
CELLAR
CIRCUIT
T H E C O M P U T E R A P P L I C A T I O N S J O U R N A L

®INK

$3.95 U.S.
$4.95 Canada

 # 1 0 1 D E C E M B E R 1 9 9 8

EMBEDDED PROGRAMMING
Achieving Better Design
Communication with UML

C and Assembly Language—
When to Use What

A Real-Time Multitasking
Executive

PICs and PCs Come Together
the Embedded Way

E
M

BEDDEDPC
M

ONTHLY SECTION

2 Issue 101 December 1998 Circuit Cellar INK®

The Word is Communication

TASK MANAGER

w hen I think of programming, it occurs to me
that it’s just one of many types of communication.

Whether you’re trying to get information from
computer to computer or from person to computer, it’s

still the same goal: the sharing of information that will (hopefully) prove
useful to someone somewhere.

Maybe one of the reasons that useful communication has become so
relevant to me has to do with my recent trip out to the Embedded Systems
Conference in San Jose. And this has more to do with getting useful
information from person to person.

On the one hand, Circuit Cellar had its own announcements to make. I
had the privilege of speaking at a breakfast hosted by Motorola’s Semicon-
ductor Products Sector. The point of the event was to introduce Motorola’s
new family of 8-bit flash-based 68HC908GPxx microcontrollers, with the
first product being the ’GP20. But my agenda was the launch of Design99,
Circuit Cellar’s eleventh annual design contest. Prize-wise, it’s the biggest
design contest we’ve ever offered, with five $5000 first prizes and twenty
$1000 second prizes. Details concerning both the contest and the ’GP20
are posted at www.circuitcellar.com.

But that presentation was also exciting for me because I had the
opportunity to talk about the incredible year Circuit Cellar has had. In 1998,
January marked the tenth anniversary, November was the 100th issue, and
now this: a design contest sponsored by the world’s largest producer of
MCUs. Hey, is this like Microsoft bundling some small company’s software?

Then again, at the show, I also ran into some PR and marketing types
who needed me to explain what you already know. Circuit Cellar is an
engineering applications magazine for the engineer, the end user; not the
marketing folks. Happily, even some marketeers found it an exciting—even
novel—approach. One director of marketing that I met with called Circuit
Cellar a “sleeper,” saying that he was tired of obnoxious, sales-oriented
publications. He recognized that Circuit Cellar has value. Naturally, I agree.

Those were the kinds of conversations that started the dialog going.
Who we are. What we’re doing. What’s our goal. Who do we serve. The
most important answer: we serve the engineer. What good is “advertorial”
that isn’t useful to the engineer? And who better to know what is useful than
engineers themselves, right?

That’s why, best of all, it was so great to meet with the real designers,
the ones who know about Circuit Cellar, who seek us out, who don’t send in
the marketing reps, but who want to talk to us directly about their latest
projects. And I know you want to hear about them: single-chip embedded
Internet platforms, the 1451.2 standard, ASIC how-tos, motion control,…
and there are so many more. Thanks to all of your input, I know 1999 is
going to be even more spectacular!

T H E C O M P U T E R A P P L I C A T I O N S J O U R N A L

®INK
EDITORIAL DIRECTOR/PUBLISHER
Steve Ciarcia

MANAGING EDITOR
Elizabeth Laurençot

TECHNICAL EDITORS
Michael Palumbo
Rob Walker

WEST COAST EDITOR
Tom Cantrell

CONTRIBUTING EDITORS
Ingo Cyliax
Ken Davidson
Fred Eady

NEW PRODUCTS EDITOR
Harv Weiner

ASSOCIATE PUBLISHER
Sue Skolnick

CIRCULATION MANAGER
Rose Mansella

CHIEF FINANCIAL OFFICER
Jeannette Ciarcia

ART DIRECTOR
KC Zienka

ENGINEERING STAFF
Jeff Bachiochi

PRODUCTION STAFF
Phil Champagne

John Gorsky
James Soussounis

PROJECT EDITOR
Janice Hughes

Cover photograph Ron Meadows—Meadows Marketing
PRINTED IN THE UNITED STATES

For information on authorized reprints of articles,
contact Jeannette Ciarcia (860) 875-2199 or e-mail jciarcia@circuitcellar.com.

Circuit Cellar INK® makes no warranties and assumes no responsibility or liability of any kind for errors in these
programs or schematics or for the consequences of any such errors. Furthermore, because of possible variation in
the quality and condition of materials and workmanship of reader-assembled projects, Circuit Cellar INK® disclaims
any responsiblity for the safe and proper function of reader-assembled projects based upon or from plans, descriptions,
or information published in Circuit Cellar INK®.
Entire contents copyright © 1998 by Circuit Cellar Incorporated. All rights reserved. Circuit Cellar and Circuit Cellar
INK are registered trademarks of Circuit Cellar Inc. Reproduction of this publication in whole or in part without written
consent from Circuit Cellar Inc. is prohibited.

CONTACTING CIRCUIT CELLAR INK
SUBSCRIPTIONS:

INFORMATION: www.circuitcellar.com or subscribe@circuitcellar.com
TO SUBSCRIBE: (800) 269-6301 or via our editorial offices: (860) 875-2199

GENERAL INFORMATION:
TELEPHONE: (860) 875-2199 FAX: (860) 871-0411
INTERNET: info@circuitcellar.com, editor@circuitcellar.com, or www.circuitcellar.com
EDITORIAL OFFICES: Editor, Circuit Cellar INK, 4 Park St., Vernon, CT 06066

AUTHOR CONTACT:
E-MAIL: Author addresses (when available) included at the end of each article.
ARTICLE FILES: ftp.circuitcellar.com

CIRCUIT CELLAR INK®, THE COMPUTER APPLICATIONS JOURNAL (ISSN 0896-8985) is published monthly by
Circuit Cellar Incorporated, 4 Park Street, Suite 20, Vernon, CT 06066 (860) 875-2751. Periodical rates paid at
Vernon, CT and additional offices. One-year (12 issues) subscription rate USA and possessions $21.95,
Canada/Mexico $31.95, all other countries $49.95. Two-year (24 issues) subscription rate USA and
possessions $39, Canada/Mexico $55, all other countries $85. All subscription orders payable in U.S. funds
only via VISA, MasterCard, international postal money order, or check drawn on U.S. bank.
Direct subscription orders and subscription-related questions to Circuit Cellar INK Subscriptions,
P.O. Box 698, Holmes, PA 19043-9613 or call (800) 269-6301.
Postmaster: Send address changes to Circuit Cellar INK, Circulation Dept., P.O. Box 698, Holmes, PA 19043-9613.

ADVERTISING
ADVERTISING SALES MANAGER

Bobbi Yush Fax: (860) 871-0411
(860) 872-3064 E-mail: bobbi.yush@circuitcellar.com

ADVERTISING COORDINATOR
Valerie Luster Fax: (860) 871-0411
(860) 875-2199 E-mail: val.luster@circuitcellar.com

elizabeth.laurencot@circuitcellar.com

EDITORIAL ADVISORY BOARD
Ingo Cyliax Norman Jackson David Prutchi

Circuit Cellar INK® Issue 101 December 1998 3

48 Nouveau PC
edited by Harv Weiner

53 RPC Real-Time PC
Embedded RT-Linux
Part 2: Working with Flash Memory
Ingo Cyliax

59 APC Applied PCs
emWare Top to Bottom
Part 2: Launching the Application
Fred Eady

ISSUE
INSIDE

In-System Programming
Rewriting the Book
Craig Pataky and Bill Maggs

A Minimalist Multitasking Executive
Richard Man and Christina Willrich

Object-Oriented Design of Real-Time Systems
A Multidisciplinary Challenge
Irv Badr

Some Assembly Required
Assembling C Code for Your Embedded System
Michael Smith

Smart Battery Systems
Ed Thompson

I MicroSeries
Digital Processing in an Analog World
Part 3: Dithering Your Conversion
David Tweed

I From the Bench
Learning to Fly with Atmel’s AVR
Jeff Bachiochi

I Silicon Update
Hot Chips X Files
Tom Cantrell

2

6

8

13

95

 96

E
M

BE
DD

ED
P
C

14

20
26

32

42
68

74

80

101101

Task Manager
Elizabeth Laurençot

The Word is Communication

Reader I/O

New Product News
edited by Harv Weiner

INK On-line

Advertiser’s Index/
January Preview

Priority Interrupt
Steve Ciarcia

Embedded Happenings

6 Issue 101 December 1998 Circuit Cellar INK®

READER I/O

STATEMENT REQUIRED BY THE ACT OF AUGUST 12, 1970, TITLE 39, UNITED STATES CODE SHOWING THE OWNERSHIP, MANAGEMENT, AND CIRCULATION OF CIRCUIT CELLAR INK, THE COMPUTER APPLICATIONS JOURNAL,
published monthly at 4 Park Street, Vernon, CT 06066. Annual subscription price is $21.95. The names and addresses of the Publisher, Editorial Director, and Editor-in-Chief are: Publisher, Steven Ciarcia, 4 Park Street, Vernon, CT 06066; Editorial
Director, Steven Ciarcia, 4 Park Street, Vernon, CT 06066; Editor-in-Chief, Steven Ciarcia, 4 Park Street, Vernon, CT 06066. The owner is: Circuit Cellar, Inc., Vernon, CT 06066. The names and addresses of stockholders holding one percent
or more of the total amount of stock are: Steven Ciarcia, 4 Park Street, Vernon, CT 06066. The average number of copies of each issue during the preceding twelve months are: A) Total number of copies printed (net press run) 29,783; B) Paid
Circulation (1) Sales through dealers and carriers, street vendors, and counter sales : 4,270, (2) Mail subscriptions: 20,922; C) Total paid circulation: 25,192; D) Free distribution by mail (samples, complimentary, and other free): 1,404; E) Free
distribution outside the mail (carrier, or other means): 160; F) Total free distribution: 1,564; G) Total Distribution: 26,756; H) Copies not distributed: (1) Office use leftover, unaccounted, spoiled after printing: 321; (2) Returns from News Agents:
2,706; I) Total: 29,783. Percent paid and/or requested circulation: 94.2%. Actual number of copies of the single issue published nearest to filing date are: (November 1998, Issue #100) A) Total number of copies printed (net press run) 30,200;
B) Paid Circulation (1) Sales through dealers and carriers, street vendors, and counter sales: 4,647, (2) Mail subscriptions: 21,767; C) Total paid circulation: 26,414; D) Free distribution by mail (samples, complimentary, and other free): 1,050;
E) Free distribution outside the mail (carrier, or other means): 240; F) Total free distribution: 1,290; G) Total Distribution: 27,704; H) Copies not distributed: (1) Office use leftover, unaccounted, spoiled after printing: 562; (2) Returns from News
Agents: 1,934; I) Total: 30,200. Percent paid and/or requested circulation: 95.3%. I certify that the statements made by me above are correct and complete. Susan Skolnick, Associate Publisher.

Gerard Fonte’s recent article, “Breaking Nyquist”,
(INK 99) evoked more than just a few casual responses
from INK readers. Here’s a bit of I/O on the topic:

What Gerard doesn’t seem to understand is that if
you’re sampling a signal at 10 kHz and also at 9 kHz,
you’re effectively sampling at 19 kHz, not 10 kHz. The
theoretical Nyquist limit is 9.5 kHz and there’s no
chance to detect arbitrary signals above this point.

Using this method becomes unnecessarily complex
when you can sample at 20 kHz in the first place! Since
the premise is that 10 kHz is the highest rate, the output
of two alternating 10-kHz ADCs would be fed into the
DSP. That’s the same as a conventional system running
at 20 kHz.

Darrell Hambley
dth@red.primextech.com

I hope you’ve been deluged with mail about “Breaking
Nyquist.” I have 16 years of experience with the use and
abuse of aliasing, and I see major theoretical and practical
problems with this article.

The starting premise is fine and might be paraphrased,
if a signal frequency appears to shift significantly with a
change in sample rate, at least one set of samples was
aliased. Information theory dictates that a pint pot only
contains a pint. Nyquist’s theorem stands because the
effect of multiple sample frequencies is to form a higher
sample rate.

In Figure 5 (p. 32), the proposed (multiplexed-input
and single ADC) version requires a very fast ADC. This
is because some samples occur (1/fsa – 1/fsb) seconds
apart or less (where fs is the sample rate, and a and b
are sample paths). With only one ADC, some samples
coincide, so one path must be dominant (introducing
periodic noise if the paths are not very well matched).

The width of the spectral lines produced by FFT or
DFT depends mainly on the sample rate and sample
size. Most, or all, of the center frequencies of two sets
of spectral lines won’t line up if the sample rates differ.
The method described adds the amplitudes at these
unlike frequencies—a bit like adding apples to bananas.

The analysis method is a version of the Vernier scale,
which is over 100 years old. The Z-diagram is just an
incarnation of f, 2fs–f, 2fs+f, 4fs–f, and on (i.e., 2nfs±f),
known as frequency foldback, and is used daily in the

rotating machinery industry on pumps, gas turbines, and
such. I hope these aren’t considered novel.

The parting shot hints at a swept or chirp style
sampling method. For those brave enough to use it, the
analysis math for nonuniformly spaced sampling has
already been done elsewhere.

A better solution, known as a time-slip or incre-
mental-delay method, is older than some hills and makes
few demands on the hardware.

Paddy McKee
Paddy@keetech.demon.co.uk

To address Darrell’s point first, in the section Real-
World Considerations, I discussed choosing a sample rate.
“Let’s choose 9 kHz. The sum of the A/D rates is 19 kHz,
which is close to the conventional example of 20 kHz”
(p. 34). I included that example to show that relaxed
input filtering can be used with a conventional rate.

Secondly, in Figure 5 there are nonmultiplexed
inputs—either two ADCs or two sample-holds. And,
Figure 4 would require a very fast ADC if nonrepetitive
signals were to be measured. But, in the Implementation
section, I stated that “the method is suitable for systems
with constant or repetitive signals” (p. 33).

I’m aware of the 1/fsa – 1/fsb obstacle and why
Figure 4 is limited. That’s why I included Figure 5. The
1/fsa – 1/fsb consideration wasn’t mentioned because
every detail can’t be covered in one article.

Nowhere in my article is a method described for
adding the spectra. In the Implementation section, I
state, “Since the sample rate affects the characteristics
of the FFT, the spectrum comparison routine won’t be
completely trivial” (p. 33). Also, I pointed out why direct
addition or comparison of spectral lines won’t work.

As for the Z-diagram, its purpose is to illustrate
frequency foldback. The diagram was novel to me
because I had been unfamiliar with it.

Certainly, the chirp-to-Z transform isn’t for the
faint of heart, but I’m not trying to reinvent FFT and
all subsequent work. In the More Samples section
(p. 34), I admitted that the math corrections aren’t
trivial and that work is progressing slowly.

Of course, when it comes to ideas, it’s easy to find
reasons why something won’t work. It’s more rewarding
(though often more difficult) to find a way to make it
work—that’s the essence of being an entrepreneur.

Gerard Fonte

8 Issue 101 December 1998 Circuit Cellar INK®

NEW PRODUCT NEWS
Edited by Harv Weiner

DSP-BASED MOTOR CONTROLLER
The ADMC331 is a DSP-based motor controller

featuring power-factor correction control capabilities.
It provides a 26-MIPS, 16-bit fixed-point DSP core
integrated with a 10-bit ADC and peripherals for con-
trolling AC induction, synchronous permanent magnet,
brushless DC, and switched-
reluctance motors. The power-
factor control peripherals
eliminate the need for discrete
or IC-based active power factor
control of the power supply.

The ADMC331 includes a
user-programmable three-phase
16-bit, center-based PWM gen-
eration unit to produce high-
accuracy PWM signals with
minimal software overhead. Its
seven-channel, 10-bit ADC is
synchronized to the PWM
switching frequency and can
provide 12 bits of resolution at
lower switching frequencies of
6 kHz. Power-factor correction
is enabled by a programmable
auxiliary PWM circuit, enabling
control of frequency, duty cycle,
and phase shift on two dedicated

high-frequency PWM outputs. These signals are useful
in front-end switching power-factor correction stages.

Additional on-chip peripherals include a 16-bit
watchdog timer and 24-bit DIO ports. Two flexible
double-buffered bidirectional synchronous serial ports

enable a variety of communica-
tion protocols.

The program memory in-
cludes 2K × 24-bit RAM and
2K × 24-bit ROM. Data mem-
ory includes 1K × 16-bit RAM.
Both can be boot loaded through
the serial port from a serial
ROM, EEPROM, or UART or
synchronous connection. As
well, the ROM motor-control
functions support an interac-
tive mode.

The ADMC331 is available
in an 80-pin TQFP package and
costs under $5 in large quantities.

Analog Devices, Inc.
(781) 937-1428
Fax: (781) 821-4273
www.analog.com/motorcontrol

OPEN SOURCE OPERATING SYSTEM
Cygnus Solutions has announced eCos, a full-featured

run-time solution that is under open source licensing
terms. This highly configurable, application-specific
operating system is targeted at embedded systems devel-

opment. The complete eCos environment includes all
kernel components, HAL layers, ulTRON configuration,
C runtime, math libraries, and drivers.

The source-level configuration (more than 170
configuration points) means that this OS can exactly
match the needs of the application. eCos provides an
open source infrastructure that enables embedded-
system developers to focus on differentiating their
products, rather than the development, maintenance,
or configuration of a real-time kernel. The addition of
eCos to Cygnus’s GNUPro environment provides
developers with basic components like compilers,
debuggers, and real-time kernels.

Cygnus’s eCos is a royalty-free OS. Pricing for tools
and support offered with the eCos Partner Program
starts at $3500 per engineering seat.

Cygnus Solutions
(800) CYGNUS1 • (408) 542-9600
Fax: (408) 542-9699
www.cygnus.com

10 Issue 101 December 1998 Circuit Cellar INK®

NEW PRODUCT NEWS
POWER-MANAGEMENT SUPERVISORS

The IMP705, IMP706, IMP707, IMP708, and
IMP813L low-power microprocessor supervisor
ICs integrate power-supply monitoring and micro-
processor/microcontroller watchdog functions into
compact eight-pin MicroSO packages. Besides
ensuring that the system microprocessor or micro-
controller is adequately powered or has restarted
properly after a power failure or brownout, they
integrate functions that monitor processor opera-
tion and issue system-initialization signals when
system failures or lockups are detected.

Each device generates a reset signal during
powerup, powerdown, and brownout conditions.
A separate power-fail-detection circuit with a
1.25-V threshold checks battery levels or non-5-V
supplies. All devices have a manual reset input.
The ’705, ’706, and ’813L feature a watchdog
timer output that goes low if the watchdog input
is not triggered within 1.6 s.

The ’813L has the same pinout and functions as
the ’705 but has an active-high reset output. The
’707 and ’708 have active-high and active-low
reset outputs instead of a watchdog function.

The ’705, ’706, and ’813L monitor the power supply and
battery in microprocessor and digital systems. A reset signal
is generated whenever the supply voltage drops below 4.65 V for
the ’705, ’707, and ’813L and below 4.40 V for the ’706 and ’708.

In 1000 quantities, pricing for the ’705, ’706, and ’813L is
$0.75, and the ’707 and ’708 cost $0.72.

IMP, Inc.
(408) 432-9100 • Fax: (408) 434-0335 • www.impweb.com

Circuit Cellar INK® Issue 101 December 1998 11

NEW PRODUCT NEWS

16-BIT DATALOGGING STORAGE SCOPE
The ADC-216 virtual digital scope combines the

functions of a 300-kilosamples/s, dual-channel digital
oscilloscope and 150-kHz spectrum analyzer in a PC-
based virtual instrument that connects to a computer’s
parallel port. Its 16-bit resolution is suited to precision
applications like calibration, audio development and
test, and vibration analysis.

The supplied PicoScope software can operate simul-
taneously as an oscilloscope, spectrum analyzer, mul-
timeter, and datalogger. Features include onscreen
help, pull-down menus, and the ability to overlay a
live trace with a stored reference trace. Powerful trig-
gering modes help to capture intermittent or unusual
events. Save On Trigger saves every trigger event to
disk, complete with date and time stamp.

It’s easy to transfer the data to other applications. A
user can automate data collection and analysis using
the software drivers supplied. The auto-ranging multi-
meter features simultaneous display of multiple pa-
rameters such as true RMS or DC voltage, decibel
gain, and frequency measurements.

Software drivers are supplied for users who want to
program Windows NT, LabVIEW, Excel, and Visual
Basic applications. The direct computer hookup provides
the ability to annotate, save, and print traces on ordi-
nary or networked printers in black and white or color.

ADC-216 comes ready-to-use with software, cables,
and power supply at $799. A 12-bit version, the ADC-
212, is available at $499.

Saelig Company
(716) 425-3753 • Fax: (716) 425-3835 • www.saelig.com

68338 COMPUTER MODULE
The Persistor CF1 is a modular microcomputer system

using CompactFlash (CF) technology to extend the range
of remote and portable data acquisition. The 1.4″ × 2.5″
× 0.5″ unit gives instant access to all microcomputer
resources, including 68020 processing power, a DOS-like
OS, and up to 48 MB of secure, transportable CF storage.

The CF1 features an integral PicoDOS OS running
on a 16-MHz Motorola 68CK338, coupled with 1-MB
program flash and 256-KB battery-backed SRAM. It has
an onboard 3.3-V linear regulator, power-management
circuitry that reduces current drain to below 5 µA, real-
time clock, dual RS-232 driver, QSPI interface, 15 counter/
timers, and full 16-bit bus expansion.

The developer’s CD offers projects with commented
source code and HTML descriptions. The PicoLog Recipe-
Card (a 3″ × 5″ circuit board) turns the Persistor into an
eight-channel, 12-bit, analog recorder that samples at
variable rates up to 1 kHz and stores to CF files.

PicoDOS uses DOS prompts and commands, runs
batch and executable files, and lets CF1 programs read
and write files on CF cards using the standard DOS/
Windows media format.

CF1 programs are written in ANSI C and C++ using
Metrowerks’ CodeWarrior Professional compiler running
under Win95/98/NT or Mac OS. PicoDOS provides a
250+ firmware function library and API featuring driver
support for all of the standard C/C++ library functions
and C-language interfaces to the 68338’s many integrated
peripherals.

Persistor CF1 costs $395 (or $295 in OEM quantities).

Persistor Instruments, Inc.
(508) 563-7192 • Fax: (508) 563-7191
www.persistor.com

12 Issue 101 December 1998 Circuit Cellar INK®

NEW PRODUCT NEWS

Logic Analyzers

ECONOMICAL LOAD AND FORCE SYSTEM
TeKscan has announced a simple load-measurement

system that uses single-element sensors. The ELF system
uses a serial interface, Windows software, and innovative
electronics to provide an economical solution to measure-
ment problems. Applications include variable force control
for joysticks, occupant detection, weight measurement and
distribution, and fill rates and pressures.

The ELF system is durable, accurate, and
simple to use. The system allows for non-
intrusive measurement, and the sensors are
small enough to allow for precise placement.
The thin sensors (0.005″, 0.127 mm) can be
attached to many surfaces. They can also be
combined with plastic or metal films for in-
creased stiffness or for added protection from
their environment.

The software is simple to use and easy to
interpret. It is possible for users to read static or
dynamic forces in real time or record a “movie”
and view the information in a choice of graphical
displays. The information can then be viewed as
a strip chart, bar graph, analog meter, or digital
display.

The FlexiForce ELF sells for $299, and custom
sensor designs are available.

FlexiForce
(617) 269-8373 • Fax: (617) 269-8389
www.tekscan.com

Circuit Cellar INK® Issue 101 December 1998 13

INK ON-LINE
Your magazine enjoyment doesn’t have to stop on

the printed page. Visit Circuit Cellar INK’s Design
Forum each month for more great online technical
columns and applications. Here are just some of the
great new on-line articles you’ll see in December:

Columns
Silicon Update Online: The End of Architecture?—

Tom Cantrell
Lessons from the Trenches: Getting a Head Start on

Software Development—Setting It Up for the
Target—George Martin

Forum Feature Articles
When Can You Sell an Idea Without Losing Your

Patent Rights?—Breffni Baggot
A Serial Word Generator—Raymond Dewey

Missing the Circuit Cellar BBS?
Then don’t forget to join the Circuit Cellar INK

newsgroups! The cci newsserver is the engineer’s
place to be on-line for questions and advice on
embedded control, announcements about the
magazine, or to let us know your thoughts about
INK. Just visit our home page for directions to
become part of the newsgroup experience.

www.circuitcellar.com

PIC Abstractions
Design Abstracts from our Design98 Contest
A PIC12C508 Multichannel Remote Control

Transmitter—Robert Larson
Data-Mate—Tony Webby
Eclipsing Sun Visor—Robert E. Johnson

December Design Forum password:

Code

14 Issue 101 December 1998 Circuit Cellar INK®

In-System
Programming

FEATURE
ARTICLE

Craig Pataky & Bill Maggs

a
IS people got it made,
don’t they? Instant
reprogrammability
means you don’t
have to sweat the
details. Craig and Bill
show how system
engineers can have
that luxury, too, with
an in-system program-
mable target platform.

ny experienced
software engineer

can relate to the knots-
in-the-stomach feeling

when a new EPROM is released to
production. Sure, it’s time to celebrate,
but it’s also the time to review the
“wish I woulda’s” and “things I forgot.”

All your mistakes are about to be
duplicated in every one of a thousand
units coming off the line, and there’s
nothing you can do about it. Once
that PROM or OTP is soldered to the
board, your fate is sealed.

It’s even worse if the final product
is forever locked in a coffin of potting
compound. A latent design flaw in a
datalogger may not show up for months.
No wonder firmware SEs are so jumpy.

Of course, a lot of the pressure can
be relieved if the target platform is in-
system programmable, like a PC. After
all, the IS department doesn’t sweat
with each tweak to the e-mail system.

DIVERGENT DESIGNS
Truth is, the IS folks have long en-

joyed the luxury of instant reprogram-
mability because, as far as a desktop
PC is concerned, code memory is the
same as data memory and can be

 14

20

26

32

42

In-System Programming

A Minimalist Multitasking
Executive

Object-Oriented Design
of Real-Time Systems

Some Assembly
Required

Smart Battery Systems

FEATURES

Rewriting the Book

Circuit Cellar INK® Issue 101 December 1998 15

arbitrarily read, written, or executed
from. This design is called the Von
Neumann or Princeton architecture.

On the other hand, embedded con-
trollers have separate areas for code
and data memory. This design is re-
ferred to as the Harvard architecture.

The main reason microcontrollers
have clung to the Harvard architecture
is because by keeping data and code
memory separate, it’s impossible for
the machine to inadvertently corrupt
its own code and go insane.

Unfortunately, the strict Harvard
architecture also prevents the micro-
controller from performing intentional
code rewrites. That’s why so many
technicians have spent so many hours
swapping EPROMs.

Von Neumann designs are flexible
but inherently unstable. Harvard designs
are rock-solid but immutable. Clearly,
with design cycles crunching ever
downward, something has to give.

ADAPTATIONS
Almost every engineer has run into

the Von Neumann/Harvard problem.
Generally, the solution falls into one
of two categories—simply executing
tokens stored in some form of non-
volatile memory (NVM), or swapping
banks of code and data spaces so one
bank can be written while the con-
troller executes from the other.

The BASIC Stamp from Parallax is
an excellent example of token execu-
tion. Ours is built from a PIC16C56
and 93C56 NVM.

When I write a program in PicBasic
and upload it to the Stamp, I’m really
sending tokens to the PIC to represent
commands like FOR..NEXT and GOTO.
The PIC stores these tokens in the
NVM. Later, the PIC executes these
tokens by fetching them from the
NVM, figuring out what each token
means and carrying out the instruction.

These PicBasic tokens are not op-
codes native to the PIC—the PIC is
executing native code out of its ROM
to interpret PicBasic tokens on-the-fly.
It’s like getting a secret message and
using your decoder ring to read it.

The overhead in token processing
is immense. An instruction such as
A=B may take hundreds of times
longer than it would if the device

were executing native opcodes. Still,
this method is inexpensive and, until
recently, was the only real solution.

But, its Achilles heel is obvious—
what if the bug is in the interpreter?
Fortunately, Parallax has excellent
quality control and my Stamp has
shown no signs of misbehavior.

As we mentioned, swapping banks
of external code and data space is an
alternative to interpreting tokens. This
method was not truly viable until the
advent of the 5-V flash memory. Its
implementation is conceptually simple
but somewhat more difficult to realize.

The steps to completely repro-
gramming a system using the bank-
swap method go in this order. The
microprocessor wakes up and starts
executing out of flash bank A (code
memory). When it’s time to repro-
gram, the controller writes new code
into flash bank B (data memory).

The microcontroller then executes
an instruction common to both old
and new code, which swaps banks A
and B. Now, bank A is data memory
and bank B is code. The controller
then copies bank B to bank A.

