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Everything Old is New Again

TASK MANAGER

o ut with the old, in with the new—isn’t that
what we tend to say at the beginning of a brand

new year? But this time ’round, it gives me pause. It’s
true that we’re starting a brand-new year, but it’s the last

one of the century, last one of the millenium, and that’s an odd feeling.
OK, OK, Yes, I’m educated. Yes, I’ve heard that the new millenium

doesn’t really start until January 1, 2001. But give me a break. Most people
don’t think that way. Twelve months from now, everyone’s either going to
be wildly singing, “We’re gonna party like it’s 1999,” or huddling under their
mattresses with their savings and flipping out over the Y2k bug. We’re not
going to be thinking too seriously about pronouncements from all  those
prescriptivists who are so determined that we say things 100% accurately.

Well, at least I’m not going to. I’m more determined to celebrate this
special, once-in-a-lifetime event. It’s the event I’ve been waiting for since I
was a child. The event I’ve been waiting for since I could add up how many
years old I was going to be when the calendar did its cartwheel into 2000.
So, with the clock ticking down and only 12 months to go, my question is,
how to prepare for it?

In one respect, we (the publishing, editorial types) prepare for these
things way ahead of time. For example, the Circuit Cellar 1999 Editorial
Calendar has been set for many months already. But it’s only now that you,
the reader, are starting to see it in action. It’s only now that you are starting
to see how Circuit Cellar is going to celebrate this special year.

We start off with this issue on embedded processors, and when next
month arrives, we’ll see some real-world applications of fuzzy logic. And
following that, it’s a spring whirlwind of informative issues on automation
and control, DSP, measurement and sensors, and communications.

As we get into summer, you’ll be sitting in the sun, seeing what’s cool in
the robotics field as well as the latest techniques and tools for development
and debugging. September brings the embedded apps issue (just right for
heading back to school), and in October, we’ll be hearing more about
software algorithms. Getting back to dealing with the bumps and hassles of
the real world, November deals with analog problems. And, in the last issue
of 1999, the focus will be on embedded interfacing.

Hey, wait a sec! All this doesn’t sound so new, does it?! Uh-oh. Do you
mean to tell me that for all this talk of brand-new year and a special way of
celebrating the century, we’ve scheduled more of what we’ve been doing all
along? Hmm... Well, on second thought, that’s probably the best possible
way for us to pay tribute to the years that have treated us so well. And, it’s
a good way for us to remind you that we’re committed to providing the same
quality of editorial in the future.

I hope you enjoy a productive 1999, and I wish you a happy new year!
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READER I/O
COULD I SEE YOUR LICENSE, PLEASE?

For some years now I’ve followed Linux and con-
sidered its use in embedded systems. I found the Em-
bedded RT-Linux (INK 100) article to be both timely
and informative.

However, an unfortunate error occurred where
BSD versus GNU GPL licensing was discussed. Al-
though the BSD kernels follow a different licensing
scheme, the Linux kernel is GNU GPL protected.

Aside from the brief mention that components
developed for a GNU GPL-protected system don’t fall
under the GNU GPL license, the problem concerns the
use of the GNU C library in embedded (especially
ROMed) applications.

This problem has received a lot of attention re-
cently because the GNU C library is protected under a
modified license, the GNU LGPL (Library General
Public License). The GNU LGPL states that if you
distribute binaries that are linked with the GNU C
library, you must make available linkable objects (or
the source) to your binaries so any downstream users
can recompile and/or relink your code with any up-
dated GNU C libraries that are available. This way,
downstream users aren’t locked into a particular revi-
sion of the GNU C library that was linked into a
vendor’s closed-source application.

Linking with a library was seen as producing a de-
rivative work. This would have forced GNU GPL li-
censing issues on the original code, making the GNU C
library almost useless for most commercial developers.

So that the FSF software would get some use, the
GNU LGPL was created. Object code generated by the
GNU C compiler from your source isn’t considered a
derivative work. Therefore, using the gcc compiler to
generate code doesn’t place you under the GNU GPL.

GNU LGPL was designed to deal with desktop
workstation situations where the GNU toolset is in-
stalled by default, enabling end users to relink an appli-
cation (given the linkable objects) or use dynamic
linking with distribution-supplied shared libraries. But,
an embedded system that boots from read-only media
immediately runs afoul of the GNU LGPL. Choosing
an alternative library and runtime enables you to ROM
an application without violating the FSF licenses.

In the case of an embedded system that includes
enough facilities (writable filesystems, and a console
interface or remote network attachment), supplying
linkable application objects and the tools and instruc-
tions necessary to relink the application (or use the
shared libraries) should be sufficient to be compliant
with the GNU LGPL.

This isn’t meant to scare anyone away from freely
available software, but a little time spent reading and
understanding licenses is time well spent.

Dave New
newd@esi.com

You’re right about the GPL issue. Because I’m
not a lawyer, I wanted to concentrate on the techni-
cal issues and just mention that, in contrast to Net/
FreeBSD, Linux is GPL licensed. Also, Pat Villani
discusses some of the issues in INK 95–96.

Anyone developing commercial products should
consult a lawyer for advice on legal issues about GPL
licensed code or license agreements of other codes.
Because the situation may be different for each
project, this is the best way to make sure the intellec-
tual properties of the project are protected. Unfortu-
nately, that’s the way it is in this business.

Ingo Cyliax

IS THAT ALL I GET?
I enjoyed the article by Alberto Ricci Bitti about

the Graphing Data Logger (INK 99), but it left me
wanting more—more description of the protocol that
the FX9750G uses. Does the Casio FX7400G share the
same protocol? What links are available for describing
Casio features? What links did Alberto find? What
kinds of projects are Circuit Cellar readers undertak-
ing with respect to the Casio/PIC combination?

Gus Calabrese
wft@frii.com

Editor’s note: Any thoughts on the topic? We’d love
to hear from you. Send any correspondence to
editor@circuitcellar.com.

Editor’s note: Thanks to James Horton for noticing
that the www.res.gatech.edu/~bdixon/rtlinux and
www.r52h146.res.gatech.edu/~bdixon/rtlinux URLs
mentioned at the close of “Embedded RT-Linux”
(INK 100) didn’t work. Although they were current
when Ingo wrote the article, it doesn’t take long for
things to get outdated. Now, there’s an official RT-
Linux site (www.rtlinux.org) with links to projects,
documentation, and downloadable modules for dif-
ferent Linux distributions.
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NEW PRODUCT NEWS
Edited by Harv Weiner

MULTIPLE TAPE BACKUP UNIT
Ultera Systems has announced plug-and-play

mirroring controllers for producing two or more
backup tapes as quickly as one. The Imager series of
controllers appears to have a single drive or auto-
loader but actually mirrors the data being backed up
onto two drives or two autoloaders, running them at
their maximum recording speed. By cascading the
devices, a user can produce four, six, or more copies
simultaneously without a sacrifice in speed.

The Imager series includes two models. Imager 1
operates at up to 20-MBps burst rate over a SCSI I or
SCSI 2 host channel, and records at up to 10 MBps
onto two individual drives or two autoloaders.
Imager 2 runs at up to 40 MBps from the host and to
the drives and also supports the robotics for
controlling tape libraries. Any SCSI tape drive and
any backup software can be used with either system.

Imagers can be managed on-line through a GUI
that is compatible with Windows 95, 98, and NT and
with DOS. Imagers can also be operated off-line
through their own control panel for tape copying,
comparing or verifying. Internal half-height 5.25”,
desktop, and rack-mount units are available.

Pricing for the Imagers begins at $2445.

Ultera Systems
(949) 367-8800
Fax: (949) 367-0758
www.ultera.com

BATTERY MONITOR IC
The DS2436 battery identification chip provides

a convenient method of tagging and identifying
battery packs by manufacturer, chemistry, or other
identifying parameters. The chip enables the battery
pack to be coded with a unique two-byte identifica-
tion number, and it stores information about battery
life and charge/discharge characteristics in its non-
volatile memory. Applications include cell phones,
audio/video equipment, data loggers, scanners, and
other hand-held instruments.

The DS2436 integrates a 10-bit voltage ADC and
13-bit temperature-sensing circuitry that monitors
battery temperature without requiring a thermistor
in the battery pack. A cycle counter manages bat-
tery maintenance intervals and helps the user to
determine the remaining cycle life of the battery.

The DS2436 also measures battery voltage and
sends the measured value to a host CPU. This fea-
ture is useful for end-of-charge or end-of-discharge
determination or for basic fuel-gauge operation.
Information is sent to and from the DS2436 over a
one-wire interface, so the battery packs need only
have three output connectors: power, ground, and
the one-wire interface.

The DS2436 sells for $4.10 in quantities of 1000.

Dallas Semiconductor
(972) 371-4448
Fax: (972) 371-3715
www.dalsemi.com

www.dalsemi.com
www.ultera.com
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NEW PRODUCT NEWS
PC DATA INTERFACE ADAPTERS

A PC can now be used to log data from GPS satellites, depth sounders, radar,
and other marine navigational devices with the latest data interface adapters
from B&B Electronics. The plug-in connectors convert NMEA (National Ma-
rine Electronics Assn.) standard data signals so they can communicate with
any RS-232/-422/-485 device, such as a PC or printer.

Two adapter models are provided to suit either the older NMEA or the
latest NMEA specs. Model 183COR converts the data signal from the
older version of the specifications (NMEA0183 V.1.x) to EIA RS-232/
-422/-485 signals. Model 183V2C is for NMEA0183 V.2.x, which is the
latest version of the NMEA specification. The 183V2C converts one
data signal in each direction between NMEA0183 and EIA RS-232.

The adapter model sells for $99.95 each.

B&B Electronics Mfg. Co.
(815) 433-5100
Fax: (815) 434-7094
www.bb-elec.com

PORTABLE EMBEDDED GUI
The PEG (Portable Embedded GUI) library is a pro-

fessional-quality graphical user interface library created
for embedded-systems developers. It is small, fast, and
easily ported to virtually any hardware configuration
capable of supporting graphical output. The default
appearance of PEG objects is almost identical to common
desktop graphical environments.

The PEG library is written in C++ and implements an
event-driven programming paradigm at the application
level. Each control type is built incrementally on its pre-
decessor, enabling
users to select and
use only objects
that meet their
requirements. The
PEG library pro-
vides an intuitive
and robust object
heirarchy. Objects
may be used as
provided or en-
hanced through
user derivation.

PEG provides a
set of hardware and OS  encapsulation classes, so the
PEG user interface can run as a standard 32-bit Win-
dows application.

PEG includes two PC executable utility programs.
PEG Font Capture enables users to convert standard

font files into a format required by PEG, and PEG
Image Convert converts standard .pcx, .bmp, and .tga
images into a compressed format supported by the
PEG bitmap functions.

PEG is designed to work with any compiler/debug-
ger combination. There are no internal restrictions on
CPU type or hardware configuration. It currently sup-
ports standard EGA/VGA, SVGA, and LCD (320 ×
240 × 4 color grayscale) video controller/display reso-
lutions. PEG is designed to work with any combina-
tion of mouse, touchscreen, or keyboard input.

PEG is licensed on a per-developed-product basis,
eliminating royalty fees. It is delivered with full source
code, several example application programs, hardware

interface objects for several
common video configura-
tions and input devices, and

thorough documen-
tation.

The cost of
$5000 includes six
months of free sup-
port.

Micro Digital, Inc.
(800) 366-2491
(714) 373-6862
Fax: (714) 891-2363
www.smxinfo.com

www.bb-elec.com
www.smxinfo.com
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NEW PRODUCT NEWS
GLOBAL COMMUNICATION DEVELOPMENT SYSTEM

The GC1100 developmentsystem integrates an embedded
controller, GPS receiver, communications modem, and a
user-command interface to enable the rapid design of track-
ing systems for a wide variety of GPS applications. The
GC1100 is ideal for GPS-based fleet management, AVL, or
asset-tracking systems.

The GC1100 contains a motherboard, an Ashtech G8
receiver, a Motorola 505SD modem that allows ARDIS
Packet Data, an operator display interface, 32 digital user
I/O lines, eight analog user inputs, and an active GPS an-
tenna (15–30-dB gain). Also, prewritten software provides
instant communication among all of the components.

The GC1100’s high I/O count provides many options for
user-specific applications. Digital and analog I/O enable
monitoring several aspects of vehicle status, ranging from
engine performance, cargo integrity and temperature, to fuel
stops and door openings. Also, messages to and from the
dispatcher and driver can be sent and displayed as text. The
variety of I/O enables easy interfacing as well as connecting
and monitoring digital and analog sensors.

The development system is available without a receiver or
modem and can accomodate a variety of receivers.

The individual package includes a modem and
receiver and sells for $1895.

Z-World
(530) 757-3737
Fax: (530) 753-5141
www.zworld.com

www.zworld.com
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NEW PRODUCT NEWS
The EDE702 serial

LCD interface IC permits
almost any text-based
liquid crystal display
screen to be controlled
via a one-wire serial
link. The chip, from
E-Lab Digital Engineer-
ing, is ideal for embed-
ded microcontroller
applications where
minimal I/O pin usage
is desired.

The EDE702 enables
full LCD control, in-
cluding the creation of
custom characters,
scrolling text, cursor
on/off, and so forth.
With transfer rates of
2400 and 9600 bps as

well as selectable data polar-
ity, the chip can interface
to almost any microcontrol-
ler that is capable of sending
asynchronous serial data.

Another plus for design-
ers is that this microcon-
troller connection can be
made without any type of

voltage-level conversion
hardware.

With the EDE702, circuit
designers can easily add an
LCD screen to their design
without being concerned
with the increased software
overhead or I/O require-
ments that typically accom-

pany an 11-pin LCD
interface. A serially
controlled digital output
pin makes the one-pin
serial interface effectively
a zero-pin interface.

The EDE702 is avail-
able in 18-pin DIP or
SOIC packages, and it
sells for $4.50 in quanti-
ties of 1000.

E-Lab Digital
Engineering

(816) 257-9954
Fax: (816) 257-9945
www.elabinc.com

SINGLE-CHIP DATA LOGGER

www.elabinc.com
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NEW PRODUCT NEWS
UNIVERSAL SECURITY DEVICE

The Safety Claw is a universal lock for any drive
on a PC or workstation. This device enables disk
drives to be protected whether they’re on a desktop
or tower PC. All other drives, including CD drives,
streamers, Zip drives, MO, or Syquest, can be reli-
ably secured against unauthorized use whether
they’re installed in a PC or as an external drive.

The Safety-Claw’s security plate is affixed to the
PC or external drive casing, and its bar is inserted to
block the drive. The Safety-Claw protects the PC or
external drive from robbery if the user inserts a steel
cable through the loop in the bar and attaches the
protected device to another firm object.

Additional uses of the Safety-Claw include pre-
venting a scanner or copier lid from being opened or
avoiding the unauthorized use of an interface and/or
removal of the cable on any device.

There are 200 different keys available for the Safety-
Claw, and keyed-alike systems can be ordered. The
steel bar of Safety-Claw is 6 mm in diameter, so it is
extremely difficult to cut.

The Safety-Claw sells for $29.95.

Interface Security Solutions Corp.
(800) 254-4392
(203) 743-1228
Fax: (203) 743-1458
www.crocodile.de

www.crocodile.de
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Microprocessor
Communications

FEATURE
ARTICLE

Stuart Ball

Communication is
tricky no matter what,
right? But when you
have several proces-
sors involved, well, it
just gets worse.
Stuart begins this
two-part series by
looking at ways to
get the messages
between processors
on a single backplane.

lthough most
embedded applica-

tions can be handled
with a single processor,

every now and then, you find a job
requiring a system with two or more
processors.

Nearly every multiprocessor design
needs a way for the processors to com-
municate. In this series, I look at the
different methods for communicating
between processors and the various
tradeoffs involved.

To start off, I’ll look at useful ap-
proaches when two processors share
the same PC board or backplane. Let’s
say the processor communicates with
a higher-level system, like a PC, and
distributes commands to a lower-level
processor that controls a DC motor
(see Figure 1).

CPU 1 talks to the host system, and
CPU 2 controls a DC motor, under the

Part 1: Methods for
Communicating

a

14

20

26

36

62

FEATURES
Multiprocessor
Communications

Developing a
Custom Integrated
Processor

Using Java in
Embedded Systems

Music at Your Fingertips

The PCL 3013 Step/
Servo Motor Controller
in Action

Figure 1— Although it’s rather simple, this block diagram
is representative of a typical multiprocessor application

Host
 system

CPU 1 CPU 2

DC motor

Shaft encoder

Sensors
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As Figure 1 shows, only seven bits
of the register are used for transferring
data. The eighth bit (D7/Q7) is a strobe
that indicates when data is available.

The strobe bit is needed because
CPU 2 may read the register anytime,
including the exact instant when CPU
1 is writing to it. As you see from the
timing diagram, when CPU 1 wants
to change the register, it executes two
write operations. The first write sets
the lower 7 bits (D0–D6), and the
second write toggles the strobe bit,
D7, without changing D0–D6 again.

CPU 2 only reads data when it sees
the strobe bit change state. So, if CPU 2
happens to be reading the register when
CPU 1 is updating the data bits, CPU
2 won’t see a change on the strobe bit
and will ignore the data. If CPU 2 reads
the register at the exact instant that
CPU 1 is changing the strobe bit, it
won’t matter if CPU 2 sees the change,
because the data bits are already stable.

Let’s say you defined some commands
for the control system as in Table 1.
As Figure 2 shows, CPU 1 previously
sent a Motor On command. This
command is followed by a command
to set the speed to 4, followed by a
Motor Off command. Each new
command changes the state of the
strobe bit.

The advantage to this scheme is
simplicity. A single 8-bit register is
used and may be embedded in an FPGA
or ASIC, or it may be implemented
with a multibit parallel I/O IC. Of
course, 16- or 32-bit processors can
use wider registers.

A simple system may not even need
a command structure. Instead, it can
assign a separate bit to each function.
Two-way communication can be
implemented with a second register,
written by CPU 2 and read by CPU 1.

Unfortunately there’s no feedback
to tell CPU 1 when CPU 2 has read the
data. This drawback has serious impli-
cations for the system’s throughput.

Say CPU 2 checks the register every
10 ms in response to a timer interrupt.
CPU 1 can’t send data any faster than
this or CPU 2 may miss a byte.

If CPU 2 polls the register on an
irregular basis, such as in a background
loop, then the fastest thatCPU 1 can
send data is the longest time it takes

CPU 2 to execute the loop.

REGISTER WITH FLAG
To achieve faster throughput, the

circuit in Figure 3 adds a set/reset
flip-flop to the basic register circuit.
The flip-flop is set when CPU 1 writes
to the data register and reset when CPU
2 reads the register. The flip-flop can
be constructed from a pair of NAND
gates, or it can be half of a 74xx74 with
the clock and D inputs grounded.

The flip-flop’s output is provided to
both processors so it can be read as an
empty/full flag for the data register. It
can connect to a status register or to a
microcontroller port bit.

To use this scheme, CPU 1 writes
something to the register. CPU 2 sees
the data available (because the flip-flop
was set) and reads it. CPU 1, polling
the flip-flop output, sees it go low and
knows that the register is empty and
ready for another byte of data.

Now, the basic register circuit is
morecomplex but the potential
throughput is greatly increased . The
maximum throughput is still limited,
though, because both CPUs must poll
the empty/full bit.

For example, if CPU 2 still polls for
data once each pass through a back-
ground loop, the worst-case transfer
rate is the same as in the single-register

control of CPU 1. CPU 2 senses the
motor position via a shaft encoder and
gets other sensor inputs as well.

In a typical real-world scenario, you
might find this arrangement if CPU 1
needs to execute slow, complex tasks
in response to the host, and CPU 2 has
to execute fast, simple tasks to control
the motor speed or position. You may
find CPU 1 controlling multiple proces-
sors like CPU 2.

Clearly, CPU 1 must communicate
with CPU 2 to get this job done. This
requires commands like turn motor on,
turn motor off, set motor speed to x, and
start motor when sensor y goes active.

Figure 2 shows one method of com-
municating between processors. The
circuit is an 8-bit register written by
CPU 1 and read by CPU 2. The register
is a 74xx374 (xx = LS, HC, ACT, etc.),
but this scheme can be implemented
in programmable logic or with any
register that has tristate outputs.

The D inputs to the register connect
to the data bus of CPU 1 (or to the lower
8 bits if CPU 1 is a 16- or 32-bit proces-
sor). The clock input (pin 11) connects
to a write strobe from CPU 1. The write
strobe is the same type you’d use to
clock data into any register or a periph-
eral IC, and it goes low when CPU 1
writes to the specific address where
the communication register is located.

The register’s Q outputs connect to
CPU 2’s data bus. When CPU 2 wants to
read the register, it generates a low-going
read strobe (a decoded address strobe)
at the register’s Output Enable (pin 1).
This strobe enables the tristate outputs,
so CPU 2 to read the register data.

74xx374

3
4

1

5
67

8 9

11

1213
14 15

1617
18 19

D0
D1
D2
D3
D4
D5
D6
D7

Q0
Q1
Q2
Q3
Q4
Q5
Q6
Q7

CPU 1
data
bus

CPU 2
data
bus

CPU 1
 *WRITE strobe

CPU 2 
*READ strobe

CPU 1 WRITE strobe

D0–D6 (data)

D7 (strobe)

50 44 51

2

Figure 2— Note that CPU 1 performs two writes to the
register for every bite transferred. The first write clocks
the data in, and the second one toggles the most
significant bit as a strobe.

Code
(hex) Command

4x Set motor speed to x
  (x = 0 to F)

50 Turn motor on
51 Turn motor off

Table 1—These are some examples codes for various
control commands.

74xx374

3
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5
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8 9
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1213
14 15

1617
18 19

D0
D1
D2
D3
D4
D5
D6
D7

Q0
Q1
Q2
Q3
Q4
Q5
Q6
Q7

CPU 1
data
bus

CPU 2
data
bus

CPU 1
*WRITE strobe

CPU 2 
*READ strobe

2

Register full flag
to CPU 2S

R *Q Register empty flag
to CPU 1

Q

Figure 3— Adding a set/reset flip-flop improves the
efficiency and speed of the register-based communication
method by providing an empty/full status to the two CPU’s
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implementation. The maximum rate
at which data can be transferred in-
creases because CPU 1 can transfer
data at the actual polling rate instead
of at the slowest possible rate. The
price is that both CPUs must have an
available port bit or status input to
read the empty/full flag.

INTERRUPT-DRIVEN SYSTEM
You can improve performance by

connecting the outputs of the set/reset
flip-flop of figure 3 to an interrupt on
each CPU (instead of to status bits).
CPU 2 gets an interrupt when the
register is full, and CPU 1 gets an
interrrupt when the register is empty.
Be sure you get the polarity of the
interrupts correct if you make this
change.

This scheme greatly increases the
potential data throughput. The maxi-
mum data rate becomes the sum of the
interrupt latency and processing time
for both processors. The price for this
approach is the need for one free inter-
rupt on each CPU (two if a reverse path
is also implemented).

There’s also the potential for CPU 2
to get hammered with constant inter-
rupts if CPU 1 has a lot of data to send.
One way around this is to have CPU 2
turn off the communication interrupt

during critical processing. However,
this approach decreases the overall
throughput.

FIFO
Figure 4 shows a FIFO interface.

This example uses a 7203, which is a
2 × 9-KB FIFO. The 7203 is an industry-
standard part from a family of parts
available in 512 × 9-KB, 1 × 9-KB, 2 ×
9-KB, and up. This example circuit
doesn’t show all the 7203 pins, just
those we’re interested in here.

The 72xx family of FIFOs contains
an internal SRAM and logic to control
access to the RAM. Data written to the
FIFO input by CPU 1 is placed in the
internal FIFO memory. Any time the
FIFO is empty, the Empty Flag (EF)
output is low. If the FIFO is not
empty, EF is high.

The incoming data is stored so that
CPU 2 reads it out in the same order
it was written. So, the FIFO acts as a
deep register that allows CPU 1 to
write multiple bytes without worrying
about how fast CPU 2 is reading them.

