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Avoiding the Fuzzy Faux Pas

TASK MANAGER

f or several years, I’ve edited issues focusing
on fuzzy logic for Circuit Cellar INK. But this is the

first time that “Fuzzy Logic” hasn’t been the theme
even though three articles in this issue use this approach.

As many people suggest, there’s a stigma associated with the word
“fuzzy.” Perhaps for some of the hardboiled hardware types out there, it’s
just too cute. I can appreciate that.

In fact, I’ll let you in on a little behind-the-scenes action. During the
recent holiday season, we were pondering cover photo concepts for this
issue. And if you were in the States this past year, you know what every kid
wanted for their holiday gift, right? Furby, of course!

For those of you who haven’t made his acquaintance, this little bug-eyed
furry creature “acquires” language by being talked to, or so the ads say. (I
won’t even start a tirade on what it means to acquire language, although if
you see me at the Embedded Systems Conference next month and ask my
opinion, I’ll be happy to give you the benefit of ten years of graduate study
in linguistics!) By the way, if you want to learn about some of the hardware
truths beneath Furby’s furry exterior, check out www.phobe.com/furby.

Anyway, as I was saying, Furby was on our minds and someone said,
“Wouldn’t it be funny to put Furby on a Fuzzy Logic cover?” Sure, but we
knew it was going to be next to impossible to get our hands on one of these
popular toys. Besides, I’m not sure it uses fuzzy logic. So, that idea went
out the window.

We had to come up with something else, but with the words “Fuzzy
Logic” on the cover, it just wasn’t working. All we could envision were fuzzy
animals, fuzzy houseslippers,….  Those cuddly images would just get us
into trouble with people who seem to believe that fuzzy logic is imprecise
and unprofessional simply because it uses that word.

To get beyond the fur fest, we started thinking about what fuzzy logic is:
balancing, weighing variables, a certain way of evaluating parameters. But
since the last two Fuzzy Logic covers have embodied the “different way of
looking at the situation” concept, that now-stale idea went out the window
along with Furby.

Clearly, putting “Fuzzy Logic” on the cover wasn’t going to happen. By
now, I was getting really frustrated and started walking around the office
growling, “What’s wrong with ‘fuzzy’ anyway? Do you mean to tell me that
more people would appreciate fuzzy logic if we called it something pompous
like ‘multiparameter weighting analysis’?”

Fortunately, once we thought about how Walter Banks and Constantin
von Altrock discuss this approach in their articles, we realized that fuzzy
logic is just a practical way of using embedded computers to handle real-
world problems. And that’s when it hit us: Real-World Programming.

Although we changed the name of the theme, I hope you’ll look past any
biases that “fuzzy” brings up as you read the fuzzy-logic articles. Don’t let
words get in the way of a helpful solution.
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READER I/O

• Circuit Cellar Online is hosting the proceedings from the First Annual 1998
Embedded Internet Workshop . Visit our homepage to find the workshop
proceedings including slide presentations, lecture notes, and complete papers.

• All aboard the INFO Express ! Loaded with the latest news and information about
Circuit Cellar INK as well as any additions or changes to our web site, the INFO
Express stops right at your e-mail address. Visit our homepage to sign up for
this new service from Circuit Cellar.

• While you’re working on your entry for Design99, don’t forget to check the
Design99 Rules Update  section for the latest updates on the contest guidlines.

www.circuitcellar.com

Be sure to visit the Circuit Cellar Design Forum this month for more great
online technical columns and applications. February’s Design Forum password is
your key to great new columns, monthly features, and PIC Abstracts.

Silicon Update Online:  Zilog Lives?!—Tom Cantrell
Lessons from the Trenches:  Getting a Head Start on Software Development—

Linking Embedded Code—George Martin
A 68HC11 S-Record Disassembler:  Frank Kuechmann

HARVARD VS. VON NEUMANN APPEALED
In their article “In-System Programming” (INK

101), Craig Pataky and Bill Maggs imply that all embed-
ded micros use Harvard architecture rather than Von
Neumann. In fact, the Motorola 68HC05 and 68HC11
families employ the Von Neumann architecture.

Their statement, “The main reason microcontrol-
lers have clung to the Harvard architecture is because
by keeping data and code memory separate, it’s
impossible for the machine to inadvertently corrupt its
own code and go insane” (p. 15) implies that code
memory in a Von Neumann system is always volatile.

Also, the statements “Von Neumann designs are
flexible but inherently unstable. Harvard designs are
rock-solid but immutable” (p. 15) are extremely
misleading. If my code is in EPROM or some other
firm memory area, I doubt a misguided program could
overwrite the code and cause the system to go insane.

A corrupted program counter register in a Harvard
design is no safer than one in a Von Neumann design.

Calvin Krusen
ckrusen@meeco.com

The point of our article was to address the flexibil-
ity and cutting-edge technology of in-circuit program-
ming in flash-based designs. Our reference to Von
Neumann versus Harvard design was based more on
historical implementation than technical definition.

You are correct, not all micros use the Harvard
architecture. But, our statement that microcontrollers
which keep code and data memory separate cannot
corrupt their own code is factual. And, yes, a cor-
rupted program register could happen to any micro,
but that’s generally what watchdog timers are for.

Aside from being inexpensive, the Von Neumann
design permits dynamic creation and destruction of
programs on-the-fly—only the minimum code re-
quired for basic operation is fixed. On the other hand,
Harvard designs have almost always been ROMed.

We agree that if the micro is Von Neumann and
an address region was set aside for ROMed code, the
code is every bit as secure as a Harvard design.
Unfortunately, this gives rise to the same problems
that the article was trying to solve in the first place.

Craig Pataky and Bill Maggs

ONLINE
Circuit Cellar

If you miss the Circuit Cellar
BBS, then the cci newsserver is
the place to go for on-line
questions and advice on embed-
ded control, announcements
about the magazine, or to let us
know your thoughts about Circuit
Cellar. Just visit our home page
for directions to become part of
the newsgroup experience.

The February
Design Forum
password is:

Fuzzy

Newsgroups New!

Design Forum
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NEW PRODUCT NEWS
Edited by Harv Weiner

DATA ACQUISITION MODULE
The ADR2000 is a serial data acquisition and control interface that features a host of peripherals.

The board includes eight 12-bit analog inputs with a 0–5- or ±5-V input range (software selectable),
two analog outputs (either 12-bit analog [V.A] or 10-bit PWM [V.B]), and a 16-bit event
counter. Eight digital I/O lines with 20-mA sink and source current capability are
available.

The ADR2000 can be programmed using simple yet versatile ASCII com-
mands, and host software can be written in virtually any program-
ming language or with most graphical instrumentation software
packages. An onboard RS-232–to–RS-485 converter permits
the use of hosts with either port type and facilitates
daisy-chaining via RS-485. The converter on
each daisy-chained unit enables other ven-
dors’ RS-232 devices to be connected to
any node on the chain.

Power is applied via standard 9-V wall
adapter. An auxiliary, regulated 5-VDC out-
put is available to power external circuitry.

Pricing for the ADR2000 ranges from $225
to $265.

Ontrak Control Systems, Inc.
(705) 671-2652
Fax: (705) 671-6127
www.ontrak.net

VIDEO TEXT DISPLAY MODULE
A video text display module that lets a PC or micro-

controller display up to 11 lines of 28 characters (308
total) on standard NTSC or PAL composite video sys-
tems has been announced by Decade Engineering.
Applications include remote video inspection, robot-
ics, recreational vehicles, home automation, security
and surveillance, remotely piloted vehicles, amateur
TV, and industrial process monitoring.

BOB-II generates matte background video onboard
or genlocks to an external video source and superim-
poses its text over the image. Video mode switching
is fully automatic. The video output contains a small
positive DC bias, which is common to many video
sources and well tolerated at the inputs of most video
equipment. Internal
video background
signal is automati-
cally generated if
video is not sup-
plied to the input
pin. Composite
sync output (sepa-
rated from input
video) is provided.

BOB-II’s character patterns are 12 × 18 pixels. Basic
character graphics and Euro-language support are pro-
vided. Character transparency and brightness are variable
using external pots. Character-blinking or background-
display options draw attention to important messages.

Programmed control is effected by simple commands
and text sent as plain ASCII codes through a 9600-bps
serial data link. Direct control from the PC keyboard
is possible with any standard ASCII terminal program.

BOB-II uses a 30-pin SIMM form factor and snaps
into a common 30-pin SIMM socket. It requires 65 mA
from an unregulated l2-VDC source and offers a regu-
lated +5-V output to power associated equipment.

BOB-II (NTSC) sells for $79.95. The PAL version
costs slightly
more. Application
code is available
at the company’s
web site.

Decade Engineering
(503) 743-3194
Fax: (503) 743-2095
www.decadenet.com

www.ontrak.net
www.decadenet.com
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NEW PRODUCT NEWS

UNIVERSAL MEMORY EMULATOR
The I-Series Universal Memory Emulator enables a user to debug

embedded systems with the same level of features as a microproces-
sor ICE. The emulator provides real-time access to memory devices
in embedded systems, enabling the user to monitor and change target
data and bus information. Complex triggers can be set on any com-
bination of data values, address values, and external inputs from
other units. These trigger events can be set to signal the host PC or
external equipment and/or to force an interrupt on the target system.

The I-Series emulates virtually all types of memory chips, in-
cluding EPROM, flash memory, EEPROM, and DRAM. These emu-
lators have capacities up to 32 Mb, and support is provided for
devices from 8 to 56 pins with dual 8- and 16-bit capability. Full
support for flash memory command registers is provided. The emu-
lators offer fast access times (70 ns) and ultra-fast downloading
capabilities (over 400 kbps).

Reconfigurable memory resources enable the internal memory to
be used in a variety of emulation and debugging applications simul-
taneously. Transferring file data to and from the emulator is easily
achieved with any mix of file formats. The open software structure
means that the user can build the display form from predefined values
or from more complex user-defined structures.

Advanced debugging capabilities integrated into the design enable
developers to use whatever debugging approach they desire, including
a virtual serial port and live memory display and editing.

On all models, 3- and 5-V support is standard. Advanced power-
management features and a low-power design facilitate reliable data
backup and limit target power-supply loading.

Pricing for the I-Series emulators starts at $349.

Scanlon Design, Inc.
(902) 425-3938
Fax: (902) 425-4098
www.scanlondesign.com

SERIAL REAL-TIME CLOCK MODULE
The Pocket Watch B contains a

real-time clock, a calendar, and ad-
vanced timing features. The clock
module keeps track of seconds, min-
utes, hours, days, months, and years.
Adjustments for leap year are auto-
matic, and the module is year-2000
compliant.

The Pocket Watch B communicates
via an asynchronous, one- or two-wire,
serial communications interface. Data-
transfer rates of 2400, 4800, and 9600 bps
are supported with autobaud detect.
The module is packaged in a SIP format
that measures 1″ × 1″ and operates on
standard TTL levels.

The Pocket Watch B contains four
advanced timing features that are ac-
cessible with the alarm command.
There is a standard-level alarm, a
single-shot alarm with a duration of
up to 18 h, an astable alarm pulse with
pulse lengths of up to 4 min. and rep-
etition rates of up to 4 h, and an astable
alarm pulse with pulse lengths of up to
4 h and repetition rates of up to 10 days.

The Pocket Watch B sells for $24.95.
Complete datasheets and application
notes are available at the company’s
web site.

Solutions Cubed
(530) 891-8045
Fax: (530) 891-1643
www.solutions-cubed.com

www.solutions-cubed.com
www.scanlondesign.com
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NEW PRODUCT NEWS
VOICE PLAYBACK MODULE

The VM-1608 is an EPROM-
based digital voice module that plays
back up to 128 preprogrammed
messages via two independent chan-
nels with up to 64 messages per
channel. This self-contained module
requires only a power supply, a
speaker, and a few trigger signals
to operate. Applications include
verbal industrial control, talking
displays, exhibit sound effects, and
vending-machine voice output.

Desired messages are prepro-
grammed into the module with
the Quikvoice development system.
A user-friendly interface provides
random access to messages as well
as separate or mixed audio output
for the two channels. The total
combined message time is 8.5 min.
maximum. Operation requires a
single 12–24-VDC power supply.

Two EPROM sockets provide a
memory capacity from 2 to 16 Mb.
Each audio channel uses half of
the EPROM capacity. Each has its
own power amplifier, but the
amplified output may be mixed
together on the board. If line-level
output is selected, onboard mix-
ing is not possible.

When the board is playing a
message, it ignores any further
triggering until the playback is
over. To stop the playback prema-
turely, pulse the RESET pin high
momentarily.

The VM-1608 sells for $68 in
quantities of 50.

Eletech Electronics, Inc.
(626) 333-6394
Fax: (626) 333-6494
www.eletech.com

www.eletech.com
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NEW PRODUCT NEWS
8051 SINGLE-BOARD COMPUTER

The Micro Lab-51 is an 8051-based SBC that works
well in educational and product development settings.
In an academic environment, instructors can demonstrate
real-world applications and students can implement
projects. In the development lab, design engineers can
create and test prototypes of their 8051-based products.

The computer uses the 8051-compatible 89S8252
microcontroller, which  runs at
up to 24 MHz. The chip has 8 KB
of flash memory for program
storage, and its flash memory
can be programmed serially, so
no programmer is needed.

The board also contains two
28-pin memory sockets—the
first supports 32 KB of RAM, and
the second supports 28 KB of
EEPROM, EPROM, or battery-
backed RAM. Other board fea-
tures include RS-232 serial port
buffering (RS-485 is optional),
processor supervisory circuit with

manual reset switch, and a 3.5″ × 1.5″ prototyping
area. Data, address, and control lines are brought out
on connectors next to the prototype area to facilitate
the adding of custom user circuitry.

In its standard configuration, the Micro Lab-51 has
a full-featured BASIC interpreter that sup-
ports floating-point math and most BASIC

commands. An advanced version
comes with system monitor
debugger software and an optional
8051 cross assembler. This configu-
ration is suited to 8051-based prod-
uct development because the
engineer can write assembly-lan-
guage code and run it in real time
under monitor control.

Prices range from $99 to $139.
Options and projects are also avail-
able.

Allen Systems
(614) 488-7122
members.aol.com/allensys

members.aol.com/allensys
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Fuzzy Logic
Becomes
Velvet Programming

FEATURE
ARTICLE

Walter Banks

t
We don’t hear too
much about fuzzy
logic anymore. And,
Walter wondered
why. But once he
started looking at the
applications around
him, it became clear
that there’s a reason
for all the hush-hush.
Fuzzy logic has hit
the mainstream.

he real mark of a
mature technology

is when it is used and
no one notices. Let me

explain what I mean.
Just a few months ago, I was at

dinner with a Japanese friend of mine
and I noted that the products they
developed and sold no longer adver-
tised that they used fuzzy logic. I
wanted to know why.

He responded that they use fuzzy
logic now more than ever, but these
days, it wasn’t a feature that advertis-
ing hype found useful. He pointed out
that the product still used fuzzy logic
in its implementation and that, in
fact, the rule base had been extended
and reimplemented.

Looking back over our own fuzzy-
logic experiences, I can see how it
went through all the stages of a new
technology from its initial idea and
early users to hard evaluation by repu-
table scientists and finally engineer-
ing acceptance.

It took us a long time to find an
application that could actually be
implemented with fuzzy logic as a

12
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suitable engineering choice. Over
time, however, engineers in various
countries have found several classes
of applications that are well served by
fuzzy-logic technology.

Rice cookers in Japan were one of
the first commercial products that
proclaimed fuzzy logic as an advantage
to the consumer. This mainstream
commercial product is used for every
meal in almost every Japanese house-
hold. It also represents one of the
application areas where fuzzy logic is
a particularly good solution.

Practical fuzzy-logic applications are
divided into four general types—fuzzy
control systems, knowledge bases,
imprecise comparisons and applica-
tion scaling. In this article, I want to
briefly address each of those areas.

FUZZY CONTROL SYSTEMS
Fuzzy control systems are voting

systems that evaluate a number of

strategies to solve a particular problem.
They then weigh those options to find
the solution that best fits the current
requirements. The Japanese rice cooker
fits into this category.

This simple control problem has
many variables. Temperature, time,
volume, and mix all affect the out-
come. For example, as the rice cooks,
some of the properties of the mix
change (e.g., the boiling point).

Fuzzy logic is one of the few solu-
tions in which it is simple to imple-
ment nonlinear control systems that
depend on finding a workable solution
for many different circumstances.

Consider this classic fuzzy control
system. The controller software consists
of a fuzzy function and consequence
functions for each of the controlled
variables.

Listing 1 shows part of the tempera-
ture control system for a rice cooker.
The present state of the cooking bowl

is tested against several fuzzy functions
and the consequence (i.e., heat position)
is controlled as a result of these tests.
As in most fuzzy-logic control systems,
each fuzzy rule represents a simple
common-sense statement about the
application.

Such control systems are regularly
implemented with very small embed-
ded processors, especially in consumer
products. Other good examples of fuzzy
control systems include camera focus
and household environmental control.

