
stores the sensor’s output level. Successive
data manipulation is done manually.

Photo ii—Selecting STAT gives you the
sampled data in its raw form, as it appears
on the default entry page. Here, editing
and sorting can take place. GPH1 lets you
view data graphically, and SET lets you
check the current graphing preferences.

Photo iii—The preferences for GPH1 are
set as a scatter graph with small box
markers. I want to plot the liters over the
sensor’s output, so I select List2 for x and
List1 for y. Showing the inverse function
is simply a matter of exchanging coordinates
here. Exit goes to the previous menu.

Photo iv—The display scales automati-
cally to fit all the data, but you can zoom
in or pan in each direction. The dotted grid
is shown every 50 mV for x and 5 l for y.
Note the gap at about 5 l (after the fifth
marker), which is due to the pump niche.

Photo v—To draw the first-order regres-
sion line, just press X. Other regression
models (e.g., median-median, second- to
fourth-order polynomials, logarithmic, and
exponential) are obtained the same way.

Photo vi—The first-order regression is
too coarse for reliable measurements, but
it’s easy to try other curves. The second-
order one, shown here, fits the data nicely.

Photo vii—Zooming shows that the
error at the pump niche gap is negligible.

Photo viii—Pressing X^2 brings up the
coefficients and the regression formula,
ready to be used for linearizing the
sensor’s output. Thanks to the second-
order characteristic, a full data table is no
longer necessary. I can do the calibration
with only three points.

+ 4 V
Sensor
output

∝ Span 35˚
∝

Pump
niche

Float

Figure i

vi)

i)

Circuit Cellar INK® Issue 99 October 1998 19

and a microjack plug. That’s all I
needed to start experimenting.

Using a TTL–to–RS-232 level con-
verter, I connected the calculator to
the PC serial port so I could monitor
what’s going on.

After I issued the Receive(X)
command on the Casio, it sent out a
$15 character and, after 1 s, it aborted
(a $22 character sent to the PC prior
to interrupt communications).

I made a Visual Basic program to
issue various characters after that
attention request (see Photo 2). I
quickly discovered that the calculator
was waiting for a $13 character.

A request packet from the calculator
follows this vital sign from the PC (50
bytes, starting with :REQ), where the
calculator defines the variable to be
sent. As expected, all nontrivial packets
start with a colon character and are
terminated by a simple negated check-
sum. With the exception of the last
packet, all require an acknowledge-
ment message from the recipient ($06).

Since I didn’t know how a value
packet is made, I reversed the situation,
making the Visual Basic program act
as a Casio calculator issuing the
Receive(X) command that was just
received. At the same time, the real
Casio calculator issued Send(X). In
this reversed setup, the calculator

issued a 50-byte variable-address packet,
starting with :VAR.

I reiterated this process, continuously
reversing the sender with the receiver,
sometimes simulating Send(X) and
sometimes simulating Receive(X).
Packet after packet, the whole protocol
was discovered, as depicted in Figure 2.

MAIN CODE
The software copes with communi-

cation protocols over a serial line,
combining sleep mode and watchdog
techniques to achieve minimal power
consumption, low-power ADC driving,
and data conversion to the Casio format.

Complete packet templates are stored
in data tables in program memory. At
this point, I found RETLW invaluable.

Only segments with variable val-
ues are replaced by real data read from
the ADC in real time. Most parts of
the input packet are ignored, and only
the variable name is stored to select
the right ADC input. When issuing
Receive(X), you can specify any other
variable name to select a different input.

Even the simpler communication
protocol must deal with errors and
interruptions. To keep program over-
head low, I set up the watchdog timer
to reset the device if it waits for an
answer from the calculator for more
than 2 s.

Once reset (and for most of the time),
the device is left in sleep mode. It’s
awakened by another WDT timeout or
by receiving a character.

In the former case, the device goes
back into sleep mode. In the latter
case, the LED flashes, the ADC awak-
ens, and the communication flow
restarts.

When the micro sleeps, the ADC is
left in full power-down mode. The
shutdown pin is a three-level selection
input, and the MAX186 sleeps with
that pin at 0.

It is awakened by putting the pin
in a high impedance state, which is
done long before the conversion starts
to let the voltage reference capacitor
charge completely.

The MAX186 input can be recon-
figured to bipolar input mode (with
input spanning from –Vref/2 to +Vref/2)
or pseudodifferential input mode by
changing the command word that is
ORed in the ReadADC code segment.
Figure 3 shows the signals involved
and how the control word is made.

The Casio needs variables in BCD
format with separated exponent dig-
its. The most significant digits come
first. The BCD conversion and the bit-
banging serial-port routines are de-
rived from public-domain Microchip
libraries.

Figure 4 —Using a graphing calculator as the output and processing device results in a simplified circuit diagram. The 5-V power rail is brought to the input connector to feed
external sensors. If the quiescent current does not concern you, then the popular 78L05 can replace the LP2950CZ.

20 Issue 99 October 1998 Circuit Cellar INK®

INSIDE THE BOX
The final circuit diagram is shown

in Figure 4. Since this is a low-power,
unshielded, mixed A/D circuit, the
overall result depends on the quality
of the layout.

Even though we’re all accustomed
to 12-bit converters, you must take
great care to correct grounding so you
have stable readings of the least sig-
nificant bits. The analog and digital
grounds must be kept separate. They
have to be joined only at one point (as
near as possible to the regulator ground).
Bypass capacitors are mandatory, and
capacitors on the inputs are equally
necessary.

The MAX186 has a good pin layout,
which helps separate input lines from
data lines, and a stable readout is
easily obtainable. But in noisy environ-
ments, consider averaging in software
to further reduce uncertainty.

The eighth analog input is left
unconnected on the prototype. This
arrangement enabled me to bring the
power out to the nine-pin input con-
nector, thus powering external sensors.

However, it’s fully supported by soft-
ware, so if you need it, simply add an
input capacitor and feel free to use it.

Of course, power supply is critical
in every battery-operated device.
Power-up rise times must be short
because there is no external reset
circuitry for the micro. The MCLR
pin is tied directly to VCC.

The low-power regulator is more
delicate than a regular 78L05. It requires
an output electrolytic capacitor—better
if it’s tantalum.

The required current is impulsive,
consisting of a 50-µA offset (sleeping
micro and ADC), 1.5 mA during serial
communication with the calculator, a
single pulse of 1.5 mA for a few milli-
seconds (A/D conversion), and a 1-ms
peak for LED flashing (current given
by the LED series resistor).

The LED flashes once per conversion.
I recommend a red LED because it
produces more light with the same
current.

I brought the power supply to input
pin 8 in case some sensor needs it. Be
sure to take sensor power requirements

into account when estimating battery
life. If the sensor sinks a significant
amount of current, consider powering
it through one of the free PIC I/O pins,
which will power off when not in use.

I assembled the whole circuit using
a prototyping board, and it fits inside
a small plastic box that’s only the size
of the calculator. The box contains all
the circuits and the battery. Only the
micro jack connector (connecting to
the calculator serial port) hangs out.

As you see from Photo 1, there’s a
lot of space left on the board. If possible,
use a 90° jack to keep the unit even
more compact and rugged.

SETTING UP THE CASIO
While operating, the analog inter-

face box is stuck to the bottom of the
calculator, below the LCD, with
TESA removable biadhesive strips.
This arrangement gives the calculator
a stable and comfortable slope, and it
leaves the input connector in a handy
place, free from obstacles.

To reveal the micro jack socket,
remove the rubber cover that comes

Circuit Cellar INK® Issue 99 October 1998 21

with the calculator. If the jack is left
unconnected or the unit is powered
off, a Com error message is displayed.

You don’t need any particular pro-
gramming skill to use the acquisition
unit. One instruction does it all.

Issuing Receive(X) directly (Recv
softkey in the PRGM I/O menu) displays
the value read from channel x. You
can manipulate the x variable like any
other ordinary variable, exactly the
same way you would if you entered it
manually. Value is expressed in milli-
volts, and ranges from 0 to 4095.

Receive(X) is usually issued under
program control, as in Listing 1. But, I
like to manipulate graphs manually. It’s
an instructive, highly interactive way.

Nevertheless, every keystroke can
be replaced by a matching keyword to
be issued under program control.
From the programming standpoint,
complex tasks (e.g., displaying a
whole graph or computing a fourth-
order regression) count as only a
single instruction.

You can specify other variable
names instead of x. Each variable

selects a different input. Variables
supported are x, y, v, w, z, s, t, and u.
Other names are seen as aliases and
won’t cause errors.

FIRST GRAPH
Look at the real-world example in

the sidebar “Straightening curves—
Linearizing a Tank-Level Sensor.”
Here, a float drives a potentiometer
sensing the liquid level in a 25-l, ir-
regularly shaped tank.

I want to figure out the relation-
ship between the sensor output and
the quantity of liquid left in the tank
and to gather enough data to build a
model for the control processor.

The complex relationship between
angle, height, and volume makes an
analytical approach impractical. It
would be better to measure the sensor
output at known liquid quantities.

The potentiometer output is brought
to input x. It’s powered at 4 V to avoid
damaging the inputs.

In Listing 1, you see the simple
control program that’s required. List
is the equivalent of an array in the

Casio world. Seq allocates the
memory space for a list and initializes
it. Here, two lists—one for the liquid
quantity and one for the sensor output—
are created and filled with data in a
simple for-next loop.

At each cycle, 1 l of liquid is added
and a measurement is taken. This
process continues until the tank is
full. When the program ends, the two
lists hold the quantity of liquid as
well as the sensor’s output level.

Even if data visualization commands
could be included in the program, it is
convenient to look at nonrepetitive
tasks manually.

The STAT menu lets you examine
the data tables. If you select the GRPH
submenu and GPH1, Graph1 is then
displayed as an x-y scatter graph of
List1 (liters) over List2 (sensor
output).

Although nonlinear, it’s immedi-
ately clear that the sensor output is
suitable for measurements. An anom-
aly at about 5 l, due to the presence of
a pump niche that reduces the avail-
able volume, is equally evident.

22 Issue 99 October 1998 Circuit Cellar INK®

Seq(N,N,0,25,1) --> List1
Seq(0,N,0,25,1) --> List2
For 1--> N To 26
 Receive(X)
 X --> List2[N]
 Locate 1,1, N
 Locate 10,1, X
While (Getkey): WhileEnd
Next

Listing 1 —This simple program makes 25 samples and places them in List2. Another list is filled with
ascending numbers used as x-axis values on an x-y graph. List is the equivalent of an array in the Casio
world.

Alberto Ricci Bitti is a software de-
signer at Eptar, an industrial-control-
ler firm. He has written software for
systems such as meteorological
equipment, specialized TV sets, pro-
fessional satellite devices, industrial
machinery controllers, and energy-
management devices. You may reach
Alberto at a.riccibitti@ra.nettuno.it.

SOFTWARE

Source code in official Microchip
mnemonics is available via the
Circuit Cellar web site.

SOURCES

PIC16C84, PIC16F84
Microchip Technology, Inc.
(602) 786-7200
Fax: (602) 786-7277
www.microchip.com

MAX186
Maxim Integrated Products
(408) 737-7600
www.maxim-ic.com

FX9750G
Casio Electronics Co., Ltd.
www.casio-usa.com

LM2936, MAX186, PIC16C84,
PIC16F84

Digi-Key Corp.
(218) 681-6674
Fax: (218) 681-3380
www.digi-key.com

MODELING DATA
By means of regression, the measured

data can be shaped into a function that
fits into a nice formula. Formulas are
not only easy to implement, they also
give us a better understanding of the
data and can significantly reduce the
number of points needed for calibration.

In this example, the original data
set is made of 26 points. Knowing
that a sensor’s output is a second-
order function enables a three-point-
only calibration without appreciable
degradation. The calibration procedure
can then be reduced to reading the
output at three convenient positions
(empty, full, and halfway).

On the Casio, complex regressions
are a single keystroke away. When a
graph is displayed, as in Photos v, vi,
and vii in the sidebar, the softkey line
lists a variety of popular regression
functions to choose from. Pressing x
brings out the coefficients for first-order
regression line. DRAW puts a graph
over the sampled data.

As you see from Photo vi, a simple
straight line leaves a lot to be desired.
The shift-zoom combination brings up
the zoom menu, while pressing one of
the arrow keys pans the whole display
in the indicated direction.

The X^2 softkey switches to the
second-order regression. This time, the
graph is very near to almost all the
samples. The overall result doesn’t vary
appreciably regardless of the regression
order (e.g., x3, x4). Other regression
models (e.g., logarithmic, exponential)
don’t give significantly better results.

You can interact with your data and
try out as many functions as you like,
exploring the possibilities without
having to write a single line of code. It
is impossible to list here all the func-
tions in the 425-page Casio FX9750G
user guide. There’s also a full set of
statistical tools—useful when moni-
toring production sample parameters,
weather data, pollution, and so on.

A BROADER VISION
Since this design was announced in

INK 95, I’ve received lots of E-mail
from interested readers. Each one had
a different vision of what this little
design can be used for—from tracking
the accuracy of a GPS-locked PLL and

REFERENCES

MPLAB IDE free assembler and
simulator software, 1997 technical
library, www.microchip.com.

Casio, FA-122 software and PC link
schematics, members.tripod.com/
~carolino/.

Casio, FX9750G User Guide,
A340606-27.

Maxim Integrated Products, MAX186–
MAX188 low-power, 8-channel,
serial 12-bit ADC, Datasheet 19-
0123, August, 1996.

Maxim Integrated Products, MAX192
low-power, 8-channel, serial 10-bit
ADC, Datasheet 190123, March,
1994.

Microchip Technology, PICmicro
mid-range MCU family reference
manual, Datasheet DS33023A,
December 1997.

plotting weather data, to shoving a
waveform from an instrument and
monitoring a central heater’s operation,
or counting people coming in a door.

The number of possible applications
exploded. Built-in display and the capa-
bility of being programmed, combined
with very low cost, are the key factors.

I encourage you to expand the capa-
bilities of the data logger. The code is
fully commented, and the PIC program
memory is only half full.

I do have a couple suggestions. As a
first step, try adding a pulse-counter
mode. There are lots of things worth
counting, and many sensors (e.g., Steve
and Jeff’s lightning sensor [INK 90])
have pulse outputs.

Secondly, drive outputs by imple-
menting the Casio command Send(X)
to make the interface bidirectional.
The Casio is slow but powerful enough
to read in the input, make some com-
putations, and send output to the
outside world. In this way, it would
migrate from the world of monitoring
and displaying events to the broader
world of (pocket) computer control. I

24 Issue 99 October 1998 Circuit Cellar INK®

Time-Domain Filter
Simulations Using C++

FEATURE
ARTICLE

Glenn Parker

n
When you have to
work with filters—
and what hardware
engineer doesn’t at
some point?—you’ll
want to try out
Glenn’s complete
C++ FILTER class.
He’s ready to prove
how easy it is to
integrate this class
into embedded apps.

early every hard-
ware engineer (analog

or otherwise) deals with
frequency selective circuits, or filters,
at some point in his or her career. Filters
are everywhere, and most electronic
systems can’t function without them.

Circuit simulation is fairly straight-
forward today, especially with readily
available simulation software. But, some
engineers still write software (for speed
or to handle aspects of their application
not addressed by commercial software).

This article presents a complete C++
class for simulating electronic filters.
If you need a refresher course, check
out the sidebar “Analog Filter Basics.”

The source code is implemented
for analog filtering, but you can easily
adapt it to handle digital filters or any
analog system that can be characterized
by a transfer function in the frequency
domain. A Windows executable com-
plete with source code is also available
which uses the class to simulate various
analog filters, including elliptic types.

Digital or discrete-time filters are
implemented in software or through
dedicated DSP hardware. Analog or
continuous-time filters are generated
by designing a network whose input
impedance changes with frequency to
realize a desired response curve.

For this reason, analog-filter specifi-
cations are typically given in the fre-
quency domain. Still, it’s important to
consider the time-domain characteris-
tics of analog filters whenever waveform
distortion (e.g., in digital demodulation
systems) or signal delay is critical.

TRANSFER FUNCTIONS
Analog-filter designers are undoubt-

edly familiar with how the Laplace
Transform relates continuous-time
with the frequency domain. There is a
parallel relation between discrete time
and frequency via the z-transform.

The coefficients of a function in
the z-domain can be used to construct
a constant-coefficient difference equa-
tion, which provides a direct method
for time-domain simulation:

y[n] = 2x[n] + x[n – 1] – 3y[n – 1]

where y[n] is the output at time ∆tn,
and x[n] is the input at time ∆tn. By
iterating n, this system’s time-domain
response to a changing input can be
calculated. The constant ∆t is simply
the time interval between n − 1 and n.

Once the difference equation coeffi-
cients are found, a real-world signal
can be sampled with an ADC and
filtered by hardware with dedicated
DSP devices or microcontrollers or by
some other method implementing the
difference equation. The same idea
lies behind digital filters as well.

The difference equation coefficients
can be tweaked to realize nearly any
magnitude and phase requirement.
Or, you can take the coefficients and
funnel them through a simulation
engine like the one presented here to
see what the original analog filter
looks like in the time domain.

The only missing link is how the
s-domain function gets into the z-
domain. There are several acceptable
methods for accomplishing this, each
with benefits and pitfalls. The class I
present here uses the bilinear transform.

The nonlinear mapping inherent in
this transform compresses the frequency
response. The critical filter frequencies
can be moved slightly to compensate
for the magnitude response compres-
sion, but in most cases, the phase
response is noticeably distorted.

Circuit Cellar INK® Issue 99 October 1998 25

Figure 1 shows a linear-phase filter
response before and after the bilinear
transformation. Because of its inevitable
phase distortion, this transform is not
suitable for modeling linear-phase or
flat group-delay filters.

Predistortion or prewarping is often
applied to the original filter so the trans-
formed filter’s magnitude response
looks like the original. Prewarping is
done by shifting the s-domain cutoff
frequency before transformation to
force the transformed filter’s cutoff to
occur at the correct frequency.

The new cutoff frequency is given by:

ω = 2fsample × tan 1
2 × Ω

fsample

where Ω is the discrete-time frequency
and ω is the corresponding continuous-
time frequency.

QUANTIZATION ERRORS
Although a single section can be used

to realize any filter order, coefficient
quantization is an important consider-
ation. In a single-section filter, each pole
or zero contributes significantly to the
coefficients of the difference equation.

If one pole or zero experiences severe
round-off problems, the entire filter is
affected. This situation is most easily
overcome by cascading low-order
sections to realize high-order filters.

Since each pole or zero only
contributes to the coefficients in
a single section, quantizing a
high-Q pole near the jω axis only
has an effect on one section
instead of the whole filter.

While it’s true that any section
in a cascade has an effect on the
overall system, the error contri-
bution is much smaller than in a
single-section filter realization.

By cascading smaller sections
(no more than two or four poles
per section), the simulator can
handle larger filter orders, but
that’s at the expense of speed.

The solution: use small sec-
tions and eliminate as many
calculations per iteration as
possible. The class I discuss handles
huge filter orders, and in benchmark
tests, it was at least 100 times faster
than commercial simulators.

Filter orders as high as 100 have
been simulated using this example
application. Obviously you wouldn’t
ever build such a filter, but it’s useful
for simulating a brick-wall effect.

CALCULATION MODES
The class as presented is designed

for use in a time-domain simulation
engine. It operates in two calculation
modes—precalculation and time-step
iteration.

The precalculation mode is used in
cases where the input signal has been
precalculated and placed in an array,
(e.g., my sample application, where
data is fed through a filter only).

The second mode is used when
iteration is needed, and the input value
is only available in time steps. For
example, most feedback systems have
inputs that depend on outputs, so it’s
not possible to know what the filter’s
next input is until you know the cur-
rent output.

If this all seems confusing, don’t
worry. You can use the sample appli-
cation to simulate filters without ever
digesting the source code.

USING THE FILTER CLASS
The three most-used functions in the

FILTER class are shown in Listing 1.
The first two constructor arguments
are set equal to #define constants
given in the source file. They determine
the filter type (e.g., low pass) and
shape (e.g., Chebyshev). Table 1 defines
the remaining arguments.

As you might guess, calling either
TransferFunc() or TimeStep()
defines the simulation mode you’re
operating in. TransferFunc() takes
a pointer to the input and output data
and the number of points in those
arrays. TimeStep() takes a pointer to
the input and output data and the
current time step.

Additional useful functions (e.g.,
GetEllipticRoots()) are given in
the sample application, but only the

After transformBefore transform

T(jω)

2π–2π

Figure 1 —This graph shows the phase response of a linear
phase filter before and after applying the bilinear transform.

Photo 1 —This screen capture of the sample application shows a simulated response.

Circuit Cellar INK® Issue 99 October 1998 27

Analog Filter Basics
According to a 1984 edition of Webster’s Dictionary,

an electronic filter is “a device that rejects certain
signals while passing others.” An analog filter is a
circuit containing reactive elements and whose trans-
fer characteristics vary with frequency.

Usually, a certain band of frequencies is allowed to
pass, while other frequencies are attenuated or
stopped altogether. Figure i shows a typical frequency
response, along with an illustration of several com-
mon filter terms.

The frequency (or frequencies) where the pass band
ends is called the cut-off frequency. There are four
common filter types:

• low-pass filters pass frequencies from DC to the
desired cut-off frequency. All other frequencies are
attenuated.

• high-pass filters attenuate frequencies from DC to
the desired cutoff and pass higher frequencies.

• band-pass filters pass a band of frequencies between
the two desired cut-off frequencies. All frequencies
below and above the pass band are attenuated. The
response shown in Figure i is from a band-pass fil-
ter.

• band-stop or band-reject filters stop a band of fre-
quencies between the cut-off frequencies. All fre-
quencies below and above the stop band are passed.

Ideally, the stop band would border the pass band
exactly, and the transition band would have zero
width. However, in real filters, the transition band
always exists, and there are many factors involved
that control the response shape.

A filter’s transfer function is defined as:

T(s) =
Vout(s)
Vin(s)

where s is the Laplace Transform complex frequency
variable, Vout is the filter’s output voltage, and Vin is
the Laplace Transform of the signal being input to
the filter. The magnitude response shown in Figure i
is found by substituting

s = j × ω

and taking the transfer function magnitude where

 j = –1

and ω is 2π times the frequency of interest in hertz.
A filter’s order is equal to the degree of the de-

nominator polynomial in the transfer function. This
value is directly related to the complexity of the
filter necessary to realize the transfer function. In

Figure i —The pass-band response shown here illustrates common filter
terms.

Figure ii —Here’s the pass-band response of three popular filter types. These
filters have been designed for –3-dB cutoff at 1 Hz.

Chebyshev

Elliptic

Butterworth

Frequency (Hz)

0.0 0.2 0.4 0.6 0.8 1.0

1

0

–1

–4

–3

–2

Chebyshev
Elliptic
Butterworth

Frequency (Hz)

0.0 1.0 2.0 3.0 4.0

0

–40

–100

–80

–60

–20

C
ut

-o
ff

Fr
eq

ue
nc

y

Pass band

Transition bands

Stop bandStop band

Increasing frequency

In
cr

ea
se

d
at

te
nu

at
io

n

Figure iii —This graph shows a stop-band comparison of the filters used in
Figure ii.

(Continued on page 28)

28 Issue 99 October 1998 Circuit Cellar INK®

range anytime one of the
range prompts loses focus
and the value changes.

ARBITRARY SYSTEM
SIMULATION

For each section, the
FILTER class constructor
calls the function:

void CalcSection-
Coeff(FILTER_SECTION
*s, complex *pole,
complex *zero, int
filterType, double
wc1, double wc2)

This function calculates the a and b
coefficients used to calculate the cas-
caded FILTER_SECTION responses.

Instead of using the included func-
tions for calculating poles and zeros,
an array of poles and zeros could be
passed to the FILTER constructor for
use in building the FILTER_SECTION
cascade. These poles and zeros should
be normalized, since CalcSection-
Coeff() scales the roots by the two
cutoff frequencies.