To use this method, CPU 1 typically
writes a complete, multibyte message
to the FIFO. When EF goes high (not
empty), CPU 2 reads the data. This
type of interface requires very little
overhead from the processors. The rate
at which CPU 1 sends data is not lim-
ited to the rate at which CPU 2 reads it.

The first drawback to this system
is a throughput limitation. Although
CPU 1 can send a message without
worrying about how fast CPU 2 can
read it, the average transfer rate can’t
exceed the capacity of CPU 2. If it does,
the FIFO fills up and data is lost. So, the
FIFO doesn’t really increase the over-
all data throughput, it just decreases
the overhead of transferring the data.

A second problem with the FIFO
interface is time delays. If CPU 1 sends
a command, such as Motor Off, there
may be a delay before CPU 1 reads the
message and acts on it. With register-
based approaches, CPU 1 always knew
CPU 2 was reading data as it was sent.
But with the FIFO design, that’s no
longer the case.

The third problem is relates to the
second and involves message priorities.
Suppose this hypothetical system had
messages of differing priorities. The
normal Motor Off command may

allow the motor to coast to a stop, but
there’s an Emergency Stop command
that brakes the motor instantly.

If Emergency Stop is received, you
presumably want to service it imme-
diately. If the interface uses a FIFO,
there’s the possibility that commands
can stack up in it, as shown in Figure
5. A low-priority command, like a speed
change, can be in front of a command
such as Emergency Stop.

Suppose that your command set
consists of long, multibyte messages
and that the software in CPU 2 reads
the first byte of each command to see
what kind of command it is. If the
command is low priority, like a speed
change, the software may decide to
read and process the command later.
This decision leaves the possibility
that Emergency Stop won’t be acted

on right away if it’s behind a low-
priority command in the FIFO.

The solution to this priority prob-
lem is for CPU 2 to read all messages
as soon as they are received. Lower
priority messages can be stored for
later execution, and high-priority mes-
sages can be executed immediately.
The drawback  is that all messages
must be treated as high priority be-
cause any message could have a high-
priority message stacked behind it.

DMA-BASED INTERFACE
Some microprocessors, such as the

‘186 and ’386EX, have built-in direct
memory access (DMA) controllers.
For these applications, the circuit in
Figure 6  eliminates nearly all of the
disadvantages I’ve described so far. This
circuit goes back to the register-and-
flip-flop approach, but with a twist.

7203

6
5

15
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114

3 12

1

1627
26 17

1825
24 19

D0
D1
D2
D3
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Q6
Q7

CPU 1
data
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CPU 2
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CPU 1 
*WRITE strobe

CPU 2 
*READ strobe

9

R

*EF

W
Data available

to CPU 2

Figure 4— A FIFO provides a very fast interface

Figure 6— If the processors support it, adding DMA to
the register-based scheme provides extremely fast, low-
overhead communication.
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Figure 5— It’s possible for a high priority message to
stack up behind lower priority messages in a FIFO This
situation can cause thehigh-priority message to be
serviced later than expected.
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*WRITE strobe
from CPU 1

Data ready flag

*READ strobe
from CPU 2

Data ready does not get 
reset during read.

In Figure 6, the flip-flop outputs do
not connect to status bits or to inter-
rupt inputs. They connect to the DMA
request signals on both processors. CPU
1 receives a DMA request when the data
register is empty and CPU 2 gets one
when the register is full.

Let’s look at three ways to imple-
ment this interface in software. First,
all messages have a predefined length
(16 bits, 32 bits, etc.). Shorter messages
are padded out to this length. CPU 2
sets up its DMA controller to transfer
one complete message. When CPU 1
wants to transfer data, it tells its
DMA controller to send the block of
memory to the data register.

As each byte is sent, the DMA
request to CPU 1 goes inactive and
the DMA request to CPU 2 goes active.
When CPU 2’s DMA controller reads
the byte, the DMA requests swap states
again and CPU 1’s DMA controller
sends the next byte.

After the entire message is received,
CPU 2 gets an interrupt from its DMA
controller and processes the received
data. The entire transfer is accomplished
in a few tens of microseconds, although
the processing may take longer.

If your application requires variable-
length messages, you can define each
message so the first byte defines the
length. As before, CPU 1 sets up its

Figure7a— If CPU 2 is much faster than CPU 1, CPU 2 may detect the register full condition and read the data while CPU 2 is still performing a write cycle. This results in  the
register full condition remaining active and CPU 2 reading two bytes instead of one. b—By connecting the CPU 1 write strobe to the clock input of  the status flip-flop (instead of
the SET input), the status flip-flop is not set until the end of the write cycle. c—The change prevents the race condition from occurring, regardless of the relative CPU speeds.

*WRITE strobe
from CPU 1

Data ready flag

*READ strobe
from CPU 2

+5 74xx74

Data readyS
D
R Q

Q

CPU 2 
*READ strobe

CPU 1 
*WRITE strobe 

c)b)a)

DMA controller to send the entire mes-
sage. CPU 2 has already set up its DMA
controller to transfer a single byte.

When the first byte of the message
is sent, CPU 2 gets an interrupt (from
its DMA controller) and reads the byte.
CPU 2 then sets up its DMA controller
to transfer the rest of the message
based on the length byte. This method
enables variable-length messages to be
sent, but CPU 2 now has to service two
interrupts for each message and the
maximum transfer rate is slower.

The third method is for CPU 2 to
set its DMA controller to transfer more
data than the longest possible message.
When CPU 1 sends data, it gets an
interrupt (from its                          DMA controller)
indicating that the transfer is complete.

CPU 1 notifies CPU 2, via another
interrupt path, that a message is avail-
able. CPU 2 then reads the length from
its DMA controller pointer registers and
processes the message normally.

In a DMA scheme, CPU 2 sets up a
block of memory as a buffer for the
DMA data. For example, if each mes-
sage is 16 bytes in length, CPU 2 can
set up a 256-byte block of memory
that contains 16 message buffers.

Using DMA also avoids the FIFO
priority issue in two ways. First, the
transfers are executed directly to mem-
ory in hardware, making the process of
reading the data less of a bottleneck.
Second, if CPU 2 uses multiple buffers,
lower priority messages can be left in
their buffers until they are acted on,
whereas high-priority commands can
be executed immediately.

Even if only one of your CPUs has
built-in DMA, you can take advantage
of this approach. The CPU with DMA
can transfer messages using DMA,
eliminating the overhead of polling or
servicing one interrupt per byte. While
you won’t get the throughput of a
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dual-DMA design, sometimes you get
simpler software with this approach.

With any DMA-based approach, make
sure the timing of setting and resetting
the flip-flop meets the requirements
for the DMA controller. The primary
drawback to this approach is that one
or both processors must have DMA
capability.

The primary advantage is extremely
fast data throughput, and although it’s
probably not worth changing processors
just to use this technique, it can provide
a fast communication path if the pro-
cessors support it.

RACE CONDITION
All the variations of the register-and-

flip-flop design are susceptible to a race
condition if one processor is consider-
ably faster than the other. In Figure 7a,
CPU 2 is much faster than CPU 1, so
CPU 2 sees  the flip-flop get set and
reads the data while CPU1 is still
writing to the register. As a result, the
flip-flop doesn’t get reset properly.

A typical scenario where this might
occur is if CPU 2 is a very fast DSP

communicating with a slower general-
purpose microprocessor.

The solution: use a synchronous
design (where evrything is referenced
to one of the CPU clocks) or use a
clocked flip-flop. Figure 7b shows how
a flip-flop like the 74xx74 would be
connected to fix the timing problem.

Figure 7c shows the new timing.
Because  the write strobe from CPU 1
is connected to the clock input of the
74xx74, the data ready flag doesn’t get
set until the end of the write cycle,
eliminating any timing conflict.

DUAL-PORT RAM
I also want to mention dual-port

RAM (i.e., RAM that can be accessed
by either processor). One option is to
use an off-the -shelf dual-port RAM IC
with two addresses and data buses. You
can get controller IC’s that convert
standard RAM devices to dual port.

The second method is to use the
existing RAM associated with one of
the processors. This approach is sim-
pler than an external RAM, but it can
affect the throughput of both processors.

 All of these approaches can be mixed
and matched. For instance, if your appli-
cation has a CPU 1-to-CPU 2 interface
that requires  long data messages at
high rates, you might implement a
DMA controlled register for that inter-
face. The return path, from CPU 2
back to CPU 1, might carry only in-
frequent status bytes, so it may be a
simple polled register interface.

Next time, I’ll look at methods you
can use if your processors must com-
municate over a greater distance. I

Stuart Ball works at Organon Teknika,
a manufacturer of medical instruments.
He has been a design engineer for 18
years, working on projects as diverse
as GPS and single-chip microcontroller
designs. He has also written two books
on embedded-system design. You may
reach Stuart at sball85964@aol.com.
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Developing
a Custom
Integrated
Processor
Analyzing the Price/Performance
Tradeoff

ew uses for ad-
vanced embedded

microprocessors are
emerging everywhere,

especially in the highly competitive,
fast-paced market of consumer elec-
tronics. Thanks to cooperative efforts
with silicon vendors, embedded-system
developers can manipulate powerful
variables in the price/performance
equation that were previously beyond
their control.

Optimizing an embedded processor
presents an earnest challenge and it
requires the system designer to per-
form a delicate balancing act between
performance and cost. Ultimately, this
approach produces an embedded-pro-
cessor solution that is fine-tuned for a
given system and/or application.

DESIGN MODELS
With the traditional system design

model, the engineer remains at the
mercy of standard product offerings
from the semiconductor vendor. A
chipmaker’s catalog of standard pro-
cessor configurations may or may not
include precisely what’s required for a
given application.

With a standard product, system
designers may have to pay for functions

n

(and silicon) they’ll never use. Addition-
ally, the device may lack certain func-
tions that could significantly enhance
the system performance of a given
application if integrated on-chip.

But, a new system design model is
emerging, brought on by the availabil-
ity of modular, fully synthesizable,
process-independent microprocessor
cores. For the first time, design engi-
neers have unprecedented control over
defining and configuring embedded
processors.

Customizable cores, like the Motor-
ola ColdFire family, can be cost-effec-
tively tailored to meet the demands of
specific applications. The ColdFire
architecture was developed to address
this class of applications.

Based on variable-length RISC tech-
nology, ColdFire combines the archi-
tectural simplicity of conventional
32-bit RISC with a memory-saving,
variable-length instruction set. In
defining the ColdFire architecture,
Motorola incorporated a RISC-based
processor design and a simplified ver-
sion of the variable-length instruction
set found in the 68k family.

The result is a family of 32-bit
microprocessors suited for those em-
bedded applications requiring high
performance in a small core size. The
ColdFire family provides balanced
system solutions to a variety of em-
bedded markets. Here are some of the
basic philosophies that have guided
all ColdFire designs.

When it comes to small, fully
synthesizable processor cores, devel-
opments are on track with a publicly
announced performance roadmap
reaching 300 MIPS by the year 2001.
Using compiled memory arrays and
100% synthesizable designs enables
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Figure 1— This generalized block diagram shows a
custom integrated processor using a ColdFire core.

If standard processor
configurations aren’t
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you can manipulate
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the price/performance
equation

FEATURE
ARTICLE
Joe Circello &
Sylvia Thirtle



CIRCUIT CELLAR INK®                  Issue 102 January 1999        21

system designers to easily
define CPU configurations.

Figure 1 depicts the standard
ColdFire microprocessor con-
figuration. The hierarchical
bus structure and the modular
architecture are apparent. You
can add other logic, in the form
of predefined macros, from
Motorola’s library or synthe-
size your own proprietary
circuits.

MAXIMUM ARCHITECTURE
Fine-tuning a custom em-

bedded processor for optimal
price and performance requires
some insight into the specific
architecture’s variables. The
difficulty of this process is
influenced by the sophistica-
tion of the silicon vendor’s
development environment as
well as the system designer’s
ability to provide accurate, real-world
application data for the target system.

For example, the system OEM may
be able to provide information from a
previous-generation system. The data
can be a key piece of software that
represents a critical execution path of
the given application. If possible, the
ability to extract the key software
routines and recompile them for the
target system makes the process
much easier.

As an alternative, trace data captured
from a previous-generation system
can also provide critical information
for sizing the processor’s local memo-
ries (e.g., cache, RAM, ROM). These
dynamic traces, whether captured
from an earlier design or created by
the application code running on a
software simulator of the target sys-
tem, are crucial for the price and per-
formance optimization analysis.

PREDICTING PERFORMANCE
Although ratings for microproces-

sors are expressed in MIPS, this num-
ber often fails to accurately predict
the performance of an embedded mi-
croprocessor system for a given appli-
cation. Many times, these ratings
need a “mileage you get may vary”
disclaimer. Unless the effects of the
memory subsystems are taken into

account, these simplistic ratings can’t
accurately indicate performance.

Today, more precise performance
estimates of a hypothetical or actual
processor core can be made. By taking
specific system and memory subsystem
variables into account, this methodol-
ogy provides a more accurate represen-
tation of completely different CPU
configurations and architectures.

The predicted performance of a
processor can be developed using an
average-instruction-time methodology.
In its simplest form, this cycles per
instruction (CPI) metric represents
the number of machine cycles per
instruction and is calculated for a
single-issue architecture as:

where CPI is the average instruction
time expressed in cycles per instruction,
F(i) represents the dynamic frequency
of occurrence per instruction, and ET(i)
is the execution time for a given in-
struction i. By summing the product
of relative frequency and execution
time for each instruction type, the
average instruction time for a processor
executing any given instruction mix
can be calculated.

Consider the definition of a
base average instruction time
(base CPI). Let the base CPI
represent maximum processor
performance strictly as a func-
tion of the instruction mix.
Stated differently, this metric
represents the processor’s per-
formance assuming the rest of
the system (caches, memory
modules, etc.) is ideal.

Figure 2a shows the base
CPI where the summation
product was previously defined
and the sequence-related pipe-
line stalls include all pipeline
breaks caused by the instruc-
tion sequence. You can calcu-
late the base CPI by summing
the product of the relative
frequency of occurrence and
execution time for each instruc-
tion type plus the sequence-
related holds.

This base CPI provides a parameter
to quantify the performance of a given
processor microarchitecture. To con-
vert this value into a more realistic
measure of predicted system perfor-
mance, you have to consider a series
of degradation factors.

Let the effective average instruction
time (effective CPI) represent this more
realistic measure of performance. By
quantifying the degradation factors
associated with these other system
components, the effective CPI can be
calculated. As an example, the proces-
sor stalls resulting from cache misses
typically represent the largest degra-
dation factor in the effective CPI
equation.

In Figure 2b, the calculated effec-
tive CPI is reached by summing the
individual degradation factors. Let’s

a)  base CPI [cycles/inst] = summation {F(i) × ET(i)} +
       sequence-related pipeline stalls

b)  effective CPI [cycles/inst] = base CPI
       + summation of memory factors
       + summation of system factors

c)  effective CPI [cycles/inst] = base CPI
+ IC_miss × IF × IF_stall
+ OC_miss × REF × OP_stall

where the cache memory degradation factors include:

IC_Miss = Cache miss rate on instruction fetches (Miss/fetch)
IF = Instruction fetches per instruction
IF_stall = Time [cycles] the processor core is installed servicing
  an instruction fetch miss
OC_Miss = Cache miss rate on operand  fetches (Miss/OPFetch)
REF = Operand references per instruction
OP_stall = Time [cycles] the processor core is installed servicing
  an operand miss

d)  effective CPI = base CPI
+ {(IC_Miss × IF) + (OC_Miss × REF)}
× {2 + 11 + 0.6 × (12 + 13 + 14)}

Figure 2a— Here’s the simplified expression for the processor’s performance
measured by effective CPI. b—This generic expression defines performance as
measured by effective CPI. c—This more detailed equation defines effective
CPI performance for a processor with cache memory. d—And, this is the
effective CPI equation for the ColdFir2 V.2 and V.3 processors.

Figure 3— This diagram gives you an overview of the
ColdFire performance-analysis methodology.
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Figure 4— The operand address histogram is taken
from a set-top box application.

define the memory subsystem factors
as those associated with a cache
memory, and assume the remaining
system factors are negligible.

The effective CPI equation can
then be rewritten as in Figure 2c. The
first degradation term quantifies the
CPI contribution due to instruction
fetch cache misses, and the second
term quantifies the operand reference
cache misses.

The relative performance between
two systems, x and y, can be expressed
as:

where the first ratio defines the archi-
tectural factor, the second ratio is the
technology factor, and the third ratio
is the instruction set/compiler factor.

Using the system performance
equation, you can analyze the relative
performance of different generations
of a microprocessor family, or compare
different architectures. For benchmarks
where the same binary code image is

executed on different designs, the rela-
tive performance equation reduces to
the product of the architectural and
technology factors.

MODELING TOOLS
Given CPI methodology, a number

of tools have been developed to assist
in this kind of performance analysis
for the ColdFire architecture.

You can use a number of architec-
tural models to analyze various factors
within the effective CPI performance
equation. These tools are typically
high-level C language models of cer-
tain functions within the design and
are driven with information from the
ColdFire ISA simulator or trace data.

The ISA model is a C-language
program that defines the expected
results of execution of the instruction
set architecture. By inputting a mem-
ory image file, the ISA model executes
the program on an instruction-by-
instruction basis, updating all program-
visible machine registers and memory
as required. This ISA model is instru-
mented to optionally output informa-
tion on instruction fetch, operand
addresses, and program counter values.

By executing the target application
on the ISA simulator with the appro-
priate outputs enabled, a stream of data
from the executing application can be
input to one of the architectural models.
This input data provides the required
stimulus to the architectural models.

Processor pipeline models are used
for base CPI analysis. There’s also a
program that gathers detailed statistics
about dynamic opcode usage. Recall-
ing the base CPI equation, this program
provides the F(i) factors associated with
the various opcodes for the application.

ADDITIONAL ANALYSIS MODELS
The ColdFire cache model quantifies

numerous performance parameters for
various cache sizes, associativity, and
organizations. It uses the stream of
reference addresses generated by the
simulator as input, and models the
behavior of Harvard and unified caches
of sizes from 512 bytes to 32 KB.

Additionally, the associativity can
vary between two-way and four-way,
and the operands can be mapped into
copyback or store-through space. This

model can also include a RAM, mapped
to a specific region, for heavily-refer-
enced operands or code segments. Map-
ping the active region of the stack frame
to this type of RAM is often effective.

A second model provides informa-
tion for memory address profiling.
Using the stream of reference addresses
as input, this model profiles the mem-
ory access patterns to identify critical
functions and/or heavily referenced
operand locations. For some systems,
such profiling helps you understand
the required amount of RAM as well
as which variables to map into this
space to maximize performance.

Of prime importance is verification
of the architectural models. So, at
various times throughout the analysis
process, the accuracy of the architec-
tural models is validated.

The V.2 processor pipeline archi-
tectural model was initially verified
by comparing predicted base-CPI val-
ues versus those directly measured
from silicon. Reviewing measured
base-CPI values versus those predicted
by the pipeline model, the error was
less than a 0.5% difference across a
large set of embedded benchmarks.

The cache architectural models were
validated against the design descrip-
tions for several ColdFire MPU designs.

Another area of interest is the
modeling of the {IF,OP}_stall
times. These degradation factors rep-
resent the pipeline stall that occurs on
a cache miss. For the nonblocking
streaming cache designs of the V.2 and
V.3 cores, these terms are modeled as:

{IF, OP}_stall =
       (1 + t1) + 1.0 + 0.6 × (t2 + t3 + t4)

Memory
Configuration

2-KB cache
     +4-KB RAM
4-KB cache
     +4-KB RAM
8-KB cache
     +4-KB RAM
16-KB cache
     +4-KB RAM
32-KB cache
     +4-KB RAM

Relative
performance

1.00
1.05
1.19
1.27
1.52
1.61
1.98
2.06
2.71
2.91

Relative
area

1.00
1.19
1.11
1.31
1.32
1.52
1.79
1.98
2.71
2.91

Table 1—Here’s the relative performance and area for
various ColdFire configurations executing a set-top box
application

x performance
y performance

=

y eff CPI
x eff CPI

× y cycle time
x cycle time

× y executed insts
x executed insts
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where the response
time of the external
memory for a line-
sized fetch is speci-
fied as t1 - t2 - t3 -
t4 when viewed
from the micropro-
cessor pins.

Using the equa-
tion in Figure 2d for
the V.2 and V.3
designs, the relative
error between the
predicted and mea-
sured effective CPI
was less than 2% across a wide suite
of embedded benchmarks.

Figure 3 summarizes the process.
The architectural models are driven
by trace data captured from existing
hardware or from a compiled applica-
tion executed on the instruction set
simulator. The resulting streams of
addresses and instructions are then
input to the specific models.

The profiling tool determines any
hot spots in the code or data areas
that might be considered for placement

in local RAMs or ROMs. The pipeline
model produces the base CPI perfor-
mance metric for a given version of
the ColdFire microarchitecture.

The local-memory models deter-
mine all the performance parameters
associated with the cache, RAM, and
ROM modules. The miss ratios are
based on size, organization, and the
dynamic stream of reference addresses.
The base CPI and memory parameters
are combined to produce an effective
CPI value that provides an accurate

measure of predicted
performance for a given
configuration.

OPTIMAZATION
EXAMPLES

To see how  the per-
formance  analysis pro-
cedure works, consider
the following real-
world examples.

To begin, let’s say
you are implementing a
digital set-top box. By
instrumenting an exist-

ing 68k system, trace data is captured
for two critical execution paths.

The challenge is to determine the
appropriate amount of local processor
memories (cache and possibly RAM)
to optimize price and performance for
a V.3 ColdFire design. When imple-
mented in 0.35-µm process technology,
the V.3 core provides 70-Dhrystone,
2.1-MIPS performance when operating
at 90 MHz.

The trace data is profiled to identify
any potential hot spots that might
benefit from placement in a RAM.
The profile in Figure 4 shows several
spikes representing heavily referenced
operand areas.

The largest reference area is gener-
ally the system stack and the first
candidate for mapping into a local
RAM. Using the architectural models,
the relative performance and area
calculations across a range of cache
and RAM configurations are given in
Table 1. The reference design is a V.3
core with 2 KB of cache memory.

In Table 1, the relative performance
ranges from 1.0× to 2.6× as a function
of local memory configurations with a
corresponding relative area of 1.0–2.9×.
Depending on system requirements,
the appropriate configuration can be
selected, as shown in Figure 5.

In the second example, a customer
provides a C-language benchmark that
represented four execution paths in a
servo control application. In this real-
time application targeted for a V.2
core, absolute performance in response
to certain interrupts was critical.

There was a fixed amount of time
to service the interrupt and the algo-
rithm implemented a number of digital

Figure 5a— This graph depicts the relative performance as a function of cache and RAM sizes. b—By
contrast, this graph shows the relative performance per area as a function of cache and RAM sizes.

a) b)
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filters. Given the signal-processing
nature of the application, this analysis
attempted to quantify the impact of
the ColdFire multiply-accumulate
unit (MAC). The optional MAC is
tightly coupled to the basic execution
pipeline and is designed to accelerate
signal-processing algorithms.

Initial analysis indicated that the
dynamic frequency of occurrence for
multiply instructions (i.e., F(mul))
was ~10%. Applying the MAC pro-
vides faster execution time for multi-
ply instructions, reducing ET(mul).

Many implementations of digital
filters can be optimized using MAC
instructions directly. First, the bench-

mark code was compiled and executed
on a V.2 core and its performance mea-
sured. This value provided the reference.

The code was recompiled using C-
language macros to use MAC instruc-
tions for arithmetic calculations. The
compiler-generated MAC assembly-
language code was optimized by hand
to provide an upper bound of perfor-
mance. Table 2 shows the results.

The baseline core configuration
included the processor complex with
8 KB of RAM. Including the MAC unit
increased this area by only 11% but
increased performance by 1.5–1.7×.

WHICH MEANS…
This analysis methodology pro-

vides a powerful tool, now system
designers can balance processor perfor-
mance, clock speed, and relative die size.

