
CELLAR
CIRCUIT
T H E C O M P U T E R A P P L I C A T I O N S J O U R N A L

®INK

$3.95 U.S.
$4.95 Canada

 # 1 0 0 N O V E M B E R 1 9 9 8

INDUSTRIAL CONTROL
Control via the Internet

Making Buildings Smarter

Embedded Linux

Toughen up
that PC BIOS

E
M

BEDDEDPC
M

ONTHLY SECTION

2 Issue 100 November 1998 Circuit Cellar INK®

Netting 100

TASK MANAGER

i n your hands you hold the 100th issue of
Circuit Cellar INK. Have you been here from the

beginning, over 10 years ago? Or, maybe you just
picked up this issue from the newsstand today for the

very first time. No matter. It’s definitely a time for celebration!
I find it fitting that a milestone issue like this one has the theme

Industrial Control. After all, home automation and building control has been
a Circuit Cellar hallmark from the start. It’s nice to see that although the
implements have of course changed over the years, the interests haven’t.
INK still focuses on what the readers want.

But , the implements have changed indeed. No longer are the control
options limited to switches and sensors. There’s a new game in town—well,
in the world, to be more accurate: the Internet.

The capabilities we get through the web are far beyond what we’ve
been able to do without it. OK, I admit, sometimes I get a bit bored hearing
the same old hype about how everything is going to be done through your
computer—you’ll turn on the heat at home before you leave the office, you’ll
order take-out, you’ll do some catalog shopping, you’ll be able to check
whether you left the iron on after you left the house, and on and on. But, I’m
starting to get impressed: this scenario is coming true!

In this issue, Chris Sontag shows us a web-implemented irrigation
controller system that revises the sprinkler schedule based on weather
forecasts retrieved over the Internet. And if the forecasts prove wrong—oh,
that never happens, right?—you can simply access the controls via a web
browser. (I guess this means no more laughing as you pass the building on
the corner that has its sprinklers set for 4 P.M., come rain, come shine.)

Sounds pretty good, right? Of course, there’s a new challenge: how
are you going to use the Internet in your applications?

Well, if you need some ideas or want to kick around some thoughts
with other engineers, here’s some good news. Circuit Cellar INK is a co-
sponsor of the First Annual Embedded Internet Workshop being held on
Friday, November 6, at the Wyndham Hotel in San Jose.

This workshop, organized by Dr. Lance Leventhal, offers sessions on
embedded web servers, the future of embedded Internet, application
development, embedded web hardware, embedded Java, and web security.
The day promises to be chock full of information from some of the leaders
in embedded web technology—Annasoft Systems, Lucent Technologies,
Phar Lap Software, and Phoenix Technologies, to name just a very few.

And of course, we’ll be there. Tom Cantrell will introduce keynote
speaker Mark Tolliver, who will talk about Java and the embedded market.
Steve and Jeff will be attending as well, and I’ll be there, actively recruiting
editorial. We hope to see you at the workshop, but if you can’t make it, we’ll
make sure you still get to read about the all latest useful control technologies
and applications in Circuit Cellar INK.

T H E C O M P U T E R A P P L I C A T I O N S J O U R N A L

®INK
EDITORIAL DIRECTOR/PUBLISHER
Steve Ciarcia

MANAGING EDITOR
Elizabeth Laurençot

TECHNICAL EDITORS
Michael Palumbo
Rob Walker

WEST COAST EDITOR
Tom Cantrell

CONTRIBUTING EDITORS
Ken Davidson
Fred Eady

NEW PRODUCTS EDITOR
Harv Weiner

PROJECT EDITOR
Janice Hughes

ASSOCIATE PUBLISHER
Sue Skolnick

CIRCULATION MANAGER
Rose Mansella

CHIEF FINANCIAL OFFICER
Jeannette Ciarcia

ART DIRECTOR
KC Zienka

ENGINEERING STAFF
Jeff Bachiochi

PRODUCTION STAFF
Phil Champagne

John Gorsky
James Soussounis

Cover photograph Ron Meadows—Meadows Marketing
PRINTED IN THE UNITED STATES

For information on authorized reprints of articles,
contact Jeannette Ciarcia (860) 875-2199 or e-mail jciarcia@circuitcellar.com.

Circuit Cellar INK® makes no warranties and assumes no responsibility or liability of any kind for errors in these
programs or schematics or for the consequences of any such errors. Furthermore, because of possible variation in
the quality and condition of materials and workmanship of reader-assembled projects, Circuit Cellar INK® disclaims
any responsiblity for the safe and proper function of reader-assembled projects based upon or from plans, descriptions,
or information published in Circuit Cellar INK®.
Entire contents copyright © 1998 by Circuit Cellar Incorporated. All rights reserved. Circuit Cellar and Circuit Cellar
INK are registered trademarks of Circuit Cellar Inc. Reproduction of this publication in whole or in part without written
consent from Circuit Cellar Inc. is prohibited.

CONTACTING CIRCUIT CELLAR INK
SUBSCRIPTIONS:

INFORMATION: www.circuitcellar.com or subscribe@circuitcellar.com
TO SUBSCRIBE: (800) 269-6301 or via our editorial offices: (860) 875-2199

GENERAL INFORMATION:
TELEPHONE: (860) 875-2199 FAX: (860) 871-0411
INTERNET: info@circuitcellar.com, editor@circuitcellar.com, or www.circuitcellar.com
EDITORIAL OFFICES: Editor, Circuit Cellar INK, 4 Park St., Vernon, CT 06066

AUTHOR CONTACT:
E-MAIL: Author addresses (when available) included at the end of each article.
ARTICLE FILES: ftp.circuitcellar.com

CIRCUIT CELLAR INK®, THE COMPUTER APPLICATIONS JOURNAL (ISSN 0896-8985) is published monthly by
Circuit Cellar Incorporated, 4 Park Street, Suite 20, Vernon, CT 06066 (860) 875-2751. Periodical rates paid at
Vernon, CT and additional offices. One-year (12 issues) subscription rate USA and possessions $21.95,
Canada/Mexico $31.95, all other countries $49.95. Two-year (24 issues) subscription rate USA and
possessions $39, Canada/Mexico $55, all other countries $85. All subscription orders payable in U.S. funds
only via VISA, MasterCard, international postal money order, or check drawn on U.S. bank.
Direct subscription orders and subscription-related questions to Circuit Cellar INK Subscriptions,
P.O. Box 698, Holmes, PA 19043-9613 or call (800) 269-6301.
Postmaster: Send address changes to Circuit Cellar INK, Circulation Dept., P.O. Box 698, Holmes, PA 19043-9613.

ADVERTISING
ADVERTISING SALES MANAGER

Bobbi Yush Fax: (860) 871-0411
(860) 872-3064 E-mail: bobbi.yush@circuitcellar.com

ADVERTISING COORDINATOR
Valerie Luster Fax: (860) 871-0411
(860) 875-2199 E-mail: val.luster@circuitcellar.com

elizabeth.laurencot@circuitcellar.com

EDITORIAL ADVISORY BOARD
Ingo Cyliax Norman Jackson David Prutchi

Circuit Cellar INK® Issue 100 November 1998 3

40 Nouveau PC
edited by Harv Weiner

44 All BIOSs are Not Created Equal
Scott Lehrbaum

49 RPC Real-Time PC
Embedded RT-Linux
Part 1: General Introduction
Ingo Cyliax

57 APC Applied PCs
emWare Top to Bottom
Part 1: Monitoring via the Internet
Fred Eady

ISSUE
INSIDE

Mobile Environmental Control
Dan Leland

Motor Commutation Techniques
Chuck Lewin

Web-Implemented Irrigation System
Chris Sontag

Smart Building-Control Applications
Beau Wadsworth

I MicroSeries
Digital Processing in an Analog World
Part 2: Technology Choices
David Tweed

I From the Bench
MIDI
Part 2: The Show Must Go On
Jeff Bachiochi

I Silicon Update
Socket Rocket
Tom Cantrell

2

6

8

95

 96

E
M

BE
DD

ED
P
C

12
20
26
34
64

72

78

100100

Task Manager
Elizabeth Laurençot

Netting 100

Reader I/O
INK On-line

New Product News
edited by Harv Weiner

Advertiser’s Index/
December Preview

Priority Interrupt
Steve Ciarcia
What’s PC?

6 Issue 100 November 1998 Circuit Cellar INK®

READER I/O

INK ON-LINE
Your magazine enjoyment doesn’t have to stop on

the printed page. Visit Circuit Cellar INK’s Design
Forum each month for more great online technical
columns and applications. Here are some of the great
new on-line articles you’ll see in November:

Columns
Silicon Update Online: Standard Chips Can’t Be

Counted Out—Tom Cantrell
Lessons from the Trenches: Bridging C and

Assembly—George Martin

Forum Feature Articles
Build an 8051 Development System on a Budget—

Bruce Reynolds
Creating a Flexible Custom Evaluation Tool

Platform for ASICS—Eric Jacobsen

Missing the Circuit Cellar BBS?
Then don’t forget to join the Circuit Cellar INK

newsgroups! The cci newsserver is the engineer’s
place to be on-line for questions and advice on
embedded control, announcements about the
magazine, or to let us know your thoughts about
INK. Just visit our home page for directions to
become part of the newsgroup experience.

www.circuitcellar.com

PIC Abstractions
Design Abstracts from our Design98 Contest
Digital Chromatic Tuner for Musical Instruments—

Darko Lazovic
The Video Capture Pro—Winston Gadsby
Dot/Bar-Graph Controller—Eduardo Sigal

November Design Forum password:

Control

CONSIDERING THE ALTERNATIVE
I enjoyed Jeff’s article “Transformerless Power Con-

version” (INK 97), but he left out a method that performs
more efficiently and costs less than what he described.

As sources of reactance, inductors generally perform
poorly compared to capacitors. I appreciate the desire
to eliminate bulky inductors from a power supply, but
before abandoning reactance altogether, consider using
capacitance.

A circuit with a series resistor (to resist fast line spikes)
and a series film capacitor, followed by a bridge, a par-
allel Al-electrolytic capacitor, and a zener (five compo-
nents) will perform well for a wide range of circuits. It
offers higher efficiency (greater than 90%) and lower
cost (less than $0.50 in quantities over 1000). A $0.20
250-V 0.47-µF series film cap provides more than 8 mA.
The current depends on the derivative of the line voltage
and is hardly affected by the output voltage (1.5–36 V).

Joe Betts-LaCroix
Joe@analogdesign.com

Editors note: The URL listed for Paradigm Systems
in the sources section of Fred Eady’s “Debugging &
the Net186,” (INK 97, p. 59) is incorrect. The correct
URL is www.devtools.com.

Thanks for your comments. I’ll have to plead guilty
to a conscious omission. I cringe when I see capacitors
being used this way. At any but the smallest currents,
the heat build-up in these high-voltage capacitors
accelerates component deterioration.

Yes, this method is cheaper, and I would encourage
adding a MOV across the input to protect the capaci-
tor from unforeseen over-voltages. However, from a
safety perspective, I wouldn’t base my product on it.
In fact, I’ve heard rumors that this form of power-
stealing circuitry will not be cutting the muter in
future consumer devices.

Jeff Bachiochi

8 Issue 100 November 1998 Circuit Cellar INK®

NEW PRODUCT NEWS
Edited by Harv Weiner

CURRENT-SENSOR IC
The UCC3926 current-sensor IC contains an internal

current-sense element and precision amplification circuitry
to offer a complete, single IC solution for current sensing.
It uses an integrated noninductive current-sense element
that eliminates the need for an external sense resistor,
minimizes power loss, and offers higher efficiency. It
handles input currents up to ±20 A, and it addresses a wide

variety of power-management and industrial-con-
trol applications.

The IC contains a wide-band transimpedance
amplifier for converting the current into a propor-
tional voltage through an internal, noninductive,
1.3-MΩ shunt resistor. The sense element operates
in both high-side (VDD referenced) or low-side
(ground referenced) applications. A current polarity
indicator (sign bit) that gives a positive or negative
indication of the current flow direction is included.

A low-offset high-speed (90 ns) comparator pro-
vides over-current indication with user-programmable
threshold for precise setting of the over-current alarm.
Excellent linearity is made possible by temperature-
compensated internal circuitry (±200 PPM/°C),
eliminating temperature-related offsets including
self-heating effects.

The surface-mount UCC3926DS is packaged in a
16-pin narrow plastic body SOIC and is priced at
$3.60 in 1000-piece quantities.

Unitrode Corp.
(603) 424-2410
Fax: (603) 424-3460
www.unitrode.com

LOW-POWER CONTROL DEVICE
HulaPoint Remote combines an advanced motion

algorithm with an innovative Hall effect–type sensor to
provide accurate and effortless cursor control. The low-
power device is designed for remote controls, such as
those used for multimedia and game products, as well
as telecom devices and H/PCs.

HulaPoint Remote provides either CMOS-level serial
output or ASK modulated output, which is suitable for
driving the external-power
transistor and IRED (infrared
emitting diode). Equipped
with a wait mode, it con-
sumes less than 50 µA and
operates in a 3–5-V range. It
can be powered by three or
four AA batteries and will
operate for one year on
three batteries.

As well, HulaPoint Re-
mote can encode up to 12
keys. These keys may be
used for left, right, and
middle mouse-button selec-
tion and as function keys. If

only the standard mouse buttons are used, HulaPoint
is compatible with both the Logitech three-button and
the Microsoft/IBM two-button mouse protocols.

The ergonomic sensor provides 10° of movement in
every direction. Because it uses magnet technology,
there are no moving parts to break or wear out. This
quality makes the device highly durable.

HulaPoint Remote is available as either a chip-and-
sensor kit for integration
on an existing PCB or as
a drop-in module. Drop-
in modules are designed
to fit customer require-
ments.

An evaluation kit
containing the remote
and all the components
necessary to test the
device is priced at $150.

USAR Systems, Inc.
(212) 226-2042
Fax: (212) 226-3215
www.usar.com

Circuit Cellar INK® Issue 100 November 1998 9

NEW PRODUCT NEWS
RUGGEDIZED VIDEO CAMERAS

The GBC TKO-450 and TKO-935C (both
known as The Brute) are discreet industrial-
strength cameras that can be used indoors
or outdoors. The heavy-duty die-cast camera
case features a polycarbonate window,
tamper-proof screws, and conduit fittings
for cable entry, making the unit weather-
proof and vandal resistant.

Both the TKO-450 (B/W model) and the
TKO-935C (color model) feature a 1⁄3″ CCD
camera that is internally adjustable on a
three-way gimbal. An included corner
mount features a ball joint for external
adjustability. The camera comes standard
with a clear polycarbonate window, and an
optional gray window is available if conceal-
ment of the camera is desired.

The TKO-450 has over 425 lines of reso-
lution and a sensitivity of 0.03 lux. The
TKO-935C has 330 lines of resolution and a
sensitivity of 0.4 lux. The color model also
has automatic through-the-lens white bal-
ance and backlight compensation for true-
color rendition. Both models come standard
with a 4-mm lens, electronic shutter, and
power supply. Optional 2.5-, 6-, 8-, and 12-mm
lenses are also available.

The TKO-450 lists for $349.30 and the
TKO-935C lists for $559.30.

CCTV Corp.
(201) 489-9595
Fax: (201) 489-0111
www.gbc-cctv.com

8-BIT RISC MICROCONTROLLERS
The Microchip Technology PIC12CE673 and PIC12CE674

are one-time programmable (OTP) 8-bit RISC microcontrollers
featuring EEPROM data memory, four-channel 8-bit ADC, and
an on-chip oscillator. The ’673 features 1024 × 14 words of OTP
program memory, and the ’674 offers 2048 × 14 words of OTP
program memory. Both devices have 128 bytes of SRAM and 16
bytes of EEPROM data memory, enabling critical system-param-
eter storage to be distributed throughout the application. Typi-
cal applications include remote controls, security systems,
battery chargers, PC peripherals, and smart sensors.

The devices have six I/O pins, 35 single-cycle instructions
(400-ns execution time), 8-bit timer/counter with 8-bit program-
mable prescaler, and an on-chip 4-MHz clock oscillator for
additional system cost and size savings. An in-circuit serial
programming capability enables the microcontrollers to be
programmed after being placed in a circuit board. Maximum
power-consumption is 2.0 µA for maximum battery life.

The PICMaster Universal development system supports the
microcontrollers. This Windows-based system features the
MPLAB integrated development environment, which gives
users the flexibility to edit, compile, emulate, and program
parts all from a single user interface. The comprehensive
PICMaster is available for $2490 without the Pro Mate II device
programmer ($3345 with Pro Mate II). A CE-compliant version
of PICMaster is available for European applications.

The PIC12CE673 and PIC12CE674 are available in 8-pin
PDIP and windowed CERDIP packages. Pricing in 1000-unit
quantities (4-MHz, commercial temperature version) is $2.04
each for the PIC12CE673 and $2.39 each for the PIC12CE674.

Microchip Technology, Inc.
(602) 786-7200
Fax: (602) 899-9210
www.microchip.com

10 Issue 100 November 1998 Circuit Cellar INK®

NEW PRODUCT NEWS
DIGITAL PANEL METER

The DMS-30PC-4/20S series of 4–20-mA current-loop
input, 3.5-digit, LED display-panel meters consists of a loop-
current conditioning board mounted to an epoxy-encapsulated
voltmeter. These devices operate from a single +5-V power
supply or an optional supply ranging from 7.5 to 32 V (24 V
nominal). The 2.17″ × 0.92″ × 1.0″ package features a large
(0.56″) red or green LED display and 100% soldered connections.

The advanced circuit design achieves a maximum loop
drop of only 2 V. Two band-gap voltage references and precision
metal film resistors ensure stable performance over the wide
operating temperature range of 0° to +60°C. Gain (span) and
offset (zero) adjustments are performed with high-precision,
20-turn potentiometers. All decimal-point and range-change
settings are made on a gold-plated vibration-resistant DIP
switch. There are no solder gaps or jumpers. Connections to
the current loop and the power source are made on a rugged
four-position screw-type terminal block.

A bezel assembly, featuring secure screw fasteners and an
EPDM rubber gasket, is available for applications requiring
moisture and dust resistance.

Low-power or high-intensity red LED models are also
available. Prices for the meters start at $78 in single quantities.

Datel, Inc.
(508) 339-3000
Fax: (508) 339-6356
www.datel.com

Circuit Cellar INK® Issue 100 November 1998 11

NEW PRODUCT NEWS
DATA TERMINAL

The QTERM-B30 pedestal-mount operator-interface/
data terminal is a rugged low-cost device suitable for
industrial applications. The terminal has a four-line ×
40-character supertwist lighted LCD, 55-key tactile
membrane keypad with QWERTY-style layout, and
four programmable indicator LEDs for operator feed-
back. The keypad legend and logo label can be fully
customized. An optional manufacturer ID code means
only terminals you buy operate with your equipment.

The QTERM-B30 comes with an EIA-232 serial inter-
face. An optional EIA-422 serial interface is available.
Data rates from 1200 to 19,200 bps are accommodated
with a wide range of data formats. Approximately 50
software commands are available to the host for con-
trolling the terminal, including cursor control, query
commands, and hardware (lighting, buzzer, etc.) control.

The standard terminal uses an external 5-VDC supply,
and an optional regulator enables operation with an
external 7.5- to 24-VDC supply. The 8″ × 7.38″ × 1.5″
unit is made of a rugged cast-aluminum housing with
studs for pedestal mounting.

The QTERM-B30 sells for $585.

QSI Corp.
(801) 466-8770 • Fax: (801) 466-8792
www.qsicorp.com

12 Issue 100 November 1998 Circuit Cellar INK®

Mobile
Environmental Control

FEATURE
ARTICLE

Dan Leland

a
Access is power.
Using a One-For-All
universal remote, X-10
modules, and a PIC,
Dan empowers the
wheelchair-bound
community, giving a
quadriplegic friend
remote access to the
lights, thermostat,
security system, and
more.

friend of mine
called me up a short

time ago and asked if I
could help him out. Ap-

parently, he wasn’t having much luck
finding a device that would let him
remotely control a few lights, his TV,
stereo system, and possibly an electrical
appliance or two. You might think it’s
nothing that a universal IR remote
control and a little X-10 technology
couldn’t handle.

Well, that’s not the whole story.
There were a few other issues to think
about. My friend is paralyzed from the
neck down and is on a limited budget.
His search of available assistive tech-
nologies turned up a fairly good selection
of environmental control products, but
only a few of the more expensive de-
vices came close to meeting his needs.

In all fairness to the companies
that develop special-needs technology,
it’s important to remember that people
with severe physical disabilities repre-
sent a small market. A company that
produces assistive devices by the doz-
ens, or even hundreds, is not able to
benefit from the kind of economies
that typical consumer-electronics
manufacturers enjoy. So, prices tend

 12

20

26

34

Mobile Environmental
Control

Motor Commutation
Techniques

Web-Implemented
Irrigation System

Smart Building-Control
Applications

FEATURES

Circuit Cellar INK® Issue 100 November 1998 13

to remain high for even the most basic
technical aids.

Considering all the various commer-
cialization hurdles facing manufacturers
of assistive devices, I was somewhat
surprised to find so few independently
engineered adaptations of existing
consumer products. Why couldn’t a
universal remote and a few X-10 mod-
ules be made a little more accessible?

NOT JUST ANY REMOTE
In many cases, the fact that most

consumer electronics products are so
highly integrated and miniaturized is
probably the biggest barrier to creating
accessible options. I have to admit, the
idea of adapting an existing infrared
remote wouldn’t have seemed all that
practical had I not been familiar with
the One-For-All (OFA) series of univer-
sal remotes available from Universal
Electronics.

Many of their devices are affordable,
X-10 capable, and able to control a
variety of audio-visual components.
Add to the list a unique little feature

that enables you to operate an OFA
without having to press the buttons,
and presto, you have the makings of
an accessible environmental-control
solution.

Of course, I’m referring to the three-
pin serial port built into the upgradable
models, which was originally intended
for in-house use as a means to update
preprogrammed manufacturer codes.

Needless to say, it didn’t take home-
automation enthusiasts long to discover
that all the OFA button functions can
be accessed via the port. Connect a
suitable host controller, and you have
a fairly versatile gateway for home-
control applications.

SUI AS IN GUI?
I wanted to avoid building a custom

input device, so I tried to design an
interface that could be used by people
with physical disabilities other than
quadriplegia. As a result, I decided to
stick with some of the more tried and
trusted methods that are used to con-
trol assistive devices. The answer I

came up with is a simple scanning type
of controller.

The scanning user interface (SUI)
has 40 labeled LEDs (arranged in a 4 ×
10 array) corresponding to the buttons
on the OFA infrared remote. As the
name implies, a person scans the dis-
play and selects various control options
using one or two input switches. The
SUI translates the selection and sends
the appropriate control command to the
OFA through a serial connecting cable.

The SUI is built into a small black
enclosure, occupying very little space
(see Photo 1). It mounts next to the
wheelchair armrest, where it’s fairly
inconspicuous yet visible to the user.
The OFA mounts to the wheelchair
frame, behind and above the user’s right
shoulder, for optimal IR beam spread.

TWO WAYS TO SCAN
A person navigates through the SUI

display and makes selections using
one of two operating modes. Auto-scan
mode generates an automatic scanning
sequence with three selectable speeds.

Figure 1 —With so few
components, the SUI circuitry
can be built into a relatively
small enclosure. A four-
position DIP switch provides
several selectable control
options.

14 Issue 100 November 1998 Circuit Cellar INK®

Both scan and select functions are
controlled by a single switch. The
first switch closure powers the SUI
on, and the second starts the scan
down the leftmost column of LEDs.

A third switch action redirects the
scan across a desired row. Once the
scan reaches the appropriate point, the
final switch activation executes the
OFA control function that corresponds
to the labeled LED.

Auto-scan mode is designed to har-
ness a single physical action, but it
requires a certain amount of coordina-
tion to manage the auto-scan timing.

In step-scan mode, one switch con-
trols the scan and a second performs
the select function. The scan is incre-
mented one step at a time with each
activation of the scan switch.

The user reaches a desired selection,
at his or her own speed, by alternating
between scan and select switches. This
provides greater control for those who
have difficulty anticipating the timing
of the auto-scan sequence. Step-scan is
ideally suited for a sip-and-puff (pres-
sure/vacuum) dual-action input switch.

The SUI accepts most ability
switches or any SPST momentary
contact switch. There’s a wide range
of ability switches available through
manufacturers and distributors of
assistive devices, and they’re designed
to respond to gross and fine physical
movements (e.g., blink, finger-flex,
head-tilt, sip-and-puff, and oversize
button and paddle switches).

SUI INSIDE
I tried to keep the circuitry as

simple as possible. The only frills in
the bare-bones circuit of Figure 1 are a
couple of setup DIP switches.

Aside from the PIC microcontroller,
I used some easily available common
parts. The PIC16C84 was an interesting
choice, considering I had absolutely
no experience with Microchip’s product
line. None of the microcontrollers I
was familiar with seemed particularly
suitable for this application, so I decided
to try something new.

Aside from all the good things I’d
heard about the 8-bit devices, I’m
somewhat of a coward when it comes

to assembly programming. I knew
there were some great software tools
available for the PIC line of micros.

The ’16C84 had just enough I/O for
the job, and I didn’t let a single pin go
to waste. Almost half of the I/O-port
pins are used to control the LED display
array.

Although a display made up of
discrete LEDs may seem a little low
tech compared with an LCD panel,
it’s much easier to follow the scanning
sequence when all the labeled selections
are visible at once. Scrolling across a
two- or four-line LCD to read multiple
selections can get quite tiring after a
while. An LED array, of course, becomes
less practical as the number of selections
increases.

Four Port B lines (RB0–RB3) and two
Port A lines (RA0, RA1) are multiplexed
by a 74HC42 decoder and a 74HC4051
analog switch to sink 10 LED rows and
source four LED columns. Switches
S1 and S2 of the four-position DIP
switch (SW1) are read through pins
RA2 and RA3 at powerup. The con-
figuration of these switches puts the

Figure 2 —The SUI software begins with an initialization sequence and then waits for an input to start the scan down the rows. If the first step-scan or auto-scan mode input
routines detect a select input, the program execution is passed to the column-scan segment. The column-scan input routines are similar, but a select input in either auto2 or
smode2 results in serial-control commands being sent out to the OFA.