ADAPTING THE CLASS
Listing 2 shows a portion of the

FILTER and FILTER_SECTION classes.
The FILTER constructor takes analog-
filter parameters and fills in each
FILTER_SECTION accordingly. You
could say it designs digital filter coef-
ficients that realize the analog filter.

The FILTER constructor takes analog
filter parameters and calculates the a
and b coefficients via the bilinear trans-
form. These coefficients are the same
ones used in a hardware implementation
of an Infinite Impulse Response (IIR)
filter.

You can create a complete IIR-filter
simulation engine by adding over-

order Filter order (number of low-pass poles)
ripple Pass-band ripple in dB. Used only for

 Chebyshev and elliptic filters.
stopBandAtten Minimum stop-band attenuation in dB.

 Used only for elliptic filters.
fcl Lower cut-off frequency in hertz
fcu Upper cut-off frequency in hertz. Used

 only for band-pass and band-stop filters.
sampleFreq Sample frequency in hertz. This value

 should be several times greater than the
 largest frequency specified above to
 avoid aliasing.

gain Maximum pass-band gain. This para-
meter is linear and specified in V/V.

Table 1—Here are the definitions of the FILTER-class constructor
arguments.

FILTER::FILTER(int filterType, int filterShape, int order,
 double ripple, double stopbandAtten, double fcl, double fcu,
 double sampleFreq, double gain);
void FILTER::TransferFunc(double *input, double *output, int
 numPoints);
void FILTER::TimeStep(double *in, double *out, int timeStep);

Listing 1 —These are the three most used functions in the FILTER class.

necessary functions for getting started
are listed here. However, the FILTER-
class source code is heavily commented
and should be easy to follow.

A WINDOWS APPLICATION
My Windows application uses the

FILTER class to simulate a variety of
analog-filter designs. Photo 1 shows a
sample screenshot from the program.

An eighth-order elliptic low-pass
filter with a cut-off frequency at 1 MHz
was simulated. The pass-band ripple is
set at 0.25 dB, and the minimum stop-
band attenuation is set at 200 dB. The
reference (input) signal is a square wave
at 100 kHz, and the sampling frequency
is 100 MHz.

The help prompt changes each time
the input focus moves to a new control.
I tried to make the prompts self-explana-
tory, but given onscreen space restric-
tions, they may appear cryptic. I hope
the help prompt will clear up any ques-
tions. If you don’t understand a prompt,
you can change the number repeatedly
and hit Simulate until it’s clear.

The only prompts that don’t require
resimulating to take effect are the
vertical range inputs. The calculated
response is redrawn with the new

other words, higher order filters
require more parts to build. In
general, the higher a filter’s
order, the more narrow the
transition region, and the more
square the response shape.

There are three popular
magnitude response filter types
available. Butterworth filters
have a flat response in the pass
band and monotonically in-
creasing attenuation into the
stop band.

Chebyshev filters have a
smaller transition band than
Butterworth for the same order
and better stop-band rejection.
However, this is at the expense
of ripple inside the pass band.

Elliptic filters have a more
narrow transition band than
Chebyshev for the same order,
and better stop-band rejection
by including zeros of transmis-
sion in the stopband. However,
elliptic filters require more
parts to build than Butterworth
and Chebyshev filters.

These three response types
are compared in Figures ii and
iii. The filters are all fifth order
and have 3 dB of attenuation at
the cutoff frequency (1 Hz).
The elliptic and Chebyshev
filters were designed with
about 0.43 dB of pass-band
ripple. The elliptic filter was
designed to maintain at least
45 dB of attenuation in the stop
band. More attenuation could
have been requested, at the
expense of widening the transi-
tion band.

Chebyshev and Butterworth
filters are relatively easy to
design and can be built from
the same topology by simply
changing component values.
Elliptic filters require more
complex structures to realize
the stop-band transmission
zeros and can drastically increase
both part count and component
tolerance sensitivity.

(Continued from page 27)

Circuit Cellar INK® Issue 99 October 1998 29

struct FILTER_SECTION{
 int numCoeff;
 double gainFactor;
 double *lastOutput, *lastInput, *a, *b;
 FILTER_SECTION(){
 a=b=lastOutput=lastInput=NULL;
 }
};
class FILTER{
 private:
 int numSections;
 FILTER_SECTION *section;
};

Listing 2 —This source-code snippet illustrates the use of the FILTER class.
Glenn Parker works for Eagleware
and has been writing circuit design
and simulation software for five
years. He also teaches filter-design
courses at several RF and microwave
trade shows annually. You may reach
him at glenn@eagleware.com.

SOFTWARE

Complete source code is available
via the Circuit Cellar web site. For
a more theoretical description of
the techniques and equations used
to develop the source code, a com-
plete Mathcad worksheet is available
from the author.

REFERENCES

Oppenheim, V. and R.W. Schafer,
Discrete-Time Signal Processing,
Prentice-Hall, Englewood Cliffs,
NJ, 1989.

Orchard, H.J. and A.N. Wilson, Jr.,
“Elliptic Functions for Filter De-
sign,” IEEE Transactions on Cir-
cuits and Systems, 44, April, 1997.

loaded FILTER constructors to calcu-
late the coefficients by other methods
(impulse and step invariance, or
matched-z). By truncating or rounding
the coefficients to a given number of
bits, the simulation engine would
model the actual quantized response
of an IIR structure.

Beyond this, no further modifications
should be required. Simply call either
TransferFunc() or TimeStep() as
you would for analog filters.

PUT IT TO USE
This C++ class is easily adaptable to

existing simulation software. You can
also expand the source code to include
arbitrary IIR design and simulation.

My application uses it to simulate
several popular analog-filter types. You
can use it to evaluate filters with sine-
or square-wave inputs, which is helpful
for determining whether a given filter
meets the rise or fall time or attenuation
specs for a particular application. I

30 Issue 99 October 1998 Circuit Cellar INK®

Breaking
Nyquist

FEATURE
ARTICLE

Gerard Fonte

i
You’d think someone
would have figured it
out by now: you can’t
get away with chal-
lenging an engineer.
Gerard is set to dis-
prove the common
belief that DSP can’t
identify aliased sig-
nals. According to
him, you can get
around Nyquist!

t is generally be-
lieved that digital

signal processing (DSP)
cannot remove or identify aliased
signals. For years, we’ve heard “Once
the aliased signal gets digitized, it
becomes indistinguishable from real
signals and cannot be removed.”

But, this statement isn’t exactly true.
There is a method for identifying and
removing aliases after sampling, and
it’s even possible to identify and mea-
sure signals above the sampling rate.

THE PROBLEM
Aliasing is possible with any sampled

system, including ADCs, switched-
capacitor filters, sample-holds, and
any other circuit that measures a signal
at intervals. Aliasing doesn’t occur with
continuous-time circuits like analog
filters, amplifiers, phase-locked-loops,
frequency-to-voltage converters,
or analog multipliers.

An alias is created by mixing
(or beating) the sampling fre-
quency and the sampled signal,
hence another name for alias is
beat frequency.

Suppose you want to measure
a 3-kHz sine wave, and you
sample it at 10 kHz. The beat
frequencies are the sum and

Figure 1 —When sampling at 10 kHz, a real 3-kHz signal and a
7-kHz signal get mapped to the same spectral line of 3 kHz.
The 7-kHz signal is aliased to 3 kHz. Traditional techniques are
unable to separate the two different signals from each other.

difference of the signal and the sample
rate—in this case, 13 kHz and 7 kHz.

You can see that lowering the sam-
pling rate to 8 kHz gives beat frequen-
cies of 5 kHz and 11 kHz. At a sampling
rate of 6 kHz, the beat frequencies are
3 kHz and 9 kHz. In the latter example,
the lower beat frequency is equal to
the signal frequency (3 kHz), which is
known as the Nyquist limit.

The Nyquist limit is always one
half of the sampling rate. This de-
scription isn’t the traditional defini-
tion, but it lets us look at Nyquist
from a different point of view.

As you’ll see, there’s an easier way
to examine some important aspects of
the Nyquist sampling theorem. And
from there, you’ll see that the
Nyquist limit can be sidestepped.

ELIMINATING ALIASING
Now, let’s go back to measuring a

3-kHz signal at 10 kHz (samples per
second). Suppose there is also a 7-kHz
signal present. What happens?

Well, the 7-kHz signal beats with
the 10-kHz sample rate and generates
17- and 3-kHz signals. Obviously, the
3-kHz beat frequency is the same as
the real 3-kHz signal, but it’s an alias.
Clearly there’s a problem: we can’t
tell the difference between a real 3-kHz
signal and a 7-kHz signal.

The traditional method is to low-pass
filter the signal to eliminate any signals
(or signal components) above the Ny-
quist frequency. In this case, since the
sampling rate is 10 kHz, the Nyquist
limit (and filter cutoff) is 5 kHz.

However, filtering is more easily
said than done. The 7-kHz problem
signal is only about twice the signal
of interest (3 kHz). A simple resistor-
capacitor (RC) filter (one pole) reduces
the 7-kHz signal by a little more than
6 dB (50%).

Post-Sampling Antialiasing

dB

1 kHz

Real 3-kHz signal and
7-kHz signal aliased to 3 kHz.

Sampling rate is 10 kHz

5 kHz4 kHz3 kHz2 kHz

Circuit Cellar INK® Issue 99 October 1998 31

In a digital system, a 6-dB reduction
is equivalent to shifting the alias
amplitude value one bit to the right.
Most likely, this reduction won’t help.

FILTERING VS. BANDWIDTH
The real world uses sharp-cutoff,

low-pass filters of eight or more poles,
which increases complexity. Addition-
ally, the sampling rate is generally
increased 4–10 times greater than the
highest frequency of interest, which
decreases bandwidth (relative to the
theoretically possible).

Finally, the filters generally must
be analog types (or digital filters with
clock rates 10–100 times greater than
the sample rate and with their own
analog antialiasing filters).

Therefore, the performance of any
conventional sampled system depends
on the filtering of the signal before
the signal is sampled. The closer to
the theoretical maximum bandwidth
you want (Nyquist limit), the closer
to a perfect filter you need.

Realistically, if the highest signal
of interest is 3 kHz, you may need a
minimum sampling rate of 15–30 kHz.
So, you’ll need a faster (read: more
expensive) ADC than what you might
have initially expected.

THE SOLUTION
But, we can improve things. Let’s

reconsider the 3-kHz signal with 7-kHz
signal, sampled at 10 kHz (see Figure 1).

As I stated, the 7-kHz signal gener-
ates an alias at 3 kHz and 17 kHz.
Let’s assume the DSP system has an
internal Fast Fourier Transform (FFT)
bandwidth from 0 to 5 kHz. So, you
can ignore the 17-kHz signal.

But, you still have two signals (3
and 7 kHz) mapped to one frequency
(3 kHz). The solution is simple:
sample again at a different rate.

Let’s try 9 kHz. The real
3-kHz signal is still mapped to
3 kHz since it’s below the
Nyquist limit. But, the 7-kHz
signal is shifted from 3 to 2 kHz
(see Figure 2). Comparing the
FFT spectra of two signals at two
different sampling rates enables
us to identify aliased signals.

That’s the fundamental idea
behind post-sampling antialiasing.

Aliased signals track with the sam-
pling rate, while real signals (below
the Nyquist limit) remain fixed. In
this way, aliased signals can be sepa-
rated from real signals after sampling.

GOING FURTHER
Since there is a specific relationship

between the aliased signal and the
sampling rate, the aliased signal can
be calculated. Let’s look at an example
from the DSP point of view.

What is the real frequency of a
signal that appears at 3 kHz when
sampled at 10 kHz, but shifts to 2 kHz
when sampled at 9 kHz? Finding the
answer is simple.

The 3-kHz beat frequency at 10 kHz
means a real frequency of 13 or 7 kHz.
The 2-kHz beat frequency at 9 kHz
means a real frequency of 11 or 7 kHz.
Since 7 kHz is common to both sam-
pling rates, it must be the answer (i.e.,
the unknown alias frequency).

It’s important to note that this
simple procedure has measured and
identified a signal above the Nyquist
limit. But, you ask, suppose the addi-
tional frequency was 13 kHz instead
of 7 kHz? What then?

Let’s work it out. First, I cheated a
little for simplicity. In the previous
example, there were many more pos-
sible alias frequencies than I implied.

A 3-kHz alias signal from a 10-kHz
sampled system could be 7, 13, 17, 23,
27, or 33 kHz, and so forth. There is
actually an infinite number of pos-
sible signals that generate a 3-kHz
alias.

The calculation is:

Fa = (n × Fk) + Fs
or

Fa = (n × Fk) – Fs

where Fa is the alias frequency, Fk
equals the sampling rate, Fs represents
the signal frequency, and n is any
positive integer.

There are exactly two aliases for
each n, and as n increases, the alias
changes by an identical factor. Also,
note that the alias is only created
when the signal frequency is greater
than half the sampling rate.

Back to the problem of 3- and 13-kHz
signals sampled at 10 kHz and then
again at 9 kHz. Let’s assume there is a
perfect low-pass filter at 50 kHz to
limit the number of possible aliases.

The 3-kHz signal creates no alias
because it’s less than half the sampling
rate. It stays at 3 kHz when sampled
at either 9 or 10 kHz. The 13-kHz
signal creates an alias at 3 kHz when
sampled at 10 kHz and an alias at
4 kHz when sampled at 9 kHz.

If you didn’t know the additional
signal was 13 kHz, how would you
determine it? The procedure is the
same, except that there are more than
two pairs of possible alias sources.

At 10-kHz sampling, the 3-kHz
alias could come from a signal at 7,
13, 17, 23, 27, 33, 37, 43, or 47 kHz.
At 9-kHz sampling, the 4-kHz alias
could come from a signal at 13, 14,
22, 23, 31, 32, 40, 41, 49, or 50 kHz.

The only common value be-
tween the two lists is 13 kHz.
Therefore, the alias signal that
creates a 3-kHz signal when
sampled at 10 kHz, and a 4-kHz
signal when sampled at 9 kHz,
must be 13 kHz. This procedure
has identified and measured a
signal above the sampling rate.

Note that other frequencies
create a similar pattern. In this
particular case, 67 kHz (like
13 kHz) produces a 3-kHz alias

Figure 2 —By sampling a second time at a different
rate, the alias signal is separated from the real signal.
The amount of alias shift is directly related to the
change in rate.

dB

1 kHz

Real signal stays at 3-kHz
when sampled at 9 kHz

5 kHz4 kHz3 kHz2 kHz

Aliased signal
moves to 2 kHz
when sampled
at 9 kHz

Figure 3 —The Z map technique quickly illustrates where aliases will
be mapped. You can see that the alias may increase or decrease with
increasing frequency. Sometimes this characteristic causes confusion.

1 kHz 5 kHz4 kHz3 kHz2 kHz0 kHz

20 kHz

Sample rate
10 kHz 15 kHz

17-kHz Alias

7-kHz Alias

13-kHz Alias

Nyquist
limit

32 Issue 99 October 1998 Circuit Cellar INK®

Figure 5 —For nonrepetitive or one-shot systems, two clocks and two input
samplers are needed. Note that the samplers could be sample-holds feeding
a single ADC. The approach here is suitable for any application.

when sampled at 10 kHz and a 4-kHz
signal when sampled at 9 kHz.

This situation is expected. If we
don’t band-limit the system, we’re
mapping an infinite number of frequen-
cies onto the finite bandwidth of our
system.

But, you can eliminate this problem,
too. Sampling the input signal again
at a third sample rate will resolve the
13-kHz and 67-kHz signals.

You just map out the possible
aliases created at the multiple sampling
rates and determine common values.
In theory, I could resample as many
times as needed to resolve, identify,
and measure frequencies at any fre-
quency desired.

Adaptive sampling
techniques can be used
as well. The second
sampling rate (or third
rate, etc.) can be chosen
by the system in response
to the spectrum analyzed.

The spectrum taken
at one sample rate can
be examined, and the

most appropriate second sample rate
(or third, etc.) can be implemented to
separate alias signals. Obviously, you’ll
need more smarts in the software.

LIMITATIONS
The more alias frequencies that are

mapped onto real fre-
quencies, the more
complex the spectral
comparison software
needs to be. Suppose
you had two real signals
at 2 and 3 kHz: a 7-kHz
signal that was aliased
to 3 kHz when sampled
at 10 kHz and to 2 kHz
when sampled at 9 kHz.

In this case, the alias signal maps
onto two real signals, which is different
from the ideal cases I just presented.
Since the alias can only add to a spec-
tral line, the spectral-comparison
software must use the lowest value as
the best estimate for the real signal.

With lots of signals above the Ny-
quist limit, many aliases map onto
real signals and the spectral compari-
son software becomes more complex.
Trying to map DC-to-50 kHz onto a
DC-to-5-kHz FFT bandwidth gives a
ratio of nine alias signals for every
real signal. It may be theoretically
possible, but it’s probably an exercise
in futility.

Figure 4 —Here’s a typical implementation of a system with a repetitive
signal. There is no significant hardware difference from conventional sys-
tems, except that the sample clock must work at two speeds.

Input Filter

Input

Sampler (ADC)

Dual-rate
sample clock

DSP

Output

Memory at rate 1

Memory at rate 2

Input Filter

Input

Sampler (ADC)

DSP Output

Memory at rate 1

Sampler (ADC)

Sample
Clock

Sample
Clock

Memory at rate 2

Circuit Cellar INK® Issue 99 October 1998 33

Up to now, I’ve
examined discrete
spectral lines and sig-
nals. However, noise is
all spectral lines over
some bandwidth. If the
noise is limited to a
bandwidth less than
the difference of the
sampling rates, it can
be isolated.

Suppose there is a noise band from
7 to 8 kHz and a real signal at 2.5 kHz.
We sample at 9 kHz and 10 kHz. Sam-
pling at 10 kHz maps the noise band
to 2–3 kHz, which overlays the 2.5-kHz
signal. Sampling at 9 kHz maps the
noise to 1–2 kHz, exposing the signal
of interest. (If the 2.5-kHz signal is
large when compared to the noise, it
will still be measurable, but degraded,
even when the noise is mapped onto it.)

Broad-band noise (5–20 kHz) does
not appear to shift because another
spectral line replaces every one that
moves. Worse still, three times the
noise is mapped onto the real spectrum
(in this case) because there is a three-

to-one (alias to real) ratio when sampled
at 10 kHz. I discuss noise more below.

ALIAS MAPPING
To help identify alias mapping, I use

a method called Z mapping (which has
nothing to do with the Z transform).
The Z refers to what the map looks
like (see Figure 3).

The base of the Z identifies the real
signals. It goes from DC to the Nyquist
limit (half the sampling rate). The
return line goes from the Nyquist
limit to the sampling rate.

The third line is two times the base
values, the fourth line is two times
the second line, and so on. Drawing a
vertical line upward at any real signal

(base line) identifies
the aliases mapped to
that real signal.

IMPLEMENTATION
There are two

basic methods of
implementation. The
first, shown in Figure
4, is like a conven-

tional A/D system with the addition
of a variable sample clock.

The DSP software has to change
slightly, with an additional FFT at the
new sample rate and an FFT spectrum
comparison routine. Since the sample
rate affects the characteristics of the
FFT, the spectrum comparison routine
won’t be completely trivial.

This method is suitable for systems
with constant or repetitive signals
(rather than one-shot measurements).
For example, an oscilloscope implemen-
tation can sample a repetitive signal
with even-numbered sweeps at one rate
and odd-numbered sweeps at another.

The second method, shown in
Figure 5, is to use to separate front-end

Figure 6 —Summing the spectra (instead of just examining them) has the effect of dispersing the
alias. This dispersion reduces the alias amplitude relative to the real signal.

1 kHz

10-kHz sample rate

3 kHz
dB

Real
Signal

11-kHz
alias

2 kHz

9-kHz sample rate

3 kHz
dB

Real
Signal

11-kHz
alias

1 kHz
Spectrum sum
of two samples

3 kHz

dB

Real
Signal

2 kHz
Aliases

34 Issue 99 October 1998 Circuit Cellar INK®

samplers, such as two sample-holds or
two ADCs. The input signal is simul-
taneously sampled at two rates, which
enables nonrepetitive one-shot signals
to be measured. This method requires
the same software changes as above.

REAL-WORLD CONSIDERATIONS
Let’s look at the expected perfor-

mance of a conventional system and
the proposed system with real-world
components, measuring from DC to
5 kHz with 12-bit resolution. To main-
tain this resolution, all aliases must
be less than one bit at any frequency.

The conventional system requires a
low-pass filter of 12 poles set at 5 kHz
to reduce the alias at 10 kHz to less
than 1 bit. In other words, there must
be 72 dB per octave of low-pass input
filtering, starting at 5 kHz.

Since there is measurable alias energy
up to 10 kHz, the sampling rate must
be twice that, or 20 kHz. In short, even
with a very sharp input low-pass filter
(which isn’t trivial to implement), the
bandwidth is still only 50% of the
theoretical maximum.

The proposed system, however, has
a much more flexible design. If you
limit the input signal to 20 kHz, you
need to low-pass 72 dB over two octaves
(5–10 kHz and 10–20 kHz), not one.

You need a six-pole low-pass input
filter set at 5 kHz to reduce the input
aliases to less than one bit at 20 kHz.
That setup limits the spectrum mapping
to a ratio of three aliases to one real
signal, and it makes the spectrum
comparison routines fairly simple.
(There’s a tradeoff here: making the
comparison routines more complex
versus simplifying the input filter.)

Since you want the lowest alias-to-
real ratio (stated as three to one), you
need to have one sampling rate at the
Nyquist limit of 10 kHz. The second
sampling rate is arbitrary but should

The procedure of multiple input sam-
pling for the identification and reduc-
tion of aliases has been patented by
The PAK Engineers.

Gerard Fonte founded The PAK Engi-
neers in 1991 and still works as Prin-
cipal Engineer. You may reach him at
gfonte@wzrd.com.

Figure 8 —The hardware design for a swept-clock implementation is
simple. However, the software must be significantly and fundamentally
changed (and this isn’t a trivial issue).

Input Filter

Input

Sampler (ADC)

Swept
sample clock

DSP

Output

Sample Memory

generally be slightly less than the first
sampling rate.

Let’s choose 9 kHz. The sum of the
A/D rates is 19 kHz, which is close to
the conventional example of 20 kHz.

This example shows how input
filters change with similar A/D rates.
In this case, the input filtering changes
from a 12- to a 6-pole requirement.
That’s significant because a 12-pole
filter is more than two times harder
and expensive to implement than a
6-pole filter. (Consider the differences
between 6- and 12-bit ADCs.)

Or, you could stay with a 12-pole
filter. The input signal is limited to
10 kHz (as specified above), and you
can sample at 5 and 4.5 kHz, main-
taining the spectrum-mapping ratio of
three to one.

However, the aliases from 2.5 to
5 kHz are not discarded. Instead, they
are identified and remapped to their
proper spectral positions.

This approach means more software,
but it’s not difficult, and it provides
100% of the bandwidth of the theoreti-
cal maximum. So, you get twice the
bandwidth of the conventional system.

MORE SAMPLES
Up to this point, I’ve shown you

FFT spectra and removed or remapped
spectral lines. But, suppose you
summed the spectral lines (see Figure
6) so the real-signal amplitude in-
creases while the alias amplitudes
remain the same. Another way of

saying this is that the
energy of the alias is
dispersed over two spec-
tral lines.

The result leads to an
interesting thought.
Suppose you sampled at
many rates—say, 100.
You’d see the alias en-
ergy automatically dis-

persed over 100 frequencies, which is a
40-dB reduction of the alias compared to
the real signal (see Figure 7).

The dispersion of the alias energy
relates directly to the number of differ-
ent sample rates. Note that direct FFT
spectral comparisons aren’t needed.
This approach appears suitable for
ordinary digital filters.

Another interesting aspect of this
method is that wide-band noise appears
to be reduced (relative to the real signal),
because when noise is summed, it
increases by the square root of the
number of summations.

The real signal increases directly to
the number of summations. With 100
sample rates, noise can be reduced by
20 dB (compared to 40 dB for a discrete
alias signal).