Given a highly configurable archi-
tecture, system designers now have
access to the key silicon variables
needed to create embedded processor
solutions optimized for a given appli-
cation. And, the result? Smart, intui-
tive, and user-friendly products. I

Relative
Configuration performance

CF2, no MAC      1.00x

CF2 + MAC with compiler-      1.45x

generated MAC instructions

CF2 + MAC with hand-      1.69x

optimized MAC instructions

Table 2—Depending on the servo control application,
the relative ColdFire performance will vary.

Joe Circello works as an advanced micro-
processor architect for Motorola’s Semi-
conductor Products Sector and was the
chief architect for the MC68060 and the
ColdFire family of microprocessors. With
23 years of experience, he is a veteran
designer specializing in pipeline organi-
zation, control structures, and perfor-
mance analysis. You may reach Joe at
Joe_Ciecello-rzsx90@email.sps.mot.com.

Sylvia Thirtle is a principal staff engineer
for Motorola’s Semiconductor Products
Sector, specializing in high-speed digital
ASIC design. In her five years at
Motorola, she’s been involved in various
design activities with ColdFire and is
currently leading the design of the debug
module for the next-generation develop-
ment. You may reach Sylvia at Sylvia_
Thirtle-r24495@email.sps.mot.com.
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Using Java
in Embedded
Systems

lthough Java has
properties that

would be useful for
embedded-system design,

the versions of Java used in desktop
systems just aren’t suitable for embed-
ded systems. There are some alterna-
tives, but they do have drawbacks.

When considering the alternatives,
it’s important to consider issues like
multithreading and debugging support.
Regardless of whichever option emerges
as the preferred form, two key issues
must still be addressed by any embed-
ded Java programming environment:
how to provide determinism and how
to interface to hardware.

JAVA IS GOOD
One of Java’s strengths is its reason-

ably clean sytax that is strongly remi-
niscent of C or C++. So although it’s a
new language, it’s familiar. Getting
up to speed with Java is easy.

More importantly, Java is both
object-oriented and strongly typed.
Everything in Java is an object and
there are no loopholes to circumvent
Java’s strong typing. Since the advent
of C++, these features are considred
essential in a programming language
because they contribute enormously to
the correctness of programs.

Aneccdotal evidence bandied about
in Java newsgroups and mailing lists

a

suggests thatdevelopers take less time
to produce a working Java program than
a program in C or C++. Debugging is also
easier because Java has removed a prolific
source of hard-to-find bugs, including
those related to the incorrect use of
pointers.

Example bugs include memory leaks
and memory access errors (wild point-
ers, referencing freed memory, return-
ing a pointer to a local variable, etc.).
Java doesn’t allow its pointer equivalent
(i.e., object references) to be manipulated
in the same way as pointers are in C
or C++, and it provides automatic
garbage collection.

Another strength of Java is its large
reusable code base. In the standard
distribution, Java supports threads,
TCP/IP networking, and remote invo-
cation. It even has a full set of classes
for building GUI’s.

Additional API’s support a variety
of needs, such as database access,
communication, multimedia, a way
to use GUI components, and security.

With Java’s strengths as a language,
a development environment, and a
reusable code base, it’s easy to see
why developers—and not just embed-
ded-system developers—are eager to
put it to use.

DESKTOP JAVA DRAWBACKS
Unfortunately, as I mentioned,

desktop Java has some drawbacks
when used in embedded systems.
Although Javawas originally intended
for use in set-top boxes, it was first
used in a web browser, which is a
desktop application.

First, desktop Java is too big for
embedded applications. Not only must
the entire Java virtual machine (JVM)
be present, but a Java interpreter or a
just-in-time (JIT) compiler must be
present as well.

On top of that, all the standard
classes must be present. These take
up to 8 MB on disk, more when
loaded. Fonts take even more space.

The bottom line is that desktop
Java needs on the order of 16 MB just
to run, and the application needs are
additional. Very few embedded systems
have that kind of memory available.

Also, Java is too slow. Sun’s first
releases were usually more than 30x

If you’re set on putting
some desktop-Java
functionality into an
embeded system,
chances are that
you’ve had some
sleepless nights. No
more! That’s what
Vladimir and Mike
Promise if you’ll con-
sider the available
alternatives.

FEATURE
ARTICLE
Vladimir Ivanovic &
Mike Mahar
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slower than equivalent C code. Subse-
quent releases, which use JIT compilers,
are significantly faster but still perhaps
5x slower than equivalent C. If you’re
used to squeezing out the last few
cycles out of a processor, this is a
heavy penalty to pay just to use Java.

But, the most omportant drawback
of desktop Java is that it doesn’t meet
the constraints of most embedded
systems. One such constraint is the
requirement for real-time behavior
(i.e., execution that’s both predictable
and bounded in duration).

Many embedded systems have severe
real-time requirements. For instance,
the collision-detection system on a
jetliner has seconds in which to respond.
Computation must finish in a certain
amount of time, so execution has to
be predictable.

Another constraint of embedded
systems is their limited resources.
Consumer devices, which may be
manufactured in the millions, are very
sensitive to cost, so designers tend to
use the smallest processor and the
smallest amount of memory possible
to do the job. A programming language
that’s slow and uses up a lot of mem-
ory just isn’t competitive with  existing
alternatives.

More importantly, Java doesn’t
possess the notion of an address. Em-
bedded systems, almost by definition,
are required to access hardware. Most
often, that hardware is accessed by
referring to a specific address. Because
addresses aren’t part of Java, you have
to go outside the language to overcome
this constraint.

Finally, desktop Java has some
attributes that get in the way of suc-
cessful use in embedded systems.
These attributes may be useful and
even necessary in desktop systems,
but not  in embedded systems.

For instance, Java is interpreted
(the source of much of its slowness)
an dit is dynamic because it supports
the down loading of new classes on-the-
fly. Java is portable across many differ-
ent systems because its source code is
compiled, not to native code, but to
bytecodes, an architecture-neutral
format. Also, Java supports a compre-
hensive security model designed to
prefent many kinds of attacks.

However, for embedded sysems,
which frequently exist in completely
closed environments, portability and
security aren’t issues. Unless an
embeded system is connected to a
network, the ability to load new
classes dynamically is useless.

These attributes of desktop Java
prevent its use in embedded systems.
And, the issues of performance, memory
consumption, and poor real-time be-
havior make it hard to retarget the desk-
top version to an embedded system.

EMBEDDED ALTERNATIVES
What are the alternatives? How

can an embedded-systems developer
use the great features of Java without
quadrupling the system’s cost or writ-
ing piles of non-Java code?

Essentially, there are only three
options: use a special-purpose JVM,
use a JVM with a JIT compiler, or use
compiled Java instead of some form of
interpreted Java.

Many vendors have come up with
specially tailored versions of Java that
are a better fit for the needs of embed-
ded developers. For instance, Sun offers
PersonalJava for systems with 2-4 MB
of memory and EmbeddedJava for
smaller systems (Mentor Graphics’
Microtec Division is a licensee of
PersonalJava). Hewlett-Packard, NSI
Com, Insignia Solutions, NewMonics,
and others have similar offerings.

Another approach, even in versions
tailored for embedded use, is to use a
dynamic compilation technique, typi-
cally a JIT compiler, to increase perfor-
mance. But there are several tradeoffs
involved.

First, JVMs with JITs have poten-
tially longer start-up times because
the JIT compiler has to compile Java
bytecodes into native amchine language
before executing. Secondly, it’s difficult
to do a good job of optimizing native
code while keeping memory consump-
tion low. The more optimizations
that are done, the larger and slower
the JIT compiler becomes.

Several vendors provide knobs to
tune the dynamic compilation process
so you can choose on a case-by case
basis exactly what the performanse,
memory consumption, and start-up-
time tradeoffs are going to be.

But, for some embedded applications,
even a JVM with dynamic compilation
is too slow and takes up too much
memory. One option that is increas-
ingly being considered is compiling
Java directly to a native machine lan-
guage, thereby eliminating both the
JVM and either the interpreter or the
JIT compiler.

Of course, the resulting application
is no longer portable, but embedded
developers typically don’t care about
portability. For a given design, their
application needs to run on a single
well-known hardware configuration.

 The other attribute that compiled
Java forces  a developer to give up is
the ability to load new classes on-the-
fly. Because all the code is precompiled,
there’s no facility for dynamic loading
of classes. Again, this issue probably
isn’t too serious for embedded-system
developers, most of whom don’t want
random classes downloaded onto their
system.

object_a->next = object_c;
if(object_c != NULL)
if(object_c->garbage_flags == WHITE){

object_c->garbage_flags = GRAY;
gc_make_gray(object_c);

}

Listing 1— Since a compiler knows about every write to memory, it inserts a write barrier automatically.

Figure 1— Object C is lost if the application changes
pointers between garbage-collection scans.
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If you’re willing to tolerate the
lack of portability and the lack of
dynamic class loading, you can still
reap all the benefits of Java as a great
language and keep the system small
and fast—that is, if you can resolve
the issues of determinism and low-
level programming.

RESOLVING THE ISSUES
Any version of Java for embedded

systems must first be deterministic
and predictable. It also has to be able
to access memory directly.

One bugaboo of embedded systems
is ensuring real-time response. In the
case of Java-based systems, the primary
cause of nondeterminism is the garbege
collector.

In desktop systems, it doesn’t matter
much that the JVM stops for several
seconds to collect unused memory.
But in an embedded system, several
seconds can be the difference between
correct operation andthe loss of hu-
man life.

The biggest threat to an embedded
operation is that most garbage collec-
tors work in what’s called stop-the-
world mode. Usually, the collector is
called only when an allocation fails
because memory is exhausted. There-
fore, allocation time is impossible to
predict, and when the collector is
running, no other processing is being
done. This situation is unacceptable
in a real-time system.

An obvious solution is to have the
garbage collector run concurrently
with the application so that the im-
pact of garbage collection is spread
around more evenly. This way, time-
critical events are processed in a
timely manner.

Ensuring real-time reponse still
isn’t enough to make Java useful for
developing embedded systems. Be-
cause the added value of embedded
systems is their specialized hardware,
the embedded software must always
be able access or control the hardware,
which requires an extension to the
Java through a Java Native Interface
(JNI) with several possible options or
through a nonstandard extension of
the Java language.

Sun’s JNI permits portability across
different JVMs on a particular processor

import COM.mentorg.microtec.phys.*;
class m68561  {

PhysByte this_uart;
PhysByte Tsr, Tdr, Rsr, Rdr;
int baseAddr;
m68561(int base_addr)  {

baseAddr = base_addr;
this_uart = new PhysByte(baseAddr);
Tsr = new PhysByte(baseAddr + 0x8 * 4));
Tdr = new PhysByte(baseAddr + 0xa * 4));
Rsr = new PhysByte(baseAddr + 0x0 * 4));
Rsd = new PhysBYte(baseAddr + 0x2 * 4));

// Initialize UART. Reuse this_uart object because registers
// are only used once or twice

this_uart.setAddress(baseAddr + (0x1  * 4)); //RCR
this_uart.set(1); // Reset receiver
this_uart.setAddress(baseAddr + (0x9  * 4)); //TCR
this_uart.set(1); // Reset transmitter
this_uart.setAddress(baseAddr + (0x19 * 4)); //PSR2
this_uart.set(0x1e); // 1 stop, 8 bit
this_uart.setAddress(baseAddr + (0x1c * 4)); //BRDR1
this_uart.set(0x8c); // 9600 bps
this_uart.setAddress(baseAddr + (0x1d * 4)); //BRDR2
this_uart.set(0); //
this_uart.setAddress(baseAddr + (0x1e * 4)); //CLKCR
this_uart.set(0x1c); // Divide by 3, TCS out, TXC in
this_uart.setAddress(baseAddr + (0x1f * 4)); //ECR
this_uart.set(0); // No parity, no error check
this_uart.setAddress(baseAddr + (0xd * 4)); //TIER
this_uart.set(0); // No transmitter interrupt
this_uart.setAddress(baseAddr + (0x15 * 4)); //SIER
this_uart.set(0); // No serial interrupt
this_uart.setAddress(baseAddr + (0x05 * 4)); //RIER
this_uart.set(0x1e); // No receiver interrupt
this_uart.setAddress(baseAddr + (0x1 * 4)); //RCR
this_uart.set(0); // Enable receiver
this_uart.setAddress(baseAddr + (0x9 * 4)); //TCR
this_uart.set(0x80); // Enable transmitter
this_uart.setAddress(baseAddr + (0x11 * 4)); //SICR
this_uart.set(0x80); // RTS, DTR low

}

int pollReceive() {
if (! Rsr.andByte(0x80))  {

return Rsd.getByte(); //Check for break or error
}
return (-1) //-1 means no character

}

int receive() {
  // Wait for character to be called in a separate thread.
   while(Rsr.andByte(0x80))  {
return( Rsd.getByte());

}
}

void send(byte character)
{
 // Wait for transmitter to be ready. Should probably be
  //  in a separate thread.

while Tsr.andByte(0x80))  {
;

}
Tsd.setByte(character);

}
}

Listing 2— This code gives you an example of how the Phys package can be used.
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architecture, but it suffers from poor
efficiency. An earlier version ofJNI
was more efficient, but it required the
Java code to know the layout of an
object in memory. In any case, it makes
sense for an embedded system to offer
a package specifically for accessing
physical memory.

REAL-TIME GARBAGE COLLECTION
The Java language requires garbage

collection of unused objects and there’s
no corresponding delete operator to
go with the new operator. One advan-
tage of garbage collection is that you
can’t have bugs in your memory allo-
cation if the reaponsibility for detect-
ing unused memory and reallocating
it is automatic. The application sim-
ply clears a reference to memory to
make it available for future use.

However, the advantages of garbage
collection come with a price. Finding
unused memory and freeing it can
take a long time, causing critical dead-
lines to be missed in a real-time envi-
ronment. A garbage collector for a
real-time system. must be predictable

and fast in addition to allowing high-
priority threads to run. Unfortunately,
most collectors fail on all three of
these requirements.

Garbage collectors work oppositely
of what their name implies. They find
all the memory blocks that are in use
and free up what’s left over. There are
many different algorithms for garbage
collection, but most of them share the
following steps:

• scan the local and statically allocated
   variables for pointers to the heap
• mark each memory object that can
   be reached from these pointers
• scan each marked memory object for
   pointers to the heap
• repeat steps 2 and 3 until no new
   pointers are found
• sweep the heap and free up any
   memory that is not marked

MOVING POINTER PROBLEM
A major problem with concurrent

garbage collection is that while the
collector is scanning the heap for
pointers, the application is changing

those same pointers. In essence, the
entire heap is a critical section.

Suppose an application is manipu-
lating a liked list of three objects, as
illustrated in Figure 1. Object A points
to object B, which points to object C.
The garbage collector scans object A
for pointers, but has yet to scan ob-
jects B or C. The application then
deletes object B by copying the pointer
to C to object A.

The collector hasn’t scanned object
C, nor has it scanned object B, so it
won’t find any pointers to object C
because it already scanned object A.
When the collector completes scan-
ning, it frees object C even though
there’s a live pointer to it in object A.

APPLICATION AND INTERFERENCE
Interference between the applica-

tion and garbage collection is the only
situation you have to worry about.
Other accesses to the heap don’t affect
garbage collection. To make concurrent
garbage collection work, the application
must tell the collector every time it
writes an object pointer to another
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memory object. This is called a write
barrier.

Write barriers sound expensive, but
there are several ways to speed things
up. Every allocated object on the heap
has a flag word containing the state of
that memory object. There are three
possible states: black, gray, or white.

The collector knows a black-state
object is live and has scanned it for
pointers. The collector knows a gray-
state object is live but has not yet
scanned it for pointers, In the white
atate, the collector has not yet found a
pointer to the object.

 There are several variations on how
a write barrier is implemented. Listing
1 is one example of a write barrier. The
if statement is generated automati-
cally by the compiler, so it’s not nec-
essary to put in write barriers by hand.

Every pointer assignment to the
heap has two additional tests. Usually,
programs manipulate the same pointers
multiple times. The garbage_flags
and gc_make_gray function calls
occur only the first time an object is
seen.

Subsequent stores find the object
already marked GRAY and don’t have
to call the collector. Making a WHITE
object GRAY isn’t an expensive process,
often taking less than ten instructions.

 Once the garbage collector and the
application are cooperating, it’s possible
to run the garbage collector as a sepa-
rate thread of exexcution. The garbage
collector’s priority may have to be set
differently depending on the character-
istics of the application. The priority
can be set low if the application spends
a lot of time waiting for external events.

 In fact, applications that are I/O
bound or event driven may have better
performance than explicitly freeing
objects because the garbage collector
can run while the processor is not
otherwise busy, and still keep up with
the demands of new memory. How-
ever, that’s not always the case.

If an application has a mix of event,
I/O, and compute-bound processing
threads, the priority of the garbage
collector can be set lower than the
event and I/O threads and at the same
priority as the compute-bound threads.

And, when all free memory is ex-
hausted, the garbage collector’s prior-
ity can change dynamically to take
the priority of the thread that was
trying to allocate memory.

The garbage collector can run until
completion, and then the allocating
thread can continue. It’s also reason-
able to have just two priorities for the
garbage collector: one that is loe for
when free memory is plentiful and
one that is higher for when free mem-
ory is exhausted, or nearly exhausted.

MEMORY ALLOCATION
Garbage collection isn’t the only

memory-management consideration
in a real-time system. The allocation
of memory must be fast and predict-
able. The system must allocate an
object in nearly the same amount of
time for every allocation.

Therefore, the memory manager
can’t maintain long lonked lists of
objects that must be searched every
time memory is requested. The mem-
ory heap structure must be organized
in a way that ensures predictability.
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INTERFACING HARDWARE
The Java language doesn’t have

pointers to physical memory or any
other built-in method for accessing
specific memory addresses. This limi-
tation makes it difficult to write device
drivers or any other code that needs to
talk to physical devices entirely in Java.
Additionally, there may be existing
modules written in C++ that you want
to keep.

For this reason, the Java language
specifies that certain methods may be
declared native. Originally, native
methods enabled high-performance
functions to be performed in the native
instruction set of the host machine
without incurring the performance of
the virtual machine.

Native methods can interface be-
tween Java and C++ in a compiled
environment as well. The native dec-
larartion tells the compiler that the
method is externally defined, so you
can write this external method in C or
C++.

Besides allowing native methods to
be written  in C or C++, the Java com-
piler has a switch (-xj for the Microtec
Java compiler) that tells the compiler
to emit two files for every class that
has native methods. The first file is a
C++ header file called Class.h that
contains a C++ definition
of the Java class. The sec-
ond file is a Class.cpp
file that contains a stub
C++ program for every
native method.

To implement the na-
tive methods, just edit the
.cpp file and add code to
the method stubs (see
Photo 1).

PHYSICAL MEMORY
PACKAGE

Because acceesing
memory directly is such a
common request, Microtec
included a package of classes
called COM.mentorg.
microtec.Phys, which
enables you to create ob-
jects that access memory
directly. There are three
classes, one for each size
of memory.

Photo 1— This screenshot demonstrates implementing the native method by editing
the .cpp file.

These classes are PhysicalByte,
PhysicalShort, and PhysicalInt,
and each class contains the following
methods:

• Physicalsize(int address)
• set(size value)
• size get()
• int getAddress()
• setaddress()
• size and( size value)
• size or (size value)

The constructor for each of these
objects takes an int argument that’s
the address in memory associated with
this object. When a variable of type
PhysicalInt, PhysicalByte, or
PhysicalShort is declared, it takes
one argument, which is the memory
address at which you want the data to
reside. For example, Physical Int
myInt = new PhysicalInt(0x01-
00000C); creates a PhysicalInt
variable and stores it at memory loca-
tion 0x0100000C.

To set the data to something useful,
use the set() method. For example,
myInt.set(256); gives your myInt
a value of 256.

Later, when you need to retreive the
data in myInt, use the get() method.
int newInt = myInt.get(); will

make newInt contain the value (e.g.,
256) of the data in myInt. If you need
to find out the address of a variable in
memory, try something like, int my
Address = myInt.getAddress() ;.

You can change the address of myInt
in memory with the setAddress()
method. For instance, myInt.set-
Address(0x0100000A ; changes the
address from whatever it was before to
0x0100000A.

If you want to perform a bitwise
and or or with the data, they work
the same way:

newInt = myInt.or(31);
newInt = myInt.and(31);

The functions take an argument,
the number to and or or, to the data
alresady in place nd return the result.

These classes can be subclassed and
any of the methods may be overridden
to add additional functionality. For
example, the and or or methods may
need to be noninterruptable so they
can be overridden with a method that
disables interrupts during their execu-
tion,. Listing 2 shows how to use
COM.mentorg.microtec.Phys.

RECOMMENDATIONS
You’ve seen some of Java’s advan-

tages as a language for devel-
oping embedded systems, but
you’ve also seen some of the
nonobvious pitfalls of using a
version of desktop Java in an
embedded system.

Of the three options (spe-
cial purpose JVM, JVM with a
JIT, or compiled Java), compiled
Java probably has the best set
of tradeoffs. It’s clearly the
winner in raw CPU speed,
and it has memory usage
similar to a conventional
language like C or C++. Al-
though compiled Java isn’t
portable and doesn’t immedi-
ately offer the ability to load
classes dynamically, for many
embedded systems, these
drawbacks aren’t issues.

If portability or dynamic
class loading are needed, the
next-best alternative is prob-
ably a special purpose JVM.
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Music at
Your
Fingertips

eing a longtime
guitar player and

electronics addict,
I’m always searching for

the latest technology to enhance my
hobby. And, one of the most frustrat-
ing tasks for a guitar player is control-
ling sound while playing live.

Sound is typically controlled with
an array of foot switches on the stage.
However, this arrangement limits the
musician’s movement, and a stationary
musician is certainly not conducive to
the general affectations and mannerisms
of modern music. Concentrating on
foot switches also robs brain cycles
from the activity at hand and detracts
from the show.

That’s why I began searching for an
effective, inexpensive way to control
my guitar processors and amplifiers
without foot switches. After several
imaginative attempts that were too
costly or impractical, I finally found a
simple, low-cost method for remotely
controlling equipment configurations.

Figure 1 shows an overview of my
guitar effects controller system. The
transmitter interprets the guitar
player’s touch on the three isolated
metal surfaces on the instrument and
translates the information into ultra-
sonic data bursts that are sent down

b

the guitar cable to the receiver with
the usual guitar audio.

The low cost, low power consump-
tion, and rich features of today’s micro-
processors make this system possible.
I chose to base the two parts (trans-
mitter and receiver) of my guitar effects
controller system on the PIC12C508.
Figure 2 shows the layout of both parts.

TRANSMITTER
 As you see in Figure 1, a transmitter

is mounted under the guitar’s phone
jack to sense the guitarist’s touches
on the three metal pads attached to
the pick guard. Touchpads provide
simple, inexpensive operation.

The pads are aluminum tape and
use the resistance of the guitarist’s
body between the pad and ground to
trigger a transmission. The string are
grounded, and the fretting hand is
almost always touching the strings,
providing a ground path.

I didn’t use switches because it’s
next to impossible to mount them on
a guitar without drilling holes—a taboo
to many guitarists. The touchpad design
requires no permanent changes to the
instrument that might affect its future
collector’s value.

The data bursts are sent to the
receiver at an inaudible 50 kHz. Any
frequency over 15 kHz may be used,
but 50 kHz lowers costs by allowing
simple two-pole filtering to be used.
Lower frequencies would enable you
to use existing wireless systems that
typically cut off at 15 kHz.

In Figure 3, the transmitter schem-
atic shows the general-purpose NPN
transistors (Q1–Q3) that buffer the
three touch pads (J1, J4, and J5). Filter-
ing on the base of each transistor (C1,
C3, C5) removes any ambient noise,
including 60 Hz.

Transistor collectors are connected
to the three inputs of the PIC12C508
to awaken the processor from sleep
mode on pin change GP0, GP1, and
GP3. The internal weak pullups on
these pins are enabled.