Power on

Initialize vars .
read DIP switch
timer = autoscan

or stepscan

Ready:
2 tone beep

Rowset:
reset row/col
for new scan

Start:
start scan

input?

Rowscan:
last row
in scan?

Rowscan:
light LED, beep
increment row

Smode1?
timer = stepmode

Smode1
input for row

scan?

Smode1
input to start

col scan?

Timeout
count = 6 s? Shutdown

Auto1
input to start

col scan?
Timer = count
to autoscan?

Colstart:
LEDs off

2 tone beep for
start of colscan

Colscan:
last col

in scan?

Colscan:
light LED beep
increment col

Smode2?
timer = stepmode

Smode2
input for col

scan?

Smode2
input to
select

Timeout:
count = 6 s? shutdown

Auto2:
input to
select?

Timer = count
to autoscan?

Select:
beep, lookup OFA

control byte

Serial:
serial output
to one-for-all

Serial byte = W?
Wakeup:

add K to wakeup
sequence

Timeout
count = 6 s? Shutdown

Colset:
reset for return

to rowscan

B

B

A

A

Yes

No

Yes No

Yes

No

Yes

No Yes

No

Yes

No Yes

No

Yes No

Yes

No
Yes

No
Yes

No

No

Yes

No

Yes

No

Yes

Yes

No

Yes

No

Yes

No

16 Issue 100 November 1998 Circuit Cellar INK®

The tip lead on the auto-scan input
jack is connected to the LDO regulator-
enable line. When the tip-to-ground
connection is initially made, the PIC
software latches the regulator-enable
line low, through pin RA4 and the
PNP/NPN transistor combination.

Once powered, further tip-to-ground
contact doesn’t affect the regulator
but is seen as valid auto/scan input by
RB4. If no user activity is detected on
RB4 within approximately 6 s, the
software sets RA4 high and shuts down
the regulator to help minimize power
consumption.

The 6-V supply is slightly reduced
by a polarity-protection diode installed
on the ground terminal of the DC power
jack. The LDO regulator handles the
lowered input voltage quite nicely and
supplies 5 V to the circuit.

The supply voltage is passed straight
through to the OFA, so the input should
never exceed 7 V. The SUI and OFA
combination draws a maximum of
~55 mA when the OFA transmits an
infrared command.

SUI ONBOARD
Although my friend has good head

movement and slight control of his
fingers, he prefers to use a sip-and-puff
interface to operate his electric wheel-
chair and access his home computer. I
made the mistake of building a sip-and-
puff switch for his SUI before I looked
at the electronics on his wheelchair.

It turned out that the
wheelchair sip-and-puff
controller could be cycled
between drive functions,
seat adjustments, and
several auxiliary relay out-
puts. A short connecting
cable between the SUI and
two of the relay outputs
eliminated the need for an
additional switch.

Optional control outputs
aren’t necessarily common
to all powered chairs, so an
additional input device is
still required in some cases.
The schematic for a proto-
type sip-and-puff switch
using two Micro Pneumatic
Logic (MPL) dual-port
pressure switches appears

at the bottom right of Figure 1.
Pressure and vacuum sensing was

obtained by simply teeing the air-
supply tube to the input port of the
puff switch and to the output port of
the sip switch. The MPL 501s have
diaphragm-operated contacts that
respond to pressures ranging from 0.1″
to 0.75″ of water.

A very small amount of the sensi-
tivity can be adjusted with a setscrew
that changes the contact spacing. I
found these switches to be a little too
sensitive, so I’d probably try a higher
rating for any future applications. The
pressure-switch terminals are wired
with a common ground to a single
three-conductor cable with a 3.5-mm
stereo plug attached.

As luck would have it, I was able
to get power for the SUI from an aux-
iliary outlet on the wheelchair that
was clearly intended for some other
type of accessory. I contacted the local
dealer’s service department and obtained
all the necessary technical details
before attempting the SUI connection.

The output was well isolated from
the rest of the controller circuitry and
provided a clean 6 VDC at 750 mA. Like
the auxiliary control relays, some wheel-
chairs may have a similar power option
and some may not. An alternative solu-
tion is to tap the wheelchair batteries
directly with a small DC-to-DC con-
verter that isolates the SUI and OFA
from any motor-generated transients.

SUI into auto-scan or
step-scan mode and sets
one of three auto-scan
speeds.

During scanning, RB7
outputs a PWM audio
signal to a tiny piezo
transducer through a
simple on/off/attenuator
circuit consisting of a
resistor and switches S3
and S4 of SW1. The audi-
tory feedback beep is
enabled or disabled by S3,
and two volume levels
are provided by S4.

The OFA serial control
data, output on pin RB6,
and the DC supply volt-
age are routed out to the
OFA through a 3.5-mm
stereo phone jack.

The PIC detects scan-and-select user
input through RB4 and RB5, respec-
tively. Each I/O line is connected to
the tip contact on separate 3.5-mm
stereo jacks.

This setup enables the connection
of individual off-the-shelf ability
switches, which typically come with
3.5-mm mono plugs attached. Addi-
tional in-line diodes and grounded
Schottky diodes provide a measure of
ESD and negative-voltage protection on
all I/O lines connected to external jacks.

The three conductor-input jacks and
jumper JP1 provide several control-
switch options for other potential
applications. By jumpering the RB5
select line over to the ring contact on
the auto-scan input jack, a dual-action
sip-and-puff switch can be connected
to the SUI via a single three-wire cable.

JP1 can also route the supply voltage
out through the ring contacts on each
jack. This aspect comes in handy when
you need to use more specialized input-
switch devices that require power for
optical or magnetic sensor arrange-
ments.

Although I didn’t use this particular
feature in my prototype, I recommend
using a resistor or a resettable fuse on
the voltage supply line to the header.
Some kind of protective device is a good
idea in case a mono plug is accidentally
inserted into the stereo jack, connecting
the power supply to ground.

Photo 1 —The scanning user interface, prototype sip-and-puff switch, and One-For-All 8
infrared remote (not shown) are the basic components for an accessible mini environmental-
control system.

Circuit Cellar INK® Issue 100 November 1998 17

BACK TO BASICS
As this was my first PIC project, I

wasn’t keen on spending too much
time or money on software develop-
ment. I needed something to get me
up and running as quickly as possible,
so I ended up purchasing the PicBasic
Compiler and Epic Programmer from
microEngineering Labs.

PicBasic commands are quite power-
ful, and it doesn’t take long to string a
few together to get things going. But-
ton, Sound, Pins, and Serial are just
a few examples of I/O commands that
handle input, audio feedback, display
control, and serial communications
for the SUI program.

Typically, a pin assignment and a
couple parameters for each command
are all you need. Although Port B pins
are the only ones supported by these
PicBasic commands, Port A pins can
be accessed with Peek and Poke calls.

The program code, like the hardware,
is fairly straightforward. As you see in
Figure 2, there are four basic program
segments—initialization, row scan,
column scan, and serial output. The
program starts by setting all the vari-
ables and I/O ports, which effectively
turns off the LED display and enables
the regulator through pin RA4.

Port A is read to obtain one of four
values for the DIP-switch settings on
RA2 and RA3. This value is adjusted
and assigned to the Timer variable.
Three values determine the auto-scan
speed. The fourth sets a branch condi-
tion further on in the program, which
runs the step-mode rather than the
auto-scan input routine.

After the initialization, a dual-tone
beep signals the SUI is ready for input.
The Row and Column display control
variables are reset for a new scan
sequence. An input loop polls RB4 for
a start-row-scan signal while increment-
ing a loop-pass counter. If no input is
detected before the counter reaches a
timeout limit (~6 s), pin RA4 is set
high and the regulator is shut down.

If input is detected, the Row and
Column values are output on Ports A
and B, lighting the LED in the first row
of the first column. A corresponding
beep is generated, and the Row variable
is incremented in advance for the next
pass. At this point, the Timer variable

is tested and the program branches to
the step-mode input routine or contin-
ues in auto-scan mode.

The auto-scan 1 input routine polls
RB4 again, but this time the loop-pass
counter limit is set by the Timer vari-
able. If no input is detected before the
count reaches Timer, the program
jumps back, increments the scan, and
returns to the input loop.

Without input, this cycle continues,
resulting in an automatic scanning
sequence down the left column, with
the Timer value setting the speed. Any
input during the scanning process is
seen as a Row selection, and program
execution is passed over to the column-
scan routines. When the last row is
reached, the program goes back, resets
the display variables, and waits for
another start-row-scan signal.

The step-mode 1 input routine
polls RB4 to increment the scan and
then RB5 to select a row. If input is
detected on RB4, the program jumps
back, advances the scan, and returns
to the input loop. If no input occurs
on RB4, then RB5 is polled for a Row
select condition. If no input is detected
on either pin, the loop repeats until
the 6-s timeout counter eventually
shuts down the regulator.

If a Row selection is detected in
auto-scan 1 or step-scan 1, the scan-
ning sequence is temporarily halted,
the program jumps to the column-
scan handling routines, and a dual-
tone beep signals the change.

Figure 3 —Removal of the OFA8 battery cover reveals
the contact points for the installation of the SUI con-
necting cable.

Rx GND

+VIN

+ –

+ –

+–

+–

Circuit Cellar INK® Issue 100 November 1998 19

The code structure is essentially
the same for column scanning as it is
for rows. This time, however, it’s the
Column variable that gets incremented,
resulting in a left-to-right scan sequence
across a selected row.

When the last column in a row is
reached, the program resets the vari-
ables and returns to the row-scanning
sequence down the left column. The
auto2 and step-scan2 input rou-
tines poll RB4 and RB5, but instead of
redirecting the scan, the input in-
vokes the OFA serial control routines.

A beep indicates an OFA control
selection has occurred. The program
derives a value of 0–39 from the current
Row and Column variables and assigns
it to the variable Key. A look-up com-
mand uses Key as an index variable to
retrieve a value from a table of 40
numeric constants. Each constant in
the list corresponds to an OFA serial
button command.

The serial-out subroutine sends the
ASCII-character equivalent of the byte
constant out to the OFA. If the byte
equals an ASCII “W”, the OFA wake-
up routine kicks in and sends a “K” to
complete the wake-up sequence that
puts the OFA in serial-command mode.

The program returns to the last
input routines and checks for further
selections, which enables consecutive
button presses for repeating functions
like volume up. If no further input is
detected, the program eventually returns
to a point where a timeout routine
powers the SUI off.

THE OFA CONNECTION
The One-For-All 8 remote I used in

this application is connected to the
SUI with a 36″ audio patch cable with
molded 3.5-mm stereo phone plugs on
each end. One of the plugs is removed
and the leads are soldered to the three
points located beneath the OFA battery
compartment (see Figure 3).

With reference to the stereo-plug
contacts, the tip lead is soldered to the
+Vin battery spring contact, the ring
lead is soldered to the Rx pin, and the
ground lead is soldered to the GND
pin. Finally, the side of the battery
cover is notched to accommodate the
cable, and it is then snapped back into
place.

OFA WAKE-UP CALL
Before the SUI can send over com-

mands, the OFA8 must be initialized
for serial communications. First, one
of the OFA8 keypad buttons must be
manually pressed to bring the OFA8
micro out of sleep mode for about 5 s.

The SUI is then activated and the
Wake function is selected before the
micro goes back to sleep. This serial
wake-up command suspends the OFA
sleep-mode routine and keeps the OFA
in serial mode. The OFA8 returns to
manual mode if the power is removed,
so this procedure must be done the
first time the unit is powered up or
after any power interruptions.

The SUI auto-power-down feature
helps offset the fact that the OFA is
always on in serial mode. The manual
keypad press in this set-up sequence
is a bit of a drag, but it’s specific to
only four OFA models that I know of,
including the OFA8.

The older OFA12 and OFA6 can be
switched to serial-control mode with
just a serial wake-up command, and
they don’t require the physical button
press. Unfortunately, the OFA12 is
discontinued and the OFA6 lacked the
program capacity for my friend’s appli-
cation. The OFA6 is still readily avail-
able and probably meets the needs of
most people.

With the OFA in serial mode, the
SUI can send over serial-control com-
mands corresponding to any of the
OFA button functions. By following
the instructions outlined in the One-
For-All 8 user guide and code book,
you can access all the features of the
OFA through the SUI.

If the user needs help with the OFA
setup procedure, manufacturer codes
or macro sequences can be entered
manually anytime after the OFA is
powered on and before the SUI sends
the wake-up signal. The OFA retains
programmed information even if the
power supply is temporarily removed.

SUM OF THE PARTS
So, how much accessibility does

$75 worth of parts buy? In my friend’s
case, a fair amount.

From his wheelchair, he now has
control over ten lights, two sets of
drapes, a ceiling fan, thermostat, secu-

Dan Leland has spent the past 11 years
working in research and development
for the Neil Squire Foundation, a
Canadian nonprofit organization
whose goal is to provide innovative
services and technology to individuals
with significant physical disabilities.
For more information on some of the
Foundation’s activities, please visit
www.neilsquire.ca. You may reach
Dan at rd@mindlink.bc.ca.

SOURCES

PIC16C84
Microchip Technology, Inc.
(602) 786-7200
Fax: (602) 899-9210
www.microchip.com

MPL501 pressure switches
Micro Pneumatic Logic, Inc.
(954) 973-6166
Fax: (954) 973-6339
www.pressureswitch.com

One-For-All 8
Universal Electronics, Inc.
(330) 487-1110
Fax: (330) 487-1131
www.ueic.com

PicBasic compiler software, EPIC
programmer

microEngineering Labs, Inc.
(719) 520-5323
Fax: (719) 520-1867
www.melabs.com

X-10 control accessories
X-10 USA
(800) 675-3044
(201) 784-9700
Fax: (201) 784-9464
www.X-10.com

Home Automation Systems, Inc.
(800) 762-7846
(949) 221-9200
Fax: (949) 221-9240
www.smarthome.com

rity system, a door actuator, and his
home entertainment system. Even
with the added cost of various X-10
accessories, he still had enough left
over to take me out for coffee.

Unfortunately, that’s when he gave
me his list of suggestions for Version 2.
Hmm…let’s see: telephone control,
EEG interface, robotic assistant…? I

20 Issue 100 November 1998 Circuit Cellar INK®

Motor Commutation
Techniques

FEATURE
ARTICLE

Chuck Lewin

m
It’s a never-ending
race to get the most
performance from
your system. But,
according to Chuck,
motor commutation
is a good springboard
for flying over the
hurdles of oscillations,
overshoot, and all
those other motor-
stability problems.

achine designers
have long sought to

get the maximum
performance from their

systems. But as they push throughput
to the limit, they often fight a battle
with motion-stability problems like
torque ripple, oscillation, or overshoot.

Motor commutation is an important
weapon in this battle. Recently, there
has been an increase in the number of
applications using software-based
commutation performed by high-speed
DSP chips. By doing commutation in
software, it’s possible to improve the
motion’s smoothness and accuracy. It
may also reduce the audible noise
level of the motor during operation.

Historically, commutation was
performed using hardware-based Hall-
effect sensors. This scheme requires
commutation sensors in the motor, as
well as electronics in the motor ampli-
fier, to perform the phasing.

By taking advantage of the power
and flexibility of software-based sys-
tems, it becomes possible to perform
commutation functions in the con-
troller’s CPU. This software-based
method uses the position feedback
device of the motor (typically an in-

Figure 1a —Commutation waveforms for three-phase
permanent magnet brushless motors are separated by
120°. b—Waveforms for two-phase brushless motors
are separated by 90°.

cremental encoder) to generate a sinu-
soidal commutation waveform.

Software-based commutation also
performs advanced functions like auto-
matic phase finding and waveform
shaping. These two techniques let you
eliminate Hall-effect sensors and also
permit the motor performance to be
improved by linearizing the commuta-
tion output tuned to a specific motor.

In this article, I explore the capabili-
ties and benefits of software-based
sinusoidal commutation and show how
it can be used in applications involving
brushless motors. I also examine some
other commutation schemes and offer
practical guidelines on which scheme
works best in a given application.

SINUSOIDAL COMMUTATION
The term “sinusoidal commutation”

refers to the waveform of the motor
currents used to drive the brushless
motor windings. Figure 1 illustrates
these waveforms for two commutation
phasings—a 120° phasing scheme used
with three-phase brushless motors and
a 90° phasing scheme used with two-
phase brushless motors.

Sinusoidal commutation has
gained popularity lately because it has
the potential to operate a given motor
more smoothly. It also offers more
predictable behavior than the same
motor commutated using traditional
six-step techniques.

Although sinusoidal commutation
has been used in a wide variety of
applications, it’s especially popular in
systems that are sensitive to torque
disturbances. Linear motors and other
direct-drive brushless applications fall
into this category, as do applications
like medical automation, semiconduc-

120˚

90˚

90˚ 180˚ 270˚ 360˚

Phase A

Phase A Phase B

Phase B Phase Ca)

b)

Circuit Cellar INK® Issue 100 November 1998 21

tor automation, scientific
instruments, and analytical
equipment, among others.

MOTOR-OUTPUT
SIGNAL GENERATION

In a digital sinusoidal
commutation scheme, the
motor-output signal is
calculated from the posi-
tion encoder as well as
from information about
the initial phasing of the
motor windings. The out-
put signal to each winding
is determined digitally by synthesizing
a sinusoidal waveform and combining
it with the overall desired torque out-
put of the servo filter.

Figure 2 shows the control flow for
a typical digital controller that synthe-
sizes the sinusoidal waveforms using
an internal ROM look-up technique.

Typical digital commutation
schemes read the encoder position on
a discrete time-sampled basis and
determine a new motor output value
for each of the three brushless motor
phases. State-of-the-art systems per-
form commutation waveform lookup
at least at 10 kHz, and many perform
at 15+ kHz. For high-speed applications,
such as spindle motors running at
30,000+ rpm, accurate high-frequency
waveform synthesis is a must.

Given the current shaft angle (en-
coder position) and initial phasing of
the motor (which locates the shaft to
the proper electromagnetic position),
you can calculate the desired current
in each motor coil for a phase angle
for three-phase brushless motor via:

phase_A_angle = (Encoder – init_phase

% n_counts) × 360
n_counts

phase_B_angle = phase_A_angle – 120
phase_C_angle = phase_A_angle – 240

and the value output on each phase
signal is:

phase_A_output = sin(phase_A_angle) × torque
phase_B_output = sin(phase_B_angle) × torque
phase_C_output = sin(phase_C_angle) × torque

where Encoder is the current encoder
location in counts, % is the modulo
operator, n_counts is the number of

encoder counts per electrical cycle, and
init_phase is the initial phase angle
offset in encoder counts.

MAKING CONNECTIONS
Figure 3a shows typical connections

for an all-digital sinusoidal commuta-
tion controller, like those available from
motion-card vendors. The digital con-
troller provides two analog output
signals (using a DAC): phase A and B.

An amplifier circuit (on the same
PC board or on a separate board) gen-
erates the phase C signal using the
equation C = –(A + B). This amplifica-
tion technique is used with a current-
loop scheme that converts the analog
voltages output by the motion processor
into torque commands to the motor.

Figure 3b shows a digital controller
using a direct PWM output technique
so three output signals (phase A, B, and
C) are provided. These signals are sent
directly to H-bridge-type amplifiers to
drive the motors.

These amplifiers may be
located on the board or in a
separate amplifier. This tech-
nique is used without a current-
loop circuit, so that the motor
is controlled in voltage mode.

PHASE INITIALIZATION
An important question

concerning the adoption of
software-based sinusoidal
commutation is how the mo-
tor phases are initialized after
powerup. Position feedback is
usually provided by an incre-
mental encoder. On powerup,

no absolute information is available
concerning the correct motor phasing.

This situation presents a serious
challenge to the universal adoption of
encoder-based sinusoidal commutation.
To address this challenge, most digital
controllers support two distinct phase
initialization schemes—the first using
no hardware sensors at all other than
the encoder itself, and the second using
the Hall-effect sensors—in conjunction
with the encoder.

ALGORITHMIC INITIALIZATION
The first method, often called algo-

rithmic initialization, performs a short
phase excitation procedure that applies
power to the motor windings and
observes the motor response. Based on
the settling position of the motor, the
correct commutation can be determined.
This technique provides accurate results
and doesn’t require separate commu-
tation sensors like Hall-effect sensors.

Figure 2 —Here’s the control flow for a typical commutating digital controller. The
torque command is provided manually (motor command register) or by position servo
(PID). Then, the torque command is vectorized into A, B, and C commands and set
to the amplifier using encoder feedback to determine the phase angle.

Motor command register

MTR_OFF

MTR_ONTarget postion
and velocity
(from profile
generator) Servo filter

(PID or PIVff)

Actual position

Actual position
(from encoder)

Phase C
command

Phase B
command

Phase A
command

Motor output
(PWM or Analog ±10 V)

To amplifier

Figure 3a —A controller with
onboard commutation in analog
output mode sends two phase
signals (A and B) to the amplifier.
The amplifier constructs the third
phase (C) using the current loop to
ensure that the sum of the phases is
0. b—A controller with onboard
commutation in PWM output mode
sends three phase signals (A, B, and
C) to the amplifier. Each signal drives
the amplifier’s half bridges directly.
With PWM input, the amplifier
usually runs in voltage mode and
doesn’t perform a current loop.

Phase A Axis 1

Phase B Axis 1

Phase C Axis 1

Phase A Axis 1

Phase B Axis 1

Phase C Axis 1

Motor 1

Motor 2

Axis 1
C = A – B

Axis 2
C = A – B

Phase A 1

Phase B 1

Phase A 2

Phase B 2

Motion
controller

Analog-input amplifier

Phase A Axis 1

Phase B Axis 1

Phase C Axis 1

Phase A Axis 1

Phase B Axis 1

Phase C Axis 1

Motor 1

Motor 2

Motion
controller

PWM-input amplifier

a)

b)

22 Issue 100 November 1998 Circuit Cellar INK®

The disadvantage is that, while
power is being applied, the motor
bumps uncontrollably. And if the load
friction is high or even against a hard
stop, the procedure does not operate
correctly at all. But, most software-
based controllers recognize this condi-
tion because the motor does not move.

Figure 4 shows a phase excitation
sequence used with algorithmic phase
initialization. More complicated se-
quences that try to minimize the
motor movement may be adopted, but
these techniques require the motor to
move at least a small distance.

Algorithmic initialization techniques
that don’t require the motor to move
at all have been explored but are not
yet in common use. These techniques
typically attempt to measure the main
vector angle axis of the inducted
winding voltage when excited via a
fixed frequency of all three windings.

HALL-BASED INITIALIZATION
In the second phase-initialization

method, three Hall-effect sensor signals
for each axis are connected directly to
the digital controller and are used just
during phase initialization.

The advantage is that the motor
phasing can be determined from the
moment the motor is powered on.
Once the Hall-sensor information has
been collected during initialization,
only the encoder is used and the motor
is commutated sinusoidally.

WAVEFORM SHAPING
Sinusoidal commutation is generally

an improvement on square-wave or

Hall-based commutation not only
because of the elimination of torque
discontinuities but also because the
motor torque resulting from sinusoidal
commutation is more linear than the
torque resulting from six-step.

The sinusoidal waveform more
closely matches the optimum wave-
form required by the motor to create
perfectly linear torque output.

But, motors specifically purchased
to be commutated using sinusoidal
commutation do not create perfectly
linear torque output. Figure 5 shows
typical torque output for a motor that
is commutated using sinusoidal com-
mutation at a fixed torque level.

As the graph indicates, the actual
torque output deviates from linear by
5–10%. This deviation represents the
torque ripple that can be expected from
sinusoidal commutation. Six-step
commutation torque ripple tends to
be in the 10–15% range.

Waveform shaping is occasionally
used when the motor characteristics
are consistent and well understood
and when this torque ripple is not
acceptable. The basic technique is to
transform the sinusoidal waveform by
multiplying by a compensating torque
magnitude, thereby linearizing the
resultant torque output. Figure 6
shows this, dramatically exaggerating
the magnitude of the correction.

Although this technique is appealing
and easy to implement, it has several
limitations. First, the torque response
of a given motor may vary as much by

the type of motor, as by each physical
manufactured motor. So, it’s important
to understand the torque variations
over a sample of specific motors to
develop an optimum average waveform.

Also, the torque ripple magnitude
and characteristics may not be propor-
tional to the commanded motor torque
level. As an effect, a compensating
waveform, which is optimal for one
motor torque level, may not be optimal
at a lower or higher level.

Detent torque is an example of such
nonlinearity. Detent torque is a torque
disturbance found in some types of
brushless PM motors. It results from
the magnetic attraction of the magnets
in the rotor to the stator at specific
rotation points.

Detent torque is typically not pro-
portional to the commanded motor
torque operating level, so it can’t be
completely removed this way. How-
ever, it may be possible to lower detent
torque by modifying the waveform in
other ways—for example, a fixed output
offset for each motor position.

OTHER COMMUTATION CHOICES
Sinusoidal commutation as a

method for driving brushless DC
motors has been gaining popularity in
recent years because it offers smoother
motion with no discontinuities in the
power applied to the motor.

Several other commutation tech-
niques are commonly used, each with
a particular domain of applicability.
Understanding the strengths and

Method Advantages Disadvantages

Hall-effect six step Widely used Not as smooth because of
 discontinuous application of
 power through each motor coil

Digitally synthesized sinusoidal Smooth motion; Hall sensors required
 with Hall-based initialization high performance
Digitally synthesized sinusoidal No sensors beyond Motor movement during phase
 with algorithmic initialization encoder required initialization
Resolver-based sinusoidal Commutation circuitry In typical applications, resolvers

 is fairly simple and associated R/D circuit is
 more expensive than the incre-
 mental encoder

Linear Hall-based sinusoidal Commutation circuitry Output of Hall sensors is not
 is fairly simple truly sinusoidal; not commonly

 available
Sensorless (back-EMF) Very low cost; no Will not work at DC; not appro-

 sensors required priate for positioning applications

Table 1—A third method (internal to the motor) also uses Hall sensors but simply packages them on a small circuit
board mounted inside the motor.

Figure 4 —This typical excitation sequence of motor
windings to determine initial phasing uses algorithmic
techniques. The phase-A current increases, holds, and
falls off. Current B goes through the same sequence.
The rotor angle just before the phase-B current angle
determines phasing.