With this in mind, it becomes clear
that using a swept-sample clock may
be useful. Using this clock has the effect
of sampling at many different rates.

It seems reasonable that, since the
swept-sample clock is well defined
and repeatable, you can make correc-
tions to the computations (to compen-
sate for the swept-sample clock). This
way, you can reduce post-sampling
aliasing and maintain low sampling
rates, simple filtering systems, and
simple sampling systems (see Figure 8).

Unfortunately, the math corrections
aren’t trivial. Work is slowly progressing
along these lines, but the use of
swept-sampling may hold significant
improvements in usable bandwidth,
alias reduction, and noise reduction.

GETTING AROUND NYQUIST
You can sidestep the Nyquist limit

by multiple sampling of the input signal
at different sample rates. Frequencies
above the Nyquist limit, and even
above the sampling rate, can be identi-
fied and measured, reducing input
filter requirements and increasing
effective bandwidth. I

Figure 7 —By summing the spectra of 100 samples, the
aliases are dispersed by a like factor. The use of a
swept clock looks promising.

A
m

pl
itu

de

1 kHz

Real 3-kHz signal

5 kHz4 kHz3 kHz2 kHz

Alias dispersed
over 100 samples

36 Issue 99 October 1998 Circuit Cellar INK®

Digital
Frequency
Synthesis

FEATURE
ARTICLE

Tom Napier

s
Some of the best
inventions happen
by accident. At least,
that’s how it is with
Tom’s project. While
merely intending to
beef up his NCO
generator, Tom found
a way to embed a low-
cost, accurate tunable
sine-wave generator,
using just a PIC.

ometimes topics
for articles crop up

by happenstance. I was
designing a minimum

shift keyed (MSK) transmitter to drive
a 25-kHz ultrasonic transducer, and
for simplicity, I wanted to use a small
PIC chip as the transmitting modem.

I figured out several ways to generate
the two output frequencies but one
method seemed simpler and more gen-
eral than the others. The frequencies
were set by two constants and there
seemed to be little limit to what values
could be used.

“Ah!” I said to myself, “This design
would work for any frequency shift
keying system, not just MSK.” That’s
when I realized that I’d just reinvented
the numerically controlled oscillator
(NCO).

Someone who read my two-part
article about building an NCO genera-
tor (“Making Waves with an NCO,”
INK 89 and 90) asked if the PIC could
emulate an NCO.

Well, the short answer is yes, provid-
ing you don’t want to generate too
high a frequency. I didn’t give the
matter any thought until I discovered
that I had just created a design that
was happily generating 25 kHz using a
6.144-MHz crystal.

I thought, if I give the PIC a higher
crystal frequency—say, 20 MHz—and

can get it to output an 8-bit sample
every 20 instructions, it will behave
like an NCO with a 250-kHz clock
crystal. That should be good for an
output frequency of getting on for
100 kHz, which is better than most
audio generators can do.

I followed up this idea and ended
up with not so much a construction
project, but more a method of embed-
ding a low-cost but accurate, tunable
sine-wave generator into almost any
product. This design doesn’t need a
fancy NCO chip or a high-speed DAC.
It uses an 18-pin PIC16C54 chip to
drive a cheap, low-speed 8-bit DAC.

In a pinch, you could wire up a
bunch of 1% resistors as an R-2R
ladder and do without the DAC. The
only other things you need are a low-
pass filter and an output amplifier.

WHY IT WORKS
Let’s recap some theory. The idea

behind the NCO is this: Select a num-
ber proportional to your desired output
frequency, and then add this number
to an accumulator at regular intervals.

The number in the accumulator
represents the phase of the output cycle.
If you take its more significant bits,
do a sine conversion and feed them to
a DAC, you get one sine wave each
time the accumulator wraps around.

The output frequency is a linear
function of the number you are adding.
The frequency precision is as good as
that of the crystal driving the addition,
while the frequency resolution can be
made as fine as you wish by using a
long enough accumulator.

The output from the DAC consists
of steps that occur at a fixed rate. If
you select a small frequency control
number, you get a low-frequency
output made up of many small steps
and it will look quite smooth. As you
select larger numbers, the output
frequency rises, the number of steps
per output cycle falls, and the output
begins to look jagged.

Appearances are misleading. The
sine wave is still there, but it’s being
distorted by the higher frequency aliases
arising from the sampling process.
With a good enough output filter, you
get a clean sine wave at the specified
frequency.

Circuit Cellar INK® Issue 99 October 1998 37

Nyquist’s Theorem says that, pro-
vided you don’t use fewer than two
samples per cycle, a low-pass filter
can take out the unwanted frequen-
cies and leave a pure sine wave. Well,
Nyquist was an optimist.

Two cycles is the theoretical mini-
mum, and this assumes that you can
build a brick-wall filter at half the
sampling frequency. Three samples
per cycle is a more realistic number.

In any case, Nyquist’s samples were
infinitely narrow impulses, while the
output of the DAC is a step waveform.
Therefore, the output amplitude rolls
off as the output frequency rises (see
INK 89, p. 74, Figure 4).

The output frequency is equal to
the step frequency multiplied by the
number you set and then divided by
the number of counts it takes to roll-
over the accumulator. For example, if
you have a 16-bit accumulator, it
takes 65,536 counts to roll it over.

If you add any number 65,536 times
a second, each unit you add represents
1 Hz. To get a 10 kHz output, add
10,000 at each step. Each output cycle
would have just over 6.5 steps in it.

CAN A PIC EMULATE AN NCO?
Real NCOs have accumulators with

24, 32, or 48 bits and make an output
step every 15 ns or so. It takes a fast
and expensive DAC to keep up, but
you can get output frequencies up to
about 30 MHz.

If a ’16C54 really hustles, it can
handle a 16-bit sum and a sine lookup

in 19 instruction times. With a 20-MHz
crystal, the step rate is limited to
263 kHz. Pretty shabby by NCO stan-
dards, but it means you can generate
accurate frequencies up to about 90 kHz.

There are two ways to approach
the frequency-setting problem. One is
to choose the accumulator length and
the update frequency such that the
proportionality factor between the
wanted frequency and the frequency
setting number is a small integer.
That way, all the frequencies you set
come out exactly right.

In my MSK modem design, this
factor was 300 Hz per unit. For lab use,
1 Hz per unit would be handy, since
reading and processing the user’s input
would only require a BCD-to-binary
conversion.

Or, you can use such a long accumu-
lator that any frequency can be set with
reasonable accuracy regardless of the
update rate. That buys you some design
flexibility at the price of more input
processing and an output frequency
which is rarely, if ever, exactly right.

In both cases the proportionality
factor, F, is equal to the update rate
divided by the length of the accumu-
lator. If the PIC is driven by a crystal
of C Hz and the loop requires L instruc-
tions, the effective update rate is:

F = C
4AL

The accumulator length, A, is a power
of two, such as 65,536.

; 19-cycle loop, 16-bit accumulator
GOTO DONE ;start output

RETX: CALL RETY
GOTO LOOP

RETY: RETLW 0 ;dummy to set return address
DONE: CALL RETX ;set up fixed return address
; look-up return reenters at this point
LOOP: BTFSS PHASH,INV ;test if inversion needed

SUBWF ZERO,0 ;invert output
MOVWF PORTB ;output sample
BTFSC PORTA,DAT ;test for change flag
GOTO NEW ;get new frequency

LP1: MOVF FREQL,0 ;get current frequency
ADDWF PHASL,1 ;increment phase
BTFSC 3,0 ;skip if no carry
INCF PHASH ;propagate carry
MOVF FREQH,0 ;get frequency
ADDWF PHASH,1 ;increment phase
MOVF PHASH,0
ANDLW 63 ;get sine table index
BTFSC PHASH,REV ;test if reversal needed
SUBWF MAX,0 ;reverse index
ADDWF PC,1 ;jump to table

; one quadrant look-up table, 65 entries
RETLW 128
RETLW 131
RETLW 134

; table continuation omitted

Listing 1 —By using a 65-entry sine table and a “fixed” return address, a 16-bit NCO can be emulated with
a 19-instruction-cycle loop.

A PIC Trick
The usual way to make a look-up table in a PIC is to program a string

of RETLW N instructions and then make a CALL to a subroutine that adds
the index to the program counter. If you want a 19-instruction-time
loop, you have to use a trick: Preload the two return address registers in
the PIC with the address of the start of the loop. And at the end of the
loop, jump into the table. Each table entry loads a constant into the W
register and does a return. This puts you back at the beginning of the
loop with a sine sample ready to output.

This process saves executing a call to get to the table and a jump to
reenter the loop. It works because every time you execute a return, the
first return address register is used and the second return address register
is copied into the first. You get a free branch address without anything
changing. The return address registers are loaded once at the beginning
of the program by executing a call just above the loop code and then
executing a further call and a return. This process leaves a fixed return
address pending.

38 Issue 99 October 1998 Circuit Cellar INK®

steps of 4 Hz. It worked, but it needs
a pretty good filter to pass 100 kHz
but stop the alias at 163 kHz.

I doubt if the program loop for a
16-bit accumulator can be shorter
than 19 instruction cycles. Even that
takes PIC trickery (see sidebar, “A
PIC Trick”). The loop will be longer if
you want phase or frequency modulation.

The crystal frequency can’t be higher
than 20 MHz. Since C = 4ALF and A
is a largish power of two, the crystal
frequency has to be divisible by a power
of two if the control factor is to be an
integer. Ideally, it would be a stock
value, but in a production environment,
any oddball crystal frequency will work.

The other approach uses a 24-bit or
higher accumulator. This technique

HOW HIGH CAN WE GO?
The maximum output frequency is

limited by two things. One is the sheer
processing speed of the chip. The high-
est frequency can’t be higher than about
a third of the number of times the
loop is executed in 1 s. This fact limits
a ’16C54 to about a 90-kHz output.

The other limit is a function of the
accumulator length and the resolution
you want. The largest frequency control
number that a 16-bit accumulator can
support is about a third of 65,536.

Thus, if you want 1-Hz resolution,
you can’t go higher than a 22-kHz
output. With 2-Hz resolution, you
could reach 44 kHz and so on.

In a fit of bravado, I tested a circuit
that could generate up to 100 kHz in

Listing 2 —A 24-bit NCO can be emulated in 26 cycles. The 31-cycle loop shown here has a simple
conversion factor and room for additions.

; three-byte accumulator, 26 cycles minimum
GOTO DONE ;start output

RETX: CALL RETY
GOTO LOOP

RETY: RETLW 0 ;dummy to set return address
NOCRY: GOTO LP2 ;waste time if no carry
DONE: CALL RETX ;set up fixed return address
LOOP: NOP ;five spare instructions

NOP
NOP
NOP
NOP
BTFSC PHASH,INV ;test if inversion needed
SUBWF ZERO,0 ;invert output
MOVWF PORTB ;output sample
BTFSC PORTA,DAT ;test for change flag
GOTO NEW ;get new frequency

LP1: MOVF FREQL,0 ;get current frequency
ADDWF PHASL,1 ;increment phase
BTFSS 3,0
GOTO NOCRY
INCF PHASM,1 ;propagate carry
BTFSC 3,2 ;skip if not zero
INCF PHASH,1 ;further carry propagation

LP2: MOVF FREQM,0 ;get frequency
ADDWF PHASM,1 ;increment phase
SKNC
INCF PHASH,1 ;propagate carry
MOVF FREQH,0 ;get frequency
ADDWF PHASH,1 ;increment phase
MOVF PHASH,1
ANDLW 63 ;get sine table index
BTFSC PHASH,REV ;test if reversal needed
SUBWF MAX,0 ;reverse index
ADDWF PC,1 ;jump to table

; one quadrant look-up table, 65 entries
RETLW 128
RETLW 131
RETLW 134

; table continuation omitted

Circuit Cellar INK® Issue 99 October 1998 39

obviously requires more instructions
per loop, because in a three-byte addi-
tion you have to allow for the once-in-
a-blue-moon occasion when adding the
low bytes propagates a carry into both
the middle byte and the high byte.

The update rate is going to be at
most about 190 kHz, so you won’t be
able to generate much over 60 kHz.
On the other hand, the resolution will
be better than 0.01 Hz, so any frequency
you please can be set to that accuracy.

I stumbled on a good compromise: use
a 20-MHz clock crystal and make the
loop 31 instruction times long. If you
multiply the wanted frequency by 104,
you get a number that sets the output to
within 180 ppm, which may be better
than the error in the crystal frequency.
Since the basic three-byte addition and
table look-up takes 26 instruction times,
you have five spare instructions to modu-
late the output if you want to.

You may be able to use a much
shorter accumulator. If, as I did in my

MSK modem, you want a limited
number of frequencies that are closely
related, you can use an 8-bit accumu-
lator. This setup allows any frequency
of the form:

N
256

× loop repetitionrate

On the other hand, if you want to set
a low frequency with very high resolu-
tion, you can make the accumulator
32 or 48 bits long.

THE NCO CODE
Apart from initialization and the

user input routine, the code consists
of the sample loop and a sine look-up
table. The table contains 65 entries
and specifies one quadrant of a sine
wave. If the two highest bits of the
phase are both zero, the table is used
directly. If the most significant bit is
a one, the table output is inverted.

When the next to most significant
phase bit is a one, the table index is

Listing 3 —This practical 31-cycle loop shows one way of applying biphase modulation to the output. The full
listing (NCOEMU.ASM) is available via the Circuit Cellar web site.

; 24-bit accumulator, biphase modulation via bit 3 of port A
LOOP: NOP ;two spare instructions

NOP
BTFSC TEMP,INV ;test if inversion needed
SUBWF ZERO,0 ;invert output
MOVWF PORTB ;output sample
BTFSC PORTA,DAT ;test for change flag
GOTO NEW ;get new frequency

LP1: ADDWF PHASL,1 ;increment phase
BTFSS 3,0
GOTO NOCRY
INCF PHASM,1 ;propagate carry
BTFSC 3,2 ;skip if not zero
INCF PHASH,1 ;further carry propagation

LP2: MOVF FREQM,0 ;get frequency
ADDWF PHASM,1 ;increment phase
BTFSC 3,0
INCF PHASH,1 ;propagate carry
MOVF FREQH,0 ;get frequency
ADDWF PHASH,1 ;increment phase

; biphase modulation input
SWAPF PORTA,0 ;put modulation in bit 7
XORWF PHASH,0 ;mask inversion bit
MOVWF TEMP ;save inversion bit
MOVF PHASH,1
ANDLW 63 ;get sine table index
BTFSC PHASH,REV ;test if reversal needed
SUBWF MAX,0 ;reverse index
ADDWF PC,1 ;jump to table

; one quadrant look-up table, 65 entries
RETLW 128
RETLW 131
RETLW 134

; table continuation omitted

40 Issue 99 October 1998 Circuit Cellar INK®

subtracted from 64 to reverse the table
end to end. That’s why the table has
65 entries, not 64. There needs to be an
entry for the case where the index is
zero and, when reversed, it becomes 64.

The DAC input is in offset binary—
that is, 1 is negative full scale, 128 is
zero, and 255 is positive full scale.
The table entries are seven-bit num-
bers from 128 to 255, so the result of
subtracting them from a register con-
taining zero is the negation of the
table entry. Two PIC registers are
preloaded with constants since the
16C54 has no immediate subtraction
instruction.

My 19-instruction-time loop using a
16-bit accumulator appears in Listing 1.
It tests a bit of Port A, enabling the
user to tell the PIC that it’s time to
load a new frequency.

The output voltage stays fixed
during this, but in many cases the
effect isn’t noticeable. Reading a five-
digit BCD frequency and converting it
into binary takes only microseconds.

Listing 2 shows the more practical
31-instruction loop using a 24-bit
accumulator. Listing 3 shows one
method of incorporating biphase mod-
ulation via a bit of Port A. In all three
listings, only the main loop is shown.

Figure 1 —A 16C54, DAC, filter, and
output buffer combine to make a
tunable audio-frequency generator
that you can drop into any project.

THE NCO HARDWARE
The hardware consists

of the PIC, an 8-bit DAC,
a low-pass filter, an out-
put amplifier, and some
method of loading the

desired frequency into the PIC. Figure
1 shows a typical system.

Some applications won’t need all of
it. My ultrasonic modem used a port bit
to select one of two preset frequencies.
It didn’t need the low-pass filter since
the frequencies being generated were
both within the pass-band of the trans-
ducer and the alias frequencies were
well outside it.

If you only want audio frequencies,
the filter needs to be little more than
a capacitor across the DAC’s output
resistors out to get a clean output. In
the 50-kHz range, you need a filter
that cuts off sharply above 50 kHz.

Circuit Cellar INK® Issue 99 October 1998 41

Figure 2 —One way to tune the NCO is to connect five thumbwheel
switches to some shift register chips.

Figure 1 shows a four-pole quasi-
Butterworth filter with a cutoff at
70 kHz. This filter approximates a
Butterworth filter by combining a
single-pole filter (the capacitor across
the DAC output) with a three-pole
Sallen and Key–style filter.

The two sections need to be isolated
from each other, either by buffering
the DAC output or, as shown, by
making the resistors in the three-pole
section about ten times larger than
the DAC load resistor. The output
amplifier doesn’t need to be anything
fancy because it only has to provide
unity gain up to perhaps 500 kHz.

To set the frequency, I wired a five-
digit thumbwheel switch to three
8-bit shift register chips as shown in
Figure 2. The switches are ignored until
the user presses the update button.
Feedback from the output stage of the
shift register debounces the button.

One bit from the PIC port keeps
the shift register in Load mode. When
the update button is pressed, the PIC
puts the shift register into its Shift
state. The bit that was sampling the

button then becomes the
serial data input pin.

A third port pin sup-
plies the clock to the shift
registers to read all five
switches. (The fourth pin
of the 4-bit Port A pro-
vides a modulation input.)

Since the highest BCD
digit takes values from 0
to 5, only 19 bits are read
in. Three 19-byte look-up
tables store the three-byte
weight of each bit.

When a one bit appears
at the input, the correspond-
ing three-byte weight is
looked up and added to the
frequency register. If you
embed this “NCO” in a
larger system, you may be
able to arrange this com-
putation to be done else-
where.

If you build this con-
figuration, it is worth
setting the frequency to
40,330 Hz, which gives a

42 Issue 99 October 1998 Circuit Cellar INK®

Tom Napier has worked as a rocket
scientist, health physicist, and engi-
neering manager. He has spent the last
nine years developing spacecraft com-
munications equipment but is now a
consultant and writer. In his free time,
he develops neat test instruments,
debunks pseudoscience, and writes in
Forth on an Amiga 3000.

frequency setting number that’s close
to a power of two so the DAC output
is almost stationary. Compare the
filtered output to the raw output on
pin 2 of the DAC to see how good a
job the filter is doing.

The DAC-08 is a former PMI part
now made by Analog Devices. The
DAC0800 from National Semiconductor
is a direct replacement.

The DAC’s outputs sink current to
the negative supply. The currents vary
in opposite directions as the input code
changes. Both have full-scale values
equal to the reference current (nomi-
nally 2 mA). If the reference current
flowing into pin 14 changes, the output
amplitude and its DC level change, too.
This circuit’s output is about 1.5 Vp-p.

The DAC-08 does need a negative
supply—ideally, –15 V. If you can accept
a limited output swing, –5 V will work.

ADDING MODULATION
The spare instructions in the 31-

cycle loop let you add input tests to
select either of two preset frequencies
and generate FSK signals. The upper

two bits of the accumulator determine
which quadrant of the waveform is used,
so you can generate quadratic phase
modulation by modifying these bits.

A 28-pin PIC would give you an
extra 8-bit port. The number applied to
it could be added to the phase register
or to the frequency register to generate
virtually continuous phase or frequency
modulation.

The DAC output is proportional to
its reference current. Modulating this
current produces amplitude modulation
of the output.

These techniques are a convenient
way of generating low-frequency com-
munication signals, and they can also
be applied in the musical field.

LOWER FREQUENCY, LOWER COST
My earlier article described how a

PIC, a specialized NCO chip, and a fast
DAC could generate up to 10 MHz in
a benchtop unit. But if you need lower
frequencies, this article may give you
food for thought. With a parts cost
under $10, a PIC and a DAC may be
just the answer when you need a high-

precision adjustable-frequency sine
wave below 50 kHz. I

SOURCES
PIC16C84
Microchip Technology, Inc.
(602) 786-7200
Fax: (602) 786-7277
www.microchip.com

DAC-08
Analog Devices
(617) 329-4700
Fax: (617) 329-1241

DAC0800
National Semiconductor
(408) 721-5000
Fax: (408) 739-9803

44 Nouveau PC
edited by Harv Weiner

48 Networking with DeviceNet
Part 2: A Weather-Station Application
Jim Brady

55 Real-Time PC
The Need for Speed
RTOS and PC/104
Ingo Cyliax

61 Applied PCs
RF and Micros
Part 2: A Low-Power System
Fred Eady

P
h
o
to

 c
o
u
rt

es
y
 o

f
D

er
iv

a
ti
o
n
 C

o
.

CIRCUIT CELLAR INK OCTOBER 199844

N
PC

PCNouveau
edited by Harv Weiner

C-PROGRAMMABLE CONTROLLER
The Z-World ZB4100 is a board-level C-programmable

controller that features an Intel ’386EX processor running at
25 MHz. With 36 programmable DIO lines, one RS-232
channel, one RS-232 or RS-485 channel, and a parallel port,
the ZB4100 provides all the interfaces needed for a wide
variety of control applications. Its PLCBus support enables the
user to expand these interfaces with their line of 4-bit
expansion boards, which include digital I/O, relays, and
D/A conversion. The board is also available with up to
512-KB SRAM and 512-KB flash memory, a remote program-
ming port, battery-backed SRAM, and a real-time clock.

Programming is accomplished via Z-World’s multitasking
Dynamic Cx86. Based on C, Dynamic Cx86 offers keywords,
software drivers, and library functions that meet the needs of
control-system developers. Dynamic Cx86 integrates an
editor, compiler, and interactive debugger in one package
and eliminates the need for third-party debuggers or ICEs.

The developer’s kit for the ZB4100 includes a development
board, aluminum baseplate, power supply, programming
cable, and manual with schematics. Because the develop-
ment board is programmed via a remote programming port,
both serial ports are available for the application’s use.

The ZB4100 is priced at $245 in quantities of 100.

Z-World
(888) 362-3387
(530) 757-3737
Fax: (530) 753-5141
www.zworld.com

HIGH-SPEED A/D BOARD
WITH DSP COPROCESSOR
Datel Systems has announced the PC-430K, a

high-speed ISA ADC-DSP coprocessor data-acquisition
board. With two simultaneous-sampling 5-MHz ADCs, the

PC-430K is ideally suited for continuous Fast Fourier Transform
(FFT) processing, communications-receiver signal collection to

disk, and simultaneous graphics display of spectral data.
Application areas include signal recovery from noisy channels,

harmonic distortion analyzers, and vibration/resonance filter systems.
The PC-430K can also be used for high-speed mapping and
imaging, satellite channels, astrophysics, and seismology. Other
uses include biomedical signals, array processing, control systems,
simulators, engine analyzers, aerodynamics, and vehicle system
applications.

The PC-430K acquires two analog input channels, and digitizes
and stores them in local memory, while DSP math processing and
data transfer are done concurrently. The system is designed for
preprocessing seamless A/D datastreams to mass storage. Its
timer/counter uses an onboard crystal oscillator or an external
timebase for precision phase tracking. The ADC passes data
directly to a FIFO memory that decouples the precision timing of the
A/D section with the block transfers governed by the DSP. Some of
the advanced features of the onboard DSP include single-cycle fetch
and execution, parallel instructions, zero overhead of looping
instructions, software variable wait states, block repeat, and 64-word
internal instruction cache memory.

The PC-430K sells for $4945
in single quantities.