IMPRECISE COMPARISONS
Because we use the term “fuzzy,”

fuzzy-logic systems are often thought
of as having imprecise comparisons.
But the truth is that, unlike conven-
tional binary comparisons, a fuzzy
comparison returns a result that is
scaled between 0 and 1. In other words,
these systems are more—not less—
precise.

Listing 2 shows an industrial weigh-
scale C-code fragment of just such a
fuzzy comparison. The main line call
(i.e., x = ABOUT(bag,200,10))
checks the bag weight of 200 g within
10 g and returns a value between 0 and
255 to indicate the degree of truth.

A bag value of 200 returns 255, and
a bag value of 195 or 205 returns 128.
If the bag is outside the range 190–210,
then the returned value is 0.

The required code for imprecise
comparisons is easily implemented on
most embedded processors.

APPLICATION SCALING
The concept of application scaling

is a big win in embedded systems
applications. Consequently, it is a
common practice.

If the significant variables in an
application are all scaled to a standard
range of fuzzy 0 to fuzzy 1 with out-
of-range values limited by the value of
either fuzzy 0 or fuzzy 1, then the
amount of application code needed to
make decisions with these variables is
significantly reduced. In all the appli-
cations I’ve seen (with one exception),
the variables have been scaled to be
within a single-byte range.

Fuzzy-logical operators—fuzzy
AND, OR, and NOT—can manipulate
and combine the variable data. This

Listing 2 —The fuzzy comparison for equality is implemented with a small C function called ABOUT.

#define F_zero 0
#define F_one 255

unsigned char ABOUT (int v , int cp , int delta)
{
  int r = ABS(cp - v);
  if (r > delta)
    return (F_zero);
  else return((r / delta) * (F_one - F_zero));
}

void main (void)
{
  �
  x = ABOUT(bag,200,10);
}

Listing 1 —This small snippet of code is part of the fuzzy function for a rice-cooker temperature-control
system.

FUZZY cooker_temperature;
{
  IF bowl IS cold THEN
    heat is ON
  IF bowl IS too_hot THEN
    heat IS OFF
  IF bowl IS boiling THEN
    heat IS OFF
}
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approach to application implementa-
tion has kept low-cost processors in
many high-volume consumer products.

The code fragment in Listing 3
shows how application scaling can be
implemented. In this example, humid-
ity and temperature are scaled over the
significant range of interest. A new
fuzzy variable, Swelter, is set based
on the discomfort level that the tem-
perature or humidity produces.

The F_OR function referenced is
the minimum of two variables. This
function takes very little embedded
system resources in an application.

KNOWLEDGE BASES
Fuzzy-logic rules carry with them

information about a problem. It is
common, for example, to say that if
the room is hot then turn down the
heat. “Hot” is an abstract value that
becomes important when it’s associ-
ated with an action.

Fuzzy control systems decide actions
based on a database for fuzzy functions,
each competing for resources. Infor-
mation databases use fuzzy logic to
weigh facts and arrive at conclusions.

There are some obvious uses for
this approach to knowledge bases.
Determining the potential causes of
an illness is a good example.

One novel example of a fuzzy
knowledge database uses fuzzy-logic
tools to create a computer player in a
role-playing game. The behavior of a

Walter Banks is president of Byte
Craft Limited, a company specializ-
ing in software tools for embedded
microprocessors. His interests include
highly reliable system design, code-
generation technology, programming-
language development, and formal
code-verification tools. You may
reach him at walter@bytecraft.com.

Listing 3 —Many applications may be simplified by scaling the +Scaling significant variables.

#define F_OR(a,b)  ((a) > (b)) ? (a) : (b)
char Ftemp,Fhumidity,swelter;
int temp,humidity;

unsigned char Scale(int v, int lower, int upper)
{
  if (v > upper ) return (F_one);
  if (v < lower) return (F_zero);
  return (((v - lower)/(upper-lower) ) * (F_one - F_zero));
}

void main (void)
{
  �
  Ftemp  =  Scale(temp, 50,90);
  Fhumidity = Scale(humidity, 60,100)
  Swelter =  F_OR(ftemp, Fhumidity);
}

fictitious alien race is described with
a fuzzy function.

The current circumstances are sent
to several different alien descriptions,
producing consequences for each simu-
lated character. It takes surprisingly
few rules to create new alien species
that are recognizable by their behavior.

TOO CLOSE TO SEE
My point: fuzzy-logic tools and tech-

nology have matured to the point that
they’ve become mainstream tools. The
underlying principles have survived
the validity tests of science and the
usefulness tests of time.

Fuzzy logic enables you to encapsu-
late a large problem in a form that can
be solved by a very small processor.
These days, it helps build huge data-
bases of important information as well
as solve many of the tricky problems
associated with nonlinear control
systems.

My Japanese friend was right. We
don’t talk about fuzzy logic much
anymore. We just use it. I
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Truck Speed Limiter
Control
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Constantin von Altrock

i
Is your teen learning
to drive? Are you
worried? If you think
they lack logic, maybe
you should consider
fuzzy logic. Constantin
uses fuzzy rules to
consistently limit the
speed of  commercial
trucks, despite weight
variables and truck
type.

n Europe, com-
mercial trucks with

a maximum load of over
12 tons are legally required

to be equipped with a device that limits
their maximum speed to 53.3 mph (86
km/h). Designing an algorithm for this
control problem was no easy task.

The speed-limiter device needed to
be compatible with a variety of trucks,
all of which exhibit different behaviors.
Additionally, the dynamic behavior of
a truck varies depending on whether
it is fully loaded or empty.

Conventional control algorithms,
like PID controls, assume a linear model
of the process under control, so they
couldn’t be used. A mathematical model
of the truck would be tough to build
and would require too much computa-
tional effort from an 8-bit micro. So,
the designers turned to fuzzy logic.

Figure 1 —By law, the speed limiter is allowed a
+5-km/h overshoot when reaching maximum
speed. Thereafter, it must control the speed
within a ±1.5-km/h band. The blue line shows
that the fuzzy-logic controller provides much
smoother performance compared to the conven-
tional controller (black line). The overshoot is
eliminated, and the fluctuations are only about
one-fourth of the allowed maximum.

This article focuses on the electro-
pneumatic design of the speed limiter.
The pneumatic cylinder mechanically
limits the throttle-opening angle of the
fuel-pump arm, and a pulse-proportional
electromechanical valve controls the
cylinder pressure. The electromechani-
cal valve connects to an electronic
control unit that uses a microcontroller
to drive the valve according to the
speed of the truck.

CONTROL REQUIREMENTS
When the truck approaches the

maximum velocity, the pneumatic
valve reduces the throttle-opening angle
of the fuel-pump arm so the maximum
velocity (VS) is not surpassed. Even if
the driver continues to push the accel-
erator, the speed limiter has to ensure a
smooth ride at the maximum velocity.

However, because of the dead time
and nonlinearities involved with this
control action, an actual overshoot and
hunting occur when using a propor-
tional or on/off controller. Adding a
differential and integral part yields a
PID controller model.

A PID controller generates the com-
mand value as a linear combination of
the error (P), the derivative of the error
with respect to time (D), and the inte-
gral of the error with respect to time (I).
To tune a PID controller, the combined
weights of these three components
must be chosen so they approximate
the nonlinear behavior of the process
under control at its operating point.

Although this technique works with
processes that are at only one operat-
ing point, it fails when the operating
point moves. With the truck-speed
limiter, the operating point moves
because of different load situations
such as driving uphill or downhill, as
well as driving empty or with a full
load. Additionally, the characteristics
of the pneumatic valve and the fuel

VS + 5

VS + 1.5

VS

VS – 1.5
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injection are highly nonlinear and vary
from one truck to another.

If a PID control algorithm is used
in a truck-speed limiter, it can only be
tuned accurately for one operation
point and one type of truck. For other
operation points and different truck
types, overshoot and hunting occur.

To compensate for this, European
legislation permits speed limiters to
operate within a certain tolerance, as
shown in Figure 1. Once the maximum
speed is reached, an initial overshoot
of 5 km/h is tolerated. Afterward, the
speed is kept constant within an inter-
val of ±1.5 km/h. But, the overshoot
and hunting tolerated by the legislation
result in annoying speed fluctuations.

MECHANICAL DESIGN
Figure 2 shows the outline of the

mechanical design for the speed limiter.
An electronic control unit (ECU) com-
pares the digital pulse signal from the
speedometer with the maximum speed
value preset in the device.

Based on this comparison, the ECU
computes the command value for the
pulse-proportional valve (PPV) that
controls the air pressure in the cylinder.
The air stems from the vehicle’s pres-
sured-air system. In a nonlinear but
proportional ratio, the cylinder shortens
the arm linking the accelerator pedal
to the fuel pump, thereby throttling
the fuel pump.

The ECU is designed
as a mixed digital and
analog circuit. Speed-
ometer signal process-
ing, diagnosis functions,
and the fuzzy-logic
control algorithm are
all computed by an
8-bit PIC. The MCU
uses an external EE-
PROM to store param-
eters of the truck and
speedometer such as
the maximum velocity
and diagnosis variables.

The MCU generates
a PWM signal that is amplified by a
power stage to drive the PPV. The ana-
log part is responsible for preprocessing
and filtering the speedometer signal.

FUZZY-LOGIC CONTROLLER
Fuzzy logic is an innovative tech-

nology for solving multiparameter and
nonlinear control problems. It uses
human experience and experimental
results rather than a mathematical
model to define a control strategy.

As a result, fuzzy logic often deliv-
ers solutions faster than conventional
control techniques. As well, fuzzy-logic
implementations on microcontrollers
are very efficient when it comes to
code space and execution speed [1, 2].

The entire fuzzy-logic algorithm
was developed, tested, and optimized

using Inform’s fuzzyTECH software
tool. This integrated design environ-
ment features automatic assembly code
generation on all PIC families [3, 4].

Photo 1 shows the Project Editor
featuring the structure of the fuzzy-
logic system. On the left side, two
input interfaces fuzzify the two input
variables Acceleration and Speed_
Error.

The rule block in the middle con-
tains all the fuzzy-logic rules that
represent the system’s control strategy.
On the right side, the output variable
PMV_Set_Value is defuzzified in an
output interface.

The linguistic variables are displayed
in a variable-editor window, and the
rules are shown in the Spreadsheet Rule
Editor window (see Photo 2). Each
linguistic variable contains five terms
and membership functions (standard
type) that are connected by a total of
12 fuzzy-logic rules. As a defuzzifica-
tion method, the Center-of-Maximum
(CoM) method is used [1].

All rules in the fuzzy-logic system
let the designer define the best reaction
(output variable value) for a situation.
The situations are described by the
combination of the input variables.

A number of different analyzer tools
are used to verify the system’s perfor-
mance. In the 3-D plot in Photo 3, the
two horizontal axes show the two input
variables, Acceleration and Speed_
Error. The vertical axis plots the out-
put variable (PWM_Set_Value), which
is the set value for the PWM unit on
the microcontroller.

Rule 1, as shown in Photo 2, states
that if Speed_Error = much_2_slow,

Photo 1 —The fuzzy-logic controller for the speed limiter uses acceleration
and speed error as inputs to determine the set value for the pressure valve.

Photo 2 —The fuzzy-logic system is designed graphically using the fuzzyTECH software development system.
Linguistic membership functions are drawn with the mouse, and control rules are represented as tables.
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then PWM_Set_Value = HIGH_DEC.
This rule represents the engineering
knowledge that if the truck is under
the speed limit, no pressure should be
applied to the cylinder. The member-

ship function of the term much_2_slow
is also shown in the respective variable
editor in Photo 3.

The 3-D analyzer plots the transfer
characteristic as a result of rule 1. In

the front part of the curve, the value
of the output variable is very low (color
of surface light). As you proceed to the
left along the Acceleration axis, the
output variable value increases, which
is a result of rule 6.

Rule 6 states that if Acceleration
= HIGH_ACC and Speed_Error =
much_2_slow, then PWM_Set_Value
= HIGH_INC. This rule represents the
engineering knowledge that in the case
of a high acceleration, the result is
medium pressure on the cylinder.
This action ensures that the cylinder
already contains some pressure in case
the truck reaches the limit quickly.
Without this rule, a speed overshoot
would occur.

IMPLEMENTATION
Because fuzzyTECH can simulate

the fuzzy-logic system without the
target hardware, a fair amount of opti-
mization was accomplished off-line
on the PC. Final optimization and veri-
fication of the system were conducted
on real trucks.

The target system and the MCU for
the electronic control unit is mounted
in the truck and connected to the devel-
opment PC (a laptop in the truck’s
cabin) by a serial cable. Serial connec-
tion enables modification of the run-
ning fuzzy-logic controller on-the-fly.

This development technique is
efficient because it lets the developer
analyze how a certain behavior of the
fuzzy-logic controller is caused by the
membership-function definition and
the rules. And because modifications
can be done in real time, the effects
can be felt on the truck instantly.

One way to enable on-the-fly debug-
ging is to link the fuzzyTECH real-time
remote cross-debugger (RTRCD) mod-
ule to the fuzzy-logic controller that
runs on the MCU and connect it to a
serial driver. The RTRCD module con-
sumes about half a kilobyte of ROM,
a few bytes of RAM, and some com-
puting resources to serve the serial
communication on the MCU.

Because the PIC used in this appli-
cation can’t provide such resources,
the serial debug mode of fuzzyTECH
is used rather than the RTRCD mod-
ule. In serial debug mode, the values
of the input variables are sent from

Photo 3 —The 3-D analyzer of fuzzyTECH plots the transfer characteristics of the fuzzy-logic controller. This type of
controller approximates the nonlinear characteristics of the truck much better than a linear PID-type controller.
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the MCU to fuzzyTECH running on
the development PC via the serial cable
and the results are sent back.

fuzzyTECH shows the entire fuzzy-
logic computation in its editor and
analyzer windows and enables on-the-
fly modifications. To support serial
communication, a piggyback board
containing a MAX232 driver IC is
mounted on the speed-limiter board.

Using fuzzyTECH’s serial debug
mode rather than the RTRCD module
means that the code size and compu-
tation effort previously required for the
fuzzy-logic computation on the MCU
can be saved and used for the serial
communication.

The disadvantage of the serial debug
mode is that it computes the system’s
results on the PC, where real-time
response cannot be guaranteed. Also,
unlike the RTRCD module, any crash
of Windows, the PC, or the serial com-
munication will halt computation in
serial debug mode.

RESULTS
After optimizing the fuzzy-logic rule

strategy on different trucks and various
load conditions, the speed limiter dem-
onstrated the response curve shown in
Figure 1 (blue line). The fuzzy-logic
controller achieves a much smoother
response, doesn’t show overshoot
behavior, and provides a higher accu-
racy of keeping the speed limit com-
pared to a conventional controller.

The final fuzzy-logic system was
compiled to PIC assembly code by
fuzzyTECH and required 417 words of
ROM space and 32 bytes of RAM. The
RAM space can be used for other com-
putation tasks such as preprocessing
and filtering while the fuzzy-logic sys-
tem isn’t running. The entire fuzzy-

Figure 2 —The speed limiter consists of an electronic
control unit (ECU) that reads in the speedometer signal
and controls the pulse proportional valve (PPV). The PPV
manipulates the air pressure in the cylinder connecting
the accelerator pedal and fuel-pump arm.
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supply
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Constantin von Altrock began research
on fuzzy logic with Hewlett-Packard
in 1984. In 1989, he founded and still
manages the Fuzzy Technologies Divi-
sion of Inform Software Corp., a mar-
ket leader in fuzzy-logic development
tools and turn-key applications. You
may reach him at cva@inform-ac.com.

logic system needs less than 2 ms to
compute on the PIC16 MCU.

I’ve demonstrated that, with a little
bit of fuzzy logic, you can solve difficult
control problems using conventional
design techniques and by putting your
own engineering experience to work.

Not only that, but you can design a
solution using visual software tools and
generate highly optimized assembly
code for most microcontrollers at the
push of a button. Now you’re on the
way to significantly reducing design
time. IIIII

www.microchip.com
www.fuzzytech.com
www.maxim-ic.com
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Fuzzy
Footfalls
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If you’ve ever had
knee surgery, you
know how long it
takes to recover.
Imagine a pressure
sensor that enables
you to monitor the
pressure you’re put-
ting on a bad knee.
Fuzzy logic and a
tension sensor make
it all possible.

nalyzing com-
plex data sets often

requires human-like
evaluations or decisions

that are severely limited if mathemati-
cal models are used. In many applica-
tions, the data material is noisy or
contains artifacts. Under such condi-
tions, it doesn’t take long for conven-
tional data-analysis methods to reach
their limits.

Most data-analysis methods derive
structural information from given data
sets. This structural information rep-
resents the system that produced the
data sets. The goal is to identify inter-
nal parameters of the system that can’t
be directly measured.

There are many different methods
and algorithms for data analysis, but
most have difficulties coping with noisy
data and data containing artifacts.
These applications have to use very
robust data-analysis techniques that
cope with the errors and artifacts.