When the rewrite is complete, the
controller may starve the watchdog or
perform some self-reset, thereby wak-
ing up again to execute code out of
the newly rewritten bank A.

Although cumbersome, the advan-
tage of this method is apparent. Instead
of decoding tokens, your micro is free
to execute native opcodes. Rather than
using a special compiler to generate
the tokens, you can use an off-the-shelf
compiler or assembler for the target.

Unfortunately, this approach may
cost your design an extra $15 for the
flash memory and glue logic involved.

Though both solutions work, neither
is optimal. Executing tokens is too
slow for many applications, and in-
creasing the component cost in the
name of flexibility doesn’t appeal to
the end user. After all, shouldn’t we
get it right the first time? Gulp.

LATEST REFINEMENT
Responding to the need for low-cost

in-system reprogrammability, several
manufacturers are equipping devices
with built-in rewritable code memory.
The key word here is rewritable.

In-system programming (ISP) has
been around for many years but only
in OTP devices. But, Atmel and Dallas
are already shipping production quan-
tities, and similar products are soon
to follow from Microchip and Philips.

This means the days of socketed
EPROMs, masked parts, and OTPs are
gone. Now, you can solder a control-
ler directly to the PCB and program it
just before shipment. More importantly,
you can reprogram that same controller.

ATMEL ISP
Now, we’d like to narrow the focus

to the Atmel 89Sxx series of 8051-
compatible ISP microcontrollers with
integrated flash and E2. We’ve been
designing with this family for the last
year, and because the device is a mere
$10 in quantity, we’re building it into
all of our new products.

The Atmel ISP family comprises
the 89S8252 and the 89S53. The 89S-
8252 has 8-KB ISP code memory and
2-KB ISP E2 data memory, whereas the
89S53 has 12-KB ISP code memory but
no ISP E2 data memory.

According to Atmel, arm yourself
with the 89S series, and software
modifications are as simple as the
wave of a wand. Truly, we live in
times of reprogrammable bliss.

WELL, NOT QUITE
Of course, any significant innovation

is useless if it you can’t take advantage

Table 1—The 25-pin parallel port is standard on all
IBM-compatible PCs and offers 17 pins capable of
doing useful work (12 outputs and 5 inputs).

Pin Direction Signal

1 out control bit 0
2 out data bit 0
3 out data bit 1
4 out data bit 2
5 out data bit 3
6 out data bit 4
7 out data bit 5
8 out data bit 6
9 out data bit 7
10 in data bit 6
11 in data bit 7 (inverted)
12 in data bit 5
13 in data bit 4
14 out control bit 1(inverted)
15 in data bit 3
16 out control bit 2
17 out control bit 3 (inverted)

18–25 gnd —
 Note that direction is relative to the PC.

Circuit Cellar INK® Issue 101 December 1998 17

of it. This is the one area
where Atmel came up short.

Although the ISP nature
of the 89Sxx series promises
to revolutionize the design
cycle, Atmel didn’t provide
any utilities to get our bina-
ries into the chip.

Their documentation was
cryptic at best. The data-
sheets are concise about
what pins and hex values
should be used to program a
controller, but alas, should
the data be clocked in MSB
or LSB? On the rising edge
or the falling edge? On which
edge should the reply data be read?

All we wanted was a simple inter-
face to attach to the parallel ports of
our PCs and then, at the DOS prompt,
to be able to type something like ISP
MYPROG.BIN. Was it too much to ask?

DIGGING IN
Clearly, the burden of programming

the controller is left up to the design
engineer. Unfortunately, most PC

programmers aren‘t up to the task of
creating the hardware, and most hard-
ware designers can’t write the utility.

But despite the obstacles, we created
an interface to attach to the PC’s
parallel port and some software to
download files to the 89S on the PCB.

HARDWARE
Our first step was to try and directly

connect the parallel port pins to the

appropriate ISP pins. The
parallel port was the obvious
choice.

As mentioned in “Beyond
The Box With Windows 95,”
(INK 74) even the most basic
parallel port has 12 readily
accessible TTL outputs and
5 inputs. The useful signals
are shown in Table 1.

Figure 1 shows the
adapter needed to interface
the parallel port of the PC
to the Atmel ISP port. We
tapped 5 V from our target
micro to power our buffer.
Without taking power from

our target, we’d have to use an exter-
nal power supply or tap the 5-V line
from the PC’s keyboard port. Just bring
an extra line out from your target, and
you’re ready.

SOFTWARE
We created the ISP utility, ISP.EXE,

as a straightforward program for DOS,
and it’s exactly what Atmel should
have provided all along. We chose the

Figure 1 —We couldn’t establish reliable communications without a buffer IC, under-
standably due to the TTL to CMOS connection. The 74HC125 was convenient but
any noninverting buffer will do.

Circuit Cellar INK® Issue 101 December 1998 19

HITTING THE MARK
We’ve covered broad design consid-

erations as well as specific solutions.
Even if Atmel is not your style, several
manufacturers are likely to be sampling
similar solutions by year’s end.

As you know, the winners in this
business are light on their feet, react
quickly, and cater to customer demands.
ISP makes those three goals just a
little easier to reach. I

DOS platform because ’486, ’386, and
even ’286 computers always make it
onto the production floor when the
rest of the company upgrades.

The ISP utility gets binary files off
your hard drive and into the 89S. The
utility supports a few command line
options to make it generic.

For example, if your programming
interface is attached to LPT2 and
FOOBAR.BIN is your binary file, typing
isp.exe /p:2 /c:foobar.bin
should begin the upload operation. Table
2 lists the ISP command line options.

We included the set programming
speed (/s:[0-9]) option because the
rate at which an 89S can be programmed
is directly affected by its crystal. Al-
though an 89S running at 20 MHz
might program fine at speed 0, the
same chip at 1 MHz probably requires
an ISP speed setting of 9.

We’d also like to point out the
invert reset line (/r) option. Part of
the ISP operation is keeping the micro-
controller in a reset state for the dura-
tion of the programming cycle. The
default operation of the ISP utility
holds the reset line high while program-
ming, but the /r option was provided
in case you’ve interfaced your micro-
controller’s reset line through an in-
verting buffer of some kind.

HEX2BIN
Most of the 8051 compilers we’ve

used generate only a hex file and not a
binary file. Intel hex was originally
created to make our generated files
easier to view and transport. But,
processor cores prefer the true binary
opcodes and data to ASCII codes.

If your compiler generates a binary
file, use it. If it generates an Intel hex
format file, we also provide a HEX2-
BIN utility to perform the conversion.
Type HEX2BIN myfile.hex and the
appropriate translation is made.

Craig Pataky is a systems engineer
with over nine years of experience
ranging from simple embedded pro-
gramming to OS design. You may
reach him at craig@logical-co.com.

Bill Maggs is an electrical engineer
with over eight years of embedded
design experience. His designs range
from low-power handheld devices to
fixed-station monitoring equipment.
You may reach him at www.logic
fire.com.

SOURCES

89Sxx microcontrollers
Atmel Corp.
(408) 441-0311
Fax: (408) 436-4200
www.atmel.com

PIC16C56
Microchip Technology, Inc.
(602) 786-7200
Fax: (602) 899-9210
www.microchip.com

BASIC Stamp
Parallax, Inc.
(888) 512-1024
(916) 624-8333
Fax: (916) 624-8003
www.parallaxinc.com

Table 2—Some ISP
command line options are
provided to make the
utility generic, while others
are designed to accommo-
date the programming
variables that may exist.

/c:filename Program code memory with the indicated file

/d:filename Program nonvolatile data memory with the indicated file

/p:[1|2|3] Select which parallel port to use

/e Erase the entire chip before programming

/r Invert the reset line

/s:[0-9] Set programming speed, 0 being fastest

/h or /? Display all the command line options

SOFTWARE

Source code for this article is avail-
able via the Circuit Cellar web site.

20 Issue 101 December 1998 Circuit Cellar INK®

A Minimalist
Multitasking
Executive

FEATURE
ARTICLE

Richard Man &
Christina Willrich

a
A multitasking execu-
tive might seem like
a nice enhancement,
but the costs are
prohibitive, right?
Well, maybe they
don’t have to be.
With µexec, even
simple embedded
programs can be
written as multiple
tasks.

typical embedded
program reads data

from input devices
(ADC, keypad, serial

port, etc.) and, after some processing,
generates some output (LCD, pulses
sent to drive motors, etc.).

One simple and crude method of
going through this process is to have a
control loop as the main function, loop-
ing through all the things needing to be
done. Listing 1 shows you an example.

The problem is that often you don’t
want to perform all the steps every
time the code goes through the loop.
Also, each subroutine must tempo-
rarily return to the control loop after
some period of time and be able to
resume from where it leaves off the
next time it’s called.

While this technique works for some
programs, it’s usually more error prone
and harder to use than using a multi-
tasking executive. Listing 2 shows a
program with a multitasking executive.

Listing 2 looks similar to Listing 1,
but the program is partitioned into
independent tasks. The tasks don’t
need to worry about returning control
to a high-level function, and each task
may run for a different amount of time
before control transfers to another

task. In some executives, a task may
even stop running altogether and wait
on some resource to become available
before it is run again.

Since there’s only one CPU, in
reality only one task is run at a time.
What a multitasking executive does is
to periodically take control of the
CPU and allow other tasks to run.

So, how does a multitasking system
work? In a cooperative multitasking
system, each task voluntarily yields
control to the system. In the world of
PCs, the Mac OS (until OS X) is an
example of a cooperative multitasking
system and so is Windows 3.1 and
below (except, strangely, for the DOS
boxes under Windows 3.1).

In a preemptive multitasking system
(e.g., Windows NT), the system inter-
rupts a running task if other tasks
must be run. A preemptive system is
more powerful than a cooperative one
because it’s easier to program and it
enables tasks to run more fairly.

Under a preemptive system, priori-
ties can be assigned to tasks so the
scheduler will run higher priority
tasks first. A high-priority task that is
waiting for a resource may interrupt a
lower priority task if the resource
becomes available. The multitasking
executive we describe here is the
preemptive type.

Despite the benefits of a multitask-
ing executive, it’s often not cost effec-
tive for most simple programs—or for
people on a budget—to purchase a
full-blown multitasking executive.
Here, we show you a small multitask-
ing executive, aptly named µexec
(pronounced myoo-exec), written in
ANSI C and some assembly routines.
The supplied code is written for and
tested on a Motorola ’HC11, but it
should be easily ported to other micro-
controllers of comparable power.

The code is quite small, in fact,
compiling to only 700 bytes using the
ImageCraft ICC11 ’HC11 C compiler.
µexec is a preemptive multitasking
system, but to keep the code small, its
tasks all have the same priority level.
So, you can enjoy the benefits of a
multitasking executive without paying
a lot in cost or resource consumption.

This article first gives a high-level
description of µexec, including some

Circuit Cellar INK® Issue 101 December 1998 21

of the design choices. Next, we describe
the data structures, followed by API
functions and assembly routines. Most
porting efforts are only needed in modi-
fying the assembly routines, so skip
to that section if you’re interested in
porting µexec to your favorite micro-
controllers or compilers.

The last section gives a summary
and ideas for enhancements. If you just
want to use µexec, see the API descrip-
tions for the interface functions.

Under µexec, a task runs for a period
of time until a timer interrupt inter-
rupts it, and the µexec control system
chooses another task to run. This pro-
cess repeats indefinitely—at least until
the system crashes, or interrupts are
(accidentally) disabled, or the embedded
system runs out of battery juice.

TASK FUNCTION
A µexec task is a C function that

does not take an argument or return a
result. Any such function can be made
into a task via UEXC_CreateTask.

Tasks can be created and killed
dynamically, even within other tasks.
Normally, a task function should not
terminate (i.e., it should execute an
infinite loop). If it does, µexec deletes
it from the internal data structures.

Typically, you create some tasks in
your main routine and then start the
scheduler running. After that, the

processor executes your tasks and never
returns to the main routine.

Each task needs its own stack,
which is supplied to the system when
a task is created. Unfortunately, stack
overrun (i.e., when a task uses stack
space that is beyond the range of the
supplied stack) can be a deadly problem.

µexec checks the stack pointer of a
task to ensure that it’s within bounds,
but this check may not be of much
value since a stack overrun may have
already damaged important data, includ-
ing µexec’s internal data structures.
So, it’s best to be conservative and
allocate a large stack for a task. In fact,
if your system crashes mysteriously, try
allocating larger stacks for your tasks.

Stack overrun is a general problem
in embedded programs. Multiple tasks
exacerbate the problem because each
task uses its own stack. If there is only
one control loop, then all the functions
execute with one stack and it is easier
to be conservative with just that stack.
Unfortunately, you have to pay the
price for using a multitasking executive.

SCHEDULING AND TIMESLICE
The scheduler chooses which task

to run. The period of time a task is
allowed to run is called its timeslice.

Under µexec, tasks are run to com-
pletion of their timeslices unless they
are explicitly yielding control to the

system or hogging the processor for
another timeslice. Although µexec
doesn’t assign priorities, tasks can
have different timeslice lengths, so
you can cause a compute-intensive
task to run longer if necessary.

The main purpose of the µexec con-
trol system, then, is to interrupt the
processor at the end of a task’s time-
slice and invoke the scheduler to choose
another task to run. µexec uses a timer
to interrupt the CPU at regular intervals.

Almost all microcontrollers have
timer interrupt functions that can be
used for this purpose. For example, on
the ’HC11, there are five timer-registers,
each one of which can be set up to
generate an interrupt when the timer-
register’s value matches the value of
the free-running timer counter.

The time period when such an
interrupt occurs is called a tick, and
its timeslice is some multiple of
ticks. A tick’s value should be chosen
such that the processor is not inter-
rupted too frequently, but it shouldn’t
be so long that other tasks do not get
to execute in a timely manner.

For the ’HC11, we chose a value of
2000 cycles per tick, or about 25 µs
for a ’HC11 running with an 8-MHz
clock. The default timeslice is five
ticks, or 125 µs. You may want differ-
ent values for your system.

INTERRUPT DRIVER
Sometimes your program may need

to perform some function at a regular
interval, and task scheduling may be
too slow and unpredictable. µexec gives
a hook to the timer-interrupt handler—
if the global variable UEXC_Interrupt-
Diver is nonnull, then it’s assumed
to contain the address of a function.

The system timer-interrupt handler
then calls this function before it per-
forms other work. To use this feature,
assign the address of your function to
be called to this variable.

TASK CONTEXT
An important consideration is how

to maintain the task’s context so that
µexec can return control to a previously
stopped task. Because µexec normally
regains control through a timer inter-
rupt, and that interrupt already saves
the CPU states (e.g., the register values)

Listing 1 —This sample embedded program uses a control loop. Each time through the loop, several tasks
are done in sequence.

Control loop:
check sensor 1
check sensor 2
compute pi to 347 digits
contemplate and meditate
activate death ray 1
drive motor
goto control loop

Listing 2 —This program is the same as in Listing 1, but it is partitioned into separate tasks. The control
loop is part of the multitasking executive.

Task 1: check sensor 1
Task 2: check sensor 2
Task 3: compute pi to 347 digits
Task 4: contemplate and meditate
Task 5: activate death ray 1
Task 6: drive motor

22 Issue 101 December 1998 Circuit Cellar INK®

on the stack, it is sufficient to only
save the stack pointer of an inter-
rupted task at the time the handler
was entered.

To resume a task, µexec reloads the
stack pointer and uses the Return-
FromInterrupt instruction to restore
control to the stopped task. From a
task’s point of view, a timer interrupt
hits, and some time later, the interrupt
handler returns and execution contin-
ues. The fact that other tasks get a
chance to execute while the task is
stopped is invisible to the task.

There is one additional place where
the task context must be saved—when
a task voluntarily gives up control
using the UEXC_Defer function. In this
case, UEXC_Defer constructs an inter-
rupt-stack frame so that no special case
handling is needed to resume the task.

This scheme doesn’t work with
processors using a separate interrupt
stack from the user stack. Also, if a
multitasking executive provides re-
source-waiting functions (semaphores,
mailboxes, etc.), there are other places
where task context must be saved.

In these scenarios, it’s simpler to
save the entire CPU context in the
task data structure and not rely on the
interrupt stack. Since µexec does not
provide resource-waiting functions,
and since most small microcontrollers
don’t use a separate interrupt stack,
using the interrupt-stack frame to save
the task’s context is fast and effective.

CODE COMMUNICATION
Most of the µexec routines are

written in C. A small number are in
assembly, mostly to manipulate inter-
rupt-stack frames.

The format of passing arguments
between routines is compiler-dependent,
so we opted to use global variables to
pass information between the assembly
and C routines (of course, C routines
calling other C routines use the stan-
dard C calling format).

Only two global variables are needed.
There are some minor differences in
how each compiler handles global
names. For example, some compilers
prepend an underscore before a global
name if it’s to be used by an assembly
module, but these differences are easy
to handle.

INTERRUPTS
Interrupts must be carefully enabled

and disabled inside µexec. If this is done
improperly, unpredictable results occur.

For example, if interrupts are left
enabled while global data structures
are being manipulated, a data structure
may be in an inconsistent state and
further accesses in an interrupt handler
will crash the system. Of course, if
interrupts are inadvertently disabled
when resuming a task, the timer inter-
rupt is also disabled and multitasking
will stop.

A simple enhancement is to use
the watchdog timer presented in most
microcontrollers to detect these kinds
of system-crash errors. However, you
need to have a mechanism for the
system to either restart itself or report
the errors.

TASK CONTROL BLOCK
The data structure TaskControl-

Block (see Listing 3) describes a task.
µexec keeps all tasks in a circular
linked list and a global variable keeps
track of the current task.

To choose the next task to run,
µexec follows the next pointer field of
the current task and sets the current-
task variable accordingly. To ensure
that there is always at least one task
to run, the system creates a null task.
It calls UEXC_Defer in an infinite loop,
enabling other tasks to run. If no other
task is there, the system runs this null
task indefinitely.

A task is identified by its task ID,
which is kept in the tid field. ticks

is the number of ticks that the task
should execute before scheduling occurs
(i.e., its timeslice value). current_
ticks is the number of ticks left in
the execution of this task.

func is the pointer to the C function
for the task. The stack start and end
values are for debugging purposes, such
as detecting stack overrun. sp is the
current value of the stack pointer. It
must be within the range of the start
and end stack values.

GLOBAL VARIABLES
As most programmers have learned,

global variables are generally not part
of good code design. But, there are
situations where their use is warranted.

For example, under µexec, we use
two global variables to pass information
between C and assembly routines. The
alternative is to use normal argument
passing between the routines, but that
would be compiler and microcontroller
dependent, making it difficult to port
µexec using other compilers or to
other microcontrollers:

void (*uexc_current_func)(void);
unsigned char *uexc_current_sp;

uexc_current_func is the pointer
to the function for the current task
and is needed only to start a new task.
uexc_current_sp is the current stack
pointer or the address of the sp field
of the current task. The latter is used
by UEXC_Defer to tell the assembly
routine where to store the stack pointer
after the interrupt frame is created.

Listing 3 —The key data structure of a multitasking executive is its task control block. µexec’s task control
block is described here as a C structure.

enum {T�CREATED, T_READY};
typedef struct TaskControlBlock
{
 struct TaskControlBlock *next;
 unsigned char tid; /* task id */
 unsigned char state; /* task state, do not use enum since

 compiler may allocate more space */
 unsigned char ticks; /* how many ticks does task execute */
 unsigned char current_ticks; /* number of ticks remaining */
 void (*func)(void); /* function to call for that task */
 unsigned char *stack_start; /* stack low value */
 unsigned char *stack_end; /* stack high value */
 unsigned char *sp; /* current value of stack pointer */
}
TaskControlBlock;

24 Issue 101 December 1998 Circuit Cellar INK®

task is created. UEXC_Createtask
fails if no more task-control blocks
are available.

The system initializes free_list_
ptr with the elements in free_list,
so you can adjust the total number of
task-control blocks by changing the
value of NUM_TASKS. When a task is
killed or when a task function returns,
its task-control block is released back
to the free_list_ptr pool.

API
In this section, we present the user-

callable functions. The function proto-
types and user-definable macros are in
the file uexec.h.

These functions are written in ANSI
C, and they shouldn’t need modifica-
tion to compile for other processors
similar to the ’HC11 or under differ-
ent compilers. As well, some of the
internal C functions shouldn’t require
any modification for porting purposes.

The function int UEXC_Create-
Task(void (*func)(void), un-
signed char stack[], unsigned
stack_size, int ticks); creates
a task given the function func. Each
task must have its own stack, given
by the argument stack.

This stack is the lowest address of
the array (i.e., address of the zero’th

µexec uses a few other global vari-
ables and macros, such as static
TaskControlBlock *current_
task;. This global variable points to
the task-control block of the current
task. All the tasks are linked in a cir-
cular list, so the next task to execute
is given by current_task->next.

void (*UEXC_InterruptDriver)
(void); contains the address of a
function to call whenever the timer
interrupt triggers. If you have more
than one function to call, you can
chain them together.

The NUM_TASKS macro is the maxi-
mum number of task-control blocks
that can be allocated. You should change
this to match the number of tasks you
have in your system.

The macro UEXC_MIN_STACK_SIZE
defines the minimum stack size for a
task. If your task function invokes
other functions or uses local variables,
you should allocate a bigger stack.

MEMORY MANAGEMENT
µexec needs to allocate memory to

hold the task-control blocks and the
tasks’ stacks. This allocation can be
done by using the C-library function
memory-management routines malloc
and free or by using statically allocated
global arrays.

Since µexec is meant to be used in
a small system, the overhead of and
possible fragmentation of the memory
space by using malloc and free are
of concern. So, we use a simple array
allocator instead. However, you can
easily modify the system to use malloc
and free.

Task stacks are supplied as an argu-
ment to UEXC_CreateTask. You
should define statically allocated arrays
and supply them to UEXC_CreateTask:

static unsigned char
task_stack[UEXC_MIN_STACK_SIZE];

All the task-control blocks are allocated
from a global array:

static TaskControlBlock
free_list[NUM_TASKS],
*free_list_ptr;

A task-control block is allocated from
the free_list_ptr every time a

element). Since stack usually grows
from high addresses to lower addresses,
the size of the stack is needed and is
given by the argument stack_size.

With the stack and stack size, the
stack pointer can be checked against
the bounds. If you port µexec to a
processor that needs stack alignment,
you need to align the stack properly.

ticks is the number of ticks in
this task’s timeslice. If it is zero, then
the value given by the macro DEFAULT_
TICKS is used.

UEXC_CreateTask obtains a task-
control block from the free list, initial-
izes it with the supplied arguments,
and links the task-control block into
the circular task list. This function
returns an integer task identifier. If
the task function returns, then it acts
as if the function UEXC_KillTask is
called with the task’s ID.

void UEXC_Defer(void); gives
up the rest of the timeslice and lets
other tasks run. This function calls an
assembly routine to construct an
interrupt-stack frame so that the task
can be resumed by using Return-
FromInterrupt. This process is
consistent when a task is interrupted
by the timer and its timeslice runs out.

void UEXC_KillTask(int tid);
is a function that kills a task with the

Listing 4 —This trivial program tests µexec’s basic functionality. Two tasks are created, and each one
prints out a different character on the output.

#include "uexec.h"

unsigned char task_zero_stack[UEXC_MIN_STACK_SIZE];
unsigned char task_one_stack[UEXC_MIN_STACK_SIZE];

void Zero(void)
{
 while (1)
 putchar('0');
}

void One(void)
{
 while (1)
 putchar('1');
}

void main(void)
{
 UEXC_CreateTask(Zero, task_zero_stack, sizeof task_zero_stack), 0);
 UEXC_CreateTask(One, task_one_stack, sizeof (task_one_stack), 0);
 UEXC_StartScheduler();
}

Circuit Cellar INK® Issue 101 December 1998 25

ID tid. It searches the task list to find
the matching task and reclaims its
storage after it unlinks it from the list.

void UEXC_HogProcessor
(void); hogs the processor and gives
the current task another timeslice. If
this function is called repeatedly before
its timeslice is up, then no other tasks
(except for the interrupt driver function)
are run. It simply assigns the current_
ticks field of the task-control block
with the ticks field.

int UEXC_StartScheduler
(void); is the code that starts the
multitasking scheduler. It should be
called in your main() routine after it
creates some tasks.

This function never returns to the
caller, and control transfers to the
created tasks unless no task was cre-
ated prior to this call being made. It
starts the timer interrupt and then
calls the internal function Schedule
to transfer control to a task.

Finally, void (*UEXC_Interrupt
Driver)(void); is not actually a
function but a pointer to a function. If
nonnull, it should contain the address
of a function you wish to call at each
timer interrupt.

ASSEMBLY FUNCTIONS
These functions need to be modified

when porting µexec or if you choose
to use a different timer counter instead
of TOC4 (Timer Output Compare 4)
under ’HC11. They don’t take any
arguments or return any value, which
should make them easy to port. In
total, there are less than 50 assembly
source lines, 10 of which deal with
the timer registers and can actually be
written in C.

UEXC_SystemInterrupt is the
timer interrupt handler. After storing
the stack pointer to the global variable
uexc_current_sp, it calls a function
to see if the current task’s timeslice
has run out.

If it has, then a new task is sched-
uled and control transfers to the new
task. If the timeslice has not run out,
handler returns via ReturnFrom-
Interrupt.

You must arrange for this handler
to be invoked for the appropriate timer
interrupt. In most cases, this means
putting the address of this function in

the interrupt vector table. If you are
using a debug monitor, typically the
monitor provides a RAM-based
pseudo-vector table.

The function UEXC_SavregsAnd-
Resched is called by UEXC_Defer to
create a fake interrupt stack.

UEXC_StartNewTask is called to
run a new task. The stack is set up so
that if the task function ever returns,
then an internal function, UEXC_Kill-
Self, is called. UEXC_KillSelf is
equivalent to UEXC_KillTask
(current_task->tid).

The UEXC_Resume is a function
that gets the stack pointer from uexc_
current_sp and does a ReturnFrom-
Interrupt.

The function UEXC_StartTimer
can be written in C, but we put it in
the set of assembler functions because
it is microcontroller specific. It needs
to set the timer registers to enable the
timer interrupt at INTERRUPT_CYCLES
later.

TOC4 is used in the supplied code.
Typically, a TOC function can be
associated with an output pin, but in
this case, the output pin function is
disabled.

The value given by INTERRUPT_
CYCLES is the system tick and must
be adjusted for different system clock
speeds. As supplied, it is defined to be
2000 (cycles).

UEXC_RestartTimer can also be
written in C. It simply reenables the
timer interrupt at INTERRUPT_CYCLES
later.

GIVE IT A TRY
The simple example shown in

Listing 4 creates two tasks that print
out 0s and 1s. In addition to traditional
programming uses, µexec can be used
to implement subsumption architec-
ture, which is a powerful program-
ming paradigm particularly suitable
for programming autonomous robots.

If you’re interested, we recommend
checking out Mobile Robots, Inspira-
tion to Implementation [1] for more
detailed information on subsumption
programming.

ENHANCEMENTS
In summary, µexec is a small,

simple to use, simple to port, and yet

Richard Man and Christina Willrich
are the owners of ImageCraft, a com-
pany which specializes in low-cost
professional ANSI C tools for micro-
controllers, plus ’HC12 hardware and
BDM debug Pods. You may contact
them via www.imagecraft.com.

SOFTWARE

Complete source code for µexec is
available via the Circuit Cellar and
ImageCraft web sites.

REFERENCE

[1] J. L. Jones and A. M. Flynn,
Mobile Robots, Inspiration to
Implementation, A.K. Peters,
Natick, MA, 1993.

SOURCES

68HC11 microcontroller
Motorola
MCU Information Line
(512) 328-2268
Fax: (512) 891-4465
www.mcu.motsps.com

ICC11 ’HC11 C complier
ImageCraft
(650) 493-9326
(650) 493-9329
www.imagecraft.com

useful multitasking executive. Its
resource usage is modest, taking only
about 700 bytes on an ’HC11.

With this executive, even simple
embedded programs can be written as
multiple tasks, gaining you the ben-
efit of having a preemptive executive.

Naturally, there are plenty of pos-
sible enhancements, such as adding
the watchdog timer function that
comes with most microcontrollers to
the system. As well, you might
choose to modify the system so that
error conditions can be reported via
your system’s output mechanisms
(serial port, LCD, or even just a blink-
ing LED).

Or, why not modify the system so
that it prints out the maximum stack
usage for each task? You can even add
a name field to the task control block
so that diagnostics can be printed
with the task’s name. I

26 Issue 101 December 1998 Circuit Cellar INK®

Object-Oriented Design
of Real-Time Systems

FEATURE
ARTICLE

Irv Badr

d
During the design
stage, the system,
hardware, and soft-
ware engineers all
have their own issues
and development
tools. Irv presents a
way to balance and
coordinate the efforts
so we can all speak
a common language
at last.

esigning real-
time embedded

systems involves a
multidisciplinary team of

engineers. System engineers get the
process started, and because they are
primarily concerned with the overall
architecture, they often make trade-
offs that influence the hardware and
software composition.