The reference for the touchpads is
not ground but the +3-V supply of the
transmitter. The ground of the trans-
mitter is actually the microprocessor’s
VCC . This arrangement works fine
because the 50-kHz output of the

Hank loves to play
guitar, and like many
guitarists, he thinks
that using pedals to
control the effects is
too restrictive. What’s
a stage-raging musi-
cian to do? As an
embedded-systems
designer, Hank opted
to put the music in the
hands of the artist.

FEATURE
ARTICLE

Hank Wallace

Guitar Effects via
Remote Control
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transmitter is AC-coupled
to the guitar audio path.

Because the +3-V VCC

signal is the only DC
connection between the
transmitter and the in-
strument, internal pullups
can be used on GP0, GP1,
and GP3.

With one hand on the
strings and a finger on the
touchpads, the guitarist’s
body conducts enough
current to turn on a tran-
sistor and wake up the
PIC12C508. The processor
does a 120-ms debounce
delay, qualifies the three
inputs, and produces a
50-kHz pulse train on
output GP2.

The response varies
according to the combina-
tion of pads  activated. If
the pads are  A, B, and C,
the seven possible combinations are
A, B, C, A+B, A+C, B+C, and A+B+C.

Imagine a guitar player accidentally
touching one of the pads during a
screaming lead break and immedi-
ately switching sounds from Van
Halen shred to George Benson mellow.
Embarrassing to say the least, espe-
cially in front of fans who think noth-
ing of piercing their own, not to
mention someone else’s, flesh. The
ramifications on church musicians
like me can be just as ominous.

To prevent this , the A+B+C com-
bination locks the transmitter output
against inadvertent changes. Touching
the three pads together toggles an
internal lockout flag preventing any
transmissions until the A+B+C com-
bination is touched again.

The datastream consists of 3-ms,
50-kHz bursts, with 1 ms between each
burst. To enhance noise rejection at
the receiver, two bursts is the mini-
mum transmitted. Thus, the transmit-
ter can send between two and seven
bursts with a maximum total length
of 27 ms.

Figure 3 shows that the data is
capacitively coupled to the audio path
through C4. My Fender Stratocaster
has an impedance through the pickups
of 2.5 kΩ to ground.

The 100-kΩ series resistor (R1)
lowers the signal level to the minimum
required, and also protects the micro-
processor output from electrostatic
damage. The 1-kΩ series resistor (R2)
raises the output impedance of the
amplifier so the data is not swallowed
even if active electronics exist in the
modified guitar.

The 50-kHz data burst has a DC
component that is half VCC for the
duration of the square wave, or 1.5 V.
As a result of the DC shift across the
coupling capacitor (C4), each data
burst causes pops and clicks when
transmitted. Also, ringing is caused
by the inductive effect on the DC
pulse by the guitar’s coil pickups.

To solve this problem, output GP4
switches from VCC to ground during
a burst while GP2 switches from
ground to a square wave with a
half-VCC average level. The RC
summing network on GP2 and GP4
subtracts the DC-induced transient
from the data waveform.

This switch gives the impression
that the transient was generated
from a bipolar swinging source and
thereby eliminates the pops and
clicks. The DC resistance through
the paths has a ratio of two for the
3/1.5-V ratio of the DC pulse levels.

To cancel the RC tran-
sients, the time constants
of each path remain iden-
tical.

TAKE NOTE
The data output of the

transmitter must be ter-
minated in a low imped-
ance like a guitar pickup.
Otherwise, the capaci-
tively coupled negative-
going transients can
damage the micro’s out-
puts even if a pin is set to
output mode.

To lower the parts
count, I used the internal
RC oscillator mode of the
PIC12C508. Therefore, a
communications protocol
that tolerates the resulting
wide timing variation over
temperature and supply
voltage had to be used.

The receiver only counts bursts with
an overall gross timeout parameter,
allowing heavy noise-elimination
filtering can be done in the receive
program.

Until activated by the user’s touch,
the transmitter micro remains asleep.
The entire circuit runs off a dime-sized
lithium battery, and average power
consumption, including the sleep spec
of the micro and leakage of the transis-
tors, amounts to a few microamps. The
estimated battery life is two years.

Because guitar manufacturers leave
precious little room for additions inside
their instruments, size is critical. With
this in mind, the surface-mount board
is single sided and the outline is smaller
than a postage stamp.

Figure 2— These block diagrams of the transmitter and
reiceiver  illustrate their simplicity.

Transmitter

Ground

Pad 1

Pad 2

Pad 3

µP
+

Audio in

Data +
audio out

Receiver

Filter/
Detect

µP

Footswitch 1
Footswitch 2
Footswitch 3
Footswitch 4

GroundGround

Data +
audio in

+5 V

Figure 1— The transmitter is istalled under a jack plate of the guitar. The few wires are
either connected to the audio jack or routed through a preexisting hole in the body toward
the touchpads on the pick guard. The pads are aluminum tape wrapped under the pick
guard where the connection is made. No drillling or other permanent modifications are made
to the instrument.
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RECEIVER
The receiver is mounted inside a

commercial DSP-based guitar effects
processor. After decoding the data
burst, the receiver determines which
touchpad(s) were activated and connects
the processor’s foot switch terminal(s)
to ground for 250-ms simulating foot-
switch operation.

Also based on a PIC12C508, the
receiver has an LM358 op-amp high-
pass filter front end to separate the
guitar audio from the data burst (see
Figure 4). Two high-pass sections with
a gains of over 200 bring the data
burst up out of the dirt. The LM358’s
gain rolls off at 100 kHz—another
benefit of this design.

Guitar cable capacitance and low
pickup impedance help attenuate the
data. The 50-kHz data is sent to the
guitar processor for removal by its anti-
aliasing filter, so it’s virtually inaudible.

Once amplified, the data burst is
applied to an amplifying rectifier that

consists of a PNP transistor (Q1). The
following NPN transistor (Q2) dis-
charges the filter capacitor (C2) when
a burst is present, and that capacitor’s
signal drives the micro on GP2.

The program performs additional
low-pass noise filtering (similar to
switch debounce), counts the received
pulses, and activates one or more of
the output transistors for 250 ms as
needed. The output transistors connect
to the foot-switch jack in the guitar
processor. Thus the receiver outputs
and foot switches (if any are used) are
wire-ORed, as seen in Photo1.

Powered by the processor’s +5-V
supply, the receiver doesn’t need any
special power-management techniques.

ENCORE
The receiver may be enhanced to

include MIDI support in place of the
four foot-switch drivers. Then, it can
control any MIDI-capable instrument,
like a synthesizer or sequencer.

Figure 4— The schematic of the receiver shows the analog filtering, AM detection of the 50-kHz pulses, and pro-
cessing by the micro. The signal processor’d footswitch inputs are activated by four open-collector drivers.

Figure 3—  The scchematic of
the transmitter shows that  it
could hardly be simpler.
Running from a 3-V lithium
battery, the micro is in
powersave mode until
awakened by a touch on one
of the pads. This circuit can
be rendered in printed circuit
format about the size of a
postage stamp.
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By packaging the receiver in an
external foot-switch controller, the
device can be made compatible with
lots of equipment. However, including
the receiver in the signal processor
permits the welcome deletion of the
foot-switch box from my stage setup.

The transmitter and receiver soft-
ware could also be enhanced to perform
MIDI continuous-controller functions.
Simply holding a finger on one of the
touchpads would control the level of
effects. Using a processor with more
wakeup-on-pin-change inputs (e.g., the
‘16F84) provides more possibilities.

Of course, communication from
transmitter to receiver can be performed
over an RF link using some of the UHF
OOK modules. The functions would
be available without touching the audio
signal path—a must for demanding
guitarists and anyone desiring this
benefit while recording. Changing the
databurst frequency to 15 kHz, still
practically inaudible, enables use of a
commercial wireless unit.

Part-15 FCC compliance would be
easy if the device complied with the
restrictions that enable an unintentional
radiator to operate unlicensed and
exempt from testing when using bat-
tery power only and operating below
1.706 MHz.

The internal 4-MHz clock causes
the problem here. Unless another PIC
is used with an external RC oscillator,
the device requires testing to ensure
that it meets Part-15 regulations.

CLOSING NUMBER
The guitar effects controller shows

how PIC micros can effectively replace
digital and analog alternatives. As the
replacement for a circuit based on the
CD4093 quad NAND Schmitt trigger,

the PIC12C508 costs about the same
but requires less space and provides
seven functions instead of one.

The estimated parts cost is about
$3.50 for the transmitter and $5 for
the receiver. I have to wonder what
the world’s coming to when I can buy
a 20-MHz microprocessor for the price
of a cheap op-amp.I

Hank Wallace is the president of
Atlantic Quality Design. When not
annoying family and neighbors with
extremely loud tests of new guitar
gadgets, he designs embedded-
systems hardware and software for
more traditional clients. You may
reach him at www.aqdi.com.

SOFTWARE
Software for both the transmitter
and the receiver is available via the
Circuit Cellar web site.

SOURCE

PIC12C508
Microchip Technology, Inc.
(602) 786-7200
ax: (602) 899-9210
www.microchip.com

UHF OOK module
Linx Technologies
(800) 736-6677
(541) 471-6256
Fax: (541) 471-5251
www.linxtechnologies.com/

m_contact.html

RF Monolithics
(800) 704-6079
(972) 448-3700
Fax: (872) 387-8148
www.rfm.com

Photo 1— The receiver is
installed in a commercial
guitar-effects processor,
stealing  +5 V from the
internal power supply.

www.microchip.com
www.linxtechnologies.com/m_contact.html
www.rfm.com
www.circuitcellar.com
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SERIAL I/O MODULE
The PCM-3610 is a dual-port serial interface module in a PC/

104 form factor. It features two independent fully isolated serial
channels with RS-422/-485 interface. Channel two also includes
an RS-232 interface.

Electrical isolation of up to 500 VDC from both the system
power supply and the serial interface signals provides important
protection for the system from ground loops, externally induced
power surges, and other hazards present in industrial environ-
ments. Additionally, line-side surge circuitry provides protection
for other devices in the RS-485 network.

Using the industry-standard 16C550 asynchronous communi-
cations chip, this module is fully DOS and Windows compatible
when used at the standard COM1 and COM2 addresses. The
module is capable of data rates up to 115 kbps and transmission
distances of up to 4000’ when the RS-422/-485 interface is used.

The module also has RS-485 interface circuitry with automatic
direction control. This eliminates the need to modify software
drivers to manage the switching between send and receive
modes.

The PCM-3610 sells for $186 in OEM quantities.

Versalogic Corp.
(800) 824-3163
(541) 485-8575
Fax: (541) 485-5712
www.versalogic.com

I/O SUBSYSTEM BOARD
The PCI-ADADIO I/O subsystem board

is a PCI-bus expansion board that provides
analog inputs (ADC), analog outputs (DAC), digital

I/O, and timer/counters. In short, the APCI-ADADIO
includes everything required to interface with most sensors

and transducers, monitor switches and provide digital outputs,
and perform onboard timing for purposes such as controlling
scanning or generating PC interrupts.

 The analog input function feaures a 12-bit ADC, available as
16 single-ended or eight different channels, link selectable for two
unipolar or two bipolar voltage ranges. The board handles input
frequencies up to 100 kHz single channel or 10 kHz channel-to-
channel. Two precision analog output channels are provided by
a 12-bit DAC, with a typical settling time of 10 µs. These channels
are link selectable for one unipolar or two bipolar ranges.

The board includes 16 bidirectional TTl-level digital I/O lines,
organized a four nibbles, a 1-MHz clock, and a programmable
8254-compatible device offering three 16-bit timer/counters.
One channel is dedicated to triggering periodic conversion of the
ADC. The other two are for general-purpose use, such as
generating periodic interrupts to control channel scanning. A
software strobe or external triggering can also activate the ADC.

The board comes complete with example C source code to
help calibrate the board. Also supplied are Windows NT 4.0
drivers for use with high-performance 32-bit OSs.

Arcom Control Systems
(816) 941-7025
Fax: (816) 941-0343
www.arcomcontrol.com

www.arcomcontrol.com
www.versalogic.com
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FLAT-PANEL CONTROLLER BOARD
Apollo’s CDS545 flat-panel controller board is an ISA-bus

direct interface that supports flat-panel resolutions up to 1280 ×
1024 and noninterlaced CRT monitors with resolutions up to
1024 × 768. Hardware Windows acceleration includes a 32-bit
graphics engine, three operand ROPs, color expansion, hardware
line drawing, and hardware cursor. True-color and Hi-color
display capabilities support resolutions to 640 × 480. Colors are
converted up to 64 shades of gray for monochrome panels.

The display voltages generated onboard include power-up
sequencing, panel Vcc, LCD bias voltage, and 12-V backlight
voltage. The board includes 1 MB of display memory and can
support 5- and 3.3-V panels. The board also runs EL and plasma
flat panels.

Applications include user interfaces for commercial, industrial,
and scientific products. Sample price is $240.

Apollo Display Technologies, Inc.
(516) 654-1143
Fax: (516) 654-1496
www.apollodisplays.com

DSP WITH ON-CHIP FLASH MEMORY
The TMS320F240, the first DSP with on-chip flash memory,

is ideal for motor-, motion-, and process-control applications.
Motor designers can program quickly to flash memory and then
transfer that code to a more
cost-effective ROM-based
DSP for volume production.

The DSP is pin- and code-
compatible with TI’s ‘C240
ROM-based DSP of the TMS-
320C24x generation, and it
includes a 10-bit ADC with
an 850-ns typical conversion
time and a dedicated event
manager that supports
multiple PWM channels and
dead-band logic.

Two other flash-based
DSPs—the TMS320F241
and the TMS320F243—
integrate both flash memory
and the industry’s only
control area networking
(CAN) bus. With the CAN
interface, these two devices

will support complex industrial applications
that require control over multiple motors and
intersystem communication. The TMS320F243 also

integrates an expansion bus
for additional memory.

The TMS320F240DSP is available
in a 132-pin plastic quad flatpack (PQFP)
and is priced at $15.51 each in 10k
units. The ‘F241is packaged in a 68-pin
plastic leaded chip carrier (PLCC) and a
64-pin PQFP and is priced at $12.73
each in 10k units. The ‘F243 is packaged
in a 144-pin thin quad flatpack (TQFP),
and it costs $14.39 each in 10k units.

Texas Instruments
(800) 477-8924, x4500
(972) 995-2011
Fax: (972) 995-4360
www.ti.com/sc/docs/dsps/
dcs/dcshome.htm

www.ti.com/sc/docs/dsps/dcs/dcshome.htm
www.apollodisplays.com
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PC/104 CPU BOARD
The GW2400 is a PC/104 ‘486 CPU

board based on the AMD Elan SC410 embedded
‘486 CPU. The board features up to 100-MHz

operation, 16 MB of DRAM, and 8 MB of flash memory.
It comes with DOS in flash memory and includes a full set

of PC peripherals such as IDE, floppy, three serial ports,
parallel port, and AT keyboard controller. It also contains several
features for industrial applications such as serial port console
redirect, watchdog timer, user-programmable LED, and battery-
backed real-time clock.

The GW2400 leverages off the high integration of the AMD
Elan SC410 to bring a full featured, low-cost ‘486 board to the
PC/104 bus. The board was designed to handle rugged environ-
ments and features soldered-in memory.

The 33-MHz GW2400 with 2-MB DRAM and 512-KB flash
memory is priced at $395 in OEM quantities.

Gateworks Corp.
(805) 461-4000 • Fax: (805) 461-4001
www.gateworks.com

PCI WATCHDOG TIMER CARD
The PCI-WDGCSM is a PCI watchdog timer card that

continuouisly monitors critical  PC functions. When a fault occurs,
the card automatically generates outputs that initiate corrective
action or generate alarms. For WIndows 95/98 users, the card
can supply an interrupt prior to watchdog timeout (programmable
from 4 µs to 30 min.) that will
cause a user-provided interrupt
service routine to perform a
graceful shutdown of Windows
so that application files do not
risk corruption during restart.

The PCI-WDGCSM offers a
building-block approach to
board-level functionality. Six
low-cost options ($10-20 each)
enable users to specify  a multi-
function card that is tailored to
their particular status-monitoring
needs. This feature keeps the
price of the PCI watchdog timer
card low by eliminating unneed-
ed functionality. The six options
include a power monitor, temp-
erature monitor, computer temp-

erature measurement, four functions (e.g., change of state,
timeout buzzer, optoisolated outputs), one or two computer-
controlled digital outputs in lieu of optoisolated outputs, and fan-
speed control.

Each PCI watchdog timer card comes with two 3.5” floppy
diskettes. The Product Diskette
provides a setup program, DOS
drivers, and sample programs
in Pascal, C, and QuickBASIC.
The second floppy includes num-
erous drivers and utilities, includ-
ing PCI/ISA, Visual Basic,
Windows NT, and other drivers
and utilities.

The PCI-WDGCSM sells for
$175-260, depending on which
status-monitoring options are se-
lected.

ACCES I/O Products, Inc.
(619) 550-9559
Fax: (619) 550-7322
www.acces-usa.com

www.gateworks.com
www.acces-usa.com
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Real-Time PC

Ingo Cyliax

Embedded RT-Linux
Part 3: Networking

Embedding Linux into a fairly small
system using a floppy or RAM disk-based
file system is a method that opens many
possibilities for basing embedded systems
on Linux. But, Linux’s popularity could also be
a result of its extensive networking support.

Linux includes a little of everything, and
it’s all free if you download it from the
Internet. Of course, most of us just buy a
distribution CD, which typically comes
royalty free and with sources. Either way,
it’s a nice change from commercial OSs.

Although Linux is used in many em-
bedded projects, probably the most popu-
lar embedded application is the terminal
server or Internet router.

A terminal server is an Internet router
that accepts modem connections (usually
64–128 ports) from PCs and routes pack-
ets (using the mode line) over Ethernet or
WAN connections to the Internet.

An Internet router is a generic version
of the terminal server but with one or more
WAN connections to the Internet and one

or more Ethernet connections. Based on a
routing table, it routes IP packets from one
interface to another.

You might not think of these devices as
embedded systems, but most terminal
servers and routers don’t have a console

Why is Linux so popular? It could be the networking. No, not the schmoozing
nice-to-meet-ya kind of networking! Ingo’s talking about the down-and-dirty
details of protocol stacks, link-level devices, network file systems...

and they live in a rack or wiring closet.
Some are even managed remotely from
across the country using web-based inter-
faces. Terminal servers and routers tend to
be very transparent to users (i.e., as far as
the user is concerned, things just work).

Because Linux makes possible other
embedded projects that require network sup-
port, there’s no reason why it can’t be used
here. So, let’s look at what Linux has to
offer with respect to networking.

There’s so much to write about that I
won’t have enough time to cover pro-
gramming under the socket API (the basic
programming interface for Linux and other
Unix and Unix-like OSs). But an overview
can be found my column in INK 98, which
covers the basics of TCP/IP networking.

Instead, I want to concentrate on the
networking facilities and features avail-
able in Linux. This information should help
you decide whether Linux is a feasible
platform for your next embedded net-
work-aware system.

Photo 1—The PC/104 card from VersaLogic
basically just plugs in and works with Linux.
I had to change the IRQ using the supplied
configuration program because it conflicted
with the IRQ of the serial port.
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Photo 1—The PC/104
card from VersaLogic
basically just plugs in
and works with Linux.
I had to change the
IRQ using the supplied
configuration program
because it conflicted
with the IRQ of the se-
rial port.

PROTOCOL STACKS
The most popular protocol stack in

Linux is the TCP/IP stack, which is the
traditional protocol stack needed to com-
municate with other hosts on the Internet.
The TCP/IP stack in Linux is a high-perfor-
mance implementation that takes advan-
tage of all the tricks of the trade.

The programmer’s interface to the pro-
tocol stack in Linux is the standard socket
API, so it’s easy to port network applica-
tions to Linux. In fact, most applications
that use the socket API just compile and
work under Linux.

At the link layer, the TCP/IP stack
interfaces with a variety of link-level de-
vices such as Ethernet, serial connections,
and even wireless LANs. I’ll talk about
some of the available devices a little later.

Linux also supports Novell networking,
known as IPX. IPX support in Linux pro-
vides the tools to configure IPX interfaces
and manage IPX routing. Support for IPX
comes in two flavors—minimal and full.

Most applications don’t need full IPX
support. Minimal support IPX has freely avail-
able tools and enables Linux to support
Novell clients and servers, of which several
kinds have been implemented commercially.

If you manage Apple computers, here’s
some good news. Linux also supports
AppleTalk, EtherTalk (AppleTalk proto-
cols directly on Ethernet), and encapsu-
lated AppleTalk. Encapsulated AppleTalk
tunnels AppleTalk over IP packets, so they
can be routed by TCP/IP-only routers.
AppleTalk support means you can share
printers and disks between Linux and
Apple computers.

Windows/DOS networking (basically
NetBEUI and NetBios) is also supported
by Linux. With session management block
(SMB), you can export Linux file systems
and printers to Windows machines as
well as access those services from a
Windows machine.

 All  available network stacks use the
socket API, enabling application programs
to use the networking resources. This
situation isn’t surprising if you know that
the socket API was originally developed
to permit access to different types of
network protocol implementations. It’s just
that TCP/IP is the most popular stack
supported with the socket API.

Programming with the socket API for a
non-TCP/IP protocol is application- and
network-implementation dependent. It’ll
take some work to port a native Windows
or Apple application to Linux’s protocol
stack. Luckily, you can take a peek at the
source code of many applications that
already run under Linux to find out how.

Having the kernel sources for all of
these networking implementations comes
in handy because you can find out exactly
how the network protocols work. With the
original implementation of these protocols
(e.g., AppleTalk under MacOS or Net-
BIOS under Windows/DOS), you couldn’t
look at the actual implementation. You
had to rely on the documentation provided.

That’s one of the biggest motivations
for using Linux or other OSs with sources
readily available, especially in mission-
critical applications where you have to
know what’s going on in your product and
be able to maintain it.

Because Linux is an open architecture,
it’s also possible to implement nonstandard
networking protocols. Perhaps, you’re using
a nonstandard protocol for some previ-
ously developed proprietary architecture.
Linux provides a good framework for
porting your protocol stack to a standard
OS. A Linux box could serve as an applica-
tion gateway to a proprietary network imple-
mentation making it TCP/IP accessible.

LINK-LEVEL DEVICES
Along with the protocol stack, you  need

link-level networking devices. Recall from

my INK 98 article that
link-level networking de-
vices are the devices and
device drivers that enable proto-
col packets to be sent over the
physical wire (RF). Linux also provides
a large selection of network drivers.

Linux supports just about every com-
mon Ethernet network interface controller
(NIC) out there, including ISA-bus and
PCI-bus–based controllers as well as 10-
and 100-Mbps cards. For example, I use
Linux’s standard ne2000-based driver to
control a PC/104 Ethernet card from
VersaLogic (see Photo 1).

Linux has support for Ethernet cards on
PCMCIA adapters and can support Intel-
and PCIC-based PCMCIA socket imple-
mentations. Although this support is pri-
marily for notebook based computers,
PCMCIA adapters are available for some
embedded-systems controllers. PC 104-
based PCMCIA controllers are available
from Real Time Devices, VersaLogic, and
Ampro, as well as some other companies.

Using a PCMCIA controller in a
PC/104 stack might seem strange at first,
but there are many cards available in PC-
card format that aren’t available in
PC/104 format. And, cards available in
both formats (like modem cards and
Ethernet cards) are usually less expensive
in PC-card format.

On top of that, PC cards consume little
power and are hot swappable. Of course,
Linux easily supports hot-swapping PC cards.

Finally, there’s a driver for the DLINK
parallel-port Ethernet adapter. This adapter
plugs into a standard PC parallel port and
provides access to Ethernet. The perfor-
mance isn’t the best. After all, the parallel
port can’t transfer data at the maximum
Ethernet speed of 1 MBps. But, this setup
works when there’s no bus available to
plug in a standard Ethernet card.

Besides popular Ethernet cards, Linux
also supports a few Token Ring cards.
Token Ring is still used in mainframe-era
network implementations where your work-
station talks to a mainframe (mostly IBM or
Amdahl) application or database.