Take a look at Figure 1 to see how
fuzzy logic can help. To the human
eye, this graphic looks like a nonsen-
sical collection of gray squares. The
human eye is a precise sensor that can
distinguish about 100 shades of gray,
but even so, Figure 1 remains a collec-

Figure 1 —Only by squeezing your eyelids so the picture
becomes “fuzzy” can you recognize Abraham Lincoln.

tion of gray squares. Only by squeezing
your eyelids so tight that the entire
picture becomes fuzzy can you see that
the collection of gray squares is actu-
ally a picture of Abraham Lincoln.

The lesson? Even the most precise
methods can’t reveal the picture. If
you modify the grayness of some of
the squares, the most accurate picture
still comes from the fuzzy look.

Employing fuzzy logic can be just as
successful in data-analysis applications
to provide solutions for everyday prob-
lems. For example, after knee surgery
the doctor tells you to limit the strain
on your knee. But what constitutes too
much strain? And how do you know
when you’re approaching the limit?

The solution is really quite fuzzy,
but I’ll get to that in a moment. Using
fuzzy logic for data analysis, whether
for medical or practical purposes, can
be accomplished with many different
combinations of fuzzy logic and con-
ventional techniques.

Of course, choosing the best com-
bination of techniques depends on the
application. The most common com-
binations are fuzzy cluster analysis,
fuzzy rule-based methods, and adaptive
fuzzy rule-based methods. Let’s review
these before getting into the application.

CLUSTER ANALYSIS
Fuzzy cluster analysis maps objects

to predefined classes [1, 2, 3, 4]. In a
quality-control system, for example,
the classes could be either good or bad.
For this mapping, a vector of param-
eters describes each object, and each
parameter denotes a certain property
of the objects.

Pressure Sensing in a
Medical Shoe

a
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These parameters for classi-
fying acoustic signals can be
the result of a Fourier trans-
form. Most cluster-analysis
algorithms use training algorithms to
configure themselves from given sample
data sets.

Using fuzzy logic in cluster analysis
enables fuzzy classes to be defined. So,
even when a unique classification of
some parameters isn’t possible, a good
final solution can still be derived.

Cluster analysis derives all necessary
structural information by training from
given sample data sets. This situation
demands very high-quality sample
data sets. Also, there are no explicit
modifications of the resulting system,
so optimization and verification are
difficult tasks.

RULE-BASED METHODS
With fuzzy rule-based methods, if-

then rules represent the entire classi-
fication. This method is similar to the
application of fuzzy logic in intelligent
control. But in contrast to fuzzy logic
in control applications, fuzzy-logic
classification uses different inference
and defuzzification methods.

The benefit of rule-based methods
over cluster analysis is that the infor-
mation flow in the system is com-
pletely transparent. Because
fuzzy-logic systems are self-explana-
tory, explicit optimization and verifi-
cation are easy.

But rule-based methods have a
disadvantage as well. The entire sys-
tem has to be built up manually, and
unlike cluster analysis, no automated
training exists. Despite these prob-
lems, however, fuzzy rule-based
methods are the basis of many suc-
cessful applications for data analysis
and signal classifications [5].

ADAPTIVE RULE-BASED METHODS
The advantage of cluster analysis

lies in its trainability, and the advan-

tage of rule-based methods lies in the
inherent transparency of the system.
But, some applications need trainability
and transparency at the same time.

Combining a training algorithm
with a fuzzy rule-based method makes
for a successful solution. Because the
training algorithm adapts the fuzzy
rules and membership functions, and
the behavior represents the sample
data sets, this combination is called
the adaptive fuzzy rule-based method.

Although there are many ways to
adapt a fuzzy-logic system, the most
widely used approach in industrial
applications is the neurofuzzy tech-
nique. With this technique, learning
algorithms developed for neural nets
are modified so that they can also
train a fuzzy-logic system [5].

This method learns from given
sample data sets, and the learned
result can be further enhanced by
hand. For applications where only
partial information for the solution
stems from sample data, adaptive fuzzy
rule-based systems are best. Another
advantage of this method is a pure
fuzzy-logic system that can be imple-
mented even on inexpensive hardware
platforms. You’ll see more on this later.

SOFTWARE TOOLS
In most fuzzy data-analysis systems,

the input data needs extensive prepro-
cessing before reaching the fuzzy-logic
system. Preprocessing can include filter-
ing, linearizations, or Fourier trans-
forms. These functions aren’t part of
most fuzzy-logic applications in indus-
trial control and aren’t usually part of
fuzzy-logic software development tools.

For the fuzzyTECH development
system [6], data-analysis functionality
is provided by an add-on tool called
the DataAnalyzer module [7]. Figure 2

shows how fuzzyTECH and the Data-
Analyzer and NeuroFuzzy modules
can be linked to form an integrated
design environment.

Linking these components enables
the design of adaptive fuzzy rule-based
solutions. If the NeuroFuzzy module
is left out, only fuzzy rule-based solu-
tions are possible.

Photo 1 shows a fuzzy data-analyzer
solution that supervises the wear of a
machinery tool during operation. The
two upper-left function blocks drive
A/D channels on a standard PC plug-in
board. The upper channel links to a
pressure-stripe sensor that acts as a
microphone. The lower one links to a
temperature sensor mounted at the tool.

The acoustic signal is preprocessed
by a spectrum block (i.e., FFT) and
input to the fuzzy-logic function block.
The second input is the temperature
signal filtered by a low-pass filter.

The third input is the direct tem-
perature signal after a threshold func-
tion block. And the fourth comes from
a visual inspection and is input by a
slide in a separate window.

Meter and spectrum scopes display
the outputs of the fuzzy-logic func-
tion block. If an overload occurs, a D/A
channel sends the machine a speed over-
ride signal to avoid destroying the tool.

A file function block writes the
evaluation result on disk. The Neuro-
Fuzzy module sits on top of fuzzyTECH
(see Figure 2), which is why you don’t
see it in Photo 1.

FUZZY SHOE
Now that you understand fuzzy-logic

methods, let’s look at the knee-surgery
recovery problem I mentioned. Patients
have to limit the strain on the knee
during recovery. But, the knee has no

Figure 2 —Linking the DataAnalyzer module
with the NeuroFuzzy module and fuzzyTECH
creates an integrated development environ-
ment for fuzzy data-analysis systems.

Figure 3 —The orthopedic shoe consists of an electronic
unit attached by Velcro over the ankle and a sensor in a
silicone inlay.
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strain sensor. By the time pain occurs,
the knee has already suffered damage.

To solve this problem, I used a
pressure sensor and fuzzy-logic data-
analysis system to design a biofeedback
shoe inlay. The silicone inlay con-
tains a pressure sensor made of con-
ducting polymer and is wired to an
electronic unit in a belt that attaches
to the ankle by Velcro (see Figure 3).

The electronic unit contains the
microcontroller, battery, speaker, and
keypad. The speaker warns the user
when the strain limit is reached, and
the 8-bit micro runs the A/D conver-
sion, signal preprocessing, and fuzzy
data-analysis system.

The objective for the fuzzy data-
analysis system is to estimate the
internal strain in the knee from the
pressure signal. If 80% of the maxi-
mum acceptable load is reached, a
beep warns the user to take it easy.

If the 90% level is reached, a repeat-
ing beep tells the user not to use the
leg for a while. And, if the strain is
over the maximum threshold set by the
doctor, the beep sounds continuously.

The difficulty in this situation is
estimating the internal strain in the
knee from just the pressure signal.
Photo 2 displays the pressure sensor
signal for a typical sequence of steps.
In order to get more information from
this signal, preprocessing derives addi-
tional inputs to the fuzzy data-analysis
system.

In total, there are four inputs to the
fuzzy-logic function block:

• Act_Peak—peak pressure of the
current step

• Act_Slope—slope of the pressure
signal of the current step

• Hist_Short—feedback of the average
output signal from the fuzzy-logic
function block for the last 5 min. and
an indicator of the current strain on
the knee

• Hist_Long—feedback of the average
output signal of the fuzzy-logic func-
tion block of the last 48 h and an indi-
cator of long-term strain on the knee

Photo 3 shows the fuzzy-logic sys-
tem in the data analyzer, with the
upper window showing the system
structure. The output variable Alarm
stems from a rule block with the input
variables ActualLoad and TimeLoad,
which are outputs of other rule blocks.

ActualLoad computes from the
two input variables (Act_Slope and
Act_Peak) that are input variables of
the fuzzy-logic function block. The data-
analyzer module computes these vari-
ables from the pressure sensor signal.

TimeLoad computes from the in-
puts Hist_Short and Hist_Long.
The data-analyzer module computes
these inputs using low-pass filtering
from the system’s output signal.

A/D conversion

Preprocessing, filtering

Fuzzy logic computation

Alarm output, keyboard scan

PIC16C57 Microcontroller

Alarm

Sensor

Figure 4 —The complete control loop, reading in sensor
data, preprocessing, fuzzy-logic computation, and data
output, is all implemented on one microcontroller.



24       Issue 103 February 1999       Circuit Cellar INK®

The lower-left window shows a
membership-function definition. Most
linguistic variables use two or three
membership functions of standard MBF
type. The lower-right window shows
four rules of the upper rule block. The
39 rules in the system were derived in
close cooperation with orthopedists.

Because no good sample data for
the strain estimation in a knee exists,
the NeuroFuzzy module wasn’t used.
Under the nomenclature I discussed
earlier, this application uses fuzzy
rule-based methods.

Using fuzzy logic here means that
the rule set is easy to modify. As an
example, by designing a rule set that
evaluates steps and their fit to an opti-
mal curve, runners can improve their
running style with this intelligent bio-
feedback technique.

Figure 4 shows the total implemen-
tation on a PIC16C57 microcontroller.
The ADC transforms the resistance of
the pressure sensor into a digital 10-bit
value. Preprocessing and filtering get

Photo 2 —A walking sequence shows the amount of pressure placed on the sensor with each step.

the four input variables for the fuzzy-
logic computation shown in Photo 3.

Depending on the strain rating, the
speaker outputs the alarm and the key-
pad is scanned. The fuzzy-logic system
requires ~20 bytes of RAM and 590
words of ROM on the PIC16C57 [8].
The code was generated by the fuzzy-
TECH Edition that generates fuzzy-
logic systems as assembly code for
standard microcontrollers.

This case study demonstrates how
you can use innovative software de-
sign techniques like fuzzy logic to
implement even complex functions
within the limits of a low-cost micro-
controller.

With graphical software develop-
ment tools, you can focus on solving
your problem. Turning your solution
to highly optimized assembly code for
microcontrollers becomes a matter of
a mouse click.

The fuzzy shoe is a good example
of how intelligent software design
techniques lead to innovative products.

Photo 1 —Developing a fuzzy data-
analyzer solution is completely
graphical. Configuring predefined
function blocks integrates conven-
tional signal-analysis techniques
and fuzzy logic. Fuzzy logic is also
represented as a function block.
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Photo 3 —Here’s the structure of
the fuzzy-logic function block for
the fuzzy data-analysis system.
The four inputs are compared to
the set rules, and the appropriate
response is generated.

Constantin von Altrock began research
on fuzzy logic with Hewlett-Packard
in 1984. In 1989, he founded and still
manages the Fuzzy Technologies Divi-
sion of Inform Software Corp., a mar-
ket leader in fuzzy-logic development
tools and turn-key applications. You
may reach him at cva@inform-ac.com.
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C++ Lite FEATURE
ARTICLE

John Carbone

i
Want to be able to
maintain valuable
C++  concepts while
eliminating those
responsible for
boosting memory
requirements and
reducing efficiency?
John shows us how
with EC++, a new
dialect that targets
embedded systems.

n many embedded
system designs, pro-

grammers can leverage
all the features of C++,

such as classes, templates, exception
handling, and class inheritance, that
have proven so useful for mainstream
computer applications. But, some of
these features bloat the compiled code,
significantly increasing memory require-
ments while reducing execution speed.

A new C++ dialect, Embedded C++
(EC++), has been developed by an in-
dustry-standards committee to address
the limitations of C++ in embedded
applications, where memory is limited
and 32-bit processors are prevalent.

EC++ maintains the most valuable
C++ concepts while eliminating those
most responsible for boosting memory
requirements and reducing efficiency.
Ideally, designers will be able to choose
whether to use EC++, C++, or a hybrid
of the two to match their application
requirements.

The object-oriented features of C++
simplify source code and the develop-
ment process by reusing code modules
and placing burdensome housekeeping
functions (e.g., memory allocation and
range checking) in the class definitions
and away from the main application.

Although C++ code is typically more
readable than standard C code, com-
piled C++ code can swell by a factor of
five or more relative to a standard C
implementation. This increase caused
a group of companies, led primarily by
Japanese microprocessor vendors, to
develop the EC++ specification and to
prompt the development of the first
EC++ compiler.

EC++ is a proper subset of C++.
Among the C++ features it omits are
multiple inheritance, virtual base
classes, templates, exceptions, run-
time type identification, virtual func-
tion tables, and mutable specifiers
(see sidebar “EC++ Excludes Problem-
atic Features” for details).

Although each of these features is
useful in its own right, none is com-
pelling enough for a sufficiently broad
range of embedded applications. Sup-
port for some of the features tends to
bloat the generated code, whether or not
the features are used in an application.

Exception handling proves to be
one of the worst offenders and can
adversely affect the deterministic re-
sponse to external events required in
real-time systems. Eliminating support
for a number of C++ features substan-
tially reduces the size of the compiled
code and improves run-time efficiency.

To understand the range of features
that differentiate standard C, EC++,
and C++, consider two examples of
EC++ and C++ constructs. Listing 1
illustrates some of the key advantages
that EC++ offers over straight C.

The concept of classes is probably
the single most important concept
brought about by C++ and one that is
supported in EC++. Classes build on the
data structures found in standard C.

Besides allocating memory for a
number of variables of mixed types,
classes can initialize variables, dynami-
cally allocate additional memory for
variables and arrays, perform range
checking, and perform other useful
duties. In C programs, these tasks were
typically scattered throughout the
main code.

CLASSES AND OBJECT DEFINITION
An embedded application such as a

data-acquisition system might use such
a class to create arrays for storing data

A C++ Dialect for Embedded
Systems
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samples. The array class named Array
in Listing 1 includes two integer mem-
bers. The first is an elements pointer
to members of an array, and the second
tracks the array size.

As the main() portion of this code
implies, you can use the declaration
Array a(6) to create an array object
with the name a that contains six ele-
ments. The class definition includes
several important features such as the
constructor code necessary to create
the array and to ensure that the size
specified is greater than zero.

The constructor is located in the
public section of the class definition.
It provides a window through which
code located outside the class definition
can access the elements and element_
cnt class members.

Each time an array of type Array is
created, the compiler automatically
calls the constructor function Array
(int n). This function assigns the
value passed in the array declaration
to element_cnt, checks for a valid
size, and allocates space in main mem-
ory for the array by calling new.

In this simple example, a bad array
size (e.g., zero or a negative number)
causes the constructor to call a simple
die function that outputs an error
message. An embedded system would
probably use a more elaborate scheme
to handle run-time errors.

The Array class also demonstrates
two other key features of classes in
EC++ or C++—function definitions
within a class and overloaded operators.
First, consider the size() function,
which illustrates the simpler of the
two concepts.

Because element_cnt is a private
member of the class, code outside the
class can’t directly access the counter.
However, the size() function enables
the two for loops located in main()
to indirectly access element_cnt for
use as an upper limit of the loop.

OVERLOADED OPERATORS
The class definition also includes

an example of overloaded operators.
Operator overloading enables you to
develop new definitions of standard
C/C++ operators such as =, >, or +
that are customized for the type of
object defined in a class.

#include <iostream>
using namespace std;
extern "C" void exit(int);

// Deal with run-time error. A real embedded application would
// probably choose a different error-handling strategy.

void die(const char *msg, int n)
{
  cout << msg << n << endl;
  exit(1);
}

class Array{ // the integer array class
  private:
  int *elements; // array elements
  int element_cnt; // array size
  public:
  Array(int n) : element_cnt(n) { // construct new array

if (n > 0)
  elements = new int[element_cnt];
else
  die("Bad Array size ", element_cnt);

  }
  int & operator [](int indx) const {

// overloaded subscripting operator
if (indx < 0 || indx >= element_cnt)
  die("Bad Array index ", indx);

  return elements[indx];
  }
  int size() { return element_cnt; }  // return size of array
};

main()
{

Array a(6);
for (int i=0; i<a.size(); i++)
a[i] = i;
for (int i=0; i<a.size()+1; i++) // error on a[7]
cout << i << ". " << a[i] << endl;

};

Listing 1 —This embedded C++ example of a simple Array class does range checking on the creation
of an array and on array subscripting operations.

template <class T>
class Array{
  private:
  T *elements; // array elements
  int element_cnt; // array size

  public:
  Array(int n) : element_cnt(n){ // construct new array
  if (n > 0)
  elements = new T[element_cnt];

  else
  die("Bad Array size ", element_cnt);

  }
  T & operator [](int indx) const{

    // overloaded subscripting operator
  if (indx < 0 || indx >= element_cnt)
  die("Bad Array index ", indx);

  return elements[indx];
  }
  int size() { return element_cnt; // return size of array

};

Listing 2 —Templates are a powerful feature but should be used carefully in space-sensitive applications.
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For example, you could develop a
class that defined an object like a circle
or sphere. Having done so, you might
want to compare the size of two ob-
jects (A and B) that were created using
the class definition.