Phase A

Phase B

P
ow

er
 le

ve
l

P
ow

er
 le

ve
l

Time

Time

mtr_cmd

24 Issue 100 November 1998 Circuit Cellar INK®

0˚ 90˚ 180˚ 270˚ 360˚
Phase angle

To
rq

ue
 o

ut
pu

t

weaknesses of each scheme enables
designers to optimize their choice of
commutation techniques.

HALL-BASED COMMUTATION
Hall-based (a.k.a. trapezoidal or

six-step) commutation is the most
common method of commutating
brushless motors in positioning appli-
cations. Figure 7 shows the relationship
of typical Hall-sensor signals to the
resulting current flow through each
motor coil.

Each Hall sensor outputs a binary
high or low value, switched every 180
electrical degrees. The three Hall
sensors may be phased relative to each
other in various ways, but in all cases,
the sensors encode six unique states
per electrical cycle with a resulting
drive waveform as shown in Figure 7.

The advantage of this scheme is its
popularity, as well as its low cost and
ability to operate from DC (motor stand-
still). A disadvantage is the discontinu-
ous current applied through each coil.
At the Hall switching points, position-
ing systems may experience servo
instability or torque discontinuities
because of the abrupt changes in the
power applied to each motor coil.

RESOLVER-BASED COMMUTATION
Resolvers provide sinusoidal infor-

mation about a motor’s shaft position
which is electronically extrapolated
using an IC known as an R/D (resolver
to digital) converter to generate a digital
representation of the motor shaft angle.

One benefit of the sinusoidal signal
output by a resolver is that it can be
used to commutate the motor. An
analog-multiplier IC generates three
phased signals by electronically multi-
plying the unphased torque signal from
the controller with the three phased
resolver feedback signals. This technique
is nearly identical to the all-digital
one except that it’s performed in analog.

The advantages of this technique
are that it is cost effective and accurate.
Additionally, the resolver requires no
phase-initialization procedure.

Its disadvantages are that it is not
fully digital and it depends on analog
circuitry, which may drift over. As well,
off-the-shelf resolvers and their asso-
ciated R/D converter chips are expen-
sive compared with an incremental
encoder of comparable resolution.

LINEAR HALL SENSORS
Another technique uses special Hall

sensors that provide three sinusoidal
output signals that can be used to phase
the motor command using analog
multiplier circuits. The technique
that generates the final motor com-
mands through each coil is identical
to resolver-based feedback.

This technique has the advantage
that it does not require an initializa-
tion procedure. On the other hand,
the analog waveforms output by the
Hall sensors are seldom truly sinusoi-
dal. This situation may distort the
torque applied to each coil, resulting
in increased motor ripple. Also, these
sensors are not commonly available
for most motors.

SENSORLESS COMMUTATION
Sensorless commutation techniques

use information generated by the motor
during operation to determine motor
phasing. The most common signal is

Figure 5 —Even if perfect sine-wave current commands
are sent to each motor phase, the motor’s torque output
may not be linear. The output may be distorted by the
geometry, mechanics, and materials of the motor.

Figure 6a —A pure sinusoidal waveform has
constant magnitude over the entire commuta-
tion electrical cycle, so that M equals M0 at all
times. b—The shaped waveform has variable
magnitude so M does not equal M0 at all
phase angles. The oval modification is shown
here. More complicated modifications may be
required based on motor behavior.

M

M090˚

0˚180˚

270˚

90˚

0˚180˚

270˚

a) b)

Circuit Cellar INK® Issue 100 November 1998 25

Chuck Lewin is chief technology officer
of Performance Motion Devices. He
has been working in motion control
for eight years and designing DSP-
based motion systems for five years.
He has written articles for various
engineering magazines, providing
practical, application-oriented advice
on the implementation of motion-
control systems. You may reach
Chuck at lewin@pmdcorp.com.

SOURCES

MC1231A
Performance Motion Devices, Inc.
(781) 674-9860
Fax: (781) 674-9861
www.pmdcorp.com

5651 motion-control card
Technology 80, Inc.
(800) 545-2980
(612) 542-9545
Fax: (612) 542-9785
www.tech80.com

back-EMF voltage, which is created in
the coil as the permanent magnet of the
brushless DC motors rotates past it.

Presently, sensorless commutation
techniques can only be used when the
brushless motor is rotating, and
therein lies its greatest limitation.
This technique cannot be used for
positioning applications because the
commutation information disappears
at DC when the motor stops moving.

However, it requires no sensors of
any kind and is commonly used in high-
volume applications like disk-drive

spindle control and fan control. For
these applications, try a low-cost IC
that implements sensorless control.

IT’S YOUR CHOICE
I examined the characteristics of a

software-based implementation of
sinusoidal commutation. Because of
the broad applicability of sinusoidal
commutation to brushless PM motors,
it has substantial merit for high-per-
formance motion systems.

Given lowering electronics prices,
the cost of sinusoidal commutation
for systems that already use a position
encoder has become about the same
as for less advanced six-step schemes.

Despite the strengths of software-
based sinusoidal commutation, there
are several alternative schemes that
are worth considering. For a given
application, system cost, desired per-
formance, and sensitivity to distur-
bances, among other factors, play an
important role. Table 1 summarizes
the techniques I discussed.

Which commutation technique
will work best in your application?

Figure 7 —The typical phase excitation sequence for
Hall effect–based commutation is shown here in six
steps. Three Hall sensors determine the phase output
at any given phase angle.

90˚ 180˚ 270˚ 360˚

Phase A Phase B Phase C

Hall A
Hall B
Hall C

That depends on many factors that
only you can judge. I

26 Issue 100 November 1998 Circuit Cellar INK®

Web-Implemented
Irrigation System

FEATURE
ARTICLE

Chris Sontag

y
Tired of relying on
the weatherman in
this El Niño year?
Chris is, too. After
seeing all those
automatic sprinklers
working in the rain,
he decided to hook
up a controller to the
’Net for live updates,
making this device
truly intelligent.

ou’re driving in
a rainstorm that’s

been going all day and
pass a house or business

with its automatic sprinklers watering
the lawn. So much for water conser-
vation (a perennial topic of discussion
during non-El Niño years in the arid
desert climes of the Western U.S.).

No doubt, the building’s owner set
the automatic sprinkler timer to start
watering the lawn on a preset schedule,
and the microcontroller in the sprinkler
control unit obediently turned the
sprinklers on—rain or shine. The owner
is either too far away to change the
device or the process of changing the
program at the device is too complex.

Somewhere along the line, we
started calling even the simplest elec-
tronic devices “intelligent.” But if
electronic devices are really intelligent,
why do they water the lawn when it’s
raining? These devices are only as smart
as the information they’re given.

A truly intelligent device should
accept dynamic information and make
adjustments based on that information.
It may even take forecast information
and weigh decisions based on what is
likely to happen in the future.

You might argue that this ability
takes far too much capacity to build
into simple devices like a sprinkler
timer with an 8-bit microcontroller.

But, adding a 32- or 64-bit micro would
drive the price out of range for the
consumer market. So “intelligent”
devices continue to be unintelligent,
and we run to the sprinkler controller
whenever it rains.

But what if you could connect a
simple device to dynamic information
without adding resources to the device?
A sprinkler controller that monitors
environmental conditions or forecast
information and changes its actions
based on that information would save
money and be politically correct. The
device would be educated with updated
information, making it truly intelligent.

INTELLIGENT ARCHITECTURE
To make a sprinkler system intelli-

gent, you need three things. You need
an interface to enable easy access and
control of the device from anywhere.

You also require a way to gather
and analyze current environmental
conditions as well as a decision-mak-
ing process to adjust the device based
on current information. Also, a solu-
tion based on Internet standards makes
the interface user friendly and easy for
the device manufacturer to implement.

Using emWare’s EMIT (Embedded
Micro Internetworking Technology)
software, I can put an intelligent system
into place. EMIT includes five modular
software components:

• emMicro, a compact, special-purpose
micro web server that requires less
than 1 KB of device memory

• emNet, a message-based protocol
that combines packet and stream
interchange

• Microtags, preprogrammed packets
that define device controls (e.g.,
switches, buttons, LEDs)

• emGateway, which expands Micro-
tags into their full parameters

• emObjects, a library of JavaBean
components consisting of visual and
utility objects

These components work together to
create a dynamic user interface without
requiring extensive resources from the
device itself. Figure 1 shows how
these components work together.

EMIT software is placed in three
areas—on the device, in a gateway

Circuit Cellar INK® Issue 100 November 1998 27

browser, and at a user
interface. The device is
embedded with emMicro,
Microtags, and emNet, as
well as variables, functions,
events, and documents.

The user interface is a
standard web browser,
enabling access via a Java-
enabled GUI. The browser
communicates with the
gateway, which sends
information to and pulls
information from the device.

Between them lies the
key to networking small
devices to the Internet.
Using emGateway mini-
mizes resource require-
ments at the device by
moving the workload to the client
side of the equation.

When a user requests the device
interface from a web browser, the
browser sends the request to emGate-
way, which translates the high-level
request and sends it to emMicro at
the device. emGateway receives infor-
mation through the Microtags built into
the device, and substitutes each Micro-
tag with a corresponding emObject.

emObjects are JPEG or GIF images
or Java applets that represent device
controls to the browser. The page with
the substituted emObjects is then sent
to the browser.

EMIT components process user
requests to view and set device infor-
mation, dynamically representing the
results on the desktop. For example,
users may ask to turn a sprinkler valve

from off to on. The browser then in-
vokes emGateway, which sends the
request to emMicro at the device.

When emMicro receives the request,
it causes the device’s microcontroller
to flip the valve switch. Because device
information has changed, the state of
the embedded device changes, so a state-
change message is sent to any interface
emObject (component) monitoring
affected variables. The interface now
shows the valve state as on.

In addition to the 1-KB emMicro
web server, this application is about
900 bytes. If you have to build physical
interface logic onto the device (LCD,
buttons, switches, etc.), you need
another 2–4 KB of program space.

For applications on devices with
larger processor capacity, the emGate-
way requirements can be moved to

the device. But for this
example, you can mini-
mize device requirements
to reduce expenses.

ADDING SMARTS
The EMIT components

enable control of the
system through a GUI
from anywhere at any
time. Now we need to
add information to educate
the device regularly, allow-
ing the sprinkler system
to water proportionally—
less in the spring and more
in the heat of summer.

Because the device has
Internet connectivity
built in, it can check the

National Weather Service’s web site
for precipitation information and
forecasts. For more accurate informa-
tion, you can connect the system to
temperature sensors, moisture probes,
and wind monitors at the property.

Using the forecasts, you can program
the device to water in the early morning
hours of hot, dry days, providing the
necessary moisture to the lawn and
avoiding heavy evaporation that comes
from watering in the heat of the day.
On days with rain in the forecast, the
sprinklers could automatically shut off.

When your computer is off or the
sprinkler system is unable to access
the Internet or weather-station infor-
mation, the system simply defaults to
its regular schedule or to user input.

You can even program the device
to weigh current data (temperature,
humidity, rainfall, etc.) against fore-
casts. For example, if the day is hot
and dry, but the forecast calls for a
heavy storm at night, the device can
postpone watering and let the coming
storm take care of the lawn. On days
when the predictions are wrong, you
simply call up the sprinkler interface
and reset the sprinklers.

The sprinkler interface allows for
customized usage in other ways. For
example, you can turn off the system
for a few hours to accommodate an
unexpected thunderstorm or turn the
system on if an expected storm fizzles
out. On the other hand, if you’re away
from home (or forgetful), the sprinkler

Figure 1 —The EMIT distributed architecture moves the majority of resources away from the
device, providing full Internet networking for devices with microcontrollers as small as 8 and
16 bits. The flexible architecture, with emGateway as the key, meets a variety of solutions
and implementation needs.

emGateway

emWare-Enabled
Device

Device
Application

emNet

RS-232

RS485
Ethernet

Etc.

RS-232

HTTP Server

emObjects
(served if not

installed on the
browser

Device Access
Service

Device Link
Module

emNet

Device 1
Device 2

Device 3
Device n

emObjects

Web Browser

HTTP Requests
HTTP Client

*Dynamic
Expansion

Java
Run-time
Interface

JavaScript

*Future Implementation

Device Access Libary
Optional access to the Device

Access Service from C, command-
line, or custom network applications

Control
Process &

Display
Functions

Events

Variables

Documents

Microtags

Internet

Listing 1 —This code is part of the applet’s definition of notifyChange, which is called whenever a
variable is changed at the interface, showing the interactivity between the device and the interface.

public void notifyChange(String variable, Object value){
 if(variable.equals("Sec")){
 seconds = ((Integer)value).intValue();
 timeDisplay.setSeconds(seconds);
 }
 else if(variable.equals("Hrs")){
 hours = ((Integer)value).intValue();
 set_hours();
 }
 else if(variable.equals("Min")){
 minutes = ((Integer)value).intValue();
 timeDisplay.setMinutes(minutes);
 }
}

28 Issue 100 November 1998 Circuit Cellar INK®

The clock has two main software
components—an interrupt-service
routine (ISR) and the clock routine.
The 8051’s hardware timer 0 executes
the ISR once every 10 ms. The ISR
must reset the hardware timer for the
next interrupt and account for inter-
rupt latency, which would cause the
clock to drift off.

Unfortunately, the 8051 architecture
doesn’t support a 16-bit auto-reload
mode, which would make it unneces-
sary to correct for interrupt latency.
This situation isn’t hard to correct.

Because T0LOW (an 8051 special
function) is small (zero), there’s no
real possibility of a rollover when the
addition is done and, therefore, no
reason to account for a carry into the
upper portion of the counter. The most
important thing the ISR does is set the
bit variable called temMSbit, which
tells the real-time clock routine that a
time tick occurred.

The clock routine is responsible for
counting the ticks created by the
ISR. Basically, it just counts hours,
minutes, seconds, and days, and it
sets a few bits here and there to tell
other routines when to operate.

For instance, once every minute,
the bit variable CheckWater is set.
This way, the alarm-clock routine
knows to check all the scheduled
watering times to see if any are
supposed to begin.

There are two day counters.
One is used for watering schedules
based on the day of the week (Mon-
day through Friday) and the other
handles periodic watering (every
other day, every third day, etc.).

The counting routine is called by
the main calling loop in a round-
robin multitasking methodology.
It is called much more frequently
than the 10-ms rate of the timer
ISR, so it is sure not to miss a tick.

Whenever the ISR sets temMSbit,
the clock routine increments its
clock registers as necessary. It then
clears temMSbit so it won’t respond
more than once to each tick.

PROGRAMMING BRAINS
Three main steps were involved

in integrating EMIT software into
the sprinkler-system application:

device is intelligent enough to turn back
on to a preset schedule after an allotted
time without receiving any data input.

PUTTING THE PIECES TOGETHER
Everything sounds good in theory.

But what about putting this smart
device in place?

In addition to about $20 worth of
garden-variety sprinkler components,
I used an AT89C2051 microcontroller.
This 20-pin 8051 derivative from Atmel
includes 2 KB of program space.

I installed an RS-232 transceiver to
provide external communications. The
software handles a real-time clock/
calendar and an alarm clock that se-
quences throughout the program and
manages the watering start times.

The emMicro module provides a
remote interface for manually pro-
gramming the system and customizing
watering schedules. One of the beauties
of the remote interface is that it can
be easier to use than the physical

interface on the device itself. Some
sprinkler controls seem to require a
college course just to get your lawn
watered at the right time.

A serial EEPROM device stores
interface documents and program
times in a nonvolatile array to ensure
that the device retains essential infor-
mation if it loses power. A 9-V battery
serves as a power backup to keep the
clock running during a power failure.

All you need onboard is the micro-
controller and the hardware it needs
to turn on 24-V AC devices. I used a
74HC138 decoder so eight valves could
be controlled using three lines from the
microcontroller. The schematic provides
for an additional decoder that gives
control for up to 16 valves (see Figure 2).

Figure 3 shows the programming
logic. As I mentioned, the real-time
clock/calendar was implemented
completely in software, and it uses
the microcontroller’s 18,432-MHz
crystal as its time base.

Figure 2 —The connections made in the emWare sprinkler controller enable external information to control the function of
sprinkler valves.

Circuit Cellar INK® Issue 100 November 1998 29

• include the emMicro code module
in the application

• create the resource tables
• insert calls into the entry points of

emMicro

The first task is usually handled via
an include statement placed after
the application code.

Information about the application
is specified for the browser interface
from the resource tables. Creating the
resource tables is just a matter of edit-
ing the example tables included with
EMIT to match the application’s needs.

For example, my sprinkler controller
primarily uses the variable table to
make a large number of variables (e.g.,
Hrs, Min, and Sec) visible to the web-
browser interface. These tables tie the
browser interface to the microcontroller
application. Listing 1 presents a section
of the variable table.

The structure of each table is similar.
The first byte is the number of elements
in the table. This sprinkler controller
uses 37 variables, so the first byte in
the variable table is 37.

Next, EMIT components process
user requests to view and set device
information. There are two bytes to
describe the type of each variable (byte
or word) and whether the variable is
read-only or read/write.

Finally, variable names are placed
into the table in the form of NULL-
terminated strings. Other tables specify
events, functions, static documents,
and capabilities. Once these tables are
created, they are included at the end of
the application source code either via

Figure 3 —The programming logic centers around the
main calling loop, which receives information from and
transmits information to other controlling elements of
the device.

include statements or by directly
including the tables.

Placing calls to the emMicro entry
points is straightforward because there
are only two. However, there are some
rules that applications must obey.

One entry point is the serial port
interrupt vector entry. emMicro has
its own serial ISR, but the vector has
to be installed into the microcontrol-
ler’s main vector table. The other entry
is the main emMicro entry (called
emMicroEntry).

For an application to coexist with
emMicro, the application must be
written using a cooperative multi-
tasking methodology. Each process,
including emMicro, is called by a
main calling loop, and it must respect
all the others by releasing the process
control back to the calling loop in a
timely fashion.

“Timely,” of course, depends on how
often each process really needs to have
the processor’s attention. emMicro
must be called at least often enough
to receive each character from the
serial port.

Main
Calling
Loop

Manual
Control

Real-Time
Clock

Schedule

Valve
Control

emMicro

Valves

30 Issue 100 November 1998 Circuit Cellar INK®

No process should ever stall the
processor in a tight loop waiting for
some event to happen. That’s what
interrupts are for.

The only other rule is that no process
should get exclusive use of the CPU
registers. Each process can use them
without regard to their previous state.

This design has several advantages.
First, the clock is set from the browser.
Not a single line of code in the micro-
controller application is occupied with
how the clock is set. Also, all the con-
figuration parameters are adjusted
without any code in the microcontroller.

Forcing the browser to display new
information (or fancy graphics) is as
easy as changing the value of a variable
in a resource table. If the microcontrol-
ler application calls for a special func-
tion to be executed when a button is
pushed on the browser interface, you
only need to write the code for the
function. emMicro executes it for you.

BUILDING AN INTERFACE
Little code was needed to interface

to the controller, since EMIT provides
prebuilt emObject interface components
and handles the communication details.

To simplify the task further, I used
Symantex’s Visual Café and integrated
the emObject components with the
existing component toolkit. This way,
I could select the objects from the
component palette, add them directly
to the applet, and easily manipulate
layout and component properties.

The heart of the applet is an invisible
object called emitjri (EMIT Java Run-
time Interface). A new emitjri object
is configured to communicate with
this controller, which has a manufac-
turer ID of four and a device ID of 11.

All emObjects are passed a reference
to the emitjri object. This way, em-
Object events can directly set variables
on the embedded controller. Changes
in embedded variables can also change
emObject properties directly.

emitjri also contains function calls
that enable the applet to directly set
and get embedded variable values, as
well as registering a callback to be
notified when an embedded variable
value changes.

An example of an emObject directly
controlling an embedded variable is

the watering on/off image switch.
This object displays one of two im-
ages depending on its state (active or
inactive).

You can establish the connection
between the image switch waterOnOff
and the embedded variable Water. So,
whenever an ActionEvent occurs
(when the switch is pressed and re-
leased on the interface), the event
value (True or False) sets Water.

The embedded-controller clock is a
good example of communicating vari-
able state change to the display applet.
The embedded variables Hrs, Min,
and Sec change regularly, and these
changes need to be relayed to the applet.

You may set up the callbacks for
the embedded variables. Whenever the
variable values change, notifyChange
is called with the variable name and
the new value. Similarly, we could

have omitted the NotifyChange
callback for Sec by setting a direct
link between Sec and the emObject
timeDisplay (see Listing 2).

Since emitjri handled the commu-
nications requirements, the majority
of the coding effort was spent defining
event-handler functions. Whenever a
button is pressed, text entered, list
items selected, checkboxes checked,
and so on, events are generated. The
event-handling functions for 24-/12-h
clock, A.M./P.M., and day select are
characteristic of many event handling
functions that had to be created.

Many features were built into the
user interface (see Photo 1) that could
not easily be accomplished via hardware
or by defining the interface completely
within the embedded controller. The
size of the applet increased to approxi-
mately 75 KB, but the controller and

Listing 2 —Events are generated every time an action is taken at the interface (e.g., text entered, boxes
checked, items selected). This code describes the event-handling functions for the 24-/12-h clock, A.M./P.M.
selection, and day selection.

// select 24-h clock mode
void hr24RadioButton_Action(Event event)
{
 // get value of embedded variable "State"
 Object object = emJri.getJSJriVariable("State");
 int state;
 // disable am/pm buttons
 amRadioButton.enable(false);
 pmRadioButton.enable(false);
 isClock12 = false;
 state = ((Integer)object).intValue();
 /* instead of using a separate variable (wasted resource) to
 hold clock mode, set bit 0 of the State variable to indicate
 24-h clock mode. */
 emJri.setJSJriVariable("State", new Integer(state | 0x0001));
 set_hours(); // update clock
}

// change clock to am
void amRadioButton_Action(Event event)
{
/* reset embedded variable "Hrs." Device runs in 24-h mode so
 subtract 12 from current hour. Since there is a JriLink to
 this variable, notifyChange will be called and complete the
 clock update */
 emJri.setJSJriVariable("Hrs", new Integer(hours-12));
}

// set current day
void dayChoice_Action(Event event)
{
 int day = dayChoice.getSelectedIndex();
 /* set current day from 0 to 6 depending on the selected item */
 emJri.setJSJriVariable("Days", new Integer(day));
 dayLabel.setText(dayNames[day]);
}

32 Issue 100 November 1998 Circuit Cellar INK®

networking platform, which includes
access to the Internet.

Intelligent devices are a reality, so
long as we are intelligent enough to
connect those devices for continuing
education. I

support interface hardware costs were
reduced.

The end result is a Java class file
that we can compress onto a 32-KB
EEPROM and serve from the device.

Photo 1 —The GUI can match the device interface or add to the
functionality available on the device. This weather-station interface
provides an easy, intuitive view of weather conditions, enabling the
user to see the impact of changing data on the device functions.

Or, emGateway could serve
the client the prestaged class
file along with the standard
set of preinstalled emObjects.

EDUCATION IS POSSIBLE
When the PC came out, its

intelligence was amazing. But
the PC only truly became
intelligent when it was net-
worked with other devices
and connected to the Internet.

Embedded devices are fol-
lowing suit. Their limited
intelligence expands as they
connect to the Internet and
other networks.

This isn’t just a vision for
devices with 32- and 64-bit
micros with their extended
memory and costs. And, you
don’t have to settle for a
stripped-down web server.

Tremendous potential still exists
in the 8- and 16-bit microcontroller
market. That growth will continue as
devices using these smaller MCUs are
connected through a complete device

SOURCES
EMIT V.2.5 Software Developer Kit
emWare Inc.
(877) 4-emWare
(801) 256-3883
Fax: (801) 256-9267
www.emware.com

AT89C2051
Atmel Corp.
(408) 441-0311
Fax: (408) 436-4200
www.atmel.com

Chris Sontag is chief technology of-
ficer and a cofounder of emWare. His
areas of expertise include networking,
security, X.500-based directory ser-
vices, embedded systems, and inter-
nationalization. You may reach Chris
at csontag@emware.com.

34 Issue 100 November 1998 Circuit Cellar INK®

Smart Building-Control
Applications

FEATURE
ARTICLE

Beau Wadsworth

i
Dreaming of those
smart buildings of
the future? Well, it’s
time to wake up.
Beau’s powerful
machine-learning
software figures out
building occupancy
patterns, yet it’s
simple and small
enough to run on any
microcontroller.

f you’re like me,
you’ve been wait-

ing a long time for
the arrival of the smart

building. In theory, our homes and
offices will be outfitted with intelligent
lighting and energy-management sys-
tems that learn our habits and adapt
to our needs.

Many people have done research on
advanced building-control software
using the PC, or some other “large”
platform, intent on building a truly
intelligent system. However, there
haven’t been that many applications
deployed in the marketplace.

In this article, I want to show you
a software technique that exhibits
machine learning but in a small, simple
implementation that runs on any
microcontroller. The algorithm tries
to understand the comings and
goings of people and to anticipate
when they might arrive next so
it can provide advance heating,
cooling, lighting, and so forth.

NOT-SO-NEW TECHNOLOGY
This type of intelligent build-

ing software was first used, I
believe, in certain HVAC con-
trollers as far back as 1987.
Used mostly in the lodging in-
dustry, these controllers are

designed to squeeze every ounce of
energy savings while providing ad-
equate comfort.

In my application, the software is
divided into two major components.
The Occupancy Detection Unit (ODU)
must recognize not only when the area
is actively occupied and when it is not
occupied, but also when the area is
occupied by inactive occupants, who
may be resting or sleeping.

The Pattern Learning Unit (PLU)
records the occupancy history for the
area and predicts the next arrival.

OCCUPANCY DETECTION UNIT
The ODU provides the information

that the PLU uses to predict future
activity. It may seem like a no-brainer
to detect occupancy in software (assum-
ing hardware input like a motion detec-
tor), but the task is tougher than it
looks. In fact, it’s difficult to know for
sure that no one is in the area.

The problem is this: when motion
activity ceases for a period of time,
how do you know what happened?
Are the occupants gone? Is someone
there who is simply inactive? The
solution is to detect two different
types of activity—interior activity and
entry/exit activity.