If you want run your network over a
serial or even parallel port cable, Linux
provides serial line IP (SLIP) and PPP
drivers. SLIP is the oldest and simplest link
layer protocol to run over serial lines.

It sends the IP packet on the serial line
with a special byte to signal the packet
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Figure 1—These are pinouts for a PLIP cable,
which is sort of a null-modem cable for the PC
parallel port. You can use this setup to attach
a computer that doesn’t have a bus or net-
work interface to the ’Net.
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boundaries. There’s
also an escape mecha-

nism so you can send the
frame separator within a packet

without confusing the driver.
PPP, on the other hand, is a com-

plete protocol with state machines and
so on, which runs beneath the IP layer. It
has options for negotiating connection
parameters between two hosts and enables
more than just the IP to be transferred
across the serial line.

For example, AppleTalk and Novell
protocols can be transmitted over a PPP
link. Even though PPP is more complex, it’s
the serial line protocol of choice, and
almost all Internet service providers use it.

You could use SLIP and PPP to let your
embedded Linux application communicate
with a Windows machine. This is done
with a null modem cable and a special null
modem driver (for the Windows machine)
available from the Internet.

If you configure your Windows machine
to act as a dial-up server, then your embed-
ded system connects to it and can commu-
nicate. Now, your web browser running
on a Windows machine interfaces with a
web-based GUI in the embedded applica-
tion without actually putting the embedded
system on an Ethernet-based network.

Besides serial lines, Linux also has a
parallel port driver—parallel line IP (PLIP)—
which runs over a LapLink cable. A LapLink
cable is like a null-modem cable for parallel
ports. Originally, it was used to enable
laptop computers to exchange files with
desktop systems. This application used a
proprietary protocol and software.

PLIP is an open implementation en-
abling two computers to communicate
using the TCP/IP suite over a LapLink
cable (see Figure 1). Because just about
every PC-compatible computer has a PC
parallel port interface, this is a handy way
of networking between a two-PC system.

One application that makes Linux popu-
lar for networking is its support for various
WAN networking standards. Linux sup-
ports several sync serial cards that are
needed for communicating over T1 (E1 if
you’re in Europe) with other routers.

Also, Linux has extensive support for
ISDN when used with both synchronous
serial and asynchronous interfaces. You
can find Linux machines connected to
WAN connections, when they’re config-
ured to act as routers or firewalls.

I’ve covered almost all the wired link-
layer network devices, but I also want to
mention that Linux has drivers for a few
wireless LAN cards. The two supported types
are WaveLAN and NetWave. Photo 2
shows a NetWave card, but several com-
panies resell both types of cards under a
variety of names.

However, supported cards are older
models that aren’t 802.11 compatible.
So, WaveLAN  can only talk to Wave-
LAN cards and NetWave cards can only
talk to NetWave cards.

The 802.11 is an IEEE standard that’s
supposed to clear this up and enable all
802.11-compliant cards to talk to each
other. The newer WaveLAN and NetWave
cards support 802.11 now, but current
Linux drivers don’t.

Did I miss anything? Probably. I’ve only
overviewed of what typically ships out with
many Linux distributions. Many drivers
and cards aren’t in the distribution, but
are directly supported by vendors. If your
vendor doesn’t provide Linux drivers and
support, their competitors most likely do.

Many network drivers are even avail-
able in sources. Having sources for your
OS and drivers enables you to build
mission-critical systems that can be main-
tained by your company. Several compa-
nies use Linux in their embedded systems
and include sources in every unit shipped.

It might sound crazy, but a system that
is self-contained and documented in source
code isn’t such a bad idea. Consider, for

example,an elevator controller, which is
likely to have a fairly long product life.

Should the controller break down, need
to be upgraded, or need to have new
hardware features integrated, it’s easy to
make changes to the system—even if the
original development team at the com-
pany that supplied the system has gone on
to bigger and better things or if the com-
pany has gone out of business.

I wonder if source code is included for
mission-critical systems such as life-sup-
port and communications on the interna-
tional space station. Our experiences with
the Russian space station have shown that
being able to innovate on the spot can be
a good thing.

Having the source for device drivers
also provides you with a good example of
how to start writing a driver for your spiffy
worm-hole interface card.

NETWORK APPLICATIONS
I mentioned that protocol stacks for

TCP/IP, AppleTalk, and Novell are typi-
cally included with Linux. Many network
applications are included with most Linux
distributions as well.

Let’s start with NFS, the network file
system. NFS was developed by Sun Micro-
systems in the ’80s and its protocol speci-
fication was made public so that other
workstation vendors’ implementations
could to talk to Sun’s servers. Today, NFS
is the most-used network file systems for
Unix and Unix-compatible systems. Many
non-Unix systems support NFS as well so
they’ll be compatible with Unix systems.

NFS can be run over UDP or TCP. UDP
is simpler to implement, enabling even the
smallest embedded systems to implement
NFS services. TCP is more reliable and
robust and offers, in some cases, better
performance than UDP.

There are two parts to NFS: the server
and the client. The NFS server runs on a
machine that attempts to make some or all
of its file systems available (exported) via
NFS. NFS clients permit hosts to mount the
NFS, exported by a server, and the read/
write files it contains, on this mounted
network volume.

One nice feature of NFS is that it’s
stateless. If either the client or the server
crash, the file system can be remounted
and all of the file-transfer traffic can con-
tinue where it left off. The server and client
don’t need to synchronize after a crash.



R
PC

CIRCUIT CELLAR INK JANUARY 199952

Listing 1—This tiny web-server implementation is written in Task Control Language(Tcl).
It implements a GUI for a DES encryption demo. THe DES hardware is accessed with an
external program (hwdes) that this script executes.

set hits 0
set done 0

proc htdecode {line} {
set resp ��
foreach field  [split $line �&�] {
lappend resp [split $field �=�]

}
return $resp

}
proc connect {fd addr port} {
global hits
incr hits
if {[gets $fd line] != -1} {
if {[string length $line] != 0} {
set request [split $line]

}
}
while {[gets $fd line] != -1} {
if {[string length $line] == 0} {
break;

}
set header [split $line]
if {[lindex $header 0] == �Content-length:�} {
set len [lindex $header 1]

}
else {
set len 0

}
}
set fields ��
if {[lindex $request 0] == �POST�} {
while {[gets $fd line] != -1} {
if {[string length $line] == 0} {
break;

}
lappend fields [htdecode $line]
set len [expr $len - [string length $line]]
set len [expr $len - 2]
if {$len < 0} {
break;

}
}

}
set key ��
set text ��
set cmd �encrypt�
foreach field [lindex $fields 0] {
if {[lindex $field 0] == �text�} {
set text [lindex $field 1]

}

if {[lindex $field 0] == �key�} {
set key [lindex $field 1]

}
if {[lindex $field 0] == �button�} {
set cmd [lindex $field 1]

}
}
set answ ��
if { [catch] {
set pfd [open �|./hwdes \�$cmd\� \�$key\� \�$text\�� r]
while {[gets $pfd line] != -1} {
set answ $answ$line

}
close $pfd
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Besides implementing NFS, Linux also
comes with Samba, which is a Windows
network implementation. Photo 3 is a
screenshot of my Windows NT box mount-
ing the hard disk of my notebook running
Linux—over a wireless LAN, no less.

Linux has a variety of e-mail applica-
tions, including sendmail (the standard Unix
mail exchange agent) and several mail
interfaces, as well as several post-office
protocol (POP) implementations popular
with ISPs. Linux also implements e-mail
over UUCP which is an older batch mode
serial line protocol that can be used
efficiently over dial-up modems.

UUCP is interesting because it’s a file
transfer and remote execution system. A host
queues up batches of transactions it wants
to perform on a remote host. Whenever
the host dials up, these batches are ex-
changed and the connection is terminated.

The remote host then executes the com-
mands in the transaction asynchronously
to the connection and, if there’s a response
to be sent back, queues it up to be sent
back. It’s the ultimate store and forward
system.

UUCP can also compress all the traffic
over the communication link. Such efficiency
helps when the connections between  hosts
are expensive and have low bandwidth.

Also, the connections don’t need to be
real time. Commands are submitted and
the response is sent back later. UUCP is
how e-mail and Usenet were transmitted
in the days before the Internet. UUCP can
be used for remote data loggers or de-
vices where channel utilization is impor-
tant, or implemented to enable systems to
communicate over slow satellite links.

Linux has standard nameserver appli-
cations for the domain name system (DNS).

Listing 1—continued.

} ] != 0}{
global errorInfo
set answ $errorInfo

}
puts $fd �HTTP/1.1 200 OKey dOKey�
puts $fd �Expires: Mon, 01 Jan 1970 00:00:01 GMT�
puts $fd �Pragma: nocache�
puts $fd ��
if {[lindex $request 1] == �/decrypt�} {
puts $fd �<HTML><TITLE>Hardware Decrypt</TITLE>�

}
else {
puts $fd �<HTML><TITLE>Hardware Encrypt</TITLE>�

}
puts $fd �<BODY>�
if {[lindex $request 1] == �/decrypt�} {
puts $fd �<FORM method=\�POST\�, action=\�encrypt\�>�

}
else {
puts $fd �<FORM method=\�POST\�, action=\�decrypt\�>�

}
puts $fd �<FONT size=\�+1\�><B>�
puts $fd �<TEXTAREA name=\�text\�, rows=8, cols=35>$answ</
TEXTAREA>�

puts $fd �</B></FONT>�
puts $fd �<P>Password:�
puts $fd �<INPUT type=\�password\�, name=\�key\�>�
if {[lindex $request 1] == �/decrypt�} {
puts $fd �<INPUT type=\�submit\�, name=\�button\�,
value=\�decrypt\�>�

}
else {
puts $fd �<INPUT type=\�submit\�, name=\�button\�,
value=\�encrypt\�>�

}
puts $fd �</BODY>�
puts $fd �</HTML>�
close $fd

}
set fd [socket -server connect 4321]
vwait done
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Photo 3—Here’s a screenshot of the Windows NT machine in
my basement office mapping my hard disk on my notebook.
The notebook has a wireless LAN card and is currently on the
kitchen table. Linux also enables me to mount my Windows
95 partition on my notebook and make it available over the
network. So now I can map a Linux-based volume, which
has a Windows 95 partition mounted on it, all from Win-
dows NT over a wireless LAN.

With DNS, hosts find out how
to map a hostname or domain
(e.g., www.ezcomm.com) to an
Internet address xx.xx.xx.xx.
The DNS client is the software
that looks up the domain name
and maps it to the address
while the DNS server (or name-
server) implements the por-
tion of the database that does
the mapping.

Each domain needs a name-
server that contains a database
of records that tells how names
are mapped to addresses.
Because many ISPs and orga-
nizations use Linux machines
as the nameserver for their
domain, Linux includes the nameserver.
Although the nameserver probably isn’t too
important for an embedded device, the
client library, called the resolver, can be.

If you want to use web-based services,
full-featured remote printing is also sup-
ported. I mentioned that Samba and Apple-
ta lk can connect wi th Mac and
Windows-based printers, but Linux also
supports Unix printing using lpd.

Also, GhostScript (a freely available
PostScript-compatible interpreter) can be
used to translate PostScript to the raster
images used by many printers. It’s pos-
sible to implement PostScript-compatible
printer devices that are accessible via
Windows, Unix, and Mac systems.
GhostScript has drivers for many popular
inkjet and laser printers already.

The web server included is used by
several major ISPs. It’s robust and has
many features necessary for hosting web
sites. It may be overkill for most embedded
applications, but it’s there if you need it.

More interestingly, Linux distribution
also contains scripting languages like
Perl/Tcl and Python. In either of them, it’s
possible to implement a small embedded
web server to implement web-based GUIs.

Listing 1 shows how I implemented a small
web server for the interface to a DES
implementation running on a FPGA board
(featured in my INK 99 column).

 There is even a Java implementation
for Linux, although you’ll have to down-
load Sun’s run-time class library to make
it work. With Java, you can implement
small embedded GUIs and web server
fairly  quickly.

Typical Linux distributions include ev-
erything but the kitchen sink, and if you
can’t find a feature you need, check the
’Net. But don’t worry, you don’t have to
take everything. You can choose a mail
program and sendmail and nothing else
if that’s all you need for your embedded
applications.

NETWORK STARTUP
A desktop system typically needs several

applications and services provided by
Linux distributions. It’ll probably use a PPP
driver, the TCP/IP stack, and perhaps
Netscape as a web browser. Oh, did I forget
to mention that Netscape now offers a
free Linux version of their web browser?

 What if you only need the socket API
and TCP/IP stack so your application

Listing 2—This minimal startup script of code is all you need to start networking in an
embedded system. At the very least, you need to set the Internet address of the interface
with the ifconfig command and provide a default route using the route command.

[
  if config eth0 {ipaddr}
  route add default {gateway}
  your_application
]
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RT-Linux
rtlinux.cs.nmt.edu/~rtlinux/

IPX Networking
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(801) 222-6000
Fax: (801) 861-3933
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program could directly communicate with
it? That’s easy—just build a kernel. Most
likely, TCP/IP networking is already en-
abled in the kernel config.

You could also enable whichever link-
layer device driver you want in the kernel
config. Just build the kernel and prepare
a boot image like I described last month.

Listing 2 shows what is needed in a
/.profile or /linuxrc startup script
to start networking in Linux.

ifconfig initializes the network driver
and makes it available to the TCP/IP
stack. The {ipaddr} argument is the IP
address of the embedded device. The
second line adds the default route needed
to get to hosts outside the network that the
embedded system is connected to. {gate-
way} is the address of the router on the
attached network that knows how to send
traffic on.

You have to make sure that ifconfig
and the route program are available on
the root file system image. If you configure
the kernel to make some of the network
external modules, you need to include
those modules in your disk image and
load them before enabling the network.

Typically, you can use the insmod
program to accomplish this step. Having
module support for device drivers is par-
ticularly nice when using PC cards be-
cause you never know what kind of card
can be inserted into the PCMCIA socket.

ANY QUESTIONS?
What doesn’t Linux do? Not much.

With networking stacks and applications,
it’s easy to solve network-based problems
with Linux.

About the only drawback is that Linux
needs a 32-bit protected-mode processor
to run. The lowliest i386ex is fairly cheap
these days, so that’s not too bad. Even so,
work continues on nonprotected-mode
implementations.

Speaking of drawbacks, once again
I’ve run out of space long before I’ve run
out of ideas. But, hopefully you’ve seen
that Linux just might be the OS of choice
for any Internet or Ethernet devices you’re
considering. RPC.EPC
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Embedded PCs

Fred Eady

In the Face of Medusa
Part 1: Developing Reliable Control

S ometimes it makes good sense to
augment the power of a ‘386 or ‘486
embedded system with additional periph-
eral processing. Sure, you could design a
system solution using just the ‘x86 or
Pentium platforms, and most of the time,
that would be the best solution. But, some-
times it’s not.

By using smaller and less expensive
peripheral processors, to support a good
‘x86 design, you can cut costs and com-
plexity. Placing a subordinate process-
ing platform in a specific job role offloads
cycles from the main embedded proces-
sor and breaks the code into more man-
ageable pieces. If the peripheral proces-
sor scheme is well thought out, a gain in
overall system productivity is possible.

Think of it this way. Your’x86 is busily
cranking away on numerical calculations
when an interrupt or clock event signals
that it’s time to perform some I/O. Instead
of sending a quick command to a periph-
eral processor to move a motor or turn on
a valve, you stop your number crunching

Fred believes any monocomplex embedded system will turn to stone when
faced with this NASA ground support unit’s host of pumps, valves, and cameras.
So, he sent up PicStic to meet the challenge. Has Medusa met her match?

Figure 1—Here’s a look at the 32 pins of a
basic PicStic-4.

to take care of it from the ‘x86 firmware or
hardware.

Now that you’ve initiated the process
from the’x86 system, you also have to
make sure it completes successfully. An-
other burden on your already busy ‘x86
CPU, and you can’t continue your calcula-
tions until you finish the I/O operation.

The ultimate answeris to buy some
expensive multitasking, multithreading OS

and pile on the expensive CPU, megs of
memory, and I/O hardware. You could
do that or...

MARK IS IN THE BUILDING
 Once again, I managed to get my

hands on some real fight hardware from
my friend Mark, “the Orbiter machinist.”
Seems there’s intellegence needed for a
ground support unit that squirts water into

petri dishes to grow plants. Take a look
at Photo 1 and you’ll know why it’s
named Medusa.

But, Medusa’s not the whole story.
Intellegence is also needed to move a
CCD camera over the petri dishes to
take pictures of the growing and feed-
ing process. As with most experiments
of this type, there’s a myriad of pumps
and valves that need attention, too.

A perfect solution for this bsby is an
embedded ‘386 or better embedded
system. By the way, this baby also
needs to have its temperature checked
and its diaper looked at as well. Can a

A
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single embedded platform, all dressed up
in the proper hardware, provide the per-
fect solution? Well, sorta.

ENEMY IDENTIFICATION
The first problem is that any mono-

complex embedded system is a single
point of failure. If the embedded ‘x86
system croaks or jams up, the whole
experiment may fail unless an astronaut or
scientist comes to its aid in time. Besides,
we all know those astronauts are just in it
for the thrill ride. The scientists do the real
work, right?

The second problem I see is a lot of
expensive add-on hardware to accomo-
date the control of the valves, pumps, and
camera drive. And don’t forget taking
temperature readings and monitoring hu-
midity. All of this is compound-
ed by more complex ‘x86
firmware that’s needed to
monitor and failsafe the de-
vices being controlled. Com-
plexity is directly proportional
to cost. You do the math.

I’m sure you’ve all heard
stories about how the NASA
folks lean toward redundancy
to improve the safety factor.
Well, the same premise can
be applied to the experiments
that fly too. But, it would be
impractical to place numer-
ous embedded ‘x86 systems
within our Medusa experi-
ment.

First of all, the price would be prohibi-
tive and the space alotted for the experi-
ment is insufficient for that much hard-
ware. By the way, there’s no local power
company supplying the power, either.

So, how can we make this experiment
perform with a minimal ‘x86 system using
smaller peripheral processors? My an-
swer: the Micromint PicStic.

SHIP IN THE DISTANCE
I liken the PicStic to a ship in the

distance. It may look like a dinghy from
afar, but as you come closer to its hard-
ware and get to know its power, it arrives
in port as an aircraft carrier with you as
the captain.

The PicStic is small, lightweight, inex-
pensive, and easy to implement. You can
choose from several variants depending
on you application’s requirements. For
Medusa, I chose the PicStic-4Q.

The 4Q is a rectangular solid with its
longest side measuring 1.5”, and it takes
up about 0.57421875 in.3. Power con-
sumption is less than 75mW, and as long as
the astronauts are comfortable, the 4Q
module is, too.

If harsh environments are expected,
you can obtain 4Qs with extended indus-
trial operating temperature ranges. The
device is housed in a protective cover with
the hardware features accessible via 32
dual-inline pins. The pinout is shown in
Figure 1.

Not only is the 4Q rugged and eco-
nomical, but it’s also highly capable and
easy to program. You can program your
‘x86 embedded firmware in C, BASIC, or
assembler, right? Same for the 4Q.

This implies a mini-
mal learning curve for any
embedded programmer. As
you might have guessed, this
modul eis based on Microchip’s
‘16F84.

The ‘16F84 is one of those EEPROM-
based microcontrollers that needs no spe-
cial erasing lamps to clear the program
and data memory areas. The ‘16F84 core
is teamed up with an I/O  coprocessor to
provide a wealth of I/O pins and built-in
functionality.

Instead of writing every little bit of code
to perform a simple switch read, the 4Q’s
firmware contains such routines. You sim-
ply call them as you would in a desktop-
based BASIC program. All of the switch
debounce software and input code is
already built into the PBASIC call.

FLYING THE 4Q
Now, let’s apply the 4Q to the Medusa

experiment. Medusa’s only function is to
nourish the life in the petri dishes. The
actual laboratory experiment has Me-
dusa feeding three sets of eight petri
dishes.

The inner workings of Medusa consist
of a series of syringes containing liquefied
nutrients that are delivered to the petri
dishes by pressure applied from the shaft
of a linear stepper motor. A cross section
of the Medusa is shown in Figure 2.

Medusa is the first module of our ex-
periment in which we will embed a 4Q.
The linear stepper motor is driven using
an Allegro UNC5804B. The UNC5804B
is a BiMos II Unipolar stepper-motor trans-
lator/driver. The logical depiction of the

UNC5804B is shown in
Figure 3.

This IC provides com-
plete control and drive for
a four-phase unipolar step-
per-motor. The PicStic-4Q
need only supply STEP, DI-
RECTION, and ENABLE
signals to the UNC5804B
to move the linear stepper,
which in turn puts the
squeeze on the syringe
plungers.

Each step of the HSI
linear stepper is one half-
thousanth of an inch, so a
small amount of nutrients
a re  supp l ied  a t  eachPhoto 1—It’s rather ugly, but at least you can look at it without turning to stone
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plunger move. The ob-
ject is to feed the experi-

ment without drowning it.
Seems like a waste to only use

three I/O lines on the module, but
I haven’t finished telling you about

the other things the 4Q attached to
Medusa needs to perform.

Again, NASA is synonymous with re-
dundancy. Redundancy implies safety,
and safety improves the possibility of
success. I pointed out that a single point of
failure exists when using a single processor
complex to do the entire job. I also sug-

gested that peripheral processing was
one way to eliminate a single point of
failure situation.

The 4Q comes equipped with a bat-
tery-backed real-time clock, and there’s
also a built-in serial communications func-
tion. The embedded ‘x86 system is also
capable of keeping experiment time and
communicating with peripheral serially.
We can use these attributes to build a did-
I-get-fed safety factor.

The ‘x86 is ultimately the boss here.
Although the 4Qs have their own intelli-
gence, the ‘x86 controls and monitors

their programmatical movements. It’s safe
to say that the ‘x86 embedded board is
able to reset any of the 4Qs as well as
command them to perform preprogrammed
functions at the predetermined times.

What if the ‘x86 experienced an I/O
component failure? What if the firmware
running on the ‘x86 hung?

My first thought is that the ‘x86 onboard
watchdog timer would reset the hung
embedded complex and things would
resume as normal. Watchdog timers are
great for software hangs, but I haven’t
seen one yet that can fix hardware.

So let’s assume the ‘x86 hardware is
down. What are the 4Qs to do? After all,
they can’t work without the direction of the
big daddy ‘x86, right? Wrong. The solu-
tion is to use the hardware incorporated
into the 4Q to enable each one to con-
tinue to function until the ‘x86 problem is
repaired.

It’s a given that catastrophic failure of
the ‘x86 hardware would result in the loss
of critical data and, ultimately, experiment
failure. But if the 4Qs are programmed to
continue their assigned tasks according to
mission time, and buffer any gathered
data during the ‘x86 downtime, depend-
ing on how long the ‘x86 hardware was
inoperative versus how much data the 4Q
could store, data loss wouldn’t be total.

The 4Qs can also be programmed to
poll each other to see if an unsuccessful
data transfer to the ‘x86 occurred for
other modules in the experiment. This is
akin to how the mission computers on the
Orbiter vote each other out if a computa-
tional discrepancy occurs.

If all the 4Qs involved with Medusa
can speak to each other and not speak to
the ‘x86, it’s logical to assume that the
‘x86 is offline. I fight with this concept in
my mind, but the 4Qs can also be pro-
grammed to attempt to reset the ‘x86
embedded system if a consensus of them
decided to do so.

I see a never-ending loop in that idea,
but it can be implemented as long as the
proper controls are put into place. The key
to success here is to synchronize the
module’s clocks with the clock of the ‘x86
at experiment startup. If the ‘x86 system
doesn’t issue a feed command within the
specified time limits, then the module
responsible for driving the linear stepper
motor assumes command and executes
the process.
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Figure 3—A few years back, I wrote an
application and hacked some hardware to
do what this little IC does.

Any resulting feed operation status that
should have been transmitted to the host
‘x86 is stored in the 4Q, just in case the
‘x86 was busy at feeding time or was
unable to recover from a crashed condi-
tion. The inverse of this scenario is that the
module performing the feed function fails.