The expressions A>B or A==B have
understood meanings when A and B are
integers, but the compiler won’t know
how to compare abstract entities such
as spheres of a given size or composi-
tion. To make it possible to operate
on complex user-defined types while
using a readable C-like syntax, C++
and EC++ allow operator overloading.

The code in Listing 1 overloads the
subscripting operator [] that stores the
index for an array. In this case, the
overloaded function gets called each
time an indexed array reference occurs
(e.g., a[i]=i).

Rather than changing the effective
meaning of the subscripting operator,
the overloaded operator automatically
detects out-of-range array indices. Note
that, should you execute the sample
program, the output statement used
in the second loop would generate an

error on the sixth pass through the loop
because a[7] exceeds the valid index
test.

As you can see, classes significantly
streamline the mainline code in an
EC++ or C++ program. A C program
requires explicit data-structure defini-
tions for every array declared, while
EC++ or C++ handles creation of all
similar objects with a single class.

Also, C programs require memory-
allocation, error-checking, and element-
count code in the main part of the
program or in dedicated C functions.
The compiled-code overhead of EC++,
relative to standard C code, is minimal

as well. Adding classes and overloaded
operators only marginally increases the
generated code size.

Understand that you can’t realize
these code savings simply by avoiding
the memory-hungry C++ features in
an application and then compiling the
code with a standard C++ compiler.
The consequences of this approach are
detailed in the sidebar “Why You Need
an EC++ Compiler.”

ADDING TEMPLATE SUPPORT
Despite the advantages offered by

EC++, some omitted C++ functions
are extremely attractive for certain

main()
{
Array<int> a1(6);
for (int i=0; i<a1.size(); i++)
a1[i] = i;

for (int i=0; i<a1.size()+1; i++) // error on a[7]
cout << i << ". " << a1[i] << endl;

}

Listing 3 —This more capable main program uses templates to enable multiple uses for the Array class.
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Why You Need an EC++ Compiler
Because EC++ is a proper subset of C++, you

might think you can achieve the efficiency promised
by EC++ by avoiding certain C++ features. You can
compile EC++ code on a C++ compiler, but you’ll
find that the resulting code still requires signifi-
cantly more memory than if you’d used an EC++
compiler.

Three problems arise when you try to increase
efficiency using EC++ code and a standard C++ com-
piler. First, the compiler still uses C++ libraries and
links a lot of code that isn’t required for your appli-
cation into the finished product. EC++ uses libraries
that are optimized for the new dialect and generates
smaller, more efficient code.

As well, EC++ compilers can achieve superior
optimization relative to C++ compilers. They opti-

mize code without presuming that complex features
like exception handling may be used.

And lastly, standard C++ compilers have no way to
enforce EC++ compliance within a programming team.
With a standard C++ compiler, one out of many pro-
grammers on a team can use an offending feature and
spoil the efficiency of the entire code base.

Green Hills Software developed a sample EC++ pro-
gram to demonstrate memory efficiency. The program
solves a form of the classic traveling-salesman problem
that’s often used to teach programming. When compiled
on the Green Hills C++/EC++ compiler using EC++ mode,
the total code size is 57 KB. When the same source file
is compiled in C++ mode with no exception-handling
library, the code size is 322 KB. Adding an exception-
handling library increases the code size to 378 KB.

applications. Compiler vendors can
provide programmers some flexibility
as to what C++ functions are available
for use in each application.

For example, you can use a compiler
directive with Green Hills’ C++/EC++
compiler to limit the source code to
the EC++ subset and get the savings in
code size and the boost in efficiency.

You can also use compiler switches to
add support for one or a few specific
C++ functions that are left out of EC++.

The granular support for optional
C++ features enables programmers to
trade off compiled code size with ease
of development and maintainability.
Green Hills’ C++/EC++ enables the
programmer to choose libraries appro-

priate to the application, eliminating
significant amounts of unnecessary
library code.

Templates are a good example of a
C++ feature that isn’t included in EC++
but that provides significant advantages
in development with only a modest
increase in memory requirements.
Listings 2 and 3 illustrate the benefits.
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EC++ Excludes Problematic Features
Although EC++ retains the most important features of C++ (e.g., classes),

it eliminates other features because of inefficient memory, difficulty of use,
or lack of popularity. Consider the list of omitted features:

• multiple inheritance and virtual base classes
• new-style casts
• mutable specifiers
• namespaces
• run-time type identification
• exceptions
• templates

Listing 1 illustrates the basics of classes, but multiple inheritance and
virtual base classes fall at the complex end of the C++ class concept. Pro-
grammers often use a hierarchical structure to define complex classes.

For example, a base class called Shape might define any geometrical
shape and have an attribute such as color. Through the concept of inherit-
ance, classes like Circle or Square could be derived from shape with
additional attributes such as radius or width.

 Both EC++ and C++ enable programmers to build multilevel class hier-
archies in a linear fashion. C++ also enables multiple inheritance in which
the programmer defines a new class based on two or more peer classes.

A programmer could define one class called Box and a second class
called Contents (see Figure i). A new class called Shipment can be derived
from Box and Contents. Multiple inheritance can be valuable in a number
of applications and is regularly used in graphical desktop environments.

In Microsoft Windows, a useful object class can be derived based on a
Window class with display attributes such as size or borders, a Menu class
with attributes like menu names and styles, or a Display class with at-
tributes that describe objects displayed in a window. Virtual base classes
can be used with multiple inheritance to share a base class that’s inherited
multiple times in a derivation hierarchy.

Some embedded applications, including embedded-PC applications, can
make use of multiple inheritance and virtual base classes, but they’re not
nearly as useful as in desktop applications. Supporting multiple inheritance
in a compiler carries a significant burden and the technique is tricky.
That’s why it was omitted in EC++.

Explicit Type Conversion
While multiple inheritance may be difficult to use, other C++ features

were omitted from EC++ because they are seldom used in any application.
Good examples are the dynamic_cast feature that was added as part of
the new-style casts, and mutable specifiers.

Both C and C++ support the concept
of casting to convert from one data
type to another. In general, programmers
should strive to minimize the need for
casting because it often indicates a
poorly structured program. EC++ and
C++ class structures already reduce the
need for casting compared to typical C
programs.

Mutable specifiers also represent an
arcane feature of C++ that is a special

Figure i —Multiple inheritance allows Ship-
ment to use the properties of both Box and
Contents.

class Box

double height
double width
double depth

class Contents

double candy
double cookies
double cards

class Shipment

double weight
double freight

In Listing 1, Array is defined so that
all members have to be integers. With
EC++, you need to define additional
classes to handle arrays for short,
long, char, or floating-point data
types. Templates permit a single class
definition to support creation of arrays
for any valid C++ data type.

Listing 2 shows that the only real
addition to the Array class definition
with a template is the template con-
struct that precedes the class defini-
tion and the use of the T specifier each
time the code addresses an element of
the array. Consider Listing 3 and you’ll
see that Array works equally well to
instantiate any type of an array.

The example shows an array, a1,
that stores integer data types. Simply
changing the int to short permits
support for the short data types. The
main() code segment can reuse the
Array class to define multiple arrays
with any data type. An embedded
system performing data acquisition,
for example, could require floating-
point arrays.

Using the templates shown here
would result in little or no increase in
compiled code size. But, be aware that
the code size you realize depends on
your application.

Much of the code bloat in C++ code
comes not from using a feature like a
template but from referencing tem-
plates found in large C++ libraries.
Reference a standard template and you
end up compiling many unnecessary
things in the library.

COMPILER SUPPORT
EC++ gives embedded-system pro-

grammers a valuable path to leverage
the most significant aspects of an
object-oriented language. With formal
approval of the EC++ standard immi-
nent, programmers should demand
C++ compilers with EC++ support.

However, to minimize development
time and simplify code maintenance,
programmers shouldn’t automatically
dismiss all the C++ features eliminated
in EC++. Experienced C++ programmers
will be able to use a number of C++
features in an EC++ environment and
not decrease efficiency.

EC++ eliminates features such as
templates, namespaces, mutable speci-

(continued)
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case of explicitly type conversion. You can use the keyword mutable to
cast a data member of a class in a way that it can be modified even though
the class is logically constant. Because new-style casts and mutable speci-
fiers are rarely used, they’re not justifiable for EC++, especially in light of
the code overhead and the complexity of correct usage.

Namespaces and Run-time Type ID
Some other C++ features, including namespaces and run-time type

identification (the mechanism used by dynamic_cast and other fea-
tures), are useful in large applications. More specifically, these features
are useful in cases with many programmers working on a single code base
and in cases where a programmer must interface an application with
multiple libraries and code modules from different sources.

However, namespaces are difficult to use correctly, and using them
inappropriately adds unnecessary complexity to code. Embedded-system
programmers rarely need namespaces and shouldn’t have to deal with the
associated complexities.

Exception Handling
Unfortunately, not all C++ features omitted from EC++ can be dismissed

so easily. Exception handling provides a robust mechanism through which
a programmer can centralize and organize code to handle run-time errors
or exceptions. Exception handling is also the leading offender when it
comes to bloated code.

Typical exception-handling libraries and user code can result in bloated
code even when the feature isn’t used in a C++ application. Also, program-
mers can’t determine the latencies associated with C++ exception handling,
and quick response is paramount to many real-time embedded applications.
The feature was omitted in EC++ because, in most cases, programs can’t
afford the luxury of a general-purpose high-level exception-handling scheme.

fiers, and new-style casts more because
of the complexity of using the features
properly than because of inherent inef-
ficiency. C programmers may have a
tough time using the features correctly,
but experienced C++ programmers
shouldn’t have any problems.

Modern compilers let programmers
selectively enable features on an ap-
plication-by-application basis so they
can simplify development and main-
tain reasonable run-time efficiency.
To offer such capabilities, companies
should establish a level of C++ sup-
port that falls somewhere between
EC++ and C++.

This approach, combined with the
careful implementation and use of the
added features, will provide the best
of both worlds. Such products can be
considered scalable C++, leaving pro-
grammers to decide on the best mix of
features for each application they
work on. I

(continued)
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Stuart Ball

l
It’s not always true,
but there are times
when more distance
is a good thing, right?
(Maybe the tax man
or your mother-in-law
come to mind….) But
when that message
still has to get across,
Stuart’s methods work
both locally and over
long distances.

ast month, I
talked about meth-

ods of communicating
between multiple proces-

sors sharing the same bus or PC board.
To finish this two-part series, I look
at useful methods for communicating
over longer distances. And in case you
don’t have any long distances to cover,
some of these methods are also suitable
for local communication.

Plenty of situations require you to
have a multiprocessor system with
processors that are physically sepa-
rated from each other. You could have
two or more motors that are some
distance apart, but maybe you want
the controlling processor to be near
the motor. There could be redundant

Figure 1 —The register-based technique
described in Part 1 can be adapted for
communication between different boards
using a ribbon cable. The handshake
signals are needed to make the timing
work.

components in different rooms or even
different buildings.

In one industrial scenario, I had
processors sitting side-by-side but in
different cabinets. This situation re-
quired equipment with multiple cabi-
nets, each containing motors, solenoids,
image subsystems, and similar compo-
nents. Each cabinet contained at least
one microprocessor, and the cabinets
communicated via a cable interface.

The simplest communication tech-
nique is a variation on the register–and–
flip-flop method I introduced last time.
In Figure 1, CPU 1 transmits data to
CPU 2 via a long cable. As I showed
you, CPU 1 writes data to a 74xx374
(xx = LC, HC, ACT, etc.).

The read and write strobes from
either CPU are usually too fast to send
down a cable of any length. Fast read
and write strobes generate a lot of
ringing, and there’s a potential prob-
lem with signal skew. Therefore, you
need to match the fast CPU with the
slower capability of the cable.

The circuit in Figure 1 accomplishes
this by using a 74xx374 at the transmit
end. Data written by CPU 1 is written
to the register, and the act of writing
the data sets the D flip-flop. Once the
D flip-flop is set, the data available
(DAV) signal is sent to CPU 2. At the
CPU 2 end of the cable, a 74xx244
tristate buffer enables CPU 2 to read
the data.

There’s a good chance that the data
bits will not all arrive at CPU 2 at the
same time. Some may even arrive after
the DAV signal changes states. But
unless CPU 2 is very fast or the cable
is very long, everything should settle
down by the time CPU 2 reads the data.

When CPU 2 reads the data, the
set/reset flip-flop at the CPU 2 end of

Part 2: Serial Communication
Methods
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the cable is reset, returning the acknowl-
edge (ACK) signal back to CPU 1 and
resetting the D flip-flop and DAV signal.

Again, there will be some ringing
on these signals, but unless CPU 1 is
very fast, everything will settle by the
time CPU 1 is ready to write another
byte. Figure 2 shows the timing for
transmitting one byte via this interface.

The simple circuit in Figure 2 is
suitable for short cable runs of less than
20¢. For longer distances, use Schmitt-
trigger buffers on all the inputs as well
as some kind of cable termination. With
additional timing logic, you can trans-
fer data using DMA by this method.

The primary drawback is the num-
ber of wires needed. Ideally, you need
a ribbon cable with a ground on every
other wire, which means 20 wires. You
can get by with two or three grounds
and a 14-wire cable, but that’s still a
lot of wires.

SIMPLE SERIAL INTERFACE
Because parallel interfaces require

complicated cabling, most multipro-
cessor systems that must communi-
cate over any significant distance use
a serial technique. Figure 3a shows a
simple serial interface connecting two
8031 microprocessors. The serial trans-
mit (TxD) line from one processor is
connected to the serial input (RxD)
line of the other processor, a
technique that works for any
microcontroller with asyn-
chronous serial I/O.

This technique is similar
to connecting two comput-
ers together using serial
cables. However, it permits
only two processors to com-
municate. Adding more
CPUs means adding more
serial ports.

MULTIPLE PROCESSOR
SERIAL INTERFACE

Figure 3a shows a variation
of this technique that supports
more than two processors. As
you can see, one master 8031
communicates with two slaves.
The addition of open-collector
drivers for the slave transmit
signals makes this possible.

Each slave drives the master
receive signal through an open-

collector driver. The open-collector
drivers can be open-collector (or open-
drain) gates or they can be discrete
transistors.

When no slaves are transmitting, the
receive signal to the master is in the
high state (because the marking state
for a serial interface is high). When
either slave transmits, the common
line is driven and the master receives
the data.

Transmission to the slaves requires
no buffering because the master drives
both slave Rx lines from its Tx line and
anything the master transmits goes to
both slaves. Transmissions from the
master must be addressed to one slave
device, and slaves must transmit only
when commanded by the master.

This process is usually accomplished
with a multibyte transmission proto-
col where each transmission consists
of multiple bytes. For example:

• byte 1—destination (slave 0 or slave 1)
• byte 2—length
• byte 3, etc.—data
• last byte—checksum

If the master needs data from a slave,
it must request it. The slave cannot
transmit data without being com-
manded to because multiple slaves
may try to transmit at the same time.

This next approach can be used for
multiple processors on a single board
and enables the processors to commu-
nicate using two wires and a ground.
The processors don’t have to be the
same type, but they all need to sup-
port asynchronous serial communica-
tion. Of course, all the serial interfaces
must be programmed to operate at the
same transfer rate.

RS-422 SERIAL INTERFACE
For longer distances, the circuit in

Figure 4a replaces the open-collector
connection with an RS-422 connection.
RS-422 uses differential voltages and,
as shown on the timing diagram in
Figure 4a, an RS-422 driver has one
input and two outputs.

A high on the driver input causes
one of the outputs to go high and the
other to go low. A low on the input
reverses the two output signals.

Instead of comparing the input volt-
age to ground, an RS-422 receiver com-
pares the two wires to each other.
Because most noise induced on cables
is common-mode and affects both wires
equally, this differential technique
provides excellent noise immunity.

In the open-collector scheme, the
transmit line from the slaves back to
the master can be driven by either
slave because the line is left in the
correct state when neither is trans-
mitting. In the RS-422 scheme, the
slaves have to turn the drivers on and
off to prevent bus contention.

As you see in Figure 4a, another
port pin from each slave is required.
Probably the most common mistake
in using RS-422 in a shared-bus system
is getting the timing right. A slave that
wants to transmit must turn on the
RS-422 driver when it starts to trans-
mit, and turn it off at the end of the

transmission but not before.
The process is further

complicated by the fact that
most microcontroller UARTs
have a bit that tells when
the transmit buffer is empty,
but nothing tells when the
last byte has actually been
shifted out of the transmit
shift register.