Hardware engineers design circuitry
that fulfills the system requirements
as determined by the system engineers.
And, because the majority of the sys-
tem functionality lies in the software,
the software engineers have the larg-
est design and implementation task.

A Multidisciplinary Challenge

The challenge in coordinating these
disciplines is compounded because all
three have different concerns, use
different tools, and work somewhat
independently of one another.

The system engineer, in an effort
to refine system requirements and
assess feasability, is concerned with
state modeling of the control system
or communications protocols. The
hardware engineer tends to think in
terms of processors and circuits within
the domain of schematic capture, ASIC
design, VHDL, circuit simulation, and
board layout. The software engineer is
thinking about functional decomposi-
tion or an object model.

There’s no proven methodology to
bridge these disciplines and implement
a more collaborative system develop-
ment. Most organizations rely on a
document or drawing tool to capture
system architecture.

Although keeping that document
current is challenging, making it rel-
evant to the software engineer is more
difficult. Few software engineers read
schematic diagrams or other hardware
documents when considering how to
interface their software to the hardware.

In this article, I consider the possi-
bility of coordinating system, hardware,
and software development by using
object-oriented (OO) technology—
specifically, the Unified Modeling
Language (UML). The UML extensions
are from Artisian Software Tools’ Real-
Time Studio, a tool designed to enable
collaborative system development.

UNIFIED MODELING LAN GUAGE
A result of the Object Management

Group (OMG) and the efforts of many
methodologists, UML has become the
most widespread notational scheme
for system modeling. It has made

Photo 1 —There’s
more than one way to
incorporate hardware
properties into the
System Architecture
diagram. In this case,
the values refer to the
RS-232 interface on
the modem-controller
board.

Circuit Cellar INK® Issue 101 December 1998 27

uses

uses

uses

uses

uses

usesuses
uses

Process AT
commands

Obtain serial
data

Perform error
correction

Send data over
phone lines

Interface with
phone lines

Perform data
compression

Terminal
operator

Terminal/
Application

Telco

Transfer data

object-oriented modeling possible on a
wide scale by standardizing a common
language that spans multiple organiza-
tions and modeling tools. With UML,
engineers can define a system-level
design, regardless of many details.

However, when used for real-time
modeling, UML doesn’t completely
represent the design. There’s a lack of
direct support for timing considerations,
hardware support, and concurrency or
multiple executing threads. These
fundamental characteristics of real-time
systems must be addressed if UML is
useful to all of the engineering teams.

ASYNCHRONOUS MODEM
Because of its widespread use and

familiarity, I chose a modem for this
system-design project. A typical modem
consists of single or multiple processors

along with a number of subsystems
and is a good representative of a real-
time embedded system.

In this article, I discuss the design
at a system architectural level and a
detailed design level, exploring the
issues that arise when using UML for
modeling. I also consider how the UML
notation can be extended to better
address the basic characteristics of
real-time systems. The diagrams are
the result of using extensions to UML
and provide more effective communi-
cation among engineers.

THE BIG PICTURE
Arguably, system architecture

demands more collaboration and
agreement from all of the teams than
any other part of the project. Because
the specifics of the underlying system
are vague at this stage, all engineering

teams view the system
at an abstract level.

In UML, Use Case
diagrams capture the
system requirements
into numerous group-
ings called Use Cases.
This functionality is
described from the
perspective of a system
user or “actor.”

An actor, though
not necessarily a human operator,
represents a user that interacts with
the system. In Figure 1, Telco (a tele-
phone company) is an actor because it
interacts with the phone-line interface
in the modem Use Case.

Figure 1 also represents other Use
Cases as recognized for an asynchro-
nous modem. Assuming an AT com-
mand-compatible external modem,
the serial interface is usually an RS-232
connection. This connection carries
the AT commands from a terminal
operator or terminal program to the
modem in the form of serial data.

AT commands determine the
modem’s next action. Both obtaining
the serial data and processing AT
commands are captured as Use Cases
and are shown as separate ellipses in
Figure 1. Error correction, data com-
pression, and data passing over Telco’s
lines all identify a different Use Case.

To model the interaction within
the system, UML provides Object
Sequence and Object Collaboration
diagrams. In the next section, I ex-
plain Object Sequence diagrams in an
extended form to incorporate timing.

UML FOR HIGH-LEVEL SUPPORT
To capture the main characteristics

of real-time systems (i.e., timing,
concurrency, and the presence of hard-
ware), I want to introduce the diagrams
used at this stage of design.

A System Scope diagram presents
the interfaces to the hardware and soft-
ware. It shows the interaction between
the actors and system interfaces as well
as the interaction of the interfaces
with the system’s control elements.

Figure 2 illustrates the external
interfaces to my modem using the
System Scope diagram—namely, the
serial interface, analog phone line,

power switch, and status LEDs. These
interfaces surround the control entities
(e.g., the system software and DSP
subsystem).

From the operational perspective, a
system may undergo different modes
of operation depending on a set of
events that may occur. For example,
the System Mode diagram captures
the Failure, Calibration, and Software
Update modes.

Figure 3 shows a System Mode
diagram for my modem, with the
modes defined as Command, Con-
nected, and Update Firmware. The
Command mode is entered when the
modem is first powered up, and re-
sponds to the AT commands.

Once the phone connection is es-
tablished, the modem enters the Con-
nected mode where data is pumped to
the modem on the other side of the
connection. At this stage, the modem
bypasses the AT command processor.

The Update-Firmware mode is
entered once a specified string is en-
countered during command mode and
triggers a change. In this mode, subse-
quent data transferred to the modem
contains the executable code that
updates the version of the modem-
operating software.

Object Sequence diagrams (OSDs)
show the interaction between objects
and actors through events and opera-

Figure 1 —In a Use Case Diagram, the system requirements are broken down
into individual Use Case groupings that illustrate how various users interact with
the system requirements.

Figure 2 —A System Scope diagram shows the external
interfaces to the system surrounding the control entities,
like the system software for the AT command processor
and the DSP board.

Telco

Serial
interface

Status
LEDs

Telco

System
software

DSP

Power
switch

Terminal/
Application

Figure 3 —The System Mode diagram illustrates the
step-by-step response sequence in modem operation.
Command, Connected, and Update Firmware are the
three possible modes of operation.

Command

Update
firmware

Connected

Power upStart

Update
command

Update
complete

Establish
phone

connection

Connection
lost

28 Issue 101 December 1998 Circuit Cellar INK®

Object
architecture

Software
architecture

System
architecture

Architecture

Multitasking Persistence

Interface Control Entity

Description :CommandProcessing::AT Command Processor :DataControl::ErrorManager :DataControl::DataManagerTerminal/Application

Terminal issues an
AT command to force
error correction

AT(\N5)
{610 µs}

 {200 ms}

Command processor
configures the error
correction object

Configure for error correction

Reply with OK to
the terminal

< 1s

Reply OK

AT command to
force data
compression

AT(%C3)
{610 µs}

 {200 ms}

Configure the data
compression object

Configure for data compression

Reply with OK

< 1s

Reply OK

Figure 4 —An Object Sequence
diagram provides a detailed explana-
tion of an individual Use Case. Here,
the AT command processor Use Case
is broken down to show response and
reply timing information.

ration diagrams. A reference like UML
Distilled: Applying the Standard Ob-
ject Modeling Language provides
more information.

DESIGNING THE DETAILS
Embedded systems present the

problem of where to draw the line
between hardware and software areas
of responsibility. From a distance, we
can view the solution to the detailed
design problem at three levels. In
Figure 5, these levels are described as
system architecture, software architec-
ture, and object architecture.

The first layer refers to hardware
elements like boards, buses, intercon-
nects, and subsystems. Software archi-
tecture refers to the system software
and RTOS issues like concurrency and
persistent storage modeling. Finally,
in an OO environment, the application
layer in the software is defined as a
collection of objects in the form of a
Class diagram, shown as the object
architecture layer in Figure 5.

 UML offers the Class diagram not
only as a means to define the system’s
logical architecture (for building the
OSD in Figure 4) but also for detailed
design of each class. It also shows the
details of relationships among differ-
ent classes in the system.

Once sufficiently defined
and developed, the Class dia-
gram is the basis for code gen-
eration. As the attributes and
the operations of a class evolve,
they can be directly mapped
into source code in the OO
language of choice. Typically,
C++ and, to a lesser extent, Java
are used in embedded systems.

The CPP and H files in List-
ing 1 were generated using an

automated code generator from the
modeling tool.

The class code in Listing 1 contains
not only the attributes and operations
of these classes but also a reference to
the instances of other classes that they
associate with (e.g., Async_I/O asso-
ciates with the instances of AT_Com-
mand_Processor, DataManager, and
ErrorManager).

Although the Class diagram gives
software engineers a powerful tool to
help model system details, it fails to
provide a convenient way to map the
application software to the underlying
hardware.

Going back to Figure 5, sandwiching
the software-architecture layer between
the objects and the hardware lets us
map the former to the underlying
hardware. So, by introducing the
concurrency and storage diagrams,
you can map the RTOS tasks and the
data storage objects on to the hardware
entities, all without compromising the
boundary that divides the two layers.

One advantage of layering is that
you can cleanly differentiate between
the system hardware and software
components. As well, objects are
mapped to the software architecture
layer instead of directly to the system

Figure 5 —At each level in the embedded-system design process,
designers must consider the needs of each individual layer as well
as how it interacts with the next level.

tions. They give the system engineers
valuable tools for developing an inter-
active model of the system at higher
levels of abstraction.

However, in developing real-time
systems—especially systems with hard
timing constraints—timing information
needs to be conveyed to the software
engineers as a part of the system archi-
tectural requirement. By superimposing
the timing information on an OSD,
this UML diagram supports the timing
aspect of the system, resulting in an
effective instrument of communication.

The evolution of OSDs begins with
identifying the objects in the system.
This may be done at an architectural
level by the system engineers and later
elaborated on by the software engineers
as a part of the detailed design.

Referring to one of the Use Cases
from Figure 1 (AT command processing),
one of the possible scenarios is depicted
in Figure 4. The directed lines between
the actor and the objects denote a
function call (message) or event. Note
that the timing information associated
with a given message identifies the
propagation delay (or latency).

In this example, it takes the AT\N5
command about 608 µs at 115.2 kbps
to travel from the terminal to the AT
command processor. Once the message
arrives, it may take the AT command
processor 200 ms to process the request.
Both of these can be specified by the
system engineer and added to the OSD.

The vertical axis in Figure 4 repre-
sents time moving from top to bottom.
So, we can specify the round-trip time
for replying to an AT command (a
combination of many sequences) as a
vertical line with 1-s duration.

Another way to study the interaction
in the system is through UML Collabo-

Circuit Cellar INK® Issue 101 December 1998 29

Listing 1 —These C++ header files contain the class definition source code for the AT Command Pro-
cessor and AsyncData_I/O classes.

#ifndef __ASYNCDATA_IO_H
#define __ASYNCDATA_IO_H
// {SCG_HEADER(AsyncData_IO.h) [0]

// {SCG_INCLUDE
#include �D:\Workspace\RtS generated code\C++Example\
 AT_Command_Processor.h�
// }SCG_INCLUDE

// {SCG_FORWARD
// }SCG_FORWARD

// {SCG_CLASS(0)
// {SCG_CLASS_INFO(0)
class AsyncData_I/O
// }SCG_CLASS_INFO
{
 // {SCG_CLASS_PROPS(0)
private:
 Buffer * InputCircularBuffer;
 Buffer * OutputCircularBuffer;
public:
 Read_Terminal_Status ReadFromTerminal
 (const terminal_id, read_data);
 Write_Status WriteToTerminal(const terminal_id,
 const write_data);
protected:
 AT_Command_Processor* rAT_Command_Processor;
 DataManager* rDataManager;
 ErrorManager* rErrorManager;
 // }SCG_CLASS_PROPS
};
// }SCG_CLASS

// }SCG_HEADER
#endif

#ifndef __AT_COMMAND_PROCESSOR_H
#define __AT_COMMAND_PROCESSOR_H

// {SCG_HEADER(AT_Command_Processor.h) [0]

// {SCG_INCLUDE
#include �d:\Workspace\RtS generated code\C++Example\AsyncData_IO.h�
// }SCG_INCLUDE

// {SCG_FORWARD
// }SCG_FORWARD

// {SCG_CLASS(0)
// {SCG_CLASS_INFO(0)
class AT_Command_Processor
// }SCG_CLASS_INFO
{
 // {SCG_CLASS_PROPS(0)
private:
 CString LastATCommand;
public:
 Get_Command_Status GetNextCommandFromTerminal
 (const terminal_id, read_data);
 Send_Command_Status SendCommandsToOtherSubsystems
 (const destination_id, const send_command);
protected:
 DataManager* rDataManager;
 ErrorManager* rErrorManager;
 DataManager* rconfigures;
 ErrorManager* rconfigures;
 //}}SCG_CLASS_PROPS
};
// }SCG_CLASS

// }SCG_HEADER
#endif

30 Issue 101 December 1998 Circuit Cellar INK®

Figure 7 —A Concurrency diagram lists the tasks or the processes
in the system. Also shown are the messaging elements, software
interfaces, and interrupt service routines.

Serial
ISR

Serial
data

AT
commands

Error
manager

Data
compression

DSP
manager

Telco

Serial
interface

Bidirectional
packetized

data

Data-
stream

AT data
Bidirec-
tional

data flag

Bidirectional
final data

Data
available

Parse
data

Configure EC
Configure

DC

Bidirec-
tional

intermediate
data

hardware. This mapping allows a much
cleaner class design.

UML FOR DETAILED DESIGN
When modeling for high-level design,

several additions were made to the
traditional UML notation to support
real-time systems better and to im-
prove coordination. Similarly, the UML
can be extended to represent the de-
tailed system design while keeping
the diversity of the development team
in consideration.

To support the hardware layer in
Figure 5, a new set of notations is
achieved via the System Architecture
diagram. Figure 6 shows the cards and
the interfaces in my modem.

The modem-controller card hosts
the AT command processor, as well as
the data compression and error correc-
tion software subsystems. The DSP
board is a different processor card,
responsible for implementing digital
filters and other signal-processing
functions.

The controller card provides the 12-
and 5-V hardware interfaces to the LED
and the power switch, as well as an
RS-232 serial interface to the terminal
application. The latter serial port has
a few inherent attributes such as I/O
and IRQ addresses, which can be entered
into the System Architecture diagram.

Once the system engineers specify
the system at an architectural level
and initiate the System Architecture
diagram, the hardware developers can
fill in the details of the boards and
subsystems in the device (e.g.,

memory, I/O, and IRQ maps). Photo 1
shows where the serial port for the
modem is designed as a traditional
PC-style COM1.

The System Architecture diagram
lets hardware engineers input critical
information, needed later by the soft-
ware engineers, into the design to
complete the system. Such information
includes identifying major subsystems,
connections, and bus architecture as
well as publishing memory, I/O, and
IRQ maps of the system.

Hardware-related information lets
software engineers undertake low-level
development like device-driver develop-
ment, without referring to hardware
schematics or other documents gener-
ated by the hardware team. The prop-
erties window, as seen in Photo 1,
enables hardware and software engi-
neers to access the same information.

I used the System Architecture
diagram to map the hardware of the
system onto the software interfaces.
But, to complete the mapping of the
hardware onto the multiple tasks in
the software architecture, I need the
Concurrency diagram.

In Figure 7, the Concurrency diagram
shows the tasks identified for my
modem inside the modem-controller
card and DSP board. The serial data
task exchanges data with the serial
ISR through the packetized data chan-
nel. Serial data bidirectionally feeds
the data to AT commands and error
correction tasks through channels
using event flags as notification
mechanisms.

Each task or ISR may be
mapped to one or more software
interfaces. For example, the
serial ISR in Figure 7 is mapped
to the serial interface, which is
mapped to the RS-232 interface
in the System Architecture
diagram, as shown in Figure 6.

The Concurrency diagram
can be used to map hardware
elements to the software archi-
tecture. This layer includes,
most importantly, the RTOS or
the multitasking entity as well
as the data-storage elements.

To continue the mapping
process, the software architec-
ture can then be mapped to the

Asynchronous modem
Terminal/

Application

Modem
controllerRS-232

12 V

5 V

DSP
board

Power
switch

Status
LEDs

Local
bus

Analog subsystem (DAA)

Telco

Local

Local

Analog port

Figure 6 —At the System Architecture level, all the
major hardware elements of the modem along with the
hardware and software interfaces can be mapped on
the System Architecture diagram.

object architecture using one addi-
tional step inside the Concurrency
diagram. The tasks must be mapped
to the objects in the Class diagram
from Figure 8.

In this case, the Serial Data,
ATCommands, DataCompression,
and ErrorManager tasks are mapped
to AsyncData_I/O, ATCommand
Processor, ErrorManager, and
DataManager classes, respectively.
Similarly, DSP Manager task is mapped
to the DataPumpController class.

By mapping tasks to their represen-
tative objects, the software-architecture
and object-architecture layers are
bridged. The detailed design of my
system means the relationships can
be traced from the hardware into the
multiple tasks and storage and all the
way to the objects—all without dis-
solving the boundary between the
system hardware, software, and the
object architecture.

EMBEDDED UML
As the adoption of OO technology

in the workstation software industry
has increased, the embedded market
has slowly followed suit. Although
many projects still employ structured
analysis techniques, a majority are
planning the switch to OO technology.
As the trend continues toward UML
notation, most OO embedded projects
are sure to follow.

I was recently involved in designing
a hemodialysis machine at Aksys Ltd.,
a company that specializes in home
dialysis. In addition to control software,

Circuit Cellar INK® Issue 101 December 1998 31

Irv Badr is chief systems engi-
neer at Artisan Software Tools
and adjunct professor of man-

agement and information technology
at National-Louis University in Chi-
cago. He was manager of embedded-
systems database development at
Aksys Ltd. and president of Irfnet. Irv
has extensive consulting experience in
helping companies implement model-
ing and design solutions. You may
reach him at irvb@artisansw.com.

REFERENCES

M. Fowler et al. UML Distilled:
Applying the Standard Object
Modeling Language. Addison-
Wesley Object Technology Se-
ries, June 1997.

A. Moore and C. Niall. Real-Time
Perspective, Overview. Artisan
Software Tools, Capitola, CA,
1997.

A. Moore and C. Niall. Real-Time
Perspective, Foundation. Artisan
Software Tools, Capitola, CA,
1997.

A. Moore. How Do I Map Objects
to Real-Time Tasks and Vice-
versa. Artisan Software Tools,
Capitola, CA, 1998.which was modeled in UML, the instru-

ment required data-communication
capabilities through a modem interface.

The UML notation was used to
implement support for a modem and
distributed computing in a networked
environment. This machine is a typical,
but by no means comprehensive, ex-
ample of an embedded UML project.

Figure 8 —In a Class diagram, all the identified classes are grouped
together in packages based on their roles in the system. This Class
diagram is contained in four different packages.

::SerialDriver

AsyncData_I/O

InputCircularBuffer
OutputCircularBuffer

ReadFromTerminal
WriteToTerminal

::CommandProcessing

AT Command Processor

LastATCommand

GetNextCommandFromTerminal

SendCommandToOtherSubsystems

DataManager
::DataControl

Configuration

CompressData

ErrorManager
Configuration
CorrectData

::SignalProcessing

DataPumpController
StoreDefaultValues
ConfigureFilters
SendDataOut
ReceiveData

1

1

1

1 1

1

1 1

1

1 1

1
1

1

SOURCE

Real-Time Studio
Artisan Software Tools
(831) 475-5554
Fax: (831) 475-3195
www.artisansw.com

As the processing capabili-
ties of embedded systems
increase, along with their
ability to address memory in
the gigabyte range, the small
penalties in processing time
and memory usage resulting
from OO technology become
less significant.

So, it seems appropriate to
make the bold statement that
OO technology and UML are
here to stay in the real-time
industry. I

32 Issue 101 December 1998 Circuit Cellar INK®

Some
Assembly
Required

FEATURE
ARTICLE

Michael Smith

i
The most important
rule for programming
in assembly language:
know when not to.
When time and
money are riding on
how long it takes to
develop, debug, test,
and implement code,
sometimes it’s in
your best interest to
link in some C.

t might seem
strange, but the

best advice you can
give someone learning

how to program in assembly language
is: know when not to program in
assembly language.

Among the many valid reasons for
such advice, value for time and effort
should strike home with the industrial
programmer. It takes about as much
time to develop, debug, test, integrate,
and maintain one line of code in any
language, so the best value is obtained
by coding with the highest abstraction
possible. If a picture’s worth a thou-
sand words, then often, a line of C is
worth a hundred lines of assembly code.

C was designed as an efficient,
processor-independent assembly lan-
guage. So, many constructions behind
the language translate into special
features available in a processor’s
instruction set.

The most obvious,
shown in Table 1, is to
use the ++ operator in a
loop (value++) rather
than a slower arithmetic
addition (value =
value + CONST). Other

C/C++ constructs (e.g., += or �= opera-
tors) reflect the typical processor in-
struction where the destination is
identical to one of the sources.

In the good old days, we used C to
take advantage of these special features
because compilers were rather unso-
phisticated. But, today’s compilers are
as good as, and frequently better than,
an assembly-language programmer.
For instructions using CONST = 1 in
Table 1, most compilers generate the
faster increment instruction.

Most modern C++ compilers analyze
your code and automatically handle a
number of optimizations to account
for speed and memory trade-offs. Table
2 shows some of the switches available
on the Software Development Systems
(SDS) compiler.

Of course, you may have to tweak
some assembly code to handle some
special algorithmic match with an
unusual processor feature. SDS recom-
mends that hardware register access
be performed from assembly language
in all but the simplest situations.

Either way, you need to mix and
match between subroutines that were
quickly made functional via C, and
those hand-written, highly customized
assembly-language sequences. In this
article, I introduce the key elements
of the skill of mixing and matching.

THINGS TO PONDER
Linking between C and assembly

code isn’t so difficult if you’ll accept a
few basic facts. For one, there’s nothing
magic about code generated by a C/C++
compiler. It uses the same instructions
and system resources as the assembly-
language programmer.

There are a number of ways to per-
form any given operation. One ap-
proach may take advantage of a certain
processor feature whereas another
takes advantage of a different feature.

When linking between C and assem-
bly code, the relative advantages aren’t

Assembling C Code for Your
Embedded System

Table 1—C-language constructs were originally designed to take advantage
of the processor’s instruction set.

C construct Motorola processor Intel processor
(SDS compiler) (Inprise compiler)

value++ ADDQ.L#1,D3 Fast INC si Fast

value = value +CONST ADD.L #CONST,D3 Slow MOVE ax,si

ADD ax, CONST Slow

MOVE si, ax

Circuit Cellar INK® Issue 101 December 1998 33

always apparent and are often insignifi-
cant in terms of increased program
speed. If you spend an hour shaving
1 ms from some code, that code block
must be run 3.6 million times before
there’s a payback. With today’s faster
processors, you probably saved 0.01 ms.

One important and difficult thing
to come to terms with is sharing.
There’s one set of processor and system
resources. Sharing must occur whether
a team uses common assembly-lan-
guage subroutines or one programmer
switches between C/C++ and assembler.

EXHIBIT A
In the November 15, 1997, issue of

New Scientist, I read about some
interesting crime-detection hardware
that provides a good example of how
to link C and assembly code.

Apparently, it’s difficult to detect
small blood splatters and tissue remains
around a corpse during daylight hours.
This new hardware illuminates the
crime scene with rapid flashes of light
causing the blood splashes to fluoresce.

But, the fluorescence can’t be seen
above normal daylight reflection, so
the detective wears glasses with lenses
that darken. By making the darkening
rate different than the timing of the
flashes, the tissue samples seem to
flicker on and off like Christmas lights.

I’ll assume there are five hardware
registers necessary to control the
Generalized Locator of Blood (GLOB)
device. These registers, shown in
Table 3, were deliberately chosen to
have size and offset characteristics
that could cause problems when ac-
cessed from a C program.

The 8-bit-wide Transmit and Re-
ceive registers communicate with a
small hand-held screen and touchpad.
The Flash and Darken 16-bit register
values reload the timers that control
the rapid-flash lamp and glasses.

The control register is 32 bits wide,
with Readready and Writeready bits
for the serial communications line
registers being bits 0 and 1, respec-
tively. The activation bits for the
Flash and Darken timers are bits 4
and 5. Interrupt handling information
is stored in bits 16–31.

If the Overheat warning bit (bit 8)
is set, the rapid-flash lamp (controlled
by bit 9) must be switched off.

GETTING STARTED
The code for the main components

of the first GLOB device prototype is
given in Listings 1, 2, and 3. main.c
(see Listing 1) has a main() function
that calls the assembly-language pro-
gram void CallAsm (void).

Also included in main.c is a simple
C utility, void ShowTitle(void),
that is called directly from the assem-
bly-language routine CallAsm().

init.s in Listing 2 contains the
68k code needed to establish the sys-
tem stack used by both C and the
custom assembly code. This code is
activated during startup before main()
is called. Various important initial-
izations (e.g., ResetInit()) are also
necessary before calling main().

After main() exits, program control
returns to the embedded-system kernel
via a TRAP instruction and an associ-
ated parameter. Equivalent software
interrupts that transfer control back
to an OS (kernel or monitor) can be
found on other processors.

In the init.s assembly code, note
that many compilers use the function
name _main rather than main when
transferring control to the C function
main(). This coding convention uses
a leading underscore and is familiar to
anyone who’s ever received an error
message after accidentally linking C
code segments that contained a miss-
ing function or misspelled name.

Naming conventions are language
specific. Anyone attempting to link
legacy FORTRAN code (_MAIN_) dis-
covers this quickly.

Listing 1 —The main.c code contains a call to an assembly-language routine (CallASM()) and a C
utility called from assembly code.

#include <stdio.h>
void main(void);
void CallAsm(void);
void ShowTitle(void);

void main(void)
{
 CallAsm (); // Switch to assembly code
}
void ShowTitle(void)
{
 printf(�ACME GLOB V1\n�);
}

Listing 2 —The stack and various other parameters are initialized before program control is transferred to
C from within the init.s assembly code.

 .EXPORT START
 .IMPORT _main
 .IMPORT STKTOP, ResetInit

START: // Establish stack needed for C and assembly code
 MOVEA.L #STKTOP, SP
 JSR ResetInit // Call initialization routines
 JSR _main // Transfer control to C main()
 TRAP #15 // Trap back to system kernel
 DC.W RETURN_TO_KERNEL

A Allocate registers based on frequency
B Perform branch optimization
C Put frequent constants in registers
D Called functions cleanup
E Dead-code elimination
H Local common subexpression elimination
I Allow inline functions (C++ only)

Table 2—Optimizations, such as these from the SDS CC68000 compiler, provide the programmer with a wide range
of register and memory usage optimazations.

L Perform lifetime analysis
R Enable automatic register allocation
S Optimize for size (vs. optimize for speed)
T Volatile variables must be declared volatile
U Remove unreachable code
Y Enable aggressive switch algorithms

34 Issue 101 December 1998 Circuit Cellar INK®

Note that the utilities are provided
in a file named main.c (in C) rather
than main.cpp (in C++). The naming
convention to handle the function
overloading possible in C++ is far
more complex than for C functions.

The final component is the asm.s
file in Listing 3. This routine calls
other routines written in C and as-
sembly code. There’s little point in
developing a complicated assembly-
language sequence to print out a title
when a simple C call can do the job.
Because the message to the display
device is limited by a slow transmis-
sion rate over the serial line, assembly
code doesn’t offer a speed advantage.

Note the two entry points for each
assembly-code function. The entry
point with the leading underscore
makes it easy to call the subroutine
from C. The entry point without the
underscore is better for calling the
routine directly from assembly code.

I developed a coding practice that
provides both entry points whether
they’re needed or not. This technique
makes code maintainability easier and
avoids the common error of forgetting
to code the entry point you end up
using in the final program.

HIDDEN ERRORS ALREADY?
Although it seems unlikely in the

20 or so lines of code developed, there’s
already one possible error source that
could crash the processor. An error
can occur whenever an algorithm is
developed with one routine calling,
and then returning from, another
routine. But, the problem is far less
obvious because assembly and C sub-
routines are mixed.

In asm.s, I used address register A0,
one of the limited processor resources.
During ResetDevice(), the original
value held in this address register was
destroyed to access the hardware con-
trol register via an instruction with a
convenient indirect addressing mode.

But, it’s possible that an
earlier subroutine (e.g.,
main()) may rely on the
original value stored in A0
for some critical but
nonobvious purpose.