Datel Systems, Inc.
(508) 339-3000
Fax: (508) 339-6356
www.datel.com

 OCTOBER 1998 EMBEDDEDPC 45

N
PC

PCNouveau

COMPACT CPU MODULE
Intelec’s PC104i is a compact, low-profile, low-power CPU module that

works with S-MOS Systems’ ’586 and ’486 Card-PC, or Cell Computing’s
Pentium and ’486 CardPC. Card-PCs have a standard pinout configuration and
an EASI bus connector that make it easy to upgrade this PC/AT system by
replacing one module with another (e.g., from a ’486DX4 to a ’586 module).

The PC104i has a single PC/104 stack with IDE hard disk, floppy disk, and
simultaneous CRT and LCD video. Other features include VGA or CGA video,
two serial ports, LPT parallel port, PS/2 keyboard and mouse, flash (disk or
memory), watchdog timer, and a CMOS/clock battery backup. The module
offers 5-V-only operation (3.3 V generated onboard), power management, 90°
connectors option, optional 2-MB flash memory, and stackable 16-bit PC/104
bus expansion. PC104i is compatible with Windows 3.11, 95, and NT, as well
as DOS and ROM-DOS.

Pricing starts at $250 in OEM quantities.

Intelec Technologies, Inc.
(847) 517-1000 • Fax: (847) 517-1001
www.intelec-tech.com

DSP DEVELOPMENT SOFTWARE
IDE6000, a software development environment for the

TMS320C6x DSP, is available under Windows 95 or NT. This
GUI-based development environment enables users to configure
hardware systems and manage software projects via wizards and
dialog boxes. Configuration information provided to other elements
of the IDE makes the development environment become system
aware. This awareness extends to all board resources including
processors, memory, host interface, and the I/O subsystem.

A choice of debugging environments is available with IDE6000,
ranging from the Texas Instruments XDS510 with DB60, to Code
Composer running native on the board. When the IDE6000
operates in native mode, the need for
an external XDS debugging system is
removed. All debugging systems are
launched from within IDE6000 with
only a few button clicks.

Project Make is a utility that lets you
control software revisions and simplify
code building by abstracting the user
away from specific make file and
linker issues. TI’s C compiler is fully
integrated into Project Make, and the
user can select command-line compile
options using a dialog box. An inte-
gral editor within Project Make en-
ables the user to jump directly to any

errors found at compile time. Or, using the
simple customization utilities, the developer can
integrate his or her favorite editor.

Other building blocks include host interface libraries
for host-to-DSP communication and utilities for configuring
and accessing onboard resources (e.g., SCBus, MVIP, and flash
memory). A download monitor is provided for interactively
debugging the DSP and host system.

Two system test options are provided as well. Interactive Test,
a GUI-based utility, enables the developer to select board
features (e.g., memory or processor) and perform a test to confirm

that they are functional. Built-In Test is
used to test board functionality on
startup. It is normally blown into flash
memory and runs on startup. A file of
test results is generated for the user to
interrogate.

The IDE6000 is priced at $1000
per development seat with multiuser
and site licenses also available.

Loughborough Sound
Images, Inc.
(781) 860-9020
Fax: (781) 860-0083
www.lsi-dsp.com

CIRCUIT CELLAR INK OCTOBER 199846

N
PC

PCNouveau

DATA-ACQUISITION BOARD
FOR CompactPCI
Analogic has introduced the CPCI-14-1, a high-

speed, dual-channel, analog input board for CompactPCI.
Its superb spectral characteristics position it for high-perfor-

mance applications like I/Q quadrature demodulations, commu-
nications, radar, medical MRI receivers, and event capture.
The CPCI-14-1 is designed to provide the highest possible signal-to-

noise ratio and spurious-free dynamic range at sampling frequencies from
1 to 10 MHz in a 0–70°C range. Performance levels of 75-dB SNR and
90-dB SFDR are easily achieved with input signals as high as 5 MHz.

As an optional means of high-speed transfer, the CPCI-14-1 includes
a DSP link port that provides a direct interface to a SHARC-based DSP
board. The SHARC link port can be used for applications that require
continuous uninterrupted data transfers and real-time DSP.

The 3U Eurocard format and its vertical installation in a protective
card cage provide easy user access, excellent heat dissipation, and
secure mounting—features that are required in rigorous industrial and
mobile applications.

Prices start at $2500 each in small quantities.

Analogic Data Conversion Products
(800) 446-8936
Fax: (781) 245-1274
www.analogic.com

 OCTOBER 1998 EMBEDDEDPC 47

N
PC

PCNouveau

AMD 5X86 SINGLE-BOARD COMPUTER
The Little Monster VI features a 32-bit,

low-voltage AMD 5x86 CPU that runs up to
133 MHz on less than 7 W. Its 32-bit PCI
and 16-bit ISA buses enable the computer to
drive four PCI and eight ISA peripheral boards.

The Little Monster VI includes 16 or 32 MB
of EDO DRAM (expandable to 96 MB),
256 KB of level-2 fast asynchronous cache
memory, controllers for flat-panel VGA, PCI-
enhanced EIDE, and floppy-disk support for
2.8-MB floppy drives. Also onboard are a
standard keyboard port, four serial (16550)
ports, two bidirectional EPP- and ECP-com-
patible parallel ports (IEEE-1284 complaint),
and a watchdog timer.

Options include a CompactFlash socket
onboard and an advanced resistive pen-
and touchscreen controller. Peripheral boards
(PCMCIA, USB, sound, etc.) stack on top of

the Monster VI mezza-
nine-style to make the entire
system as compact as possible.
For enhanced reliablity, the pe-
ripheral boards connect via leaf-
spring connectors.

The Little Monster VI comes with SystemSoft
BIOS to enable booting from a floppy disk,
hard drive, CompactFlash, or PCMCIA de-
vice. The Monster supports Windows 95,
NT, and CE in temperatures ranging from
–25 to +70°C. The board size is 4″ × 7″.

The Little Monster VI starts at $400 in
OEM quantities.

Zykronix, Inc.
(303) 799-4944
Fax: (303) 799-4978
www.zykronix.com

EP
C

CIRCUIT CELLAR INK OCTOBER 199848

Jim Brady

Networking with DeviceNet
Part 2: A Weather-Station Application

If you like programming as much as I do,
you�re in for a real treat with DeviceNet.
The DeviceNet specification is fully object-
oriented, with each object described in
terms of attributes and services.

These items correspond to C++ class
data and member functions, so if you use
C++, all you have to do is understand the
specification and translate it to code. Just
make sure you have some strong coffee on
hand when tackling the tricky parts. I had
the most trouble�err�fun�with connec-
tion states and fragmented messaging.

Let�s cover the PC/104 hardware first.
After surveying the many processor boards
available for PC/104, I went with the
Micro/sys SBC1386, a 25-MHz �386EX
board, shown in Photo 1. It comes with
BIOS and a DOS run-time environment
that runs the application out of RAM. That
way, you don�t need a special library and
linker to generate ROMable code.

The board also includes the Borland
remote debugger in flash memory. It�s
nice to be able to send the program to the

board at 115 kbps, set some breakpoints,
and let �er rip. My program is written
entirely in C++ using the Borland compiler
(large memory model).

A lot�s been said about the poor suit-
ability of C++ for real-time embedded
development. But, it�s more than adequate
for a fast-response DeviceNet interface.

The program weighs in at 45 KB of
code space, including the weather-station
application code. This size is comparable
to DeviceNet interfaces I�ve done using
standard C with small CPUs. I�ll show you
some performance measurements later on.

CAN CHIPS
The next order of business is picking a

CAN controller. Table 1 compares periph-
eral-type CAN controllers. I went with the
Intel 82527 because I like having indi-
vidual mailboxes for each message type
rather than one big FIFO for all of them.
It�s more modular.

The Siemens parts also work this way.
They have 15 or 16 mailboxes�plenty for

the DeviceNet predefined connection set,
which has 10 connections.

A FIFO is good if you�re concerned
with the master beating your door down
with high message rates. But at some point,
your code will run out of steam anyway.

The 82527 has five operating modes.
Only mode 3 (nonmultiplexed asynchro-
nous) makes sense for a PC/104 inter-
face. I�d prefer faster 16-bit transfers, but
the 82527 in mode 3 is limited to 8 bits.

The PC/104 bus has the same timing
as the ISA bus, and it takes a whopping
720 ns for an 8-bit read or write. This
glacial pace is actually good because it
doesn�t exceed the rather long cycle and
access times of the 82527.

In mode 3, at maximum clock rate, the
82527 has a 288-ns access time. If you
use a fast bus, you need to accommodate
this slow interface. Intel�s web site has
app notes for interfacing the 82527 to a
various processors.

I use a PAL to generate the R/W select
line and the chip selects. To make sure the

Think programming a DeviceNet interface in C++ is tough? Jim disagrees.
With its excellent response times and adequate program size, Jim gets the same
excitement writing code for a fast 32-bit CPU as he got from his �67 Camaro.

EPC

 OCTOBER 1998 EMBEDDEDPC 49

R/W line remains stable at the end of a
bus cycle, the line is latched by an RS latch
in the PAL.

MEMR sets the latch and MEMW resets
it. The PAL design source file is available
via the Circuit Cellar web site. The only
glue logic is a couple of inverters to delay
the 82527 chip select to make sure it
doesn�t go low until after R/W is valid.

With no video board in my PC/104
stack, there�s plenty of memory space for
the CAN controller�s 256 bytes. I went
with A0000.

In mode 3, the 82527 provides one
I/O port. To get enough I/O for all my
switches and LEDs, I added an 82C55A
at memory address A1000. That gave
me plenty of I/O lines, including enough
for a four-wire serial interface to the
ADC on my weather-station board.

CHIP SETUP
The 82527 has 15 mailboxes for

CAN messages, each with 15 registers.
Setting up a mailbox requires telling it
what its message identifier is and if it
is send or receive. Done properly, your
program only gets an interrupt for a
message directed to your device.

The 82527 also has a group of
registers that control message filtering,
interrupt masking, data rate, and
sample timing. There are some tricky
ones that set the sample point within a
bit time as well as the limit on how
much that sample point can jump
around.

There is a tradeoff�you want to let it
jump as much as possible to accommo-
date oscillator tolerance, and you also
want the sample point to be close to the
end of the bit time to accommodate long
cables. But you can�t allow it to jump so
much that it goes past the end of a bit time.

After a lot of calculation, I ended up
sampling at 87% of the way through a bit
time, with the jump limit (SJW) equal to
12% of a bit time. That accommodated
the worst-case cable length, with a jump
width still large enough to handle crystal
errors of about ±0.2%, which is plenty for
any crystal. The Intel 82527 Architectural
Overview provides information for this
calculation.

REAL TIME
I can�t help but be excited about writing

code for a fast 32-bit CPU after designing
8-bit systems for years. The feeling of
power is like the feeling I got from my first
car, a �67 Camaro with a 327 engine.

To make sure the 18.2-Hz BIOS clock
interrupt wouldn�t hurt me, I measured its
duration by looking at how big a chunk it
took out of a tight loop that pulsed an I/O
pin. According to my scope, it is just
56 µs, including the time it takes to run my
own timer interrupt at INT 1C, which is
chained to the BIOS clock interrupt. I use
this timer to update my DeviceNet connec-
tion timers.

When a DeviceNet message arrives,
the 82527 pulls IRQ5 high. According to

Intel, the �386EX has a
worst-case interrupt la-
tency of 63 clock cycles, or
~2.5 µs at 25 MHz, neglecting
wait states.

So, my DeviceNet interrupt handler
has to wait for a maximum of 58.5 µs (i.e.,
56 + 2.5) before it runs. This situation
happens when a DeviceNet message
comes in just after a BIOS clock tick.

The DeviceNet interrupt handler in
Listing 1 reads the message-length byte to
find out how long the message is and then
reads only the data bytes it needs to. Most
DeviceNet messages are well under
8 bytes. The most frequent message, the
I/O Poll Request, has no data bytes at all!

By the way, check the disassembled
machine instructions with your debugger
to make sure functions like peekb() are
getting expanded inline. Depending on
compiler settings, they may not be. For an
8-byte message, the duration of my
DeviceNet interrupt handler is 100 µs
with peekb() inline or 160 µs otherwise.

These timing measurements show
there�s still plenty of time left for process-
ing messages. DeviceNet recommends a
response time of 1 ms for I/O Poll mes-
sages and 50 ms for Explicit messages.
These measurements also show that a
faster PC/104 bus wouldn�t help much.
Out of the 100-µs total time for the inter-
rupt handler, only about 6 µs (eight bytes
at 720 ns per bus cycle) is spent doing bus
transfers.

Photo 1—The PC/104 weather station is en-
tirely powered from the DeviceNet bus. The
weather station board is sandwiched be-
tween the ’386EX CPU board on bottom and
the DeviceNet interface on top. The humidity
transducer and thermistor are on the small
board in front.

Intel Philips Siemens Siemens
82527 SJA1000 SAE 81C90 SAE 81C91

Package PLCC 44 DIP 28 PLCC 44 PLCC 28
QFP 44 SO 28

Parallel CPU 8-bit multiplexed 8-bit 8-bit 8-bit
Interface 8-bit nonmultiplexed multiplexed multiplexed multiplexed

16-bit multiplexed
Access time 288 ns 45 ns 120 ns 120 ns
Serial Interface SPI, 8 MHz None 4 wire, 5 MHz 4 wire, 5 MHz
I/O Ports 1 or 2 eight-bit ports None 2 eight-bit ports None
Organization 15 mailboxes; 64-byte FIFO 16 mailboxes 16 mailboxes

1 is double-buffered
Identifier mask 1 global for mailboxes 1 global None None
 registers 1–14, and 1 special

for mailbox 15
Identifier match 1 per mailbox 1 global 1 per mailbox 1 per mailbox
 registers
Message timestamp No No Yes Yes
Max. DC current 50 mA 15 mA 30 mA 30 mA
Approx. price $7.50 $7.30 $6 $5.30

Table 1—Now you can compare various peripheral-type CAN controllers. The Philips device stores all
messages in a FIFO, while other devices store messages in mailboxes based on their identifier.

EP
C

CIRCUIT CELLAR INK OCTOBER 199850

If your CPU is slow,
an easy way to get the

1-ms response time for I/O
Poll messages is to put the data

you want to send in the CAN
chip�s mailbox ahead of time, ready

to go. When an I/O Poll request comes
in, immediately tell the CAN controller to
send it. With this strategy, I measured the
weather station�s I/O Poll response time
at a worst case of 140 µs.

I later changed the code to be consis-
tent with my priority-based event handler,
which runs in the main loop. My DeviceNet
interrupt handler puts the message into a
buffer, sets a bit in a 16-bit event-word to
indicate a message is in, and exits.

The bit�s position within the event-word
determines its priority. When the main loop
detects this bit and no higher priority bits
exist, it calls the link consumer to consume
the message, gets the data from the Assembly
Object, and calls the link producer to
produce the message. This orderly ap-
proach lengthens the I/O Poll response
time to 340 µs, which is still plenty good.

MESSAGE FLOW
Figure 1 shows message routes in the

system. Explicit and I/O Poll messages come
in through their respective mailboxes. Explicit
messages are routed via the path specified
in the message and can access almost any
object in the device. I/O Poll messages
grab preselected data from a buffer in the
Assembly object and quickly send it.

The weather-station sends three bytes�
device status, temperature, and humidity.
I can send more data by adding it to the
existing assembly or creating a second
assembly. The device manufacturer deter-
mines which data goes into the assemblies.

At the top of Figure 1 is the unconnected
port, which the master uses to allocate the
connections it wants to use. Technically,
connections don�t exist prior to allocation.

This situation implies using C++ dynamic
allocation. Although you can do this, I
chose to create static objects at the begin-
ning of main() and use the constructor to
set the initial connection state to nonexistent.

CONNECTIONS
Connections have states other than

nonexistent and established, and some
are unique to one or the other connection.
This setup is so confusing, I made a state
transition diagram. Figure 2 combines the

behavior of both types of connections,
using colors to tell them apart.

When the master allocates the Explicit
connection, the connection simply transi-
tions to the established state and it�s ready
to use. The connection timer starts at 10 s.

If it times out, the connection goes to
one of two possible states depending on
whether the connection is in autodelete or
deferred-delete mode. In autodelete mode,
if it times out, it�s gone. In deferred-delete
mode, it stays around and goes back to
the established state if a message comes in.

The I/O connection, when allocated,
goes to the configuring state. In this state,
it cannot process I/O messages and must
wait for the master to set its expected
packet rate via the Explicit connection.
Then it is in the established state and can
begin handling I/O Poll requests.

TIMERS
For each connection, you need a time-

out timer. You also need a timer for
sending fragments. The BIOS clock is
handy, but who wants to deal with 18.2 Hz?

With the Micro/sys board, the 25-MHz
system clock is divided by 21 to drive
timer 0 in the �386EX. Timer 0 further
divides by 65,536, producing 18.2 Hz.
Loading 0xE884 into the timer 0 count
register resulted in BIOS clock interrupts
at a more friendly rate of 20.0 Hz.

The connection time-out time depends
on the expected packet rate, which is set
by the master. When a DeviceNet mes-
sage comes in, I reload the timer for that
connection, and my timer interrupt han-
dler then decrements it at a 20.0-Hz rate.
If it reaches zero before another message
comes in, the connection times out.

ANALOG INPUT POINT
The Analog Input Point in the DeviceNet

object library models an analog sensor.
Listing 2 shows some code for this class.

 The specification defines eight at-
tributes, many of which are optional. I
implemented the ones for sensor value,
sensor status, and data type. The data
type tells the master whether the value is
an integer, float, or what. For the weather

#define CAN_BASE 0xA000
UCHAR global_CAN_buf[10];
UINT global_event;

// Handles receipt of incoming DeviceNet messages
// The three dots are required in C++ mode
void interrupt far can_isr(...)
{

UCHAR i, int_source, addr, mailbox, length;

int_source = peekb(CAN_BASE, 0x5F); // read interrupt source
if ((int_source < 3) || (int_source > 7)) return;

mailbox = int_source - 2;
for (i=0; i < 10; i++) global_CAN_buf[i] = 0;

// compute address of config register in mailbox of interest
addr = 6 + (mailbox << 4); // multiply by 16
length = peekb(CAN_BASE, addr); // read message length
length = length >> 4;
global_CAN_buf[9] = length; // save message length
for (i=0; i < length; i++){ // move message from 82527
 addr++;
 global_CAN_buf[i] = peekb(CAN_BASE, addr);
}
addr = 1 + (mailbox << 4); // point to control 1 reg.
pokeb(CAN_BASE, addr, 0x55); // clear INT_PENDING bit
addr--; // point to control 0 reg.
pokeb(CAN_BASE, addr, 0xFD); // clear NEWDAT
global_event |= 0x0001 << mailbox; // set bit in global_event
outp(0x20,0x20); // nonspecific EOI

}

Listing 1�The interrupt handler for DeviceNet messages copies the message from the
82527 into a buffer, saves the length, and frees the 82527 for the next message. The run
time is 100 µs.

 OCTOBER 1998 EMBEDDEDPC 51

station, I use an unsigned char that corre-
sponds to a data type of 2.

My Analog Input Point class imple-
ments the DeviceNet Get Attribute Single
service using a member function. Thus, the
master can read any of the three attributes
using an Explicit message.

These attributes aren�t settable, so my
class doesn�t have the Set Attribute Single
service. In the future, I may allow the
master to set the data type to a float,
switching my sensor value to floating point.

IDENTITY OBJECT
Every device must be able to give its

name, rank, and serial number. The Identity
object holds this information. It also keeps
track of device state and does device resets.

There are two types of resets. Type
zero simulates an off/on power cycle. To
do this, I send a response back to the
master and suspend writes to my watch-
dog timer.

A type-one reset changes settable con-
figuration parameters back to their fac-
tory default values and does a type-zero
reset. The weather station has no configur-
able settings, so both resets are identical.

FRAGMENTED MESSAGES
The weather station�s I/O Poll response

is just three bytes�one byte each for
device status, temperature, and humidity.

If I used floating point or added more
sensors, the CAN message limit of 8 bytes
would quickly be exceeded. I�d need to
send the data in two or more fragments.

I/O message fragments are like nor-
mal messages except the first byte pro-
vides a fragment flag and a fragment
count. That leaves seven bytes for data.

For maximum speed, I/O message
fragments are sent back-to-back with no
acknowledge (ack) message from the mas-
ter other than the CAN level acknowl-
edge bit.

DeviceNet
Object

Link
Consumer

Link
Producer

Link
Consumer

Link
Producer

Dup MAC
Handler

Startup
Dup MAC
Sender

Message
Router

Temperature
Sensor

Assembly
Object

DeviceNet Connections

Unconnected Port

Explicit Request

Explicit Response

I/O Poll Request

I/O Poll Response

Dup MAC Check
(bidirectional)

Receives dup MAC check
messages from other devices
and sends response

Sends two dup MAC check
messages at startup

Discard if bad
message or connection
not established

I/O Poll
Connection
Object

Holds copies of
device status,
temperature, and
humidity

To other objects

Explicit
Connection
Object

Ack Discard if bad
message or
connection
not established

Figure 1�An Explicit message can
address any object in the system,
while the I/O Poll message re-
turns a specific set of data.

EP
C

CIRCUIT CELLAR INK OCTOBER 199852

Fragment-
ing an Explicit

message is more
complex. You send

a fragment, wait for an
ack message, and send

the next fragment. If the ack
takes too long, resend the frag-
ment. If you time out again, give
up trying to send the message.

Many error cases can arise,
like getting an ack from the
master with a fragment num-
ber different from what you
sent, getting a message that�s
not an ack while you�re send-
ing fragments, and so on.

The weather station is ca-
pable of sending and receiv-
ing fragmented Explicit messages. Its serial
number and product name are long
enough to require it.

Fragmented messages are a big part
of DeviceNet conformance testing. My

program managed to pass a self-inflicted
test using the ODVA conformance soft-
ware. This software generates every con-
ceivable bogus response and breaks all
but the best code. You like challenges, right?

Nonexistent

EstablishedDeferred Timedout

Configuring

Startup Delete from any state

Receives Allocate
I/O Poll request

Get/Set
attribute

Receives Allocate
I/O Poll Request

Get/Set
attribute

Get/Set
attribute

Send/Receive
data

I/O Poll
times out

Explicit
times out
(autodelete mode)

Receives
Set EPR
request

Receives
Allocate
Explicit
request

Explicit
times out
(deferred mode)

Receives
data

I/O Poll
times out or
is deleted

Figure 2�This state transition diagram for connection objects shows the events
that cause the connection object to change state. Explicit connection states and
events are shown in green, I/O Poll in red, and shared in violet.

Figure 3�A simple eight-bit interface puts the Intel 82527 CAN controller on the PC/104 bus. The 24-V DeviceNet power is dropped to 5 V by U3
and then powers the entire weather station. Transistor Q1 protects against miswired network power. The PAL source code is available via the Circuit
Cellar web site.

GETTING PHYSICAL
DeviceNet requires you

to keep the network data
and power isolated from
green-wire ground by
1 MΩ or greater. If any-
thing can reference your
circuit to green-wire ground
(e.g., an RS-232 port), you
must optoisolate the network.

My PC/104 DeviceNet
interface is shown in Figure
3. The weather station is
isolated from ground and
has no ports other than
DeviceNet, so I didn�t need
optoisolators.

Power consumption is
5 W, so I powered the whole

thing from DeviceNet power. The voltage
varies between 11 and 25 VDC, so use a
wide input-range DC-to-DC converter.