To resolve this problem,
the slave sets up a timer at

Figure 2 —Here, the timing for the transfer of one byte uses the
register-based technique. DAV indicates data available, and ACK
acknowledges the transfer.

Write from CPU 1

74xx 374 output

DAV

Read from CPU2

*ACK

8031
TxD

RxD

8031
TxD

RxD

Figure 3a —Microprocessors that have internal asynchronous serial interfaces may
communicate by cross-connecting the receive and transmit signals. b—Adding open-
collector buffers to the transmit lines enables multiple processors to share a single
asynchronous serial line.
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The RS-422 serial-interface method
provides excellent noise immunity, but
at a price. For this interface, four wires
plus ground are required.

Maximum input to the drivers is
+12/–7 V, but circuits with a great dis-
tance between devices may have ground
potentials differing by more than this.
A common ground between devices
helps ensure this value isn’t exceeded.
When this ground connection is used,
earth ground is attached at only one end.

RS-422 PARTY LINE
Figure 4b shows a further extension

to the RS-422, where both the transmit
and receive pairs are combined into one
pair of wires. This party-line system
enables multiple processors to com-
municate over a single pair of wires
(plus ground).

The RS-422 serial-interface approach,
with separate receive and transmit
lines, enables data to go both directions
at once. With the party-line approach,
by contrast, the processors can only
communicate one at a time. So, the
price to pay for such a simple system
is reduced bandwidth.

The second difficulty with the
party-line approach is that the timing
gets more complex. Every processor,
including the master, must turn its
transmit buffer on and off. Like the
four-wire RS-422 solution, terminat-
ing resistors are needed on the com-
mon receive line to make sure it stays
in the marking (high) state when idle.

Another potential drawback here is
interrupt servicing. If all the processors
get one interrupt for every byte trans-

Figure 4a —Adding RS-422 differential drivers and receivers enables multiple processors to communicate over long
distances using asynchronous serial I/O. b—The RS-422 receive and transmit lines can be combined into a single
bidirectional pair of wires, normally called RS-485 in this configuration.
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the beginning of the last byte transmit-
ted and turns the driver off when the
timer expires. The timer period is the
time needed to transmit one byte.

Another solution is for the master
to send an acknowledge after every
message. It tells the slave to turn off
the driver and frees up the common
line pair. The pull-up/pull-down resis-
tors on the common receive lines
ensure that the lines stay in the cor-
rect (high) state while idle.
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Figure 5a —By using comparators as data receivers and pulling the line to +12 or +24 V, a single bidirectional open-
collector serial interface can be implemented. b—Adding a another comparator on the master processor enables the
single-wire interface to add an attention request capability. Slaves request attention from the master by pulling the
party line low through a 12-V zener diode.
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mitted and received, whichever pro-
cessor is transmitting at any given time
gets two interrupts for every byte trans-
mitted. It gets one interrupt for the
transmitter and one when the same
byte comes back into the receiver.

But, this situation isn’t as bad as it
seems. Sometimes you can turn off
one interrupt while transmitting. Or,
because the interrupt won’t occur until
the complete byte is received, you can
use the receive interrupt as an indica-
tor to turn the transmit buffer off.

HIGH-VOLTAGE OPEN-COLLECTOR
Figure 5a shows a variation on the

open-collector communication method
that permits use over longer distances.
Like the previous example, there’s one
common party-line signal for commu-
nication in both directions. All trans-
mitters drive the common line with
open-collector drivers.

What makes this approach a little
different is that the line is pulled to
+12 or +24 V and the received data is
passed through high-speed voltage
comparators. The wider voltage swing

(compared to TTL) permits operation
over longer distances.

The voltage comparators in this
circuit act as buffers with a 6- or 12-V
threshold (for 12- or 24-V operation,
respectively). This arrangement pro-
vides about the same noise immunity
as RS-232, but the open-collector party
line permits bidirectional communi-
cation on a single wire.

One important consideration in this
scheme is the value of the pull-up

resistor. For 12-V operation, a 600-W
pullup dissipates almost 0.25 W when
any transmitter drives the line low.
For 24-V operation, a 2400-W resistor
provides the same dissipation.

Because the rise time of the com-
mon line depends on the value of the
resistor and the capacitances in the
wiring, 12-V operation enables faster
communication. Also, if you have long
cabling connecting your processors,
the maximum data rate is limited
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transitions on the 18-V comparator
while transmitting and receiving data.
The 18-V comparator sees data transi-
tions, so it must only be monitored
when the line is idle.

Figure 6 shows the timing and volt-
age changes. As you can see, a slave
requests attention during a transmis-
sion. The party line initially swings
0–24 V, but when the slave requests
attention, the voltage swing changes
to 0–12 V.

At the end of the transmission, the
output of the 6-V comparator returns
to the 24-V level. But, the party line is
held at 12 V by the zener diode, so the
output of the 18-V comparator is low,
indicating an attention request. This
approach permits multiple processors
to communicate, with an attention
request, over a single wire plus ground.

I2C BUS
Most of these techniques depend on

the serial port. But, what if you’re using
the serial port for something else or are
using a processor that doesn’t have an
internal serial port?

For these applications, you can use
the I2C bus. As Figure 7a shows, the
I2C bus uses a clock line controlled by
the bus master and a bidirectional data
line. All of the microcontrollers drive
the data line through open-collector
buffers and receive.

Figure 7a shows the timing for the
I2C bus. Each transmission begins with
the start condition, indicated by a fall-
ing edge on the data line (SDA) while
SCL is high. The stop condition is indi-
cated by a rising edge on SDA while
SCL is high. When data is transferred,
SDA changes only when SCL is low.

I2C data transfers typically consist
of a start condition followed by an

address and then data. Data
bytes are acknowleged by the
receiver. The complete I2C bus
details are available from a
number of sources (e.g., Philips
Semiconductor).

The I2C bus is typically used
to communicate with peripheral
devices like EEPROMs and LCD
drivers. It’s not uncommon to
find a single microcontroller
connected to several I2C bus
devices. In such a system, it

makes sense to connect other micro-
controllers as slave devices to the
existing I2C bus.

For long-distance communication
over cables, the I2C bus should be buff-
ered using RS-422 or RS-485 buffers.
You can use open-collector buffers,
but all the inputs should use Schmitt-
trigger devices to avoid noise problems.

One drawback to the I2C bus is the
need to constantly poll for the start
condition. Peripheral I2C devices do
this in hardware, but a microcontrol-
ler that implements the interface in
software wastes a lot of time polling
for the start condition.

The circuit depicted in Figure 7b
provides an output that can generate
an interrupt when the I2C start condi-
tion occurs. Remember that the start
condition is indicated by a falling edge
on SDA while SCL is high. The circuit
captures that condition in the flip-flop.

For this circuit to work, the SDA
line must be noise-free, which means
you need RS-422 or Schmitt-trigger
buffers on the inputs if you’re com-
municating over a cable. The interrupt
line goes high on the falling edge of
SDA and goes back low on the first
falling edge of SCK.

Of course, using this technique
means that you need three port bits
and an interrupt to implement the I2C
bus as a communication interface. As
well, you need fast interrupt response
to avoid missing any bits.

An additional consideration for a
software-based I2C interface is through-
put. The I2C bus can run at speeds up
to 100 kBps. But, because every device
on the bus must receive and decode
every message, the clock rate is limited
to the speed of the slowest device. If
you add a software-based I2C slave to

Figure 6 —Note that the output of the 18-V comparator follows the serial
data until a slave requests attention. The output of the 18-V comparator
then goes low and stays there until the slave removes the request.
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because the resistance/capaci-
tance limits the signal’s risetime.
But, this scheme enables multiple
processors to communicate over
a single wire (with ground).

All of these schemes depend
on the master processor polling
the slaves for data. Sometimes
you need a slave to be able to
request attention from the mas-
ter. Figure 5b shows a variation
on the open-collector party line
that permits the slaves to request
attention from the master.

The voltage comparators that act
as receivers are all referenced to 6 V,
but the circuit operates with a 0–24-V
swing. The master processor has an
extra comparator referenced to 18 V
and connected to a port bit (or an inter-
rupt input). Slaves that need to request
the attention of the master pull the
common line low through a 12-V zener.

When a slave requests attention
from the master, the zener clamps the
line to +12 V. The 18-V comparator on
the master sees the transition, but the
6-V (serial buffer) comparator does not.
The master sees the request and polls
the slaves, one at a time, to see which
one requested attention.

The key to making this method
work is that the master must ignore

Figure 7a —The I2C bus, which normally allows a
processor to control peripheral ICs, can also be used
for communication between processors. b—A 74xx74
flip-flop provides an interrupt when the I2C start condi-
tion occurs, eliminating the need to poll for it.
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your design, the overall throughput to
all the devices may have to be lowered.

If you do mix an onboard I2C bus
with external cable-connected slave
processors, you need to buffer the I2C
signals where they leave the master
board. The onboard peripherals prob-
ably can’t drive the long cable reliably.

The simplest way to buffer the sig-
nals is to have the master control the
direction of the buffered SDA line. The
master knows which devices it’s talk-
ing to, so it can enable the offboard
buffer when it is receiving from an
offboard processor. This arrangement
needs an additional control line from
the master processor to control the
buffer.

GROUNDING
All of these interfaces depend on a

good ground between the processors.
The only way to avoid grounding issues
is to use an optically or magnetically
isolated interface.

Some interfaces are more tolerant
of ground differences than others. TTL
signals, with their 0–5-V swing and a

threshold around 1 V, tend to be sus-
ceptible to grounding problems. It
doesn’t take much of a noise pulse to
upset a TTL signal on a long cable, so
TTL interfaces should be limited to
less than ~10¢.

The open-collector serial interface
using 12- or 24-V swings is fairly im-
mune to ground offsets, to about the
same degree as RS-232.

The RS-422 interface is extremely
insensitive to noise, but it can be more
susceptible to grounding problems than
the serial interface. RS-422 receivers
detect a voltage difference between the
two signaling wires, but the common
mode voltage they can tolerate is typi-
cally 6–8 V.

I’ve seen RS-422 receivers destroyed
when the systems are on two different
grounds. In one case, an instrument
was powered from a multiphase input
and connected via an RS-422 interface
to a PC running off the 115-V wall
power. An air-conditioning compressor
switched on and yanked the multiphase
ground far enough to destroy the re-
ceivers on the PC end of the interface.

You can run into this same problem
with two different 115-V outlets that
have a ground offset. So, if you connect
processors over distance, make sure the
two grounds are the same or you may
run into strange problems.

I didn’t cover some of the more
complicated interfaces like USB or
Ethernet, but I looked at a number of
interface techniques that are suitable
for simple communication. Hopefully,
one of them is suitable for your appli-
cation. I
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AUTO NETWORK
INTERFACE

The AVT-931 Dual
J1850 Interface is a
PC/104–form-factor
board designed to be
mated to a PC/104
host computer. It can
be connected di-
rectly to a J1850-
equipped vehicle
and used to monitor
network traffic, log
network activity, ana-
lyze communications, simulate
a network node, transmit messages,
and perform a variety of network func-
tions. The PC/104–form-factor board sup-
ports VPW and PWM versions of the J1850
vehicle networking standard, so it can be used
with a majority of vehicle makes, including Chrysler, Ford, and GM.

The AVT-931 provides an electrically isolated interface between the
host computer and the J1850 network of the vehicle under test. The
board performs the necessary protocol conversions and all required
communications translations that enable the user’s host computer to
communicate with the vehicle network. It uses the Motorola DLC device
for VPW communications and the Motorola HBCC device for PWM
communications. The VPW DLC device supports both transmit and
receive operations in 4´  mode and block transfer operations. (The 4´

mode may be required by GM for some operations.)
Operation is controlled by software commands from the host to the

hardware interface. The AVT controller software was designed for use
in Windows 3.1x, but it also runs under Windows 95. The AVT-931 is
supplied with a 16-bit DLL for use with 16-bit applications like Visual
Basic (16-bit version) and other custom applications. A 32-bit DLL is
under development.

The included hardware user’s manual contains technical information
on communications between the board and the host, connectors, and
memory map. Available separately is a cable set that enables the AVT-
931 to connect directly to the vehicle under test through the OBD-II
connector now found in nearly all vehicles sold in the U.S.

The AVT-931 Dual J1850 Interface has a list price of $1275, which
includes shipping.

Advanced Vehicle Technologies, Inc.
(410) 798-4038
Fax: (410) 798-4308
www2.ari.net/avt-inc

VIDEO CAPTURE
BOARD
The AIM104-Video is a PC/104-for-

mat video-capture board designed for use in
security surveillance and machine imaging appli-

cations. It inputs color or monochrome images from
industry-standard devices such as digital video cameras

and recorders. The board supports both PAL and NTSC
video formats and provides digital pixel resolutions of
800 ́  256 monochrome and 400 ́  256 color. With 24-bit
color depth, the AIM104-Video board offers a 16.7M color
palette.

Input to the board is via a standard phono connector
with an alternative 10-way connection. Power for an
external video camera is supplied via a single two-part
screw terminal connector with an onboard +12-V supply.

Each module is supplied with DOS drivers and C source
code for capture, decoding, and .BMP format file storage.
Precompiled executable files, useful for configuration dur-
ing system development, are also supplied.

The ATM 104-Video sells for $325.

Arcom Control Systems, Inc.
(816) 941-7025
Fax: (816) 941-7807
www.arcomcontrol.com

www.arcomcontrol.com
www2.ari.net/avt-inc
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SCALABLE CPU
The Scalable CPU II provides the features most needed for

demanding embedded computer applications as well as all
standard desktop-PC features. The field-swappable credit-card–
sized CPU may be scaled across the range from a ’486-16 with
1 MB of RAM to a Pentium 200 with 128 MB of RAM. The
Scalable CPU II is ideal for onboard vehicle, equipment control,
robotics, military, aerospace, telecommunication, DSP, and other
processor-intensive applications.

Standard desktop-PC features include support for
VGA/SVGA display, IDE hard disk and floppy disk drive,
two serial and one parallel port, and PS/2 mouse and
keyboard interfaces. Specialized embedded-computing
features include an NE2000-compatible 10BaseT Ethernet
port, an SVGA LCD interface compatible with a wide
range of flat-panel displays, and an alphanumeric LCD
interface compatible with a wide range of character-
based LCD modules. The unit has 16 bidirectional digital
I/O lines compatible with scanning matrix keyboards
and other devices. It also includes an M-Systems DiskOnChip
socket that accommodates rewriteable flash memory
modules from 2 to 72 MB, accessible as a standard hard
drive using built-in ROM code.

The Scalable CPU II has been tested with PC-DOS; MS-DOS;
Windows 3.x, 95, and NT; and QNX operating systems. It is
currently under test with Windows 98.

parvus Corp.
(801) 483-1533 • Fax: (801) 483-1523
www.parvus.com

TIME REFERENCE CARD
The Model NTR2000-P is a low-

cost, real-time clock card for IBM PC–
compatible computers that bypasses the
system clock and the PC’s BIOS to handle
the year-2000 (Y2k) rollover. This device
is capable of keeping highly accurate time
and provides a stability of ±1 s per month—
a vast improvement over standard DOS
clocks, which are often more than 20 min.
off. The unit is ideal for
control, network, test,
and measurement ap-
plications that require
a more stable and ac-
curate clock than is pro-
vided with most DOS
systems.

The heart of the
card is the National
Semiconductor DP-
8570A real-time clock
IC linked to a stable

crystal with a known aging rate. To further
enhance precision and accuracy, the os-
cillator is calibrated to normal PC operat-
ing temperatures for the best reference
possible.

The card also features ±0.01-s accu-
racy and user-settable auto updates from
1 min. to 45.5 days, extended at inter-

rupts. A Novell driver is
included, and the card comes
with a lifetime guarantee.

The NTR2000-P sells for $299,
including the board,
manual, and software.

Industrial Computer
  Source
(800) 523-2320
(619) 677-0877
Fax: (619) 677-0815
www.indcompsrc.com

www.indcompsrc.com
www.parvus.com
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ATM ADAPTER
The TNS1210 Streamliner is an asyn-

chronous transfer mode (ATM) adapter for ex-
changing MPEG video streams in PC-based video

systems. The adapter’s unusually fast throughput and
constant bit rate enable video servers to provide a signifi-

cantly higher number of simultaneous video streams in broad-
cast, Intranet, on-demand, and other video applications.

Standard ATM adapters
rarely deliver more than 60 Mbps
of constant bit rate streams, but
TNS1210 has a 148-Mbps ag-
gregate throughput with constant
bit rate. This high throughput is
achieved via multimemory/multi-
bus architecture, onboard process-
ing, a 1-Gbps cell memory, opti-
mized drivers, and packetized
burst DMA bus transfers.