Listing 4 shows two pos-
sible solutions. No register

values are destroyed in Reset-
DeviceV2() where an absolute ad-
dressing mode instruction is used to
set the Control register. This mode of
operation generates code that runs
faster than the original Reset-
Device(). During ResetDeviceV3(),
the original address register value is
saved to the processor stack (PROLOGUE)
and the register used, and the old value
is recovered from the stack (EPILOGUE).

The first approach is inconvenient
and doesn’t provide easily maintainable
code if many adjacent hardware regis-
ter locations must be accessed. The
second option looks like overkill; the
address register (A0) doesn’t store
anything useful during eight subroutines
out of ten. But, whenever the register
stores some critical value, your pro-
gram is heading for never-never land.

The problem is the need to save all
possibly important registers on entry
to each subroutine. You never know
whether other team members used
that address register. This situation
leads to slow code whether it’s writ-
ten in C or assembler.

One solution is to identify two
register classes. Volatile or temporary
registers are those that everyone
agrees will not hold useful values.

They can be used in a subroutine
without having to be saved to slow
external memory.

Nonvolatile registers must be saved
and later recovered if they’re used in a
subroutine. I mention registers here
because placing frequently used vari-
ables into registers is often the route
to fast code. On-processor register-to-
register operations are significantly
faster than external memory accesses.

Everyone must agree which registers
are classified as volatile or nonvolatile.
If your project requires little repeated
use of variables, then designate most
of the processor registers as freely
available. If a later project has different
characteristics, change the register-
use convention to optimize that code.

The trouble with such a general
approach is code maintainability. A
totally arbitrary approach can cause
problems if you want to reuse code
segments later on. It’s better to choose
a convenient but arbitrary register
classification and stick with it.

If one team member is going to be
the C or C++ compiler, the compiler
should probably dictate the arbitrary
register convention. Even if you plan
to code only in assembler, you still have
to adopt some register-use approach.

I always recommend adopting a C-
compatible register convention that
balances between making available the
maximum number of volatile registers
and saving frequently used variables
from registers into external memory
each time you call a subroutine but
lack sufficient nonvolatile registers.

Listing 3 —The asm.s code demonstrates how to call both assembly-language and C code routines from
assembly code. Note that there is already one possible source of error present in the code.

 .IMPORT _ShowTitle
 .EXPORT _CallAsm, CallAsm

// Provide two entry points to each assembly-code function
_CallAsm: // C callable entry point
CallAsm: // Natural assembler entry point
 JSR ResetDevice
 JSR _ShowTitle
 RTS
 EXPORT _ResetDevice, ResetDevice

_ResetDevice: // void ResetDevice(void)
ResetDevice: // {
pt SET A0 // register long int *pt;
 MOVEA.L #BASEADDR, pt // pt = (long int *) BASEADDR;
 MOVE.L #RESET, CONTROL(pt) // (Reset Control register)
 RTS // }

Table 3—The GLOB device register characteristics (sizes and offset)
were chosen to emphasize some of the problems of interfacing C and
the device hardware.

Register Name Register Offset
Control (32 bit) 0 × 00
Transmit (8 bit) 0 × 04
Receive (8 bit) 0 × 07
Flash time (16 bit) 0 × 08
Darken time (16 bit) 0 × 0A

36 Issue 101 December 1998 Circuit Cellar INK®

On 32-bit processors, there’s no speed
disadvantage for using 32-bit integer
operations capable of handling large
values without possible overflow.

Which type of int—16 or 32 bit—
is intended for int IsLightOn()?
Most C compilers accept either, caus-
ing more code-compatibility problems.

When mixing C and assembly-code
functions, I never use int variables. I
specify long int when I intend to
manipulate 32-bit variables and short
int for 16-bit variables. I also state
the size of the variable being manipu-
lated in each assembly-language in-
struction (MOVE.L and MOVE.W)
rather than relying on the default
extension (i.e., MOVE means MOVE.W).

POINTER ARITHMETIC PROBLEMS
The second possible error is more

subtle. Suppose you write long int
ReturnTimerValues (void), which
accesses a 32-bit hardware register
corresponding to the 16-bit Flash and
Darken timer register values.

Look back at the assembler code
and also the code generated from the
compiled C comments in Listing 5.
Both code fragments would correctly
execute, despite hidden errors.

Now examine Listing 6. The as-
sembly code will work, but if the
program is upgraded to use the supplied
C comments, the code won’t work.

To access a 32-bit register offset from
a hardware base address by 8 bytes, use:

pt SET A0
rtnvalue SET D0
FLASH EQU 0x08
 MOVEA.L #BASEADDR, pt
 MOVE.L FLASH(pt), rtnvalue

On some windowed RISC processors
(e.g., SPARC), you can have many
volatile and nonvolatile registers for
general programming use and still
have other registers available for spe-
cial OS-related operations. Other
processors offer fewer opportunities.
Table 4 shows the volatile and nonvola-
tile register allocations for the SDS
68k C compiler and similar arbitrary
selections found with other compilers.

RETURNING PARAMETERS
Many functions return a parameter,

and because the parameter is typically
used in the calling routine, it makes
sense for it to be placed in a volatile
register for faster operation.

Listing 5 illustrates int IsLightOn
(void), which returns a 1 in register
D0 if the GLOB device rapid-flash lamp
is turned on. The routine checks
whether the Lampon bit is set in the
GLOB device’s control register (bit 9).

Some compilers return a pointer
value in a volatile address register and
a data value in a volatile data register.
The SDS compiler returns both in the
volatile data register D0. These two
approaches lead to different speed
advantages.

Long variables or complex numbers
(64 bit) may be returned using two
volatile registers. Structures are returned
by moving the return address down
the stack and beneath the structure.
The calling-routine programmer must
then pull the structure from the stack
and make any necessary stack-pointer
adjustments.

Even the simple code for int Is-
LightOn() has two possible errors.
One is in the size definition of a vari-
able of type int.

With a 16-bit variant of the 68k
processor and an algorithm using only
small numbers, there’s a speed advan-
tage for using 16-bit integer operations.

But, to write the same code in C,
the correct sequence is not:

register long int *pt;
register long int rtnvalue;
#define FLASH 0x08
 pt = (long int *)BASEADDR;
 pt = pt + FLASH;
 rtnvalue = *pt;

The correct sequence must consider
the standard relationship in C between
pointer value changes and the type of
C variable being pointed to.

The constant Flash must be de-
fined as:

0x08 / sizeof (long int)

and not by the offset defined in Table 3:

register long int *pt;
register long int rtnvalue;
#define FLASH 2 // !!
 pt = (long int *)BASEADDR;
 pt = pt + FLASH;
 rtnvalue = *pt;

Pointer arithmetic in assembly code
is based around byte arithmetic, so the
Timer registers are offset by 8 bytes
from the hardware base address. But,
pointer arithmetic in C is based on
the type of variable being pointed to.

Thus, if offset = 1, incrementing a
pointer by an amount offset in C
changes the pointer value by 1 (char
*), by 2 (short int *), by 4 (long
int *), or maybe by a strange amount
(struct mystruct *). Considering
how C handles pointers, there must be
two register offset definition files—
one for C and one for assembly code.

Listing 4 —There are many approaches to avoid destroying register values within a subroutine. An abso-
lute addressing mode is used within ResetDeviceV2(). The register is saved and later recovered
from the stack during ResetDeviceV3().

ResetDeviceV2: // Uses absolute addressing mode
 MOVE.L #RESET, (BASEADDR + CONTROL)
 RTS

ResetDeviceV3: // Save and recover register value
 MOVE.L A0, -(SP) // Prologue

pt SET A0
 MOVEA.L #BASEADDR, pt
 MOVE.L #RESET, CONTROL(pt)
 MOVE.L (SP)+, A0 // Epilogue

Table 4—The designation of volatile and nonvolatile
registers is an arbitrary convention that depends on
available processor resources and the balance consid-
ered appropriate by the compiler developers.

Volatile Nonvolatile
registers registers

SDS Compiler D0, D1, D2–D7,
A0, A1 A2–A6, SP

38 Issue 101 December 1998 Circuit Cellar INK®

Listing 5 used the offset to the con-
trol register (0). By chance, this is the
same measured in bytes, short int,
or long int. However, the offset to
the Timer registers for Listing 6 was
eight bytes but only two long ints.

That’s one reason to recommend
that hardware register access be handled
in assembly code. But, with many
hardware registers on real devices
remaining 8 bits wide, much C code
is written without people being aware
of the problems of upgrading hardware
to a 16-bit version.

PASSING PARAMETERS
A common requirement is the

ability to pass parameters between C
and assembly-code routines. You may
want to pass a pointer and data value
to control two identical devices placed
at different base addresses on a proces-
sor bus. Also, parameters can be passed
on the memory stack, in registers
(especially with windowed processors
like SPARC), or using a combination.

Originally, subroutines were used
to avoid repeating coded sections.
Now, they abstract the ideas to make
code more maintainable, ensuring that
no code contains more than 7±2 ideas.

Many compilers can analyze code
to determine whether a call can be
optimized by replacement with in-
line code. Often, when a call is made
to short subroutines, the subroutine
code may be physically placed many
times within the main code and the
final code to be placed in ROM may
still be shorter than the code needed
to pass parameters the standard way.

In newer language extensions, the
high-level language programmer can
specify that a subroutine be handled
this way (see Table 3). This automated
approach achieves code maintainability
and the speed of straight line coding.

Listing 7 shows how an SDS 68k
compiler passes parameters to the C
routines void PassMany(long int
outpar1, short int outpar2,
long int *outpar3) and void
PassOne(long int outpar1) from
an assembly-language code sequence.

First, a stack frame is established.
A compiler can keep track of which
variables are (or are not) pushed onto
the memory stack.

But, if you adjust code where values
are pushed onto a constantly changing
stack, it’s easy to introduce error.
Having a fixed stack frame size deter-
mined by the maximum number of
parameters to be passed avoids errors
and offers speed advantages.

Space is allocated on the stack for
all local variables despite the fact that
many variables are optimized directly
into registers. This helps with code
maintainability.

There’s no speed disadvantage for
adjusting the stack pointer by 200
rather than 48 bytes. If stack space is
limited, remove the unnecessary storage
locations after the code becomes stable.

Many optimizing compilers account
for memory and register use by placing
the originals directly into the outgoing
parameter location when it offers a
speed advantage. Obviously, this
should only happen if the value isn’t
needed after the subroutine. The com-
piler treats incoming and outgoing
parameters as volatile variables.

When the variable’s address is
passed, it’s the address of the local
variable on the stack that is passed.
The actual memory value must be
pulled back into a register before use.

Parameters are promoted to long
before being passed. To gain speed, the
promotion of short int outpar2 to
long in Listing 7 occurs in an implicit
(using MOVE.W to an offset stack loca-
tion) rather than an explicit manner
(EXT.L followed by MOVE.L). Make
sure your team doesn’t assume the top
16 bits of the passed parameter are
what’s needed.

The out parameters of the calling
subroutine become the in parameters
of the called subroutine. When pass-
ing parameters between C and assem-
bler, it’s important to understand the
processor architecture associated with
the call-to-subroutine instruction.

On a windowed processor, the
return address is part of the stack
frame the programmer establishes.
Many DSPs use a hardware stack for

Listing 6 —The function long int ReturnTimerValues(void) to access a 32-bit hardware
register works correctly at the assembly-code level but not at the C-code level.

 .EXPORT _ReturnTimerValues
 .EXPORT ReturnTimerValues

ReturnTimerValues: // long int ReturnTimerValues(void)
_ReturnTimerValues: // {
pt SET A0 // register long int *pt;
rtnvalue SET D0 // register long int rtnvalue;
FLASH EQU 0x08 // #define FLASH 0x08
 MOVEA.L #BASEADDR, pt // pt = (long int *)BASEADDR;

// Grab both 16-bit registers at once
// pt = pt + FLASH;

 MOVE.L FLASH(pt), rtnvalue // return(*pt);
 RTS // }

Listing 5 —The function int IsLampOn(void) demonstrates the use of a volatile register to return
a parameter. Note that there are two hidden sources of error in this simple function.

 .EXPORT _IsLightOn, IsLightOn
IsLightOn: // int IsLightOn(void)
_IsLightOn: // {
pt SET A0 // register long int *pt;
temp SET D1 // register long int temp;
rtnvalue SET D0 // register int rtnvalue;
LAMPON EQU 0x200 // #define LAMPON 0x200
 MOVEA.L #BASEADDR, pt // pt = (long int *)BASEADDR;
 MOVE.L CONTROL(pt), temp // pt = pt + CONTROL;

// temp = *pt;
 MOVE.L #0, rtnvalue // rtnvalue = 0;
 AND.L #LAMPON, temp // if (temp & LAMPON)

// rtnvalue = 1;
 BEQ IsLightOnEXIT // (Lamp is not on)
 MOVE.L #1, rtnvalue // return(rtnvalue);
IsLightOnEXIT:
 RTS // }

40 Issue 101 December 1998 Circuit Cellar INK®

long int *pt = (long int
 *0xA0000)
long int sum = 0;
for (count = 0;
 count < max; count++){
 sum += *pt; }
sum = sum >> 3;

An optimizing C compiler may rewrite
this code into a form equivalent to:

long int *pt = (long int
 *0xA0000)
long int temp;
long int sum = 0;
temp = *pt;
sum = (temp * max) >> 3;

pt always accesses the same memory
location, so the same value should be
returned.

Bringing all constants outside the
loop can optimize the loop. This as-
sumption is valid if standard memory
operations are performed. But, here,
the pointer accesses a hardware register
whose value may change.

A better approach, available from
the SDS compiler, is to store these
initialization constants in ROM and
copy them into the variables as part of
the ResetInit() routine used in
init.s (see Listing 2).

Other C array conventions can
sneak up and bite the unwary. You
must allocate for the end-of-string
character at the end of a string array
and then remember to pack the array
(style4[]) with additional NULL
characters so the next integer array
(style3[]) allocated within the code
starts at the proper word (16 bit) or
long-word (32 bit) boundary.

KEYWORD: VOLATILE
I already discussed the difficulties

of pointer arithmetic when using C to
access hardware registers.

An equally serious problem occurs
when you want to access a hardware
register within a loop. Consider using
this code to generate an average of
eight readings of a hardware input
register:

return address storage. Other proces-
sors modify the stack frame by the
adding a return address onto the stack
via call-to-subroutine.

Some processors have stack pointers
that point to the last-used location
while others point to the next-empty
location. The assembly-language pro-
grammer must ensure correct stack
use to avoid passing or using the wrong
parameter. Prior to exiting the calling
subroutine, the local variables and out
parameters must be removed from the
stack, possibly using a frame pointer
register (A6).

ARRAY OPERATIONS
Listing 8 shows the arrays that can

be described in C. It’s important to
recognize what happens at the assem-
bly-code level for each type of array.

style1[] arrays are made by allo-
cating space on the stack. These auto-
matic arrays don’t have a fixed starting
address and only exist while the func-
tion containing them exists. If the
function exits, the space is deallocated,
and the array and its values vanish.

Static (style2[]) and global
(style3[]) arrays exist independently
of the stack and are located in a RAM
section set aside for all static and
global variables. These arrays have a
fixed starting address once the program
is loaded into memory.

Constant arrays (style4[]) are
found in a memory section set aside
for constant values. Be careful if you
initialize a string variable (style4[])
and then change its contents. Some
compilers use the same memory for
style4[] and the Hello World
array used as a printf() parameter.

Arrays (style5[]) generated via
calls to C memory-allocation functions
like malloc() or the C++ new operator
exist within a memory section called
the heap. Provided the memory alloca-
tion for the array isn’t freed, the start-
ing address is fixed, even though it’s a
function when malloc() is performed.

Initialization of variables, including
arrays (style6[]), occurs many ways.
Downloading code using S-records
generated by the SDS compiler places
the values into the array, which causes
problems if the code is rerun without
being downloaded a second time.

Listing 7 —Here are examples of passing one or many parameters between C and assembly-code routines.

CodeExample: // void CodeExample(long int value){
// Stack frame definition

INPAR1 SET 12 // Offset relative to frame pointer
// Old Return Address SET 8
// Old Frame Pointer Location SET 4

// Offset relative to stack pointer
VAR3 SET 16 // long int var3; (optimize to D2)
var3 SET D2
VAR2 SET 12 // short int var2; (optimize to D3) var2
SET D3
OUTPAR3 SET 8
OUTPAR2 SET 4
OUTPAR1 SET 0
 LINK A6, #-28 // Establish stack frame
 MOVE.L D2, 20(SP) // Save nonvolatile registers
 MOVE.L D3, 24(SP)
 MOVE.L #2, var3 // var3 = 2; var2 = 4;
 MOVE.W #4, var2

 .IMPORT _PassMany // PassMany(value + 2, var2, &var3);
 ADD.L #2, INPAR1(FP)
 MOVE.L INPAR1(FP), OUTPAR1(SP)
 MOVE.W var2, (OUTPAR2 + 2)(SP)
 MOVE.L var3, VAR3(SP) // Store variable
 LEA VAR3(SP), A0 // Generate its address to pass
 MOVE.L A0, OUTPAR3(SP)
 JSR _PassMany
 MOVE.L VAR3(SP), var3 // Recover variable
 .IMPORT _PassOne // PassOne(value + 2);
 MOVE.L INPAR1(FP), OUTPAR1(SP)
 JSR _PassOne

// Destroy stack frame
 MOVE.L 20(SP), D2 // Recover nonvolatile registers
 MOVE.L 24(SP), D3
 UNLK A6
 RTS

Circuit Cellar INK® Issue 101 December 1998 41

volatile ensures that the mem-
ory location is accessed at each step:

volatile long int *pt =
 (volatile long int *)0xA0000
long int sum = 0;
for (count = 0; count < max;
 count++)
 sum += *pt;
sum = sum >> 3;

Hint: Use assembly language to access
hardware.

MORE BUMPS IN THE DARK
I’ve covered many things that must

be considered when cross-linking C
and assembly programs. But, you can
be haunted by many things that are
compiler and processor dependent.

Many programmers use the com-
piler’s -S option as a starting point for

producing custom code when generat-
ing assembly code from C. This method
has many possible trade-offs.

One optimization of the SDS com-
piler is to use RTD rather than RTS. RTD
pulls the return address and a specified
number of pushed parameters from
the stack. The number of instructions
to be stored in program ROM is re-
duced because the stack is adjusted
within one commonly called routine
rather than during each calling routine.

Other optimizations (see Table 2)
can hinder future use of the C code
assembler listing as a starting point
for optimized code. Dead-code removal
may remove values you want before
you ever use them in a customized way.

One advantage of frame pointers is
that the position of the incoming
parameters stays constant (relative to
the frame pointer) regardless of how

Listing 8 —Each different C array type requires a different underlying assembly-language programming
construct to implement.

char style4[] = "Hello World";
short int style3[200];
char * DemoCode(void)
{
 long int style1[100];
 static short int style2[100];
 short int style6[10] = {1, 2, 3, 4};
 char *style5 = malloc(200);
 Func1(style1, style2[3], style4);
 printf("Hello World");
 return(style5);
}

Listing 9 —The upper and lower ’x86 code sequences were generated from the same C code (Listing 1).
The upper code is produced by invoking a C compiler translation and the lower code is obtained from a C++
translation (Inprise).

TEXT ; void Asm(void);
 assume cs:_TEXT ; void main(void) {
_main proc near
 push bp
 mov bp,sp
 call near ptr _CallAsm ; CallAsm();
 pop bp ; }
 ret
_main endp
_TEXT ends

_TEXT ; void Asm(void);
 assume cs:_TEXT ; void main(void) {
_main proc near
 push bp
 mov bp,sp
 call near ptr @CallAsm$qv ; CallAsm();
 pop bp ; }
 ret
_main endp
_TEXT ends

SOURCES

SDS Compiler
Software Development Systems
(800) 448-7733
(630) 971-5900
Fax: (630) 971-5901
www.sdsi.com/contact/contact.htm

’x86 Compiler
Inprise Corp.
(800) 457-9527
(408) 431-1000
www.inprise.com

Mike Smith is an instructor in the
department of electrical and com-
puter engineering at the University of
Calgary in Canada where he teaches
about embedded systems and does
research into high-speed hardware and
software applications in telecommu-
nications and bioengineering. You may
reach him at smith@enel.ucalgary.ca.

much the stack is adjusted. But, there
are speed and stack disadvantages, too.
Some compilers solve these problems
with a virtual frame pointer, thereby
generating some interesting code.

Listing 9 shows some complications
of linking between C++ and assembler.
The upper assembly-language sequence
is generated by placing Listing 1 into
main.c before activating the Borland,
now Inprise, ’x86 compiler. The gener-
ated subroutine name _CallAsm starts
with the anticipated underscore.

The lower assembly-language se-
quence is produced from the same
code using the same compiler but the
code is placed into main.cpp. The
function name is now @CallAsm$qv.

Such name mangling means that,
in C++, it’s possible to distinguish
between functions with the same name
but different number of parameters.
The concept is straightforward but
causes problems when you link an
object file generated from a C++ sub-
routine with custom assembly code.

Mixing and matching C and assem-
bler enables you to generate a lot of
code quickly but still customize the
necessary portions. Knowing C coding
conventions also provides a useful
framework for creating fast, easily
maintainable code for your assembly-
language programs. I

42 Issue 101 December 1998 Circuit Cellar INK®

Smart Battery Systems

FEATURE
ARTICLE

Ed Thompson

b
According to Ed, the
Smart Battery System
is a remarkable com-
bination of battery and
embedded micro-
controller technology.
By giving status
feedback on power-
related issues, it’s
sure to bring many
improvements to
portable equipment.

linding red lights.
That’s all I saw as

my car slowed to a stop.
Up ahead, an ambulance

was pulled off to the side, doors flung
open. On the scene, one emergency
medical technician was trying to revive
the accident victim, while another
monitored vital signs with portable
medical equipment.

Since I had nowhere to go, I sat
attentively, considering the event
before me. I wondered how this life-
saving equipment is maintained, despite
the rigorous treatment it receives from
always being on the go. How do they
know battery power won’t fail at a
critical moment—like now?

SBS TO THE RESCUE
Maybe the answer can be found in

technological advances brought about
in the computer and telecom industries,
where intense activity surrounds power
management for portable systems.

Our desire to edit one more docu-
ment or place one last telephone call
has led us to demand more staying
power from laptops and cell phones.
Developments that extend performance,
reliability, and safety in computers

and telephones are being adopted in
the variety of electronic products that
we depend on daily.

From semiconductor companies to
software houses, component manufac-
turers to system integrators, a plan was
developed to combine information and
communications within a system of
portable power-related components. The
result: the Smart Battery System (SBS).

This article introduces the SBS
standard for implementing smart-
battery technology and suggests the
improved performance, reliability, and
safety that it promises to bring to
portable computers, medical equip-
ment, consumer products, and more.

SMART BATTERY SYSTEM
Created by a group of leading com-

panies to improve portable-product
performance, SBS is based on a set of
standards [1] maintained by the Smart
Battery System Implementers’ Forum.

As Figure 1 shows, SBS consists of
the system management bus (SMBus),
the SMBus system host, the smart
battery, the smart-battery charger, and
the smart-battery selector. SBS-based
products integrate these key compo-
nents into a system that can maximize
product service life while providing
accurate and timely equipment status
information to the user.

SYSTEM MANAGEMENT BUS
The SMBus provides the physical

medium and command protocols that
support the transfer of information
between SBS components. Envisioned
as a low-cost, low-bandwidth commu-
nication link, it connects various
devices within portable equipment.

SMBus includes a physical medium
based on the I2C bus developed by
Philips Semiconductors, although
some of the electrical characteristics
differ [1]. The I2C bus is a two-wire
open-collector multimaster/multidrop
serial bus that uses clock and data
signals to communicate with up to
127 devices on a single bus. Using a
serial bus reduces the pin count and
cost of devices attached to the bus. And,
it reduces PCB real-estate requirements
for pathways to connect the devices.

Devices on an SMBus may act as
bus masters and bus slaves. A master

Circuit Cellar INK® Issue 101 December 1998 43

initiates a message between itself and
a slave (also attached to the bus) by
generating a start condition, followed
by the slave address, and a read/write
bit (see Figure 2).

Each slave device on the bus has an
assigned address. Slaves recognize start
conditions and monitor slave addresses
that traverse the bus. A slave recogniz-
ing its own address on the bus gener-
ates an acknowledgment bit to signal
that the addressed slave is present.

The master exchanges one or more
data bytes and acknowledge bits with
the slave and terminates the message
with a stop condition or by initiating
a new message with a repeated start.
Table 1 lists the standard SMBus slave
address assignments.

Within the structure of its messages,
SMBus defines the eight command
protocols you see in Figure 3. These
protocols define the rules that devices
connected to the SMBus must follow,
and provide a menu of commands for
implementing SBS device functions.

Quick commands send one bit of
data to a slave device. The value of the
Read/Write bit (0 or 1) controls the
state of a function in the addressed
write-only slave. This command uses
little bus bandwidth, and it addresses
the needs of simple slave devices. For
example, it can enable or disable
backlighting in an LCD controller.

Send Byte commands address slave
devices that need to receive only a
single byte of data. The 8-bit data byte
holds a value of 0–255. This data can
be interpreted as the slave sees fit. For
example, a fan motor control can use
this data to set motor speed, or an LCD
backlight controller may use it to set
lamp intensity.

Receive Byte commands involve
a single data byte, too, but the master

reads the data from the slave. The 8-bit
data byte holds a value of 0–255. The
interpretation of this data by the master
is slave-device dependent. For example,
the data can indicate the temperature
of the host CPU or the status of access-
door interlocks.

Write Byte/Word is similar to Send
Byte but involves a command-code
byte and one or two data bytes. The
command-code byte tells the receiving
slave how to interpret the following
data. The 8-bit data byte holds a value
of 0–255, and the 16-bit data word holds
a value of 0–65,535.

For example, the message can be
the smart battery telling the smart-
battery charger about charging require-
ments. The command-code byte tells
the receiving slave device that the data
is the voltage level that the charger is
to apply to the battery’s terminals.

Read Byte/Word is similar to
Write Byte/Word, but it has a two-
step process. The master must first
write the command-code to the slave
device, which enables it to tell the
slave what information it requires. The
master then (without generating a stop
condition) sends a new message to the
slave, reading one or two bytes of data.

As with Write Byte/Word, the
8-bit data byte holds a value of 0–255,
and the 16-bit data word holds a value
of 0–65,535.

The SMBus host device can use
this command to request battery-pack
temperature information from a smart
battery. The command-code byte tells
the slave that the data to transmit
should be the battery-pack temperature.

Process Call is like a Write Word
followed by a Read Word, but it uses a
repeated start and only a single com-
mand-code for the entire sequence.
Here, the master writes the command
code plus two data bytes (16 bits, low
byte first) to the slave device.

This step enables the master to issue
a command to the slave and provide
two bytes of data that the slave can
use for internal computations. Then,
the master (without generating a stop
condition) sends a
new message to the
slave, reading two
bytes of data (16 bits,
low byte first). Pro-

cess Call is used in more computa-
tionally intensive situations.

Block Write sends a series of data
bytes to a slave receiver device. The
command code tells the slave how to
interpret the remaining bytes in the
message. The byte count, with a valid
range of 1–32, tells the slave how many
data bytes should follow.

Block Read is used to read a series
of data bytes from a slave transmitter.
It also involves a two-step process.

The master first writes the com-
mand code to the slave device, so it
can tell the slave what information it
needs. Then, the master (without
generating a stop condition) sends a
new message to the slave, reading the
data. The first byte indicates how many
data bytes are to follow.

SMBus slave devices may use any
or all of the above command protocols.
Supported command protocols are
defined in the appropriate SBS compo-
nent specification. SMBus hosts should
support all command protocols.

Although its initial use is to connect
SBS devices, SMBus can be used for
connecting a wide variety of devices.
The protocols meet most I2C-bus
communications requirements and
are worth considering even on non-SBS-
or SMBus-related projects.

SMBus SYSTEM HOST
The SMBus system host is the

equipment (laptop PC, cellular phone,
video camera, etc.) that communicates
with SBS devices over the SMBus. It’s
powered by the smart battery. In a
laptop PC, the host is the laptop’s
processor. In other products, the host
might be an embedded microcontroller
or microprocessor.

Whatever form it takes, the system
host provides the interface between the
user and the rest of the power-manage-
ment system. The host’s computing
power can be used directly or indirectly
to determine user power requirements.

Its SMBus communication capability
enables the system host to interact
with the smart battery to determine

Figure 2 —SMBus relies on a basic message structure borrowed from the I2C bus.

Smart
battery

A

Smart
battery

B

Smart-battery
selector

(Dual-battery system)

Smart-
battery
charger

SMBus
system

host

SMBus

Figure 1 —The minimum SBS requires a system host,
smart battery, and charger. An optional smart-battery
selector and second battery extend product runtime.