DeviceNet also needs a miswiring-
protection circuit, which lets you mix up

EP
C

CIRCUIT CELLAR INK OCTOBER 199854

SOURCES
DeviceNet Information
Open DeviceNet Vendor Assn., Inc.
(954) 340-5412
Fax: (954) 340-5413
www.odva.org

SBC1386
Micro/sys, Inc.
(818) 244-4600
Fax: (818) 244-4246
www.embeddedsys.com

Digi-Key
(218) 681-6674

class ANALOG_INPUT_POINT{
private:
UCHAR value; // sensor value
UCHAR data_type; // data type of value
BOOL status; // alarm status
static UINT class_revision; // revision of object
public:
static void handle_class_inquiry(UCHAR*, UCHAR*);
void handle_explicit(UCHAR*, UCHAR*);
ANALOG_INPUT_POINT() {value = 0; status = 0; data_type = 2;}

};

// Handle explicit request to Analog Input Point
void ANALOG_INPUT_POINT::handle_explicit(UCHAR request[],
 UCHAR response[])
{
UINT service, attrib, error;
service = request[1]; attrib = request[4]; error = 0;
memset(response, 0, BUFSIZE); // clear response buffer
switch(service){
case GET_REQUEST:
switch(attrib){ // return requested attribute
case 3: // value
response[0] = request[0] & NON_FRAGMENTED;
response[1] = service | SUCCESS_RESPONSE;
response[2] = value;
response[LENGTH] = 3;
break;

case 4: // status
response[0] = request[0] & NON_FRAGMENTED;
response[1] = service | SUCCESS_RESPONSE;
response[2] = (UCHAR)status;
response[LENGTH] = 3;
break;

case 8: // data type
response[0] = request[0] & NON_FRAGMENTED;
response[1] = service | SUCCESS_RESPONSE;
response[2] = data_type;
response[LENGTH] = 3;
break;
default: error = ATTRIB_NOT_SUPPORTED; break;

}
break;
default: error = SERVICE_NOT_SUPPORTED; break;

}
if (error) // return error response{
response[0] = request[0] & NON_FRAGMENTED;
response[1] = ERROR_RESPONSE;
response[2] = error;
response[3] = NO_ADDITIONAL_CODE;
response[LENGTH] = 4;

}
}

Listing 2�Here�s the Analog Input Point class for the temperature and humidity sensors. The
Explicit message handler allows the master to get any of the three attributes. They are read-
only, so the Set Attribute service is not supported.

SOFTWARE
Complete source code and schematics for this article
are available via the Circuit Cellar

Jim Brady has designed embedded sys-
tems for 15 years. You may reach him at
jimbrady@ix.netcom.com.

Fax: (218) 681-3380
www.digikey.com

DeviceNet cards
National Instruments, Inc.
(512) 794-0100
Fax: (512) 794-8411
www.natinst.com

Softing GmbH
ICT, Inc.
(978) 557-5882
Fax: (987) 557-5884
www.softing.com

the network connec-
tions in any possible way

without frying your device
or the network. The DeviceNet

specification includes a circuit for
this. The Philips 82C251 CAN trans-

ceiver has ESD protection and line pro-
tection up to 40 V continuous.

DeviceNet is fairly specific in its interface
guidelines. I used two BCD rotary switches
to set MAC ID and one more for data rate.
I also went with the recommended bicolor
LED for module and network status.

Of the three network-connector choices,
I used the circular micro style. It has five
pins�two for differential data, two for
power, and one for the drain wire.

The data lines are referenced to power
V�, so your CAN transceiver must also be
referenced to this to prevent exceeding its
common-mode voltage range.

APPLYING DeviceNet
In addition to all of the objects for

DeviceNet, you need code for your appli-
cation. The weather station is simple
enough that I just extended the Analog
Input Point object. It reads the ADC and
computes sensor values.

If you have separate application ob-
jects, you must link them with the Identity
object. It keeps track of device status and
does resets. A standard object used for
SEMI-compliant devices, the S-Device
Supervisor, is designed to do this.

This article is mainly about DeviceNet,
but the weather station�s details are on the
Circuit Cellar web site. I hope to add
sensors for barometric pressure and wind
speed and build units for other locations.

My network master is a �486 with a
DeviceNet card from Softing GmbH. It
comes with a library that makes it easy to use.
Also check out National Instruments� card
which works with LabVIEW and CVI.

Aside from being a fun combination of
real-time software and hardware, this
project shows how straightforward it is to
program a DeviceNet interface in C++. With
a little care, C++ can provide good response
times and reasonable program size. EPC

R
PC

 OCTOBER 1998 EMBEDDEDPC 55

Photo 1—Our demo system consists of a CPU module on the bottom and
an NE2000 Ethernet card module and a PF2000 module on top.

Real-Time PC

Ingo Cyliax

The Need for Speed
RTOS and PC/104

Recently, our company went to the
Design Automation Conference in San
Francisco, where we demoed verified
FPGA cores we derived using our EDA
software. These cores were implementations
of the Data Encryption Standards (DES), and
this month, I want you to see how it worked.

We used a 486DX4-100 SBC from
Versalogic to host our PC/104-based
FPGA board. Photo 1 shows the setup.

A stand-alone web server I wrote in
TCL was used to implement a simple
encryption/decryption experiment. Af-
ter the user input some plain text
and a password on a web page
(see Photo 2a), the web server
loaded the DES encryption core
into the FPGA board and en-
crypted the data into ciphertext
(see Photo 2b).

Next, the user specified the
same password to decrypt the
message. The web server loaded
the DES decryption core into the

FPGA board and decrypted the message to
display on the web page shown in Photo 2c.

When I started testing this demo, I
noticed the FPGA-based DES implementa-
tion was much faster than what it took to
transfer data into it. This was kind of unnerv-
ing because I was using an oscilloscope to
see how fast it was running. I could see the
I/O operations that load the device and

When it comes to speed, more is better�except when you�re considering
price. Ingo�s ideas about speeding up transfers in and out of PC/104-based
DES engines give us a less expensive product with the same performance.

read data from it, but I had the time base
of the scope set too slow to even see the
blip of activity while the hardware com-
puted the DES.

At first, I thought something wasn�t
working, and I started to worry. Strangely,
the data I was reading back from the
board was encrypted correctly.

Although I knew that a hardware-
based DES would be much faster than a
software implementation, I didn�t realize
it spent so much time idling, waiting for
the processor to poke the data into it.

Sometimes it�s hard to relate to
how fast things really are. You
need 10�50 µs to transfer eight
bytes of data on PC/104, but
encrypting a text block only
requires 0.5 µs.

The transfer speed prompted
me to look at PC/104 in detail
and find a way to speed up the
transfers in and out of my PC/
104-based DES engine.

R
PC

CIRCUIT CELLAR INK OCTOBER 199856

CLOCKING IN
PC/104 uses ISA-bus signals and timing.

I thought this was going to be easy, but it
wasn�t. ISA bus, or Industry Standard
Architecture bus, is a standardized inter-
pretation of the original IBM-AT bus. It
was also standardized by IEEE as P996.

These definitions mainly vary by the
clock speed they recommend. The origi-
nal PC used a 4.77-MHz clock, while the
IBM AT went up to 8 MHz. Some AT
clones even used 10�12-MHz bus clocks.

ISA recommends a clock of 8 MHz,
and P996 specifies a clock of 8.33 MHz,
which matches what my board is using.
But, it gets worse.

On i386 and i486 motherboards, the
ISA-bus clock is derived from the
motherboard chip set, rather than the
CPU clock. Usually you do this in the
CMOS setup, under Advanced Setup.
Look for an item called AT Bus Clock or
Bus Speed.

Typically, the bus clock is some frac-
tion of the CPU clock. So, a 33-MHz CPU
clock needs to be divided by four to get a
bus clock of about 8.33 MHz. By the way,
hardware failures are often misdiagnosed
because the ISA-bus clock is set too fast for
one of the cards in the system.

OK, since PC/104 assumes 8.33-MHz
clocks and my system uses 8.33 MHz,
we�ll go with that.

How do we relate the clock speed to
what happens on the bus? ISA bus has
several kinds of bus cycles, and each
mode has some default number of states
or clock cycles it takes to perform it.

In addition to the number of states
needed to implement a specific bus cycle,
there�s a recovery time. That�s the time
between bus accesses, after one ends but
before the next access can happen. The
recovery time varies from implementation
to implementation. Some motherboards
let you set them in the CMOS setup.

Since we�re dealing with I/O cards,
I�m only going to look at I/O accesses.
Each access mode has some default num-
ber of states it takes to perform the access,
but there are two ways to modify the
timing.

We can add wait states for slow de-
vices or disable the default wait states and
force the bus to do transfers in zero-wait-
state mode. This latter option is kind of a
misnomer because zero wait states are
still implemented as two bus states. I experi-
mented with my setup and took some
measurements, which I�ll tell you more
about in a bit.

TIMING IS OF THE ESSENCE
Table 1 shows the state times for DMA

transfers. Although any device can do
DMA, it�s slower on an ISA bus, especially
with 8-bit accesses.

Also, ISA-bus DMA is hard to use. The
program that wants to set up a transfer
needs to initialize the DMA controller and
then tell the I/O device to start the transfer.

So, a certain amount of processing is
involved just to set up a transfer. It�s not
worth it unless the transfer is large enough
to make the setup negligent in comparison.

And that brings me to the next limita-
tion of ISA-bus DMA. You can only trans-
fer within 64-KB segments. Unless the
beginning memory address of a transfer

lies at the beginning of a 64-KB segment,
the amount of data you can transfer is less
than 64 KB. And when the transfer is
done, the processor must be interrupted
and restarted to do another transfer.

For a floppy, this might be a significant
amount of data, since it transfers at low-
data rates anyway and won�t generate a
high interrupt rate for large transfers. For
multimedia, networking, or disk transfers,
though, 64 KB isn�t much. That�s probably
why the floppy disk is one of the few
devices still using ISA-bus DMA.

The benefits of ISA-bus DMA aren�t all
that great, so most devices use polled I/O
to transfer data. For polled I/O, you
transfer the data to and from a data
register implemented in the I/O register
space.

You may think this technique is ineffi-
cient because the processor gets tied up
executing I/O instructions and is forced to
wait for a relatively long I/O cycle. After
all, Pentiums clip along at 300+ MHz
now, and even a two-state ISA-bus access
at 8.33 MHz seems to take forever.

But, that isn�t the whole picture. Most
32-bit processors in embedded PCs today
have pipelines and several execution units
that are separate from the load/store
units. So, while an I/O operation is going
on, the rest of the core can still process
other instructions in parallel.

Here�s one technique that can help
speed up I/O transfers. Rather than trans-
ferring one byte or word at a time with the
normal inp and outp instructions, try a
string-based instruction. This instruction
transfers a programmable number of bytes
or words between an I/O port and
memory. The prime advantage is that you
only need one instruction to transfer larger
amounts of data.

Now that you know a little more about
I/O mechanisms and PC/104, it�s time to
test some of these assumptions.

Photo 2�
These screen

shots show what
the demo software

looks like if you use a
web browser on a regu-

lar PC. The user enters the
plain text message and a

password (a), which is then en-
crypted (b). Finally, the same pass-
word decrypts the message (c).

b)a)

States
Bus-Cycle Type (read/write)

8-bit memory access 4/4
16-bit memory access 2/2
8-bit I/O access 5/5
16-bit I/O access 5/5
8-bit DMA access I/O-Mem 7/7
16-bit DMA access I/O-Mem 5/5
0WS 2/2

Table 1�Here�s a summary of various bus
cycles for PC/104 and ISA bus. Notice that
16-bit memory accesses are essentially per-
formed at zero wait-state speed.

c)

R
PC

CIRCUIT CELLAR INK OCTOBER 199858

THE THREE R�S
Because FPGA boards

are programmable, I de-
cided to implement a simple

ISA-bus I/O interface, which en-
abled me to program how the card

responds to PC/104 I/O accesses. I
already did most of this for the original
DES interface, so it was pretty easy to
expand my interface to include the extra
control signals necessary.

The first thing I added was a wait-state
generator. The ISA bus uses the signal
IOCHRDY to indicate when a card is
done or ready with the data transfer.

Normally, this signal is pulled to a high
state. If a card doesn�t use the signal, it
remains in a high state and the CPU chip
set assumes the default number of wait
states for that bus transaction.

To use the IOCHRDY line, a device
needs to implement an open-collector
driver and pull the line low (as long as it�s
not ready). The CPU chip set samples the
line after some default number of wait
states and holds the bus access until the
I/O card releases the line and it returns to
the high state, indicating that it�s ready.

I implemented a programmable gen-
erator. When the bus-access cycle starts,
a counter loads the wait-state value from
a control register and counts to zero.
While the counter is not in the zero state,
it asserts a low on the IOCHRDY line,
telling the CPU to add wait states.

When it reaches zero, it sets IOCHRDY
high. This line also has a tristate buffer
that�s only enabled when the card is
being addressed. Now I can program how
long IOCHRDY is asserted on this card by
loading a register. A zero indicates that I
don�t want to use IOCHRDY, and it stays
high for the bus cycle.

The other signal I want to implement is
0WS (a.k.a. ENDXFER or SRDY). When
asserted, it tells the CPU to use a no-wait-
state cycle to access the card. Remember,
a no-wait-state access takes two states.

The 0WS line on my card is imple-
mented via a tristate buffer. When the
card is selected and a flag in the control
register is set, the card asserts a low on the
0WS line, indicating that the card can do
a zero-wait-state access.

Finally, even though my card is only
8 bit, I wanted to get a grip on the timings
of 16-bit accesses. So, I used a tristate
buffer to implement the IOCS16 signal in
the same way as the 0WS signal.

The IOCS16 signal indicates to the
CPU that the card can support word access
using inpw and outpw. If you tried to
access an 8-bit card (one that does not
assert the IOCS16 signal) with a word
I/O instruction, it would perform two 8-bit
cycles transparently to the program.

With a programmable IOCS16 signal,
I can make the CPU think there really is a
16-bit card. My card then responds by
only giving the CPU the contents of one
8-bit register. The other signals are unde-
fined. This is fine for doing a read.

Table 2 shows how the register on my
card is implemented. CSR is an 8-bit
register that lets me program the IOCHRDY
wait states and the function of the 0WS

Addr What
0x272 control/status register (CSR)
0x273 data port

Table 2�There are two ports in the register
address map. The status/control port (CSR)
controls the board�s response to bus accesses.
The 8-bit data port connects to an 8-byte deep
shift register inside the FPGA.

R
PC

 OCTOBER 1998 EMBEDDEDPC 59

signal. Figure 1 shows how these func-
tions are mapped to the register.

The data register is a port into an
8-byte register. Reading and writing the
register needs to be performed in eight
cycles. The 8-byte register is a holdover
from the DES implementation, which needs
two 8-byte registers to hold the plain-text
value and a key.

My ISA-bus module also implements
the second 8-byte register, which is
switched with one of the bits in the CSR.
Figure 1 shows the register bit.

To test this interface, I wrote a program
that enables me to set my interface modes,
write patterns to the 8-byte registers, and
read them back using the I/O string-
transfer instructions. If the data read back
matches the written data, it goes on to the
next pattern. Using the string instruction
for testing should represent the worse
case because it reads and writes the data.

To handle timing, I wrote another pro-
gram that reads and writes 8-bit values
into the card by trying a variety of I/O-
instruction mixes. To ensure that we get
some good measurements, I ran one mil-
lion accesses for each mode and mea-
sured the time it takes to run. The modes
I ran are:

• read single byte
• read bytes as string
• write single bytes
• write bytes as string
• interleave reading and writing a byte

For 16-bit mode accesses, I only tested
reading the card, since the card is only an
8-bit card faking 16-bit cycles. Writing to
my card alters the CSR, but reading it is
OK. I ran the same number of access
cycles to get a measurement. For 16-bit
mode, we have:

• read single word
• read words as string

I ran a series of tests with different wait-
state combinations and 0WS access
modes. The results are illustrated in Figure 2.

The x-axis shows the wait states, while
0 indicates asserting the 0WS signal and
1�8 indicate initializing the wait-state
counter with the value of 0�7.

The y-axis shows the number of opera-
tions per second, which vary from
472 kop/s (kilo-operations per second)
to 893 kop/s for the system I tested with
this board and software.

The single instructions (inb/outb) per-
form much like the string instructions

(insb/outsb). This
similarity is due to the in-
struction cache of the processor
(i.e., the loop doing single-trans-
fer instructions is contained within
the instruction cache), so there is little
penalty to executing a bunch of them.

Also note that the 16-bit transfer modes
do not implement default wait-state modes.
That is, the 0WS mode has the same
timing as not asserting IOCHRDY.

In 8-bit mode, 0WS is the fastest. But,
selecting 0�3 for the IOCHRDY wait states
has no effect on timing, which implies that

Figure 1�In the register map for the PC/104
card, the lower bits (Wait) encode the num-
ber of states to assert the ICHRDY signal. If
our card is being accessed, the 0WS and
I/O16 bits control whether the 0WS or the
IOCS16 signal gets asserted. The X/K bit
selects whether the data port points to the X
or K register.

272

273

0 0 I016 0WS X/K Wait

Data

CIRCUIT CELLAR INK OCTOBER 199860

SOURCES
PF2000 and Verified DES FPGA cores
Derivation Systems, Inc.
(760) 431-1400
Fax: (760) 431-1400
www.derivation.com

VSBC-1 and NE2000 modules
Versalogic Corp.
(800) 824-3163
(541) 485-8575
Fax: (541) 485-5712
www.versalogic.com

FPGAs used on PF2000
Xilinx Corp.
(800) 624-4782
(408) 559-7778
Fax: (408) 559-7114
www.xilinx.com

REFERENCES
E. Solari, ISA & EISA: Theory and Operation,

Annabooks, San Diego, CA, 1992.
L.C. Eggbrecht, Interfacing to the IBM Personal Com-

puter, SAMS, Carmel, IN, 1990.

Ingo Cyliax has been writing for INK for
two years on topics such as embedded
systems, FPGA design, and robotics. He
is a research engineer at Derivation Sys-
tems Inc., a San Diego�based formal
synthesis company, where he works on
formal-method design tools for high-assur-
ance systems and develops embedded-system
products. Before joining DSI, Ingo worked
for over 12 years as a system and re-
search engineer for several universities
and as an independent consultant. You
may reach him at cyliax@derivation.com.

this motherboard always inserts three
wait states in 8-bit mode unless 0WS
is selected.

I only ran the test with one CPU
board, so I�m likely to get different
numbers for other boards. The big-
gest difference will probably be the
amount of recovery time implemented in
the chip set. Of course, some boards will
be able to change the bus clock, which will
also affect the timing, but then it won�t be
standard anymore.

CATCH OF THE DAY
Now I know how to speed up transfers

to our DES engine. First I�d use the 0WS
signal to force the CPU to use the fastest
access mode possible. This technique
improves the access time from around
700 kop/s to close to 900 kop/s.

Also, I can double the throughput to the
DES engine via 16-bit transfers. Instead of
only getting close to 900 kBps, I can get
almost 1.8-MBps throughput.

While I can more than double the
original throughput to my board, this
implementation is still I/O bound. Consider
that the DES engine takes 500 ns to com-
plete one encryption per 8-byte block.

If the key stays the same, I have to
provide 8 bytes of data for the plain text
and read 8 bytes of data back from the
card. That takes 8 µs using 16-bit transfers
and 16 µs in 8-bit mode.

Although this application is severely
I/O bound, I now have some quantitative
ideas about what I need. One solution is
to find a faster bus, like PCI. At 500 ns, the
DES core will need about 32 MBps of
bandwidth to stream data.

Luckily, speed wasn�t an issue for the
demo. Our main task was showing that we
could develop working FPGA cores, so I
could switch to the slowest (and cheapest)
FPGA speed grade for this implementa-
tion. Slower FPGAs are up to three times
less expensive than the speed grade I was

using, and the DES would run at half the
speed (1 µs). Finding out something can
be made cheaper is always nice.

In my case, it would have made the
demo a bit cheaper, resulting in a nice fish
dinner after the show. And of course,
having a less expensive product with the
same performance can mean higher prof-
its or being more competitive. RPC.EPC

Figure 2�This plot shows how the
different access modes perform. In par-
ticular, note that the single instructions
(inb/outb) perform about the same as
the string instructions (insb/outsb).

900

850

800

750

700

650

600

550

500

450
0 2 4 6 8

Wait States

inb
outb

outb/inb
insb

outsb
insw

outsw

ko
ps

/s

I/O Rate vs. Wait States

A
PC

 OCTOBER 1998 EMBEDDEDPC 61

Applied PCs

Fred Eady

Fred�s taken to the airwaves again. Using a DVP transmitter/receiver pair, he
shows us how RF can be employed where wires previously dominated�with
the amazing potential to touch 256 printers over a single RF link.

We live in the land of gadgets. Our
world depends on the electronic goodies
that spew from electronic minds like yours.
Only the far reaches of humanity in the
deepest tropical rain forests have seen
little, if any, of this type of technology.

Again, last month, I was lucky enough
to get some TV time. I was watching TLC
(The Learning Channel, of course) and
stumbled on this documentary about a
civilization that exists in the
rain forests of some far off and
remote piece of one of the south-
ernmost continents.

Anyway, small monkeys are
a staple in the diet of these
indigenous people. They like
grilled tarantula, too, but that�s
another story.

What I�m getting at is that
the men and their sons go about
the hunt every now and then.
Sorta like you and me going on
the grocery-store trail, the dif-
ference being that at the meat

counter, the rain-forest dude uses a very,
very long blowgun that propels a poison-
ous dart into the chosen primate. You
know the rest.

In comparison, you and I swipe our
debit card and realize the same result.
Maybe not monkey meat, but meat, if
that�s your persuasion.

My point? One man�s high technology
is another man�s blowgun. The common-

ality is that both the blowgun and the high-
tech card reader will, at various times in
their useful life, need maintenance or
maybe even replacement.

Again, our topic du jour is low-power
RF the embedded way. So, let�s lay the
foundation for an RF/embedded applica-
tion using a couple of American Advantech
Corporation PCM-4862s, a touchscreen
monitor powered by MicroTouch, some

ROM-DOS from Datalight, a
thermal printer from Axiohm,
and some Holtek-enhanced RF
magic from DVP.

We�re going to use a touch-
screen as a source of input to
key a transmitter that sends a
message to one or more remote
thermal printers.

EMBEDDED INGREDIENTS
American Advantech pro-

duces a number of embedded
computer systems, and I just
happen to have the PCM-4862

RF and Micros
Part 2: A Low-Power System

Photo 1�The SSD is contained in the three 29C040s right above the BIOS
EPROM.

A
PC

CIRCUIT CELLAR INK OCTOBER 199862

in my possession. My PCM-4862, which
you see in Photo 1, runs at 100 MHz with
16 MB of RAM. I�ve used this board in
previous applications, and the features it
provides are perfect for this job, too.

The PCM-4862 is an all-in-one single-
board �486 computer with onboard
Ethernet, SVGA video, and solid-state
disk. The embedded RF app I want to tell
you about will use all of the aforemen-
tioned features. As well, it has a couple of
RS-232 serial ports, a multimode parallel
port, an enhanced IDE hard-disk drive
interface, and a built-in floppy drive port.

Although I have my daily sessions with
Counselor Troy, I haven�t fully developed
my telepathic abilities, and so I still need
a mouse and keyboard interface for em-
bedded systems I come into contact with.

I�ve also tried Scotty�s �talk to the
mouse� technique and still find I must
place the mouse on a pad and physically
move the little ball to effect cursor move-
ment. I�ve got to have a talk with Jean-Luc
about more time on the ship.

Meanwhile, I�ll employ the services of
the onboard keyboard and mouse inter-
faces for the development phase. I�ll also
need the serial and parallel ports to
manipulate the DVP RF modules.

I probably won�t use the IDE logic this
time around. Thanks to ROM-DOS, I can
fit the code plus DOS onto the SSD.

The first order of business is to install a
bootable image of ROM-DOS on the SSD.
Normally, the standard 3.5″ floppy drive
is designated A and the first hard disk is
drive C. On the PCM-4862, drive A is
indeed a floppy, while drive C is a trio of
Atmel 29C040 512K × 8 flash-memory
devices (this is sans a spinning disk or virtual
disk that would normally take a C seat).

With the addition of a single jumper on
the PCM-4862, A becomes flash and C
goes the way of the bit bucket. After
installing the jumper, I moved all of the
necessary files from the ROM-DOS floppy

to the SSD and performed a SYS C. The
SYS command put the necessary boot
files out onto the flash.