The adapter comes with a full
Windows NT software suite and
offers concurrent management
of various data flows including
classical IP streams, MPEG-2
transport streams, and native
AAL5 or AAL1 (ATM adaptation

layers). Software supports PVCs (permanent virtual circuits) and
SVCs (switched virtual circuits) with UNI 3.1 signaling. A physical
layer interface running at 155 Mbps with SONET/SDH framing
is available for multimode fiber, single-mode fiber, or UTP5 cables.

Up to 512 simultaneous connections are possible, including
64 dedicated to MPEG video streams. Mapping of the MPEG-2
transport stream into AAL5 is programmable for each connection,

with up to 48 transport stream
packets mapped into one AAL5
PDU.

An optional card supports
AAL1 with a video convergence
sublayer for error-free transport
of video streams. Various com-
pressed video formats and quali-
ties are supported from 1.5 to
50 Mbps. Video streams are
sent over AAL1 with ±25-ppm
clock resolution and accuracy.

Tekelec Temex
+33 476-596034
Fax: +33 476-630030
www.tekelec-temex.
  com

PORTABLE FLOPPY DISK SYSTEM
The PCM-120 Add-A-Floppy attaches to any computer with a PCMCIA Type

II or Type III slot to read and write 120-MB disks as well as standard 3.5² disks. It
is plug-and-play compatible with Windows 95 and Windows NT and can be used
on virtually any laptop, notebook, PDA, or any computer with a PC-Card slot.
Applications for the unit include data acquisition, storing and transporting large text
or graphic files, storing sensitive data off-line, and freeing up space on a hard drive.

The PCM-120 is easy to transport and store, measuring just 4.5²  ́  7.25²  ́  1.66²

(115 mm ´  185 mm ´  35 mm) and weighing 12 oz. The drive features a holder on
the back of the case to store the PC Card, cord, and driver software disk. Power is
obtained via external keyboard connector and averages only 0.09 W.

The PCM-120 requires a ’386 or faster processor and a minimum of 400 KB of
RAM. Software requirements include MS-DOS 3.3; Windows 3.1, 95/98, NT, or
CE; and PCMCIA Card/Socket Services 2.1.

The PCM-120 sells for $249.

Analog & Digital Peripherals, Inc.
(937) 339-2241
Fax: (937) 339-0070
www.adpi.com

www.tekelec-temex.com
www.adpi.com
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An OS for Test and

Measurement

Aside from its often-cited advantages,
including the de facto standard API and
tools, a number of technical factors help
Windows CE fit into the test and measure-
ment industry. Consider its scalability coupled
with broad product lines.

Many instrument manufacturers have a
broad range of products with low to me-
dium volumes, so they’re always looking
for leverage across product lines. Previ-
ously, there was no operating system that
scaled well. But with Windows CE, these
manufacturers can implement a single OS
platform in everything from high-end hand-
held test devices to benchtop systems.

Windows is no stranger in the test and
measurement industry. On the OEM side,
we’ve seen a steady stream of Windows-
based products, including the Inifium oscil-
loscope family from HP, the TLA 700-series
logic analyzer from Tektronix, and EXFO’s
FTB-300 Universal (fiber) test system.

On the end-user and lower-volume OEM
side, National Instruments has been sell-
ing LabVIEW along with their I/O boards,

enabling users to build instruments out of
almost any PC. The PC-based instrumenta-
tion market is huge, and many of these target
systems run under Windows 95 and NT.

One common denominator for all in-
struments and test systems is a user inter-
face, whether it’s an LCD character
display or a full Windows GUI. Windows
CE has the ubiquitous Windows user inter-
face and can also be used to develop
custom GUIs.

Most test and measurement applica-
tions can be classified as soft real-time.
These instruments primarily sample data
and analyze it (sometimes at very high
rates), but they’re not involved in tight
control loops where a highly deterministic
response is needed.

The bounded determinism of Windows
CE in the 150–250-µs range is more than
adequate for the majority of applications.
Traditionally, RTOSs have been used be-
cause of their small size and embedded
capabilities rather than their real-time re-
sponse capabilities.

SHIFTING FOCUS
The industry is being driven toward

instruments that make more sophisticated
measurements. Many engineers believe
that software is now the gating technology.

By moving to a software (and even
hardware) platform standard, engineering
resources can be focused on the value-
adding application and time to market
can be reduced. As a de facto standard,
Windows CE provides a variety of off-the-
shelf tools and application building blocks.

These factors make test and measure-
ment an early-adopter industry. In this
article, we examine the process and appli-
cations of a test and measurement com-
pany, Burleigh Instruments, to see how
Windows CE fits in with their applications.

Burleigh serves the fiber-optic–based
telecommunication and semiconductor
markets, which is evolving rapidly. Conse-
quently, there’s great pressure to increase
the speed of product development.

Also, engineering expenses—those
relative to the volume of instruments sold—

Looking to improve on some existing products, Burleigh Instruments did some
comparison shopping for a new operating system. The result? Windows CE
came out on top. Check in with Thomas and Mike to see why.
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ment and support are
possible if the applications
share the same code base.

DOS VIDANYA?
DOS may be nearing the end of its

useful life. It is no longer supported in the
current set of Microsoft development tools,
and our development tools are beginning
to show their age. Once they’re incompat-
ible with the future versions of Windows,
our tools will be useless.

Having workstations dedicated to sup-
port tools for software development is out
of the question. And even documentation
is getting harder to find.

 As you know, Windows isn’t an RTOS.
Although your needs may be soft real time,
events and responses to those events typi-
cally occur on the order of tens of millisec-
onds. Windows isn’t deterministic enough.

Windows also continues to grow in
bulkiness, so it’s less suited to embedded
applications. It consumes valuable resources
(e.g., RAM), and its size makes it difficult
to mount on devices such as flash ROM.

ADVANTAGE WINDOWS CE
Choosing an OS is like any other major

design decision. Table 1 summarizes the
major factors Burleigh considered when
evaluating OSs.

The advantages of using a standard
development environment and API were
considered in general. Proprietary OSs like
QNX and Wind River’s VxWorks would
have required new development systems
and tools. Phar Lap’s OS, while Win32
compatible, would have needed different
development tools and a specific compiler.

Burleigh relies heavily on SBC and
data-acquisition vendors to supply drivers
for their products. The only commonly
supported OSs are DOS and Windows,
which provide few or no RTOS drivers.

Burleigh also looked at third-party de-
velopment tools. After talking with several
vendors, it became clear that Windows
CE would be supported not only by them but
also by others in their respective industries.
For example, Annasoft adapted Windows
CE to ‘486 and Pentium PC-compatible
systems. Its CE Launcher enables Windows
CE to load without DOS, and Jump Start
provides driver support not provided by
Microsoft.

There are several aspects to consider
when estimating the cost of ownership:

preclude developing custom hardware
and software for each new product. And
from the customer’s perspective, no recog-
nizable value is added by Burleigh’s extra
efforts to develop a unique, totally embed-
ded product.

One way to reduce development time,
cost, and effort is via commercial off-the-
shelf (COTS) components. Low-cost, feature-
rich SBCs are available, as are inexpensive
data-acquisition and communication
boards complete with drivers, function
libraries, and configuration utilities. These
components enable a low-volume instru-
ment maker to tightly integrate a PC-based
instrument to perform a specific function
quickly and at minimal engineering cost.

FRIENDLY BONUS
Although Burleigh relies on standard

data-acquisition, I/O, and communica-
tion boards in its systems, it still develops
custom instrument hardware. Therefore,
hardware usually arrives late in the product-
development cycle.

How does a PC-friendly OS reduce time
to market? Thanks to the architectural similari-
ties between Burleigh’s instruments and the
PC, most instruments are easily simulated
on the desktop development computers.
COTS components are quickly integrated
because vendors support the OSs used.

A major problem in the software world
is the shortage of experienced program-
mers, especially those trained with the tools
and particular APIs of a proprietary RTOS.
But, the Windows CE application devel-
opment tools are the same tools used for
conventional Windows programming.

Other embedded Win32-based OSs,
like Phar Lap, require you to purchase
different tools. Because Windows CE uses
a subset of the Win32 API, programming
can be done with existing tools.

Burleigh instruments are configured with
a variety of options. Some have flat-panel
VGA displays, full keyboards, and hard
and floppy disk drives. Others have only
multiline, character-based displays with a
minimal keyboard and no drives.

Windows CE has a lower degree of
assumed architecture than Windows or
even RTOSs, and the embedded toolkit
(ETK) enables you to build a version tai-
lored to your devices. The difficulty of the
command-line–driven ETK can be overcome
with products like Intrinsyc Software’s Inte-
gration Expert, which gives the ETK an
intuitive interface (modeled after Microsoft’s
Developer Studio). Thus, a single OS can
be standardized.

A single OS has obvious advantages
(e.g., eliminating the cost of supporting
two technologies and multiple toolsets), but
it can also reduce inventory. DOS and
Windows 95 are bought in lot multiples,
which may not match the number of instru-
ments in production at the time of purchase.

Burleigh develops the software that
their production department uses to qualify
instruments for functionality and accuracy.
If the OS used by the engineering and
production departments has an API that’s
similar to the one the instruments use, test
software can be a derivative of the
instrument’s application software rather
than being completely independent and
unique. Big savings in software develop-

Table 1—Here’s the comparison chart that Burleigh Instruments used to determine which OS
would provide the best solution for their needs.

DOS Windows WinCE QNX Wind River Phar Lap

Standard API (Win32) No Yes Yes No No Yes
Standard development No Yes Yes No No Yes
  environment

Third-party support
SBC support Yes Yes Yes Yes No Yes
I/O drivers Yes Yes Yes No No Yes
GPIB drivers Yes Yes Yes Yes No No

Cost of ownership
Development tool cost N/A N/A $1500 <$2000 >$10,000 ~$4995
Run-time license cost ~$19 ~$119 ~$35 ~$250 ~$50 ~$30

Technical factors
Real-time capability No No Yes Yes Yes Yes
Embedded capabilities Yes No Yes Yes Yes Yes
GUI support No Yes Yes Yes Yes No
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• entry cost—the cost
of development and sup-

port tools
• maintenance—the yearly cost

of updating and maintaining tools
• customization—does the standard

toolset permit scaling the OS to meet your
application or does scaling to the desired
configuration require additional fees?

• use (i.e., licensing and royalties)—run-
time fees

• training—available locally or via third
parties who can provide education and
support?

For Burleigh, the entry cost of VxWorks
was high, as was QNX’s recurring run-
time license cost. With its low cost of entry,
high degree of customization, relatively
low run-time licensing, and training avail-
able from multiple sources, Windows CE
had the best cost of ownership.

Historically, Burleigh’s application soft-
ware has been targeted to DOS and
Windows environments. So, in selecting
an RTOS, Burleigh gave high consider-
ation to OSs that support the Win32 API
(e.g., Windows CE and Phar Lap).

Technical factors (e.g., real-time capa-
bilities and size) were considered, too. All
of the OSs met our basic requirements.
But, the superior real-time capabilities and
smaller footprint of RTOSs weren’t impor-
tant for our applications. A millisecond
real-time response is adequate.

Size wasn’t a huge factor because
RAM is relatively inexpensive and not a
critical consideration in Burleigh’s highly
specialized low-volume products.

A GUI, however, was critical. One draw-
back of the Phar Lap OS was its lack of a
GUI. Windows CE’s ability to provide a
full Windows interface was an advantage.

SINGLE WAVELENGTH METER
One project in which Windows CE is

likely to be applied is Burleigh’s WA-1600
wavelength meter (see Photo 1), which
currently runs under DOS. Designed for
manufacturing environments, the WA-1600
precisely characterizes and optimizes
wave division multiplexing (WDM) compo-
nents like transmission lasers, fiber Bragg
gratings, and erbium-doped fiber amplifiers
(EDFAs).

WDM enables telecommunications
carriers to increase bandwidth by sending
multiple optical signals over a single fiber.

extensions supporting flat-panel displays.
Configuration utilities for the Computer
Boards modules have to be ported to the
OS. Then, we have to port our own drivers.

Additionally, the OS must conform to
some of the constraints of the platform and
application. The Viper806 supports up to
4 MB of flash memory. The OS, drivers,
application, and associated initialization
files have to fit into this space.

The full version of Windows CE occu-
pies ~5 MB. But because the WA-1600
doesn’t have a GUI or networking inter-
face, we can use the limited version, reduc-
ing both the size and the recurring license
cost (by a third).

The analysis-and-optimization tools in
Integration Expert help identify compo-
nents that can be eliminated. Since our
application is only ~400 KB and doesn’t
need many features, we’re confident that
Windows CE can be configured to occupy
well under 4 MB.

Because of the accuracy and precision
our instruments must deliver, Windows CE
has to support a true double-precision
floating-point library. We also have to
worry about errors like floating-point and
hardware exceptions.

For example, if the result of a calculation
causes a divide-by-zero, a DOS or Win-
dows application might terminate and return
the user to the desktop or, worse yet, the
C: prompt. Similarly, a user who removes
the floppy during a write operation can’t
be asked to respond to an error message
through a user interface equipped with
five keys. We need to embed the SBC as
deeply as possible, so we need to inter-
cept and gracefully handle such exceptions.

Real-time performance isn’t an issue. The
data-sampling rate is less than 10 times per
second, and user-interface response to key-
board input happens in less than 250 ms.

Photo 1—The WA-6000 wavelength meter’s software will be ported from DOS to Windows CE.

As WDM equipment continues to increase
the number of channels supported, the
ability to more accurately measure optical
wavelength is necessary to properly charac-
terize and optimize the WDM components
in the equipment. The WA-1600 measures
the wavelength of a single-mode continuous
laser to within 0.2 ppm (the highest-accuracy
wavelength measurement available).

A stand-alone benchtop and rack-mount-
able instrument, the WA-1600 uses a Teknor
Viper806 SBC with a ’486 processor, 8-MB
RAM, 4-MB flash memory, and bidirec-
tional communication interfaces like RS-
232 and Ethernet 10BaseT (using TCP/IP).

The Viper806 has a PC/104 interface
onto which Burleigh adds proprietary hard-
ware and a Computer Boards IEEE-488
(GPIB) and analog and digital I/O modules.
The display is a Noritake vacuum fluores-
cent display, which interfaces to the Viper-
806 via a custom keyboard interface.

WA-1600 OS REQUIREMENTS
To implement Windows CE on this

device, we need full driver support for all
third-party boards. We chose Teknor and
Annasoft to provide the drivers for all the
interfaces onboard (video, keyboard,
floppy, parallel and serial ports, dual IDE,
and flash file system). Jump Start provides
most of the drivers off-the-shelf. Teknor
provides drivers for their flash-memory
and dual IDE systems.

We need utilities equivalent to those
we used in the past. During configuration
and assembly, we use the keyboard and
display interface that is standard on the
Viper806 to run Teknor’s various configu-
ration utilities.

So, Teknor has to supply the Windows
CE equivalent of the utilities used to set up
the system BIOS extensions supporting the
onboard flash memory and the video BIOS
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Operating Systems
QNX
(800) 676-0566
(613) 591-0931
Fax: (613) 591-3579
www.qnx.com

Wind River
(800) 545-9463
(510) 748-4100
Fax: (510) 749-2010
www.windriver.com

Phar Lap Software, Inc.
(617) 661-1510
Fax: (617)876-2972
www.pharlap.com

Integration Expert
Intrinsyc Software, Inc.
(604) 801-6461
Fax: (604) 801-6417
www.intrinsyc.com

PULSED WAVEMETER
Another project likely to use Windows

CE is the WA-5500 pulsed wavemeter
optical wavelength meter. Its current con-
figuration requires the coupling of the
optical head to a PC running application
software under Windows 95.We want to
completely embed the PC in the instrument
while enhancing instrument performance.

The desire to reduce IC feature size
places great demands on the optical li-
thography process, and the optical source
has to operate at shorter wavelengths. We
addressed this need by employing KrF
excimer lasers that operate at 248 nm. For
optimum performance and efficiency of
the optical system, the absolute wavelength
of the excimer laser must be known and
controlled to a high accuracy.

The new WA-5500 measures the abso-
lute wavelength of excimer lasers to
±0.002 nm at 248 nm. A special design
can be used to achieve an absolute accu-
racy of ±0.0005 nm at 248 nm.

Architecturally, the WA-5500 is like the
WA-1600, except it uses the Viper821,
which is Pentium-based and has up to 16-MB
SanDisk–based flash memory.

This instrument (along with Windows
CE) needs to support a Sharp TFT full-color
VGA flat-panel display and a 2-D CCD
camera. The result: more graphical infor-
mation must be transferred to the graphic
display and there is a larger data set to be
collected from the CCD camera. Because
the source of the data is a pulsed laser, the
information must be collected, reduced,
and analyzed as rapidly as possible.

We anticipate Windows CE’s real-time
capabilities to be pushed as we gauge the
limits of system bandwidth. We’ll have to
work around the absence of nested inter-
rupts through the use of semaphores.

Using the available priority levels and
bounded task response in the 150-µs range,
we expect to achieve the necessary perfor-
mance and measurement accuracy. Win-
dows CE V.3.0’s nested interrupts and 32
levels of prioritization should let us im-
prove the instrument’s performance.