The bad news is that the experiment
would fail because there would be no
backup for the 4Q. The good news is that
the probability of this module failing is
minimal. All of its parts have proved reliable
in a variety of real-world applications.

Besides applying pressure to Medusa’s
plungers, the same 4Q couls be config-
ured to measure temperature and humid-
ity as well. The 4Q is also equipped with
a pair of ADC’s. Depending on the accu-
racy and number of inputs required, you
can choose from a 4-channel 8-bit or a 2-
channel 12-bit ADC.

Each ADC is based on a 5-V full-scale
value, so sensors and interfaces must be
chosen accordingly. A good choice here
is the HyCal monolithic IC humidity sensor
model IH-3602. This sensor measures
relative humidity as well as temperature
and is packaged in a six-pin TO-5 package.

Temperature is measured using a thin
film platinum 1000-Ω RTD. The tempera-
ture sensor can be used to provide tem-
perature compensation or to measure
temperature independently.

The real plus is that this sensor inter-
faces directly with the 4Q. A nominal
0.8—4-V linear output for 0-100% relative
humidity is provided when the sensor is
powered by 5 VDC.

Temperature is measured by detecting
a change in the RTD resistance. This is
done by supplying a small constant cur-
rent to the RTD and reading the voltage
across the platinum resistance.

ROLL THE CAMERA
A second peripheral processor rotates

a stepper motor attached to an arm that
holds a CCD camera. In this application,
the module must be able to home the
camera arm using an infrared interruption
aensor, turn on IR flood LEDs, and activate
the CCD camera.

Moving the stepper motor involves the
same procedure that I used earlier to
extend the linear stepper motor driving
the syringes. The algorithm is:

• home the camera arm at the beginning
   of experiment time
• wait for a picture command from the
  ‘x86 embedded system
• activate the IR flood LEDs
• activate the CCD camera
• wait for end-of-picture command
• deactivate the CCD camera
• deactivate the IR flood LEDs
• move the camera arm to next target
• execute from step two until the end of the
  experiment

The ‘x86 system is equipped with a
frame grabber. So, the camera module
executes the mechanical motion and light-
ing procedures, freeing the ‘x86 to spend
its cycles abtaining the resulting image.

Although not included in the algo-
rithm, the module is also capable of
recalibrating the camera arm at any pre-
determined time deemed neccessary by
the experiment scientists, without inter-
rupting the ‘x86 processing thread.

The ‘x86 can also authorize a recall
operation via command to the 4Q in
charge of the camera stepper motor. ‘x86
failsafes for this 4Q are identical to the
Medusa 4Q, and the inclusion of an IR
sensor to monitor the IR LEDs is included in
the camera-driver module firmware.

As far as the 4Qs are concerned, their
destinies are clad in firmware. You could
control the remaining valves and pumps
with the ‘x86 hardware, but there’s plenty
of 4Q cycles left.

Another strength associated with using
peripheral processor complexes is that,
because each peripheral complex re-
sponds to commands, functionality can be
spread across all of the peripheral proces-
sors regardless of their primary job.

In other words, if there’s enough pro-
gram code resource and processor cycle
time in the camera module to toggle a
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command to that 4Q, then I can put the
valve control functionality into that 4Q.

Thus, I can load balance my peripheral
processors and still conserve cycles on the
main ‘x86 board. Basically, I end up with
a simple half-duplex serial network. The
4Qs don’t speak until spoken to, unless a
failure of the ‘x86 is suspected.

So I can hang as many modules as
necessary, and whenever I need to, on
this experiment. I both conserved ‘x86
cycles and implemented a cost-effective
distributed-computing environment. The
offloading of ‘x86 CPU cycles to the 4Qs
enamles use of a lower cost ‘x86 embed-
ded board, which next to the experiment
hardware, is the most expensive piece of
computing equipment in the experiment.

THE CENTRAL SITE
Now that the module’s tasks have

been defined, let’s focus on the ‘x86
system. Using the 4Q peripheral procesors
means I can choose a low-cost ‘386 system.
My choice is the Octagon Systems 4010.

The 4010 is an 80C386CX running at
25 MHz. It has the standard AT-compat-
ible BIOS and uses standard PC-type
peripherals like floppy and hard drives.
Ideally, the fewer moving parts the better,
and the 4010 is equipped perfectly.
There’s 512 KB of flash memory and 2 MB
of DRAM, which can operate just like their
mechanical cousins.

And, just in case they’re needed the
4010 can also accomodate a 2.5” hard
disk or standard 3.5” floppy drive.

Theserial ports of the 4010 will be
busy handling the peripheral processors,
so a means of communicating the col-
lected data, other than the standard serial
ports, is necessary. I just happen to have
an Octagon 5500 Ethernet card that
plugs into the 4010 card cage to transfer
data out of the Medusa experiment.

THE COUNTDOWN
We have some one-of-a-kind hardware

fresh from the lab, along with some pow-
erful little devices called PicStics. Theidea
is to allow the PicStics to operate under
control of a ‘386 embedded-processor
complex. Additionally, the PicStics can
take over their respective roles if the ‘386
system is busy doing other things.

Failure of any component during the
experiment time is unacceptable. So, the

hardware I chose is robust and reliable.
THe 4010 has an MTBF of 11 years. I’ve
worked with Microchip PICs for many
years now and can count on one hand the
non-customer-induced failures I’ve seen.

The system concept is described and
the jobs are well defined. The next step is
integrating the ‘386 and the Medusa
experiment hardware with the peripheral
processors. Once that’s accomplished,
the Ethernet conduit must be affected so
the data can be put onto a more meaning-
ful platform for the scientists to evaluate
(e.g., an Ethernet-capable laptop).

Next time, I’ll show you how to inte-
grate the PicStic-4Qs and the Octagon
Systems 4010 into a synchronous system
to support the requirements of the Medusa
experiment. I’ll also take you through the
steps to effect an Ethernet interface be-
tween the 4010 and a scientist’s laptop.

I realize this article has been off the
beaten path as far as some folk’s definition
of embedded is concerned, but I doubt
that you’re a typical cookie-cutter profes-
sional. The 4Q is a good fit for this applica-
tion and proves again that it doesn’t have
to be complicated to be embedded.APC.EPC

Fred Eady has over 20
years’ experience as a sys-
tems engineer. He has worked
with computers and communica-
tion systems large and small, simple
and complex. His forte is embedded-
systems design and communications. Fred
may be reached at fred@edtp.com.
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PIC16F84
Microchip Technology, Inc.
(602) 786-7200
Fax: (602) 899-9210
www.microchip.com

PicStic-4Q
Micromint , Inc.
(800) 635-3355
(860) 871-6170
Fax: (860) 872-2204
www.micromint.com

80386 4010
Octagon Systems
(303) 430-1500
Fax: (303) 426-8126
www.octagonsystems.com

IH-3602
Honeywell/HyCal
(800) 932-2702
www.honeywell.com/sensing/prodinfo/temperature/
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www.microchip.com
www.micromint.com
www.octagonsystems.com
www.honeywell.com/sensing/prodinfo/temperature/
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The PCL3013 Step/Servo
Motor Controller in Action

t’s getting harder
and harder for the

average person to mess
around with stuff! Most

folks won’t build a PC board just to
test this new micro or that neew
controller if the device is only avail-
able in a surface mount package.

Oh sure, evaluation boards are avail-
able, but that changes a $10 ding in
the wallet into a $100 dent. And even
if you go to the trouble of building a
PCB, it takes some skill to solder a
surface-mount device by hand. The
day is approaching when, unless it’s
part of your job, you won’t be able to
tinker with whatever device is cur-
rently new and hot.

The PCL3013 is a high-performance
step/servo motor controller with an
exciting array of features and it was a
newly introduced device when I began
this project four years ago. Like most
step/servo motor controllers, it’s
intended to be used with a host micro
directing its operations. It keeps track
of the time-critical items and does
any required calculations, freeing up
the host to do other things.

The PCL3013 features control of
step motors or pulse input servo motors,

i

linear or S-curve acceleration, micro-
stepping, stepping rates up to 4.9 Mpps,
and out-of-step detection. It also offers
a Motorola or Intel interface, an 8- or
16-bit data bus, 12 different origin
returns, and interrupts that signal
various internal events. With all of
these features, it’s no surprise that
this device has a large number of pins,
as illustrated in Figure1.

Solutions to many problems I pre-
viously encountered seemed to be at
hand with this device. Let’s see how
it addresses them.

DOING IT RIGHT
First off, let’s say I have this device—

thanks to the folks at Kollmorgen for
the samples—that I’m anxious to get
working. Should I try to haywire it
together?

Or, maybe there’s an adapter unit
out there, something that lets me
solder my device to it and then have
wire-wrap pins to work with. Such
adapters are available for a variety of
surface-mount styles, but not this one
because of the lead spacing. The lead
spacing of this device is metric be-
cause it is made by Nippon pulse, a
Japanese device manufacturer.

I care how it looks and it‘ll prob-
ably save me time in the long run to
do it right the first time, so I opted to
make an adapter. That turns out to be
more work than I thought. (How may
times have I jumped into a project and
said that?)

MADE A PCB LATELY?
Like everyone in the industry, we

threw out our tape and donut supply
quite a while back. All our PCBs are
made using a CAD PCB design package.

When I complained to one of my
colleagues about how easy it was to
make a PCB in the good old days and
how hard it is now (since I don’t use
powerful PCB CAD packages that
often), he told me about EasyTrax. It’s
available for free on the ‘Net and it’s
easy to learn. In about three or four
hours, I was done with the tutorial, and
in another three or four hours, I had my
adapter layout complete.

For many of the PCBs we make,
there is no longer any photography
involved. A negative is made in a

If you need a high-
performance step/
servo motor controller,
check in with Gordon.
Along with its unique
approach to program
memory (data is writ-
ten to preregisters),
the PCL3013 offers
so many interedting
features, you won’t
want to miss out.

FEATURE
ARTICLE
Gordon Dick



CIRCUIT CELLAR INK®                  Issue 102 January 1999        63

Photo 1— The box header allows connection to the ‘HC11. The screw
terminals on the right-hand side are for the motor/encoder, and the screw
terminals on at the bottom left are for the manual pulser. Power for

Figure 1— To cram in all the features, the PCl3013 needs 64 pins.
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PCL3013

laser printer on a transparency. Once I
have the negative, it isn’t long before I
have a decent-looking adapter board
waiting for a device, pull-up resistors,
and wire-wrap pins to be installed.

 How often do you solder a surface
mount IC to a PCB? I don’t do it often.
Examining my first attempt under a
microscope reveals it’s not perfect. A
few leads may not be connected. After
a touchup or two and a vigorous wash
in alcohol, it looks all right. The pull-
up SIPs and the wire-wrap pins can
now be installed. I’m getting close to
wiring!

BUILD THE PROTOTYPE
Most of the hardware for the proto-

type mounts to the wire-wrap perf
board but not my just-completed
adapter board. The wire-wrap pins on
its metric grid don’t match the perf
board’s inch grid. A suitable hole has
to be made in the perf board and the
adapter board glued over the hole.

 I don’t know when I’ve taken on a
project that involved so much in the
way of background work before I
could get to any of the fun stuff. By
this time, I was getting itchy to put
this chip through a few of its paces.

The completed prototype is shown
in Photo 1, and you see the schematic
in Figure 2. The elements in the sche-
matic are similar to other intellegent
step motor controllers.

A clock source was required. In
this case, I had an oscillator can that
was the correct frequency, so I used it.
I could have used a slower clock signal
from the ‘HC11 board.

I chose a mature step-motor
driver chip to keep the support
cicuit simple. A reset circuit
and some LCDs with a driver
complete the schematic.

BUT DOES IT WORK?
Usually, there’s a certain

amount of pain associated with
getting any project working.
Maybe it’s wiring mistakes that
have to be corrected or timing
problems tht have to be dealt
with. Or in some cases, a servo
amp wants to oscillate.

Amazingly, none of that
happened. I can’t explain it.

Maybe I’d already paid my
pain quota with all the
hassle I hasd getting to
this point.

The monitor program
I’m using for the ’HC11
allows reading and writing
memory or I/O without
generating new code. This
feature is useful when
connecting a new I/O
device.

To verify that commu-
nication with the PCL-
3013 is OK, I first
attempted a read of the
status word. The data
contained  in the read back of the sta-
tus bytes appears to be correct, given
that I tied some signal lines high that
wouldn’t be used. That’s a good sign.

A write attempt is next. A general-
purpose I/O pin is told to be an output
and then try writing it ot 0 and then
to 1. That works. I try it with a differ-
ent I/O pin and that works, too. I’m
pretty confident now that the data bus
connection between  the’HC11 and
thePCL3013 is functional.

INTERFACE DETAILS
It’s common for a peripheral I/O

device to have times when it’s busy
and won’t read or write data. The
PCL3013 is similar in that you should
wait 200 ns after sending a read regis-
ter command before letting the micro
try to read. The 813-ns micro bus
cycle provides the necessary time delay.

The PCL3013 needs 16 bytes of I/O
space, which is

quite a bit more than  the I/O devices
I’ve worked with until now. The I/O
space on the development micro is par-
titioned into 800h blocks, so the I/O
space requirement was not a problem.

The device interfaces easily with
Motorola and Intel micros: there is an
I/*M control line (read *M as the
complement of M). And, it supports 8-
or 16-bit data buses: ther is a B/*W
control line.

WHAT CAN THE PCL3013 DO?
A lot. I wasn’t able to test every-

thing, but more on that later on.
This device has a large number of

dedicated I/O lines to support more
than the typical switches associated
with a motion stage. For example,
slow-down switch inputs help prevent
the high-speed end-of-travel crashes
that happen even when end-of-travel
limit switches are present.

The amount of general-purpose I/O
varies, depending on the bus
width of the micro. Since the
‘HC11 bus is  8 bits wide, the
8 bits that would otherwise be
used to suppport a 16-bit bus
become general-purpose I/O.
There are three other general-
purpose I/O lines.

Now it’s time to generate
some code and exercise this
device a little. But first, I want
to say a word about notation.

When referring to registers
in this device, they are specified
by number (e.g. R1 for register
1). Many registers have prereg-
isters that hold data until a



64        Issue 102 January 1999       CIRCUIT  CELLAR  INK®

start command is issued. Then the
data is transfered to the working
register.

First, decide what mode you wish
to operate in. Four bits in the operation
made buffer are dedicated to mode. In
this case, I wanted to do some simple
jogging just to get started.  The PCL-
3013 jogs when in continuous mode 1,
and the direction is defined by another
bit in the operation mode buffer.

Initially, I tried loading only R1(FL
pulse rate register) with the low-speed
stepping rate and R4(multiplication
factor register) with a suitable multi-
plier. This technique works , but only
out of reset. If it was stopped, it
wouldn’t start again until it was reset.

The manual cautions you to keep
the high speed stepping rate R2 (FH
pulse rate register) larger than R1.
Since I wasn’t using R2, I didn’t think
it needed to be loaded. But as soon as I
loaded a valid number into it, the unit
worked fine.

With data in both R1 and R2, I was
able to use two of the seven start
commands. Sending 10h to the com-
mand register results in low-speed
jogging at the rate dteremined by R1
(andR4), and sending 11h results in
high-speed jogging at the rate deter-
mined by R2 (and R4). The ‘HC11
code used to do this jogging test is
shown in Listing 1.

Once the ‘HC11 has written into
the appropriate registers, I used the
monitor program to send start and
stop commands. Although there are
three different stop commands, for
this test, the only valid one is 9h,
which produces an immediate stop.

A small note regarding code is
appropriate here. For the features of
the PCL3013 discussed in this section,
code was created and the feature exer-
cised. Because the feature is of more
concern than the code, I only provide
you with one example (see Listing 1).
In the following section, I’ll discuss
features that were not exercised.

If a value is loaded into R3 (accel-
eration/deceleration rate register), you
can make starts using 13h. Now the
motor accelerates linearly with the
acceleration time determined by a
formula involving R1, R2, R3, and the
19.66-MHz clock.

By using fairly large value in R3
and the existing numbers in R1, R2,
and R4, I was able to get an accelera-
tion time in the 2=s range. When the
motor started, it was clearly accelerat-
ing. Similarly, when the Ah stop com-
mand was used, the deeleration was
obvious.

This unit has the ability to do S-curve
acceleration as well. The choice between
linear and S acceleration is made with
a bit in the control mode buffer.

When a comparison was made using
the two types but keeping the same
acceleration time, I couldn’t tell the
difference by just watching and listen-
ing to the motor start and stop. The
difference has to be more noticeable
when the motor is driving a motion
stage.

Two flavors of relative moves are
available: preset mode 1 and 2. In
preset mode 1, the relative move dis-
tance is  loaded into R0 (output pulse
register) as an unsigned number from
0 to 268,435,455. The move direction
is established by bit 4 of the operation
mode buffer.

In preset mode 2, the relative move
distance is again loaded into R0 but
this time as a signed number from
–134,217,728 to 134,217,727. Bit 4 of

Figure 2— Some very sophisticated control of a step motor may be achieved with this circuit. The circuit is simple
because the PCL3013 contains the complicated control features.

the operation mode buffer has no
effect on this mode.

Using either of the relative move
modes, you can issue multiple start
commands, causing multiple moves
as would be expected when making
relative moves. Actual position is kept
in R9 (up/down counter register), and
it too can be configured to use signed
or unsigned values by toggling bit 28
of R6 (environmental condition regis-
ter 1). As I said, this is a powerful
device and it has lots of registers.

To make absolute position moves,
use preset mode 3. If multiple start
commands are issued after a move,
they are ignored as expected since the
device is in the desired position after
the first move command.

If your application requires time
delays, the PCL3013 can do that too
by selecting the timer mode in the
operation mode buffer. The descrip-
tion of this feature in the manual was
difficult to understand at first because
nowhere is any mention made of pro-
ducing a time delay.

 The PCL3013 produces a time delay
based on the contents of R0 and the
current stepping rate as determined by
R1, R2, and R4. For example, if a low-
speed start command is used, the step
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Listing 1— This code tests the ability to  operate the PCL3013 in continuous mode 1. After executing the code,
start commands 10h and 11h and the immediate-stop command 9h may be issued from the monitor program.

ping rate is determined by R1 and
R4, so the delay time is based on that
rate and the number in R0.

 When I first looked at the manual
for the PCL3013, I was surprised that
there didn’t seem to be any program
memory. Other devices I have used
could store complete motion programs
of various lengths. Eventually I learned
that the PCL3013 features a different
approach with similar results.

Data for the next move can be writ-
ten into preregisters while the present
move is in progress. On completion of
the current move (which can be signaled
via one of a large collection interrupt
sources or determined by polling one
of the many status bits), a start com-
mand can be issued for the next move.
Since the necessary data is all present,
only the start command needs to be
written. And, you can do one better if
you wish.

If bit 4 of the control mode buffer
is set, the unit automatically starts
the next operation if it is in “settled”
status. To be settled, the registers for
the next move must have had valid data
written to them at some point, and a
stsrt command must have been issued
prior to the current move finishing. If
those conditions exist, the PCL3013
continues on to the next move as
soon as it finishes the present one.

Of course, the host micro still has
to keep track of what’s happening in
the PCL3013. For example, it can’t
write any data other than what will
be used next, The PCL3013 won’t
stack a collection of data to be used
for several moves in advance.

Would you like to microstep? The
PCL3013 is good at that, too. Select
the number of microsteps per step
anywhere from 1 to 256 by entering
the number you want minus 1 into
bits 24 to 31 of R7 (environmental
condition register 2).

 I didn’t use a  microstepping drive
to tet this. Using a 100-step/rev motor
and setting up for 10 microsteps per
step, a move distance of 100 produced
10 revs. This calculation would be
correct if a microstepping drive using
10 microsteps per step fed the motor.
The only thing I found a little strange
is that the PCL 3013 keeps track of
full steps rather than microsteps.

 There are two 28-bit comparator
registers, R10 and R11, which can be
used in various comparison scenarios
to implement tasks. For example, you
can compare R10 against R0 or R9. Or
compare R11 against R0 or R9. Or com-
pare R10 and R11against R0 or R9.

The selection between R0 or R9 is
made with bit 22 of R7. By setting
bits 20 and 21 in R7, you can change
the low- and high-speed stepping rates
when the comparison condition is met.
I tested this by doing the on-the-fly
speed changes. It works fine.

The comparison condition is speci-
fied in bits 16-19 of R7. Here’s where
you indicate that the comparison is
equal to, less than, or greater than the
specified counter value.

You also indicate here if the com-
parison uses just R10, just R11, or
both. If you wish, you can produce a
hardware interrupt as a result of a
comparison condition being satisfied.

Of course. I saved the best for last.
In continuous mode 2, pulses from an
external encoder can be used to cause
the motor to step.. When I read about
this feature, my first thoughts were
about slaving one system to another
or electronic gearing.

Oddly, the manual discusses this
feature under the manual pulser input
heading. I tested it using a manually
rotated encoder to cause motor move-
ment. If the pulse rate from the exter-
nal encoder exceeds the high-speed
stepping rate established with R2 and
R4, operation becomes erratic. But,
the manual warns that this will happen.

A variation on this feature is imple-
mented with preset mode 4. Here, an
absolute position is moved to by ro-
tating an external encoder.  No matter
which way the encoder is rotated in
this mode, the motor moves toward
the absolute position specified as long
as the encoder is producing pulses.

;* EQUATES SECTION
IO1    = Ox98OB ;I/O buffer bits O-7
IO2    = Ox98OA ;I/O buffer bits 8-15
CMD    = Ox98OF ;command buffer
Write_PR1  = OxC1 ;write to R1 preregister command
Write_PR3  = OxC3 ;write to R3 preregister command
Write_PR4  = OxC4 ;write to R4 preregister command
  .AREA    Jogging (ABS)
  .MODULE  Jogging
  .ORG     Ox1O4O
;load R1 to set the low stepping rate
  ldx  #IO2 ;point X at the I/O buffer
  ldd  #IOO ;load D with desired Fl stepping rate
  stab 1,x ;write the LSB
  staa O,x ;write the MSB
  ldx  #CMD ;point to the command buffer
  ldaa #Write_PR1 ;write the �write into pre-reg 1�
  staa O,x ;command to PCL3013
;load R4 to set the multiplier
  ldx  #IO2 ;point X at the I/O buffer
  ldd  #OxO12B ;load D to get the desired multiplier
  stab 1,x ;write the LSB
  staa O,x ;write the MSB
  ldx  #CMD ;point to the command buffer
  ldaa #Write_PR4 ;write the �write into pre-reg 4�
  staa O,x ;command to PCL3013
;load R1 to set the high stepping rate
  ldx  #IO2 ;point X at the I/O buffer
  ldd  #4OO ;load D to get desired FH stepping rate
  stab 1,x ;write the LSB
  staa O,x ;write the MSB
  ldx  #CMD ;point to the command buffer
  ldaa #Write_PR2 ;write the �write into pre-reg 2�
  jmp  OxCOOO ;go back to the monitor program
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WHAT ELSE?
Again, the answer is “a lot.” There

were a number of features I didn’t test,
but I do want to tell you about them.
There are several modes involving the
origin: origin-return mode 1 and 2,
origin-escape mode, and origin-search
mode. To test them, you need a stage
with limit switches and home switches.
This unit doesn’t seem to home the
stage to an encoder marker pulse, which
is the most accurate method, I believe.

A zero-return mode lets the motor
return to zero without writing a zero
in R0—similar to a go-home command.

Here’s a great feature: another aet
of encoder inputs in addition to the
manual pulser inputs I referred to
earlier. THis encoder would likely be
mounted directly to the motor.

This feature allows a comparison of
the number of pulses sent to the motor
and the number of pulses produced by
the encoder. If a preset deviation loaded
into R8 (environmental-condition
register 3) is exceeded, a hardware
interrupt is produced and pulses to
the motor are stopped.

The one-pulse output mode is self-
explanatory. It may be useful when
some condition at the I/O port is
monitored by the host and then used
as the basis for sending commands to
the PCL3013 to repetitively move
by a single step.