A POR (power-on reset) was performed,
and the PCM-4862 looked for boot de-
vices and found the flash as drive A. A
ROM-DOS 6.22 banner appeared fol-
lowed by the familiar A:\> prompt.

Hey, a smokeless beginning. That�s
always good.

For those of you unfamiliar with ROM-
DOS, it�s essentially the embedded ver-
sion of standard Bill DOS. To keep ROM-
DOS�s kernel below the 48-KB mark, it
was compiled with �186 instructions rather
than with true 8088 compatibility.

Since most �XT-compatible� machines
on the market today are really �186
compatible, this situation is no big deal.
Actually, it�s a boost to 80xx and 8048x
embedded developers who still depend
on good old DOS.

All the features of Bill�s DOS 6.x kernel
(with the exception of the compression
MRCI interface) are built into ROM-DOS 6.
This means the [MENU] commands in
CONFIG.SYS work as expected. The

standard Billy DOS interrupt interface is
there, and all the internal DOS structures
match those of DOS 6.x.

Datalight�s ROM-DOS also contains
many features geared specifically toward
the embedded developer. ROM-DOS is
smaller in RAM than Billy DOS, and more
importantly, it takes up about one half the
ROM space that Bill�s DOS does.

CONFIG.SYS processing can be re-
duced to DOS 5 level, DOS 3 level, or
none at all for greater space savings.
ROM-DOS is not only able to boot via
ROM, hard, or floppy disk, but device
drivers can be added to the ROM-DOS
kernel, enabling booting off of any kind of
disk. Bill�s DOS is good, but if space is at
a premium, ROM-DOS is a perfect substitute.

Remember Interlnk? Well, ROM-DOS
does that, too. Datalight�s ROM-DOS ships
with a disk driver that can access a disk on
a remote system via the serial port.

REMDISK.EXE and REMSERV.EXE
are the client and server ends of what you
might call a mini-network. REMSERV is run
on the server end (the end that shares a
drive), and REMDISK is run on the client
end (which will gain a new drive).

Another addition is the small REMQUIT
utility, which enables a user on the
REMQUIT end to terminate execution of
REMSERV on the opposite end of the link.
There�s a lot more to ROM-DOS than I
need to tell you about right now, but let it
be known that if you need to have a
standard desktop DOS function in an
embedded way, it most likely can be
done with ROM-DOS.

Figure 1�
All of the

magic is inside
the DVP transmit-

ter module. It�s up to
a lonely zener to help

out on the power end.

Figure 2�This one�s a
bit busier than the trans-
mitter module. The open-
collector outputs aren�t
shown here.

A
PC

 OCTOBER 1998 EMBEDDEDPC 63

Now we�ve established a base-
line. DOS is in the house, and so is
anything else that can run under its
16-bit influences. Again, I�m in a no-C
zone when it comes to software for
this job.

As you know, I like C. It�s disci-
plined. It�s fast. It�s universal. So
what? I chose PowerBASIC for this
project. It�s disciplined. It�s fast. It
compiles. In short, PowerBASIC is
much like C.

Ever try to manipulate binary
with standard BASIC? Not. PB has
bit-banging capability built in. This is due
to the tight coupling of the PB command
set to pure assembly routines.

I know what you�re thinking, and you�re
right. Like C, you can do inline assembly
with PB. There�s even a PB DLL compiler
that does DLLs for every language that can
use them. The code is tight and fast.

The only problem I�ve encountered
with PB is that sometimes the routines
aren�t very well behaved when interfac-
ing with legacy applications written in
native C.

This is good and bad. On the good
side, it forces you to rethink the logic of the
coded solution to your problem. Unfortu-
nately, you also have to rethink the logic
associated with the coded solution to your
problem.

Again, there�s nothing wrong with C,
I just choose not to use it here. If you
wanted old standards, you wouldn�t be
reading INK. Let�s move on.

We�ve defined the capabilities of our
hardware from the embedded aspect,
and we�ve (I�ve) decided what language
we will speak in this embedded country.
Now, let�s take a close look at the main
ingredient of our embedded application�
the DVP RF modules.

Transmitter
Circuit

Receiver
Circuit

1
2
3
4
5
6
7
8
9

VDD

DOUT

OSC1
OSC2
*LED

D3
D2
D1
D0

A0
A1
A2
A3
A4
A5
A6
A7
VSS

18
17
16
15
14
13
12
11
10

ROSC

R

1
2
3
4
5
6
7
8
9

VDD

VT
OSC1
OSC2

DIN
D3
D2
D1
D0

A0
A1
A2
A3
A4
A5
A6
A7
VSS

18
17
16
15
14
13
12
11
10

ROSC

VDD VDD

A CUP OF RF
I have the raw DVP RF modules, but

why waste good engineering? My DVP
demo boards include the original RF mod-
ules, an integrated etched resonant loop
antenna, and time-saving Holtek encod-
ers/decoders. The guys and gals at DVP
even take the outputs of the decoders to
open collector mode, so you can interface
to just about anything electronic on this
planet.

No board design, no soldering (ex-
cept what you want to), no guesswork.
Did you say quicker time to market?

Oh, what�s
that? You don�t do
RF, but this setup may
be your solution to that RF
project you were assigned
to. Hmm�. On my side of that
equation, it equates to quicker time
to the page because I didn�t have to
dig and design the RF for this appli-
cation. Goodness for all!

With the DVP development mod-
ules, the RF is a given. So, let�s look
at how we transmit our digital data
and receive it over the ether.

Rats! No matter how hard I try, I can�t
make this difficult. Figure 1 is typical of
what�s on the transmitter side. It may not
be rocket science, but if you�re RF im-
paired, this is a moon shot. Figure 2
shows us the receiver module.

I could write code to effect the desired
datastream, but again, why waste good
engineering? Instead, all the hardware
shown in Figure 1 is married to the on-
board Holtek 60xx encoder/decoder pair.

Figure 3 is a representative layout of
the Holtek hardware found on the demo
boards. The Holtek encoder takes care of

Photo 2�This diagnostic layout can be what-
ever your application demands.

Figure 3�Oscillator frequency is set by a single 5% resistor.

A
PC

CIRCUIT CELLAR INK OCTOBER 199864

Listing 1�This snippet of touchscreen code opens a COM port, checks the modem control
signal status, and prints a test message.

case 13 to 18
 showbuttons
 showstatus
 noprtflg=0
 a=GetComAddress(2)
 port=2
 qbox 6,2,3,23,15,0
 qprint 7,3, "TEST RECEIPT PRINTER",15
 cleanup
 MsReleaseWait
 beep 1
 qbox 6,2,3,23,14,0
 qprint 7,3, "TEST RECEIPT PRINTER",9
 z=FREEFILE
 open "com2:9600,n,8,1" as z
 dtrstat=10
 dtr$="OK"
 t=DtrStatus(2)
 if t = 0 then
 dtrstat=4
 qprint 7,26, "<-- COM2 DID NOT ASSERT DTR ",4
 noprtflg=1
 end if
 dsr$="OK"
 srstat=10
 s=DsrStatus(2)
 if s = 0 then
 dsrstat=4
 end if
 rtsstat=10
 rts$="OK"
 ctsstat=10
 cts$="OK"
 c=CtsStatus(2)
 if c = 0 then
 ctsstat=4
 end if
 cd$="OK"
 cdstat=10
 d=Carrier(2)
 if d = 0 then
 cdstat=4
 end if
 showstatus
 if noprtflg=1 goto NOPRT2
 for x=1 to 10
 print #z,"PRINT TEST FOR RECEIPT PRINTER"
 next x
 print #z,crlf$
 print #z,"RECEIPT PRINTER AT COM2 ADDRESS = ";hex$(a)
 print #z,"DTR CONTROL LINE STATUS ==> ";dtr$
 print #z,"DSR CONTROL LINE STATUS ==> ";dsr$
 print #z,"RTS CONTROL LINE STATUS ==> ";rts$
 print #z,"CTS CONTROL LINE STATUS ==> ";cts$
 print #z,"CD CONTROL LINE STATUS ==> ";cd$
 for x = 1 to 10
 print #z,crlf$
 next x
NOPRT2:
 close

the building of the
data packet by adding

address and data informa-
tion taken from the address

and data logic inputs. I described
this process in detail last time.

A PINCH OF MICROTOUCH
I could have used a keypad, mouse, or

keyboard to select the necessary informa-
tion, but a touchscreen is a better choice.
With a touchscreen, I can apply this
application to many industrial uses where
keyboards and mice are apt to be dam-
aged or just plain in the way.

The MicroTouch-enhanced monitor is a
simple SVGA tube that has been modified
with a capacitive touchpanel and integral
microcontroller complex. The MicroTouch
microcontroller senses a touch on the CRT
and converts it into x-y coordinates that
are transmitted serially to the PCM-4862.

Instead of using the raw x-y data, a
standard mouse driver is employed, thus
turning each touch event into a mouse
event. Using PowerBASIC�s MS Mouse
support in conjunction with a standard
mouse driver enables me to simply draw
the buttons on the screen and equate them
to a particular x-y point.

The PCM-4862 serial port at 0x3F8
(COM 1) is used to interface to the
MicroTouch microcontroller. Listing 1 con-
sists of PB code snippets that deal with the
MicroTouch interface, and Photo 2 is a
shot of the virtual keyboard.

A DASH OF AXIOHM
The Axiohm is a serial thermal printer

that operates at 9600 bps. It�s typically
used as a receipt printer in point-of-sale
applications. I chose the Axiohm because
it was small and quiet. There�s already
enough noise in the Circuit Cellar Florida
Room as it is.

One of the neat features of this printer
is that you load paper by simply opening
the top cover and dropping in the roll. This
printer can also drive a cash-drawer sole-
noid. Now that you�ve seen it here, when
you go out to eat or buy some lumber,
you�ll undoubtedly see it again and again.

LET�S COOK
All the ingredients are on the counter�

the Advantech PCM-4862, ROM-DOS, a
DVP receiver and transmitter, a Micro-
Touch monitor, and an Axiohm printer.

The idea here is to show how RF can be
used where wire normally dominates. A
touch to the MicroTouch-enabled monitor
is detected and passed via a serial con-
nection to the PCM-4862.

Under the control of ROM-DOS, a
PowerBASIC program decodes the touch
event as a mouse event. A bit pattern
corresponding to the area touched is
placed on the Advantech parallel port.

Attached to the parallel port is a Holtek
encoder (on the DVP transmitter demo
board). The parallel port bit pattern sets
address and data information to be trans-
mitted. The transmitter is keyed by a low on
the encoder, and the 12-bit data pattern is
converted to RF energy.

At the receiving end, another PCM-
4862 controls the printer. The receiving
decoder feeds the transmitted bit pattern to
the receiving PCM-4862 parallel port. The
transmitted bit pattern is then decoded and
translated into a message that is printed on
the Axiohm thermal printer.

If all of that sounds simple, it is. Figure
6 schematically depicts all the parts that
make up the application.

The power of this idea lies in the address-
ability of this encoder/decoder pair. Our
application uses only 8 bits of the parallel
port. Depending on how the address and
data bits are allocated, this could limit how
many printer complexes can be addressed
over the RF link.

But by adding some multiplexing and
latch glue, the entire address range can be
accommodated. Up to 256 printers could
be touched over a single RF link.

The Holtek parts take much of the code
writing out of this application. By coding
specific bit patterns for transmission, there�s
no limit to the possibilities.

The only requirement: follow the duty-
cycle rules that apply to these DVP devices.
Writing our own bit-pattern code lets us
interface to the transmitter and receiver via
the PCM-4862 serial ports, freeing up the
parallel ports for other purposes.

In putting this application together, I
assumed that each end of the RF link would
embody massive embedded intelligence
as found in the Advantech embedded PC.
If the targeted printer is in a stand-alone
situation, you can use a smaller embedded
solution like a Microchip PIC to decode the
RF transmission.

DCM-4682

Ethernet

Parallel Port

COM1

MicroTouch
Monitor

To LAN 1

DVP
Transmitter

DVP
Receiver

PCM-4682

Axiohm
Printer

To LAN 2

Ethernet

Parallel Port
COM1

Figure 6�Look Ma, no
wire!

Once the RF energy does its work, the
Ethernet capability of the Advantech PCM-
4862 could be employed to move the data
in a LAN environment. Instead of targeting
a printer, you could target specific LAN
segments. The Advantech PCM-4862 in-
cludes a set of disks that include Ethernet
drivers for all of the popular operating
systems.

DVP has taken the mystery out of incor-
porating RF into legacy applications. This
time, it�s DVP, not me, who has once again
proven that it doesn�t have to be compli-
cated to be embedded.

SOURCES
PCM-4862
American Advantech Corp.
(408) 245-6678
Fax: (408) 245-8268
www.advantech-usa.com

60xx encoder/decoder
Holtek Microelectronics Inc.
+886 35-784888
Fax: +886 35-770879
www.holtek.com

RF modules
DVP, Inc.
(818) 541-9020
Fax: (818) 541-9423
www.dvp.com

Touchscreen Monitor
MicroTouch Systems, Inc.
(800) 642-7686
(508) 659-9000
Fax: (508) 659-9400
www.microtouch.com

ROM-DOS
Datalight
(360) 435-8086
Fax: (360) 435-0253
www.datalight.com

Serial thermal printer
Axiohm, Inc.
(612) 638-9856
Fax: (612) 638-0758
www.axiohm.com

Fred Eady has over 20 years� experience
as a systems engineer. He has worked
with computers and communication sys-
tems large and small, simple and com-
plex. His forte is embedded-systems de-
sign and communications. Fred may be
reached at fred@edtp.com.

68 Issue 99 October 1998 Circuit Cellar INK®

MICRO
SERIES

David Tweed

s

Digital
Processing in
an Analog
World

Conversion
is always a
hot topic,

but David’s not talking
religion here. Instead,
he wants to fill us in
on the basics of A/D
and D/A conversion,
so that we’ll be ready
to delve into the
deeper issues in the
coming months.

P
ar

t

of3
1

 68

76

80

MicroSeries

From the Bench

Silicon Update

DEPARTMENTS

3

ignal processing
in the digital world

requires that analog
signals be converted to

discrete units in both a
measurement dimension (voltage, cur-
rent, temperature, etc.) and time.

The former is called quantization,
and the latter is known as sampling.
While these conversions can be analyzed
independently by a mathematician, a
real-world analog-to-digital converter
deals with both simultaneously.

Similarly, when digital processing
is complete, it’s often necessary to
convert the signal back to a continuous-
measurement, continuous-time domain.
That’s the job of the digital-to-analog
converter.

In this series, I discuss the funda-
mentals of A/D and D/A conversion.
Part 1 covers the basics of reading and
understanding specification sheets.
Part 2 introduces the most important
conversion technologies as well as their
strengths and weaknesses, relative to
the parameters I cover. In the final
article, I delve into delta-sigma con-
version and show you how to dither.

RANGE, RESOLUTION, AND
ACCURACY

An ADC maps an analog measure-
ment to a set of digital codes that can
be conveniently manipulated. In the
ideal case, this mapping is perfectly
linear and can be drawn as a straight
line on a graph. However, the fact that

1

Basic Issues

Circuit Cellar INK® Issue 99 October 1998 69

Error
signal time

Quantized
signal time

Original
signal time

Output
levels

Output
levels

Decision
levels

the analog domain is continuous and
usually unbounded while the digital
side has a finite set of codes creates
two ways in which the graph deviates
from the straight line.

First of all, the converter’s range
has definite endpoints. All analog
values outside this range simply map
to the highest and lowest codes.

Also, each digital code represents a
small range of analog values, creating
a stepwise mapping from the analog to
the digital domain, as Figure 1 shows.

Similarly, a DAC maps digital codes
into analog values. Given the finite
set of digital codes, there must also be
a finite set of discrete analog values
the converter can generate. For an
ideal converter, these points lie along
a straight line.

Figure 1 shows the transfer functions
for an ideal three-bit ADC and the
corresponding three-bit DAC. The
dashed line represents the ideal straight-
line transfer function that each unit
tries to approximate.

As you see, the ADC divides the
analog domain into a series of ranges
and assigns one digital code to each
range. The range on each end is open-
ended, while the six intermediate
ranges are the same fixed size.

The eight ranges are defined by seven
decision levels or input values that
cause the converter to switch from one

code to the next. In real applications,
the end ranges are usually the same
size as the intermediate ranges, and a
single value is associated with each
range that is the midpoint of the range.
The size of each range is called the
step size or quant (i.e., quantum or
smallest perceivable change).

The corresponding three-bit DAC
produces the single value associated
with a range when given the digital
code for that range. Together, the
ADC and DAC form a system that
has a stepwise linear transfer function.

The maximum difference (or error)
between input and output occurs when
the input value is very close to a deci-
sion level, and as you can see, the
corresponding output value differs by
half a quant one way or the other.

The values associated with the end
ranges are known as full-scale values.
In a unipolar converter, the lower end
is usually zero and the upper end is a
positive value (e.g., 5 V). In a bipolar
converter, the end values are plus and
minus the same value (e.g., ±2.5 V).
The converter’s range is the difference
between the end values (here, 5 V).

The number of bits in the digital
code determines how many codes
there are by a simple relation:

codes = 2bits

This equation gives the
number of input ranges for
an ADC or the number of
output values for a DAC.
Since the input ranges are
the same size, their size is
given by:

range of converter
2bits

Think of the quantized
signal as the sum of the origi-
nal signal and an error signal
introduced by the quantizer,
as shown in Figure 2. Hori-
zontal dotted lines represent
the decision levels.

This error signal varies in
a complex way that depends
on the input signal, so it is
usually treated and analyzed
as a noise source in the ADC.

However, to massage the noise
signal you need to know how much
noise is generated (amplitude) and
what its spectral characteristics are
(i.e., in audio systems, what does it
sound like?).

If the peak amplitude of the error
signal is limited to half a step size (in
an ideal converter), how much power
(loudness) does this represent? Assum-
ing that the error signal is a sawtooth
signal with a range equal to the step
size, then its RMS value is:

stepsize
12

which is about 0.289 times the step
size.

The RMS value of a full-scale sine
wave is:

2
2

or about 0.707 times its peak value.
For an n-bit converter, the ratio of the
sine-wave RMS voltage to the error
signal RMS voltage is given by:

0.707 × range of converter
2

0.289 × range of converter
2n

The converter’s range cancels out, so
we are left with a simple expression
that depends only on the number of bits:

+2.5

+1.5

+0.5

–0.5

–1.5

–2.5

–3.5

A
na

lo
g

D
om

ai
n

(I
np

ut
)

10
0

10
1

11
0

11
1

00
0

00
1

01
0

01
1

Digital Domain

+3.0

+2.0

+1.0

+0.0

–1.0

–2.0

–3.0

–4.0

Figure 1 —In an ideal world, converters have transfer
functions that approximate straight lines. ADCs trans-
late ranges of input values to discrete codes, and DACs
translate those codes to specific output values.

Figure 2 —A quantized signal can be represented as the sum of the
original signal and an error signal.

70 Issue 99 October 1998 Circuit Cellar INK®

0.707 × 2–1

0.289 × 2–n = 2.45 × 2n – 1

= 1.225 × 2n

This range is usually given in decibels
(e.g., a logarithmic scale), which
works out to:

20 × log 1.225 × 2n = 1.76 + 6.02 × n dB

This 3-bit converter has a signal-to-
noise (S/N) power ratio of about 20 dB,
but an ideal 16-bit converter should
achieve 98 dB. Adding a bit of resolution
increases the S/N ratio by about 6 dB.

Figure 2 shows how the character-
istics of the error signal vary over the
full cycle of the sine wave, which is
often undesirable.

For example, in an audio converter,
a low-frequency sine wave can notice-
ably modulate background noise,
which is more annoying than a steady
level. You can solve this problem by
adding a randomizing signal (i.e.,
dithering it) before you quantize it.

The dither signal’s characteristics
are chosen to mask the effects of
quantization without becoming objec-
tionable itself. I’ll discuss dither signals
and their application more in Part 3.

LINEARITY
A real-world converter isn’t going to

have the perfect straight-line transfer
characteristic of the ideal converter.
Figure 3a shows some of the problems
you may find in a transfer curve.

One way to get this converter work-
ing in an application would be to

adjust the curve’s endpoints to the
desired values, letting the intermediate
points fall where they may (see Figure
3b). This way, it’s easy to calibrate by
examining two points on the curve.

You can also find the best-fit
straight line for the converter and
calibrate that to the desired range, as
shown in Figure 3c. This approach
gives the lowest overall RMS error if
the full range of the converter is used,
but unfortunately, you need to exam-
ine a large number of points on the
curve to find the best-fit line.

In either case, the deviations from
the straight-line characteristic (known
as nonlinearity) distort the analog
signal’s digital representation. These
distortions are the same as you’d find
in a purely analog nonlinear system
and are broadly classified as harmonic
(waveform) distortions and intermod-
ulation distortions (e.g., interactions
among simultaneous signals).

Manufacturers have a number of
ways to characterize their converters
for distortion. One way, differential
nonlinearity (DNL), is simply the varia-
tion of the step size for each digital
code from the ideal theoretical value.

For an ADC, this is the difference
between successive decision points,
while for a DAC, it is the difference
between successive output values.
Figure 4a graphically depicts these
results, placing the digital codes along
the x-axis and the error associated
with that code along the y-axis.

Integral nonlinearity (INL), which
is just the transfer curve of the device,

is another way to characterize distor-
tion. An integral curve (see Figure 4b)
can be generated by integrating over
the differential curve. Vendors usually
show one curve or the other, depend-
ing on which characteristic of their
device they want to emphasize.

Which is more important? It depends
on your application. If absolute accuracy
is crucial (e.g., measuring a voltage or
current in an industrial process), the
integral nonlinearity is more important.

But in an audio application, integral
nonlinearity represents an overall gain
error that is, for all practical purposes,
irrelevant. Differential nonlinearity
gives a better idea of the audible dis-
tortions the converter produces.

Another way to characterize an ADC
is to feed in a full-scale sine-wave
signal and make a mathematical histo-
gram of the number of times the con-
verter produces each code, as you see
in Figure 4c.

An ideal converter produces a spe-
cific curve (related to arc sine) under
this test, and examining the way a
histogram deviates from the ideal is a
quick way to find potential problems,
including missing codes that the con-
verter never produces.

Some ADCs have larger than average
nonlinearities when a more signifi-
cant bit changes state (e.g., going from
00111111 to 01000000). In some
cases, the decision level implied by
00111111 is actually slightly higher
than that of 01000000.

A slowly rising signal generates a
code sequence that jumps directly

Figure 3a —A typical uncalibrated converter curve deviates from the ideal. However, you can approximate the ideal by calibrating the endpoints (b), a simple method which
unfortunately has a larger peak error, or by calibrating the best-fit line (c), which yields the lowest RMS error.

Code

Value

Actual

Ideal

Best-fit line

Code

Value

Actual Ideal

Best-fit line

Code

Value

Actual

Ideal

a) b) c)

72 Issue 99 October 1998 Circuit Cellar INK®

from 00111111 to 01000001, and the
code 01000000 is said to be missing.
While this miss doesn’t cause large
problems in terms of the overall error
or noise level, it can indicate an under-
lying problem, so, manufacturers like
to boast “No missing codes.”

You can characterize the overall
linearity of a converter by specifying
the spur-free dynamic range (SFDR),
which is measured by applying one or
two full-scale sine waves to the con-
verter and doing a spectral analysis
(e.g., FFT) of the output.

The SFDR is the ratio between the
peaks representing the original signal(s)
and the highest peak of any of the
harmonic or intermodulation distortion
products. This performance measure-
ment is most important in the high-

speed converters used in digital radios
but can be important in other applica-
tions as well.

SAMPLE RATE AND BANDWIDTH
As mentioned, the codes in a DSP’s

memory represent points or discrete
values along the measurement and
time axes. Quantization gets us the
first, and sampling gets us the second.

Shannon and Nyquist showed that
a continuous-time band-limited signal
can be perfectly represented by a set
of discrete samples as long as the
sample rate is greater than twice the
bandwidth of the signal.