Start Slave Address R/W Ack Data Ack ... Data Ack stoP

Circuit Cellar INK® Issue 101 December 1998 45

Quick Command

Start Slave Address R/W Ack stoP

Send Byte Command

Start Slave Address W Ack Data Ack stoP

Receive Byte Command

Start Slave Address R Ack Data Nack stoP

Write Byte Command

Start Slave Address W Ack Command Code Ack ... Data Ack stoP

Write Word Command

Start Slave Address W Ack Command Code Ack DataLB Ack DataHB Ack stoP

Read Byte Command

Start Slave Address W Ack Command Code Ack

+

Start Slave Address R Ack Data Nack stoP

Read Word Command

Start Slave Address W Ack Command Code Ack

+

Start Slave Address R Ack DataLB Ack DataHB Nack stoP

Process Call Command

Start Slave Address W Ack Command Code Ack DataLB Ack DataHB Ack

+

Start Slave Address W Ack DataLB Ack DataHB Nack stoP

Block Write Command

Start Slave Address W Ack Cmd Code Ack Byte Count Ack Data Ack ... Data Ack stoP

Block Read Command

Start Slave Address W Ack Command Code Ack

+

Start Slave Address R Ack Byte Count Ack Data Ack ... Data Nack stoP

current and predicted power availabil-
ity and to set battery mode and alarm
levels. It also enables the host to set
charging current and voltage levels for
the smart-battery charger. Additionally,
it lets the system host interact with
the smart-battery selector to identify
multiple-battery availability.

The system host then uses all this
information to establish a power budget
that best meets user requirements.

SMART BATTERY
The smart battery consists of a

battery pack with embedded electronics
that can hold smart-battery data (see
Table 2), measure battery operating
parameters, and calculate and predict
battery performance. It can also monitor
alarm conditions, initiate and control
battery-charging algorithms, and com-
municate with other SMBus devices.

Placing SBS-compatible electronics
in the battery pack opens the door to a
variety of battery-chemistry–indepen-
dent power-management schemes for
extending product runtime. SBS-based
equipment users and power-manage-
ment systems can access complete
and accurate information even if the
battery is changed.

The smart-battery data tells the
user how much longer a product will

operate. It also guides the built-in
power-management system in selecting
the best algorithm to extend battery life.

The data includes member elements
that indicate present battery operating
parameters like battery-pack tempera-
ture and terminal voltage and current.

Additionally, it predicts battery
operation such as remaining capacity
and runtime to empty. Also, it identi-
fies the battery, manufacturer, and
chemistry, as well as controls battery
operation such as remaining capacity
and remaining time alarm levels, and
operating mode controls.

Although all SBS data in a smart
battery is readable from other SBS
devices, only a few alarm, mode, and
rate parameters are writable from the
SMBus. Most parameters are measured
or calculated within the battery pack.

 Other data elements, like manu-
facturing date, serial number, and
device chemistry, are programmed into
the battery-pack electronics during
manufacturing.

Table 1—SMBus includes these I2C slave address
assignments for standard SBS devices.

0x10 SMBus system host
0x12 Smart-battery charger
0x14 Smart-battery selector
0x16 Smart battery

Figure 3 —Standard SMBus command protocols provide rules for communicating across the bus and are available
to all SBS devices.

46 Issue 101 December 1998 Circuit Cellar INK®

Ed Thompson is president of Micro
Computer Control Corp. For the last
six years, he has concentrated on I2C-
bus applications and development
tools. You may reach him at 73062.
3336@compuserve.com.

RESOURCES

Micro Computer Control, The I2C
Bus and How to Use It, www.
mcc-us.com/i2chowto.htm

D. Stolitzka, “Smart-battery tech-
nologies push design,” Electronic
Engineering Times, January 27,
66–84, 1997; www.techweb.
com/se/directlink.cgi?
EET19970127S0095.

With SBS-compatible electronics in
the battery pack, the charger can be
reduced to a slave device that supplies
charging voltage and current to the bat-
tery independent of battery chemistry.

SMART-BATTERY SELECTOR
The selector provides the data and

functionality to support multiple smart
batteries in one system. It also commu-
nicates with other SBS devices over the
SMBus. The selector maintains configu-
ration data, provides system power
switching, battery-charge switching, and
has SMBus communication capabilities.

SMART-BATTERY CHARGER
The charger provides a source of

voltage and current, and communicates
with the smart battery over the SMBus.
The charger can become a bus master
and actively poll the battery for current
and voltage requirements.

A passive charger can act as a slave-
only device and receive charging in-
formation from the battery or system
host if the battery is unable to provide
this information directly. The charger
may also receive notification of critical
battery events (e.g., overcharging, over-
voltage, over-temperature conditions).

Name Description

ManufacturerAccess Content determined by battery manufacturer
RemainCapacityAlarm When RemainingCapacity falls below this value, battery sends

 AlarmWarning to SMBus Host with REMAINING_ CAPACITY_
 ALARM bit set

RemainTimeAlarm When AverageTimeToEmpty falls below this value, battery sends
 AlarmWarning to SMBus Host with REMAINING_TIME_ALARM
 bit set

BatteryMode Controls battery operating modes and reporting capabilities
AtRate Sets charge or discharge rate for AtRateTimeToFull, AtRate

 TimeToEmpty, and AtRateOK functions; specified in milliamps if
 BatteryMode; CAPACITY_MODE bit = 0, else 10 mW.

AtRateTimeToFull Predicted remaining time to full charge at AtRate value
AtRateTimeToEmpty Predicted remaining operating time at AtRate value
AtRateOK Indicates if battery can deliver the current AtRate value for 10 s
Temperature Cell-pack’s internal temperature in degrees Kelvin
Voltage Cell-pack voltage in millivolts
Current Current being supplied (or accepted) through battery’s terminals

 in milliamps
AverageCurrent 1-min. rolling average current being supplied (or accepted)

 through battery’s terminals in milliamps
MaxError Expected margin of error (%) in the state of charge calculations
RelStateOfCharge Predicted remaining battery capacity as a percentage of

 FullChargeCapacity
AbsStateOfCharge Predicted remaining battery capacity as a percentage of

 DesignCapacity
RemainingCapacity Predicted remaining battery capacity in milliamp hours if

 BatteryMode; CAPACITY_MODE bit = 0, else in 10 mW h
FullChargeCapacity Predicted pack capacity when fully charged in milliamp hours if

 BatteryMode; CAPACITY_MODE bit = 0, else in 10 mWh
RunTimeToEmpty Predicted remaining battery life at present rate of discharge in min.
AveTimeToEmpty 1-min. rolling average of the predicted remaining battery life in min.
AveTimeToFull 1-min. rolling average of the predicted remaining time to full

 charge in min.
ChargingCurrent Desired charging rate in milliamps
ChargingVoltage Desired charging voltage in millivolts
BatteryStatus Battery status word (flags)
CycleCount Number of charge/discharge cycles the battery has experienced
DesignCapacity Theoretical capacity of a new pack in milliamp hours if

 BatteryMode; CAPACITY_MODE bit = 0, else in 10 mWh
DesignVoltage Theoretical voltage of a new pack in millivolts
SpecificationInfo Smart-battery specification version supported, voltage and current

 scaling information
ManufacturerDate Date the cell pack was manufactured
SerialNumber Battery serial number
ManufacturerName Battery’s manufacturer’s name
DeviceName Battery’s name
DeviceChemistry Battery’s chemistry
ManufacturerData Content determined by battery manufacturer

Table 2—Smart-battery data describes the actual and predicted operation of an SBS smart battery. By being located
within the battery itself, this information is accurate even if the battery is changed.

Selector configuration data identifies
the battery connected to the SMBus
host, the current system power source,
which battery is connected to the
charger, and what batteries are present.
This data enables the host to determine
when a smart battery has been added
or removed, if AC power is connected
or not, and when the selector switches
from one battery to another.

A selector may act as a slave-only
device, responding to polls from the
host, as a master device, initiating com-
mands to the host, or as a combination.

POWERFUL DEMANDS
The SBS is destined to move beyond

portable computers and cell phones
and into a widening range of portable
electronic products. It offers extended
product runtimes, the ability to accu-
rately predict performance, and im-
proved charging safety.

Portable medical equipment is one
product category that will soon ben-
efit from SBS technology. Others will
certainly follow. If you’re responsible
for portable product design and devel-
opment, maybe you should consider
this technology, too.

Hopefully, the next time you see
an emergency team at work, they’ll
know that their lifesaving equipment
has the power to handle the job. I

REFERENCE

[1] Smart Battery System Forum,
System Management Bus Speci-
fication, www.sbs-forum.org.

48 Nouveau PC
edited by Harv Weiner

53 Real-Time PC
Embedded RT-Linux
Part 2: Working with Flash Memory
Ingo Cyliax

59 Applied PCs
emWare Top to Bottom
Part 2: Launching the Application
Fred Eady

P
h
o
to

 c
o
u
rt

es
y
 o

f
A

m
er

ic
a
n
 A

d
va

n
te

ch
 C

o
rp

.

CIRCUIT CELLAR INK DECEMBER 199848

N
PC

PCNouveau
edited by Harv Weiner

QUAD DSP BOARD
The Silvertip Quad PC/104 combines four 40-MHz ADSP-

2106x SHARC DSP processors, 512K × 32 SRAM, and 1-MB
flash memory on a standard PC/104 form-factor board. Also
included is a pair of SHARC serial ports and six 40-MB link ports
for connecting to link-port-compatible devices such as the bitsi/104
mezzanine interface and the other SHARCs. The board combines
the power and ruggedness needed for embedded systems
designed for military or industrial environments and space-
constrained applications requiring very high floating-point com-
putational performance. The Silvertip Quad PC/104 board is
also available in a dual-processor configuration.

Source-code development tools for the Silvertip Quad PC/104
include Analog Devices’ SHARC ANSI-compliant C compiler,
assembler, linker, simulator, and source-code debugger. True
real-time in-circuit emulation is available with the optional EZ-ICE
emulator from Analog Devices. BittWare’s DSP21k Toolkit provides
developers with C-callable host I/O functions, DSP functions,
example code, and diagnostic utilities for 32-bit versions for
Windows 95 and Windows NT. The DSP21k porting kit is also
available to support the Silvertip Quad PC/104 on additional
platforms and operating systems.

Pricing for the Silvertip Quad PC/104 starts at $4595.

BittWare Research Systems
(603) 226-0404
Fax: (603) 226-6667
www.bittware.com

FLASHTCP SERVER
The FlashTCP Server provides a low-cost

platform for embedded systems requiring Internet
or network connectivity. Its preinstalled TCP/IP stack

and DOS file system make the unit ideal for applications
needing TCP/IP connectivity. Server applications include

displaying network status, importing web pages and text from
RS-232 or RS-485 serial lines, and displaying dynamically
changing data. The system is ideal for data acquisition and control.

The FlashTCP Server comes with DOS and connects to 10BaseT
Ethernet networks. Features include four PC-compatible RS-232
serial ports (one configurable as RS-485), a bidirectional printer
port (LPT1), 34 parallel I/O lines, and onboard switching power
supply (accepts 7–34 VDC). It also offers a Y2K-compliant clock/
calendar system, watchdog timer, 512-KB SRAM, 512-KB flash
memory, and a socket for a 512-KB flash-memory or RAM disk.
Cards supporting A/D and D/A conversion, isolated I/O, and GPS
are also available.

Software can be developed using Borland C/C++, Microsoft
QuickC and QuickBASIC, or development tools for DOS target
systems. Developers can easily upload compiled code through
one of the serial ports or via ftp and Ethernet.

The FlashTCP ships with preinstalled web server, user manual,
and schematic and is priced at $329 in 100-piece quantities. A
developer’s kit including the FlashTCP, preinstalled software, cables,
AC adapter, utilities disks, manual, and schematic costs $469.

JK microsystems, Inc.
(530) 297-6073 • Fax: (530) 297-6074
www.jkmicro.com

CIRCUIT CELLAR INK DECEMBER 199850

N
PC

PCNouveau

DCOM TECHNOLOGY FOR WINDOWS CE
Annasoft Systems has announced Intrinsyc DeviceCOM, an implementa-

tion of DCOM (distributed component object model) for Windows CE. DeviceCOM
makes it easy to create and deploy client-server distributed applications, and
it extends the current capabilities of the Windows CE operating system. Factory
automation, transportation, and point-of-sale applications are included.

Annasoft supports vertical-market DCOM-based standards by offering
DeviceCOM application kits. The DeviceCOM Quickstart ODK (OEM developer’s
kit) gives developers everything necessary to create distributed applications on
Windows CE. The kit requires no programming and implements all the
standard OPC interface elements in Windows CE and Windows NT.

The ODK operates within the popular Microsoft Visual Studio on Windows NT
4.0 and includes DeviceCOM server libraries, a DL compiler, sample applica-
tions, deployment utilities, on-line documentation, and tutorials. The ODK also
includes 20 DeviceCOM server run-time licenses for development or small-
deployment purposes. DeviceCOM runs on Windows NT 4.0 and on all
supported processors for Windows CE 2.0 and 2.1. The core DeviceCOM server
occupies about 300 KB of memory or less, depending on the target processor.

The DeviceCOM Quickstart ODK V. 1.0 sells for $1495. Run-time licenses
below $3 are available for volume applications.

PC/104 I/O COPROCESSOR MODULE
and parameters are stored in a RAM
arrangement that the host accesses via
a sequential FIFO interface. No special
drivers are needed since the module
accepts standard I/O commands from
DOS and Windows programs.

The IOCP-74 is fully programmable
using readily available PlC develop-
ment tools. The assembly-language
source code for the preprogrammed
factory-default configuration is pro-
vided royalty-free. A standard J1/P1
stack-through connector enables the
IOCP-74 to reside anywhere within
an 8-bit PC/104 stack. Adding an
optional J2/P2 connector provides
16-bit stack-through compatibility and
access to all upper interrupt request
lines.

The IOCP-74 sells for $185.

Scidyne
(781) 293-3059
Fax: (781) 293-4034
www.scidyne.com

Annasoft Systems
(619) 674-6155
Fax: (619) 673-1432
www.annasoft.com

Client COM Server

Interface
Proxy

Interface
Stub

DeviceCOM
Library

DeviceCOM
Server

Process Boundary

COM
Interface

Machine Boundary

COM Server

Interface
Stub

COM Server

The IOCP-74 is
an 8-bit PC/104-compli-

ant module that is designed
to perform sophisticated mea-

surement and control operations
with minimal host intervention. Ap-

plications range from data acquisition
and parsing communication protocols to
using it as an intelligent virtual peripheral
that can execute complex front-end com-
putations, process-control loops, and logi-
cal sequences.

A 20-MHz Microchip P1C16C74
RISC microcontroller controls onboard
circuitry and executes any application-
specific computations or logic operations.
Standard features include two 12-bit
and three 8-bit (0–5 VDC) analog in-
puts, and two 12-bit (0–4.095 VDC)
analog outputs. This board also has
eight I/O rack-compatible digital chan-
nels, advanced timer functions (PWM/
capture/compare), 2-KB serial EEPROM,
shared interrupts, one PlC-supervised
RS-232/-485 serial communications port,

and a 5-V-only power requirement. A prototyping
area permits extra hardware to be added easily by
means of clearly labeled access to buffered PC/104
data, address lines, decoded control signals, SPI
circuitry, and support for both through-hole and
surface-mount devices. All module data variables

CIRCUIT CELLAR INK DECEMBER 199852

N
PC

PCNouveau

LONWORKS GATEWAY ADAPTER
Telebyte’s Model 3201 transceiver is a PCI-bus half card that

enables a Windows 95 or Windows NT–based PC to access a
network operating under the LonWorks 78-kbps protocol (which

SVGA ADAPTER FOR PC/104
The VGA-104 SVGA adapter for PC/104

applications is based on the 65545 VGA controller
from Chips and Technologies. It supports up to 1 MB of

video, resulting in memory resolutions from 640 × 480 ×
16 million colors to 1280 × 1024 × 16, and has hardware window

acceleration. It can drive active-matrix and dual-scan LCD, EL, and
plasma flat-panel displays as well as CRT monitors. The VGA-104
provides PC/104 systems with an industry-standard display interface
supported by both desktop and embedded operating systems.

The VGA-104 provides support for 3.3- and 5-V flat panels and has
power-sequencing logic for LCD and backlight voltages. A large
library of flat-panel support packages is available. Each package
includes panel-specific VGA BIOS, cabling, and technical references.

The VGA-104 is available for $155 in 100-piece quantities.

Adastra Systems
(510) 732-6900
Fax: (510) 732-7655
www.adastra.com

was developed by Echelon Corp.). The PC adapter supports plug-
and-play for automatic detection and configuration by Windows 95.

The gateway is implemented using the Neuron MC143150
processor running at 10 MHz. The full 64-KB Neuron address
space is configured from dual-port SRAM, visible to both the PC
and the Neuron chip. A single I/O port allows the PC to start and
stop the Neuron processor and enables a virtual service button.

Neuron C programs developed with the Echelon NodeBuilder
or LonBuilder may be loaded to the Model 3201 with the supplied
Windows 95 software driver. The Neuron C program and a PC
application may then communicate via shared memory. The
software package also includes a custom control (OCX) driver
program for simple interface to Visual Basic, Visual C/C++, and
similar languages.

The Model 3201 directly supports the 78-kbps free topology
network and uses an RJ11 jack as the network interface. Each unit
includes a DIP switch on the rear bracket to provide termination
for single or doubly terminated networks.

The Model 3201 sells for $288.

Telebyte Technology, Inc.
(516) 423-3232
Fax: (516) 385-8184
www.telebyteusa.com

R
PC

DECEMBER 1998 EMBEDDEDPC 53

Real-Time PC

Ingo Cyliax

Embedded RT-Linux
Part 2: Working with Flash Memory

When I introduced Linux last month, I
covered the initial development of Linux
as a conventional operating system for
desktop and server systems. But, because
Linux tries to satisfy the needs of many, it
tends to be very modular and flexible.

Therefore, it can also to be pressed
into service as an embedded OS for
many 32-bit processors. With such
possibilities at hand, I wanted to
explain how to embed Linux.

For many embedded applications,
we want a small streamlined OS.
Desktop and server installations typi-
cally include relatively large memory
configurations since you don’t usually
know what applications and pro-
grams you might end up running on it.

Today’s feature-laden desktop
applications tend to be bloated for
the amount of work they do. As we’re
frequently told, memory is cheap.

Well, although memory might be
cheap, in the embedded-systems

world, every dollar spent on memory and
other frivolous resources comes out of the
profit margin. Our goal: make systems as
lean and mean as possible, without invest-
ing a lot of effort. A compromise is sought
between systems that are general pur-
pose and those that are totally customized
to one application.

Once you decide that Linux might be the right OS for your embedded
application, where do you go next? Ingo has the answers as he reduces the
Linux kernel and even shows how to boot it from flash memory or floppy disk.

So, rather than excessively customiz-
ing or writing something from scratch,
let’s look at how to embed Linux without
too much fuss.

REDUCING THE KERNEL
Most Linux distributions deliver a Linux

kernel that is configured to be as general
purpose as necessary and yet still
support as many different devices as
possible. That’s fine for most desktop
applications because there’s memory
and disk space to burn.

However, to embed Linux, the
size of the kernel should be reduced
as much as possible. There are two
techniques for accomplishing this
task—customize the kernel and com-
press the kernel image.

It is possible to configure only the
modules and device drivers neces-
sary for your applications. Linux lets
you do this by running the kernel
configuration script.

Volume in drive A has no label
 Volume Serial Number is 2463-1AD1
 Directory for A:/

command com 54619 09-30-1993 6:20
debug exe 15718 09-30-1993 6:20
loadlin exe 32208 08-29-1998 16:28
vmlinuz 429371 08-29-1998 16:28
initrd 166233 08-29-1998 17:36
autoexec bat 285 08-29-1998 19:26
 6 file(s) 698 434 bytes
 614 400 bytes free

Figure 1—These are the contents of a DOS-based Linux boot
floppy. The DOS utility loadlin.exe reads the Linux kernel
image vmlinuz and the RAM disk image initrd into
memory, and then transfers control to the kernel to boot it.
This file can run out of a flash-based file system.

R
PC

CIRCUIT CELLAR INK DECEMBER 199854

BOOTING FROM FLASH
Now, let’s look at how to get Linux on

a boot device. In normal Linux desktop
installation, the kernel and application
programs are stored and booted from a
hard disk.

This situation is possible either in a
dedicated Linux installation where Linux is
the only OS on the disk or in multiboot
configurations where Linux is one of the
OSs that can be booted.

In the multiboot environment, a boot
loader prompts for the OS to load. Choices
can include booting DOS, Windows 95,
Windows NT, and others besides Linux.

Installation of Linux to a hard disk is the
normal procedure and since it’s covered
by the documentation that comes with
most Linux distributions, I won’t discuss it
here. However, I do want to tell you how
to deal with booting Linux in an embed-

ded environment, where you may boot
Linux from flash memory or floppy disk.

To boot Linux, you have to load the
Linux kernel that you have built into memory
and start running it. Typically, you do this
by using a boot loader like LiLo (Linux-
Loader).

LiLo has evolved to be very flexible and
configurable. It is installed in the boot
block of a boot disk.

When LiLo boots, it consults a table to
find out what images are available for
booting. These images can be Linux ker-
nel images, DOS or Windows boot parti-
tions, and other Intel-based operating
systems, such as OS/2 or QNX, which
use the normal boot block method of
booting.

Linux must be running to install and
configure the LiLo boot loader. We can
build a configuration LiLo file, which tells

Photos 1a and 1b
show screenshots of the

graphical interface to this
configuration script. You sim-

ply decide which modules you
want included in a kernel build and

save the configuration.
For many configuration options and

device drivers, you can choose to select
module support. This way, you can place
the compiled code that implements the
option or device driver into a loadable
object module that is stored on the disk.

By putting the driver in modules, you
can reduce the run-time memory require-
ments of the kernel. When you need a
certain feature, the module is loaded into
the kernel space and initialized. Once
you’re done with the feature, the module
is unloaded and memory is reclaimed.

The kernel module loader can be used
explicitly to load kernel modules via com-
mands to load, unload, and list the mod-
ules currently loaded. As well, Linux has
a dynamic kernel loader, which simply
loads required modules as soon as the
kernel needs them. You can use which-
ever method suits your application.

The downside of using modules is
maintainability. Because kernel modules
have to be stored on the disk, you have
to make sure they’re on the disk when
they are needed. And, because many
modules are needed, it’s often more
difficult to track their interdependency
and version than if all the modules are
statically loaded into a single kernel
image.

Once you configure the kernel and the
necessary modules for your application,
you need to compile the kernel. Yes, full
sources for the kernel and many modules
and device drivers are provided in Linux.

To compile the kernel once it is config-
ured, use the make utility. Usually, the
command make vmlinux will compile
and link everything that you need. But, if
you have modules that are required by the
kernel, you also need to compile the
modules in a separate step using the
command make modules.

Once everything is made, you end up
with a kernel image file. Next, compress
the kernel so it takes up less space. First
use the command make zImage. Com-
pressing the kernel is done with gzip, a
compression tool and algorithms devel-
oped by the GNU project.

boot=/dev/fd0
map=/boot/map
install=/boot/boot.b
prompt
timeout=50
image=/boot/vmlinuz
 label=linux
 root=/dev/fd0

Listing 1—In this LiLo configuration file, specify that there is only one image named “linux”,
and that the prompt should timeout after 5 s. We can use this configuration to install LiLo
on a boot floppy if we use the invocation lilo -C lilo.conf -r /mnt, assuming the
floppy is mounted on /mnt.

dd if=/dev/zero of=initrd.img # create 1-MB file
 bs=2b count=1204
losetup /dev/loop0 initrd.img # map file to loopback device
mkfs /dev/loop0 # lay down a Linux filesystem
mount /dev/loop0 /mnt # mount the ramdisk image
mkdir /mnt/bin /mnt/dev /mnt/etc /mnt/lib # create some directories
cp -a /dev/console /mnt/dev # create devices
cp -a /dev/systty /mnt/dev
cp -a /dev/ram /mnt/dev
cp -a /dev/tty1 /mnt/dev
cp -a /dev/tty2 /mnt/dev
cp -a /dev/tty3 /mnt/dev
cp -a /dev/tty4 /mnt/dev
cp hello /mnt/bin # program to run
echo "/bin/hello" > /mnt/.profile # create Linux startup file
cp /bin/ash.static /mnt/bin/sh # static version of shell
umount /mnt # unmount the image
losetup -d /dev/loop0 # unmap file
gzip < initrd.img > initrd # compress it
mcopy autoexec.bat loadlin.exe # copy everything to floppy
 vmlinuz initrd a:

Listing 2—There are several steps to creating a RAM disk image suitable for use as a root
partition for Linux. One handy feature in Linux is the loopback device. This device can be
used to map a file to a block-oriented device using the losetup utility and the loopback
device /dev/loop0.

R
PC

CIRCUIT CELLAR INK DECEMBER 199856

LiLo how to construct the table and how to
label each boot entry. A typical configu-
ration file is shown in Listing 1.

The configuration file contains some
general information about which drive to
install the boot loader onto and where to
put the table on the disk. To install the
loader, run lilo. Of course, anytime you
muck around with the boot blocks of a disk
drive, it’s always wise to backup the
contents of the drive first.

You can also use LiLo for a Linux boot
floppy. To do this, use a desktop system,
which serves as the development system.

Insert the floppy and install a Linux file
system. Assuming the floppy is formatted,
a Linux file system is installed with the
mkfs command in Linux. Once the file is
made, the floppy is mounted and a /boot
directory that contains the Linux kernel is
installed.

The /boot directory also contains the
LiLo table image. Of course, for a boot
floppy, you only have one boot option—
to boot Linux. The config file featured in
Listing 1 is what I’d use to configure LiLo
for a floppy.

Now, if the floppy is booted in your
embedded system, the system BIOS loads
the LiLo boot loader, which consults its
table of boot options. On the console, LiLo
prompts for an image name to boot and it
will timeout and boot the default image if
the user does not enter anything.

That’s configurable, of course, and
LiLo can boot the image directly without a
prompt if you want. However, providing
the prompt lets a user enter options and
flags for the kernel and can be used to
debug things or change the location of
Linux’s root partition.

Once LiLo determines which image to
boot, it loads the image into memory and

Photo 1a—
In the kernel

conf igurat ion
utility, each section

covers an area in the
kernel, and clicking on a

section brings up a detailed
panel with options to select.

b—In this subsection of the con-
figuration utility, you click on each
item’s radio button to include the
feature either statically in the ker-
nel ‘y’ or ‘n’. Many features can
also be configured as a loadable
kernel module ‘m’.

a) b)

R
PC

DECEMBER 1998 EMBEDDEDPC 57

You can then place loadlin zImage
into your autoexec.bat file, and you’re
all set.

With this method, you need DOS in-
stalled in your system, which requires a
DOS license. Or, you can use FreeDOS
(see the excellent series on FreeDOS by
Pat Villani [INK 95–96]). Also, many
flash-based embedded-system controllers
come with a version of DOS installed.

There’s one catch when booting Linux
via the DOS boot method. To use devices,
the Linux kernel still needs some sort of
Linux-based file system to load the initial

program from as well
as to map device entries.

Well, the Linux develop-
ers considered this problem right
from the early days of Linux, and
that’s why Linux supports using RAM
disks as the root disks. You can use RAM
disks with either LiLo or loadlin. Linux
even supports using compressed RAM
disk images, which take up the least
amount of space on the boot media.

So, how do you build a RAM disk
image for Linux to use as a root file
system? You have to go back to your

transfers control to it. If no options are
specified, the Linux kernel uses whatever
file system it was booted from as the root
file system. That’s important because the
kernel has to find the device entries for the
console and any other device to be used.

The kernel then executes /linuxrc
or /sbin/init, depending on whether
the file is running from RAM disk. I’ll get
back to that later on. If the system can’t
find /sbin/init, it starts up the shell,
the command-line interpreter for Linux.

Although LiLo is flexible and complex,
it requires a Linux file system to find its
tables and access the Linux file system.
This can be a problem.

Because Linux bypasses the BIOS to
access devices like the floppy disk and
hard disk, it can’t access devices like a
flash-memory based disk unless they look
like one of the more traditional devices.
So, installation of LiLo on a flash-memory-
based file system is almost impossible.

Of course, if you use an ATA-compat-
ible flash disk like the one from SanDisk
shown in Photo 2, this is no problem. To
the system, the disk will look like a fast IDE
drive, and any OS (including Linux) that
knows how to access an IDE drive will be
able to deal with it.