As shown in Figure 1, you can
accomplish this task by monitoring the
door(s) of an area (via door switches
used in the security industry) and also
monitoring the interior of the area via
motion detection. Any time an entry/
exit door is opened, this signals a
potential change of occupancy.

As Figure 2 illustrates, it’s not hard
to figure out whether people are coming
or going. If there is no motion detection
following activity at the door, then
someone must have left.

Figure 1 —A combination of entry/exit-door and interior-motion
information gives the needed results.

Entry/Exit
Door

Motion Detector

Path

To Other
Areas

Circuit Cellar INK® Issue 100 November 1998 35

indicates clearly what the occupancy
pattern was for that day.

THE MOMENT OF TRUTH
The core technique at work in the

PLU is to take the record for the same
day of the previous week and use it to
predict the occupancy for the current
day. It’s well worth keeping a week’s
worth of records since human habits
center around a weekly pattern.

The process of putting the data to
work is straightforward. Once every
hour, at the same moment when the
current occupancy state is recorded in
today’s record, the record for that same
day in the previous week is evaluated.

At this moment of truth, the algo-
rithm looks ahead in the record to see
if there is any expected occupancy. It
only needs to see a couple of bits in
the data from the previous week—the
ones that indicated the occupancy
state in the next two hour slots.

These bits tell us if the area was
occupied a week earlier during the
upcoming couple hours. Whenever the

this in Figure 2a as the overshoot
relative to the door timing.

This problem forced me to add a
blanking window to the algorithm so
that the real search for motion is
delayed by a few seconds. A value of 6 s
works well. Any more than that and
the algorithm often fails to detect when
someone arrives and passes through
the motion-sensing area too quickly.

In that case, the system sees the
arrival but turns around and looks for
evidence of someone leaving (remem-
ber, door operation starts the test pro-
cess). When the system sees no motion
activity, except what took place during
the blanking period, it assumes the
person left again. So, the blanking
window has to be set carefully.

As well, a false unoccupied state
can be declared when someone leaves
the area while another person, who
has been inactive all along, is hidden
from motion detection. Clearly, be-
cause of this weakness, the technique
should be used with great care.

Many types of automatic responses
(e.g., arming a security system) should
not be implemented. While the sys-
tem’s performance can be increased
by adding more motion detection,
there’s always the possibility (espe-
cially where occupants may be sleep-
ing) of a misfire.

PATTERN LEARNING UNIT
Once the ODU has a good idea of

the occupancy state, you can put this
information to use. The PLU makes a
continuous record of the occupancy
state using a simple encoding means.

Three bytes contain a total of
24 bits, each of which can represent
the occupied or unoccupied status for
any one hour in a day. Under this
method, any one-day record can be
encoded in three bytes. An entire week’s
worth of data takes only 21 bytes.
Later, I’ll show you how this encoding
method makes it easy to compare
occupancy patterns.

As I mentioned, in this implemen-
tation, the system doesn’t even know
what the actual time is. It simply
starts recording time from powerup
and notes the passing of hour, day,
and week increments. As shown in
Figure 3, a record for any given “day”

Conversely, if motion detection
simply ceases without any door activ-
ity, then the area is not really unoccu-
pied. Instead, the occupants must have
retired to an inactive state even though
they are still in the building or area.

The accuracy of this method is tied
directly to the quality of motion-detec-
tor coverage—the more the better. In
a house or small office, simply covering
the main traffic area gives good results.
Using motion detection in every room
gives near-perfect performance.

In the algorithm, the search process
starts when the entry/exit door is
used. After the door closes, we look
for motion for a period of time. If
there is activity, then clearly someone
is still on the premises. If not, then
you may declare the area unoccupied.

The time period used can vary, but
a good figure is in the 10-min. range.
The delay period is a trade-off. Too

little time and you find that the area
is frequently declared unoccupied,
only to have this decision reversed a
short time later when an occupant
emerges from some back room. Too
much delay time, and energy savings
are reduced while the algorithm waits
for occupants who may never appear.

One issue affecting the ODU is the
phenomenon of slow motion-detector
release. The occupancy-detection
algorithm looks for motion detection
as soon as the door closes. However,
some motion detectors stay tripped
for a relatively long time after motion
ceases (up to 6 or 8 s), which causes a
problem when the slow motion detec-
tor is located near the entry/exit door.

While leaving, the occupant trips
the detector, opens the door, steps
out, and closes the door. Unfortunately,
the motion detector is still triggered
even though the occupant has stepped
out and closed the door! You can see

Figure 2 —From the timing relationships, it’s easy to
see when occupants leave or arrive. a—In the leaving
situation, an overlap can occur which must be accounted
for in software. b—This graph shows an arrival.

Figure 3 —Here’s a typical occupancy history record for
a 24-h period. This system doesn’t even know what the
actual time is. It simply starts recording at powerup and
rolls over 24 h later. Each day-long record is matched
against previous records.

Overlap

TimeM
ot

io
n

D
oo

r

TimeM
ot

io
n

D
oo

r

b)

a)

24 h0 h

Occupied

Unoccupied

Figure 4 —The system keeps track of previous patterns.
Short Term Memory is the most recent 24-h record.
Long Term Memory is a week-long record that remains
semipermanent. Five temporary slots hold unusual
records.

Temporary
Records

Temp 1

Temp 2

Temp 3

Temp 4

Temp 5

Day 1

Day 2

Day 3

Day 4

Day 5

Day 6

Day 7

Long-Term Memory
(Permanent Records)

Current Memory
(Short Term)
Previous 24 h

36 Issue 100 November 1998 Circuit Cellar INK®

Enter

No
Match today’s record

in LTM?

Yes
Store as
new LTM

Exit

Compare against
all temp records

High-scoring temp record
scores at least 18?

Store in oldest
temp location

Store as
new LTM

Second time for
same record?

No Yes

NoYes

ExitExit

scores for patterns that really are
similar, while producing nothing for
patterns that aren’t all that much
alike. Shifting both to the left and to
the right and then looking for a score
of at least 23 out of 24 gives a good
assurance of a similar pattern.

If the record is not deemed similar
enough to the LTM record for that
weekday, it is compared to the five
temporary records. The comparison
with the temporary records is similar
to that for LTM records, except that
the shifting process is not employed
and the current record is compared to
all five temporary records with the
score of each comparison being noted.

The highest-scoring comparison
that scores at least 18 is taken as a
match. A current record that fails to
match any record is deemed a new
temporary record, overwriting the
oldest one in memory.

If a given record does match a tem-
porary record, a quick check is done
to see if the same thing happened last
week. If the record matches the same
miscellaneous record for two weeks
running), that record wins a place as
the LTM for that weekday.

I should note that the algorithm
also checks for a completely unoccu-
pied state during the current record’s
24-h period. Whenever there is a match
with the unoccupied profile, a counter
is incremented. If this happens for three
consecutive days, all system learning
is suspended (i.e., vacation detection).

as an engineering ap-
proach. Here, “fuzzy”
means that the software
is able to recognize pat-
terns even when patterns
don’t match exactly.

The algorithm also
recognizes when the
building is unoccupied
for an extended period
(vacation detection) and
suspends all pattern
recording and anticipa-
tion until the building is
normally occupied again.
The original patterns are
retained until they are
needed again.

The fuzzy recognizer makes a series
of comparisons that each day’s record
is put through in an attempt to gauge
its validity. Figure 4 shows how previ-
ous records are stored in memory.

Long-term memory (LTM) is a semi-
permanent record, one week long. If a
current record passes muster, it re-
places the existing record for that
particular weekday in LTM.

There are five additional slots for
temporary records that did not match
anything at the time they appeared.

The temporary records are key in
the process of learning new patterns.
Anytime a current pattern matches
the same temporary pattern for two
weeks running, the system assumes
that it’s seeing a new schedule for
that weekday.

Figure 5 shows a block diagram of
the matching process. Each day’s
record is compared to the same day’s
record in LTM using a pattern-match-
ing process. As shown in Figure 6, the
two patterns are compared bit by bit
with the total number of like bits
being noted.

Clearly, if all 24 bits are the same,
the patterns are exactly alike. The
tricky part is recognizing patterns that
are very similar but not exactly alike.

The approach used here was to shift
the patterns one bit position relative
to each other and then measure the
score again. This technique tells us if
the patterns are similar except for
being offset somewhat.

As you see in Figures 6a and 6b,
the shifting process can yield higher

building is unoccupied, it’s simply a
matter of testing the next two hour
bits, and voilà—we have anticipation.

Using this method, with 1-h reso-
lution, accuracy is ±1 h. That’s why
the anticipator looks at the next 2 h of
last week’s record. If it only looks 1 h
ahead, it could err on the minus side
all the way down to (almost) zero
anticipation. Using 2 h gives it a perfor-
mance range of 1–3 h of anticipation.

The range can easily be decreased
by using a higher resolution system-
wide. For example, records can indi-
cate half-hour increments instead of
an hour. This technique uses double
the amount of RAM but has an antici-
pation range from 30 to 90 min. The
beauty of this method is that any
resolution can be used and the imple-
mentation stays pretty much the same.

A FUZZY RECOGNIZER
It may seem like the PLU was rela-

tively easy to construct. Unfortunately,
the algorithm is still not very smart.

Even though it predicts the arrival
of occupants with some success, it
records and acts on any and all patterns
that arise, regardless of how atypical
they may be. To build a sturdy machine
that only recognizes typical patterns,
a more complex mechanism is required.

The software approach that tran-
scends the basic PLU is a sophisticated
fuzzy recognizer that verifies the ordi-
nariness of a pattern before commit-
ting it to memory. Note that I’m
using the term “fuzzy” loosely. It
does not refer to the use of fuzzy logic

Figure 5 —This block diagram shows the overall strategy. The current day’s
record is compared to various patterns in an attempt to find the best match.
It looks first for a close match with the most likely element—that day’s record
in LTM. Failing that, it looks next for a sufficiently high score with any of the
temporary records.

b)

a)

Figure 6 —When patterns are compared, each bit
position is checked and the number of matching bits are
counted to yield a score. Shifting the patterns one bit to
the left and to the right tells us if the patterns are similar
but simply offset by an hour or so.

24 h0

Shifting the patterns while taking the score
yields extra information

Unshifted Score = 21
Shifted Left = 23

Shifted Right = 19

24 h0
Unshifted Score = 21

Shifted Left = 19
Shifted Right = 19

38 Issue 100 November 1998 Circuit Cellar INK®

look similar (like two combs) but that
are almost opposite in timing.

Needless to say, this mode of op-
eration is unlikely because of the
rarity of a comb-like pattern arising in
normal circumstances. And even if
the comb problem appeared, it may be
irrelevant because the anticipator
looks ahead for some time.

In other words, if the area saw very
frequent occupancy changes, the antici-
pator ends up expecting arrival pretty
much all the time. Fortunately, this is
the behavior you want anyway, so the
comb problem is fairly benign.

SYSTEM RESOURCES
In case you want to set up a similar

system, you can download the source
code for the PLU. However, I didn’t
include code for the ODU. It is inter-
twined with the application software
and would have been difficult to use
in that form.

The PLU takes only a few hundred
lines of assembler code, which trans-
lates to about 750 bytes of storage on
an 8-bit micro. In terms of execution
time, the worst-case condition takes
about 1800 instructions.

On an 8031 running at 12 MHz,
that equates to about 5 ms to run the
PLU thread. This light load is further
eased by the fact that the bulk of the
PLU thread only runs once per day for
an execution overhead of roughly
0.0000057%. So, the PLU can be easily
integrated into an application without
burdening system resources.

I hope you’ve seen how straightfor-
ward it is to set up intelligent building-
control applications. Now you’re ready
to take us into those smart buildings
we’ve heard about for so long. I

they are adopted as the new permanent
record.

BUT DOES IT WORK?
The system performed very well

during informal testing. As expected,
the algorithm learns occupancy patterns
within a maximum of three weeks.

When schedule changes are slight,
the system doesn’t change for the
following week. When given a markedly
different pattern, the software waits a
couple weeks before adopting the new
pattern into its permanent record.

Because the algorithm is verifying
the pattern’s validity in the second
week, it’s too late to act on it even if
it passes the test. In the third week, the
anticipator responds to a new pattern.

This algorithm has one weak spot.
When the patterns contain a large
number of alternately occupied and
unoccupied periods, as Figure 7 shows,
the algorithm is threatened by what I
call the “comb problem.”

The problem is that the shifting
process used in the matching algorithm
can yield a high score for patterns that

Figure 7 —The comb problem can yield “matches”
between records that appear similar but actually are
almost opposite.

24 h0
Unshifted Score = 0
Shifted Score = 24

SOFTWARE

The source code for the PLU is
available on the Circuit Cellar
web site.

Beau Wadsworth has been designing
embedded systems since 1983. His
company designs and manufactures
products on an OEM basis for the
security and home-automation indus-
try. You may reach Beau at (423) 689-
8851 or at b_wadsworth@nxs.net.

Through this pattern-matching
process, a delicate balance is created.
If a pattern is similar to patterns for
that weekday in the past, the new
pattern is immediately adopted as
permanent. This technique enables
quick adjustment to changes like
Daylight Saving Time.

If the pattern isn’t similar enough
to adopt immediately, it is compared
to previous unusual patterns. If there
is a match with one of these for at least
two weeks running, then that pattern
is taken as the permanent record.

As a result, slight pattern changes
are adopted immediately, while anoma-
lous patterns are ignored unless they
persist for several weeks. In that case,

40 Nouveau PC
edited by Harv Weiner

44 All BIOSs are Not Created Equal
Scott Lehrbaum

49 Real-Time PC
Embedded RT-Linux
Part 1: General Introduction
Ingo Cyliax

57 Applied PCs
emWare Top to Bottom
Part 1: Monitoring via the Internet
Fred Eady

P
h
o
to

 c
o
u
rt

es
y
 o

f
em

W
a
re

CIRCUIT CELLAR INK NOVEMBER 199840

N
PC

PCNouveau
edited by Harv Weiner

MOTION-CONTROL DEVELOPMENT SYSTEM
MotionObjects is an object-oriented application that turns a

Windows 95 or Windows NT computer into a digital oscilloscope
and motion-control development system. It complements Westamp’s
SP2k-series multiaxis digital-positioning brushless servo driver.
Three main development tools help program and fine-tune the
SP2k servo drivers—MotionEditor, MotionLink, and MotionScope.

MotionEditor is a program editor that enables the user to drop
in text and edit it into a usable program. Working in conjunction
with MotionEditor, MotionObjects offers a compiler that enables
the user to code in a highly intuitive, procedural, and object-
oriented language.

MotionLink lets the user speak directly to the hardware from
any Windows 95– or NT–based PC. Using an RS-232 cable, the
user can download or upload a program into the SP2k or similar
servo drivers.

MotionScope is a feature-rich graphics-plotting tool used to
evaluate and optimize system performance. The data files may be
saved for later retrieval, plotting, printing, and analysis.
MotionScope plots command speed (programmed speed), actual
speed, and following error. Tuning variables include integral
gain, derivative gain, velocity feed-forward gain, and accelera-
tion feed-forward gain enabling the programmer to fine-tune the
SP2k servo driver for optimal performance.

MotionObjects sells for $395 with the purchase of the SP2k-
series digital-positioning brushless servo driver.

Westamp, Inc.
(818) 709-5000
Fax: (818) 709-8395
www.westamp.com

SUPER-FAST CPU BOARD
The VME64 (V2P2) and CompactPCl

(C2P2) are believed to be the industry’s fastest
SBCs. Both feature a pair of Pentium II Deschutes

processors operating at speeds up to 450 MHz (550 MHz
in the future). Each processor is equipped with up to 512 KB

of level-2 cache to maximize memory-access performance.
The two processors share up to 1 GB of 100-MHz synchronous

DRAM main memory. The processors, cache, and memory are
linked via a 100-MHz FSB Local bus, which supports the 450-MHz
Deschutes processors as well as next-generation 550-MHz Katmai
processors. The boards incorporate Intel’s 82443BX and the 640
Advanced Graphics Processor. The DEC 21554 Draw Bridge Chip
is included on the CompactPCI version to enable multiprocessing.

The boards also include dual Ethernet interfaces (twisted pair)
operating at 10 or 100 Mbps, a 40-MBps ultra-wide SCSI interface
with auto-termination, and a 64-bit AGP graphics engine with 8 MB
of video RAM optimized for 3D rendering. Also available are two
ultra-DMA 33 IDE interfaces, a pair of USB ports, and a parallel port.

For applications that must be deployed without a rotating hard
disk, the boards provide 72 MB of M-Systems’ DiskOnChip flash
memory and up to a 750-MB SanDisk 1.5″ flash IDE. The Disk-
OnChip flash memory comes with M-Systems’ TrueFFS file-system
software, which enables the flash memory to emulate a hard disk.

The V2P2 and C2P2 run a variety of OSs, including Win NT,
Solaris x86, QNX, Vx-Works, and Real I/X. The boards come
equipped with AMI’s BIOS and onboard diagnostics software
and status LEDs.

Pricing for the V2P2 and C2P2 starts at $7200 with 0.5-GB
memory and two 400-MHz Pentium II processors.

General Micro Systems, Inc.
(800) 307-4863 • (909) 980-4863
Fax: (909) 987-4863
www.gms4vme.com

NOVEMBER 1998 EMBEDDEDPC 41

N
PC

PCNouveau

INDUSTRIAL SBC
The VSBC-6 is an EBX-compliant single-board computer that

includes PCI-based video, flat-panel BIOS support, 10BaseT
Ethernet, PC/104-Plus expansion (the PCI-enhanced version of
PC/104), and USB interface. The new embedded computer is
compatible with QNX, Windows 95/98/CE/NT, VxWorks, and
other popular operating systems.

The 8″ × 5.75″ × 2″ board includes a full complement of
industrial features such as eight 12-bit analog channels, 16 opto-22
digital lines, two RS-422/-485 COM ports (plus two standard RS-
232 COM ports), and three extra timer/counters. For high-
reliability applications, the board includes ECC circuitry that
detects and corrects one-bit memory errors on the fly, as well as

a watchdog timer with true hardware-reset capability.
The VSBC-6 accepts all socket-7 processors up to

300-MHz ’K6 and 233-MHz Pentium. Memory op-
tions include 8–128-MB EDO or true error-correcting
SDRAM, 2–72-MB DiskOnChip flash memory, 512 KB
of battery-backed SRAM, and 256-KB level-2 cache.

The VSBC-6 board includes a highly reliable de-
sign and construction, with latching I/O connectors
and latching high-reliability memory sockets. Each
board is subjected to a 48-h burn-in and 100% function
testing, and is backed by a two-year warranty.

The VSBC-6 is priced at $793 with a 200-MHz ’K6
CPU in 100-unit quantities.

VersaLogic Corp.
(800) 824-3163
(541) 485-8575
Fax: (541) 485-5712
www.versalogic.com

CompactPCI SBC
The SC-1501 is a CompactPCI single-board computer that supports

Intel Pentium CPUs ranging from 133- to 200-MHz MMX. The single 6U-
slot–size unit features a built-in 64-bit GUI
accelerator with 2 MB of DRAM, up to 128 MB
of synchronous DRAM, 10BaseT and 100BaseTx
Ethernet, and USB port. It also includes 512 KB of
cache and a 128-KB flash BIOS.

Other features include a floppy-drive controller, one
ECP/EPP parallel port, two 16C550-compatible serial ports,
real-time clock, flash-disk option, and support for the 32-bit
CompactPCI bus and DEC PCI/PCI bridge. An extension file
module card—the SC7001—adds support for a 2.5″ hard
disk drive, 3.5″ floppy disk drive, and optional SCSI and
PMC slot interfaces.

Computer Modules, Inc.
(408) 496-1881
Fax: (408) 496-1886
www.compumodules.com

CIRCUIT CELLAR INK NOVEMBER 199842

N
PC

PCNouveau

PCI MEZZANINE CARD
The TCOM4-SC is a PCI mezzanine card that

provides four E1, T1, or primary-rate ISDN interfaces.
Both long- and short-haul communications at speeds of

1.544 Mbps (T1) or 2.048 Mbps (E1 or primary-rate ISDN)
are supported.
The TCOM4-SC can be used with any baseboard (e.g., a VME

bus or CompactPCI CPU board) that provides PMC sites. The module
communicates with the baseboard via a 32-bit, 33-MHz master/slave
PCI interface that complies fully with V.2.1 of the PCI electrical
specification. The module also complies fully with the PMC
mechanical specification.

The TCOM4-SC’s four E1/T1 physical-line interfaces
are implemented using Brooktree Bt8370 T1/E1 trans-
ceivers. The transceivers perform T1 framing compli-
ant with the SF, ESF SLCR99, and T1DM standards,
and E1 framing compliant with the PCM30,
G.704, G.706, G.732, and ISDN primary-
rate ISDN E1 standards. The transceiver also
supports alarm and error monitoring, sig-
naling supervision, trunk conditioning,
and facility-data-link (FDL) mainte-
nance. The TCOM4-SC’s data-
link interface is based on
Brooktree’s Bt8474 HDLC

controller, which can format and deformat up to 128 HDLC
channels.

To support low-latency communications with other boards
residing on a common backplane, the TCOM4-SC provides
an optional SC-Bus (Signal Computing Bus) expansion port

based on VLSI Technology’s SC4000 controller. Opti-
mized for carrying multimedia
traffic such as voice, fax, and
video, the SC-Bus enables up to

128 channels of incoming or
outgoing T1, E1, or PRI traffic to be

routed to other boards without occu-
pying system-bus bandwidth. T1, E1,

and PRI channels can be mapped dy-
namically to any of the SC-Bus time slots.
The TCOM4-SC starts at $465 (quantity

1000) for a two-channel E1/T1 solution. A four-
channel version of the TCOM4-SC costs $635 in

1000-piece quantities.

SciTech, Inc.
(608) 833-7877

Fax: (608) 833-8738
www.stinc.com

CompactPCI DEVELOPMENT SYSTEM
The Ziatech ZT 5081 6U 14-slot development system features

an SBC with a 200-MHz Pentium/MMX processor, 64-MB ECC
DRAM, 512 KB of L2 cache, a 3.2-GB IDE hard drive, a floppy
drive, a wide SCSI interface, and two 150-W hot-swap power
supplies. The feature set is
housed in a 19″ rack-mount
IEEE 1101.10-compliant
Compact-PCI chassis with
a 14-slot backplane, suit-
able for general-purpose
and telecommunications
applications.

In addition to accom-
modating 32- or 64-bit
Compact-PCI cards, the
backplane supports the
H.110 computer telephony
bus for voice and other
telephony applications and
IEEE 1101.11-style rear

transition cards for simplified cabling. The backplane also supports
peripheral and I/O cards adhering to the PICMG hot-swap.

The new rack-mount system comes with MS-DOS, Ziatech’s
industrial BIOS, and flash disk. The internal hard-disk drive is

ready for the installation of PC-
compatible operating systems
such as Windows NT, QNX, or
VxWorks. Ziatech offers op-
tional development toolkits com-
plete with additional files to
help simplify the implementa-
tion of these operating systems.

The ZT 5081 6U 14-slot de-
velopment system is priced at
$5595.

Ziatech Corp.
(805) 541-0488
Fax: (805) 541-5088
www.ziatech.com

EP
C

CIRCUIT CELLAR INK NOVEMBER 199844

Scott Lehrbaum

All BIOSs are Not

Created Equal

Not long ago, anyone who suggested
putting the PC architecture into an embed-
ded system would have been laughed out
of Silicon Valley. After all, the PC was
designed to sit in a warm office playing
solitaire, not venture out into the hostile
climate of the embedded world. It was
accident prone, too, and reliability is an
absolute necessity in embedded systems.

But its limitations haven’t stopped the
PC. Among the PC’s forays into embed-
ded territory are PC/104, passive-
backplane PCs, and lots of proprietary SBC
form factors.

The PC architecture has become so
pervasive, it’s virtually a commodity tech-
nology. Almost anyone with a soldering
iron and a cookie cutter can whip up a
new embedded-PC form factor. But, can
the resulting product be trusted to run a
factory production line or test blood for
bacterial contamination?

No doubt, every board vendor and
form-factor proponent can argue their case
vigorously. Some might hold up well,

especially architectures like PC/104 that
were designed for embedded systems.

But, let’s set aside the hardware and
talk about BIOS instead. As much as
board vendors might improve the average
PC motherboard, no PC-based CPU is
suitable for embedded applications with-
out an equally fine-tuned BIOS.

PC SELF-DESTRUCT
To understand why “normal” PCs don’t

cut it for embedded systems, you don’t
have to look beyond your own desktop.
Who hasn’t seen their system crash?

 It’s not my intention to indict the PC
architecture. The reasons behind some of
these problems have nothing to do with
how well the PC was designed.

But, it’s important to remember that the
IBM design team probably never dreamed
that their sleek new computer would end
up in supersonic aircraft and deep-sea
submersibles. The issues they would have
had to consider for such exotic applica-
tions never crossed their minds.

Take the CMOS battery, for example.
For the average PC, a five- or ten-year
battery life is probably more than sufficient
(especially since a PC is considered obso-
lete after a couple years anyway). Not so
with embedded PCs, which tend to have
much longer operating lifetimes.

And what if the CMOS battery goes
dead? With any other gadget, you just
pop in a new battery. But on a PC, there’s
the small matter of system configuration
data. If you lose it, you can be in big trouble.

What if this same basic technology was
monitoring a patient’s vital statistics during
an operation? What if it was responsible
for controlling a nuclear power plant?

Embedded applications take care of
many critical functions. If they spontane-
ously combust, they cause a lot of damage.

LIKE KRYPTONITE
Obviously, a complete computer melt-

down is never good. But not all of the PC’s
weak points pose such a threat. The effects
can be more subtle, especially the ones

No PC-based CPU is suitable for embedded applications without an equally
tough BIOS. Scott helps us make sure our embedded-PC products are fit enough
to meet the exacting demands of medical, military, and factory environments.

EPC

 NOVEMBER 1998 EMBEDDEDPC 45

A good starting point
is to cut features that the
systems don’t need, like repeti-
tive memory tests and plug-and-
play support. Some initialization rou-
tines can be streamlined if the hardware
has a fast response time or even stripped
out if its chance of failure is low. Obviously,
that kind of change carries some risk.