READY TO GO
There’s little question that Windows CE

is being widely adopted and supported, not
only by SBC and data-acquisition vendors
but also by instrument manufacturers. Once
again, the early adopters have proven that
something new can be something good. EPC

Thomas Wall is the software manager for
the electro/optics product group at Burleigh
Instruments.

Mike Bauer is the director of marketing
and business development at Annasoft
Systems. You may reach Mike at bauer@
annasoft.com.

SOURCES
Windows CE, Jump Start
Annasoft Systems
(800) 590-3870
(619) 674-6155
Fax: (619) 673-1432
www.annasoft.com

www.annasoft.com
www.qnx.com
www.windriver.com
www.pharlap.com
www.intrinsyc.com
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Real-Time PC

Ingo Cyliax

Embedded RT-Linux
Part 4: Developing Under Linux gcc/gdb

Over the past few months, I’ve been
looking at Linux and discussing some of
the issues involved with embedding Linux.
But to embed Linux, you need development
tools. That’s what I’m focusing on this month.

Linux is a self-hosted development sys-
tem. In other words, all of the development
tools for Linux run under Linux. They include
the standard C/C++ high-level language
support with compilers, linkers, libraries,
and source-level debuggers.

Along with the standard C/C++ tool
chain, Linux provides support for other
languages. There’s a just-in-time (JIT) virtual
machine for Java Kaffe that enables you to
run Sun’s JDK, including their Java com-
piler and support tools, under Linux.

Languages like Pascal and FORTRAN
77 are supported via code converters that
convert Pascal and FORTRAN into C. Then,
you just use the normal C/C++ tool chain.

For you computer science types, there’s
a scheme interpreter (UMB-Scheme) and a
commercial scheme compiler (Chez Scheme)

available. There are even scripting lan-
guages like Tcl, Perl, and Python.

Because Linux’s development is self-
hosted and freely distributable, it’s possible
to ship the development system with the
embedded system if you have resources

Want to work with Linux? Well, then, you need to know about the development
tools. Fortunately, all of Linux’s development tools run under Linux—that
includes everything from compilers and languages to I/O debugging.

available. If you’re limited in memory and
disk footprint, you need to host the develop-
ment in a large host or desktop system and
download the application to your target.

The same system interface is used in the
development host and target, so you can
test and debug your application on the
development system. As a final step, embed
the code into your embedded-Linux system.

LET’S C
Linux supports many programming lan-

guages, but I want to take a detailed look
at C. I’ll show you how to build a simple
hello-world–type application and what you
need to do to arrive at an executable.

Using C is pretty straightforward. The
source-code modules are in files with a .c

Photo 1—The X Windows version of the GNU
debugger (xxgdb) has a source window, a
command-line window, and an extra win-
dow to display variables. These are features
you‘d expect from a source-level debugger.



R
PC

CIRCUIT CELLAR INK FEBRUARY 199952

4 KB. The dynamic version shares the
library with other programs, resulting in a
smaller disk image. But if the system has
just one program, then a statically linked
image contains all that’s needed and is
smaller than all the dynamic libraries
combined. Note that these sizes are the
file sizes and have little to do with the run-
time size of the program.

A more complex program may consist
of several modules, which you might want
to link separately. The -c switch tells gcc
to stop after compiling and assembling the
program into an object module. All modules
are linked into an executable prog1, as
in Figure 2. The same concepts apply for
C++ modules. Just substitute g++ for gcc
and use .cc for the source modules.

Along with linking modules to programs,
you can put the modules into a library with
the ar utility. This archive program takes
individual modules and builds one file
containing the modules. To build a simple
library, execute ar qv mylib.a mod1.o
mod2.o.

It’s good to build a symbol table in the
library archive. Although it’s not necessary,

options to override the standard search
paths for the include file and libraries.
Also, the compiler can be controlled with
options to compile functions in-line for a
particular processor or if you want to use
hardware floating point or emulation.

The linker can generate several different
output file formats such as ELF, COFF, or
Unix a.out format. More controls make
it possible to link the program statically or
dynamically.

Dynamic linking permits commonly
used libraries to be loaded at runtime
rather than including them in the execut-
able. Because libraries are shared, using
dynamic libraries makes executables
smaller. But, you need to make sure the
dynamic library is available at runtime.

For embedded systems where you
don’t want dynamic libraries, you may
want to compile your program using
the -static switch. Using gcc
-static hello.c makes a big
difference for a simple program (see
Figure 1b).

Although the static version is almost
0.5 MB, the dynamic version is only

extension. These mod-
ules are compiled and

assembled into object files
by the compiler. The object

files use the .o extension and,
along with static libraries, are linked

into an executable or dynamic-load mod-
ule by the linker.

A static library manager enables you
to combine object modules into a library.
Static libraries use the .a extension, and
dynamic link modules (i.e., shared libraries
or objects) use the .so extension.

The C++ compiler works similarly but
uses .cc file extensions as source file
input. In general, a developer uses the
gcc program as the front end to the
compiler and linker phase.

gcc knows where in the system to find
standard include files, the .h exten-
sion, and libraries. It also knows about
extensions and figures out the sequence to
apply the compiler, assembler, and linker
to arrive at an output file.

To compile a single module into an
executable file, invoke gcc hello.c. It
looks at the file specified on the command
line and recognizes the .c extension as a
C source file. After running the source file
through the C macro/include file pre-
processor, it calls up the C compiler and
compiles the program into an assembly-
language program.

Assembler files use the .s extension.
Before linking with the standard start-up
object module and standard libraries, gcc
hello.c calls up the assembler to as-
semble the file into an object file and
generates a.out, which is the executable.

You can use the -v switch to get a trace
of all the subprograms called and the
switches and arguments used (see Figure
1a). As you see, the program does a lot
and the options are complex. That’s prob-
ably why most people use the gcc front
end to compile programs.

gcc has many switches that control the
operation of the preprocessor, compile,
assembly, and linking phases. There are

Figure 1a—These are the steps that gcc takes to compile a program into an executable. gcc acts
as a front end and directs what tools need to be executed with their options to compile a program
or module. b—Here’s what you see when you look at the file sizes for a statically and
dynamically linked programs. Although the dynamically linked program seems to be much
smaller, remember that you also need the run-time libraries that it was linked against to run it.

a)

5 -rwxr-xr-x   1 cyliax   wheel     4149 Nov  7 20:05 hello.dyn
431 -rwxr-xr-x   1 cyliax   wheel   437473 Nov  7 20:13 hello.sta

b)

gcc -c main.c # generate main.o
gcc -c mod1.c # generate mod1.o
gcc -c mod2.c # generate mod2.o
gcc main.o mod1.o # link modules
  mod2.o -o prog1

Figure 2—When you’re building a program with two
source modules, you first compile them into object files
and then link them into an executable.

gcc -v hello.c
Reading specs from /usr/lib/gcc-lib/i386-redhat-linux/2.7.2.3/specs
gcc version 2.7.2.3
  /usr/lib/gcc-lib/i386-redhat-linux/2.7.2.3/cpp -lang-c -v -undef
  -D__GNUC__=2 -D__GNUC_MINOR__=7 -D__ELF__ -Dunix -Di386 -Dlinux
  -D__ELF__ -D__unix__ -D__i386__ -D__linux__ -D__unix -D__i386 -D__linux
  -Asystem(unix) -Asystem(posix) -Acpu(i386) -Amachine(i386) hello.c
  /tmp/cca16646.i
GNU CPP version 2.7.2.3 (i386 Linux/ELF)
#include "..." search starts here:
#include <...> search starts here:
  /usr/local/include
  /usr/i386-redhat-linux/include
  /usr/lib/gcc-lib/i386-redhat-linux/2.7.2.3/include
  /usr/include
End of search list.
  /usr/lib/gcc-lib/i386-redhat-linux/2.7.2.3/cc1 /tmp/cca16646.i -quiet
  -dumpbase hello.c -version -o /tmp/cca16646.s
GNU C version 2.7.2.3 (i386 Linux/ELF) compiled by GNU C version 2.7.2.3.
  as -V -Qy -o /tmp/cca166461.o /tmp/cca16646.s
GNU assembler version 2.9.1 (i686-pc-linux-gnu), using BFD version
  2.9.1.0.4
ld -m elf_i386 -dynamic-linker /lib/ld-linux.so.2 /usr/lib/crt1.o /usr/
  lib/crti.o /usr/lib/gcc-lib/i386-redhat-linux/2.7.2.3/crtbegin.o -L/
  usr/lib/gcc-lib/i386-redhat-linux/2.7.2.3 -L/usr/i386-redhat-linux/lib
  /tmp/cca166461.o -lgcc -lc -lgcc /usr/lib/gcc-lib/i386-redhat-linux/
  2.7.2.3/crtend.o /usr/lib/crtn.o
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the linker can use the
symbol table to quickly

find references in the archive
rather than sequentially search-

ing it for symbol references.
To index the library, use ranlib.

After typing ranlib mylib.a, you
can link your program with the library by
using gcc main.o mylib.a -o prog1.
The linker extracts all the modules from the
library archive and satisfies all of the
symbol references that need to be re-
solved to link the program.

Libraries are often used for large projects
with many modules where several pro-
grams use the modules. This way, you don’t
have to keep track of all the module names.
You just stick them into a library and let the
linker sort it out.

Keeping track of individual modules in
a project can be tricky and cumbersome,
especially if you want to figure out which
modules need to be recompiled to update
the program. Luckily, there’s a utility that
handles this task: make.

Different versions of make have been
around for a while under Unix and before
Linux. The version that comes with Linux is
the GNU make facility. It’s quite powerful
and has many features, so I’ll only be able
to scratch the surface here.

make is a facility for maintaining objects
that are made up of dependent compo-
nents. You describe the project by build-
ing a makefile like the one in Listing 1.

make works by having a dependency
line for a target. In my example, the top-
level target is prog1. make uses the first
target in the makefile as the top-level
target. Tell make that prog1 is made up of
main.o and mylib.a. In turn, mylib.a
is made up of mod1.o and mod2.o. After
the dependency line, list the commands
needed to generate that target.

Because the object modules—main.o,
mod1.o, and mod2.o—are derived from
C source modules, you don’t need to tell
make that main.o is made from main.c
by compiling it. make already has built-in
rules on how to make .o from many
different kinds of source modules.

make knows that you can also make
.o files by compiling FORTRAN from files
that have the .f extension and C++ from
files with .cc extensions. Listing 2 shows
some of the built-in defaults for make.

You can see that with the makefile
and its built-in rules, you are building a
dependency tree that looks like Figure 3.
Now, when I execute make, it generates
all the commands necessary to build my
top-level target (see Figure 4a).

 This, in itself, is a good deal, but make
is also smart enough to check the modifi-
cation times of all the components neces-
sary to build the target. If I edit mod1.c
and change the module, I only need to run
make again and it rebuilds my program by
executing only the steps necessary to up-
date the project, as in Figure 4b.

For large projects or a project where
many programmers are working on differ-
ent parts, this feature is handy. For example,
make is used to maintain the Linux kernel
and all the packages available under Linux.

Besides make, there are tools that
generate makefiles for a project or
component based on some higher level
rules. One tool is Imake, which uses con-
figuration files and prototype makefiles
to build custom makefiles for specific
installation. It even builds the X Windows
source tree. But in the end, makefiles

control how the project components are
compiled or built.

To further aid in software maintenance,
software revision tools are available. One
of these is the revision control system (RCS).
RCS lets you checkpoint individual source
modules and check them into an archive.

RCS also keeps track of the differences
between module revisions and lets you go
back or consolidate different versions.
Because Linux is multiuser, it keeps track
of which user checked out a module and
is making changes to it.

In its simplest form, you use ci for
check-in. Checking in a module compares
it to the last version of the module and
saves the most current version but notes
the differences. If I check in mod1.c, I get
the dialog shown in Figure 5a.

Signing my name to the change isn’t
necessary because the change is noted in
the RCS log. To view the revision log for
a file, use the program rlog. Figure 5b
shows that user cyliax checked in V.1.2.

Perhaps one of the best features of RCS
is that make knows about it and will check
out a module with RCS if it is currently
checked in. So, going back to rebuilding
prog1 after I have checked in mod1.c…

Figure 5c shows that make used the
program co to check out the source module
mod1.c and then proceeded to compile,
build the library, and relink the program.
Finally, it deleted the module because it
wasn’t needed anymore.

co is used to check out a module from
the archive. By default, co checks out the

Listing 1—The target prog1 consists of a main.o module and a library mylib.a, which in turn
is made up of mod1.o and mod2.o. make reads this file and uses a system-wide make file to
construct a dependency tree.

prog

main.o

main.c

mylib.a

mod1.o

mod1.c

mod2.o

mod2.c

Figure 3—Here’s the dependency tree for the
sample makefile in Listing 1. The leaf nodes,
main.c, mod1.c, and mod2.c are the source
modules needed to build the program. make
knows how to build common things, like
compiling mod1.c to get mod1.o.

prog1: main.o mylib.a
gcc main.o mylib.a

mylib.a: mod1.o mod2.o
ar qv mylib.a mod1.o mod2.o
ranlib mylib.a

hugo 87% make
cc    -c main.c -o main.o
cc    -c mod1.c -o mod1.o
cc    -c mod2.c -o mod2.o
ar qv mylib.a mod1.o mod2.o
a - mod1.o
a - mod2.o
ranlib mylib.a
gcc main.o mylib.a -o prog1

hugo 86% make
cc    -c mod1.c -o mod1.o
ar qv mylib.a mod1.o mod2.o
a - mod1.o
a - mod2.o
ranlib mylib.a
gcc main.o mylib.a -o prog1

a)

b)

Figure 4a—You can use make to build a pro-
gram that depends on several modules in a
library. b—Here’s what happens when you
change one module (mod1.c). make figures out
which module changed and only performs
the steps necessary to update the project.
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# @(#)sys.mk 5.11 (Berkeley) 3/13/91
unix= We run UNIX.

.SUFFIXES: .out .a .ln .o .c .F .f .e .r .y .l .s .cl .p .h

.LIBS: .a
AR= ar
ARFLAGS= rl
RANLIB= ranlib
AS= as
AFLAGS=
CC= cc
CFLAGS= -O
CPP= cpp
FC= f77
FFLAGS= -O
EFLAGS=
LEX= lex
LFLAGS=
LD= ld
LDFLAGS=
LINT= lint
LINTFLAGS= -chapbx
MAKE= make
PC= pc
PFLAGS=
RC= f77
RFLAGS=
SHELL= sh
YACC= yacc
YFLAGS=-d
.c.o:

${CC} ${CFLAGS} -c ${.IMPSRC}
.p.o:

${PC} ${PFLAGS} -c ${.IMPSRC}
.e.o .r.o .F.o .f.o:

${FC} ${RFLAGS} ${EFLAGS} ${FFLAGS} -c ${.IMPSRC}
.s.o:

${AS} ${AFLAGS} -o ${.TARGET} ${.IMPSRC}
.y.o:

${YACC} ${YFLAGS} ${.IMPSRC}
${CC} ${CFLAGS} -c y.tab.c -o ${.TARGET}
rm -f y.tab.c

.l.o:
${LEX} ${LFLAGS} ${.IMPSRC}
${CC} ${CFLAGS} -c lex.yy.c -o ${.TARGET}
rm -f lex.yy.c

.y.c:
${YACC} ${YFLAGS} ${.IMPSRC}
mv y.tab.c ${.TARGET}

.l.c:
${LEX} ${LFLAGS} ${.IMPSRC}
mv lex.yy.c ${.TARGET}

.s.out .c.out .o.out:
${CC} ${CFLAGS} ${.IMPSRC} ${LDLIBS} -o ${.TARGET}

.f.out .F.out .r.out .e.out:
${FC} ${EFLAGS} ${RFLAGS} ${FFLAGS} ${.IMPSRC} \
  ${LDLIBS} -o ${.TARGET}
rm -f ${.PREFIX}.o

.y.out:
${YACC} ${YFLAGS} ${.IMPSRC}
${CC} ${CFLAGS} y.tab.c ${LDLIBS} -ly -o ${.TARGET}
rm -f y.tab.c

.l.out:
${LEX} ${LFLAGS} ${.IMPSRC}
${CC} ${CFLAGS} lex.yy.c ${LDLIBS} -ll -o ${.TARGET}
rm -f lex.yy.c

Listing 2—The system rule file contains all the standard rules that make uses to transform files
from one extension to another.
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module in an unlocked mode. In this
mode, a read-only copy is created. To
change the module, you need to check out
and lock the module with the -l switch.

co -l mod1.c checks out the locked
module and creates a writeable version.
In this state, no one else can check out this
version of the module until I check it back
in. But, they can create their own version
of the module or even a new revision
branch. RCS works on individual files and
there’s a higher-level version control sys-
tem—the concurrent version system (CVS)—
that extends RCS to a project-level version-
control system.

That just about covers compiling pro-
grams. Remember, even though I’ve only
shown how to use make and RCS with C
modules, they’ll work with different kinds
of source-code modules.