Use the same technique here as when
you generated the boot floppy. SanDisk
flash disks are popular in high-end digital
cameras, and PCMCIA adapters are avail-
able at many places carrying such cam-
eras. A Linux boot disk can be built with
a SanDisk on any notebook that runs Linux
and has a PCMCIA adapter.

My embedded system also needs a
SanDisk interface either via a PCMCIA or
PC/104 adapter or through a Motorola
NLX 55 Pentium-based SBC with an em-
bedded SanDisk interface.

If you have flash-based memory al-
ready on the embedded-system board
but don’t want to use an ATA flash card
or SanDisk, you can try a Linux boot
method that doesn’t require a Linux-based
file system.

Here, use another Linux boot loader—
the DOS utility loadlin.exe. This boot
loader is simply a DOS program that
loads a Linux kernel from a DOS file
system.

With loadlin, you simply copy
loadlin.exe and the kernel image
zImage, or whatever you want to call it,
onto a boot disk similar to flash memory.

R
PC

CIRCUIT CELLAR INK DECEMBER 199858

Ingo Cyliax has been writing for INK for
two years on topics such as embedded
systems, FPGA design, and robotics. He
is a research engineer at Derivation Sys-
tems Inc., a San Diego–based formal
synthesis company, where he works on
formal-method design tools for high-assur-
ance systems and develops embedded-sys-
tem products. Before joining DSI, Ingo worked
for over 12 years as a system and re-
search engineer for several universities
and as an independent consultant. You
may reach him at cyliax@derivation.com.

REFERENCES
comp.arch.embedded
comp.os.linux
Linux information, www.linux.org, www.linuxhq.com
RedHat, www.redhat.com

SOURCE
Flash-based disk module
SanDisk
(408) 542-0500
Fax: (408) 542-0503
www.sandisk.com

Photo 2—These flash-based disk modules
are used in many digital cameras. Adapters
for PCMCIA and PC/104 also exist for SanDisk
modules.

rem DOS Autoexec boot file for launching Linux with ramdisk
rem Author: Ingo Cyliax, Derivation Systems, Inc.
rem Date: Aug 29, 1998

rem insert DOS command here needed in order to bring machine
rem into sane state

rem start Linux
loadlin.exe vmlinuz root=/dev/ram rw initrd=initrd

Listing 3—This sample autoexec.bat file can be used to boot Linux from a DOS file system.
Often, commands to initialize and configure hardware in the system can be used before
loadin.exe.

development system
and use the sequence of

steps in Listing 2.
Just create an empty file,

initialize it as a Linux file system,
and populate it with device entries,

the shell /bin/sh, and a test program.
In this case, I used hello, which is just a
standard “Hello World” program fea-
tured in most C books. Also, I placed a
startup file .profile, which instructs the
shell to execute my program.

Once everything is loaded, unmount
and unmap the file and compress it into a
compressed RAM disk image using the
program gzip. This program is also used
to compress the Linux kernel image. Once
you have a compressed RAM disk image,
simply copy this to the boot device along
with the kernel image, the autoexec.bat
file, and the loadlin.exe utility.

Voilà! Figure 1 shows what you need
on a simple DOS-based boot disk that will
work from flash memory. Listing 3 shows
the autoexec.bat file for this setup. The
only difference is that I decided to use
vmlinuz instead of zImage for the ker-
nel image. The name change is purely
cosmetic.

Earlier, I mentioned that when the
Linux kernel boots up, it looks for a pro-
gram in either /linuxrc or /sbin/
init. If the root device specified as a

boot option is equal to the RAM disk, as
in my example, the kernel uses /sbin/
init.

But, if the root device is different than
/dev/ram, and you are specifying a
RAM disk with initrd, the Linux kernel
looks for and executes /linuxrc. If this
program exits, the kernel unmounts the
RAM disk and mounts whatever root de-
vice has been specified. If Linux can’t find
/sbin/init or /linuxrc, it executes
/bin/sh in the hopes that some intelli-
gent operator will tell it what to do next.

You might wonder about this strange
behavior. The reason: so root partitions
can be mounted from devices not loaded
into the kernel.

Booting from the network is one ex-
ample of such behavior. /linuxrc can
then be a shell script that initializes the
network, allowing the kernel to mount the
required root volume from the network. In
my case, Linux ends up executing /bin/
sh, which invokes its startup script in
/.profile, but it’s always good to
know that other options exist.

Even though I created a 1-MB RAM
disk image, I’m only using about 25% of
the file system for this example. Also, the
boot disk I built uses less than 700 KB. So,
it should be possible to build some pretty
neat applications and still have them fit in
a flash disk of 1–2 MB.

Although my example didn’t use any of
these, it’s possible to use kernel-level
modules and dynamic libraries in embed-
ded applications and run them from the
RAM disk.

Whether or not you want to depends
on your application. For the smallest apps,
you’ll probably end up building a custom
kernel that has only the minimum of what
you need statically built in. Also, your
application will be statically linked. If

you’re using a conventional disk, you can
think about reducing the run-time memory
requirements by possibly using dynami-
cally loaded libraries or kernel modules.

TAKING OFF
In this article, I’ve shown you that,

although Linux is traditionally a desktop
and server OS with many bells and
whistles, it’s entirely possible to build tiny
embedded applications using Linux.

The examples I gave here are all
possible with the RedHat distribution,
which includes both the LiLo and loadlin
loader. In fact, you can boot Linux right off
their CD-ROM using loadlin.

Linux has the advantages of being
almost freely available and familiar to
quite a few people. I also included some
resources of where to find Linux support.
Of course, only you can decide if Linux is
suitable for your applications. RPC.EPC

A
PC

DECEMBER 1998 EMBEDDEDPC 59

Applied PCs

Fred Eady

As Fred journeys into the final frontier, he launches a PIC into Internet space
using a PCM-4862. Its mission: to control tasks according to commands
received via the web. Can this PIC boldly go where no PIC has gone before?

As a professional writer, hardware
guy, and part-time system hacker, I spend
my time thinking about what�s out there
and what�s to come. More often than not,
I get firsthand slaps from present and past
technology.

These love taps land either on the butt
or in the face, depending on my ability to
understand and adjust to the language of
the technology. It doesn�t matter if I�m
working on state-of-the-art gear or really
old flight-tested hardware.

For instance, the Internet is here�and
has been for a long time (flight-tested
indeed). It still makes money for some of us
(old airplanes still fly, too). It has the poten-
tial to make money for our children and
children�s children (imagine the next gen-
eration of jet aircraft).

But, what�s so great about it? For the
enlightened, the Internet is close to the
Almighty in terms of information as it
relates to power. Whoever owns and
comprehends the information the quickest
holds the power to use it to their advantage.

Nathan Bedford Forrest knew this long
ago. He was consumed with fighting a war,
but the stakes were the same. Remember
the �firstest with the mostest� quote? It still
holds true. With that, let�s take some of the
emerging technology within reach and
put some flight-tested hardware to work.

PICING UP
Last month, when I laid down the ground-

work, emWare supported the 8051 micro-
controller platform exclusively. Now,
they�re porting the 8051 paradigm to
other platforms like Microchip�s PIC.

I don�t know about you, but that�s what
I�ve been waiting for. With this article,
you�ll be the �firstest with the mostest.� I�ll
show you how to launch the PIC16C73
into emWare land.

And if you�re wondering why I chose
the �73, welcome to PIC16C73 101.

THE PIC16C73 AND emWARE
I�m not going to go into finite PIC theory

here. Instead, I�ll go over the points that

make the PIC16C73 suitable for an
emWare port.

First of all, to control the PIC remotely,
you need some sort of communications
port. I�m partial to Ethernet, but you can�t
plug an NE2000-compatible ISA or PCI
card into a PIC.

An Ethernet implementation using PIC
code and some Ethernet interface hard-
ware is one way to go, but it entails some
complexity that ruins the whole point of
using the PIC. The answer is simple.

As I mentioned last time, emWare can
communicate using many of today�s com-
mon protocols. Although Ethernet could
be used here, it looks like it isn�t the best
choice. It would take a very long category-
5 cable to control the PIC once it left the
Florida Room bench.

Taking a look at the communications
resources offered by the PIC16C73, we
find a synchronous serial port (SSP) that
can operate in two modes�Serial Periph-
eral Interface (SPI) and Inter-Integrated
Circuit (I2C).

emWare Top to Bottom
Part 2: Launching the Application

A
PC

CIRCUIT CELLAR INK DECEMBER 199860

ORG 0
Goto loop0
org 4 ;INTERRUPT_SERVICE_ROUTINE
include "isr.inc"

loop0:
call InitMicroController
call EmInit
CALL InitMyApp
bsf INTCON,GIE ; enable interrupts

loop3:
call PollSCI
call MyApplication
call EmMicroEntry
goto loop3

MyApplication:
return

Some time ago, I built a real-time PIC
emulator for PIC16C5x devices. It consisted
of lots of latch logic coupled to memory
and a proprietary bondout device.

The design was simple enough, but the
necessary software was really heavy. I
moved quite a few units and found that
most of us like to know what�s going on
inside the devices we write apps for. The
application I�m about to examine is a
simpler version of that old emulator.

Listing 1 is a code snippet that defines
and computes the data-rate generator
value versus the crystal frequency. Note
that a crystal frequency of 10 MHz is used
to derive a data-rate value for 9600 bps.

This formula is provided in the datasheet
for the PIC16C73.

You can compute this data rate outside
the program and insert it manually, but
why not use the power of the PIC Macro
assembler? That�s just what I did.

Two bits are also defined in Listing 1.
These bits are used in the serial communi-
cations portion of this application. Their
names tell the story. By the way, the
__CONFIG parameter denotes the use of
an HS oscillator with no watchdog timer
and no code protection.

Listing 2 is simply a macro declaration.
Some of the more complex PICs use pages
to multiplex register addresses. As you

Listing 1�The include statement keeps you from having to remember all those funny
register names.

LIST p=16c73
include <p16c73.inc>
__CONFIG B'111010'

#define crystalFreq D'10000000'
#define baudRate D'9600'

SPBRG_VALUE EQU (crystalFreq/baudRate/D'64')-1

#define gotChar BitVar1,0
#define txEmpty BitVar1,1

Listing 2�It�s just as easy to only code these, but it�s easier to read this way.

page0 MACRO
bcf STATUS,RP0
ENDM

page1 MACRO
bsf STATUS,RP0
ENDM

Listing 3�Note the inclusion of the two EMIT modules. These tie the app to emWare code.

SPI mode is a syn-
chronous-based protocol

that can operate as a full
duplex connection. Although

it�s possible to write any type of
communications driver for emWare,

the synchronous part of SPI would present
mobility problems, as you�d need the right
hardware/software/ISP combination to
talk to the PIC via the Internet. SPI is
primarily used to talk to serial EEPROMs
and the like.

Similarly, I2C isn�t used much off its
native PC board, but rather in an applica-
tion that requires the chips to talk. This
could be a plus.

In fact, SPI and I2C can both be used to
talk to an EEPROM device or even an-
other microcontroller. This feature permits
logging or data forward-and-store func-
tionality in the emWare-laden product.

To prove this result, the emWare 8051
demo board uses an EEPROM to save
A/D values from a pot for later processing.
Oh yeah, the PIC16C73 has an onboard
A/D module. Hmm�.

Looking further into the PIC16C73 data-
book, we find that the part is equipped
with a USART (universal synchronous asyn-
chronous receiver transmitter). Ding! Ding!

A quick look at emWare�s capabilities
shows us that emWare supports RS-232.
Just leave out the �S� in USART, and a
USART smells like asynchronous RS-232
to me. The PIC16C73 also has an internal
programmable data-rate generator.

The PIC16C73 is the right choice for
first contact with emWare. Besides all the
things emWare requires, this PIC can
handle interrupts from internal peripher-
als, as well as from the outside world.

The PIC16C73 contains an abundance
of I/O pins and an ample program and
data storage area. Just take a look at
some of the advertisers in this issue, and
you�ll see that programming the PIC is as
easy as selecting a programming product
from your company of choice.

THE CODE
I discussed Visual Café in the previous

installment. Remember that before em-
Ware V.2.5, one had to code the HTML-
laced GUI. With Visual Café, that task
becomes much easier. But, I won�t dwell
on Visual Café here. Instead, I�ll take
apart a simple PIC/emWare application
line by line.

DECEMBER 1998 EMBEDDEDPC 61

see in the macro definitions, the PIC16C73
is one of these devices.

A single bit in the Status register delin-
eates page 0 and page 1. When you�re
programming PICs with pages, it can get
confusing as to which page you�re on and
whether you swapped that page bit or
not. Using a macro cuts down on the
confusion factor when things just don�t act
right in the application.

The beginning of Listing 3 looks like
code for a bunch of other microcontrollers.
The first line jumps over the interrupt
vector. The PIC16C73 can be interrupted

Listing 4�Initializing ports on the PIC is important because of the complex nature of the
I/O module.

on an A/D conversion, serial communica-
tions event, timer event, capture event, or
change in I/O-port status. So, it could be
important to keep the interrupt vector area
coded for such possible events if your
program is so inclined.

Beginning at the label loop0, the
same sequence of events takes place as
with the 8051 version of EMIT. This obser-
vation is also true for all other devices. All
micros need some type of initialization
that prepares them for the task at hand.

Here, the first call is to the Init-
MicroController subroutine. Listing 4

InitMicroController:
call InitUSART
call InitPortAB
call InitPortC
call InitOptionRegister
call InitInterrupts
call InitMyApp
return

InitPortC:
;PORTC is a multifaceted port supporting I/O for several
; onboard peripherals.
; bit pin name
; --- --- ---
; 0 11 RC0/T1OSC/T1CKI Timer1 I/O
; 1 12 RC1/T1OSI/CCP2 Timer1,Capture/Compare I/O
; 2 13 RC2/CCP1 Capture/Compare/PWM I/O
; 3 14 RC3/SCK/SCL SPI/i2c I/O
; 4 15 RC4/SDI/SDA SPI/i2c I/O
; 5 16 RC5/SDO SPI I/O
; 6 17 RC6/TX/CK O USART
; 7 18 RC7/RX/DT I USART
;
; * I'm using these pins
; 0 = output
; I = input
; T = tristate input/output
;

clrf PORTC
page1
movlw B'10111001' ; 0=outputs

; ||| |
; ||| |
; ||| |
; ||| |
; ||| +-------------SCL I2C clock --->
; ||+-------SDO (Serial Data Out)
; ||
; ||
; ||
; |+-----------------UART TX --->
; +---------------UART RX <---

movwf TRISC
page0
return

Listing 5�Here�s a good example of how the PIC spins the pins.

A
PC

CIRCUIT CELLAR INK DECEMBER 199862

details the first call in
this subroutine.
The first job is to transfer

the calculated data-rate value
to the data-rate register SPBRG. If

you�re new to PIC and are wonder-
ing where all these funny register names

come from, they�re defined in an in-
clude file that Microchip provides.

The PIC16C73 multiplexes different
tasks onto a single pin. So, it�s necessary
to set certain bits to define the actions of
a particular pin. Also, since the PIC16C73
uses a USART and not a UART, you must
tell the PIC if the communications sequence
will be asynchronous or synchronous.

Next, you need to set up the I/O-port
pins. InitPortAB executes this func-
tion. For the purposes of this application,
both ports A and B are defined as outputs.

To complete this process, a byte of
zeros is written to the corresponding TRIS
ports. All I/O ports can be defined as
input or output. In input mode, the port
pins are high impedance.

The PIC16C73 provides a third
I/O port�port C. Listing 5 maps out the
pin definitions. Note that I included an I2C

interface for future use. There�s no doubt
that it will provide an interface to a
Microchip EEPROM device. For the PIC-
challenged out there, Listing 5 is a good
example of how to define input and output
functions of I/O-port pins.

Following along under InitMicro-
Controller, the next step is to set up the
Option register. This register enables the
programmer to define port B pull-up sta-
tus, interrupt edges, timer clock sources,
and timer prescaler values.

InitOptionRegister:
 page1
 movlw B'01000100'; timer mode with prescaler=32, weak pullups
 movwf OPTION_REG
 page0
 return

InitInterrupts:
 page1
 movlw B'0110000' ; unmask peripheral interrupts and TMR0
 movwf INTCON
 movlw B'00110000'; unmask USART TX and TX interrupts
 ;movwf PIE1 ; not yet!
 page0
 return

InitMyApp:
 movlw 0
 movwf PORTA,F
 movwf PORTB,F
 return

Listing 6�The 8051 version of EMIT used a serial interrupt. The semicolon is all that stops
you here.

CIRCUIT CELLAR INK DECEMBER 199864

Weak pullups on port B are enabled in
the application and the timer is prescaled
by a value of 32. Writing a binary
01000100 to the Option register does it all.

The next logical step is to enable or
unmask any interrupt options you deem
necessary for the application. Notice that
the serial communication pin interrupts
are unmasked but not enabled.

emWare uses a round-robin approach.
Each part of the EMIT program must have
equal access to processor resources. Oth-
erwise, data may be lost and processes
may hang. Later on, you�ll see that the
communications resources are being
polled.

About the only thing left to do now is
I/O-port initialization. Here, simply set-
ting the ports to 0 is sufficient. Listing 6
shows the final three init procedures.
The call to set the ports to 0 is found under
loop0.

By convention, emMicro code is in-
cluded in the source code, so its routines
can be called from within the program.
Any included files are declared at the end
of the user-written application code.

One such routine, EmInit, is always
called at least once in every EMIT pro-
gram to initialize emWare. You�ll find the
call to EmInit at label loop0. Once all
of the initialization is completed, you can
turn on the interrupts you unmasked.

The next label, loop3, is the main
program loop. It polls the serial communi-
cations pins for incoming bits and checks
if any data is waiting to be transmitted.

My application enables the user to
manipulate (read and write) the PIC�s
internal registers. I provided functions for
that purpose that are called directly from
widgets on emWare�s GUI. My applica-
tion really does nothing but loop, waiting
for commands from the GUI.

As Listing 3 shows, a call to MyAppli-
cation simply executes a return from
subroutine. If other programmatical opera-
tions are needed, they are performed
under the MyApplication label.

If any EMIT processes are requested,
the next call to EmMicroEntry pro-
cesses them. Once this routine is entered,
all table lookups and EMIT-related pro-
cesses will be completed before this mod-
ule is exited.

loop3 is where the round-robin pro-
cessing occurs. Each call is designed to
give EMIT time to process any requests it
receives. No call in loop3 should wait
for any input or output process to provide
a status. Such a wait can induce a hang
condition, causing EMIT to miss data and
commands it needs to process.

Now, I�ve successfully initialized a
PIC16C73 to communicate via RS-232 to
an Advantech PCM-4862 equipped with
EMIT and a web browser.

By including the emWare PIC code in
the source, I enabled the PIC16C73 to
pass data to and receive commands from
the EMIT software interface. The results
are controlled and displayed by a web
browser using a GUI that I designed with
Visual Café.

Poke:
; Write any PIC file register
movf payload0,W ; get address to poke
movwf FSR ; put into FSR
movf payload1,W ; get the data to poke
btfsc FSR,7 ; check to see what page we want
page1 ; switch page if necessary
movwf INDF ; poke
page0 ; always return to page0

Peek:
; Read any PIC file register
movf payload0,W ; get address to peek
movwf FSR ; put into FSR
movwf replydata0 ; put address into packet
btfsc FSR,7 ; check my pages
page1 ; switch page if necessary
movf INDF,W ; peek
page0 ; always return to page0
movwf replydata1 ; put data into packet
return

Listing 7�Just like BASIC but different.

DECEMBER 1998 EMBEDDEDPC 65

[FUNCTIONS] - Defines functions exported on the device
Syntax is: funcName = Extended Attribute, Normal Attribute
Extended Attributes:
FUNCEXT (functions supports streams)
FUNCNONE
Normal Attributes:
FUNCINBIT (input is a bit value)
FUNCINBYTE (input is a one-byte Value)
FUNCINDOUBLE (input is a double precision floating-point value)
FUNCINDWORD (input is a four-byte value)
FUNCINFLOAT (input is a floating-point value)
FUNCINNONE (no input)
FUNCINSTREAM (input is a stream of data)
FUNCINSTRING (input is a one-byte character array)
FUNCINUSTRING (input is a two-byte unicode character array)
FUNCINWORD (input is a two-byte value)
FUNCINWSTRING (input is a two-byte wide character array)
FUNCRETBIT (returns a bit value)
FUNCRETBYTE (returns a one-byte value)
FUNCRETDOUBLE (returns a double precision floating point value)
FUNCRETDWORD (returns a four-byte value)
FUNCRETFLOAT (returns a floating-point value)
FUNCRETNONE (does not return anything)
FUNCRETSTREAM (returns a stream of data)
FUNCRETSTRING (returns a one-byte character array)
FUNCRETUSTRING (returns a two-byte unicode character array)
FUNCRETWORD (returns a two-byte value)
FUNCRETWSTRING (returns a two-byte wide character array)
Normal Attributes can be combined by ORing the keywords:
funcName = FUNCNONE, FUNCINBYTE | FUNCRETWORD
[FUNCTIONS]
Peek = FUNCNONE,FUNCINBYTE
Poke = FUNCNONE,FUNCINBYTE
#
[VARS] - Defines variables exported on the device
Syntax is: varName = Extended Attribute, Normal Attribute
Extended Attributes:
VARARRAY
VARNONE
VARNV
VARTOKEN
Extended Attributes can be combined by ORing the keywords:
varName = VARARRAY | VARTOKEN, [Normal Attribute]
Normal Attributes:
VARBIT (Bit flag value, !Cannot be an array)
VARBYTE (one-byte value)
VARDOUBLE (double-precision floating-point value)
VARDWORD (four-byte value)
VARFLOAT (floating-point value)
VARREADABLE
VARSEQ
VARSTRING (one-byte character array)
VARUSTRING (two-byte unicode character array)
VARWSTRING (two-byte wide character array)
VARWORD (two-byte value)
VARWRITEABLE
Normal Attributes can be combined by ORing the keywords:
varName = VARARRAY | VARTOKEN, VARBYTE | VARREADABLE
| VARWRITEABLE
[VARS]
PORTA = VARNONE,VARBYTE | VARREADABLE | VARWRITEABLE
PORTB = VARNONE,VARBYTE | VARREADABLE | VARWRITEABLE

Listing 8� Note that the attributes are ORed for definition.

THE PURPOSE
The idea here is to open up the

PIC16C73 to the programmer. The PIC-
16C73 is register based, including the I/O

ports. So, you can send a command to
read and write a particular register via an
EMIT/web-browser interface. As you saw,
this little application does nothing but set

A
PC

CIRCUIT CELLAR INK DECEMBER 199866

SOURCES
PCM-4862
American Advantech Corp.
(408) 245-6678
Fax: (408) 245-8268
www.advantech-usa.com

SDK 2.5
emWare
(801) 256-3883
Fax: (801) 256-9267
www.emware.com

PIC16C73
Microchip Technology, Inc.
(602) 786-7200
Fax: (602) 899-9210
www.microchip.com

Fred Eady has over 20 years� experience
as a systems engineer. He has worked
with computers and communication sys-
tems large and small, simple and com-
plex. His forte is embedded-systems de-
sign and communications. Fred may be
reached at fred@edtp.com.

everybody up and
wait for work. The real

work is performed in the
two functions shown in Listing 7

called Poke and Peek.
These functions are tied to EMIT

using a configuration .ini file. Peek
and Poke are defined as exports in the
.ini file along with any variables tied to
EMIT�s GUI widgets.

Since Peek and Poke are defined in
the configuration file, EMIT can generate
code and addresses for them in its internal
tables. Data is transferred between the

PIC functions and EMIT via two buffer
areas within EMIT.

These buffer areas are addressed as
payload and replydata, the receive
and send buffers. EMIT places data into
the payload buffer area and then makes
a call to the desired function, which places
any data to be returned in replydata .

EMIT picks up this data and applies it
to a variable that is represented by a GUI
widget in the web- browser window.
Listing 8 is an excerpt from the
config.ini file that shows how the var-
iables and functions are defined to EMIT.

THE RESULTS
I designed a web-browser interface,

connected EMIT widgets to real functions
and variables on a PIC16C73, and looked
at or changed PIC internal register values.
It may not seem like much until you con-
sider I can do this from anywhere!

Unfortunately, EMIT was chained to
the 8051 platform for a long time. Al-
though the 8051 is great , it�s fun to exploit
the myriad of onboard peripherals found
in PIC products.

For instance, you could take my appli-
cation and include the use of the eight
A/D inputs or apply the I2C interface to
communicate with other equally equipped
intelligent devices. With Visual Café, you
can create a user-friendly interface and
connect variables and functions to code in
the target PIC.

Another plus is the ever-increasing
internal code space and register or RAM
area. EMIT functions normally reserved
for a PCM-4862 can be moved to the target
microcontroller, leaving more room on the
embedded PC for utilities or applications.

As for applications, imagine control-
ling gadgets in your home remotely via
your Internet connection. And, instead of
dull old command line, you have control
via a custom GUI.

But, the real story is that by using the
Internet and some RS-232, you can apply
EMIT to most anything requiring human
interaction. A simple PIC program coupled
with the magic of emWare proves that it
doesn�t have to be complicated to be
embedded. APC.EPC

68 Issue 101 December 1998 Circuit Cellar INK®

MICRO
SERIES

David Tweed

s

Digital
Processing in
an Analog
World

Now that
we’ve got
the basics

of A/D and D/A con-
version, it’s time for a
couple more advanced
topics. So, to finish up
this series, David
gives us the details on
delta-sigma converters
and dithering.

P
ar

t

of3
3

 68

74

80

MicroSeries

From the Bench

Silicon Update

DEPARTMENTS

3

o far, I’ve cov-
ered some of the

basic issues relating
to conversions and dis-

cussed the relative merits of various
converter technologies.

This month, I wrap up by covering
two more advanced topics: delta-sigma
converters (the latest rage in ADCs
and DACs) and dither, what it is, why
you might want to use it, and how to
evaluate different techniques.

DELTA-SIGMA IN GENERAL
Delta-sigma converters are basically

one-bit converters and therefore enjoy
some of the advantages of PWM that I
covered last time. They require a very
small amount of analog circuitry and
have excellent linearity characteristics.

They’re based on the same basic
concept as PWM—a binary (two-level)
signal with a variable duty cycle can
represent many different average volt-
age levels. The trick is noting that there
are many choices of binary waveforms
that have a given average value.

Suppose you have a PWM of the
type I discussed last month, which
has a six-bit counter. Its sample rate
would be 1⁄64 times the clock rate. That
is, if you give it a clock of 512 kHz,
the sample rate will be 8 kHz.

If you set the other input of the
comparator to 47, it generates the
upper waveform shown in Figure 1a,

3

Dithering Your Conversion

Circuit Cellar INK® Issue 101 December 1998 69

0

1

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Time units

0
4
8

12
16
20
24
28
32
36
40
44
48
52
56
60
64

0 4 8 12 16 20 24 28 32
FFT bin number

which is high for 47 clocks and low
for 17 clocks, making a 64-clock cycle.

The FFT of this waveform, shown
in Figure 1b, gives you an idea of the
kind of filter you need to turn this
signal into a steady analog value. FFT
bin 0 represents the average value of
the waveform over one full cycle (one
sample) and has the desired value of 47.

But, the nearby bins show significant
energy at two, three, and four (and five,
six, etc.) times the sample rate. To pro-
duce a clean output, a sharp-cutoff filter
is needed to suppress these components.

The waveform in Figure 2a is also
high for 47 clocks out of every 64, as
shown by the first bin of its FFT in
Figure 2b. However, it only has signifi-
cant other energy at 16 and 32 times
the sample rate, which means that a
much simpler filter can be used.

Obviously, if the desired output
value is 1 or 63 (out of a possible 64),
there is only one possible waveform
in each case—1 high and 63 low, or 63
high and 1 low, respectively. The filter-
ing requirements of both schemes are
identical in these cases.

Delta-sigma modulation goes hand
in hand with oversampling (i.e., using
a sample clock much higher than the
highest frequency in the signal to be
digitized). Just like with PWM, you’re
trading off resolution in time against
resolution in the measurement do-
main. By taking short-term averages of
the binary waveform, you get the
analog values you’re looking for.

Figure 3a shows the concept
behind a delta-sigma modulator.
The major components are a
difference amplifier, an integrator
(indicated by its LaPlace trans-
form 1⁄s), a quantizer with a single
decision level, a sampling device,
and a simple two-level DAC.
The quantizer is nothing more
than a comparator with a (one-bit)
digital output, and the sampler
is simply a flip-flop.

The DAC is often implemented
trivially as CMOS switches that
connect one of two reference
voltages to its output. Overall,
the circuit is a negative-feedback
circuit just like any other in that
it tries to drive the error signal
toward zero. The inclusion of

the quantizer adds an
interesting twist.

To analyze this circuit,
treat the quantizer and
DAC together, not as a
nonlinear element but as
a source of noise—quan-
tizing noise. I’ll assume
the sampler is operating
below its Nyquist limit.