In many systems, the frequency
band of interest includes DC, so it is
often stated that the sample rate must
be greater than twice the highest fre-

quency in the signal. However, you
need to make the distinction since
there are systems in which the band-
width is considerably narrower than
the frequencies present (e.g., the IF
stage of a digital radio receiver).

If a system fails to meet the Nyquist
criterion, then aliasing occurs, causing
signals at frequencies that originated
outside the Nyquist bandwidth to have
the same effect as a phantom signal
within the Nyquist bandwidth. Once
this happens, it’s impossible to separate
the undesired signal from the desired
signal (but see Gerard Fonte’s article
in this issue).

If the signal is not known to lie
within the Nyquist bandwidth, it
must be filtered in the continuous-time
domain before sampling occurs. Let’s
look at two basic approaches to this.

You can place analog filters ahead
of the ADC that attenuate out-of-band
signals at or near the quantization
step size. But if signals just within the
Nyquist bandwidth are important to
the application, you need high-order
filters with steep skirts. These filters
tend to be complicated (high parts
count) and difficult to adjust, and they
introduce undesirable phase shifts.

The second approach minimizes
these effects by oversampling (i.e.,
using a much higher sample rate ini-
tially). This technique raises the
Nyquist frequency, enabling you to
use a much simpler analog filter.
Digital-filtering techniques that are
easier to control and that have better
phase characteristics can reduce the
bandwidth before resampling the
signal at the desired final sample rate.

Delta-sigma–based converters take
this to the extreme by using a one-bit
converter at a very high sample rate to
achieve the performance of a multibit
conventional converter. I’ll cover
delta-sigma conversion in Part 3.

SAMPLE TIMING AND JITTER
Just as there can be small errors in

the exact placement of decision points
in an ADC’s measurement domain or
in the placement of output levels in a
DAC, both kinds of converters can
have small errors in the time the
samples are taken or generated. This
error is called timing jitter.

code

LSB

–0.3

–0.2

–0.1

0.0

0.1

0.2

0.3

code

LSB

–0.4

–0.3

–0.2

–0.1

0.0

0.1

0.2

0.3

0.4

code

probability

0.00

0.01

0.02

0.03

0.04

Figure 4a —The differential nonlinearity curve shows the step-to-step error, while the integral nonlinearity curve
shows the cumulative error (b). c—The histogram is a way to measure DNL (dashed line shows ideal shape).

a)

b)

c)

74 Issue 99 October 1998 Circuit Cellar INK®

As Figure 5a shows, errors in the
horizontal (time axis) placement of
samples by a DAC produce errors in
the resulting waveform that are similar
to quantization noise. The magnitude
of the error in the measurement domain
is related to the size of the timing
error by the slope of the signal. For a
DC signal, timing jitter has no signifi-
cance, but signals near the converter’s
bandwidth limit have a serious effect.

In the worst case, a converter will
slew over its entire range
from one sample to the
next, so a timing error
producing a one-quant
error equals the sample
period divided by the
number of steps. For
CD-quality audio (i.e.,
16 bits at 44,100
samples per second),
this works out to 346 ps
(10–12 s), which is very
tiny indeed.

A more typical ex-
ample is a full-scale
1-kHz sine wave, which
has a maximum slew
rate of 4669 steps per
sample. A 4.85-ns timing
error produces a one-
quant error here.

However, it’s rare for
even a relatively inexpen-
sive crystal oscillator to
have 0.5 ns of jitter. It’s
pretty safe to ignore most
of the breathless hype you
read about the horrible jitter
problems of CD players.

Figure 5b shows how
timing errors that affect
when an ADC accepts its
samples have the same
effect when the samples
are played back through a
perfectly timed DAC.

CONVERSION SPEED
Except for flash convert-

ers, which do their work
instantly, most ADC tech-
nologies need a finite
amount of time to com-
plete a conversion. Many
assume the signal won’t
change significantly (more

than the step size) over that period.
However, some systems can’t

make that guarantee inherently. A
sample-hold or a track-hold circuit is
then placed in front of the converter
that samples the signal in analog form
and holds it during the conversion.

Figure 6a shows this kind of circuit.
The input signal charges a low-leakage
capacitor, whose voltage tracks the
signal as long as the switch is closed.
When conversion begins, the switch

opens and the capacitor holds the level
of the input signal for that moment. A
buffer amplifier with an high input
impedance keeps the voltage from
changing until the switch closes again.

When designing sample-hold circuits,
also pay attention to:

• how long it takes for the output to
match the input once the switch
closes again

• whether there are any offsets be-
tween the input and output values

• how long the circuit can hold the
desired value to the needed degree of
accuracy (droop rate)

Sometimes the signal controlling
the switch feeds through to the circuit
output, making the offset with the
switch closed different than with the
switch open. It’s impossible to com-
pletely eliminate these errors, but you
minimize them as much as possible
relative to the converter’s resolution.

As Figure 6c shows, track-hold
circuits also have applications in con-
junction with DACs. Sometimes the
output of a particular DAC has
glitches at the moment a new sample
comes along, rather than moving
smoothly to the new value.

These glitches tend to be short
relative to the sample period, and
sometimes you can control them by
simple low-pass filtering at the output
of the DAC—the same filter that

eliminates the images
of the output spectrum.

If the glitch energy
(amplitude multiplied
by duration) is high,
the heavy filtering
required would cause
undesirable effects to
the signal, so a track-
hold circuit is used to
disconnect the DAC
from the output for the
duration of the glitch.

ZERO-ORDER HOLD
The mathematics of

sampling theory assumes
that the samples have
infinitesimal width.
However, because an
impulse function has a

Time

Time

Input
signal

Output
signal

Switch
control

closed

open Settling
time

Droop

Conversion
time

A

B

A ADC

Buffer
B A

BDAC

T/H
Output

Switch
control

closed

open

A

B Time

Time

DAC
Output

Settling time

Figure 6a —A sample-hold circuit holds a steady value while the ADC completes a conversion.
b—The settling time and the amount of droop during the conversion are important characteristics.
c—A track-hold circuit can hide the output glitches of a DAC. d—However, the output signal is
delayed by the length of the settling time.

a)

b)

c)

d)

Figure 5a —A timing jitter in a DAC produces errors similar to quantiza-
tion noise, and as you can see, a timing jitter in an ADC has much the
same effect (b).

Time Time
Sample is played early

Error

Time Time
Sample is recorded early

Error

a)

b)

Circuit Cellar INK® Issue 99 October 1998 75

Period

Modulated pulses

Train of rectangular pulses

Rectangular pulse

∆T1
∆T2

∆T

∆T

Train of impulses

Impulse function t

t

t

t

t

Time Domain Fourier
Transform

Frequency Domain

f

Flat spectrum
f

Harmonics all the same height

f
sin (x)

x
Function

1/∆T

1/∆T

f

1/∆T21/∆T2

sin (x)
x

Harmonics following

1/period

Harmonics with sideband

a)

b)

c)

d)

e)

flat frequency response (see Figure 7a),
a train of such impulses has a spectrum
that is a discrete version of a single
pulse as illustrated in in Figure 7b.

As Figure 7c shows, a rectangular
pulse has a sin(x)/x spectrum. As the
pulse narrows, the spectrum widens.
In the limit, the pulse becomes the
impulse function and the spectrum is
infinitely wide or flat. Figure 7d presents
a train of rectangular pulses with a
discrete version of the same spectrum.

What does this have to do with a
DAC? As a designer, your concern is
what the converter does in the time
between the instants defined by the
samples. The math assumes the func-
tion is zero between those instants,
but real-world converters do some
kind of interpolation.

First-order interpolation draws a
straight line between one sample and
the next. Second-order interpolation
use a quadratic function, in which
higher orders of interpolation use
higher orders of polynomial functions.

In fact, most converters hold a
value until the next sample comes
along. This technique is called zero-
order interpolation, zero-order hold,
or sin(x)/x correction.

Mathematically, you can treat the
DAC output as a series of rectangular

David Tweed has been developing
hardware and real-time software for
microprocessors for more than 22
years, starting with the 8008 in 1976.
His system design experience includes
computer design from supercomputers
to workstations, microcomputers,
DSPs, and digital telecommunications
systems. David currently works at
Aris Technologies developing digital
audio watermarking. You may reach
him at dtweed@acm.org.

pulses wide enough to completely fill
the interval between the samples, as
indicated in Figure 7e. Because ∆T1
equals ∆T2, the nulls of the sin(x)/x
curve fall exactly on the harmonics of
the sampling frequency, causing them
to disappear.

However, the signal represented by
the samples shows up in the frequency
spectrum as sidebands around those
harmonics, and they are attenuated by
the sin(x)/x curve as well. To recover
the original flat spectrum, a filter with a
response opposite that of the sin(x)/x
curve must be inserted into the path.

Now that I’ve reviewed many of the
fundamental issues of A/D and D/A
converters, you’re well equipped to
discuss specific converter technologies
next month. I

Figure 7 —Fourier transform
pairs show the relationship
between a time-domain
signal and its spectrum for a
single impulse, which has a
flat spectrum (a), an im-
pulse train, which has a
periodic spectrum (b), a
rectangular pulse, which
has a sin(x)/x spectrum (c),
and a rectangular pulse
train, which has a discrete
version of the sin(x)/x
spectrum (d). e—The output
of a DAC is a modulated
train of rectangular pulses.

76 Issue 99 October 1998 Circuit Cellar INK®

FROM THE
BENCH

Jeff Bachiochi

m

MIDI

Ever
think of
turning
your PC
into a

recording studio? This
month, Jeff starts a
project that lets you
identify the state of
outputs through the
sound you create
using the MIDI
sequencer program.

y first job in the
electronics field was

with one of the pioneer
manufacturers of analog

synthesizers, Electronic Music Laborato-
ries. EML began producing laboratory-
grade oscillators, filters, modulators,
and envelope generators in the late ’60s.

Early analog synthesizers were pro-
grammed with patch cords connecting
individual modules. The modules were
controlled by turning knobs to raise or
lower pitch, timbre, and loudness.

A natural progression led to using a
more recognizable control device—the
keyboard—to alter sounds. You may be
familiar with the Moog synthesizer.

Next, the personal-computer market
began spreading its wings. Radio Shack
and Commodore released competing
computers.

At this point, analog synthesizers
and digital personal computers were
about as far apart as possible. But, that
gap narrowed until digital effectively
replaced analog synthesizers. To this
day, however, you find synthesizer
owners who swear by older analog
technologies, much like audiophiles
who claim that LPs are superior to CDs.

Digital synthesizers meant a com-
fortable marriage between the growing
complexity of sound synthesis and the
ease of controlling that environment.
With the abundant supply of various
computer platforms and digital sound

generators, it wasn’t long before per-
formers were asking, “Why can’t all
this stuff work together?”

That’s how standards are born from
the bottom up. The MIDI (musical
instrument digital interface) standard
was first discussed in the ’70s, yet it
took almost 10 years to develop into a
plan manufacturers could agree with.

MIDI PROTOCOL
The MIDI protocol was designed to

standardize the control of sound synthe-
sis without encroaching on how manu-
facturers designed synthesis circuitry.

Each manufacturer could recognize
(or produce) control data complying
with the standard. Pitch, note on/off,
and pitch bending describe functions
relating to sound modifiers without
delving into the synthesis circuitry.

The physical interface necessary
for interconnecting MIDI devices is
defined in the standard and is easily
(and cheaply) implemented. It uses
five-pin DIN connectors.

Three pins are used on the MIDI out
side. Pin 2 is the cable shield, pin 4 is
+5 V through a 220-Ω resistor, and pin
5 is an open-collector output from a
UART that can drive up to 50′ of cable.

On the MIDI in side, pin 4 (power)
connects to an optocoupler’s anode,
and pin 5 (serial data) connects to the
cathode. The cable shield (pin 2) is left
unconnected to the MIDI in system,
preventing ground loop problems. The
optocoupler’s output drives the MIDI
in’s UART and a second five-pin DIN
(the MIDI thru).

The optocoupler prevents direct
electrical contact between systems,
while the MIDI thru allows for the
daisy-chaining of instruments.

MIDI transmissions are similar to
standard asynchronous data transmis-
sions of 8N1. The catch is the data
rate, which is 31.25 kbps.

If this rate doesn’t ring any bells,
I’m not surprised. It’s not a standard
data rate but somewhere between the
more familiar 19.2 kbps and 38.4 kbps.

Why this number? Remember the
MIDI standard goes back to the infancy
of personal computers. At that time,
UART chips couldn’t do the high data
rates we’re accustomed to today. This
rate was the fastest they dared.

Part 1: It Ain’t Just for
Music Anymore

Circuit Cellar INK® Issue 99 October 1998 77

MIDI FILE FORMAT
The sequence of events composing

the mechanics of a performance—live
with MIDI output or manually scored
through a MIDI editor—can be saved to
a file. These recorded instructions can
recreate the performance whenever
they’re played into a MIDI instrument.

The MIDI file format is an important
part of the standard. I’ll just touch on
some main points here so we can
make use of it. For more information,
examine the complete MIDI standard.

The MIDI file format consists of a
header chunk followed by track chunks.
A chunk is a packet of information.

 The header chunk consists of the
length (double word), the format (word),
ntraks (word), and division (word). The
double-word length shows the number
of data bytes to follow. The format
word is 0, 1, or 2, indicating a single
track, simultaneous tracks, or sequen-
tially independent tracks.

The number of ntraks tells how
many chunks are in a file. The division

Status byte / 1st Data byte 2nd Data byte 3rd Data byte

80…8F Chan 1…16 Note number 0–127 Note velocity 0–127
 Note off

90…9F Chan 1…16 Note number 0–127 Note velocity 0–127
 Note on

A0…AF Chan 1…16 Note on, Note number Aftertouch 0–127
 Polyphonic 0–127

B0…BF Chan 1…16 Function 0–127 Value 0–127
 Control/Mode change

C0…CF Chan 1…16 Program 0–127 None
 Program change

D0…DF Chan 1…16 Value 0–127 None
 Aftertouch

E0…EF Chan 1…16 LSB 0–127 MSB 0–127
 Pitch wheel control

F0 System exclusive Vendor ID Data...Data
F1 Undefined None None
F2 Song position LSB MSB
F3 Song select Song 0–127 None
F4 Undefined None None
F5 Undefined None None
F6 Tune request None None
F7 End of System None None

 exclusive (EOX)
F8 Timing clock None None
F9 Undefined None None
FA Start None None
FB Continue None None
FC Stop None None
FD Undefined None None
FE Active sense None None
FF System reset None None

Table 1—MIDI commands include status bytes (i.e., the first data bytes) and potential second and third data bytes.
Adapted from D. Valenti, “MIDI by the Numbers,” Electronic Musician, February, 1988.

word describes how information is
handled. If the division’s most signifi-
cant byte is positive, the division value
is the delta-times equal to a quarter
note. If it’s negative, it indicates the
number of frames per second. The least
significant byte is the number of divi-
sions in the frame.

Track chunks follow the header
chunk and contain status (function)

and data bytes. The data format depends
on the status byte. Table 1 gives a
partial list of status and data bytes.

Many of the last status bytes (F0–
FF) are common real-time system
messages. They require no data bytes
and are normally followed by a new
status byte.

Some meta-events also begin with
FF. But because they contain additional
data, they can’t be confused with a sys-
tem message since the character after FF
won’t have its most significant bit set.

When a header or track chunk
includes a length, a special format
called variable-length quantity is used.
The value is represented by four bytes.
All but the last significant data byte
has its eighth bit set to a 1.

To determine the double word’s
actual value, drop all four of the most
significant bits and right-justify the
remaining 7-bit data into a 28-bit
value (talk about overcomplexity!).

SOUND CARDS
Chances are, your PC isn’t silent.

PCs have evolved into multimedia
devices, so most have sound cards
installed.

That sound card came with a bunch
of utilities. One of the first things you
may have done was personalize your
PC with sound (.WAV) files—perhaps
as simple as a dong when a file is
opened, or as elaborate as Captain Kirk
asking Scotty for more power.

Sound cards let you play audio files
and CD music from your machine’s CD
player. They also enable audio recording,
sampling the audio at a high rate, and
producing memory-intensive .WAV files.

Note Number
Octave
Number C C# D D# E F F# G G# A A# B

–1 0 1 2 3 4 5 6 7 8 9 10 11
 0 12 13 14 15 16 17 18 19 20 21 22 23
 1 24 25 26 27 28 29 30 31 32 33 34 35
 2 36 37 38 39 40 41 42 43 44 45 46 47
 3 48 49 50 51 52 53 54 55 56 57 58 59
 4 60 61 62 63 64 65 66 67 68 69 70 71
 5 72 73 74 75 76 77 78 79 80 81 82 83
 6 84 85 86 87 88 89 90 91 92 93 94 95
 7 96 97 98 99 100 101 102 103 104 105 106 107
8 108 109 110 111 112 113 114 115 116 117 118 119
9 120 121 122 123 124 125 126 127

Table 2—The MIDI specification only defines note number 60 as middle C, and all other notes are relative. The
absolute octave number designations shown here are based on middle C = C4, which is an arbitrary assignment.

78 Issue 99 October 1998 Circuit Cellar INK®

Today, many sound-card
manufacturers implement
MIDI as well. A MIDI se-
quencer program is usually
bundled with the drivers
accompanying the card.

MIDI files are generally
smaller than .WAV files. They
contain only the notes to
play and when to play them,
not how they should sound
(that’s a job for the MIDI
instrument).

The sequencer program
turns your PC into a record-
ing studio. It contains three
basic parts—the score, the
MIDI list, and the mixer.

With these tools, you can
record a performance from a
MIDI instrument via the
MIDI interface, save it, edit
it, and play it back through
the sound card (used as a
MIDI instrument) or through
an external instrument via the MIDI
interface.

Or perhaps you’d like to write music.
The score tool displays the MIDI perfor-
mance in black on white. That’s black
notes on a white page, including the
musical terms necessary for scoring the
complete performance.

Although a live performance is auto-
matically scored, you can start writing
music with a blank score. Just click
on the notes and place them on the
musical staff. But don’t expect random
notes to sound like real music. It takes
many long hours to learn this skill.

I hope you’re not reading this be-
cause you wish to be a composer. And

if you’re still with me, you may won-
der where I’m going with this. Well,
this bit of background is necessary for
my project. After all, what’s a controller
without a control language?

Your MIDI sequencer is the conduc-
tor in control of the MIDI animator.
This project enables you to determine
the state of outputs via the musical
score you prepare using the MIDI
sequencer. More on this later. First
the hardware.

MIDI ANIMATOR
To receive MIDI commands, one

must be able to receive a serial bit-
stream of 31.25 kbps. Using a processor

without a hardware
UART requires a bit
polling time of 32 µs.

By the time the sam-
pling code is executed,
there’s hardly any time
left between bits to
accomplish anything,
not to mention dealing
with a packet size of up
to 128 characters. I need
a hardware UART to
provide about 320 µs to
do something useful in.

For this project, I
chose a PIC16C63,

which has the required UART and
plenty of I/O bits (see Figure 1). I use
15 I/Os as outputs (one for an LED)
and seven as inputs (five for configura-
tion, one for zero crossing, and the RX
input for MIDI input).

All 14 control outputs will be PWM.
I chose to use PWM so they can serve
as both digital outputs (at 0% and
100%) and as pseudoanalog outputs
for phase control of lighting.

Use the zero-crossing input to sync
up with the AC line. If it isn’t used,
the software detects its absence during
powerup, and the internal timer runs
with no sync at a slightly slower rate.

Configuration jumper 4 chooses
PWM or a modified RC servo mode.
In RC servo mode, all outputs are 1–
2-ms pulses, which supports 0–180°
(or 0–90°) control of the common RC
actuators.

Let’s see how this works. The
MIDI output I’m interested in con-
tains note information. It comes in a
track chunk.

Although any other MIDI com-
mands will be tossed out, I still have
to keep track of them to locate the
ones I want. If a MIDI command’s
channel number matches the jumper
selection I made on JP0–3, the com-
mand is recognized as legal for this

Figure 1— The MIDI animator uses a
16-MHz clock for 250-ns instruction
times.

Figure 2 —Here is the score for the MIDI animator. For simplicity, only the
natural notes are used. The lines of the staff are used to output to one port,
and the spaces are used to output to the other port.

 •
 –—–•–––

 •
––––––––———–—•——–

 •
———–——–—•———––

 •
—————–•—————–
 •
—–——–•———————
 •
—–—•——————–——
 •
––•—

B4 (71) output C6 (space 6)
A4 (69) output B6 (line 6)
G4 (67) output C5 (space 5)
F4 (65) output B5 (line 5)
E4 (64) output C4 (space 4)
D4 (62) output B4 (line 4)
C4 (60) output C3 (space 3)
B3 (59) output B3 (line 3)
A3 (57) output C2 (space 2)
G3 (55) output B2 (line 2)
F3 (53) output C1 (space 1)
E3 (52) output B1 (line 1)
D3 (50) output C0 (space 0)
C3 (48) output B0 (line 0)

Circuit Cellar INK® Issue 99 October 1998 79

Photo 1— The first step in this project
is to display MIDI note commands.

The seven-segment displays
indicate legal hexadecimal

commands broadcast over
a MIDI interface.

circuit, enabling
the user to control 16 MIDI

animator circuits with just one score.
Once the channel number is OK’d,

the note number identifies which
output to act on. The musical score
allows 0–127 notes.

I implemented C3 (octave three)
through B4 (octave four), which covers
seven spaces and seven lines of the
standard treble-clef staff (see Figure 2).
To keep the scoring simple, I didn’t use
sharps or flats. Table 2 lists available
notes and their corresponding outputs.

Each note has an accompanying
velocity value. Normally, this value is
64 (for instruments without velocity
or aftertouch). I use this as the on
(100%) indicator. Zero indicates off
(0%). Numbers between 0 and 64
translate into a PWM output relative
to the value.

MIDI MONITOR
It’s always nice to have some small

successes in a new design, but some-
times you need to alter your direction
somewhat. Going from concept to
finished form in one step can be more
frustrating when it doesn’t work. It’s
more satisfying to have intermediate
goals whenever possible.

With 14 outputs available, I can
connect two seven-segment displays
and output any characters received as
a two-digit hex value, one digit on each
port. The code uses a look-up table to
determine the state of the two 7-bit
outputs for the upper and lower
nibbles of the UART’s receive buffer.

Since the characters come in faster
than you can see them, a ring buffer
holds the characters until they are
called for by using the CFG4 jumper.
The display routine samples the
CFG4 input and waits for a low before
displaying the next character.

That way, you can manu-
ally cycle through the buffer at your

leisure without losing any data (assum-
ing it doesn’t overrun, which it prob-
ably will if you have a lot of activity).
If the CFG4 input is held low, the
display runs at full speed to keep up
with the buffer.

One of the decimal points serves as
a separate visual indicator tied to the
TX output. It flickers whenever the
RX interrupt routine is entered, indi-
cating that things are working well.

The receive character routine
checks to make sure the received
character has no framing or overrun
errors, and it places the received char-
acter into the ring buffer. At this point,
we’re not trying to interpret the data.
We just want to grab and display it.

UNCONCLUSION
Next month, I’ll discuss the PWM

and servo-control feature and what
devices you might want to add to the
outputs. Here’s your chance to start
experimenting with your computer.
This interface allows for all kinds of
possibilities. Just think about it. I

Jeff Bachiochi (pronounced“BAH-key-
AH-key”) is an electrical engineer on
Circuit Cellar INK’s engineering staff.
His background includes product design
and manufacturing. He may be reached
at jeff.bachiochi@circuitcellar.com.

SOURCE

PIC16C63
Microchip Technology, Inc.
(602) 786-7200
Fax: (602) 786-7277
www.microchip.com

REFERENCES

www.midi.org
www.harmony-central.com/MIDI
nctnico.www.cistron.nl/midi.htm

80 Issue 99 October 1998 Circuit Cellar INK®

MegaMicro Card

In the
world of
data flash
cards,
Tom

compares MultiMedia
Card to Compact-
Flash and Nexcom.
His result bodes well
for the smaller, faster,
and more versatile
MMC in a variety of
handheld products.

o place is
Moore’s Law more

rigidly enforced than in
the memory market. The

name of the game: make it denser, smaller,
faster, and cheaper—or go home.