This unit can drive a servo amplifier,
too, but it has to be the type that
expects a pulse train as input. There
are several features  and inputs associ-
ated with this feature that I was un-
able to test without such an amplifier.
But certainly this is yet another indi-
cation of the flexibility of this part.

MORE THAN ENOUGH
Although I didn’t discuss all the

features here, you’ve now been intro-
duced to most of them. My aim wasn’t
to provide a tutorial on how to use
this part but rather to give you a solid
indication of its capabilities. I hope
I’ve accomplished that.

It takes awhile to come up to speed
on this unit because of its complexity,
but it’s worth it if you need a leading-
edge motor controller. I

Gordon Dick is an instructor in elec-
tronics technology at the Northern
Alberta Institute of Technology,
Edmonton, Alberta, Canada. He is a
member of the American Institute of
Motion Engineers and is the first
Canadian to obtain the Certified
Motion Control Specialist (CMCS)
designation. You may reach Gordon
at gordond@nait.ab.ca.

www.apcircuits.com
www.kollmorgen.com
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TPU
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Timing is
everything,
more so for

embedded systems.
So we don’t lag behind,
Joe provides us with
the basics of the timer/
counter functions found
on various popular
microcontrollers before
introducing the  time
processor  unit.
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hoever coined
the phrase “timing

is everything” wasn’t
referring to embedded

systems, but for embedded-system
designers, no truer words have been
spoken. The control of timing and
counting functions is a basic require-
ment for most embedded systems.

Because timer and counter function-
ality is found in every microprocessor
and microcontroller, you’d expect to
find a great variety of timer and counter
implementations. But, these functions
have become standardized around a
few basic configurations. This series
deals with one timer/counter module,
a time processor unit (TPU) that differs
significantly from the pseudo-standard.

Figure 1a shows the basic implemen-
tation of the timer/counter function.
A timer/counter register (TCR) that
can be loaded by the micro is incre-
mented (or decremented) based on an
event.

In the counter mode, TCR is incre-
mented every time there’s a transition
on the external pin. In the timer mode,
TCR is incremented by the external
or internal clock source. An interrupt
request is issued when TCR rolls over.

The TPU is not like the standard
timer/counter found on most micros.
Its architecture includes a microengine
that runs TPU microcode and also
includes an execution unit, a register

1
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P
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Figure 2a— Here’s ablock diagram of the timer/counter found on 8051 microcontrollers along with its control register bit fields. b—
The addition of capture/compare registers greatly increases the functionality of the basic 8051 timer/counter. This block diagram
shows the capture/compare register setup from the 80552.

Figure 1a— This timer/counter configuration is the basic architec-
ture for most timer/counters found in microprocessors and micro-
controllers. b—The timer/counter found on the Motorola 68HC705JIA
consists of a 15-bit ripple counter and a COP watchdog.

set, and a bus structure, essentially
making the TPU a coprocessor.

The CPU sets up the TPU to perform
a timing function. The TPU then runs
the microcode associated with the CPU-
requested timing function. Once set up,
the TPU runs autonomously, greatly
increasing the micro’s throughput.

Motorola, which provides the TPU
on many of its micros, also provides
preprogrammed, canned functions that
simplify complex timing tasks (see
Table 1). These functions are stored in
the micro’s ROM, mask sets A or G
in the 68332.

The 68332 TPU has 16 channels that
can independently run any of the canned
functions listed in Table 1. Several com-
plex timing functios exist that require
TPU channels to be linked together.

The most intriguing TPU feature is
that it can run user microcode. The
programmer has control over TPU
resources, which give the embedded-
system designer a lot of flexibility.

Tasks that are difficult to implement
with the standard timer/counter are
easily accomplished with the TPU.
After all, the TPU is a coprocessor and
should be thought of as such. Why
limit its use to timing functions?

TIMER/COUNTER BASICS
Before I get into the TPU’s details,

let’s look at how the timer/counter
function is implemented on several
popular microcontrollers—the 68HC-
705J1A, the 8051, and its derivative,
the 80552.

The 68HC705J1A has  a three-stage
timer/counter, shown in figure1b. At
the heart of the timer is an 8-bit ripple
counter, TCR, that’s driven by a di-

vided-down system clock
known as an E-clock. After
1024 E-clocks, the timer over-
flows and sets the TOF bit,
which the micro can pole or
enable an overflow interrupt.

 The output of the 8-bit
ripple counter  feeds the input
of an 7-bit ripple counter, and
any of the last four bits of the
ripple counter can be set to
generate an input based on
the value of bits RT0 and RT1.
This feature permits much
finer timing than would be
expected of a ripple counter.
The timer’s  final stage is a
computer-operating-properly
(COP) function or watchdog.

A more advanced timer/
counter is found on 8051 mi-
croprocessors. The 8051’s two
timer/counter registers, T0
and T1, are controlled by the
timer/counter mode control
register (TMOD) and the timer/
counter control register
(TCON), as Figure 2a shows.

TMOD gates the timer/counter,
selects the counter or timer function,
and sets operating modes (i.e., 16- or
8-bit reload). TCON has interrupt flags
for the timers TF1 and TF0, which are
set by hardware on overflow and cleared
by hardware  when the interrupt is
serviced. TCON also sets interrupt
parameters and has two bits that run
or stop the timer/counters.

In the timer function, the timer
register is incremented every machine
cycle. Because the 8051 has 12 clocks
per machine cycle,  the timer register
is updated at 1/12 of the clock frequency.

Of the timer’s four modes of opera-
tion, modes one and two are the most
common. The 16-bit timer register in
mode one issues an interrupt and sets
the TF flag when the count rolls over
from all 1s to all 0s. If the timer inter-
rupt is enabled, the CPU is interrupted.
In mode two, the timer register is 8 bits
(TL) and on overflow it generates an
interrput request, sets the TF flag, and
reloads TL with the content of TH.

In the counter function, the T0 (T1)
register is incremented whenever a 1 to
0 transition occurs on the external pin.
It takes two machine cycles to recognize

a 1-to-0 transition, so the
maximum count rate is
1/24 the clock frequency.

One of the most com-
mon enhancements to
basic timer/counter archi-
tecture is the addition of
capture and compare
registers (see Figure 2b).
The 80552 is one micro-
controller that contains
several capture and com-
pare registers.

When a transition
occurs on the capture
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Figure 3a— The modular design of the 68332 permits the modules
to be interconnected via the intermodule bus.b—The diagram of
the TPU and its interfsce to the CPU and the external world illus-
trates the change from traditional methods.

register’s input pin, the contents of
the timer are captured. A compare regis-
ter sets, resets or toggles the compare
register’s output pin whenever the
content of the timer and compare
registers match. Capture and compare
registers add much functionality and
flexibility to the basic timer/counter.

Say you want to measure the fre-
quency of a repetitive signal using an
8051. The task looks simple, and it is,
except that it requires a great deal of
microcontroller resources. One timer/
counter captures transitions of the in-
coming signal and the other measures
time, so both 8051 timers are used.

IMB
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Name Code Description

Mask Set A
DIO (Discrete I/O) $8 Allows the TPU channel pin to be used as a digital I/O
ITC (Input Transition Counter) $A Captures the value of a specified timer/counter on a (or a

specified number of) transition(s)
OC(Output Capture) $E Generates a single transition, single pulse, or square wave

on the channel pin
PMA/PMM (Period Measure-    $B PMA measures the period of an input signal, while PMM is a
  ment With Additional/Missing special 23-bit period measurement that indicates a missing
  Transition Detection) transition (i.e., missing tooth on sensing wheel)
PPWA (Period PW    $F Accumulates using a 16- or 24-bit sum, either the period or the
  Accumulator or the pulse width of an input signal
PSP (Position-Synchronized    $C Generates pulses of variable length based on a reference
  Pulse) timer/counter
PWM (PW Modulation) $9 Generates a PWM signal on the channel output pin
QDEC (Quadrature    $C Passes the CPU position and direction data by decoding two
  Decode) out-of-phase signals. Requires two adjacent TPU channels
SM (Stepper Motor) $A Generates PWM output that can be synchronized to PWM signals

running on other channels. For signal channel, use PWM function

Mask Set G
COMM (Multiphase Motor    $9 Generates the phase commutation signal for a variety of
  Commutation) brushless DC motors
FQD (Fast Quadrature    $6 Passes the CPU position and direction data by decoding two
  Decode) out-of-phase signals. Requires two adjacent TPU channels
FQM (Frequency Measurement) $C Counts number of input pulse on TPU pin for a user-defined time
HALLD(Hall Effect Decode) $8 Decodes signals for Hall-effect sensor. This function is primarily

used with the COMM function in brushless motor apps
MCPWM(Multichannel PWM) $5 Uses externally gated multiple channels to generate complex

PWM signals
NITC (New Input Capture/    $A Upon occurance of a (or specified number of ) transition
  Transition Counter) transitions, captures the value of a specified timer/counter
PTA (Programmable $F Accumulates a 32-bit sum of the high/low or total time of
  Time Accumulator) an incoming pulse
QOM (Queue Output Match) $E Generates single or multiple match events based on a user

set offset table
TSM(Table Stepper Motor) $D Provide acceleratio/deceleration control of stepper motor

with programmable step rates, based on user set tables
UART (Universal Asynchronous $B Provide standard UART function; upto eight simultaneous UART
  Receiver/Transmitter) channels running as  9600 bps can be implemented

Table 1—These preprogrammed (canned) functions are provided on the Motorola 68332 (mask sets A and G). The
16 channels of the TPU can independently run any of these functions. Several functions require more than one TPU
channel.
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Or, you can use only one timer and
capture just the transitions on the 8051
interrupt lines. When the first transition
occurs, the interrupt routine starts the
timer. The interrupt routine then stops
one timer when the second transition
occurs. However, this setup requires
you to set the highest priority to this
interrupt, otherwise the timer will
start too late, run too long, or both.

Starting and stopping the timer
also means that it can’t be used for
other functions. Therefore, the simple
task of mesuring frequency causes
severe programming constraints. And,
if the duty cycle was required, you’d
most likely need external circuitry.

On the other hand, using two cap-
ture registers to measure the frequency
of an incoming signal is quite simple.
The signal to be measured is fed to the
external pins of both capture registers,
which are set to capture the same tran-
sition edge.

 Initially, the first capture register is
disabled, so when the first transition
occurs, the second register captures the
timer value and interrupts the CPU.
The CPU then disables the second
register and enables the first capture
register. When the next transition
occurs the second register captures
the timer value, and it’s a simple
matter of subtraction to get the fre-
quency of the incoming signal.

Because the capture registers hold
their values, the CPU has some time
before it must process the captured
times. Also, the timer is free running
and available for other functions. If a
third capture register is used to detect
the opposite edge transition, then the
pulse width and duty cycle can easily
be found.

The point here isn’t that it’s better
to have capture registers, Rather, timing

functions use a great deal of system
resources, and when complex timing
tasks are required, even capture/com-
pare registers aren’t enough.

This is the genesis for the TPU
module. It enables extremely complex
timing functions to be handled simply
and with little CPU overhead.

TIME PROCESSOR UNIT
For this series, I’m using Motorola’s

68322, a 32-bit microcontroller with a
modular design. The 68322 modules
are essentially stand-alone subsystems
as you see in figure 3a. The queued
serial module (QSM) handles commu-
nications such as RS-232, three-wire
serial SPI, and high-speed QSPI.

Systems integration modules (SIM)
handle chip selects, clocks, bus sizing,
and the like, reducing the amount of
external glue logic required. The TPU,
of course, handles timing functions.
The modules are interconnected via
the intermodule bus (IMB) and run
semiautonomously to increase system
throughput.

TPU HARDWARE MODEL
As you see from the TPU depicted

in figure 3b, it’s quite a departure
from the timers/counters I’ve just
discussed.

The heart of the TPU—the
microengine—executes the TPU mi-

crocode. In emulation mode,
the microengine executes user
microcode stored in onboard
RAM. In nonemulation mode,
(for lack of a better term), the
microengine executes the micro-
code stored in the 332’s ROM
(i.e., the functions listed in
Table 1).

Once initialized, the
microengine runs with no CPU
intervention. Parameter pass-

TCR1

TCR2
External

pin

Capture register

> =
Compare
register

Channel
external

pin

TPU channel

Match enable register

Figure 5— Each TPU channel has three registers (capture,
match, and compare) along with an external pin. The TPU
channel can be synchronized to one of the internal counters or an
external clock.
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Figure4— The scheduler priority scheme ensues that
the high-priority channels, H, get the greatest access to
the execution unit, while ensuring that low-priority
channels, L, do not get locked out.
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ing between the CPU and TPU is
accomplished via dual-port (i.e., pa-
rameter) RAM. The microengine also
has registers that enable the TPU to
perform basic arithmetic, which isn’t
possible on the standard timer/
counter. I discuss the microengine in
more detail later in this series.

The scheduler determines which of
the TPU’s 16 channels is serviced by
the microengine, based on the priority
assigned to each channel by the CPU.
The priority levels are H for high, M
for middle, and L for low. If two chan-
nels have the same priority level, the
lower channel number is serviced first.

As you see in Figure 4, the sched-
uler’s cycle is divided into seven time
slots—four for high priority, two for
middle-priority, and one for low-prior-
ity channels. This way, high-priority
channels get the services they require
and low priority channels are not
locked out. I’ll discuss scheduling
more when I go over microcoding.

The timer channels can be synchro-
nized to either of the two internal
timers, TCR1 and TCR2. Or, you can
synchronize them to an external clock
source on the external clock pin. The
TPU’s 16 identical channels can be
used individually or linked together.

Each channel contains a 16-bit
capture register, a 16-bit greater-than
or equal-to compare register, a 16-bit
match-enable register, and six words
of parameter RAM (see Figure 5). The
exceptions are channels 14 and 15,
which each have eight words of pa-
rameter RAM to use when passing
parameters to and from the CPU.

TPU PROGRAMMING MODEL
As I mentioned, the TPU can run

factory-programmed microcode out of
ROM in nonemulation mode, or user
microcode out of onboard RAM in
emulation mode. I’ll leave emulation
mode for later, but I want to cover
nonemulation mode now.

In nonemulation mode, the TPU can
perform any of the canned functions
on any or all of its channels. Table 1
lists the functions that come prepro-
grammed on the ‘332. Although other
processors have their own mask sets,
Table 1 shows the two mask sets, A
and G, available on the 68332.

TPU programming is straightforward,
but some care is required because
several registers have to be set up and
some registers are shared by several
channels. Figure 6 shows the TPU regis-
ter map and the registers’ bit fields.
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First, you need to globally initialize
the TPU, ehich involves writing to the
module configuration register (TMCR)
and the interrupt configuration register
(TICR). The TMCR sets up clocks and
prescaling and sets arbitration levels
for accessing the IMB. Most impor-
tantly, it selects whether the TPU is
in emulation mode.

The TICR sets the interrupt request
level, which is the same for all TPU
channels, and arbitrates the interrupts
between 68332 submodules on the IMB.
The TICR also sets the base address
for the interrupt vector. Global initial-
ization must be performed for both
modes of TPU operation.

The individual channels must be
initialized through a seven-step pro-
cess. The channels can be initialized
in any order, and Figure 7 shows the
programming map of a timer channel.

First, disable the channel by clearing
its two-bit priority field in the channel
priority register CPR0 or CPR1. Next,
load the channel-function code into
the appropriate channel-function reg-
ister CFSR0-CFSR3 (see Table 1 for
function codes). After that, load any
parameters required by the function
into the channel’s parameter RAM.

The host sequence bits are set in
the host sequence register, HSQR0 or
HSQR1. These bits  help specify the
operation of the time function, and
their meaning depends on the function
selected.

The host service requests bits in
the host service request register, HSR0
or HSR1, are set up next. They deter-
mine the type of service the CPU is
requesting (e.g., initialization, run).
Their meaning depends on the time

function selected. The CPU
requests service by writing any
one of three nonzero values into
the appropriate HSR two-bit field.
Only the TPU can clear this bit
field, and it does so when it com-
pletes the requested service.

The CPU can monitor the
HSR two-bit field to determine
when the TPU completes the
service, but it’s better to enable
the interrupt on the channel. For
the CPU to interrupt when the
TPU completes a requested
service, the appropriate bit in

the channel interrupt enable register
(CISR) must be set.

The channel priority bits are set as
high (11), middle (10) , or low (01). A
nonzero value turns the channel on; a
value of 00 turns the channel off.

 I know the 16-channel setup is a bit
tedious, but using a template for new
applications makes the job go faster.
The up-front effort is worth it when
you see how the TPU handles complex
timing and counting tasks with ease.

Next time, I’ll look at how to handle
a quadrature encoder, DC motor speed
control, and position measurements,
all using the canned TPU functions. I

Channel function bit field found
 in Channel Function register
CFSR0–CFSR3

Channel priority bit field
found in Channel Priority register
CPR0–CPR1

Host sequence bit field
found in Host Sequence register
HSQR0–HSQR1

Host service bit field found in
Host Service Request registers
HSRR0–HSRR1

Interrupt enable bit found in 
Interrupt Enable register CIER

Interrupt status bit found in 
Interrupt Status register CISR

Channel 
control

TPU programmers map

15 0

Parm 0
Parm 1
Parm 2
Parm 3
Parm 4
Parm 5
Parm 6
Parm 7

Word

Channel 14 
and 15 only

Parameter RAM

Figure 7— The programmer must set up every bit field and
paramter RAM prior to running one of the canned functions.

Joe DiBartolomeo has over 15 years of
engineering experience. He currently
works for a radar company and also
runs a consulting company, Northern
Engineering Associates. You may
reach him at jdb.nea@sympatico.ca.
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Can You Feel the Beat?

yWith a
son
taking
drum
lessons,

it’s no surprise that
Jeff wants to create a
metronome. And small
wonder that he needs
an accurate time base
for it! Listen in to learn
how a new crystal
oscillator helps out.

FROM THE
BENCH
Jeff Bachiochi

eah, you can use
a crystal for your

time base. But, how
accurate is it?  Standard

tolerances are ±20 ppm at 25°C. Twenty
parts per million seems pretty good—
or is it?

Well, 60 s × 60 min. × 24 h × 365 days
is about 31.5 million seconds a year. If
the crystal can be off by 20 ppm, that’s
20 × 31.5, which is 630 s or 10.5 min.
(about 1 min. a month)!

In an NEMA box exposed to the sun
or freezing temperatures,  it can be two
or three times as inaccurate. In an
environment above the full industrial
temperature –40–85°C (–40–185°F), it
ends up being off by over an hour a
year—hardly accurate, and that’s based
on finding a manufacturer that produces
a crystal that meets industrial specs.

Time is now on your side. Dallas
Semiconductor has released a new

temperature-compensated crystal oscil-
lator (TCXO), the DS32KHz. Touting
accuracy of ±1 min. per year 0–40°C
and ± 4 min. a year –40–85°C, the
TCXO requires no calibration. Operat-
ing voltage is 2.7–5.5 V, making it use-
ful in those 3-V projects.

The device has a separate backup-
battery input so it continues running
even when system power is removed.
Current consumption at 3 V is typically
1 µA. The DS32KHz is larger than your
typical 32-kHz crystal and comes in a
half-inch-square surface-mount (ball
grid array style) package.

Don’t go looking for this TCXO in
the 65-cent bin at your local Radio
Shack. You’ll need to fork out about
ten times that amount. But when you
need higher accuracy than you can
typically get, the Dallas part is golden.

Why am I leading off with this?
Last month, I hinted at some gotchas I
wasn’t able to see until I actually ran
code on Atmel’s AVR part that I de-
signed with. I wondered how many of
you would catch what I missed.

Last month’s project used an AT-
90S2323 with a 32-kHz crystal. The
datasheet states 0–10 MHz. Although
it will operate with slow oscillator
inputs, the internal amplifier won’t
drive a 32-kHz crystal (the Atmel apps
engineers assured me some newer
parts will include the proper amplifier).

So, where does that leave a design
that works well on paper, simulates
fine in the simulator, but doesn’t
function in reality?

EENIE, MEENIE…
For highly accurate timing, the

DS32KHz TCXO could be used as the
oscillator input to the AT90S2323
micro, thus assuring low power con-

Figure 1— When using the internal oscillator
of the ‘2343, the crystal  inputs can be used
as additional I/O. But, changing the direction
of an I/O bit alternately shorts out the
attached capacitor C3/4 (outputting 0) and
allows it to charge (configure pin as input).
The charge time, adjustable via the potenti-
ometer P1/2, is based on the number of
times the pin is read before it becomes a
logic 1.
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Listing 1— This test program helped me determine the timing parameter for various external capacitor and
resistor combinations.

sumption and no software changes.
But, the more cost-effective choice for
last month’s tiny timebase might be a
software change that enables you to
use a 4.194304-MHz crystal.

This frequency crystal divides down
to the same half-second tics that the
32-kHz crystal would have if the inter-
nal oscillator had enough drive. With
the higher crystal, you can use a divide-
by-1024 prescaler to get a timer clock
of 4096 Hz. The 8-bit timer rolls over
(interrupt) at a rate of 16 Hz. Now,
every eighth rollover is 0.5 s—the same
time base used in last month’s code.

THE BEAT GOES ON
Now that we corrected the design

error from last month, let’s look at a
technique for using a digital input as
an analog input with a potentiometer.
The most recent project I’m working
on is for my youngest son, Kristafer.
He started music lessons this month
and is in need of a metronome.

The fact that he chose the drums
underscores this need. After all, if the
percussion section can’t keep the beat,
the fat lady will never want to sing.

There are two input controls to the
metronome. The first is a tempo or
beats/minute control, and the second
is a mode or beats/measure control.
The mode control allows counting by
one, two, three, four, five, or six.

These counts fire off a piezo device
that makes a beep, and lights an LED,
providing both audible and visible
indicators. The first count always
uses a different tone and color (via a
multicolored LED) to indicate the
downbeat or first beat in a measure.
The tempo control adjusts the tempo
of the beats from largo (40 beats/min.)
to presto (208 beats/min.).

A/D inputs would make this task
easy. The typical connection has the
ends of a potentiometer across VCC

 and
ground with the wiper connecting to
an analog input of the micro. Assum-
ing the ADC is referenced to VCC,  it
would convert the wiper’s voltage into a
value equal to relative position of the
pot’s wiper.

Because the ADC’s converted values
are steps, what you have is a pot’s ana-
log position converted into a number
of (switch) positions equal to the reso-

.device AT90S2343 ;Prohibits use of nonimplemented instructions

.include "2343def.inc"

;* Global Register Variables

;* Code
rjmp RESET ;Reset Vector
rjmp INT0 ;External Interrupt Vector
rjmp TMR0_OVF ;Timer 0 Overflow Vector

;* Main Program Register Variables
.def TEMP =r16
.def CNTR =r17

;* Code
RESET:ldi TEMP,$DF ;value for stack pointer

out SPL,TEMP ;put it there
ldi TEMP,$00 ;value for PORTB xxx00000
out PORTB,TEMP ;put it there (no pullups on inputs)
ldi TEMP,$0F ;value for PORTB direction xxxIOOOO
out DDRB,TEMP ;put it there
ldi TEMP,$01 ;value for no prescaler
out TCCR0,TEMP ;put it there

BEGIN:sbi DDRB,PB4 ;config as output (to short out cap)
clr TEMP
out TCNT0,TEMP ;start at zero
in TEMP,TIFR
cbr TEMP,TOV0
out TIFR,TEMP
cbi PORTB,PB3
cbi DDRB,PB4 ;config as input (to allow cap to charge)

CHECK:sbis PINB,PB4 ;skip next if PB4 (charging crossed high
;threshold)

rjmp CHECK ;input high so keep timing
in TEMP,TCNT0 ;save the timer0 value
in CNTR,TIFR
sbrc CNTR,TOV0 ;skip next if no overflow in timer0
sbi PORTB,PB3 ;set PB3 (overflow indicator)
rjmp HNIB ;go on

CHECK1:cbi PORTB,PB3 ;clear PB3 (no overflow)

HNIB: mov CNTR,TEMP ;get saved timer value
swap CNTR ;get upper nybble
andi CNTR,$0F ;mask off upper (was lower)

HNIB1:breq LNIB ;branch if CNTR is zero
sbi PORTB,PB0 ;else toggle PB0 (upper nybble count)
cbi PORTB,PB0
dec CNTR ;reduce the count
rjmp HNIB1 ;and check again

LNIB: mov CNTR,TEMP ;get saved timer value again
andi CNTR,$0F ;this time get rid of upper nybble

LNIB1:breq DONE ;branch if CNTR is zero
sbi PORTB,PB1 ;else toggle PB1 (lower nybble count)
cbi PORTB,PB1
dec CNTR ;reduce the count
rjmp LNIB1 ;and check again

DONE: rjmp BEGIN ;that's all, so start over

TMR0_OVF: ;not being used
reti
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lution (or number of steps) of the ADC.
Usually, the more steps (i.e., the higher
the resolution) the harder it is to
position the wiper to a particular step.