I use the principle of
superposition, which lets
me consider the inputs
(real signal and quantiz-
ing noise) one at a time
with the other input set
to zero. Figure 3b shows
the circuit from the
point of view of the sig-
nal source, with the
noise source forced to zero. The integra-
tor basically becomes a low-pass filter
for the signal, with a cut-off frequency
determined by its time constant.

Figure 3c shows the same setup from
the point of view of the noise source.
The integrator is in the feedback loop,
which means that the circuit’s output
needs to be the derivative of the noise
to drive the error signal to zero.

This condition means that, overall,
the circuit is a differentiator or high-
pass filter for the noise. If the noise
generated by the quantizer is basically
white, or equal energy at all frequencies,
this circuit shapes the noise to empha-
size the higher frequencies and reduce
the energy at lower frequencies.

Combining these results shows
that the output of the quantizer is a
one-bit signal that contains a low-pass
version of the original signal plus
high-pass noise. The final step is to
consider the sampling flip-flop at the
output of the quantizer.

By driving this flip-flop with a clock
that is much higher (64× or more) than
the desired final sample rate, you get
a signal with the general properties I
discussed above. Next, I’ll look at how
this is applied to ADCs and DACs.

DELTA-SIGMA ADC
To create an ADC, the delta-sigma

modulator is constructed in the analog
domain (see Figure 4a). The input signal

must be bandlimited to half of
the flip-flop’s sample rate, but
since this is many times
higher than the Nyquist limit
set by the final sample rate, a
relatively simple filter can be
used (often nothing more than
a passive R/C low-pass filter).

The modulator is followed
by one or more stages of digital
low-pass filtering, which simul-
taneously reduce the sample
rate and increase the usable
precision of each sample.
Because these filters are digital,
it’s relatively straightforward
to implement nice, stable
linear-phase FIR filters with
steep skirts to eliminate
aliasing.

Figure 1a —This waveform has a duty cycle of 47/64. b—However, its
spectrum is difficult to filter because of the excessive energy in the low-
numbered bins.

a)

b)

Figure 2a —This waveform has the same duty cycle as the one in Figure 1.
b—The spectrum has much less energy in the low-numbered bins, making it
easier to filter.

a)

b)

0

1

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Time units

0
4
8

12
16
20
24
28
32
36
40
44
48
52
56
60
64

0 4 8 12 16 20 24 28 32
FFT bin number

70 Issue 101 December 1998 Circuit Cellar INK®

Quantizer
and

sampler

Input
signal

n-bit
output

+

–
Sample

clock

Digital LPF
and

decimation

1-bit
samples

Simple
analog

LPF

 D-S Modulator

n-bit
output

1-bit
samples

FF FF FF FF FF FF FF FF

mpy

Sum

(n – m)-bit
coefficients

2 m stages

mpy mpy mpy mpy mpy mpy mpy

1
S

Quantizer Sampler

DAC
(two levels)

Input
signal

Digital
output

IntegratorDifference

+

–
Error signal

+
+

Quantization noise

Sample
clock Input

signal
Output
signal

Integrator
Difference

+

–
Error signal

1
S

Zero
quantization
noise

Quantization
noise

Output
signalIntegrator

Difference

+

–

Error
signal

Zero input
signal

1
S

1
S

To understand how the modulator’s
one-bit samples are converted to multi-
bit output samples, look at Figure 4b.
It reviews the basic structure of a finite-
impulse-response (FIR) digital filter.

The samples are fed through a series
of delay stages at the top, which in this
case are simple flip-flops. Each sample
is multiplied by one of the FIR coeffi-
cients, and since the sample is either
zero or one, it’s just a question of
whether or not the coefficient gets
added to the final sum at the bottom.

If we want an output precision of
n bits and there are 2m stages in the FIR
filter, there will be up to 2m coefficients
in the sum. So, each coefficient needs
to have at least n – m bits of precision.

Since the FIR filter performs addi-
tional low-pass filtering of the signal,
it removes high-frequency noise that
was present in the original input signal
and the shaped noise that was added
by the quantizer in the delta-sigma
modulator. This filtered output is
now bandlimited to the original band-
width of interest, so you can reduce
the sample rate to just twice this
value by not bothering to calculate
the extraneous intermediate samples.

DELTA-SIGMA DAC
The job of the delta-sigma modulator

in the DAC is to turn a series of integers
representing a band-limited signal into
an oversampled one-bit signal that can
be averaged by a simple low-pass filter
at the output. Here, the delta-sigma
modulator is implemented in the digi-
tal domain, and the integrator is just
another digital filter (IIR). The overall
structure is shown in Figure 5a.

There are two unwanted signals in
the output of the DAC—images of the
input signal created by the sampling
process, and noise introduced by the
delta-sigma modulator (see Figure 5b).

To help eliminate the images, the
delta-sigma DAC starts with a digital
low-pass filter that acts as an interpo-
lator that oversamples the digital
signal. The filter is flat in the spectrum
of interest, and the signal is known to
have no energy in its transition region.
So, the filter has no effect on the spec-
trum of the signal other than to remove
images between the original Nyquist
limit and the new, higher sample rate.

The digital implementation of the
modulator consists of a subtractor
that creates the error signal, an accu-
mulator (adder and register) that per-
forms the integration, and a quantizer
stage that consists of little more than
taking the most significant (sign) bit
of the accumulator.

The higher sample rate reduces
the magnitude (within the band-
width of interest) of the sin(x)/x
error introduced by the zero-order
hold effect I covered in Part 1.
This effect is dealt with by having
a switched-capacitor filter at the
output of the quantizer that has
a slight rising slope in the pass-
band. The overall response is
generally flat to within a few
hundredths of a decibel.

The signal is passed through a
simple one- or two-pole low-pass
filter that is external to the DAC
chip. This filter removes the

high-frequency image as well as most
of the quantization noise.

WHY DITHER?
In Part 1, I discussed the noise cre-

ated by the quantizing process. Under
most circumstances, it has the charac-
teristics of white noise. But, you saw
how it can be strongly dependent on
and modulated by the input signal,
which has objectionable consequences.

One common example occurs with
audio converters. When very low-level
signals are being digitized, only a few
bits out of the ADC’s complete range
are used, and the reconstructed wave-
form has much higher distortion levels.

When the level gets down to one or
two quants, a sine-wave signal comes
out looking more like a square wave.
When the level drops below one quant,
the signal disappears altogether—this
is known as the fade-to-black or fade-
to-zero problem.

a)

b)

Figure 4a —The ADC uses an analog delta-sigma modulator to turn the waveform into a high-speed bitstream,
which is then reduced digitally. b—The digital FIR filter both reduces the sample rate and increases the word width.

Figure 3a —The delta-sigma modulator forms the basis of analog-to-digital and digital-to-analog converters. b—From the
point of view of the input signal, the integrator creates a low-pass filter. c—A high-pass filter is created for the quantizer noise.

a) b)

c)

Circuit Cellar INK® Issue 101 December 1998 71

Inter-
polating
FIR filter

Analog
output

Integrator

Difference

+

–

 D-S Modulator

n-bit
sample
Sample

clock

Sign
bit

Switched-
capacitor

filter

R/C
low-pass

filter

Quantizer

High-speed clock

Accumulator

High-speed
clock

Sin(x)/x
correction

Image
removal

Image at
higher
sample rate

Amplitude

Images removed by
interpolating filter

Desired
baseband
signal

Shaped noise
introduced by

D-S Modulator

Sin(x)/x distortion
at higher sample
rate

Response of
switched-capacitor filter

Response of R/C
low-pass filter

Original
sample rateOriginal

Nyquist limit
New
Nyquist limit

New
sample rate

Frequency

Figure 6 shows two scenarios of what
happens as a signal fades. An undith-
ered signal is shown in Figure 6a-i, and
Figure 6a-ii shows the result of digi-
tizing it. The bottom two traces give a
rough idea of how the ear interprets
this signal. Figure 6a-iii is a short-term
moving average, which shows the tone
you perceive, and Figure 6a-iv is the
difference between Figure 6a-ii and
6a-iii, which is perceived as noise.

You can see that the amplitude of
the waveform decreases in steps and
that the waveform (harmonic struc-
ture) changes through each step. The
noise is modulated by the tone, and
both the amount and the character of
the noise change over time.

As I demonstrated in Part 2 with
PWMs and this month with delta-sigma
converters, you can exploit the ability
of a binary signal to represent levels
falling between its two values by
averaging a waveform over time.

Dither is a way of using the same
effect in reverse. By adding an uncor-
related random signal (noise) to the
signal being digitized, the pattern of
output codes from a quantizer can be
averaged to produce levels that are
effectively between the nominal deci-
sion points of the converter.

Figure 6b shows the fading tone
again but with 1.6 quants of peak-to-
peak dither added. Figure 6b-ii shows
the result of digitizing this signal. It
looks messy, but when you do the
analysis in Figure 6b-iii and 6b-iv,
several important things stand out.

The perception of the tone in Figure
6b-iii doesn’t stop abruptly but gradu-
ally turns into a more random signal.
You can still see traces of the tone
well beyond the point at which the
undithered system quit, and it looks a
lot more like the original sine wave.

Finally, the residual in Figure 6b-iv,
although it has a higher amplitude
than the one in Figure 6a, doesn’t vary
in amount or character. So, it’s less
objectionable to listen to, and most
people get used to it and can ignore it.

Of course, the dither signal be-
comes noise at the ADC’s output. So,
its characteristics must be chosen so
that its effects are relatively benign.

Dither can also be applied in places
other than ADCs. In fact, you want to

Figure 5a —The DAC uses a digital delta-sigma modulator to create an oversampled one-bit datastream, which is
then filtered in the analog domain. b—The various filtering stages deal with the problems of images, sin(x)/x
correction, and quantization noise.

a)

b)

72 Issue 101 December 1998 Circuit Cellar INK®

consider dithering whenever the reso-
lution of a digital signal is reduced. This
reduction can occur whenever arith-
metic is performed on a digital signal.

For example, multiplying a 16-bit
digital audio sample by a 16-bit volume-
control value creates a result with
31 bits of precision. If you truncate this
to 16 bits again, you’re doing a form
of requantization, and it may be appro-
priate to add dither to the product first.

DITHER PARAMETERS
There are many ways to create ran-

dom or noise signals suitable for dith-
ering. Important parameters include
the choice of probability density func-
tion (PDF), the choice of frequency
spectrum, and the choice of amplitude
(how much signal to add).

Dither signals affect the original
signal in two ways. They make the
system-transfer function more linear and
change the system’s noise characteris-
tics by masking modulation effects.

A signal’s PDF is a measure of how
likely it is to have a given value, sort
of like the histogram I constructed for
the sine wave. Some important PDF
curves are shown in Figure 7.

The Gaussian curve is a good model
for many natural noise sources,
whereas the uniform and triangular
curves are easy to generate in the digital
domain using random numbers. The
latter have definite minimum and
maximum values, beyond which the
PDF is zero, but the Gaussian PDF is
nonzero (but very small) all the way
out to positive and negative infinity.

The dither signal’s amplitude is a
measure of the width of its PDF relative
to the full-scale values the system can
handle. For uniform and triangular
PDFs, this measurement is given as
the peak-to-peak amplitude. For the
Gaussian PDF, a statistical measure
(usually standard deviation) is used.

For any of the three PDFs, the best
linearity and least noise modulation
occurs when the RMS value of the
random signal reaches half a quant.
The difference comes down to how
much higher the peaks of the signal
are than the RMS value.

The uniform PDF has the lowest
peak-to-RMS ratio, while the Gaussian
has the highest. The triangular PDF
falls in between the other two.

The shape of the frequency spectrum
of a random signal is independent of
its PDF. Since the linearization and
modulation-masking properties of the
signal are a function of the PDF, the
spectrum can be chosen or shaped to
optimize how the noise relates to the
desired signal.

For example, if the signal energy is
primarily in lower frequency bands, the
random signal can be shaped to put
more of its energy in upper bands, mak-
ing it easier for the ear to separate them.

In an audio application, you might
run the noise through a simple differ-
entiator by taking the difference be-
tween successive samples. This process
gives the noise a rising 6 dB per octave
slope—you could call this blue noise
to distinguish it from pink noise, which
falls off at 3 dB per octave.

Figure 6 —Adding dither to a fading signal makes a huge difference in how the quantized result is perceived. a—The
undithered system shows harmonic-structure changes and noise modulation. b—The dithered system has less
waveform distortion and a constant noise level.

a) b)

i)

ii)

i)

ii)

iii) iii)

iv)iv)

Circuit Cellar INK® Issue 101 December 1998 73

If the signal was preemphasized
before quantizing (the high frequencies
were boosted), the deemphasis circuit
at the system output has a flattening
effect on the blue noise.

HOW TO DITHER?
There are several ways to add dither.

In the digital domain, it’s a matter of
generating random samples with the
desired distribution. A uniform PDF
can be created by calling, for example,
the C function rand() and scaling
the results to an appropriate range.

A triangular PDF, which is a rea-
sonably good approximation of the
natural-sounding Gaussian PDF, can
be generated by adding two independent
uniform random numbers together. If
you need to write your own random
number generator for a processor or to
get better efficiency over the library
routine, Seminumerical Algorithms is
a good place to start [1].

Things are trickier in the analog
domain. There are two broad ap-
proaches: generate random numbers
in the digital domain and use a DAC
followed by an appropriate voltage
divider to create a signal that can be
mixed in with the signal being digitized;
or, use an analog noise source and
scale its output with a voltage divider.

Semiconductor junctions make good
noise sources. Zener diodes and tran-
sistor junctions that are biased to the
point of reverse breakdown are particu-
larly noisy. It’s more difficult to get
an accurately calibrated level out of
an analog noise source, but with the
Gaussian PDF, it isn’t as critical.

b)

Figure 7 —Some important probability distribution
functions are Gaussian (a), uniform (b), and triangular
(c). Each has a total area of one square unit under the
curve.

a)

0

1

–2 –1 0 1 2

0

1

–2 –1 0 1 2

0

1

–2 –1 0 1 2

c)

David Tweed has been developing
hardware and real-time software for
microprocessors for more than 22
years, starting with the 8008 in 1976.
His system design experience includes
computer design from supercomputers
to workstations, microcomputers,
DSPs, and digital telecommunications
systems. David currently works at
Aris Technologies developing digital
audio watermarking. You may reach
him at dtweed@acm.org.

CONVERTED?
That wraps up this series on A/D

and D/A conversion. I hope things are
a little clearer for you as you use
these technologies in your projects.

To get more information on various
converters (high-end delta-sigma and
high-speed), check in with AKM Semi-
conductor, Crystal Semiconductor (part
of Cirrus Logic), and Analog Devices.

And to learn more about dither, my
MathCad worksheets demonstrate how
the different PDFs perform and enable
you to play with the parameters. I

SOURCES

Converters
AKM Semiconductor, Inc.
(888) 256-7364
(408) 436-8580
Fax: (408) 436-7591
www.akm.com

Cirrus Logic/Crystal Semiconductor
(800) 888-5016
(512) 445-7222
Fax: (512) 445-7581
www.cirrus.com

Analog Devices, Inc.
(800) 262-5643
(781) 937-1428
Fax: (718) 821-4273
www.analog.com

REFERENCE

[1] D.E. Knuth, The Art of Computer
Programming, Vol. 2: Seminum-
erical Algorithms, Addison-Wesley,
Reading, MA, 1997.

SOFTWARE

MathCad worksheets for this article
are available via the Circuit Cellar
web site.

74 Issue 101 December 1998 Circuit Cellar INK®

FROM THE
BENCH

Jeff Bachiochi

Learning to Fly
with Atmel’s AVR

Just
because
Atmel’s
new AVR
micro

has 118 instructions,
don’t let that get you
bogged down. They’re
grouped into four easy
classifications, and
the whole AVR line can
be programmed into
16-bit address space.

s many of you
know, I’m a crash

and burn programmer.
I admit it. I like the

cause and effect control it gives me.
Lately, with some of the improved

simulators, I’ve run some level of simu-
lation before programming a chip. But,
there’s nothing like adding a touch of
hardware, even if it’s a toggling I/O
pin, to help with software debugging.

On top of my debugging list are
those little ceramic-windowed micro-
processors. These erasable parts need
time under the UV lamp whenever I
want to make a change in the code.

I remember paying a few hundred
dollars for one of these in the early
’80s. Today, they’re not as expensive,
but they’re pricey enough that you

generally don’t find them hanging
around the workbench.

Fixing the code between each crash
and burn never takes much time. It’s
usually one of those dolt typo things.

But, the UV lamp manipulates the
progress clock. I heard a proverb some-
where about a watched EPROM never
erasing, so I try to make myself get up
and stretch. Usually this involves a
trip to the kitchen.

It doesn’t matter where I am, if I go
in the kitchen, I always open the fridge
and stare into it. Even if I’m not look-
ing for anything in particular.

Microchip was the first to give me
what I was looking for—a micro with
electrically erasable program memory.
It’s no surprise that it has become my
mainstay. The ’F84 enables immediate
code changes by skipping the UV cycle.
So what if it requires a special program-
ming voltage?

TAKING WING
Atmel, the long-time leader in

EPROM, EEPROM, and flash memory,
finally caught on to what Microchip
has known for a long time. There’s
gold in them there flash-based micros!

So, Atmel introduced an advanced
single-voltage flash-based microcon-
troller. The AVR-enhanced RISC micro-
controllers offer the highest MIPS-
per-milliwatt capability in the 8-bit
MCU market.

Higher level languages are making
their way into an everyday coexistence
with small micros. And, the AVR’s
hardware and software architecture
was developed with special attention
to highly efficient C-code generation.

Photo 1 —Atmel’s low-cost
programmer complements a
suite of useful tools. I pack-
aged my minimum-parts
programmer in a dongle
enclosure (shown behind the
Atmel board).

a

Circuit Cellar INK® Issue 101 December 1998 75

VCC

GND

8-Bit data bus

MCU control
register

Timer/
counter

Interrupt
unit

EEPROM

Watchdog
timer

Internal
oscillator

Timing and
control

Oscillator

Program
counter

Stack
pointer

Program
flash

Instruction
register

Instruction
decoder

SRAM

Control
lines

Status
register

SPIProgramming
logic

Data register
Port B

Data dir.
reg. Port B

Port B drivers

PB0–PB4

General-
purpose
registers

X
Y
Z

ALU

*Reset

The use of many general-
purpose registers elimi-
nates the bottlenecks of
having to use an accumu-
lator to move data around.

Although many micros
require a clock division of
up to 12 for an execution
cycle, the AVR-enhanced
RISC microcontrollers
execute an instruction on
every oscillator cycle.
Prefetching enables most
of the 118 instructions to
be executed in 100 ns
(with a 10-MHz crystal.)

Atmel has a full line of
competitive parts in 20- to
64-pin sizes. I believe
Atmel’s entry into the
marketplace with some
8-pin micros is significant.
Meanwhile, Microchip has
been quietly proving the
practicality of the 8-pin
micro and chuckling about
it all the way to the bank.

The AVR AT90S2323 is the low-
end 8-pin micro with three general-
purpose I/O pins. The sister part, the
’2343, has five general-purpose I/O
pins when using the internal RC os-
cillator. An external crystal provides
an accurate timebase, but the ’2343’s
internal RC oscillator is handy when

Figure 1 —While every micro has its own personality, the AVR devices contain a
combination of standard and special-function blocks.

great accuracy is unnecessary and extra
I/O is needed.

Since the address path of these
micros is 16 bits wide, no bank switch-
ing is necessary. All code and data are
available through direct and/or indirect
addressing. Although these small
parts have a thousand words of code
space, the entire code written is up-

wardly compatible to the
larger parts capable of using
the full 64-KB space.

Figure 1 gives you an idea
of the 90S2323 architecture.
Of interest here are the 32 ×
8 general-purpose registers.

The last six registers can
be used as register pairs.
These pairs, called X, Y, and
Z, have some special 16-bit
addressing functions associ-
ated with them. As well,
there are 128 additional bytes
of internal SRAM (stack
goes here) and 128 bytes of
high-endurance nonvolatile
EEPROM storage.

The AVR microcontrol-
ler’s big advantage is its in-
system programming. As
long as no external device is
trying to drive the three I/O
bits, the micro can be pro-
grammed or reprogrammed
after PCB assembly. And, no

special programming voltage is neces-
sary. Programming the micro requires
connections for VCC, Gnd, Reset, and
the three SPI control lines.

DEPARTURE INFORMATION
The entire scoop on this and other

AVR devices is on Atmel’s web site.
While you’re there, check out the $49
AVR starter kit that includes an as-
sembler/simulator and programmer/
demo board. The AVR studio suite gets
you from idea to prototype in a hurry.

Photo 1 shows the AVR starter kit
along with this month’s project—a
minimal-cost programmer. So, why
build a programmer when Atmel has
such a great offer?

Well, some people thrive on the
insight that comes with hands-on
assembly. Even if you take Atmel up
on their offer as I did, when you’re
responsible for driving each control
line through the proper algorithm, you
gain a special respect for the device.

As Figure 2 shows, the parallel
printer port not only programs the
device but also provides power. By
tying the printer’s *Auto control line
output (DB-25 pin 14) to the Paper
status input line (DB-25 pin 12), my
BASIC software can search the three

Listing 1 —The beginning BASIC code demonstrates how the parallel ports can be searched for the program-
mer hardware.

10 lpt(1) = &H3BC: lpt(2) = &H378: lpt(3) = &H278
20 DLPT = 0: REM 8 DATA BITS
30 CLPT = 2: REM X X X IRQ4EN *SEL INIT *AUTOFEED *STROBE (POR

 XXX01011)
40 SLPT = 1: REM *BUSY *ACK P.OUT SEL *ERR X X X
50 FOR x = 1 TO 3
60 OUT (lpt(x) + CLPT), (INP(lpt(x) + CLPT) OR 4)
70 IF (INP(lpt(x) + SLPT) AND &H20) <> &H20 THEN GOTO 110
80 OUT (lpt(x) + CLPT), (INP(lpt(x) + CLPT) AND &HFB)
90 IF (INP(lpt(x) + SLPT) AND &H20) <> 0 THEN GOTO 110
100 PRINT "Found LPT", x: lpt = lpt(x): GOTO 130
110 NEXT x
120 PRINT "Can't find the Programmer": STOP
130 VCCHI = &HF8: SCKHI = &H2: RESETHI = &H1: MOSIHI = &H4
140 VCCLO = 0: SCKLO = 0: RESETLOW = 0: MOSILO = 0: MISO = &H10
150 OUT lpt, 0: PRINT "Programmer is OFF"
160 PRINT "Insert chip to be programmed and hit any key"
170 I$ = INKEY$: IF I$ = "" THEN 170
180 OUT lpt, RESETHI + VCCHI
190 PRINT "Placing chip into RESET"
200 OUT lpt, VCCHI
210 SOUND 1000, 1

76 Issue 101 December 1998 Circuit Cellar INK®

Listing 2 —Based on a 32-kHz crystal, this code provides a positive 0.5-s pulse every 1 s, 1 min., 1 h, or 1
day (based on two configuration inputs).

printer ports to find out where the
programmer is installed.

Three data output bits (DB-25 pins
2, 3, and 4) provide the Reset, SCK,
and MOSI outputs to pins 1, 7, and 5,
respectively. The MISO output (pin 6
of the micro) is monitored by the SEL
status input bit (DB-25 pin 13), and
the upper five bits of the data output
are dioded together to provide power
(the diodes prevent incorrect data from
shorting printer outputs together).

The connections are simple enough,
and remember, these parts program
with only the normal VCC applied. To
prevent unwanted programming, a
particular event sequence is needed or
the part will ignore all SPI commands.

To solve this problem, the SCK line
must be low before Reset is taken low
and after applying power. A program-
ming-enabled command sequence
must be the first command clocked
into the part using SCK and MOSI.

Each command is four bytes long.
The minimum times for SCK is two
crystal cycles high and two crystal
cycles low, using a 4-MHz crystal
that’s 500 ns minimum.

The micro outputs the bytes sent
to it using its MISO pin. The output
bytes are delayed by one byte from the
input.

For instance, if you send the four
bytes 60 01 0C 12 (write 12 to address
010Ch low byte), then you would get
back zz 60 01 0C (zz is the last byte
from the previous command).

There are exceptions to this rule.
When asking for information from the
micro (reading), the last byte returned
is the data from the micro. As in 20 01
0C xx (reading the low byte from 01 0C,
where xx is don’t care). Here the micro
outputs zz 01 0C 12 (12 is the data).

Not only can you program the flash
(code space) but also the EEPROM
(nonvolatile data space). Some devices
have preloaded device codes, which
let you determine vendor code, part
family, flash size, and part number, as
long as the device isn’t protected.

Parts can be protected two ways.
First, the device can be write protected
so no further code can be programmed.
Second, it can be locked so the code
can no longer be written to or read
from the micro.

AT90S2323 ;Prohibits use of nonimplemented instructions

.include "2323def.inc"
;* Global Register Variables
;* Code
 rjmp RESET ;Reset vector
 rjmp INT0 ;External interrupt vector
 rjmp TMR0_OVF ;Timer 0 overflow vector
;* Main Program
;* This program initializes registers/devices used
;* The timer overflow does the rest
;* Main Program Register Variables
.def CNTL =r16
.def CNTM =r17
.def CNTH =r18
.def TEMP =r22
;* Code
RESET:
 ldi TEMP,$DF ;value for stack pointer
 out SPL,TEMP ;put it there
 ldi TEMP,$07 ;value for PORTB xxxxx111
 out PORTB,TEMP ;put it there
 ldi TEMP,$02 ;value for PORTB direction xxxxxIOI
 out DDRB,TEMP ;put it there
 sbic PORTB,PB0 ;skip if (CFG0) PB0=0
 rjmp CFG_1X ;jump PB0=1
CFG_0X:
 sbic PORTB,PB2 ;skip next if (CFG1) PB2=0
 rjmp CFG_01 ;jump PB2=1
CFG_00:
 ldi CNTL,$02 ;reload count for 1 s
 ldi CNTM,$00
 ldi CNTH,$00
 rjmp CONT ;jump
CFG_01:
 ldi CNTL,$78 ;reload count for 1 min.
 ldi CNTM,$00
 ldi CNTH,$00
 rjmp CONT ;jump
CFG_1X:
 sbic PORTB,PB2 ;skip next if (CFG1) PB2=0
 rjmp CFG_11 ;jump PB2=1
CFG_10:
 ldi CNTL,$20 ;reload count for 1 h
 ldi CNTM,$1C
 ldi CNTH,$00
 rjmp CONT ;jump
CFG_11:
 ldi CNTL,$00 ;reload count for 1 day
 ldi CNTM,$A3
 ldi CNTH,$02
CONT:
 ldi TEMP,$03 ;value for /64 prescaler
 out TCCR0,TEMP ;put it there
 ldi TEMP,$02 ;value to enable timer0 interrupts
 out TIMSK,TEMP ;put it there
 ldi TEMP,$80 ;value for global interrupt enable
 out SREG,TEMP ;put it there
forever:
 rjmp forever ;loop forever
;* TMR0_OVF handles decrementing the registers for count_high
;* and count_low times
;* Register Variables
.def CNTL =r16
.def CNTM =r17
.def CNTH =r18
.def CNTRL =r19
.def CNTRM =r20
.def CNTRH =r21
.equ CARRY =0 (continued)

Circuit Cellar INK® Issue 101 December 1998 77

Listing 2 —continued

.equ ZERO =1
;* Code
TMR0_OVF:
 tst CNTRH ;test the high-count byte
 brne L_NOT0 ;branch if CNTLH<>0
 tst CNTRM ;test the mid-count byte
 brne L_NOT0 ;branch if CNTRM<>0
 tst CNTRL ;test the low-count byte
 brne L_NOT0 ;branch if CNTRL<>0
ERROR:
 mov CNTRL,CNTL ;reload the low-count byte
 mov CNTRM,CNTM ;reload the mid-count byte
 mov CNTRH,CNTH ;reload the high-count byte
 sbi PORTB,PB1 ;raise PB1 output
EXIT:
 reti ;done with this interrupt
TMR0_OVF_EXIT:
 cbi PORTB,PB1 ;lower PB1 output (even if already there)
 rjmp EXIT ;exit through one place
L_NOT0:
 subi CNTRL,$01 ;decrement low count byte (affects carry)
 brcs M_NOT0 ;branch if must borrow
 rjmp TMR0_OVF_EXIT ;exit through one place
M_NOT0:
 subi CNTRM,$01 ;decrement mid count byte (affects carry)
 brcs H_NOT0 ;branch if must borrow
 rjmp TMR0_OVF_EXIT ;exit through one place
H_NOT0:
 subi CNTRH,$01 ;decrement high count byte (affects carry)
 brcs ERROR ;branch if must borrow (if error reload
 rjmp TMR0_OVF_EXIT ;exit through one place

GROUNDED
As wonderful as the AVR is, there's

room for improvement. I found some
errors in the command words listed in
the AVR910: In-System Programming
App Note. Although the information
given in the datasheet was correct, it
took a few hours of head scratching to
get all the commands working correctly.