Hope, at least from the supplier’s
perspective, can be found in the historic
fact that ever-lower priced bits are
quickly consumed. Program bloat gets
much of the blame since it’s easy to
point the finger at some faceless pro-
grammer who couldn’t resist filling
another meg with frivolous features.
But, exploding data is equally to
blame, and nobody’s forcing you to
stockpile all those TIFs, GIFs, JPGs,
and PDFs.

With the recent unveiling of the
MultiMedia Card (MMC, shown in
Photo 1) by SanDisk and Siemens, it’s a
good time to check out the flash data-
card niche. But first, a bit of history.

Back in November ’96, I described
the battle between SanDisk Compact-
Flash (CF) and the Intel-backed Miniature
Card (“Flash Fight Flares,” INK 76).
Since then, it’s safe to say that Compact-
Flash is clearly winning.

In particular, widespread adoption
of CF in the emerging digital camera
market bodes well for the future. CF is
designed into dozens of models, and
SanDisk shipped more than a million
CF cards in ’97.

Until now, acceptance of these
cameras has been held back by limited
resolution. However, the emergence of
mega-pixel models under $1000, not to
mention low-cost, photo-grade, inkjet
printers are harbingers of big biz down
the road.

Then, in August ’97, I covered the
serial flash module from a startup called
Nexcom (“Serial Flash Busts Bit Barrier,”
INK 85). Checking up, I find that late
last year the company, product line, and
single-transistor memory technology
were acquired by Integrated Silicon
Solutions Inc. (ISSI).

These two articles set the stage for
MMC, which can aptly be described as
a hybrid that fills the gap between CF
and the Nexcom-now-ISSI module.
Simply put, MMC combines multi-
megabyte aspirations with minimalist
form factor, power consumption, and
interface.

n

Photo 1 —Memory marches
on, and the MultiMediaCard,
which crams many mega-
bytes into its miniscule
package, proves it.

SILICON
UPDATE

Tom Cantrell

Circuit Cellar INK® Issue 99 October 1998 81

BIG & SMALL
At only 32 mm × 24 mm (and 1.4 mm

thick), the MMC footprint is barely 1 in.2,
which is about half the size of CF. In
fact, the MMC occupies about the same
area as the Nexcom module, although
the aspect ratio is a bit more squarish.

However, where the Nexcom module
topped out at a megabyte or so, MMC
starts at 2 MB and goes all the way to
10 MB, with talk of 15- and 20-MB units
in 1999 being bandied about. Meanwhile,
CF is at 40 MB and headed to 80 MB.
That is, MMC seems to be tracking at
about a quarter of the capacity of CF.

Besides obvious data-storage appli-
cations like digital photos or voice
recording, new ideas are emerging to
take advantage of flash-card technology. For
instance, a museum in Japan provides a
hand-held audio player with a card storing
the equivalent of a tour guide. A change
in exhibits simply calls for updating
the flash cards with the new info.

A subtle, but I suspect profound,
difference for MMC is the prospect of
read-only versions (i.e., ROM). Siemens
has announced 2- and 8-MB
units with plans for 32 MB
in 1999 and a whopping
128 MB by 2001.

This announcement
opens the door for MMC
as a medium for distributing
software of all kinds, includ-
ing programs and reference
data such as maps, phone
books, and even music.
Siemens uses the analogy
that flash MMC is like a
hard drive, while ROM
MMC is like a CD-ROM.

The portable apps best
served by the small size of
the card are also likely to

be finicky about battery
life. To that end, the
MMC adopts a number
of power-saving features.

To start, there’s no 5-V
option like the one offered
with CF. Instead, the MMC
operates at a somewhat
lower voltage.

Actually, the card is
required to be able to
establish basic communi-
cation with the host over

a wide 2.0–3.6-V range. This communi-
cation enables the host to interrogate
the card’s Operating Condition Regis-
ter (OCR), which defines the allowed
voltage range (typically greater than
2.7 V) for memory access.

The amount of power consumed
during memory access isn’t trivial (e.g.,
35 mA at 3.3 V). However, the MMC
has a low-power standby mode that
cuts power by a factor of almost 1000
(e.g., 50 µA at 3.3 V).

The host can overtly issue a command
that causes the card to go into standby.
However, it may not be necessary
because the MMC automatically puts
itself to sleep after 5 ms of inactivity.

There’s no need to reset the card or
otherwise go through hoops to get
going again. Even in standby mode, the
card remains conscious enough to
detect a subsequent command and
wake itself up. Only a 1-ms delay is
required before the card is ready for
the next read or write, as opposed to
the 50-ms delay that is required after
powerup.

TWINTERFACE
One factor that really differentiates

the MMC from CF is the interface. CF,
reflecting its PCMCIA roots, requires a
whopping 50 pins to support its 8-/
16-bit IDE-disk-drive–compatible bus.
Needless to say, the size and cost goals
of MMC demand something more
streamlined, as in just seven signals.

As opposed to the expensive and
mechanically precise pin-and-socket–
style connector of PCMCIA and CF, the
MMC uses the surface-contact slide-in
approach like the Nexcom module.

A close look at Photo 1 shows that
the socket power and ground contacts
are offset to connect first on insertion
and disconnect last on removal—a
basic requirement for hot swap.

Taking power and dual grounds may
leave only four pins to get the job done,
but SanDisk manages to provide two
rather different ways of doing so (see
Table 1).

I can imagine how the arguments
went. On one side, the purists arguing
for an elegant new interface offering
high speed and lots of neat capabilities.
On the other, pragmatists willing to
dispense with the bells and whistles in
favor of something quick and easy to
hook up to any micro. Tastes great or
less filling? Why not do both?

The purists get what they want with
the so-called MMC interface, which is
the default when the card powers up.
Pragmatists can choose a simple SPI
(i.e., clocked serial) interface that, at
best, directly connects to the ever-
growing list of so-equipped micros or,

at worst, calls for a few lines
of bit-banging code.

How does the MMC know
which interface to use? In
MMC mode, pin 1 is a reserved
No Connect, but it’s defined
as Chip Select (CS) for SPI
mode. At powerup, the MMC
card checks the CS pin and, if
it’s asserted, switches the inter-
face from MMC to SPI mode.

In both modes, pin 5 is the
clock input generated by the
host to time data transfers.
Data is referenced to the
falling edge of the clock.

The difference between the
modes largely boils down to

Table 1—The MMC offers two interfaces (SPI and MMC) to enable a
price/performance tradeoff that covers a broad range of applications.

Pin MMC SPI
Usage Usage SPI Description

1 RSV CS Chip select (active low)
2 CMD DataIn Host-to-card commands

 and data
3 VSS1 VSS1 Supply voltage ground
4 VDD VDD Supply voltage
5 CLK CLK Clock
6 VSS2 VSS2 Supply voltage ground
7 DAT[0] DataOut Card-to-host data and status

MMC SPI

Three-wire serial data bus Three-wire serial data bus
 (clock, command, and data) (clock, data in, and data out)

 and card-specific CS signal
Variable clock rate 0–20 MHz Variable clock rate 0–5 MHz
Up to 64k cards addressable by Card selection via a hardware
 the bus protocol CS signal
Up to 30 cards stackable on a Up to 10 cards stackable on a
 single physical bus single physical bus
Easy card identification Not available
Error-protected data transfer Optional. A nonprotected data-
 is available transfer mode.
Sequential and single/multiple Single block read/write
 block-oriented data transfer

Table 2—Using the simpler SPI mode sacrifices some functionality related to
addressing and multiblock data transfers. But, the difference between the modes
is an issue for designers, not users, because the card uses whichever interface is
requested by the host it is currently plugged into.

82 Issue 99 October 1998 Circuit Cellar INK®

the last two pins. For MMC mode, they
function as bidirectional command
(CMD) and data (DAT) lines, while for
SPI they are unidirectional data lines
(DIN and DOUT). Also, the MMC CMD
line switches between open-collector
and push-pull output configuration,
while SPI is push-pull only. Table 2
sums up the functional differences
between the modes.

While SPI requires a CS line for each
card, MMC mode uses an addressing
scheme that supports, logically at least,
up to 64K cards in a stack. Here’s how.

Each card has a unique 128-bit card
ID (CID) register. In response to an
ALL_SEND_CID broadcast from the
host, all attached MMC cards try to
drive their own CID on the CMD line
(open-collector mode), and each simul-
taneously monitors the line for com-
parison. Any time a card outputs a 1
but sees a 0, it backs off (i.e., quits
sending its CID).

By the time the host clocks in the
last bit of CID, only one card is left
standing. The host proceeds to assign
that card a 16-bit relative card address
(RCA) that is used for the duration of
the session.

The host keeps issuing ALL_SEND_
CID commands. Cards that have gotten
their RCA remain quiet. Eventually, all
cards have an RCA and the last issued
command times out, signaling comple-
tion of the ID phase.

Another major difference is that
MMC mode, thanks to the ability to
overlap commands and data, offers
terminate-at-will multiblock and
streaming transfer modes. SPI handles
everything as a single-block transfer
with predetermined length.

Finally, the MMC mode offers faster
raw transfer (20 MHz vs. 5 MHz for SPI).
However, the advantage of the higher
speed is mainly found with the multi-
block and streaming modes. The actual
throughput is ultimately limited by
memory bandwidth: 1 MBps for reads
and 200 kBps for writes.

The fact that the MMC doesn’t have
a 5-V option is evidence of the trend

toward lower operating voltages to
reduce power consumption and extend
battery life. In situations where the
MMC must connect to a 5-V device, level
shifters are required. Figure 1, taken
from a SanDisk app note, shows tran-
sistor pairs configured to step up and
step down a 5-V SPI interface.

SMARTS ONBOARD
SanDisk sticks with the strategy of

using an onboard intelligent controller
in front of the memory chip. Their
success in the marketplace is the best
argument for adding a controller
which, despite the cost penalty, is
more than offset by various benefits.

The controller goes out of its way to
help preserve data integrity, incorporating
functions like internal ECC, CRC, bad
sector mapping, and wear-dependent
write algorithms (write endurance is
300k cycles). Because the card handles
these important functions, you don’t
have to fuss with them.

Figure 1 —The fact that MMC is
low voltage only (2–3.6 V) may
dictate the use of level shifters.
One approach that works with a
5-V SPI port uses transistor pairs
to (a) step up MMC outputs and
(b) step down MMC inputs.

SPI Index
Cmd Mode? Abbreviation Description

CMD0 Y GO_IDLE_STATE Resets all cards to idle state
CMD1 Y SEND_OP_COND Request and confirm operating conditions
CMD2 N ALL_SEND_CID Request all cards send their ID number
CMD3 N SET_RELATIVE_ADDR Assign 16-bit relative card address (RCA)
CMD4 N SET_DSR Select output driver configuration
CMD7 N SELECT/DESELECT_CARD Select addressed (RCA) card
CMD9 Y SEND_CSD Request addressed card to send CSD data
CMD10 Y SEND_CID Request addressed card send ID number
CMD11 N READ_DAT_UNTIL_STOP Stream read
CMD12 N STOP_TRANSMISSION Stop stream read
CMD13 Y SEND_STATUS Request addressed card send its status
CMD15 N GO_INACTIVE_STATE Set addressed card to inactive
CMD16 Y SET_BLOCKLEN Set block length for block commands
CMD17 Y READ_SINGLE_BLOCK Read a single block
CMD18 N READ_MULTIPLE_BLOCK Read multiple blocks
CMD20 N WRITE_DAT_UNTIL_STOP Stream write
CMD24 Y WRITE_BLOCK Write a single block
CMD25 N WRITE_MULTIPLE_BLOCK Write multiple blocks
CMD26 N PROGRAM_CID Program card ID (factory use only)
CMD27 Y PROGRAM_CSD Protection writable bits of CSD register
CMD28 Y SET_WRITE_PROT Protection on for addressed group
CMD29 Y CLR_WRITE_PROT Protection off for addressed group
CMD30 Y SEND_WRITE_PROT Request card protection status
CMD32 Y TAG_SECTOR_START First sector in erase list
CMD33 Y TAG_SECTOR_END Last sector in erase list
CMD34 Y UNTAG_SECTOR Remove sector from erase list
CMD35 Y TAG_ERASE_GROUP_START First group in erase list
CMD36 Y TAG_ERASE_GROUP_END Last group in erase list
CMD37 Y UNTAG_ERASE_GROUP Remove group from erase list
CMD38 Y ERASE Erase all previously selected sectors
CMD39 Y FAST_IO Access app-specific (non-MMC) registers
CMD40 N GO_IRQ_STATE Enter interrupt mode
CMD59 Y CRC_ON_OFF Enable/Disable CRC (SPI mode only)

a)

b)

Table 3—The MMC command set offers dozens of high-level commands dealing initialization and configura-
tion, data transfer (block, multiblock, and stream), and erasure and write1 protection.

Circuit Cellar INK® Issue 99 October 1998 83

Perhaps the most important
benefit of the separate-control-
ler approach is that it decouples
the host-system hardware and
software design from the particu-
lars of the underlying memory
technology.

The host issues high-level
commands like read, write, erase,
and so forth, and the controller
handles the details. This means
today’s design will work with
tomorrow’s MMC cards, no
matter what kind of esoteric
memory technology finds its
way under the hood.

Along with the IDE-disk
drive pretensions, the rigid
adherence to disk nomenclature (cylinder,
head, etc.) that characterized the earlier
card’s interface is fading. Other than
the fact that the basic building blocks
are 512-byte sectors, the organization
isn’t really much like a disk at all.

Instead, the memory is partitioned
as shown in Figure 2. The smallest
amount that can be erased defines a
sector. An erase group comprises 16
sequential sectors.

A single erase command can zap an
arbitrary selection of the sectors (i.e.,
any or all of the 16) within an erase
group or an arbitrary selection of erase
groups. The process involves tagging
the start and end of a sequence of sec-
tors or erase groups, untagging those
(up to 16) that aren’t to be erased, and
then issuing the erase command.

A write-protect group, the smallest
individually protectable unit, is composed
of 32 erase groups. Plus, two card-level
write-protect bits—one temporary and
one permanent—offer global protection.

There’s a permanent copy bit that is
presumably intended to combat piracy.
However, protection seems to depend
on trusted software on the host or
programmer, because the copy-bit
setting doesn’t otherwise affect card
operation.

The global write- and copy-protection
bits are found in the CSD (card-specific
data) register which, like the previously
mentioned CID and OCR (voltage
profile) registers, defines various card-
unique parameters such as speed,
power requirements, and partitioning
(i.e., block, sector, group, device sizes).

Table 3 summarizes the commands
that are handled by the MMC. The
subset of commands related to multi-
block transfer and software addressing
aren’t available in SPI mode, as I de-
scribed earlier. All of the commands
are six bytes in length, while responses
vary from 1 to 16 bytes, depending on
the command as well as on which in-
terface is being used.

Erase
Group 0

Erase
Group 1

Write
Protect
Group Erase

Group 31

Sector 15

Sector 0

512–1023

0–511 0–511

Write
Protect
Group

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Figure 2 —The basic unit of storage on an MMC card is called a sector,
but that’s about the extent of any resemblance to a disk drive.

STACK THE DECK
If you think the MMC is an

ace, a good place to see more
is the recently formed Multi-
Media Card Association.
You’ll find late-breaking info
and links to members like
SanDisk, Siemens, Hitachi,
Motorola, Nokia, and others.

A $340 evaluation kit from
SanDisk comes with a 20-MB
MMC card, PC parallel port
MMC drive, extender card,
and the requisite software
utilities and documentation.

The MMC is less PC-centric
than earlier cards, and it targets
many nonPC-related apps.

But, there’s no denying the PC is often
at least one, if not the ultimate, desti-
nation for just about all data.

Unlike earlier disk cards, MMC can’t
piggyback on the PC’s built-in IDE
support. To make MMC look like a
disk, you need flash-file system software.
SanDisk offers a $2545 host developers
toolkit containing the C source for a
FAT (file allocation table) file system.

84 Issue 99 October 1998 Circuit Cellar INK®

Porting the driver to a design starts
with writing a minimal set of low-level
hardware-specific drivers that estab-
lish physical communication with the
MMC. A configuration file specifies a
variety of options, such as buffer sizes,
whether to preerase when a file is deleted
or extended (speeds subsequent writes),
MMC or SPI interface, and so on.

Put it all together, and you end up
with an API (see Table 4) that knows
about disks, files and their attributes,
directories, and so forth.

SOURCES

MultiMedia Card
SanDisk Corp.
(408) 542-0500
Fax: (408) 542-0503
www.sandisk.com

Serial flash module
Integrated Silicon Solutions, Inc.
(408) 588-0800
(408) 588-0805
www.issiusa.com

MultiMedia Card Assn.
(408) 253-0441
Fax: (408) 253-8811
www.mmca.org

Tom Cantrell has been working on
chip, board, and systems design and
marketing in Silicon Valley for more
than ten years. You may reach him by
E-mail at tom.cantrell@circuitcellar.
com, by telephone at (510) 657-0264,
or by fax at (510) 657-5441.

GIGANANOCARD?
Compared to older cards, MMC is a

better fit with the form-factor, power-
consumption, and cost requirements of
anything that purports to be handheld
or fit in a pocket.

I especially like the simple, versatile
interface. It’s nicer to deal with a few
pins rather than the 50+ of earlier
cards. Thanks to SPI mode, the card is
easily managed by the lowliest proces-
sors, yet designs requiring performance
can exploit the faster MMC mode.

SanDisk offers 2-, 4-, and 8-MB cards
at $26, $32, and $43 in volume (for
now, it looks like the formula is $3 per
MB + $20). As of today, capacity, price,
or both may hold back some applications.
But thanks to Moore’s Law, both con-
cerns will diminish over time, broad-
ening MMC acceptance and design-in.

The interesting question is, what
happens next? History would predict
that another downsizing lies around
the corner. The only problem is that
while silicon may shrink, people won’t.

The wizards may get a zillion bits
on the head of a pin, but that doesn’t
mean it’s wise. Make the thing much
tinier, and you’ll need a magnifying
glass and tweezers to boot up. I

pc_cluster_size Return cluster size
pc_diskabort Abort operation
pc_dskclose Flush FAT and files and free buffers
pc_diskflush Flush FAT and files
pc_format Format card
pc_free Return bytes free on card
pc_fstat Return statistics on open file
pc_gdone Free pc_gfirst and pc_gnext resources
pc_get_attributes Get file attributes
pc_gfirst Return first entry in a directory
pc_gnext Return next entry in a directory
pc_isdir Test if path is a directory
pc_mv Rename a file or directory
pc_pwd Return the current working directory

pc_rmdir Delete a directory
pc_set_attributes Set file attributes
pc_set_cwd Set current working directory
pc_set_default_drive Set default drive specifier
pc_stat Get file or directory statistics
pc_unlink Delete a file
po_close Close a file
po_extend_file Extend a file
po_flush Write a file directory entry and flush FAT
po_lseek Move the file pointer
po_open Open a file
po_read Read from a file
po_truncate Truncate a file
po_write Write to a file

Table 4—The SanDisk host-developers toolkit software provides a FAT file system–compatible Application Programmers Interface (API).

96 Issue 98 September 1998 Circuit Cellar INK®

PRIORITY INTERRUPT

steve.ciarcia@circuitcellar.com

Banking on Bugs

i really have to be more careful about destroying my image. After all, if perception is 99% of reality, why mess with
people’s perception?

It all started at a party. It was your basic, eat, drink, and be merry, business-acquaintance get-together where
people split off into little groups to discuss subjects that typically require a two-cocktail prologue.

“So, Steve, I’m told you’re a magazine publisher?” I’m not sure what smelled stronger, the smoke from the London broil
on the grill or his martini breath. The problem with all these “get to know ya” business parties is that inevitably you are asked a question about
professional rank by a person who can’t conceivably understand the answer. When you’ve been self-employed as long as I have, you can
pretty much call yourself anything you want—President, Engineer, Salesman, Publisher, Editorial Director, even Janitor. When an investment
banker has had a couple martinis and asks if you’re a magazine publisher, you definitely have to be careful.

Just like there are people who think food comes from grocery stores, there are professional people who use computers every day without
ever considering how they’re designed or manufactured. Experience has taught me that these people associate the word publishing with
McGraw-Hill, Time, and Rupert Murdock. Ultimately, it’s counterproductive to shatter their lofty image with cold reality.

I’d love to say (even just once), “I’m the janitor,” but usually I cop out and simply say, “I’m involved a bit in publishing, but I really prefer
to think of myself as a design engineer.” Thankfully, the information age has educated bankers so that I no longer have to add, “and I don’t
build bridges.” Of course, now they think we’re all computer engineers (whatever that is), and to them, “computer” only means PCs!

The conversation went back and forth a few times as I tried to explain about embedded control (definitely a mistake). He admitted that
PCs certainly weren’t in everything, but he just couldn’t grasp the concept of single-chip computers in things like toasters and power tools. At
this point, mere explanation was becoming a challenge. I passed my basting brush to the person closest to the grill and said to the banker,
“Obviously, the only way is to show you. I have a microcontroller design over in the shop. Come on.”

A half dozen people ended up trekking over to the workshop. As we descended the stairs a couple of them hesitated. I chose not to tell
them why this project was located here and not in the Circuit Cellar. I didn’t want to confuse the issue. Soon it would become clear to them.

The mixed clutter of electronic equipment, power tools, and carpentry devices presented an air of eclectic insanity. I could sense they
were reconsidering their descent into the dungeon.

“It’s OK, just step over that stuff. And, watch out for those wires! They’re probably live!” (They weren’t, but there are times when it’s just
fun to say that, especially to bankers).

We walked around a workbench and stopped in front of an equipment cart pilled high with electronics. An assortment of pulse generators,
oscillators, and amplifiers were intertwined to produce a complex signal, which appeared as a rapidly changing sweep frequency on the brightly
lit oscilloscope. (I didn’t even try to explain sweep frequencies or oscilloscopes to them.) They seemed hypnotized by the pulsating hum of the
electronics combined with the strobe-like rhythm of the oscilloscope. That was, until one of the ladies yelled, “It’s full of insects!”

Immediately, they jumped back. The banker looked at the 7′ plexiglass enclosure that was indeed full of six-legged critters. His startled
expression said it all. Embedded control designers must be real fruitcakes.

“No! You don’t understand. Yes, the case is full of insects! In fact, we used a bunch of rodents before that….” I could sense the hole
getting deeper…. “That’s what we’re designing! Wait, that’s not what I mean!”

I moved quickly to block their exit and explain, “A while ago we designed a commercial device that repels rodents. Inside it, there’s a
microcontroller.” I held out a tiny chip in my hand. At least now I had their attention.

“All this equipment simulates the signal that we squashed down into this chip. [Of course, you all know better but sometimes you have to
lay it on thick for bankers.] Testimonials from customers said that it did work on rodents, but it also seemed to drive out the insects. We
decided to test it.” There was a silent pause as everyone gazed at the festering bugs.

“Don’t worry. They can’t escape [I hope].” Suddenly, my choice of location was clear to them. Who wants all these bugs in the house?
Having assured them of the enclosure’s security, they began to relax a bit. They even conceded that testing a product was a commercial

necessity. But as bankers and financial people, they just didn’t seem to grasp the significance of a dedicated microcontroller or the value in it.
That was until the investment banker added, “So, does anybody buy this thing?”

I looked at him and grinned, “How does 50,000 a month strike you!” It was like a universal language translator had just been introduced to
the communication. Embedded microcontrol was instantly understood as high volume and big bucks. Added explanation was unnecessary.

As we walked back to the party, the banker seemed a little more animated. Obviously, my not being a publishing tycoon was acceptable.
He smiled as he elbowed a little closer and whispered, “So, Steve, you need any money?”