Without an ADC, this situation
becomes more difficult. Since we can
only read two input voltages (high and
low) via a digital input, a different
approach must be used to determine
the potentiometer’s wiper’s position.

One way is to use the time it takes
to charge a capacitor from zero (a low
input) up to the input’s high threshold
switching level (Vih), usually about
0.6 VCC or 3 V at a VCC of 5 V. Figure 1
shows how this is done. One end of
the capacitor connects to ground while
the other end goes to an I/O pin.

The pot used as a variable resistor
connects between the I/O pin and a
series resistor to VCC. The series resis-
tor prevents the I/O pin from shorting
to VCC when the pot is at minimum
resistance (short circuit).

TESTING 1, 2, 3, 4
Because of all the unknowns here

(especially the exact voltage necessary

to switch from logic low to high),
determining what capacitor and resis-
tor to use isn’t simply mathematics.
But, I need to start somewhere.

The shortest overflow of timer0
using the internal 1-MHz R/C oscilla-
tor will be about 256 µs. So, I’ll try a
R/C time constant of that length using
a 100 kΩ potentiometer. The capacitor
value needed will be about 0.002 µF, or:

I always write short programs to
test certain operations that I don’t feel
comfortable using for the first time.
This is a good case in point. Listing 1
shows an overview of the routine.

To start, set the data on the I/O bit
connected to the external R/C circuit
to 0. Begin with this pin configured as
an output. The 0 data output on this
pin shorts the capacitor to ground.

Now, clear and start the timer and
reconfigure the I/O pin as an input.
The voltage across the capacitor will

begin to rise as the capacitor becomes
charged through the potentiometer.

When the rising voltage crosses the
threshold for a logic 1, the digital input
will be seen as high. The code jumps
out of its tight loop (waiting for this
to happen), immediately reads the
timer’s count, and checks the over-
flow flag. Now, the timer count is rela-
tive to the time it took the input voltage
to charge up to the logic high threshold.

Adjusting the potentiometer varies
the charging time (and timer count). I
need a way to see what the count is. If
the device had a hardware UART, I
probably would have sent the ASCII
value out a port. But there’s no hard-
ware UART on the AT90S2343, and I
don’t want to spend time debugging a
software UART routine.

So, I used some output bits for a
quick indication. I toggle PB0 once for
each count of the timer’s upper nibble
value and then PB1 once for each count
of the lower nibble’s value. A third out-
put bit mirrors the timer overflow flag.

The scope traces in Photo 1 give
you an idea of how this quick routine

C = 2.56 × 10
1 × 105( )-4t

R
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Photo 1— C3 changes to the point where PB4 sees a logic 1 (72.35µs). The
timer count is shown as pulses (value of upper nibble) on PB0 and (value of
lower nibble) on PB1.

Photo 2— Kris’s personal-
ized metronome clips onto
his music stand, thanks to
the belt-clip option avail-
able with this PacTec
enclosure. A push-button
power switch located
under the clip turns power
on when the unit is clipped
onto the music sheets.

SOURCES

DS32KHz  TCXO
Dallas Semiconductor
(972) 371-4448
Fax: (972) 371-3715
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AVR AT90S2343
Atmel
(408) 441-0311
Fax: (408) 436-4200
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PacTec
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Fax: (215) 365-4420

works. After playing around
with capacitor values I had
in my parts cabinet, I chose
a couple of  0.0033 µF caps
with 100-kΩ pots. These
values gave me almost a full
count of 03–F6h.

For the input that’s being
used as a switch, I need six
switch positions. I use the
upper nibble values of 00–
3Fh as 1, 40–5Fh as 2, 60–
7Fh as 3, and so on, with
anything over C0h as 6. For
the tempo input, I use the
count directly. To keep the
math minimal, the tempo
value is not in counts/min.
but the reciprocal, counts ×
period (a period equals 10 ms).

A ONE, AND A TWO…
Getting this metronome’s heart beat-

ing takes a single interrupt. The timer0
interrupt is based on a noprescaled
8-bit rollover. Every 256 µs, the timer0
interrupt flag redirects the execution to
an interrupt routine.

The timer0 interrupt routine counts
interrupts up to 39. If 39 isn’t reached,
the routine exits with a RETI (to re-
enable the global interrupt on exiting).

When it reaches 39, the interrupt
branches to a second loop that incre-
ments TCNT up to the value of TEMPO
(the periods/beat counter). This branch
is ended with a RET (not RETI) and
leaves the global interrupt disabled
(important point, as you’ll see later).

The timer0 interrupt ends up incre-
menting TCNT every
256 µs × 39, which is
9.984 ms (~ 10 ms).

Between interrupts the main execution
does very little. When TCNT is 1, execu-
tion does a read of the tempo potenti-
ometer and updates TEMPO if needed.

TEMPO, the interrupt’s outer loop
reload count, determines how many
10-ms periods will be counted until it
declares that one beat has occurred
and clears TCNT. To prevent exiting
this branch and doing the same thing
over again, a BRIE (branch if global
interrupts are enabled) is executed.

Remember how the timer0 interrupt
exited the inner loop (count up to 39)
with a RETI. I use BRIE to branch to
itself, which holds execution until 39
is reached and the outer loop incre-
ments TCNT, finishing the interrupt
routine with a RET.

   When TCNT is 2, the mode pot is
read. The mode pot uses a lookup

table to divide its position into
the values 1–6. Changes to the

mode pot (beats/measure)

clear the mode count MCNT im-
mediately. MCNT is then
incremented, and BRIE is used
to hold execution again.

When TCNT is 3, the mode
count determines which LED is
enabled. The red LED is enabled
for all but the first count of MCNT.
An MCNT of 1 enables the green
LED. If the mode value is 1,
MCNT will not increment past 1 and
every beat is a (green) downbeat.

Not much happens until TCNT
reaches 10, in which case both
LEDs are disabled. Notice that
the bicolor LED has two leads.
The color is determined by the
polarity of the potential across
the leads, and by placing the

LED (and series resistor) across two
output bits, I can change the color by
raising one and lowering the other bit.

Again, not much happens until
TCNT reaches the value of TEMPO.
TCNT is now cleared and the whole
process repeats itself for the next beat.

POCKET PACKAGING
The metronome is housed in a small

PacTec enclosure (see Photo 2) with a
9-V battery compartment and a belt
clip that holds the box onto the music
stand. Now if he’d only practice! I

Jeff Bachiochi (pronounced “BAH-key-
AH-key”) is an electrical engineer on
Circuit Cellar INK’s engineering staff.
His background includes product design
and manufacturing. He may be reached
at jeff.bachiochi@circuitcellar.com

www.dalsemi.com
www.atmel.com
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Wires,
Wires
Everywhere

iTom’s had
a wire
problem
for years.
But, with

some embedded-
world technology, he
may have found the
fix at last. He’s hoping
Micrel’s complete radio
receiver in a single
chip will bring him a
cable-free future.

SILICON
UPDATE
Tom Cantrell

 hate wires. The
tangled web that

binds is an unfortunate
by-product of the modern

computer age. Keyboard, mouse, CRT,
speakers, printer, modem, game ports,
scanner, and more all call for their own
hookup, not to mention the requisite
power connections.

Hope lies with reducing if not the
quantity, at least the confusion, of all
these cable connections. But, progress
has been agonizingly slow.

For instance, USB has been on-deck
for more than two years (see “Oh Say
Can USB?” INK 74). Yet, despite liberal
seeding with USB-enabled motherboards
and chips, progress has gone at a snail’s
pace. Part of the problem was a soft-

ware driver vacuum while waiting for
Windows 98, and some would argue
that the air is still thin.

The other problem is sheer inertia.
I recently got a new PC that came with
a regular mouse and keyboard, leaving
my USB ports to gather dust like most
everyone else’s. The only bit of hope is
that I did notice a few square feet of
shelf space devoted to a handful of USB
gadgets at the local computer shop.

Ironically, after all the PC huffing
and puffing, it may be the appearance
of the Apple iMac that gives USB the
push it needs. I recently saw a Mac-
oriented mail-order catalog with a page
full of USB gedgets (mice, trackballs,
disks, printers, etc.) for this new baby.

But even as USB pokes along, the
powers that be turn their attention to
the next big thing in the form of IEEE
1394 (i.e., Firewire). In an article I
wrote for Computer Design (“Firewire
Getting Hot,” October ’97), I referred
to 1394 as the “RCA jack of tomorrow.”
It’s the holy grail of convergence, a
single cable that purports to connect
every A/V gadget we own.

Of course, 1394 will have to cross
the same barriers as USB and then
some. Besides hardware inertia and
lack of software, it’s being challenged
by that all-too-common malady of
creeping featuritis (i.e., the ink on one
spec is barely dry before someone
decides more tweaking is in order).

Worse yet, the fear of having their
art reduced to easily copied 1s and 0s
has Hollywood and their armies of
lawyers involved in torturous and
time-consuming negotiations over the

nitty-gritty of copy
protection. Last I

heard, not only
will authorized
1394 gear be

Photo 1— The MICRF001 EV kit
includes an evaluation board and
keyfob transmitter from Ming
Microsystems.

The RF Solution
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subject to a gag rule when it comes to
copying, but it’ll also rat on any unau-
thorized gear that plugs in.

Unlike the PC world, where even
the smallest innovation seems to
require consensus from Redmond to
Washington DC, the embedded world
is blessedly agile. Wireless TV
remotes, phones, car locks, and head-
phones are all common and welcome
additions to our daily lives.

Free from the politics, inertia, and
jockeying of the PC market, embedded
wireless technology proceeds at a
silicon rather than human pace. A
recent chip announcement from
Micrel demonstrates what I mean.

MICROFUN
The MICRF001 (I don’t know if

Micrel intended it, but I find myself
saying “microphone”) is a complete
radio receiver on a single chip. As
stated in the datasheet, you don’t have
to be an “RF expert” to design it in (or,
fortunately for me, to write about it).

Again quoting the datasheet, the
chip is a true antenna-in, data-out
monolithic device. As Figure 1 shows,
building a complete receiver around
the MICRF001 requires as little as
adding a crystal (possibly getting away
with an even lower cost ceramic reso-
nator) and two capacitors.

The specs reflect targeted applica-
tions like keyless entry, security sys-
tems, garage door openers, and so on.
Operating in the 300- to
440-MHz (UHF) fre-
quency band, the chip
can typically receive
data at up to 4.8 kbps
over 100 m. The exact
data rate depends on the
RF frequency selected
and one of four selec-
tions made by jumpering
the SEL0 and SEL1 pins.

For instance, if the
frequency is 418 MHz,
datarate options are 4.8,
2.4, 1.2, and 0.6 kbps. As
for range, actual results
depend heavily on an-
tenna design (more on
this later) and, of course,
the presence or absence
of interference and ob-

stacles. Performance also depends on
transmission characteristics such as
the presence or absence of a preamble,
minimum pulse width, and such
(more on this later, too).

Figure 2 shows all the components
of a classic radio receiver design on-
chip. Starting at the ANT (antenna)
input, the raw RF (ftx) is downconverted
to a lower intermediate frequency (fif)
using a mixer in conjunction with a
programmable synthesizer also known
as the LO (local oscillator, flo).

The downconverted data is amplified,
subjected to automatic gain control
(AGC), and passed to the demodulator
section where it’s filtered and sliced
into good old 1s and 0s (i.e., baseband)
for delivery out the data out (DO) pin.

I just described a classic superhetero-
dyne (SH) receiver. The MICRF001
can work in an even simpler super-
regenerative (SR, or homodyne) mode
that dispenses with the need for the
LO because conversion is direct to

baseband from RF without an inter-
mediate step.

The MICRF001 works with on-off
key (OOK) modulation in which the
transmitter simply turns the RF carrier
on and off, rather than modulating its
amplitude (AM), frequency (FM), or
phase (PM).

SH and SR schemes each exhibit
relative advantages and disadvantages.
An SR transmitter doesn’t call for
especially high transmit-frequency
accuracy (e.g., the transmitter can use
a cheap LC oscillator). So, the SR trans-
mitter is usually only appropriate for
applications where receiver frequency
can be manually tuned.

In contrast, SH setups require accu-
rate timing as well as crystals or espe-
cially accurate SAW resonators. The
benefit is that you can dispense with
the need for manual tuning.

Micrel has managed to combine the
best of both the SH and SR worlds. For
example, the device can be configured

in sweep or fixed modes
by jumpering the sweep-
enable (SWEN) pin ap-
propriately. Sweep mode
varies the LO sym-
metrically to broaden
the RF bandwidth per-
mitting operation with
drift-prone LC-based
transmitters.

Of course, being less
selective about what’s
received implies more
susceptibility to inter-
ference. But if there’s
no need to achieve
accurate timing, as when
a crystal-based reference
already exists in the
system, conventional
fixed mode is OK.

Figure 1— What’s it take to
get on the air with the
MIDRF001? Little more than
a clock reference (crystal,
resonator, or external input)
and a couple of capacitors.
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Figure 2— The MICRF001 integrates all the components needed to grag RF from an antenna
connected to the ANT pin and deliver digital data out the DO pin.
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Figure 3— The way data is coded impacts performance
with minimum pulse width, a key parameter. One
popular way to avoid narrow pulses, which are hard to
distinguish from noise, is to use a 33/66% PWM scheme.

Figure 4— Configuring the optimal slicing time constant is critical and depends on both protocol (i.e., presence or
absence of preamble or repeated transmissions) and throughput requirements.

TUNING IN
Getting on the airwaves design-wise

is a relatively simple (at least concep-
tually) four-step process, followed by
testing and tweaking to optimize range.
But the devil is in the details, so let’s
step through the process focusing on
the areas where gotchas might arise.

The first step is establishing the
basic timing, which is usually a cart
or horse decision. If the MICRF001
listens to an existing transmitter, that
unit’s frequency determines the clock
required on the REFOSC input, which
is stepped up internally. The datasheet
shows the defining equations (e.g., how
working with a 315-MHz transmitter
calls for 2.4092 MHz on REFOSC).

If you have the luxury of choosing
the transmitter frequency (i.e., tuned
LC), you can start with a standard value
(3.000 MHz) for REFOSC and work
backward. This technique can save
you the cost associated with a non-
standard clock source and the hassle
of having to deal with any fractional
errors in subsequent calculations.

Another timing decision involves
jumpering the SEL0 and SEL1 pins.
Though the configuration inherently
dictates the baseband (i.e., out the DO
pin) data rate, it’s not simply a matter
of choosing the fastest or most conve-
nient digital connection. Rather, you
have to find a baseband filter band-
width that depends on the minimum
pulsewidth, not the data rate.

Here, for the first (but not the last)
time, the issue of the data coding
comes into play because it impacts
the relationship between data rate and
pulse width. As an extreme, NRZ
coding, which represents a 1 or 0 as a
corresponding level, won’t work because
a 0 is equivalent to silence. Instead, a

PWM type coding is required, in which
each bit consists of high and low levels.

Consider typical codings like the
33/66 shown in Figure 3 and 50/50
(e.g., Manchester coding). Even though
the base-band data rate may be the
same, the former has a shorter mini-
mum pulse width (33% vs. 50%) call-
ing for a higher filter bandwidth.

Because more bandwidth lets in
more noise and reduces range, 50/50
schemes are preferred and although
66/33 are OK, something like 90/10
should be avoided. The datasheet
contains equations and tables to cal-
culate the optimal SEL0 and SEL1
setting depending on transmit fre-
quency and minimum pulse width.

IT SLICES…
The second step in getting on the

airwaves is selecting the slicing time
constant via the capacitor on the CTH
pin. The slicer cuts the data into 1s
and 0s and consists of a comparator
with threshold determined by the
voltage on the CTH pin.

By feeding the demodulated data
through an RC low-pass filter com-
prising an on-chip resistor RSC and
the external capacitor on CTH, the
voltage is developed. The voltage
represents the average voltage of the
data signal over a period of time (the
slicing time constant) against which
the instantaneous voltage of the data
signal is compared.

Consider the extremes of zero and
infinite slicing time. At zero slicing

time, the voltage on CTH exactly fol-
lows the data. At infinite slicing time,
the voltage on CTH remains at zero.
In both cases, the comparator has noth-
ing meaningful to compare against.

Figure 4 shows three example slicing
time settings (v(2), v(3), and v(4)) and
illustrates what’s going on. Once again,
the choice of coding and further proto-
col comes into play.

For instance, by sending a long pre-
amble or repeated transmissions, a
relatively long time constant (e.g.,
50 ms) produces a nice even level for
the comparator to work against. Of
course, the downside is that it takes
relatively longer to move a given
amount of data.

In contrast, if there’s little preamble
or no repeated transmissions, a shorter
time constant (5 ms) is required to get
the comparator input ramped quickly.
The problem is that the steep slope
creates pulse-width distortion that
impacts range.

Thus, the overall goal is to choose
the longest time constant that is con-
sistent with protocol and decode time
constraints. The datasheet indicates
that a reasonable rule of thumb is a
slicing time constant equal to about
five bit times.

Step three is configuring the auto-
matic gain control (AGC) via the
CAGC’s pin capacitor. The idea is to
center the dynamic range of the sys-
tem around the local ether noise level.

Setting the attack/decay time con-
stant with the capacitor on the CAGC

Data 1
1 ms

Data 0

66%

33%

PW min = 333µs
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pin is similar to slicing time, in that
you trade-off a smooth gain curve with
minimum ripple for a fast response.
For instance, applications where the
receiver is constantly powered, there’s
a lot of preamble and the decode time
is leisurely give the AGC lots of time
to adjust, so a long time constant can
be used.

The final step to getting on the air
is raising the antenna, and the documen-
tation does a good job of shedding light
on this rather black art. In short, the
simplest and best-performing setup is
a quarter-wave length (e.g., inches =
2808/ftx in megehertz, or about 6–9",
depending on transmit frequency)
piece of wire (monopole) connected
directly to the ANT pin.

Less cumbersome options include
coils of wire (helicals) and PCB loops,
although range is typically cut to 60
and 30 m, respectively.

Possible enhancements include LC
filtering to counter interference from
machinery located near the receiver
or, at the very least, a resistor offering
a DC path to ground affords some input
protection from large EM spikes. The
antenna can also be located remotely
via transmission line, with the caution
that an impedance-matched coupling
is necessary.

HERE COMES DE CODE
Final integration involves hooking

the RF subsystem to a decoder. A
number of dedicated chips are available
from the likes of Motorola, National,

Holtek, and Microchip. Or, you can
roll your own using an MCU.

In principle, it’s relatively easy to
design your own transmitter because
the basic functionality involves gating
the RF on and off. However, keep in
mind that once you start talking, rather
than listening, the FCC is going to
insist on oversight. For all but the
highest-volume apps, it may be wiser
to purchase preapproved commercial
units from outfits like Ming Microsys-
tems, Abacom, Radiometrix, or DVP.

The easiest way to get started with
the MICRF001 is to pick up the EV
kit shown in Photo 1. It consists of an
EV board (see Figure 5) combining the
MICRF001 with a Holtek decoder, a
keyfob transmitter from Ming Micro-
systems, and all the requisite docs.

The kit offers just enough function-
ality to evaluate performance and
perform range testing, a low-tech
exercise that boils down to: press a
button on the keyfob, see if the LED
on the board lights up, move a step
away, repeat.

All in all, the MICRF001 proves RF
technology doesn’t have to be compli-
cated or expensive ($3 in volume), thus
enabling widespread adoption into
new apps.

Although technically, the MICRF001
could work in a wireless keyboard or
mouse, FCC restrictions on the 300-
400-MHz band rule it out. However, a
Micrel app note does show how to use
the MICRF001 as the second stage in
a 900-MHz wireless modem.

Figure 4— Configuring the optimal slicing time constant is critical and depends on both protocol (i.e., presence or
absence of preamble or repeated transmissions) and throughput requirements.

I hope chips like the MICRF001 get
the message to the PC powers that be:
Wires? We don’t need no stinking
wires. I

www.micrel.com
www.digikey.com
www.national.com
www.microchip.com
www.dvp.com
www.radiometrix.co.uk/contact/usa.htm
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’Net Worth

w hen I'm in the booth at the tradeshow, I can always count on a few people asking my advice on starting a
business. I guess it must be one of those age things. In any case, I try to avoid coming across as completely

bitter and warped. I don't tell them that lawyers and government meddling have made entrpreneurial ventures
more of a beaurocratic hassle than a rewarding enterprise these days. I know most of these guys aren't even thinking

about company medical insurance and 401K plans yet. They've got a great product idea and they just want to capitalize
on it, come hell or high water. So, I smile with my aged wisdom and give them a little advice.

A lot has changed in the 20 years since I started a business. Back then, I just threw $50k in the pot and believed that if my
product idea was sound and I followed the standard business model (albeit limited by the amount of my investment capital), I would
succeed. At least that used to be the formula.

Unfortunately, I don't think that model is true anymore. The commercialism of the Internet has completely shredded the old
model and dictated some interesting prophecies. In my opinion, entrepreneurial performance in the future will depend less on
product competition and more on the business model employed to promote it—specifically, the Internet. For the entrpreneur who
understands this new business model, the Internet offers a level playing field where intellect has an opportunity to succeed against
overwhelming financial competition.

The Internet is changing the relationship between consumer and producer. Don't tink this realization doesn't have some
traditional TV-centered big-name companies running scared. The Internet is not, as some have viewed it, just a new marketing
channel and faster advertising medium. It's a whole new industry! It's an industry that incorporates personal choice, personal freedom,
and personal control in the buying process. Online product promotion has to entice, educate, and entertain.

You don't have to take my word for it. Look at your own behavior patterns and how much less passive you are online. Would you
rather spend your time watching a TV sitcom or surfing the web? And, why is it that a 30- or 60- second TV commercial is passively
accepted, but if some web advertiser took over you computer screen for a 30-second commercial, you'd go berserk? If you're
interested in a print magazine ad these days, you don't fill out a bingo card, you go to the web site. When you're thinking about a
new car, you don't go to 10 car dealerships to see what they have; you do a little comparison browsing at the manufacturer and car
magazine sites. The reasons are clear—choice, freedom, and control.

When I'm asked startup questions these days, my advice is about the Internet:

• Web users aren't passive.
• Everyone online is a comparison shopper. No amount of advertising dollars turns a poorly rated product into a first-rate seller.
• Internet shopping facilitates a build-to-order business.
• An Internet company has no geographical boundaries. Your competitors and your customers will come from around the world.
• No one sleeps in cyberspace. Your copmpany is viewed as always open and service is always expected.
• The product learning cycle online is much faster than the traditional model. Online selling is faster and therefore customer
  feedback is faster.

The kind of person who asks me about starting a business isn't a venture capitalist giving me an IQ test. It's usually an individual
with a great idea and limited capital. The traditional business model has always been an obstacle because product advertising and
promotion were so costly. Low-cost web communication gives the entrepreneur a chance to play the game again.

But even with the reality of a web-conscious society, just using the Internet isn't enough. Ultimate success for any new business
depends on its ability to offer products with real performance advantages. Efficiency and low cost aren't sufficient. Purchasers will
have to be given the information required to make decisions in an informative and entertaining way.

The bottom line isn't hard to understand. The Internet is definitely the vehicle for someone starting a business, but it is a deathtrap
for the mediocre.

It's almost enough to make a guy want to do it all over again.... Well, not really.