The micro doesn’t give feedback on
the status of a programming cycle. You
have to wait 4 ms between writes to
the device.

It seems to me that the MISO bit
could have been held high until the
programming cycle was completed as
a busy/ready handshake. Warnings are
given not to clock in any additional
commands while in an internal pro-
gramming cycle.

There’s also a discrepancy in the
SCK times between the app note and
the datasheet. The note says one crystal
clock cycle low and four crystal clock
cycles high, but the datasheet says
two and two. Since my BASIC program
can’t run anywhere near that fast, I’m
not worried about it.

But there are some delays (i.e., 4 ms)
I need to take into account. BASIC has
a sound command, which is measured
in timer (12 ms) tics. I use the minimum
beep to make sure that a fast PC can’t
execute the write faster than 12 ms.

And last, I think the timing diagram
is a bit misleading in both documents.
The MISO output is clocked on the
falling edge and therefore should be
read before dropping the clock. If I read
MISO output after the clock falls as
implied by the timing diagram, I find
myself a bit behind.

FLIGHT SIMULATOR
For those of you who can remember

DOS, you may also remember that
some form of BASIC always came
with DOS. One of my friends recently
complained to me because his brand
new PC had Windows 98 installed and
there was no DOS or BASIC available.
I don’t know where I’d be without
some BASIC on my machine!

Listing 1 is the beginning of a BASIC
program using the PC’s parallel port to
control the AVR programmer. This
code searched the three ports to find
the attached programmer.

78 Issue 101 December 1998 Circuit Cellar INK®

GETTING YOUR WINGS
What good’s a programmer

with nothing to program?
Here’s a little application
you may have made using a
555 timer and a big CAP
(see Listing 2). Using a 555
as a long-duration timer
requires a hefty-sized ca-
pacitor. And even then,
accuracy is sorely lacking.

You can make a quick
presettable long-duration
timer using an AT90S2323
micro and a 32-kHz crystal.
One of the three I/Os be-
comes the output and the remaining
I/Os are used as timing selectors.

I chose 1 s, 1 min., 1 h, and 1 day as
the four output choices. These can be
selected by grounding or leaving open
the PB0 and PB2 pins set up as inputs.

Each input can have a weak internal
pullup enabled to reduce parts count. I
chose PB1 to use as the output because
it was used as the MISO output when
I programmed the device through the
SPI interface.

The reset input has an internal
pullup and begins the power-on timer
once VCC has reached ~1.5 V. At this
point, the AVR microcontroller’s ex-
ecution begins at address 0000H.

Two interrupt vectors are available.
The first is at address 0001H, for exter-
nal interrupts that may be rising edge,
falling edge, or low-level triggered
through PB1.

The second interrupt vector is at
address 0002H, for the TIMER0 over-

flow. The 8-bit timer has a
prescaler with five selec-
tions—/0, /8, /64, /256, and
/1024.

A separate watchdog
circuit employs an onboard
1-MHz oscillator to give eight
time-out choices between
16 and 2048 ms. This can be
used to keep your application
on the straight and narrow
or to wake up the micro
from its sleep mode.

There are two sleep
modes. Idle mode enables
the timer to continue for a

wakeup on timer overflow. Power-
down mode can leave the watchdog
running to wake up the micro or stop
everything and wake up only on a
level interrupt or reset.

A 32,768-Hz clock crystal enables
the prescaler and timer to work well
together, providing a nice overflow
time. With a /64 prescaler and a 256
timer overflow, you get a divide by
16,384, which gives 0.5 s with the
32,768-Hz crystal.

Figure 2 —Powered from the parallel port’s upper data lines, this programmer can be
accessed using a BASIC program.

Circuit Cellar INK® Issue 101 December 1998 79

SOURCE

AVR AT90S2323
Atmel
(408) 441-0311
Fax: (408) 436-4200
www.atmel.com

Jeff Bachiochi (pronounced“BAH-key-
AH-key”) is an electrical engineer on
Circuit Cellar INK’s engineering staff.
His background includes product design
and manufacturing. He may be reached
at jeff.bachiochi@circuitcellar.com.

The initialization routine samples
the two configuration inputs and sets
up a three-byte counter for two (1 s),
120 (1 min.), 7200 (1 h), or 172,800
overflows (1 day).

At this point, the Timer0 interrupt
pretty much runs the show. At each
timer overflow, a check of the 3-byte
counter is performed. When it reaches
zero, the output PB1 is set and the
counter is reloaded for the next count-
down. If the count isn’t zero, the
counter decrements and the output
PB1 is cleared. This way, the output
only stays high for 0.5 s regardless of
what timeout is selected.

PREPARE FOR TAKEOFF
The Atmel AT90S2323 has 118

instructions. This may sound over-
whelming, but they break down into
four major groups—arithmetic/logic,
branch, transfer, and bit instructions.

Most of the arithmetic/logic in-
structions deal with two registers or a
register and a constant. The majority
of the branch instructions are based
on status flag states.

Many transfer instructions deal
with indirect addressing using one of
three possible 16-bit pointers. Each
can load or store with automatic pre-
decrementing or postincrementing of
the pointer. The bit instructions are
similar to the branch instructions, in
that there are separate instructions for
setting and clearing every status flag.

There are a few areas where com-
mands aren’t obvious. All the status,
timer, interrupt, and ports (control
registers) are considered I/O ports and
have few commands. Values can be
moved to or from them using only the
32 RAM register files.

To move a constant to a port, it
must go through a RAM register first.
Moving data between any of the RAM
registers is straightforward, keeping in
mind that you can only load a constant
into RAM registers 16–32.

Once you see the advantages of
programming the AVR line in a 16-bit
address space, dealing with 118 com-
mands isn’t so scary.

But, that’s why programmers get the
big bucks. To use a micro efficiently,

they spend a lot of time getting familiar
and comfortable with it.

You know, picking a microcontroller
is like picking out a shirt. They come
in many styles, patterns, and colors,
but they all do the same job. You just
find one that feels and looks good to
you. I recommend the AVR. It’s pretty
darn comfortable. I

REFERENCE

Atmel, AVR910: In-System Program-
ming App Note, 0943B-B, 1997.

80 Issue 101 December 1998 Circuit Cellar INK®

t he annual Hot
Chips conference

has become part of
my summer ritual in the

Silicon Valley. When I see the newly
minted Yups drop the tops on their
Beemers, I know the latest and greatest,
IC-wise, is right around the corner.

Perhaps it’s the idyllic environs of
the Stanford University venue. The
presentations are given in the stately
Memorial Auditorium, which with
elevated theater seating, is much nicer
than the typical conference room.

Hungry? Instead of schlepping over
to some aptly named concession (to
good taste) stand, just step outside for
excellent catered dining in the tree-
shaded Dohrman Grove.

Want to stretch your legs? You can
wander over to Hoover Tower or the
Rodin Sculpture Garden.

Perhaps I’m attracted by the non-
harried and noncommercial nature of
the conference, delivered under the
auspices of the IEEE. No juggling an
unschedulable array of meetings, ses-
sions, and keynotes.

Or maybe it’s the chance to see old
friends and meet new ones in the rather
eclectic audience. There are world-
famous academics, fresh-faced stu-
dents, VCs (venture capitalists) on the
prowl, and grizzled IC vets.

Despite the ambiance, Hot Chips
wouldn’t have made it ten years if it

weren’t for worthy content, and this
year was no exception. Besides offer-
ing a glimpse at the latest and greatest
silicon, it features some interesting
presentations on other hot topics.

The ultimate attraction, of course,
is the chips themselves. If the day
comes when there aren’t any new hot
chips, there won’t be any Hot Chips
conference. Fortunately, silicon con-
tinues to march on and there’s no
shortage of stuff to write about.

ARCHITECTURE WARS
Keeping pace with Moore’s Law is

no trivial task. For some time it has
seemed that computer architects have
had trouble coming up with any break-
throughs or radical changes in computer
organization that have really paid off.

Instead, the continuing trend is an
attempt to wring the last bit of perfor-
mance out of the traditional solutions
by brute force (i.e., throwing transistors
at the problem). It would be easy to
contend that architecture is dead were
it not for the fact that the name of the
game is performance at any price—no
matter how little the gain, no matter
how high the price.

The bag of tricks now includes big
caches, superscalar (multi-instruction),
speculative and out-of-order execution,
branch prediction, SIMD (vector) ops,
and so on. The art of computer archi-
tecture involves choosing the right
combination and finessing the details.

Cache-wise, bigger is always bet-
ter. For instance, the latest version of

Hot Chips X Files

It just
wouldn’t
seem like
summer if
Tom didn’t

make it to Hot Chips.
And it just wouldn’t be
winter if we didn’t
read about everything
he saw and heard.
SIMDs, Deep Blue,
copyright law, and
Microsoft—what a mix!

SILICON
UPDATE

Tom Cantrell

Photo 1 —IBM’s Deep Blue, the first computer to win a
match against a world chess champion, is an IBM RS/
6000-based system with 30 boards, each containing 16
of the custom accelerator chips shown here.

Circuit Cellar INK® Issue 101 December 1998 81

Instruction
cache

Instruction fetch unit
BHT, BTAC

Dual
64-bit

integer
ALUs

Dual FP
multiply/

accumulate
units

Dual FP
divide
SQRT
units

Rename
registers

Sort

Retire

Architected
registers

System-bus
interface

TLB

Dual
load/store
address
adders

Data
cache

Rename
registers

Dual
shift/

merge
units

ALU
buffer

28
entries

Memory
buffer

28
entries

Address
reorder
buffer

28
entries

R
u
n
w
a
y

b
u
s

HP’s Precision Architecture
(PA)—the PA 8500 in Figure
1—includes a whopping
1.5 MB of cache (0.5 MB of
instruction, 1 MB of data).
Given HP’s long-time posi-
tion in favor of off- versus
on-chip cache, such a devel-
opment is even more no-
table. Fact is, with tens of
millions of transistors to find
homes for, big cache is the
easiest way out.

Besides making cache
bigger, the goal is to build
and use it smarter. Even if
half a dozen instructions can
be found to keep all those
execution units fed, the cache
can become a bottleneck.

Thus, the trend towards
nonblocking designs escalates (when a
cache miss happens, don’t just sit
there twiddling your thumbs; try to
execute another instruction). The
latest designs allow dozens or even
hundreds of cache accesses to be pend-
ing, without stalling the processor.

As for using cache more intelligently,
the earlier trend towards software-
directed prefetching, illustrated in
Figure 2, has become de rigueur. The
idea is to give the cache a head start,
with the goal, in a perfect world, being
the elimination of the dreaded miss.

The conditional branch has become
the bane of heavily pipelined, super-
scalar, and speculative superdupers.
Mere mortal CPUs can only take five
and wait for new marching orders
(i.e., condition resolves).

The latest chips go to extraordinary
lengths trying to predict the branch’s
outcome. For instance, the DEC-now-
Compaq Alpha 21264 happily wades
20 branches into the future, relying on
a crystal ball that not only includes the
usual branch history but also how the
program arrived there (see Figure 3).

IN MEMORY OF CRAY
Another example of effective recy-

cling of yesterday’s know-how is seen
in the widespread adoption of SIMD
techniques (i.e., applying a single
instruction to multiple data items in
parallel). In Cray’s day, this technique
was known as vector processing.

The appeal lies in the fact that it’s
relatively easy to find and exploit
parallelism in scientific and signal-
processing algorithms that rely on
vector operations.

Almost all hot chips support vector
ops these days, the most well-known
example being the Intel MMX. At
their simplest, such schemes carve a
full-size register into parallel subparts
that can be operated on. For example,
a conventional 32-bit ADD is extended
to perform two 16-bit ADDs or four
8-bit ADDs at once.

The latest generation of psuedo-
SIMDs pushes the concept further
with wider words, more operands, and
extra instructions. Consider Motorola’s
AltiVec upgrade of the PowerPC archi-
tecture. The upgrade adds a complete
vector unit featuring 128-bit registers
that can be interpreted as 16 × 8-bit,
8 × 16-bit, or 4 × 32-bit data.

There are 162 new instructions,
including both the typical intra-element
and the newly introduced inter-element
operations. Figure 4 shows how the
two make short work of the inner

loops at the heart of
scientific and DSP code.

Although his life was
cut short by a car acci-
dent, the spirit of Sey-
mour Cray lives on in
the SV1 from Silicon
Graphics. The SV1 not
only incorporates SIMD
techniques, but because
SGI purchased Cray’s
company, it is also
upwardly compatible
with his YMP.

As a classic vector
processor, the SV1 faces
a different set of chal-
lenges. For instance,
there’s little concern
with conventional
benchmarks like SPEC.

The only goal is crunching through
vectors at blazing speed, and we’re
talking billions of operations per second.

One source of head scratching comes
when vector ops and cache get in each
other’s way. Vector data may not be
reused, and worse, arrays (i.e., vectors
of vectors) introduce the issue of stride.

For instance, a column operation on
a 256 × 1024 array calls for accessing
every 1024th element, which is contrary
to the concept of locality (i.e., the next
access is near the previous one) on
which the cache concept is based.

Figure 2a —To ease the pain of a cache miss, the HP
PA-8500 and other high-end chips employ both hardware
and software techniques. One hardware approach is a
nonblocking cache that allows multiple outstanding
references (b), while software solutions include compiler-
inserted prefetch to initiate cache access prior to
anticipated use (c).

Load-Miss

Use

Load-to-Gr0

Load-Hit

Instr

Time

Load-Miss

Use
Load-Miss

Use

Load-Miss
Load-Miss

Load-Miss

Use
Use

Use

Instr

Instr

Instr

Instr

Instr

Instr

Instr

Instr

Instr

Instr

a)

b)

c)

Figure 1 —With plenty of function units, out-of-order execution, high clock rate, and huge
(0.5-MB instruction, 1-MB data) caches, the HP PA-8500 is a good example of the latest
trend for performance-at-any-price chips.

82 Issue 101 December 1998 Circuit Cellar INK®

Figure 3 —When it comes to branch prediction, the
Alpha 21264 considers both the past behavior of the
branch and the path taken to arrive at the branch.

In fact, it’s amusing to construct
mental cache-buster exercises. Choose
the worst-case combination of algo-
rithm, data layout, cache size, and
organization—and the grandest chip is
reduced to a quivering sliver of silicon.

Considering locality and the desire
to exploit the burst characteristics of
DRAMs, most caches use long (dozens
or hundreds of words) line lengths.
When a miss occurs, the controller
loads a complete line, presuming that
the penalty for extra transfers is offset
by the likelihood of subsequent accesses
within the same line.

But, an ugly mismatch of algorithm,
stride, and cache may result in a com-
plete line refill for each array element
access. You’d be better off chucking
the cache altogether!

The SV1 addresses the situation
with a 128-KB streaming-cache design
that has short lines (only 8 bytes), is
very nonblocking (up to 192 pending
references), and delivers at 4+ GBps.

CHESS CHIP
You can always count on Hot Chips

to deliver a bit of technical whimsy,
this time in the form of “Designing a
single-chip chess grandmaster while
knowing nothing about chess” by
Feng-hsiung Hsu of IBM.

What started a decade ago as a
student project at Carnegie Mellon
was cultivated into Deep Blue by IBM.
I consider the 1997 match win by the
machine over world chess champion
Kasparov a remarkable success.

The nice thing about Deep Blue is
that you don’t have to be a techno-guru
to get it. There’s none of the neural
network, fuzzy, or AI hot air you
might expect. Instead, the machine,
composed of 480 custom chess chips
(see Photo 1), relies on brute-force
move evaluation to the tune of 200
million positions per second.

Hsu notes, “Speed alone might not
be enough,” pointing out that, “human
grand masters in serious matches, learn
from computers’ mistakes, exploit the
weaknesses, and drive a truck through
the gaping holes.”

Deep Blue tries to create evaluation
terms that overcome known weak-
nesses and adds hooks to deal with
new ones using external FPGAs. It
supplements brute-force evaluation
with ROM-based endgame logic, de-
picted in Figure 5, that handles the
well-known variations that character-
ize the final moments of a match.

What’s next? Hsu projects that
migrating to 0.35-µm process (from
0.6 µm) for higher integration and
faster clock rate will enable a small
array of chips plugged into a PC to beat
the best the human race has to offer.

BEYOND CHIPS
As I mentioned, the Hot Chips folks

usually throw in a few hot topics to
break up the bit banging. Consider the
presentation by Stanford Law School
professor Margaret Jane Radin who
expounded on the “Basics of intellec-
tual property law, with applications
to the computer and electronics in-
dustries.”

Too many lawyers try to cloak the
eccentric aspects of our legal system
in truth, justice, and highfalutin legal-
ese. Not Ms. Radin, who freely admits
that much of what passes for legal
wisdom simply boils down to the
foibles of human nature.

I don’t have time to go into the
details of her four-hour presentation
(itself condensed from 90 hours of
classroom instruction). Needless to
say, the framers’ simple desire, “To
promote the progress of science and
useful arts” (U.S. Constitution Article
1, Section 8), has evolved into a morass
of patent, copyright, trademark, and
trade-secret laws.

As a 1s-and-0s man, I admit it’s
hard to swallow much of what the
legal system presents as reason. For
example, patents should describe a
nonobvious invention in a way that
specifically and particularly enables
others to use it in the best way.

Ever tried to read a patent applica-
tion? The real name of the game is

Local
history

(1024 × 10)

Local
prediction
(1024 × 3)

Global
prediction
(4096 × 2)

Choice
prediction
(4096 × 2)

Program counter

Prediction

Path history

Circuit Cellar INK® Issue 101 December 1998 83

records on company A’s computers as
he headed out the door. You don’t need
to be a legal giant to deal with this case.

Until now, perhaps the most obnox-
ious byproduct of trade-secret law was
the zillion-page nondisclosure agree-
ments that we’ve all signed and per-
haps even read. But, a number of
intriguing cases have surfaced involv-
ing the trade secrets you carry around
in your head. The way the wind is
blowing with noncompete clauses and
the like, a lobotomy may become a
standard part of the exit interview.

Shakespeare wrote, “The first thing
we do, let’s kill all the lawyers” (King
Henry VI, Part II, Act 4, Scene 2), but
I like to think he would have spared
Ms. Radin, who had this final bit of
good-hearted advice: Stay away from a
lawyer who claims the answer is clear.

BILL BASHING
The evening discussion panel, ar-

ranged by impresario John Wharton, is
always good fun. This year’s topic was
“Confronting the Microsoft challenge.”
In other words, can and/or should
Microsoft be stopped?

Wharton related some of the diffi-
culties in getting a panel together.
Many would-be panelists sealed their
fate with responses like, “After each
panelist stands up and says ‘No,
Microsoft can’t be stopped,’ how do
you plan to kill the other 85 minutes?”

Perhaps more disturbing was how
many potential panelists turned him
down. Sure, the reasons were purport-
edly innocent—too busy, on vacation.
But, the most common excuse was
“prefer not to anger Microsoft.” Sounds
like fear and loathing in Silicon Valley.

Anyway, he managed to come up
with a panel composed of a lawyer
and various tech types who seemed,
like many in the audience, rather
unhappy with Microsoft. Complaints

getting your slick legal firm to bam-
boozle some patent-office clerk with a
claim that covers everything and dis-
closes nothing. All the better if they
can submarine the thing and ensure
plenty of fat wallets to squeeze when
it finally surfaces.

Copyright law is especially wart
ridden, with clauses for everything
from pantomime and choreographic
works to pictorial and sculptural
works (which is why you can rent a
video but you can’t rent a music CD
or software).

By comparison, trademark law is
relatively innocuous. Yeah, it may
seem odd that Mr. McDonald can’t
call his restaurant McDonalds, but no
biggie. Thanks to the .com domain
turmoil, even trademark law is getting
some notoriety lately. (Mr. McDonald
can’t use www.mcdonalds.com, either.)

A close cousin to tarnishing some-
one’s trademark is “genericide.” It’s
not proper to say you’re going to
Xerox this article. Instead, you should
say you’re going to copy it. Of course,
you should be warned that actually
doing so apparently runs afoul of
copyright law. “Use a copy machine,
go to jail”?

Maybe trade-secret law has the
best grip on reality, relying as it does
on a nefarious perpetrator. Recently,
there was a case involving a sales guy
planning a job switch from company
A to company B. He told his current
customers that company A was in
trouble and that they should place
their orders with company B.

Then, he swiped copies of company
A’s customer data and gave it to com-
pany B. To top it off, he erased all the

Figure 4 —These days, all hot chips employ SIMD
techniques. Motorola’s AltiVec scheme goes beyond
the usual intra-element operations (e.g., vmsum
instruction) and adds inter-element operations (e.g.,
vsum instruction). The result—an inner loop that
requires 36 instructions and 18 cycles for a regular
PowerPC is cut to two instructions and two cycles.

x x x x x x x x x x x x x x x x

Figure 5 —The IBM chess chip supplements brute-
force move evaluation with strategy embodied in an
endgame ROM.

Piece
counts

XORed
piece

locations
for each

piece type

Address
generators

KP vs. K

KR vs. KP

KQ vs. KP

KRP vs. KP

To
endgame

adder
tree

84 Issue 101 December 1998 Circuit Cellar INK®

were along the line of got no class,
software sucks, and done me wrong.

I have to credit the lawyer (Mr. Ian
Feinberg) for generating more light
than heat. Though no fan of Microsoft,
he did point out that attempts to break
it up can’t rely on historic antitrust
reasoning. Standard Oil’s turn-of-the-
century no-no was an attempt to mo-
nopolize by acquiring all competitors,
while Microsoft is largely self-grown.

More recently, the breakup of AT&T
was actually about deregulating some-
thing government created in the first
place. Is the answer now to impose
government regulation on Microsoft?

I find myself somewhere in the
middle. I sometimes curse Bill as I give
his latest bloatware the three-finger
salute. But, there’s no doubt his mach-
inations have enabled standardization
(arguably a good thing). And, obtaining
a monopolistic position isn’t illegal.
It’s the way it’s obtained and whether
it’s abused that deserves scrutiny.

Ultimately, my ambivalence is a
reflection of a somewhat libertarian
bent. As they say about democracy, we

Tom Cantrell has been working on
chip, board, and systems design and
marketing in Silicon Valley for more
than ten years. You may reach him by
E-mail at tom.cantrell@circuitcellar.
com, by telephone at (510) 657-0264,
or by fax at (510) 657-5441.

REFERENCES

Hot Chips Conference,
www.hotchips.org

Hot Interconnects Conference,
www.hoti.org

SOURCES

PA8500
Hewlett-Packard
(800) 452-4844
(650) 857-1501
www.hp.com/usa

SV1
Silicon Graphics, Inc.
(800) 800-7441
(650) 960-1980
Fax: (650) 933-1010
www-europe.sgi.com

get the government we deserve. The
same goes for free enterprise, and that
means we get the OS we deserve, too.

HOT CHIPS FOREVER
All in all, Hot Chips X was a rousing

success. Each year I worry whether
the chips will be hot enough to keep
the conference going, and invariably I
come away revitalized, knowing that
silicon has still got legs.

As the conference moves into a
second decade, I extend my apprecia-
tion to the organizers. Summer in the
Silicon Valley just wouldn’t be the
same without their efforts.

I’d also like to call your attention
to a new cousin—Hot Interconnects.
Judging by the program, the confer-
ence covers some interesting topics
such as “What’s wrong with cable
technology,” “Grand challenges of the
internet,” and the intriguingly titled
“What I love to hate!”

As we move into an era when com-
municating is just as important as com-
puting, I figure Hot Interconnects will
join Hot Chips on my calendar. I

96 Issue 101 December 1998 Circuit Cellar INK®

PRIORITY INTERRUPT

steve.ciarcia@circuitcellar.com

Embedded Happenings

w hew! Talk about whirlwind trips and accomplishing a lot in a short time. Last week was one of those times. In one
week we exhibited at the San Jose Embedded Systems Conference, co-sponsored the new Embedded Internet

Workshop, and announced Design99, Circuit Cellar’s latest design contest jointly sponsored with Motorola.
In the middle of all this organized chaos, the six of us attended workshops and had scores of meetings with

companies and authors. The result will be some fantastic editorial for the future. Of course, the frantic pace taught a few
lessons, too. Elizabeth learned not to schedule meetings 90 minutes after touching down from a cross-country flight. Tom learned that there’s
a practical limit to the number of meetings and presentations that one person can attend in one day, and Jeff and I learned that some of this
might actually be fun again. Jeff and I are your basic travel grumps who hate the aggravations of travelling, but considering the positive results
of this trip, both of us might complain a little less the next time.

Obviously, the big event was Embedded Systems Conference-West. Like many of the other computer-specific trade shows, it has
evolved considerably over the years. Nine years ago ESC-W was a modest reflection of the embedded control community. Today, it’s a glitzy
spectacle that’s equally consistent with the current state of the embedded systems industry. I used to relish the nomadic trek among the many
rows of entrepreneurial startups. I’d swap war stories with owners and inventors who, in those days, shared booth duty with everyone else.
Today, Microsoft’s booth is larger than most small company parking lots. And, as far as schlepping the booth to trade shows, it’s obviously Bill
who? among the weary exhibit personnel.

This isn’t a complaint. It’s just a statement of reality about the progress we’ve made in this industry. The good old days have many fond
memories, but there’s a definite down side to removing technology once we’ve come to depend on it. I certainly wouldn’t give up my cellphone
or 100-plus-processor automobile to be in the good old days again. At the same time, it would be a hypocritical for me to be overly critical
about ESC-W when we’ve made just as many changes as everyone else over the years. Of course, our booth isn’t the size of a parking lot and
you can still find me there.

Something different is always refreshing. In contrast to ESC-W, the Embedded Internet Workshop was a flashback to the days of
entrepreneurial startups and involved principles. Co-sponsored by Circuit Cellar and RTC Magazine, workshop organizer Lance Leventhal
provided a forum where 200 industry enthusiasts met with embedded-Internet specialists and a score of emerging companies. The discussion
was lively and the enthusiasm infectious.

About the only thing that everyone agreed on was that the Internet is there and is a cheap accessible data pipe. Like anything computer
these days, user commitment ranged from embedded-Internet-everything fanaticism to show-me reserved engagement. I’d like to think I’m
slightly left of center. I know that eventually it will be cost-effective to add Internet accessibility to things like industrial controls, security
systems, and vehicles. It probably won’t even be very long before we have printers that e-mail toner, paper, and error-status conditions.
However, I can wait for flush-monitored toilets and coffee machines that e-mail you when the coffee is ready.

I was certainly surprised by the range of options presented by the dozens of workshop exhibitors. I was familiar with the high-end
solutions from companies like PharLap and low-end micro-servers from emWare, but I was astonished at the advances from some of the new
players in the game. NETsilicon presented an ARM-based Ethernet-ready under-$30 ASIC aimed primarily at printer manufacturers. It
appeared to be one of the few solutions capable of satisfying both communication and control tasks in one chip. Not to be upstaged, Vadem
was there with their VG330 single-chip ’x86-compatible. Based on a NEC V30 core and aimed at handheld organizer and POS terminal
manufactures, the 160-pin Vadem chip attempts to provide a cost-effective transition from traditional embedded PC to more cost-sensitive
’x86 applications.

In my opinion, the most remarkable product entry came from iReady. Their product is basically a low-cost custom Z-80 core ASIC with all
the Internet functions built completely in hardware. It was described as “so dumb that it’s impossible to crash.” I’d rather interpret that as
“reliable.” Working together with Seiko to add display electronics, they’ve produced TCP/IP-ready LCD displays with built-in network, e-mail,
and web-browsing capability. The iReady ASIC is also incorporated in a children’s electronic toy scheduled to hit the market in early ’99. So,
what’s next? The refrigerator?

Don’t be so surprised. The subject definitely came up and you can bet your PC that someone will eventually offer it. Purists will tout the
necessity for intelligent refrigerators that automatically e-mail a shopping list to the grocery store and magically restock themselves. Somehow
I think that less spectacular applications like simply knowing the temperature and contents as part of an overall home automation system will
invite more interest.

The rush toward “Internetivity” is predictable. I don’t anticipate a stampede, but effective demonstration of the technology will surely
expedite its incorporation. We continue to see our roll as an application resource that provides such demonstration. We have a number of
embedded-Internet related projects in the works. Among them is a contest winner from our Design98 contest for a single-chip Internet-
connected “appliance.” We trust that the strength and support of Motorola, along with $45,000 in cash prizes for Design99, will incite the design
bug in all of you. I look forward to seeing your innovative Internet-connected projects among the entries for Design99.