For a super-fast startup, the BIOS may
need to cut execution time. In this case,
many of the hardware tests and initializa-
tion routines simply have to be skipped.

But if the board manufacturer can fully
document what isn’t being done, system
developers might still want the feature.
They may not need to use the parts of the
system that aren’t being initialized, or they
might be able to initialize the hardware
from inside their own application code.

BATTERY-FREE OPERATION
I talked about problems that can arise

if the CMOS battery dies. But protecting
configuration data isn’t the only issue.
Some embedded applications can’t use
batteries, especially if they’re near explo-
sive environmental gases. Hey, if a battery
sparks while you’re near a pocket of meth-
ane, you become the embedded system.

An embedded-PC BIOS should provide
an alternative way of storing configuration
data. For example, in its enhanced em-
bedded-PC BIOS, Ampro uses a small
EEPROM to back up CMOS RAM data.

The BIOS keeps a copy of the current
set-up configuration in EEPROM and re-
stores the CMOS if battery backup isn’t
available. The only information lost at power-
down is the real-time clock time and date.

originating with the BIOS. But, they can
still play havoc with embedded systems.

Before talking about ways of toughening
up the PC BIOS, let’s look at some of the
special issues facing embedded systems in
a few vertical markets (see Table 1).

Medical instruments jump out as an
obvious example of systems that better
work when they’re needed. Not all medical
devices are life-critical, but they may still
have an impact on how a patient is diag-
nosed or what drugs are prescribed.

Medical systems are categorically in-
tolerant of software crashes. No matter
how well the application software is written,
critical systems need a built-in automatic
recovery mechanism. The machines also
have to come up running very quickly.

Production-line systems can be mission-
critical as well. Production lines churn out
millions of dollars worth of product an
hour, and down time quickly turns a profit-
able operation into a money loser. So, the
embedded PCs have to be reliable, oper-
ating continuously for long periods of time.

Another common trait of automation
systems is that the embedded PC tends to
be deeply embedded. There’s no floppy
disk drive, keyboard, or mouse.

If there’s a display, it’s more likely to be
a few black and white characters or color
LEDs than a VGA monitor. For mainte-
nance, some alternative method of access-
ing the system is needed.

There are all sorts of military applica-
tions for embedded PCs, from missile guid-
ance to aircraft systems to ruggedized
field PCs. Exacting specifications and op-
erational reliability are an absolute must.

Many military applications are portable,
which raises the issue of power manage-
ment. To maximize battery life, a thorough
and well-designed power-management
interface is essential.

It’s important to keep the system’s total
power appetite to a minimum, perhaps by
using alternative, low-power options for
program-storage and video-display features.

BIOS FITNESS
PCs usually work reliably, as long as

you keep them in the shallow end of the
pool. But there are some pretty effective
ways of strengthening the PC, both at a
hardware and BIOS level.

My program for getting an embedded-
PC BIOS ready for mission-critical embed-
ded applications is summarized in Table 2.

NO-FAIL STARTUP
Despite advanced PC technology, you

can still run across ill-behaved hardware.
Sometimes, systems quit for no particular
reason during the power-on self-test (POST).

Whatever the problem, an embedded-
PC BIOS can’t just give up. It has to deal
with recalcitrant hardware and coax it
back into operation.

The BIOS has to keep retrying all avail-
able boot devices if the boot fails the first time
through. The best thing it can do is restart
POST in case any of the hardware wasn’t
initialized properly on powerup. This also
gives the hard drive more time to get ready.

Many embedded systems don’t have a
keyboard or any other input device, so if
the BIOS doesn’t detect a keyboard, it
can’t report “Keyboard error or no key-
board present—press F1 to continue.” It
should continue POST no matter how the
keyboard test comes out.

These are just two examples, but a well-
designed embedded-PC BIOS needs an
entire toolkit of problem-recovery options.
That includes ensuring the hardware comes
up running OK and that noncritical errors
don’t stop the boot-up process.

INSTANT ON
Ever timed your desktop PC to find out

how long it takes to start up? Embedded
systems can't get away with such outra-
geous startup delays.

 Embedded-PC BIOSs should provide
options for dramatically accelerating the
start-up process. Aside from using a fast-
booting OS, expert embedded BIOS de-
velopers can usually find lots of fat to trim
in the POST procedure.

Table 1—These critical embedded-PC BIOS enhancements are commonly required in certain
vertical market segments.

Medical Aviation Telecom Industrial Control Transportation Military

High reliability X X X X X X

Alternative storage

 media X X X X
Power management X

Watchdog timer X X X X X X

Battery-free operation X
No-fail startup X X X

Instant on X X X

Unattended operation X X
Remote access

 features X X X X X

Start-up customization X X X
RTOS support X X X X X

EP
C

CIRCUIT CELLAR INK NOVEMBER 199846

ON STARTUP
You may not want end

users to know that the magic
in your box is a plain old PC.
One answer is to throw a logo

onscreen early in POST and leave it
there until the system boots into the appli-

cation software. Or perhaps you can turn
off the POST message display completely.

Another typical scenario is that the
system uses an exotic video interface that
requires special initialization early in POST.

Some applications grab control of the
system early on and never let go. If the
software doesn’t need an OS and all the
application code can be stuffed into ROM
space, that’s a nice way to cut the cost,
weight, and power budget.

All PC BIOSs support the IBM-standard
55AA ROM scan, which gives ROM code
like network boot ROMs and solid-state
disks the opportunity to install themselves
near the end of POST. The 55AA hook is
a good starting point for giving the BIOS
a greater degree of start-up flexibility.

A good embedded-PC BIOS gives ROM
code many opportunities throughout POST
to hook the BIOS and perform a special
task before returning control to the system.

ALTERNATE ACCESS
So, your embedded system has no

display or keyboard. How do you access it?

Lots of embedded applications don’t
need a user interface for system operation.
Consider a system that records aircraft
system status during flight and saves it for
later analysis. It doesn’t make sense for an
OEM to add a video controller, display,
and keyboard, increasing costs for features
needed only for occasional maintenance.

The BIOS should offer options for remote
console access over a serial port or other
interconnect. It should enable keyboard
commands to be entered and display
information to be received on a host system.

Ideally, this access is achieved via a
portable computer connected via a null
modem cable or from a remote location
using a phone line or radio modem. Since
two or more serial ports are present on
most PCs, these remote features provide
console access at virtually no cost.

Then again, available serial ports may
be scarce; they get used up quickly. It’s
good to let one of the ports double as a
serial console access port. But, with no
easy way to change the system set-up con-
figuration, the BIOS needs a way to switch
into serial console mode automatically.

REMOTE MAINTENANCE
You’re also going to need occasional

system maintenance. The embedded PC
should let service personnel perform these
tasks remotely.

Some users may want to keep their
program source code and compilers resident
on the embedded system so software modi-
fications can be made on the system but
from a remote location. Those systems
need remote console access and a way to
transfer files back and forth from a host.

Another requirement to making remote
on-system software development feasible
is on-the-fly serial debugging support. The
embedded-PC BIOS has to support auto-
matic download of the target portion of the
serial debugger, rather than forcing that
code to be ROM-resident on the target.

STORAGE SUPPORT
Embedded systems have to endure harsh

environmental conditions. Intensive shock
and vibration, temperature extremes, and
strong magnetic fields cause most hard
and floppy drives to go into the electronic
version of anaphylactic shock.

Embedded-system BIOSs support a va-
riety of options for using solid-state disk
(SSD) media in place of mechanical drives.
Without moving parts, SSDs are more
rugged and less susceptible to break-
down. Ideally, the BIOS support should
include removable SSD options.

Beyond SSDs, many embedded systems
may be better off storing program code in
ROM. This technique not only saves the
expense of OS licensing but can mean that
the application software launches faster.

WATCHDOG TIMER
It’s a simple but essential requirement

for mission-critical embedded systems: they
must continue to work under all conditions.
That includes software crashes, power
brownouts, and more. Consider an auto-
pilot application for a large jet. How long
can that system be down?

A reliable watchdog timer (WDT) is a
necessity for all systems that manage criti-
cal activities. The WDT monitors the sys-
tem independently of the rest of the circuit,
so it’s not affected by system glitches. If
something happens that causes the system
to crash, the WDT can initiate a system
restart and restore it to operation quickly.

Although a WDT is a hardware fea-
ture, the embedded-PC BIOS should sup-
port it through software interrupt services.
The routines must give application soft-
ware enough flexibility to manage the
WDT and provide recovery procedures
optimized to the application’s requirements.

Table 2—This list gives you a look at some of the benefits of embedded-PC BIOS enhancements
to embedded applications.

No-fail startup Prevents hardware initialization errors and device failures
from halting the startup

Instant on Provides near-instant power-on to system-ready startup
Battery-free operation Allows the system to operate without batteries, prevents a

CMOS RAM backup battery failure from harming the
system

Start-up customization Allows customization of the startup process for system-
unique hardware initialization, display of custom logos, etc.

Alternate console access Provides alternative to standard keyboard and video screen
 via serial terminal or other interconnect

Remote maintenance capability Allows remote software updates and remote debugging
capabilities

Alternative storage media support Provides options for program and data storage using
nonmechanical (solid state) media

Watchdog timer Restarts the system in case of a software crash, power
brownout, or other failure condition

Power management Reduces total system power budget for portable and battery-
powered applications

Year-2000 compliance Avoids software failures due to the Y2K computer bug
RTOS support Optimizes system performance for compatibility with all

major RTOSs
Unattended operation Allows system to be operated for extended amounts of time

with zero user intervention
High reliability Fine-tunes system operation (signal timing, device initializa-

tion, etc.) for optimal survivability and performance under
all operating conditions

EP
C

CIRCUIT CELLAR INK NOVEMBER 199848

year-2000-related problems can affect em-
bedded systems in much more dramatic
ways than desktop PCs. Again, what
they’re doing tends to be more critical than
the average desktop machine.

A Y2K-compliant BIOS should auto-
matically update the real-time clock after a
century rollover and should always calcu-
late and return the proper century value.

RTOS SUPPORT
Support for real-time operating systems

can be tricky. For one thing, they tend to
discard BIOS interrupt services and ac-
cess hardware directly.

Depending on how the BIOS has initial-
ized the system components, different
RTOSs may or may not like what they see.
There’s an art in refining the BIOS for any
embedded PC to make sure the product is
compatible with all RTOSs.

Another issue is how to access enhanced
BIOS services from inside an application.
RTOSs operate in protected mode, which
is incompatible with virtually all BIOS
interrupt routines. Special features that are
supported through enhanced BIOS ser-
vices may not be accessible to an applica-

POWER
MANAGEMENT
Low power consumption

is an important requirement of
portable applications. PC BIOSs

tend to have a lot of built-in support for
automatic and software-managed power

management. Initiatives like Green PC
and power-management standards such
as APM (Advanced Power Management)
and ACPI (Advanced Configuration and
Power Interface) have seen to that.

The changes to the power-manage-
ment code are more subtle than other
areas of enhancement. It’s mostly a matter
of optimizing power savings depending on
the components and optional interfaces used.

If excessive temperature is an issue, the
BIOS should monitor and control the CPU
temperature. One approach is to auto-
matically engage the CPU fan at a thermal
setpoint. For power-sensitive applications,
you can interleave CPU operation using a
user-selectable duty cycle.

Y2K COMPLIANCE
Sure, this topic has been beaten to

death recently, but it’s important to see that

tion program. A good embedded-PC BIOS
provides some means for application soft-
ware running under an RTOS to have full
access to all extended system features.

AND THE REST
If extra storage space is available in a

memory device onboard (e.g., the EE-
PROM used for configuration data stor-
age), OEM customers usually find creative
uses for it. For example, it may store a few
bytes of application parameters. On the
BIOS side, services are necessary to en-
able this OEM area to be read and
programmed by application software.

A potentially useful option is a serial
boot capability enabling the embedded
PC to download boot code from a remote
host. This setup can eliminate the need for
any disk drives or alternative storage
media on the target module.

Embedded systems may operate unat-
tended for weeks, months, or even years.
So, a well-designed embedded-PC BIOS
eliminates any need for human interaction.

Since configuration data has been
known to get lost from time to time, the
BIOS should enable easy recovery from a
bad or corrupt set-up configuration.

Finally, embedded PCs get used in all
kinds of systems with different bus configu-
rations and timing requirements. The BIOS
should try to maximize the module’s ro-
bustness by ensuring that component and
bus timing parameters satisfy applicable
specifications with room to spare.

A FEW LAST WORDS
To add the required enhancements

effectively, an embedded-PC supplier
needs experience serving the embedded
market and knowledge about real-world
applications. Embedded-system developers
considering the PC architecture should check
board suppliers to ensure that the BIOS is
fine-tuned for embedded environments.

A well-designed BIOS is as important
as ruggedized hardware. No matter how
well the board has been hardened, it
won’t do any good if the BIOS buckles
under pressure. EPC

Scott Lehrbaum has been at Ampro Com-
puters for nearly ten years, where he has
held numerous positions ranging from
Software Engineer to Applications Engi-
neering Manager. You may reach him at
slehrbaum@ampro.com.

R
PC

NOVEMBER 1998 EMBEDDEDPC 49

Real-Time PC

Ingo Cyliax

Embedded RT-Linux
Part 1: General Introduction

In past columns dealing with real-time
operating systems, I’ve mentioned Linux
and explained how I use it as a develop-
ment system and the primary OS on my
laptop. Starting this month, I want to show
you how to use Linux as an embedded
OS—even as a real-time embedded OS.

I’ve been a Linux user and developer
for about two years. I’m also a fan of other
freely distributed Unix-like OSs, like Net-
BSD and FreeBSD. Both are direct descen-
dents of the BSD (Berkeley Software Dis-
tribution) operating systems. I still use
them for other projects. For example, my
web and mail server runs FreeBSD.

But, Linux has such a huge following, I
wanted to make sure you had the latest
information. I also discuss some differences
between Linux and FreeBSD/NetBSD.

INTRODUCING LINUX
Linux is an alternative OS for PC (and

non-PC) platforms. There are really two
aspects to what is generally considered

Linux—the kernel, which is the true Linux
component, and the applications that have
been developed and ported to Linux. The
applications range from clones of simple
Unix command-line utilities like ls and vi
to C and Fortran compilers and even
commercial applications.

Together, the Linux kernel and the
extensive applications that come bundled
with it are called distributions.

Also, the kernel and a number of
applications are available under the GNU
copyright, or GPL. Check out Pat Villani’s
series of excellent articles on FreeDOS
(INK 95–96), where he describes the GPL
and the issues concerning the embedded-
systems integrator.

I should note that one of the differences
between the Linux kernel and the NetBSD/
FreeBSD kernel is that the Linux kernel is
not GPL protected (whereas the others are)
and it is subject to a different licensing
agreement. Whether GPL is right for your
project depends on your requirements.

Ingo kicks off this miniseries on using Linux as an embedded operating system
with an overview and a comparison to other freely available OSs. As we start
seeing more and more projects that use Linux, it�ll be pretty clear why they do.

Usually, it’s not a problem. GPL only
requires you to make available the sources
for components that are already under
GPL. Other components, applications, and
modules that you develop can be excluded.

A real-time extender, which extends
the kernel using a dynamically loadable
module, is also freely available. It works
similar to real-time extenders for OSs like
Windows NT, by dividing applications
into processes and threads that are real-
time aware and standard user processes
that go unaffected. There’s more, but I’ll
get into Linux’s real-time extension in a
later column.

WHY LINUX?
 Naturally, this question is tugging at

your brain. There are several reasons to
consider Linux as an embedded operat-
ing system for many applications.

For one thing, it’s freely available and
includes a TCP/IP stack. Also, it has
multiarchitecture support for Intel, 68k,

CIRCUIT CELLAR INK NOVEMBER 199850

PowerPC, Alpha, Sparc, SMP, and others.
So, you can obtain and begin using Linux
with very little trouble.

One of the great benefits of using Linux
is the large support network that exists for
it, and let’s not forget the fact that Linux
supports many devices and bus architec-
tures right out of the box. Of course, Linux
is somewhat modular and there are many
tools and programming languages avail-
able. With features like this, Linux starts to
make more sense, huh?

Let’s talk about these points in more
detail. I already mentioned that Linux is
freely available. Obviously, that’s nice
because you won’t pay royalties for em-
bedding Linux in your product. But, you
need to make sure all of the modules and
components you plan to use for your
project are freely available. Most are.

Table 1—Here is a list of some of the devices that are typically supported with a standard Linux
kernel. In addition to these devices, many peripheral-card vendors also offer Linux-driver
modules for their cards.

Ethernet Controllers
 3Com 3c501 (throw it away!)
 3Com EtherLink II
 3Com Etherlink Plus
 3Com EtherLink16
 3Com EtherLink III
 3Com 3c590/3c595 Vortex
 Ansel Communications Model 3200 EISA

Ethernet adapter
 Apricot 82596
 ARCnet for IP driver
 Allied Telesis AT1700
 DE425, DE434, DE435, DE450, and DE500

DEC EtherWORKS cards
 D-Link DE-600 Ethernet pocket adapter
 D-Link DE-620 Ethernet pocket adapter
 DEC DEPCA and EtherWORKS DE100,

DE101, DE200, DE201, DE202, DE210,
DE422

 Digi RightSwitch SE-4, SE-6
 Cabletron E2100
 EtherExpress Pro/10
 EtherExpress
 ICL EtherTeam 16i/32 EISA
 EtherWORKS 3: DE203, DE204, DE205
 Fujitsu FMV-181/182/183/184
 HP PCLAN/plus
 HP LAN
 HP10/100VG ANY LAN: J2577, J2573, 27248B,

J2577, J2573, J2585
 Shared-memory IBM Token Ring 16/4
 AMD PCnet32, PCnetPCI
 NE1000, NE2000, and compatible
 NI5210 Ethernet
 NI6510 Ethernet
 Parallel Link Internet Protocol
 Sangoma S502/S508 series multi-protocol PC

interface card
 SMC Ultra, SMC EtherEZ ISA
 SMC 9000 series Ethernet
 Starmode Radio IP
 DEC 21040, most 21*40 Ethernet
 AT&T GIS (nee NCR) WaveLAN Ethernet-like

radio transceiver
 WD8003- and WD8013-compatible ether cards

SCSI Host Adapters
 SCSI driver for Symbios/NCR 53c700 series and

53c800 series host adapters
 BusLogic MultiMaster (NOT Flashpoint) SCSI

host adapter driver
 NCR53c406a-based SCSI host adapter driver
 AdvanSys SCSI host adapter driver
 Adaptec AHA-152x host adapter driver
 Adaptec AHA-154x and 631x-based host

adapter driver
 Adaptec AHA-174x host adapter driver
 Adaptec AHA-2740, 28xx, 29xx, 39xx, aic7xxx-

based host adapter driver
 DTC 3180/3280 host adapter driver
 All DMA-capable DPT SCSI host adapters
 All PIO-capable DPT SCSI host adapters
 Future Domain TMC-16xx SCSI host adapters
 IN2000 SCSI host adapters
 Symbios/NCR 53C810, 53C815, 53C820,

53C825 SCSI host adapters
 Pro Audio Spectrum/Studio 16
 IOMEGA PPA3/Parallel ZIP
 Qlogic FAS408 SCSI host adapter
 QLogic ISP1020 SCSI host adapter
 Seagate ST-01/02, Future Domain TMC-8xx

SCSI host adapter
 Trantor T128/T128F/T228 SCSI host adapter
 UltraStor 14F/34F (not 24F) SCSI host adapter
 UltraStor 14F/24F/34F SCSI host adapter
 WD7000-FASST2/WD7000-ASC/WD7000-AX/

WD7000-EX SCSI host adapter

CD-ROM Drivers
 Aztech CD268 CD-ROM driver
 Sony CDU-31A CD-ROM driver
 Philips/LMS cm20 CD-ROM driver
 GoldStar R420 CD-ROM driver
 ISP16/MAD16/Mozart soundcard-based CD-

ROM driver
 Mitsumi CD-ROM driver
 Mitsumi XA/Multisession CD-ROM driver
 SoundBlaster Pro/Matsushita/Panasonic/

Longshine/CreativeLabs/TEAC/ECS-AT CD-
ROM

 Sanyo CD-ROM device driver
 Sony CDU-535 CD-ROM driver

You can download most Linux distribu-
tions from the Internet. But, this can be
tedious over a slow link, so most of us opt
to buy a CD-ROM. Yet, being able to
download a distribution over the ’Net is
extremely useful if you’re in the field and
need to upgrade you embedded system
or get a new version of a device driver.

Linux has a TCP/IP stack built in. The
TCP/IP implementation is very robust,
since many Internet-service providers use
Linux for their high-throughput web serv-
ers. The programming interface for the
TCP/IP stack is the standard Socket API.

Linux runs on a multitude of architectures.
I’m only going to talk about the Intel port,
but it’s good to know that you’re not stuck
with Intel. Some of the details in each port
are different, but for the most part, Linux is
Linux, at least at the application level.

R
PC

CIRCUIT CELLAR INK NOVEMBER 199852

Linux is ported to
68k, which includes VME-

bus modules, Alpha, and
PowerPCs. And, there’s a port

in progress for MIPS processors.
The US Robotics Palm Pilot may

be the smallest system that Linux is
ported for. It’s a PDA based on Motorola’s
68328 Dragonball processor. There’s also
work in progress to port Linux to smaller
Intel processors, like the 80188.

Since Linux has such a great following,
there’s a large support network. Although
many people provide Linux support by
writing or porting applications and drivers
in an effort to attain fame and glory, there
are also several companies that are pro-
viding commercial support for Linux. Of-
ten, these companies reintegrate the fixes
into the Linux kernel development effort.

There is yet another side effect to this
large support group. Many of the fame-
and-glory developers are students who
have learned OS internals by observing
the Linux kernel, and they’ll eventually
enter the job market.

Consequently, the number of software
engineers familiar with Linux is growing,
and they’re even proficient at the kernel
level. That’s good news, and perhaps one
compelling reason why much of Linux will
stay freely available with the GPL.

There are a great number of device
drivers available for Linux. Because Linux
has been ported to so many different
architectures, it supports various bus ar-
chitectures, like ISA bus, PCMCIA, PCI,
VME bus, S-bus, and others.

Many vendors of PC-compatible cards
have Linux drivers available. While the
quality of device drivers for Linux varies,
many popular cards and chip sets are
well supported. Also, there’s hope of
fixing or adapting the device driver for
your purposes, since sources are avail-
able for most device drivers.

Drivers are available for just about all
of the Ethernet chip sets, all standard AT
peripherals (COM, IDE, floppy, etc.), and
many VGA chip sets. Also, many CD-ROMs
and SCSI devices are supported. Table 1
shows a list of devices that are supported
in an older distribution of RedHat.

However, a flash file-system driver isn’t
supported. That’s unfortunate. It would be
nice for working with embedded systems.
Hopefully, someone is working on it.

But, all is not lost—it’s still possible to
boot Linux from a flash file system. Flash
disks, like SanDisk’s CompactFlash de-
vices, work under Linux because it acts just
like a IDE drive. Next month, I’ll look at
these issues in detail when I embed Linux.

Linux supports dynamic module loading,
which means libraries and devices driv-
ers can be loaded by the OS after boot
time to extend the base functionality of the
kernel. Dynamic modules are nothing new,
but they do make configuration easy.

You build a simple kernel that can be
configured to deal with different device
configurations by changing a configuration
file. This construction also improves memory
use, since only the required device drivers
are loaded when needed. Of course, you
can still configure a Linux kernel to be

static by compiling in all the device drivers
it needs for a particular application.

Many applications and programming
languages are available for Linux. This
feature might not be important for build-
ing embedded systems, but it’s nice to
have access to all the applications on your
development system.

The normal compiler used for Linux is
the GNU C compiler (a complete C, C++,
and Objective C compiler). The companion
debugger (gdb) is flexible and can even
deal with remote debugging via Ethernet
or serial port. This capability means that you
can debug your embedded system remotely
from a desktop or, in my case, a laptop.
Of course, you can also run the debugger
on the console of the embedded system.

In conjunction with the GNU C compiler
and related tools, you’ll find commercial
compiler and development environments. I
listed one compiler vendor in my sources,
and you can find others in the Linux Journal.

RUNNING SUPPORT
Although the recommended minimum

size for running Linux with X-Windows is
usually 8–16 MB, it’s overkill for running
Linux in an embedded system. What is the
minimum configuration we need?

To run Linux on a PC architecture, we
need at least an i 386-class machine be-
cause Linux has to run in 32-bit protected
mode. Several embedded ’386 boards
out there should run Linux just fine.

In fact, I was even able to boot and run
Linux on my 16-MHz ’386SX laptop with
5 MB of memory. It runs fine, although you
probably don’t want to compile a pro-
gram or run an Xserver on it. But then,
that’s not the point of a minimum system.

The minimum memory configuration to
load a standard Linux kernel and have it be
able to do something is 4 MB. It should be
possible to configure and build a minimum
size kernel that should work in about 2 MB.

Now we have an i386 and 4 MB of
memory, what else do we need? Well, to
boot Linux, we need a boot device.

Linux can’t use flash memory as disks,
but it can boot from it. In fact, Linux can
load and initialize the kernel using any
kind of boot device the BIOS can handle.
So, it’s possible to boot Linux from a flash
memory after all, but it can’t access the
boot flash-memory disk once it’s loaded.

You may ask, what good is it to boot
from flash memory if you can’t access the

/lib
/lib/libc.so.5
/lib/ld-linux.so.1
/bin
/bin/sh
/bin/insmod
/etc
/etc/ld.so.cache
/dev
/dev/console
/dev/null
/dev/ram
/dev/systty
/dev/tty1
/dev/tty2
/dev/tty3
/dev/tty4
/linuxrc

Listing 1—You need this minimum set of files to boot Linux and start an application
program. Of course, you need to add more device-driver entries in the /dev directory
if your application needs to access other devices besides the screen and the RAM disk.

CIRCUIT CELLAR INK NOVEMBER 199854

disk after booting? Well, there are at least
two techniques you can use to initialize an
initial RAM disk while booting, and this
RAM-disk image can contain the essentials
of what’s needed to run Linux.

What do we need to run Linux once the
kernel has booted? By incorporating our
system into one Linux program, we can
get away with a small set of files. Listing 1
has the details.

The most critical components are the
console device entry /dev/console and
whatever device entries that are needed.
Once booted, the kernel opens and runs
whatever program or command script is
contained in /linuxrc. That’s about all
you need for a minimal configuration.

Even though Linux wasn’t designed as
an embedded OS, it ended up having
features like small initial size and capability
for RAM disks and modular device drivers.
These features are there because the devel-
opers wanted Linux to be easy to install.

A single floppy can hold a complete
mini-Linux system, complete with enough
utilities to format and initialize the file
system on a hard disk and do a bootstrap
install of Linux from another medium. We
can use this to our advantage by including
our embedded applications, instead of
the installation utilities to build an embed-
ded Linux system.

Now let’s look at a system I’ve been
using to play around with embedded Linux.
It’s based on Motorola’s embedded Pentium
SBC, the NLX 55, shown in Photo 1.

The motherboard contains everything
needed to build a system and run an
embedded application. It has a 233-MHz
Pentium MMX CPU, slots for two DIMM
modules, 10-/100-Mbps Ethernet control-
ler, dual-IDE controller, floppy control,
and SVGA controller. It also contains a
flash-card socket on the motherboard.

SanDisk’s CompactFlash is a flash-
based media that contains an IDE control-
ler on the card itself. To the system, it looks
just like another IDE drive. Motorola also
sells a starter system that includes a case
and power supply as well as a standard
IDE drive for development.

With this system, you can develop
embedded applications while running off
the hard disk and build a flash-card
module of our embedded system. Then,
just reboot, change the boot sequence in
the BIOS setup, and have the system boot
from the flash card to test your applica-
tion. Next month, I’ll use it to build a flash
card-based Linux installation.

INSTALLING LINUX
Obtaining Linux is easy. As I said, you

can get most Linux distributions from the
’Net for free. All you need is patience
while downloading it. You can also pur-
chase a CD-ROM of various distributions.
Most commonly available distributions
have enough of the basic components
necessary to allow you to embed Linux.

Once you have an installation, you
should build a desktop system to serve as

rtf_create(unsigned int fifo, int size) create a FIFO
rtf_destroy(unsigned int fifo) get rid of the FIFO
rtf_resize(unsigned int minor, int size) change the size of the FIFO
rt_fifo_put(unsigned int fifo, char * buf, int count) write to FIFO
rt_fifo_get(unsigned int fifo, char * buf, int count) read from FIFO
rtf_create_handler(unsigned int fifo, create a handler that is called when a
 int (*handler)(unsigned int fifo)) user process reads or writes to a

 FIFO device
rt_task_init(RT_TASK *task, void (*fn) create a task
 (int data), int data, int stack_size, int priority);
rt_task_make_periodic(RT_TASK arrange so that the task is
 *task, RTIME start_time, RTIME period); called at a periodic interrupt
rt_task_delete(RT_TASK *task); get rid of task
rt_task_wait(void); give up time slice, wait until next time slice
rt_task_suspend(RT_TASK *task); suspend any task
rt_get_time(void); read the current time
rt_request_timer(void (*fn)(void)); allocate a timer, which will call a handler

 when it expires
rt_free_timer(void); return timer
rt_set_timer(RTIME time); set the timer to go off at a specific time
rt_no_timer(void); clear timer

Table 2—The real-time extension to Linux (RT-Linux) provides this API for programs that are
written to run in this mode. Most of the services are pretty standard interfaces you’d see in a
bigger RTOS. But, the FIFO interface can be used to communicate with non-real-time threads.

 NOVEMBER 1998 EMBEDDEDPC 55

REFERENCES
www.linux.org
RT-Linux project at NASA, aol11.wff.nasa.gov/rtlinux/

Ingo Cyliax has been writing for INK for
two years on topics such as embedded
systems, FPGA design, and robotics. He
is a research engineer at Derivation Sys-
tems Inc., a San Diego–based formal
synthesis company, where he works on
formal-method design tools for high-assur-
ance systems and develops embedded-sys-
tem products. Before joining DSI, Ingo worked
for over 12 years as a system and re-
search engineer for several universities
and as an independent consultant. You
may reach him at cyliax@derivation.com.

SOURCES
C/C++/F77 compilers for Linux
The Portland Group
(503) 682-2806
Fax: (503) 682-2637
www.pgroup.com

NLX55 motherboard
Motorola Computer Group
(800) 759-1107, ext. PR
(512) 434-1526, ext. PR
www.mcg.mot.com

OpenLinux
(801) 765-4999
Fax: (801) 765-1313
www.caldera.com

RT-Linux
r52h146.res.gatech.edu/~bdixon/rtlinux

Linux distributions
RedHat
www.redhat.com

S.u.S.E., Gmbh
+49 911 7405331
Fax: +49 911 7417755
www.suse.de

Linux Journal
(888) 66-Linux
(281) 261-2581
Fax: (281)-261-5999
www.linuxjournal.com

your development platform. This process
is relatively painless and there are a lot of
resources on the ’Net. If your target system
is capable enough to serve as a develop-
ment environment, you can install it there.

RT EXTENSION OF LINUX
The standard Linux kernel doesn’t pre-

tend to be real time in the traditional way.
Like many Unix kernels, the kernel is not
preemptive and thus can’t be relied on for
predictable interrupt response. But, some
clever people developed a real-time ex-
tender for Linux that turns it into RT-Linux.

RT-Linux has a layer added between
the Linux kernel and the hardware timer
interface. After installing the RT extension,
the Linux kernel and its processes turn into
a single real-time task that always runs at
the lowest priority.

Real-time applications are loaded into
the kernel memory space using the Linux
module facility. Once the application has
loaded and started real-time tasks, the
tasks have control of all the hardware and
memory in the system. RT-Linux provides
calls to start, suspend, and destroy tasks.
There’s also a timer facility to set up timers
with real-time responses.

A FIFO is used for real-time tasks to
communicate with regular user processes.
The FIFOs appear as standard Unix char-
acter devices that a user process opens
and then reads and writes to. Table 2 shows
the basic API available in the RT extender.

Although, RT-Linux is rather primitive in
its implementation, it has the essentials you
need to implement real-time applications.

Photo 1—The Motorola NLX55 motherboard
features a Pentium MMX CPU, graphics con-
troller, and 10-/100-Mbps Ethernet control-
ler. Unique to this board, it also includes a
socket for a SanDisk flash-based ATA card.

WHAT’S NEXT
I’ve given you an overview of Linux

and RT-Linux as well as how you can use it
as an embedded OS. I’ll concentrate on
the details of Linux in upcoming articles.

Next month, I’ll show you how to
embed a minimal Linux configuration into
a small system. After that, you’ll learn
more about Linux embedded software
development and how to use RT-Linux.

You’re also likely to see Linux in some
of my projects. It may not be the answer for
every embedded-systems problem, but it’s
another tool in the toolbox. And since it’s still
being developed and is constantly evolving,
it will be interesting to see what problems
people end up solving with Linux. RPC.EPC

A
PC

NOVEMBER 1998 EMBEDDEDPC 57

Applied PCs

Fred Eady

There may have been some good old days, but Fred�s not necessarily one to
live in the past. He�s reaching into the future, and it�s looking like the future
relies heavily on control via the web. Join him for a look at emWare�s offering.

R emember getting that first program-
mable calculator? Beat the crap out of that
old slide rule, huh?

Remember that first contact with a
BBS? The Internet makes all that look a
little silly now, doesn’t it?

Well, pretty soon, if not already, you
will be making first contact with your first
web appliance. If you keep up with the
movies, all of the “first contacts” were
pretty much unexpected. Some were cata-
strophic.

I’m going to change all of that here. A
beginning look at what it takes to control
and monitor your application via web
browsers is right behind this paragraph.

Before I begin, I want to point out that
there are at least two other products out
there that are similar in nature to the one
I’m going to discuss in this article.

The first—Phar Lap’s HTML-On-The-Fly,
which is included with the Embedded
ToolSuite—is a unique implementation
that enables you the programmer to as-
semble web pages as they are requested.

Phar Lap’s version of web control comes
wrapped within a very comprehensive
development package that is now ca-
pable of using Bill’s latest C++ compiler
package.

Another web runner comes from
Agranat. EmWeb’s claim to fame is the
elimination of the CGI and the melding of
C and HTML. If you include EmStack, a
TCP/IP stack, you don’t even need an OS
to implement EmWeb.

As you can see, the control-by-the-web
marketplace is growing rapidly. I intend
to explore as much of it for you as possible,
but for now, let‘s concentrate on another
contender in this area, emWare.

A 5000′′′′′ VIEW
I really struggled coming up with a

way to convey the new features of em-
Ware’s latest release. After a few days of
reading and thought, I figured the best
way was to show you what I saw on the
screens and describe the code that was
generated by interacting with those screens.

It’s going to take a couple of passes,
but by the time we realize our goal, you
will have generated your own ideas as to
how to integrate EMIT technology in your
own projects. And, you’ll garner enough
basic EMIT knowledge to implement the
package on your own.

The newest release from emWare takes
advantage of today’s object-oriented soft-
ware technology to ease the emWare
application-development process. Syman-

emWare Top to Bottom
Part 1: Monitoring via the Internet

Photo 1�Everything�s here. One CD does it all.

A
PC

CIRCUIT CELLAR INK NOVEMBER 199858

tec’s Visual Café has
been incorporated to

make emWare’s interface
design much easier and more

intuitive.
Also, instead of building emWare

tables by hand as we did in the early
days of EMIT, an upgraded package
utility that uses a standard .ini file
structure does all of that work for you.

And now, the developer can use Bill’s
Internet Explorer, as well as a plug-in–
enhanced Netscape as end-user brows-
ers. (I don’t think the Justice Department
had a say in this one.)

These are just a few of the enhance-
ments in the latest edition of emWare.
Let’s get started by installing the new
version of EMIT and all of its co-hosts.
Photo 1 is where it all begins.

emWARE COMPONENTS
As you see in Photo 1, emWare uses

Visual Café as a tool for integrating
something physical and logical to some-
thing conjured like web browsers. Notice
the first button, Install EMIT 2.5.

EMIT is short for embedded micro
internetworking technology. That first word
makes EMIT a topic of interest to us. Do
what you will with the remaining words,
but be aware that the “I” and “M” words
are as just as important in the scheme of
things as the “E” word.

By the way, the sign to the left of the
install buttons alluding to the universal
Ethernet is a pretty good clue as to what
emWare and EMIT are all about.

Before diving into the install, I was not
looking forward to hooking up to the
Internet to download the browsers. It was
a relief to see the browser-install buttons

when I fired up the toolkit CD. Some-
body was on the ball with that one.

Let’s start from the top down.
Clicking the EMIT 2.5 button starts
the install process. After the stan-
dard “who are you” screens, the
dialog box in Photo 2 is presented.

Notice that you can install client
and gateway code but no server
code. Don’t worry. That’s OK. Let’s
climb back up to the 5000′ level for
a moment and I’ll tell you why.
emWare is an application set that
consists of three major components:
server, gateway, and client codes.

AT YOUR SERVICE
The server code—emMicro—is a tiny

web-server application that resides on
your target microprocessor platform. The
target can be anything from an 8-pin PIC
to a full-blown Pentium-based board.

For this discussion, my platform will be
8051 based, mainly because that’s what
ships with the EMIT SDK. There’s no
reason why an embedded PC or even a
Microchip PIC couldn’t be a target. In
fact, once I finish with the hows and whys
of emWare, I’ll put this newly acquired
EMIT knowledge to work on an embedded
PC and PIC emWare application.

Judging from the target material, it
would be logical to assume that the
emMicro code is not lengthy. It’s not. The
server code is responsible for relaying
variable information from the target server
to the gateway device. As you’ll see, this
is all done via tables and a common
telecommunications interface.

One of the most interesting aspects of
emMicro is its use of microtags. Microtags
are compressed references to interface

objects or device states.
Normally, microtags are
found on the server de-
vice and are expanded
by the gateway device
(with emGateway code)
when needed. This pro-
cess of tagging saves con-
siderable space on the
server machine and
offloads some of the pro-
cessing load to the gate-
way code.

All of this conversa-
tion between the server
machine and the gate-

way machine is done via a lightweight
network, emNet. emNet is responsible for
handling the communication path between
emMicro and emGateway.

Due to EMIT targeting the Internet, a
serial link is the default method that emNet
employs. For local implementations, stan-
dard Ethernet and RS-485 are also valid
considerations. In a nutshell, emNet handles
all of the low-level communications.

Functions, events, variables, and docu-
ments are all components of a complete
emMicro server installation. Of course,
the main user application is the boss, but
it too has to be intertwined with the em-
Micro code to effect the EMIT functionality.

Functions are defined as the processes
that the device performs. These functions
are the standard jobs or procedures you
code into any application.

Events consist of a table of predefined
states that must be reported when that
particular state occurs. An example of an
event would be the tripping of a flood
sensor in your basement.

Variables contain the state of physical
or logical objects. For example, variables
store the state of a logical switch or the
numeric value of a thermistor reading.

Documents in this context are HTML
pages that contain either information about
the server device or HTML pages that are
served on demand. In a sense, there’s no
real difference in functions, events, vari-
ables, and documents in the emWare
environment than in any other program
you would write.

The key here is that all of these pro-
gram products are given the ability to be
transported bidirectionally between the
server machine and a web-browser appli-
cation using the emMicro code.

Photo 2�Depending on your application, you can
load all of EMIT or just the pieces you need.

Photo 3�Hmm�looks a lot like Bill�s Visual Basic.

A
PC

CIRCUIT CELLAR INK NOVEMBER 199860

THE GATEKEEPER
Rather than siphon all that good server

data into a bit bucket, emWare uses
another component—emGateway—to
provide Internet access and device man-
agement. The gateway code is respon-

pieces of data that can’t be contained in
the smaller server processor memory area.

emGateway normally resides on a
host that is networked to the embedded
server devices. If the server has enough
resources, emGateway can be embedded
there. The gateway code can also reside
on the emClient machine. Where you put
the gateway code depends on your avail-
able server resources and the network
environment you’re working with.

As with emMicro, emGateway con-
tains building blocks that interface its
code to other emWare components. Like
emMicro, emGateway communicates at
a low level using emNet. Each external
server device must be managed by
emGateway and this is done using the
Device Link Module (DLM). The DLM pro-
vides port-management services for each
external device’s network connection.

A separate DLM codeset is used for
each incoming device. If your application
uses RS-232 and Ethernet servers, a DLM
for each protocol and each device is
called into action. The recruiter in this case
is Device Access Service (DAS), which
manages the external communication of
data to and from the device and browser.

emGateway also contains the HTTP
server that serves HTTP requests from the
browser. Optionally, if some emObjects
are not present at the browser level,
emGateway can hold and serve these
objects as well. These emObjects consist
of HTML and Java objects not installed at
the browser level.

If your particular application isn’t
browser-based, a command-line option is
included in emWare to enable DAS to
pass data via the DLM structure and
emNet to and from the emMicro server.

I’m gonna push the stick forward and
take us down a few thousand feet to take
a peek at the client side of this operation.
Visual Café-defined objects running in
conjunction with a web browser constitute
most of the client code. Again, as you will
see a little later, control and monitor visual
objects are defined and linked to the
server through a Java applet.

The web-browser client is the means by
which the user communicates with the
emMicro server device. emGateway ser-
vices are initiated via HTTP commands
from the browser. The emWare-enabled
browser uses emObjects and EMIT-specific
Java files to effect this comm process.

Figure
1�EmitJri

is the glue
that binds the

physical hard-
ware to EMIT.

Simple applet

emSlider 1

emAnalogMeter1

emBarDisplay1

SDK Board

Red variable

Green variable

Knob variable

EmitJri Red

Green

Pot

RedVariable

GreenVariable

PotVariable

sible for gathering and delivering com-
mands and data to and from the emMicro
server.

The gateway can also be configured to
offload some of the service load from the
server by acting as a repository for larger

A
PC

NOVEMBER 1998 EMBEDDEDPC 61

To be a full-fledged emClient, the
emObjects and the Java-class files must
reside on the local browser machine.
Otherwise, if the emWare components
are located on a remote emGateway
machine, the client is no more than a
standard web-browser configuration. Now
that all the emWare players have been
introduced, here’s how it works.

A URL is sent from the browser to the
emGateway device. Nothing is different
about this URL. It contains address infor-
mation needed to target a specific emMicro
device in the network.

Typically, host, port, device, and docu-
ment names are included in the requesting
URL. emGateway’s HTTP server receives
the URL request and initiates a connection
with the targeted server device.

At this point, the emMicro-enabled
server device responds with the requested
document. This document may be micro-
tagged. If so, it’s expanded by the microtag
expansion services within the emGateway
structure. If any of the necessary or re-
quested emObjects aren’t on the local
browser machine, emGateway serves
them, too.

Communication between emGateway’s
DAS and the web browser are arbitrated
by EMIT’s Java run-time interface (EmitJri).
This link is established via HTTP info from
emGateway. The client HTTP module is
linked to the emGateway module for HTTP
traffic, and a link is formed between the
client’s EmitJri interface and the
emGateway DAS interface to transfer
data to and from the server device.

Of course, the HTTP requests are logi-
cally linked with the DAS requests so that
the two data conduits work together get-
ting the requested documents from the
emMicro server machine. Looks like the
install can continue now, so let’s move on.

As we descend, I’ve chosen to select
all of these components offered because I

want to show as much code as
possible.

Oops! The next panel states
that I must have Visual Café in-
stalled to use the client develop-
ment package. OK, I just exit the
EMIT install and select the Visual
Café install button. Eventually, I’ll
come back and finish where we
left off on the EMIT 2.5 install.

COFFEE BREAK
Personally, the addition of Visual Café

is one of the biggest improvements made

to the later versions of
emWare. Before Visual
Café was included in the SDK,
all of the user interface and user
interface code had to be done by
hand with HTML tags and the like.
Using Visual Café is a lot like using Visual
Basic.

All of the objects are chosen from menu
bars, and the properties of each object
can be manipulated via a property sheet.
Once the GUI objects are placed, Visual
Café creates the appropriate code needed
to define the objects.

Photo 4�Just think. This all used to be done �by hand.�

A
PC

CIRCUIT CELLAR INK NOVEMBER 199862

At this point, the developer need only
associate each object with a correspond-
ing object on the emMicro server. em-
Objects can be switches, slide pots, ana-
log or digital meters, or LED displays.
emWare supplies the emObjects for Vi-
sual Café, and these are installed with the
initial install of Visual Café.

An EMIT template and EMIT macros
are also part of the initial setup and install
process. The macros provide a mecha-
nism for linking the display objects with
variables on the server. Photo 3 is a look
at the business end of Visual Café.

Take a good look at Photo 3 and let’s
walk through a slider setup. The first step
is to click on the emSliders tab. Then,
select a slider and drag it onto the Form
Designer window. Select the slider by
clicking on it and set the appropriate
properties. That’s all there is to putting a
control on the panel.

Remember the emWare works on vari-
ables sent and received from the server
application code. I must rep-
resent this variable just as it is
represented on the server de-
vice. To keep it simple, I will
assign a variable label and
name it Red.

The variable label is used
to communicate to and from
the variables on the server
device using EmitJri. I haven’t
defined EmitJri, so for now
think of it as a conduit or path
between the slider and its
variable on the server.

Usually, the variable label
is hidden, but for clarity I’ll
leave it on the Form Designer
window. Once it is placed, I
select it and set its properties.
I’ll call this variable Red-

P h o t o
5�Connect-

ing the logical
with the virtual

physical is what
this screen is all about.

Photo 6�As you would expect, the point and click generates code in all the right
places.

Variable and set the text attribute to
Red. From now on, this variable will be
called RedVariable and Red will be
displayed as the RedVariable label.

Now that the physical slider is defined
and has been assigned a variable, it’s
time to link them. If you’re wondering
where Red is located and what the slider
will control, I’ll tell you.

The emWare SDK comes with an 8051-
based platform that consists of a couple of
LEDs, a pot, an RS-232 interface, and an
EEPROM. It just so happens that one of the
LEDs is red and its variable name is Red.

Now it makes a little more sense,
right? OK, let’s finish with the linkup.

After clicking on the slider I just placed
and defined, I select Add Interaction. Just
like Bill’s stuff, a wizard is conjured up.

As you see in Photo 4, I selected Red-
Variable and instructed Visual Café to
make my slider interact with it. After all is
said and done in Photo 5, I told Visual
Café to set up the code so that Red-

Variable would get its information from
the slider control.

All that’s left to do now is establish the
path between the slider and the variable
on the SDK board. This path is established
by running one of the EMIT macros that
was installed with Visual Café.

For my purposes, that macro is Add
Embedded Event Listener. Photo 6
is what I saw before the command com-
pleted. Actually, I am setting up a link
between EmitJri and RedVariable.

I should tell you a little more about
EmitJri. This Java run-time interface be-
tween the applet resides on the client and
the device access service on emGateway.
The device access service manages the
external communication of data between
the server device and the browser.

The Listener macro produces Java
code that enables the Red variable on the
SDK board to get values from Red-
Variable in the client applet. Red-
Variable gets its values from the slider
control. Figure 1 is a good logical view of
the results of the actions I just performed.

With all that clicking and dragging,
you might think there’s code out there some-
where. Well, check out Photo 7. Every-
thing I clicked on or dragged is now code.

You’re probably wondering about go-
ing the opposite way through EmitJri like
the Green or Knob variables in Figure 1.
There’s a macro for that, too—subscribe.

For simplicity, I didn’t go both ways
here, but for inquiring minds, subscribe
is used when a device variable provides
an update to EmitJri. The subscribe

macro provides Java code
that enables any changes
in the variables on the
server to be automatically
reflected in the client
applet’s emObjects.

Now that all of the
code and GUI info for our
simple applet is in place,
the next thing to do is run
it. Because I used the sup-
plied SDK board and one
of the predefined variables,
this should be a snap.

The SDK firmware al-
ready has all of the neces-
sary components needed
to connect to the emGate-
way software. To create
that link, all I need is to

A
PC

NOVEMBER 1998 EMBEDDEDPC 63

SOURCE
emWare
emWare
(801) 256-3883
Fax: (801) 256-9267
www.emware.com

Fred Eady has over 20 years� experience
as a systems engineer. He has worked
with computers and communication sys-
tems large and small, simple and com-
plex. His forte is embedded-systems de-
sign and communications. Fred may be
reached at fred@edtp.com.

Photo 7�You want code? There it is.

start the emGateway application.
Once emGateway is started and the
SDK is powered up, I can execute
my applet directly from the Visual
Café application.

PREPARING TO PROGRAM
Although the emWare 101

course you just took was very rudi-
mentary, I think you can see the
possibilities that exist. emWare is
designed to integrate into your ap-
plication and provide a layer by
which you can connect over virtu-
ally any TCP/IP-based network.

The basis to any emWare appli-
cation is round-robin multitasking.
Simply put, this scheme gives all the parts
of an application equal access to the
processor resources. It means that no one
part of the application should seize the
processor resources for any abnormal
length of time.

For example, let’s say your application
had to read some push-button switches to
make a decision. If your program polled
the switches in such a manner that the
routine loops until a switch was released,

then other parts of the program could lose
or miss information they need to make
their program-related decisions. If a pro-
gram segment was waiting for incoming
asynchronous data and the switch seg-
ment was looping…well, you can guess
what happens.

PICING UP WHERE WE LEFT OFF
The final product of this discussion will

be a PIC-based micro server attached to

an embedded-PC gate-
way serving a remote web
browser.

I’ve introduced you to some
of the emWare concepts at a high
level. Next time, I’ll drop to the tree-
tops and talk turkey about what it takes
under the covers to put our PIC on the
network.

By the way, I did finish the EMIT install
while you were looking at Visual Café.
Thus, modern software technology from
emWare has once again proven that it
doesn’t have to be complicated to be
embedded. APC.EPC

64 Issue 100 November 1998 Circuit Cellar INK®

MICRO
SERIES

David Tweed

i

Digital
Processing in
an Analog
World

This month,
David dis-
cusses the

pros and cons of several
converter technologies
in terms of performance,
cost, and complexity.
He covers everything
from basic flash ADCs
to PWM, so we know
where to turn for our
applications’ needs.

P
ar

t

of3
2

 64

72

78

MicroSeries

From the Bench

Silicon Update

DEPARTMENTS

3

n Part 1 of this
series, I covered

some of the basic
concepts associated with

analog-to-digital and digital-
to-analog conversion, including quanti-
zation and sampling, plus some of the
things that make a real-world converter
deviate from the ideal performance.

This time, I take a look at several
converter technologies and compare
their strengths and weaknesses in terms
of the performance characteristics I
discussed, as well as other consider-
ations such as cost and complexity.

I’ll start with the conceptually
simpler technologies such as flash
ADCs and R-2R DACs and then move
on through switched current, dual-
slope, successive approximation, and
pulse-width modulation. Along the
way, you should develop a feel for
where and why each technology has
traditionally been applied and which
one is best suited to your application.

FLASH ADC
The flash ADC is basically a brute-

force implementation of the theoretical
ADC, because for an n-bit converter,
2n – 1 analog comparators are used to
compare the analog input directly and
simultaneously to voltages representing
the decision points.

The decision-point voltages are
generated by a resistive divider of 2n

resistors connected between two voltage
sources representing the lower and

2

Technology Choices

Circuit Cellar INK® Issue 100 November 1998 65

upper limits of the desired conversion
range. The basic structure is shown in
Figure 1a.

The comparators generate 2n – 1 bits
of information in what’s commonly
called thermometer code—all of the
comparators below the input voltage
produce ones, and all of the comparators
above produce zeros. A table of this
code for a three-bit converter is shown
in Figure 1b. Logic is required to reduce
this code to the n-bit binary code that
is desired.

The logic to perform the conversion
is quite simple, as you see in Figure 1c.
Note that the middle column of the
table is identical to the most significant
output bit you want to generate. This
bit splits the table into two halves,
each of which contains a copy of a
smaller table with half as many rows.

The middle column of this new
table is the same as the next most
significant output bit, and so on. Repeat
this process until the last multiplexer
is just one bit wide, and outputs the
least significant bit. The output logic
is a series of 2:1 multiplexers, each
one controlled by the middle output
bit of the previous stage.

The biggest advantage of this tech-
nology is its extremely high speed. If
you put pipeline registers at the outputs
of the comparators and multiplexers,
the cycle time is limited only by the
time it takes the comparators to settle
and the registers to capture the outputs.

The data reduction takes n – 1 addi-
tional clock cycles for n output bits,
but this affects only the converter’s
latency (delay), not its throughput.
Flash converters usually operate in the
100-MHz to several-GHz range, provid-
ing between 6 and 10 bits of resolution.

The big disadvantage to flash con-
verters is the circuit complexity. Be-
cause of the complexity and the heavy
reliance on perfectly matched compo-
nents, only monolithic (single chip)
implementations make sense. For
each additional bit of resolution, the
number of comparators and latches
must double, which drives up both
chip area and power consumption.

The linearity of the converter is
directly related to how well the indi-
vidual resistors of the divider chain
are matched. This relationship can be

mitigated somewhat by carefully laying
out the resistors on the chip so that
manufacturing tolerance issues (e.g.,
mask alignment) affect all of them in
the same way.

Because this type of converter typi-
cally only makes sense in very high-
speed applications, several dynamic
issues come into play. One issue is
the problem of distributing the input
signal to all of the comparators.

The capacitive load of all those
inputs is considerable, and any buffer
amplifier that gets inserted into the
path must be fast, stable, and capable
of driving large currents. Also, the
propagation delay of the comparators
must be well matched, and the pipeline
clock must be distributed to all of the
registers with low skew.

As a designer of a system incorpo-
rating these converters, you should be
prepared to deal with the huge volume
of data they produce. This means wide
buses running at extremely high speeds.
Board-level signal integrity is of para-
mount importance.

Several gigasamples-per-second
converters are available (typically
used in DSOs). Triple 6–8-bit devices
are available for TV-resolution video
applications (typically 14.31818 MS/s
[mega-samples per second]). Analog
Devices announced a triple 8-bit,
300-MS/s device for high-resolution
video displays that costs about $25.

R-2R DAC
One of the simplest forms of DAC

is known as the R-2R network, shown
in Figure 2a. An n-bit converter can be
built from 3n resistors of all the same
value, making it quite attractive for
low-cost discrete implementations.

To understand how the R-2R net-
work operates, recall how a voltage
divider (a voltage source and two
resistors) is exactly equivalent to a
circuit consisting of a single voltage
source in series with a single resistor.
This equivalency is known as the
Thevenin equivalent of the original
circuit. (There is also a Norton equiv-
alent, in which the original circuit is
replaced by a current source in parallel
with a resistor.)

The Thevenin voltage is calculated
by the normal voltage divider equation.
The Thevenin resistance is calculated
as the parallel combination of the two
original resistors, as shown in Figure 2b.

Now, consider the first bit of the
R-2R network, shown in Figure 2c.
Depending on the state of the switch,
this bit forms a voltage divider devel-
oping 0 × Vref or ½ × Vref. In either
case, the Thevenin resistance is the
same:

1
0.5R + 0.5R = R

If I now connect this equivalent
circuit to the next bit, as shown in

Figure 1a —Here is the block diagram of a flash ADC that directly implements decision levels. b—The thermometer-
to-binary conversion table shows the symmetry that leads to the conversion logic. c—The conversion circuit is a
series of multiplexers, with optional pipelining shown by the dashed lines.

+

–

+

–

+

–

+

–

+

–

n-bit
binaryencoder

T(2n)

T(2n –1)

T(2n – 2)

T(2)

T(1)

2n – 1
comparators

Input

+Vref

R

R

R

–Vref

R

R

R

2n

resistors T7

T6

T5

T4

T3

T2

T1

B2

B1

B0

triple
2:1 mux

2:1 mux

0

1

0
0
0
1

1
1

0

1

0
0
0
1

1
1

1

0
0
1

1

0
0
1

0
1
0
1
0
1
0
1

1

0
0
1

1

0
0
1

0
1

0
1

0
1

0
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

0
0
0
0

0
0
0
0

0
0
0
0

0
0

0
0

T4 b2 b1 b0T6T7 T3 T2 T1T5a) b)

c)

Circuit Cellar INK® Issue 100 November 1998 67

Figure 2d, it’s easy to see that this
forms another voltage divider, again
with resistance 2R on each side. The
bottom end of the divider connects to
either 0 × Vref or ½ × Vref, while the
upper end connects to 0 × Vref or 1 × Vref.

If you work out all the combinations,
you find that the Thevenin voltage of
this circuit is 0 × Vref, ¼ × Vref, ½ × Vref,
or ¾ × Vref. Once again, the Thevenin
resistance is simply R. You can add as
many bits as you like, and the output
resistance will remain R, and the
output step size will be:

Vref

2n

I’ve shown the drivers of the R-2R
network as switches for simplicity,
but they could just as well be a set of
output bits from a microcontroller.
The important thing is that the drivers
should have much less resistance than
2R. If not, their resistance should be
well matched in both the low state
and the high state and to each other,
and the 2R resistors should be reduced
in value to compensate.

The biggest problem with this kind
of converter is matching the resistor
values closely enough—you need
tolerances on the order of 0.1% for a
10-bit converter. You also need to be
aware of the output resistance of the
bare resistor network, adding an output
buffer when necessary.

One big advantage of this converter
is that the output is a simple multipli-
cative factor times the input voltage,
which itself can vary or even change
sign if the drivers allow it. That

makes it useful in applications like
digital volume controls and in op-amp
feedback networks.

SWITCHED-CURRENT DAC
The switched-current DAC uses a

technique that is best suited for mono-
lithic (single-chip) implementations.
A variation of the R-2R network or a
circuit called a current mirror (and
sometimes a hybrid of both techniques)
is used to divide a reference current
into ever-smaller streams. Then, elec-
tronic switches combine these streams
to form the desired output value.
Figure 3 shows the general scheme.

A reference current is supplied at
the top, which gets successively di-
vided in half. The output currents are
switched onto one of two rails depend-
ing on the state of the corresponding bit.

Each rail carries the sum of the
currents switched onto it, with the Io

rail carrying a current proportional to
the digital code and the

–
Io rail carrying

the remaining current, which corre-
sponds to the complement of the digital
code. Each current needs to be returned
to ground. Normally, the Io rail drives
a current-to-voltage converter imple-
mented with an op-amp, while the

–
Io

is returned directly to ground, some-
times through a load resistor.

Because the currents are flowing
through the current-dividing network
in the same way all the time, regard-
less of the positions of the switches,
it’s relatively easy to keep them oper-
ating in a stable and accurate manner.
Also, the voltages across the switches
are very low and constant at all times,

so keeping them operating in a linear
fashion is easy as well.

The key to good performance in
these converters is that all of the
transistors in the current mirror and
switching currents must be carefully
matched for their performance charac-
teristics (e.g., threshold voltage and
current gain). Also, they need to oper-
ate in the same environment as far as
supply voltage and temperature, which
makes monolithic fabrication the
logical choice.

The main advantage of this kind of
converter is its relatively low cost,
which results from the relatively low
complexity and small die size. An-
other advantage is its relatively high
speed, controlled mainly by how fast
the switches operate, especially when
the desired output is a current value.

However, the high speed can turn
into a disadvantage when an output
voltage is desired, because the current
source has a very high effective output
impedance (an ideal current source
has an infinite impedance). If there’s
any stray capacitance at the summing
node of the converter, as shown in
Figure 3, this becomes a relatively slow
R/C low-pass filter that slows down
the transition speed of the converter.

DUAL-SLOPE ADC
A dual-slope ADC operates by trans-

lating an unknown amount of current
into a time period and then measuring
it. The key element of this kind of
converter is an analog integrator that
integrates the unknown current for a
known amount of time, and then the

VoutVout5 V 2 V

120 Ω

+

–

+

–

+

–

+

–

200 Ω

300 Ω

Vref

RRR
2R

2R

2R 2R 2R

Gnd

Vref

2R

2R

Gnd

Vout
½Vref

0⁄2 × Vref R

Vout

Vref

2R
R

Gnd

Vout

0⁄4 × Vref
1⁄4 × Vref
2⁄4 × Vref
3⁄4 × Vref

R

Vout

0⁄2 × Vref
or

1⁄2 × Vref

R

a)

b)

c)

d)
Figure 2a —The R-2R converter
can be built from switches and
resistors. b—A network of voltage
sources and resistors can be
reduced to a Thevenin-equivalent
circuit. c—The equivalent of the
first bit has a constant resistance
R. d—Analyzing the second bit is
easier using the Thevenin equiva-
lent of the previous bit.

68 Issue 100 November 1998 Circuit Cellar INK®

integrator is discharged by a
known reference current while
measuring the time required for
the output to reach zero again.

A digital counter running at a
constant rate measures the time
period. An unknown voltage is
easily turned into a current by
applying it to a precision resistor.
The block diagram of a dual-slope
converter is shown in Figure 4a,
and the corresponding timing is
shown in Figure 4b.

The dual-slope converter oper-
ates in three phases. During the
first phase, the switch SWa is
closed, which resets the integra-
tor to zero voltage, and the digital
counter is reset at this time as well.

During the second phase, SWa is
opened and SWb is closed, applying
the unknown voltage/current to the
integrator for a fixed period of time
controlled by how long it takes the
counter to overflow.

During the third phase, SWb is
opened and SWc is closed, removing
the unknown current from the inte-

grator and applying a fixed current of
the opposite polarity. The counter
starts counting from zero again, and
its value is latched when the inte-
grator’s output reaches 0 V again.

The time for this process is directly
proportional to the integrator voltage
at the beginning of the third phase,
which is directly proportional to the
original unknown voltage or current.

A refinement of this circuit,
known as the triple-slope converter,
adds an extra phase between the
first and second phases during which
the integrator input is grounded
and the capacitor is connected in
the opposite polarity. This phase
basically operates the integrator in
the same mode as the original
second phase but with the direction
of integration reversed.

This phase also lasts as long as
it takes for the counter to overflow.
It allows the integrator to accumu-
late a charge that represents the
offsets and leakage currents in the
analog circuitry, which then cancels
out those same errors in the next
phase—the measurement phase.

When carefully constructed, this
type of converter can yield very high
resolution and accuracy. Also, the
relatively simple structure requires
relatively low power, which makes it
suitable for battery-powered applications
like digital multimeters.

So-called 3½-digit meters (2000
counts) are quite common and represent

Figure 3 —The switched-current DAC directs fractions of the
reference current to one of two summing nodes. The inset shows
how an R-2R network divides a reference current if all outputs are at
ground or virtual ground.

Iref⁄8

RR

2R 2R 2R

2R

Gnd

+

–

Iref⁄2
Iref⁄4

Iref⁄8

Iref

Iref⁄ 8

Vout = –RFB × I0

RFB

Iref

–
I0 Stray

Capacitance

Virtual
Ground

Current-to-voltage
converter

I0

current
mirror

current
mirror

current
mirror

Iref⁄8
Iref⁄4

Iref⁄2

Iref⁄4

Iref⁄2

Circuit Cellar INK® Issue 100 November 1998 69

One trick is to make sure the inte-
gration period is an exact multiple of
100 ms. Doing so makes the integration
period an integer number of periods of
50 and 60 Hz, canceling out nearly all
sources of power-line interference.

Parts are available with BCD outputs,
which are preferred for direct metering,
and binary outputs, which are preferred
for microcomputer applications.

SUCCESSIVE APPROXIMATION
The difference between a dual-slope

and a successive-approximation ADC

is the difference between doing a lin-
ear search versus a binary search—the
time required is 0(log(n)), the number
of bits, rather than 0(n), the number of
counts. A block diagram of a succes-
sive-approximation ADC is shown in
Figure 5a.

The concept is simple: The unknown
quantity is applied to one side of a
comparator, while a known quantity
generated by a DAC is applied to the
other. Digital logic monitors the results
of the comparison and generates codes
to feed to the DAC.

about 11 bits of binary resolution.
Laboratory-grade instruments of six or
more decimal digits (1,000,000 counts)
are available and represent about 20 bits
of binary resolution.

One disadvantage is the relatively
long conversion time—on the order of
hundreds of milliseconds—which
allows only a few measurements per
second. However, this conversion time
is quite acceptable in a digital meter,
and the long integration time has the
beneficial side effect of filtering out
most forms of noise.

A B C

Time

Fixed slope,
measure time

Unknown slope,
fixed time

Reset

Integrator
voltage

+

–
+

–

+Vref

–Vunknown
SWb

SWc

R

SWa

C

Integrator
Comparator

To switches

Control
logic

Reset

Counter

Latch

O
verflow

To display or
microprocessor

Clock

b)
Figure 4a —The schematic of the
dual-slope ADC shows the simple
analog circuitry. b—The conver-
sion is performed in three phases.

a)

70 Issue 100 November 1998 Circuit Cellar INK®

The algorithm divides the con-
verter’s range into two equal halves
by initially setting the DAC to the
middle of the range. The result of this
comparison—a 1 if the unknown is in
the upper half, a 0 if it is in the
lower—eliminates half of the range
from consideration.

The DAC is set to the middle of the
remaining half of the range, and another
comparison is made. As this process
continues, the DAC’s output becomes
a better and better approximation of
the unknown value. When the process
is complete, the code then being fed
to the DAC is the best approximation
of the input value, and it becomes the
output value of the conversion.

Figure 5b shows the timing sequence
of a successive-approximation conver-
sion. At the first step, the DAC is set
to one-half full scale, and the compara-
tor indicates that the input voltage is
somewhere above that, shown by the
shaded region. This setting also means
that the most significant bit of the
digital code will be a 1.

At step two, the DAC output is set
to the middle of the upper range, and
the comparator indicates the voltage
is less than that. The second bit of the
result will be a 0, and once again the
DAC output is adjusted to the center
of the narrower range. This process
continues, subdividing the range con-
taining the input value until all of the
bits of the output code are generated.

It’s important that the input voltage
doesn’t change during this process.
Particularly if the voltage moves out
of the range under consideration early
in the sequence, it becomes impossible
for the converter to come up with a
correct code—the remaining bits will
be all ones or all zeros as appropriate.
This converter technology is often

paired up with a sample/hold circuit
to address this problem.

PWM DAC
The pulse-width modulator (PWM)

is a simple form of DAC with many
positive features. It works on the prin-
ciple that switching rapidly between
two fixed values with a variable duty
cycle and then taking the average over
time can generate an analog value.

Figure 6 illustrates a PWM and the
timing of its operation. A free-running
digital counter feeds one side of a
digital comparator, while the desired
digital output code is fed to the other.

The comparator’s output is high
when the counter value is less than
the code value. Higher codes mean
you have high output for more of the
time. One output pulse is generated
for each complete cycle of the counter,
so the sample rate is effectively the
counter’s clock frequency divided by
2n, where n is the number of bits in
the counter and the code word.

Even moderate sample rates and
resolution can require high clock rates.

For example, 8-bit resolution at a
sample rate of 8 kHz requires a clock
of 2.048 MHz, and 16-bit resolution at
44.1 kHz (CD quality) requires a clock
of 2.89 GHz! So, this type of converter
tends to be used in low-speed applica-
tions (e.g., process control) in which
conservative filters can be used.

The big advantage of the PWM is
that the circuitry is nearly all digital,
and the analog output filter is often
nothing more than a passive R/C low-
pass filter. These qualities enable the
converter to be easily integrated with
other digital logic, and in fact, many
single-chip microcomputers are avail-
able with PWMs built in, making it
the preferred DAC technology in ex-
tremely cost-sensitive applications.

Another advantage of the all-digital
active circuitry is that the linearity of
the converter is virtually guaranteed.
The only sources of errors are the pas-
sive filter components, which tend
not to have linearity problems, and
the timing of the edges of the PWM
waveform, which is easy to control.

One disadvantage is the fact that
the raw output has a strong tone or
carrier signal at the sample rate and at
harmonics of the sample rate, and the
output filter needs to have strong
attenuation at those frequencies in
order to eliminate them.

If a simple analog filter is going to
be used, the sample rate must be much
higher than the Nyquist limit would
imply. Or conversely, the signal band-
width must be kept much lower than
half the sample rate.

a) b)

Vref

Comparator

DAC –
+

Vin

Successive
approximation
register (SAR)Clock

n bits
output

Start

Done

Figure 6a —A pulse-width modulator is nearly all digital circuitry. b—The PWM generates one output pulse for each
full cycle of the counter. Showing the digital values of the counter (stairstep) and input code (dashed line) graphically
makes it easy to see how the output waveform (lower trace) is generated.

0 V

Input
voltage

A Time

DAC
voltage

B C D E F

Max

1 0 1 1 1 0
Output value

a) b)

Figure 5a —The successive approximation ADC uses a
DAC in a feedback loop to zero in on the unknown input.
b—A binary search successively halves the range in
which the unknown can lie.

Time

0 1 2 3 4 5 6 7

5

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0

High when
A < BDigital

comparator

CounterClock

n bits
input

Vout

Low-pass filter

B

A

Circuit Cellar INK® Issue 100 November 1998 71

David Tweed has been developing
hardware and real-time software for
microprocessors for more than 22
years, starting with the 8008 in 1976.
His system design experience includes
computer design from supercomputers
to workstations, microcomputers,
DSPs, and digital telecommunications
systems. David currently works at
Aris Technologies developing digital
audio watermarking. You may reach
him at dtweed@acm.org.

SOURCES

AKM Semiconductor, Inc.
(408) 436-8580
Fax: (408) 436-7591
www.akm.com

Analog Devices, Inc.
(781) 937-1428
Fax: (781) 821-4273
www.analog.com

Analogic Corp.
(978) 977-3000
Fax: (978) 531-7356
www.analogic.com

Burr-Brown Corp.
(520) 746-1111
Fax: (520) 746-7401
www.burr-brown.com

Cirrus Logic/Crystal Semiconductor
(512) 445-7222
Fax: (512) 445-7581
www.cirrus.com

Datel, Inc.
(508) 339-3000
Fax: (508) 339-6356
www.datel.com

Exar Corp.
(510) 668-7000
Fax: (510) 668-7001
www.exar.com

Linear Technology Corp.
(408) 432-1900

Fax: (408) 434-0507
www.linear-tech.com

Maxim Integrated Products
(408) 737-7600
Fax: (408) 737-7194
www.maxim-ic.com

National Semiconductor Corp.
(800) 272-9959
(408) 721-5000
Fax: (408) 739-9803
www.national.com

NEC Electronics, Inc.
(408) 488-6000
Fax: (408) 488-6130
www.nec.com

Philips Semiconductors
(800) 447-1500
(408) 991-5207
Fax: (408) 991-3773
www.semiconductors.philips.com

Texas Instruments, Inc.
(800) 477-8924, x4500
(972) 995-2011
Fax: (972) 995-4360
www.ti.com

CHOOSE A CONVERTER
I’ve covered a few basic converter

technologies so you can choose the
right one for your application. I’ll wrap
up by looking at delta-sigma converters
and why they’re the hot area of devel-
opment these days. I’ll also cover the
whys and hows of using dither. I

72 Issue 100 November 1998 Circuit Cellar INK®

FROM THE
BENCH

Jeff Bachiochi

l

MIDI

The
show
must go
on, and
so does

Jeff as he finishes his
MIDI animator project.
After discussing MIDI
control, Jeff completes
the performance by
showing how lighting
engineers can get in
on the act.

ast month, we
were learning a bit

about the MIDI music
control protocol and how

a bit of hardware can capture the com-
mand sequences, when we suddenly
smashed right into the end of the
column.

Remember that the MIDI protocol
defines events like note on/off, tim-
ing, and synthesizer presets to recre-
ate performances that were recorded
live or written as a musical score.
Since both timing and note informa-
tion is stored in a MIDI file, it seemed
like a practical front end to a digital
control system. Thus was born this
project, the MIDI animator.

MIDI files can hold information for
up to 16 instruments. So, this project
has configuration jumpers for selecting
which of the 16 instrument commands
to listen to.

Next, only two commands are of
interest—the 80H command for note
off and the 90H command for note on.
When one of the commands is decoded
from the MIDI output’s 32,768-Hz
serial datastream, the following two
bytes are saved along with the first.

The second byte indicates the note
being turned on or off. Only 14 of the
128 possible notes are acted on. The
remaining are tossed out.

The PIC16C63 has 14 outputs dedi-
cated to these notes. When the MIDI

output commands any of these notes
on, the MIDI animator turns the ap-
propriate output on. And, when the
MIDI output commands any of these
notes off, the MIDI animator turns
the appropriate output off.

The third byte of the command
holds special information about that
note, known as velocity. Here’s where
things get interesting. You can think
of velocity as how hard a note is hit.
If the note is hit softly, the third byte
holds a low value. If it is hit hard, the
third byte holds a large value.

In addition to the PIC’s outputs
going high or low, the velocity value
can indicate an amount of high/low.
This analog amount can be output in
one of two ways—either PWM based
on 60 Hz or a modified PWM used for
servo motors. A configuration input
determines the type of output used on
each of the 14 digital outputs.

PWM
With most adjustable AC control,

you have to be careful. If the control
output isn’t in sync with the line, there
will be some modulation AC output at
a rate equal to the difference between
the line frequency and control output.

To eliminate this beating, all 14
outputs must be in sync with the line’s
zero crossings. One of the PIC’s inputs
(see Figure 1, INK 99, p. 78) is used as
a zero-crossing input providing a rising
and falling edge in which all the timings
can be based.

Each AC cycle has two crossings,
8.33 ms apart. Therefore, all control
must be done within that time frame.
Since the velocity value will be 0–64,
we’ll break this 8.33 ms into 65 parts,
with each part lasting 128 µs.

The most common AC control
device is the triac. The triac can be
turned on anytime within each half
cycle, and it turns off automatically at
the next zero crossing (provided the
gate control has been removed).

The velocity value received for any
specific note (output) determines when
(i.e., during which of the 65 cycles) the
output will be switched high. The
higher the value, the sooner it will be
turned on.

When the value is 64, it remains on
throughout all cycles. When the value

Part 2: The Show Must Go On

Circuit Cellar INK® Issue 100 November 1998 73

is zero, it remains off through-
out all cycles. When the value
is 32, it is turned on half way
through each cycle.

Timer2 is used as the PWM
timer. It restarts at each zero
crossing so the timing stays in
sync with the line. When Timer2
matches the period register
(every 128 µs), an interrupt is
triggered.

Depending on how close to
60 Hz your line frequency re-
mains, you can adjust this value to
assure you remain at less than a half
cycle for all 65 periods. Reducing this
number means you can withstand more
deviation in line frequency. However,
the control at the minimum values
will be a bit distorted.

The interrupt routine decrements a
time frame count (starting at 65) and
compares it with the velocity values
for each output (held in a look-up table).
If the values match, the appropriate
output is set.

The outputs are reset after the sixty-
fifth Timer2 interrupt (see Figure 1).
Now the code just idles (but not for
long) until the next zero-crossing edge
and the pattern is repeated.

The circuit I used contains a power
supply running off of 120 VAC. I put
the circuit right on the board giving
me access to AC, which enables sync
with the line.

I used the change of state input to
create the 120-Hz interrupt clock. If
you don’t need that, the system will
use Timer0 as a 60-Hz source. The
initialization routine looks at the zero-
crossing input to determine whether
to stay synchronized to the line or the
internal oscillator.

SERVO CONTROL
Radio-control models gave us low-

cost servo control. These servos’ input
is based on a modified PWM output
pulse. The servo input must be 1–2 ms
in duration. A 1-ms pulse is the mini-
mum duty cycle, and a 2-ms pulse is a
maximum duty cycle.

You can command the servo to
move between minimum and maxi-
mum rotation by varying the duty
cycle between 1 and 2 ms at a refresh
rate of 30–100 Hz. Most servos rotate

between extremes in tenths of a second.
I chose to use the same cycle time as
the previous PWM mode—60 Hz.

This task is accomplished by con-
trolling pairs of outputs in sequence.
It was a trade-off between time within
the execution loop and waiting time
for the next loop. Potential characters
could come in every 300 µs. Dividing
1 ms into 65 parts gave me only 15 µs
between each interrupt.

I needed to execute through the
interrupt loop fast enough to allow
plenty of time to process incoming
characters and still get back for the
next interrupt. I found that my inter-
rupt execution took about 20 µs, which
left –5 µs and no time for the UART
handler. I had to compromise.

I decided to divide the velocity value
in half and only have 33 parts to the
servo’s modified PWM output. This
decision gave me a 10-µs overhead for
the UART handler and still allowed a
60° servo control to a resolution of 2°
(see Figure 2).

Timer2 is for the servo interrupt.
When the zero-crossing interrupt hits,
the first pair of outputs is set high and
Timer2 is loaded with a value that
will give the initial 1-ms output.

When it overflows, it is
reloaded with a value for 30-µs
interrupts. The next 33 inter-
rupts check the velocity values
stored in the note table. When
the value in the table equals
the interrupt count, the appro-
priate output is turned off.

After the thirty-third inter-
rupt, the next output pair is
turned on. The correct pulse
output is created based on the
table entries for these outputs.

In the meantime, the UART is being
serviced and the note table is being
updated. By the time all seven output
pairs are processed, 16 ms have gone
by and the next zero crossing starts
the whole process all over again.

SERVO MECHANICS
Servos have three connections—

power, ground, and control inputs. The
internal circuitry uses a geared-down
DC motor to turn an output shaft. A
feedback potentiometer tells the motor-
drive circuitry where the shaft is.

The motor-drive circuitry compares
the pot’s analog output to the duration
of the input pulse. The motor is driven
until the shaft turns the pot, so the two
signals obtain equilibrium. Servos are
complicated little modules when
compared to their low cost. They are
available for about $15–50, each with
torque on the order of 30–200 oz.–in.

Hardware included with the servo
enables it to be used in almost any
application where it either pushes or
pulls through various linkages. You
might use servos to animate robots,
puppets, props, or kinetic artwork,
and they can control many kinds of
scale-model layouts as well.

Figure 2 —During each AC cycle (top trace), seven pairs of outputs are updated sequentially based on a 2-ms
maximum time/pair. Servo outputs are on for a minimum of 1 ms.

64 60 50 40 30 20 10 0

Clamped AC input

PWM output for a table value of 50

Potential
table values

128-µs
Timer2

interrupts

8.192 ms

8.333 ms

320

Clamped AC output

Servo pulse for a table value of 23

Potential
table values

Timer2
interrupts

992 µs

1.992 ms 1.992 ms

320

30 µs1 ms

Table value of 0

Output 1 (first pair) Output 33 (seventh pair)

Table value of 8

Output 2 (first pair) Output 14 (seventh pair)

Servo pulse for a table value of 32

8 23

Figure 1 —The upper trace shows one-half of a 60-Hz cycle. The middle
trace illustrates the 65–128-µs parts of each half cycle. The bottom trace
shows a PWM output of the value of 50.

Circuit Cellar INK® Issue 100 November 1998 75

 LINE-SUNK PWM
Of course, the digital outputs of

the MIDI animator can be used to
control a variety of equipment. DC
mechanical relays can be driven
using a single noninverting open-
collector buffer (i.e., 7407).

Many times, optocouplers are used
with simple single-transistor output
for speed or Darlington output for
extra drive capability (see Figure 3).
Solid-state relays are quite popular
in eliminating mechanical bounce
and contact pitting.

Most useful, however, would be
proportional high-voltage control.
Not only can solid-state SCR or
triac drivers be used to turn high-
voltage AC on and off, but PWM
waveforms sunk to the line will give
proportional control.

Although small-signal triacs can be
driven directly from TTL outputs, most
designers use an optocoupled driver to
keep the AC and DC circuitry separated
(see Figure 4). They’re not only small
and inexpensive, but they’re also eas-
ily obtainable and second sourced by
many manufacturers.

Standard triacs can require 50 mA
of current to turn on. Optocoupled

triac drivers (really sensitive gate triacs
with limited current drive, usually a
100-mA maximum) are used to switch
on larger triacs. Triacs are capable of
controlling very high currents, and
because of the power dropped across
these triacs, heat sinking is a necessity.

Let’s look at what happens when
triac control is not sunk on the line.
But first, there is a difference between
solid-state relays (triac control with
zero-crossing detection) and control
that is sunk to the line. Solid-state
relays with zero-crossing detection
pay attention to the line voltage and
only allow the relay to be turned on
at zero crossings.

This characteristic prevents large
in-rush currents and noise spikes from
being produced when the control asks
to turn the triac on at other than zero
crossings. Fast ∆v/∆t edges are noisy.
The built-in zero-crossing detector
eliminates these by delaying the turn
on until the next zero crossing.

The disadvantage of these devices
is that they can’t be proportionally
controlled. To proportionally control
the triac, we must be able to turn it on
at any point throughout the cycle. The
solid-state relay that has built-in zero
crossing prevents this from happening.

Now, let’s see what synching to
the line gives us. The most obvious
result is that we can perform the same
kind of zero-crossing hold-off that is
built into some opto devices. This
ability is good for turning solid-state
relays on and off quietly.

Figure 3 —Here are three ways of controlling a DC voltage:
mechanical relay, output transistor, or solid-state relay.

Figure 4 —Here are three ways of controlling an AC
voltage: nonisolated triac, optoisolated triac, and solid-
state relay.

76 Issue 100 November 1998 Circuit Cellar INK®

But, the main use of this ability is
to keep the proportional control signal
in sync with the line, so the device is
turned on at the same point in each
cycle. Otherwise, you see a beat modu-
lation as a pulsing of the output (see
Figure 5).

For example, when the control loop
is running at 55 Hz, the beat frequency
is 5 Hz (the difference between 60 and
55 Hz). As the two become closer, the
beat frequency drops, but if the two
are not exactly the same, you get an
annoying pulsing. Although this differ-
ence is mandatory for creating cool
lissajous patterns, it’s unwanted here.

ENCORE
To finish this project, I wanted to

give the people who do stage lighting
for concerts a chance to come into the
spotlight (so to speak). So, I added opto
triac drivers to each of the 14 outputs
on the MIDI animator.

Each output drives a separate colored
spotlight. The gel filters are arranged
such that the lowest notes begin in
the violet part of the spectrum, and
the highest notes are at the red end.
The notes in between correspond to
their respective part of the spectrum.
Finally, a synthesizer with MIDI out-
put serves as the controller.

The lighting engineer can now join
the band on stage, performing with
shades of color that accent the music.
Presuming the synthesizer’s sound is
off, the lighting designer can bang on
that thing, mixing colors without
having to worry about being tone deaf.
That’s real performance art, huh?

Figure 5 —The second and third traces show a PWM output, which is in sync with the HVAC waveform. The fourth
and fifth traces show how the PWM output no longer stays in sync with the line, based on a nonsynchronous oscillator.

REFERENCES

www.show-control.com/txt/
mscspec.txt

www.harmony-central.com
www.midifarm.com/info/

pcutilities.asp
ourworld.compuserve.com/

homepages/jhuntington

SOURCE

PIC16C63
Microchip Technology, Inc.
(602) 786-7200
Fax: (602) 786-7277
www.microchip.com

Jeff Bachiochi (pronounced“BAH-key-
AH-key”) is an electrical engineer on
Circuit Cellar INK’s engineering staff.
His background includes product design
and manufacturing. He may be reached
at jeff.bachiochi@circuitcellar.com.

HVAC

Zero-crossing
input line sync

Triac control
and HVAC result

Internal
120-Hz timer

Triac control
and HVAC result

4 ms 4 ms 4 ms 4 ms 4 ms4 ms 4 ms 4 ms

4 ms 4 ms 4 ms 4 ms 4 ms 4 ms4 ms 4 ms 4 ms

So, I’ve given you a way to play
around with MIDI control using some
software you may have received with
your PC’s sound card and some hard-
ware you can easily build from scratch.

If you want more, check out MIDI
show control. This spin-off is used for
controlling theatrical and live perfor-
mances, multimedia displays, audio-
visual displays, and the like.

Although the format is quite similar
to that of MIDI, tools for experimenting
with it are expensive. Companies that
manufacture MIDI show-control hard-
ware often have their own tools. You
can visit the many sites I’ve found to
learn more about them. I

78 Issue 100 November 1998 Circuit Cellar INK®

l ike other places,
Silicon Valley goes

through booms and
busts. The only difference

is that single-digit growth is considered
a bust, while startups routinely post
triple- or even quadruple-digit gains.

The boom of the last few years,
fueled by I-way frenzy and bloatware-
driven PC upgrades, has been one of
the strongest ever (even though it’s
fading a bit in the stretch). It’s a veri-
table gold (err…silicon?) rush.

One of the consequences is traffic
with a capital “T”. Ever fly into San
Jose at 5:00 P.M., rent a car, and try to
go somewhere?—anywhere? I don’t
commute, but I get out enough to see
just how ugly the jam-up is.

THE NEED FOR SPEED
In my opinion, the ideal vehicle for

our dart-and-weave stoplight-to-stop-
light jousting is a motorcycle. Now, a
bike isn’t suitable for everything—
certainly not big jobs like hauling the
brood around or moving furniture.

I also understand the objections
from those of you who live in colder
climes. And, there’s the danger factor,
though two-wheel advocates argue that
slow mummification behind the wheel
isn’t a real pleasant way to go either.

I rode a bike years ago when I was
a commuter for the same reasons I give
today. They’re relatively inexpensive

to own and operate, they’re allowed to
use the carpool express lanes, and you
can always find a parking space.

But, the most compelling advantage
is speed! At the time, my 750 was faster
off the line than practically any car on
the road.

The inspiration for this thread is
the appearance of the SX MCU from
startup Scenix Semiconductor. Like a
bike, it’s small, relatively inexpensive
(under $4 in small quantities), and most
important, fast. I’m talking close to
50 MIPS, which is a good 10–50 times
faster than typical 8-bit MCUs.

EASY RIDER
It’s no problem finding parking for

the SX, which is offered in a variety of
small packages from 18 to 28 pins,
including DIP, SOIC, and SSOP. It
isn’t finicky about fuel either, running
on anything between 3.3 and 6.25 V. It
gets good mileage, consuming about
1 mA/MHz at full throttle and mere
microamps when idling.

Take a close look at the motor (see
Figure 1). Those of you familiar with
Microchip PICs will notice a striking
similarity. Indeed, the SX goes out of
its way to offer PIC16C5x socket
compatibility.

The novel in-system programming
scheme (using the OSC pins) for the
onboard 2K × 12 program flash is
supplemented with a parallel program-
ming mode similar to the PIC’s, with
a slightly different algorithm.

It’s possible to configure an SX as a
PIC clone, but it probably doesn’t
make much sense. Alhough it’s not
expensive, there’s no way an SX is
going to compete price-wise with the
much higher volume PIC.

Socket Rocket

The SX
MCU from
Scenix is
fast, runs
on almost

anything, gets good
mileage, and you can
park it anywhere.
And, Parallax’s SX-
Key makes for some
easy riding. Will we
be seeing biker bars
in Silicon Valley?

SILICON
UPDATE

Tom Cantrell

Photo 1 —Like the SX, the SX-Key development tool
from Parallax packs a lot of punch into a small package.

Circuit Cellar INK® Issue 100 November 1998 79

In fact, after considering the plethora
of good 8-bit micros (including flash-
based) on the market, two features
stand out as compelling advantages
for the SX—performance and innovative,
low-cost, easy-to-use development tools.

ZIPPING IN AND OUT
The secret to SX performance is

simple, relying as it does on the tradi-
tional technique of pipelining. The
four-stage pipe in Figure 2 is a classic,
similar to those found in earlier (but
typically larger, like 32-bit) machines.

There is one, and only one, reason
to use a pipeline and that’s to boost
the clock rate, which ultimately is
limited by memory access time.

In compatibility mode, the SX
reverts to four clocks per instruction
(eight for JMPs and CALLs), same as a
PIC. Flip the turbo switch, and the
pipeline kicks in.

Once filled, the pipe delivers close
to one instruction per clock. However,
as with all pipelined machines, there
are some caveats to be aware of.

The JMP and CALL penalty is rela-
tively worse due to the need to refill
the pipe. Where such instructions
require two cycles (eight clocks) in
compatible mode, they need three
cycles (three clocks) in turbo mode,
derating the advantage to 2.66× (8
divided by 3) for those instructions
versus 4× for most others.

Another example is IREAD, one of
the ten new instructions added by
Scenix (see Table 1). IREAD enables a
program to read the instruction mem-
ory, something that’s nontrivial in a

Harvard design (separate program and
data memory).

Given the complication involved,
IREAD requires the same number of
clocks (four) in both compatibility and
turbo mode. But, it’s faster than previ-
ous data-lookup schemes and can
access the entire code space.

Pipelined machines are also subject
to various hazards that must be obvi-
ated by hardware, software, or both
(e.g., the problem of trying to read
data at the same time it’s being written).

Consider a sequence of instructions
involving a back-to-back write followed
by a read of the same data. Instruction
n is writing data (write stage) even as
instruction n + 1 (execute stage) wants
to read it.

With on-chip RAM, the SX includes
forwarding logic that handles such an
obstacle transparently in hardware.
Thus, one instruction can write to
RAM and the next one can safely read
from the same location. However, for
I/O ports, there are precautions con-
cerning successive operations.

For pins configured as outputs, the
SX reads the actual pin level, not the
output latch. I think the SX approach
is superior because it enables the
detection of external problems such as
a shorted or excessively loaded pin.

It’s easy to confirm that the output-
pin level is or isn’t what it’s supposed
to be. By contrast, reading the output
latch, rather than the pin, leaves you
blind to outside interference.

As a consequence, a write to a port
may not propagate through to the pin
in time to be recognized by an imme-
diate read. Depending on the clock rate
and pin loading, a non-port instruction
should be inserted to split up a back-
to-back port write and read. Similarly,
the possible difference between output
latch and pin level calls for care when
using read, modify, and write instruc-
tions like SETB and CLRB.

The I/O pins themselves (4-bit Port
A, 8-bit Port B, and, for 28-pin devices,
8-bit Port C) are versatile. Each pin is
individually programmable as input or
output, with or without an internal
pull-up resistor. All inputs are select-
able as TTL or CMOS levels, and Port
B and Port C inputs can be individually
defined as Schmitt triggered.

Outputs can sink and source 30 mA
(subject to overall device power limit),
with those on Port A featuring sym-
metrical drive (i.e., centered about
VDD/2 under any load). This feature is
useful for driving speakers and other
pseudoanalog functions such as using
a PWM to implement a DAC.

As inputs, pins of Port B can be
individually enabled to act as wakeups
(with programmable edge selection)
from low-power sleep mode. Or, three
pins of Port B can be configured as an

Photo 2 —Included in the Master Key packages, Parallax offers a QuickProto board (with Master Key 18 package, or
$69 separately) and DemoBoard (with Master Key 28, or $99 separately).

a) b)

OSC1 OSC2

OSC
driver

System
clock

Interrupt

Instruction
pipeline

Read data

4-MHz
Internal IRC

osc 8-bit
Prescaler

WDT 8-bit
Timer

I/O Ports

A
4 bits

B
8 bits

C
8 bits

WDT
reset

Comparator MIWU Reset

Brown-out
reset

MCLR_

Power-on
reset

In-system
debugging

Write data

Address

Instruction

136-byte
SRAM

2K × 12
EEPROM

In-system
programming

W
FSR
PC

Status
Option
MBIT

8

8

8

8 8

8
12

8

8

12

8 8 8 8 8 8 8

Figure 1 —Like a motorcycle, the Scenix SX may be small, but at close to 50 MIPS, it’s really fast.

80 Issue 100 November 1998 Circuit Cellar INK®

Photo 3a —The Parallax SX development software
handles configuration and programming of the chip.
b—It also handles debug of ASM programs. Notice
the Parallax-defined mnemonics and multiword
macro instructions.

a)

b)

analog comparator. Two inputs
(RB1 and RB2) are compared with
the result (greater than or less than)
reflected on output RB3.

Besides general-purpose I/O, the
SX includes an 8-bit timer/counter
(RTCC) and watchdog timer, either
of which (but not both at the same
time) can be mated with an 8-bit
prescaler.

THROTTLE RESPONSE
The inertia of a full-size four-

wheeler isn’t a good match with
stop-and-go traffic. The only win-
ners are OPEC and brake shops.

The same goes for chips and inter-
rupts. The grander the CPU, the more
energy and time wasted finishing off
instructions in progress, saving a
bunch of registers, and making the
turn toward the handler. Here, bikes—
and the SX—have a big advantage.
Less iron to stop and get going again
means a quick and efficient response.

Interrupt sources include the
RTCC and pins of Port B configured
for wakeup (if the SX isn’t sleeping, a
wakeup functions as an interrupt).

Most CPUs require the instruction
in progress to complete before anything
else happens, but not the SX. To cut
response time to the bone, the SX
aborts instructions in the pipe. It also
includes a set of shadow registers that
automatically capture the critical state.

The end result is a blazing interrupt
response: only three clocks for an
RTCC interrupt and five clocks for
external interrupts. That’s 60/100 ns
(RTCC/external) at 50 MHz. Thanks
to the shadow registers, returns from
an interrupt are equally speedy at
three clocks.

GRAB THE KEY, HIT THE ROAD
Another nice thing about bikes is

they’re easy to work on, requiring

only a small set of basic tools. It’s the
same with the SX, thanks to the SX-
Key from Parallax.

This nifty gadget, shown in Photo 1,
exploits the fact that the SX has pro-
gramming and debug logic onboard,
accessed via the OSC pins. In-system
programming and debugging for any
SX-based design is a simple matter of
incorporating a four-pin header (OSC1,
OSC2, power, ground). For program-
ming, the OSC pins act as a serial
download channel, while during de-
bug, the SX-Key has explicit clock
control.

Three packages are offered for your
riding pleasure. The Skeleton Key
($249) is just the SX-Key and software
tools. The Master Key 18 ($319) adds a
proto-board with buttons and LEDs
(see Photo 2a). The Master Key 28
($349), shown in Photo 2b, comes
with a fully loaded demo board in-
cluding buttons, LEDs, RS-232, an
external EEPROM, and a speaker.

On the roads these days, there’s a
remarkable proliferation of SUVs.
Folks seem to think they need a cross
between a Humvee and a Mack truck
to get across town. It’s kind of equiva-
lent to the bloatware phenomenon
that curses our PCs.

82 Issue 100 November 1998 Circuit Cellar INK®

carry bit, optional input
synchronizers (metastabil-
ity insurance at high clock
rates), and so on.

The assembler uses the
Parallax mnemonics popu-
larized on their earlier
generation of PIC tools
(there is a utility available
to convert existing PIC
code to the SX/Parallax
mnemonics). Also, Parallax
has defined a number of
convenient macro-instruc-

tions that consolidate common se-
quences of single-word instructions
into easier-to-use formats.

For those of you so inclined, there’s
a C compiler from Byte Craft. Data-
type support is impressive with 8-,
16-, 24- and 32-bit INTs, and even
IEEE-754 floating point, though I sus-
pect it’s easy to bite off more than a
2K-word SX can chew.

It’s not cheap ($795 DOS, $1495
Win 95/98/NT), but I’ve always found
that C compilers embody that old
axiom “you get what you pay for.”

One open issue involves integration
of the Byte Craft and Parallax tools.
At the time of this writing, they aren’t
really connected. However, both com-
panies are planning a cozier relationship.

SX APPEAL
The conventionally wise will pro-

claim the concept of a high-perfor-
mance 8-bit MCU as an oxymoron.
It’s true that the majority of apps are,
and will continue to be, well served
by the few MIPS most MCUs can
muster. Yep, don’t expect to see your
average commuters crowding the
Harley dealer, either.

Fact is, I think Scenix might be
onto something. With performance to
burn, the SX handles many functions
in software that might otherwise call
for extra silicon.

The concept of replacing hardware
with software (Scenix refers to virtual
peripherals) isn’t new. In fact, some of
the earliest micros were used to just
such an end. Witness the 8048 called
into duty as a keyboard encoder in the
original PC.

Not so with the SX-Key software
(Win 95 and up), which is blessedly
simple, boiling down to three screens:
one for editing your ASM program, one
for configuring the SX, and the debug
screens in Photo 3.

The set-up screen offers a good
opportunity to top off the SX feature
list. You can see the variety of clock
options (crystal, resonator, RC, and
internal 4 MHz with an eight-stage
divider), configurable brown-out reset,
extended stack (eight levels versus the
usual two), tweaked operation of the

Command Description

PAGE n Switch to new instruction page
BANK n Switch to new register bank
RET Return without affecting W
RETP Return across page boundary
RETI Return from interrupt and restore state
RETIW Return from interrupt and reload timer
IREAD Read instruction memory
MOV !M,W Write I/O mode bits
MOV W,!M Read I/O mode bits
MOV !rx,#imm Write immediate to port control register

Table 1—To ease programming and accomodate new features, Scenix
adds 10 new instructions for a still RISCy grand total of 43.

Circuit Cellar INK® Issue 100 November 1998 83

The difference is that the SX per-
formance headroom boosts the specs
of the usual peripheral functions like
serial I/O, software timers, and wave-
form generation. More speed, more
channels, or both.

For instance, consider the well-
known hack of building a UART in
software. Transmitting is easy since
timing is under the control of the
programmer. But, reception is another
story. Few apps can afford to dedicate
all bandwidth to polling the serial
line, so interrupts are required.

Thus, the achievable data rate is
directly related to interrupt latency,
which should be less than half the bit
time. For instance, most 8-bit MCUs
can handle 9600 bps, which enables a
leisurely 50+ µs from the leading edge
of the start bit (that generates the
interrupt) to the first sample.

But, higher data rates are a dicey
proposition. For instance, 115 kbps
needs an interrupt response of less
than 5 µs. Speed not only becomes an
issue, but jitter (i.e., nondeterminism)
is a factor as well. Consider the 8051,
which can only guarantee response
somewhere between 36 and 108 clocks,
or 3–9 µs at a 12-MHz clock rate.

To be fair, much of the variance is
because the ’51, like most MCUs,
requires completion of the instruction
in progress, including the relatively
slow (48 clock) MUL and DIV, which the
SX doesn’t have. Banning MUL and DIV
would cut 24 clocks (2 µs at 12 MHz),
making a worst-case response of 7 µs—
still not fast enough.

It’s worse than it sounds because
I’m just talking about the raw inter-
rupt response. More time is needed to
save critical state (PSW and any other
registers), not to mention the instruc-

tions required to sample, compare,
flag an error (false start bit), and so on.

By contrast, running at 50 MHz
with five-clock external interrupt
response (i.e., 100 ns) makes 115 kbps
seem like a leisurely Sunday ride. I
suspect you could hit 1 Mbps before
going to full throttle. When it comes
to interrupts, the SX blows the pins
off regular MCUs.

The extra bandwidth doesn’t mean
doing old stuff faster. It lets the SX
accept the challenge of significantly
snootier I/O (e.g., music and voice syn-
thesis and software video generation).

Scenix recently announced the
availability of a Bell 202/CCITT V.22-
compatible 1200-/2400-bps modem
implemented in software, including
not only the raw signal processing
(FSK/DPSK) but also all the accesso-
ries (DTMF generation and detection,
call progress detection, and caller ID).

Yeah, you can stick to your regular
8-/16-bit econo-chip for basic transpor-
tation, but remember that the fast
lane is for passing. When that dot in
the mirror turns into an SX hugging

SOURCES

SX MCU
Scenix Semiconductor, Inc.
(408) 327-8888
Fax: (408) 327-8880
www.scenix.com

SX-Key
Parallax, Inc.
(916) 624-8333
Fax: (916) 624-8003
www.parallaxinc.com

C compiler
Byte Craft Ltd.
(519) 888-6911
Fax: (519) 746-6751
www.bytecraft.com

Tom Cantrell has been working on
chip, board, and systems design and
marketing in Silicon Valley for more
than ten years. You may reach him by
E-mail at tom.cantrell@circuitcellar.
com, by telephone at (510) 657-0264,
or by fax at (510) 657-5441.

I-Fetch D-Fetch Execute Write back

P
C

IN
S

T

Flash
memory

D
ec

od
e

SRAM

A
LU

R
es

ul
t

Figure 2 —SX performance is obtained via pipelining
using a time honored fetch-decode-execute-writeback
design. Since a pipeline can only run as fast as its
slowest stage, great attention was paid to the flash-
memory design to achieve the 10-ns access time
required by the 50-MHz clock rate.

your tail, you’ve got two choices:
move over or get run over. I

96 Issue 100 November 1998 Circuit Cellar INK®

PRIORITY INTERRUPT

steve.ciarcia@circuitcellar.com

What’s PC?

o ne issue that I always wrestle with around here is separating hype from reality in the things we publish. My first
thought when we review an article for publication is always, is it real?

Up to now, my test for “real” applied to the physical electronic components and usually never to the development

platforms or the computers running the application.
In my own writing, I went to great pains to maintain cross-platform compatibility. My early BYTE articles always interfaced through a

parallel I/O port and frequently ran in high-level languages. There were many brands of computers. Some had dozens of I/O channels and

supported many other languages, but they all seemed to have at least one parallel port and BASIC or C. Later, as the technical world
standardized on the PC architecture, I adopted it as my universal development tool and application platform.

Today, it should be even less of an issue. Everyone has a PC. I should be able to immediately assume that any article employing a PC is

usable. Unfortunately, these days, I am having trouble defining exactly what a PC is and what configuration I should assume all of you think it is.
The long ball and chain connected to the past has severely hindered PC hardware and software design over the years. It’s a wonder this

computer architecture still works given the plethora of design iterations it has had to endure. I mean, look at it. Even with Windows 98, after 18

years, we still have the ISA bus, a 16-IRQ interrupt limit, and a silly 1-MB memory barrier in real mode. Heaven forbid, any of you reading
Circuit Cellar INK presumes that an ultra-fast Pentium running a “real-time” process control program under Windows 98 is even remotely real
time. About the only thing that seems to have advanced in parallel with its developmental need is graphics. Is this because we all play
computer games, or was there a grander goal in mind?

Another issue is I/O interfacing. Take a look at the mess hanging off the back of your PC. Just how many peripherals can you attach to two
serial ports and a parallel printer port anyway? If your computer is anything like mine, there are a couple switch boxes and a web of cables.

Of course, we’ve had innovations that were intended to solve this dilemma. Remember the SCSI bus? I have an HP scanner sitting at the

end of a SCSI cable next to my computer. Of course, I never had another peripheral that shared this SCSI bus that didn’t have to be internally
mounted because of noise or wasn’t better accommodated through an IDE connection instead. I still haven’t figured out where I’m supposed to
find something I want to use with IrDA yet.

Software and hardware designers have proposed many new standards to take the PC into the new millenium, including the Universal
Serial Bus (USB), FireWire, and more modern operating systems like Windows NT and Linux. But, these new innovations have been a hard
sell. Perhaps it’s simply the mentality that if it ain’t broke, don’t fix it. Computer purchasers are resistant to the radical price changes that

typically follow revolutionary technical innovation, and hardware manufacturers don’t want to get caught out on a limb offering a product line
that’s overpriced or unsupported. Consequently, we end up with the vast majority of PC sales being ever-lower priced versions with the same,
albeit higher speed, ingredients. Without innovation in the hardware, how is the industry to move forward?

It’s definitely going to take guts from someone to take the initiative. Such innovation is something that should be coming from Intel, but I
believe Intel has such a vested interest in the past that it becomes a disincentive for it to break from tradition. Microsoft is a powerful company
and I suppose it could unilaterally impose software changes that dictated hardware architectural changes to implement them. Such fanciful

wishes ignore the Wintel legacy, however, and Microsoft’s vested interest in the past as well. Of course, I don’t know any other company that
has succeeded so completely at convincing customers to pay for the aggravation of changing what ain’t broke on their PC. And, since virtually
all the prior operating-system changes seem to obsolete the hardware anyway, it shouldn’t be a problem persuading users that any new OS

just involves changing it a little more.
I wish I had a crystal ball, but I don’t. Undoubtedly, it will take computer vendors like IBM, Hewlett-Packard, and Compaq to break with

tradition and take the high ground in the next generation of chip development. I trust that the embedded-control industry will follow their lead.

Whatever the outcome, however, you can count on my continuing to ask “what is real?” when it come to the articles we present.