In fact, I use RCS for all of my writing
to make sure I don’t lose anything, even if
I go back and delete some thoughts or edit
the article. I also use make to maintain
and build hardware components like PCB
netlists that make up a design, components,
and libraries for FPGA large designs.

I/O
Although it’s a high-level OS, Linux

enables application programs to access
’x86 I/O ports if the program has appro-
priate permissions. The include file asm/
io.h contains macros to generate inline
functions for I/O instructions such as outb
and inb. But, there are some rules.

First, the program that wants to use the
I/O instructions needs to turn on the range
of addresses these instructions will work
for. This action is done via ioperm(). To

#include <asm/io.h>
main()
{
  unsigned char i;
  ioperm(0x378,8,1);
  while(1){
    outb(i,0x378);
    i++;
  }
}

Listing 3—This program has to be compiled with the optimization turned on so the outb()
function is inline. It also needs to be run at system-level privileges to get permission to
access the ports.

hugo 82% rlog mod1.c
RCS file: mod1.c,v
Working file: mod1.c
head: 1.2
branch:
locks: strict
access list:
symbolic names:
keyword substitution: kv
total revisions: 2;
selected revisions: 2
description:
----------------------------
revision 1.2
date: 1998/11/09 02:29:18;
author: cyliax;
state: Exp;  lines: +1 -0
I made a trivial change. -ingo
----------------------------
revision 1.1
date: 1998/11/09 02:28:56;
author: cyliax;  state: Exp;
Initial revision

Figure 5a—Here’s the dialog between ci, the RCS check-in program, and the author. ci records
the comments in the log it keeps with each module it manages. b—You can use rlog to look at
the revision log for a module. c—When make needs a module that has been checked in and is
maintained by RCS, it checks out the module with the co command before using it.

hugo 82% ci mod1.c
mod1.c,v  <--  mod1.c
new revision: 1.2; previous
  revision: 1.1
enter log message,
  terminated with single '.'
  or end of file:
>> I made a trivial change.
  -ingo >> .
done

a) b)

hugo 82% make
co  mod1.c,v mod1.c
mod1.c,v  -->  mod1.c
revision 1.2
done
cc    -c mod1.c -o mod1.o
ar qv mylib.a mod1.o mod2.o
a - mod1.o
a - mod2.o
ranlib mylib.a
gcc main.o mylib.a -o prog1
rm mod1.c

c)
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Serial/Network

Linux kernelLinux kernel

x/gdb

X windows
application
gdbserver

TargetDevelopment host

Ingo Cyliax has written for INK on topics
such as embedded systems, FPGA de-
sign, and robotics. He is a research
engineer at Derivation Systems Inc., a
San Diego–based formal synthesis com-
pany, where he works on formal-method
design tools for high-assurance systems
and develops embedded-system products.
Before joining DSI, Ingo worked for over
12 years as a system and research engi-
neer for several universities and as an
independent consultant. You may reach
him at cyliax@derivation.com.

Writing device drivers for Linux is beyond
the scope of this article, but you can find
books on the topic. Because the sources
are available, you can also use an existing
device driver as a template.

DEBUGGING
If you use the GNU software develop-

ment tools for Linux to compile and link
programs, you can use the GNU debugger
(gdb) as well. gdb comes in two flavors:
command-line and X Windows.

Photo 1 shows a screenshot of the X
version (xxgdb). You’ll need a display
that’s running X Windows to display it on.
The command version of gdb, of course,
runs on any command-line window or a
terminal over a serial port.

If your application is in a target that has
no graphics-capable display, you have
three choices. You can run the command
version over a serial port on the target to
a host or a terminal. Or, if you have a
network connection, you can run the X
version of the debugger on the target and
use a remote display for its output.

This feature is an artifact of the X
Windows system in which all applications

talk to the Windows server via a network
connection, even if they’re running on the
same host. In my example, the X client is
running on a remote machine (i.e., the
target) and displaying on an X server, which
can be on a notebook or desktop system.

If you’re pressed for memory and disk
space on your target, use gdbserver to
attach to your embedded applications.
gdbserver is a small program that imple-
ments remote debugging stubs for gdb.

You can use either the network or a serial
port to attach a remotely running program
via gdbserver and run gdb (the com-
mand-line or the X version), on a different
host with more resources (see Figure 6).
gdbserver comes with the gdb source
distribution and needs to be built, but it’s
freely available.

With gdb and xxgdb, whether running
locally or remotely, with or without the
gdbserver debugger, you have access
to all the standard source-level debug-
ging features such as setting breakpoints,
tracing program flow or access to vari-
ables, and starting or stopping programs.

GOT ALL THAT?
Well, that wraps up this installment, but

you can find more information on develop-
ing software under Linux in your nearest
bookstore. There are plenty of books on
software development, system adminis-
tration, and even Linux internals. Although
I didn’t cover languages like Perl, Tcl, and
Python, they’re available under Linux, too.

Next month, I’ll look at real-time appli-
cations using RT-Linux. Remember, RT-
Linux is a real-time extender that sits under-
neath Linux and enables real-time threads
to run independently of Linux processes.

As I’ve mentioned before, Linux isn’t the
answer to all your embedded-system needs.
It’s just another tool in your toolbox. RPC.EPC

execute ioperm(), the program needs to
run at the supervisory or system-privilege
level (sometimes called root level).

For the I/O instructions to be inline, the
program needs to be compiled with the
optimizer on. Listing 3 opens an eight-byte
range, starting at the parallel port (0x378),
and simply counts on the parallel port.

With the I/O instructions, you can write
C programs that easily access I/O cards.
But if your I/O card generates interrupts,
you need to write in a device driver to
communicate with it.

There’s currently no way to deliver
interrupts to application-level programs.

Figure 6 – Here’s the setup to use if you want
to use gdbserver to remotely debug an appli-
cation on a target system. gdbserver can use
a serial port or any network connection to
communicate with the debugger running on
the development system.
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Applied PCs

Fred Eady

Fred had it all figured out. His tried-and-true design was set to go, but then a
conversation with a friend turned him on to something new. Using an Octagon
6040 and an industrial-strength BASIC made all the difference in the world.

I really enjoyed doing the PicStic-4Q
stuff last time. You know, it’s great to be
able to drop the inside bit-banging coding,
enjoy some powerful prewritten routines,
and just plain have fun with it. I never
thought that it would be possible, but you
can have the same good times with an
80386 embedded platform, too.

Before I talked to Rick Applegate at
Octagon, I envisioned using my tried-and-
true 4010 embedded PC to tame the
Medusa. Because the 4010 doesn’t have
any dedicated I/O pins, I would have used
standard PC ports to fake the implementa-
tion of digital and analog I/O operations.

And, although the complexity isn’t there,
C would have been my language of choice.
Along with C, I would have needed a
development system to pull the applica-
tion off. Well, as you might have guessed,
that ain’t the way it’s gonna be.

You can think of the Octagon 6040 as
the mother of all PicStics. Even though they
come from differing schools, they’re similar
in many ways.

The Octagon 6000 series of embedded
PC cards was designed to ease the pro-
cess of building an embedded-control
application. Like PicStic-4Qs, the 6040 has
a gaggle of I/O lines that includes ADC
(eight lines) and DAC (two lines). Kinda like
having a PicStic-4Q with an Intel processor.

For example, the elimination of a de-
velopment system makes the 6040 very
mobile when it comes to maintaining a
library of routines or applications. The
6040 can be programmed in any of the
academic ways, but the CAMBASIC lan-
guage makes application maintenance a
bit less hairy. Datalight’s ROM-DOS V.6.22
is standard with the 6000 series, and if
you want to blow off DOS and load QNX,
that’s OK, too.

The 6040 was designed to be rugged
as well. The only moving part is the board
as you plug it into a passive backplane.
Phoenix supplies the 6040 with the Pico
FA flash file system that eliminates spin.
Two solid-state disks are standard, with
one SSD consisting of 1 MB of flash
memory and the second SSD being 128 KB
of battery-backed SRAM.

The 6040, in minimum program con-
figuration, leaves about 512 KB of flash
memory for your application. The SSDs are
augmented with 2 or 4 MB of on-card
DRAM. What would you do with all that?

In the Face of Medusa
Part 2: A Whole New Solution

Photo 1—I/O…anytime…anywhere…any
weather.
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compilers such as
PowerBASIC, but it’s not
standard in the world of
BASIC. CAMBASIC has the
ability to access every I/O
line on the 6040 individually.

Also, 80386 assembly code
can be put inline with the CAMBASIC
statements. I don’t have to tell you what
that means. As you’ll see later, CAMBASIC
also has built-in functions that mimic the
functionality found in the PicStic-4Q. Func-
tions like debounce routines, keypad rou-
tines, serial I/O, and analog control can
all be found in its syntax.

There are even interrupt-on bit, comm
port, and keypad routines. The CAMBASIC
language and the hardware architecture
of the 6040 work well with the PicStic-4Q.

ONBOARD WITH THE 6040
Being in Florida, I don’t experience the

problem as much, but I hear that in colder
climes, static discharge is a real problem.
The 6040’s solution is 8 kV of ESD protec-
tion on the two serial ports and backdrive
protection on the parallel port. Added
protection is provided by optoisolation on
some of the interrupt inputs.

With the exception of the SRAM battery,
nothing is socketed. So, if you want to put
this board into an M1-series tank and
bounce it all over creation, make sure you
don’t exceed 10 Gs. You’d have to get
pretty rough to rip the ICs off this one.

Is your code slippery, or, to put it another
way, is your environment iffy? Well, no
matter what you blame it on, interruption

of processing can be catastrophic in
some applications.

The 6040 helps keep
mission-critical code
running with the inclu-

sion of an onboard watch-
dog timer. And, if you

break your Timex while
you’re bouncing around in

the tank, an integral real-time
clock/calendar is standard on

the 6040.

Just in case
the 40-MHz ’386-

SX processor or one of
its buddies ever decides to

go where all good chips go, the
6040 has built-in diagnostics that sig-

nal trouble via sound and LED activity. No
special diagnostic tools are necessary to
troubleshoot the 6040 while it’s in ser-
vice. Just power it up, and it runs internal
diagnostic routines automatically.

Breaking the 6040 by hooking up the
power incorrectly is possible but unlikely.
First of all, the 6040 uses a single 5-V
supply. Over-voltage and reverse-voltage
circuitry protects against that “oops” (usu-
ally followed by “uh-oh”).

Now that you know what the 6040 and
PicStic-4Q combination can do, let’s bring
the Medusa application to life. If all this talk
has got you wondering what the 6040
looks like, look no further than Photo 1.

A TOUCHY-FEELY INTERFACE
In the brief description of the 6040’s

inner workings, it was mentioned that the
parallel port could be used to drive a
standard 1.44-MB floppy disk drive. Well,
that’s just one thing the 6040’s multifunc-
tional parallel port can do.

Seventeen of the 41 general-purpose
I/O lines can be had here, too. A 4 ´  4
matrix keypad or four-line alphanumeric
display can also be attached. Of course,
you can use it for a printer port, too.

The data lines are hefty and can sink up
to 24 mA. The PicStic-4Q can do 25 mA.
The parallel port is also referenced in the
manual as the AUX I/O port. The LPT
mode is determined during setup.

That’s nice, but I haven’t told you much
about the I/O structure, other than to say
there’s bunches of it. The 6040 is one of
three 6000-series devices that contains
something called EZ I/O. EZ I/O is a chip
that supplies 24 I/O lines (three sets of
eight) that can be individually programmed
as input or output.

The lines are automatically configured
for input mode on powerup. Hmmm…

Photo 2—You can cascade this board with
another and screw it down to boot.

Photo 3—Easy
interconnects are
made here.  This board
is the key to taking the com-
plicated out of embedded using
the 6040.

But, if you must go
in circles, the 6040 has

a novel way of hooking up
an external diskette drive—a

multifunction parallel port. You
simply tell the 6040 what is where on

the parallel port pins in the setup.
The 6040 BIOS, also from the Phoenix

stable, is equipped with industrial exten-
sions. If you like writing device drivers, buy
another board. This one comes with a driver
library. If you don’t see what you want,
turn to CAMBASIC for your custom driver
code.

BASICALLY EMBEDDED
CAMBASIC is the industrial-strength

version of what we all know as QBASIC
or QuickBASIC. Like the traditional BASICs,
CAMBASIC is easy to use and easy to learn.
If you can already program in any other
BASIC language, you can do CAMBASIC.

The idea behind CAMBASIC was to
relieve the industrial-control designer from
having to wear the programmer’s hat.
Unlike regular BASIC, CAMBASIC wasn’t
written for your Model 4. It was designed
to be fast in a real-time sense.

The code may look the same, but
where it counts, CAMBASIC routines are
faster and tighter than their commercial
BASIC counterparts. Time-sensitive parts
of the code are compiled without the user
being aware that it’s being done. CAM-
BASIC is a real-time multitasking version
of BASIC aimed at data control and
acquisition applications.

One of the features that distinguishes
CAMBASIC is individual bit manipulation.

I’ve seen this on
other BASIC
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symbol ALIVE = b3
output 2 'RS-232 out
input 1 'RS-232 in
input 7 'make pin PB7 input

ALIVE = 0 'clear keep alive register
for b2 = 1 to 15 'read pulse 15 times
pause 1 'wait 1 ms
ALIVE = pin7 'store read
if pin7 = 1 then TALLY
ALIVE = ALIVE & 2 'clear the pulse low bit
goto NOTALLY
TALLY:
ALIVE = ALIVE | 2 'set the pulse high bit
NOTALLY:
next b2

if b3 = 0 then VOTE

VOTE:
serout 2,6,("vote") 'instruct other PicStic to vote
serin 1,6,("myvote"),b4
if b4 = 0 then VOTEOUT

Listing 1—The gotcha compensation code is missing here, but the ballot casting
logic is what we're interested in anyway.

the one shown in Photo 3. This is too easy.
We can attach the KAD to the AUX I/O
port or the EZ I/O port. The only differ-
ence is the cable used and the number of
pins we tie up.

Let’s keep the EZ I/O open and attach
the KAD to the AUX I/O port. I attached
a 4 ́  20 LCD display and a 4 ´  4 keypad
to the KAD, as you can see in Photo 4. To
make the KAD hardware program-ready,
the only thing left to be done is to make
sure the AUX I/O port is configured as
LPT1, a bidirectional printer port.

GETTING OUT OF THE BOX
OK, I have a simple but informative

and easy to use interface coupled to the
6040 embedded stamp via the KAD
board. I also have all of the EZ I/O at my
disposal to do with as I please. The 6040
is ready to service Medusa…almost.

I am assured of program control and
data in, but what about data out? Yep, the
serial ports are still available. I’ll need one
later, so only one serial port is available.

I hear you mumbling, “Fred always uses
the serial port. I’ll bet he was born with a

sounds like I/O on another device in the
article. Of course, the lines are TTL com-
patible and are designed to work in the
5-V range. These lines aren’t as meaty as
the parallel port lines and can only sink or
source 15 mA each.

The EZ I/O pins are brought out on a
header (J1) that interfaces via ribbon
cable to a screw-down terminal block like
the one shown in Photo 2. These lines are
just like any other I/O port lines and are
all supported in the syntax of CAMBASIC.

Additionally, all 24 lines can be tied to
+5 V or ground through a 10-kW resistor
by simply placing jumpers to do so. With
the exception of the pulling resistors, the
EZ I/O chip looks and feels like an 8255.

I went to all that trouble to come to this
point—we need an interface. You know
me, it’s got to be simple but powerful.
Checking the PicStic-4Q doc, you can see
how the module is designed to drive
displays and keypads. Looking at the
6040 doc, well, you know.

You can easily add a 4 ´  4 keypad
and LCD to the 6040 by attaching a
keypad and display board or KAD like

10 Config PIO &100,0,0,0,0,0 ;configure the 8255
20 Clear Timer 0 : ;clear timer before starting
30 Config Timer 0,&100,1,1,.01,.01,AUTO ;set 10-ms pulse width
40 Start Timer 0 :

Listing 2—The .01 parms set a 10-ms pulse width and the AUTO keyword makes
for a continuous pulse train.
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the Octagon 5500 Ethernet Adapter card.
Of course, I shared my 6040 resources
and the SSD became accessible on the
LAN.

nine-pin connector….” In case
you didn’t read Part 1, I’m going
with Ethernet here, so hold on.

I thought it would be simple.
The Octagon 5500 Ethernet
adapter board fits right on the
passive backplane with the 6040.
Unfortunately, this misconception
was the initial downer in the
whole project.

It’s not that support was bad or
the hardware was flaky. There were a few
gotchas, and I got by most of them.

Days later, after trying almost every
trick I could think of, I was talking to one of
the programmers I do my day thing with,
and we started talking about the new
Microsoft Lan Client that replaced the MS
Workgroup Add-on.

I thought I saw somewhere that the
latest Lan Client code was available from
the Windows NT V.4 CD. Wrong. Seems
that this version doesn’t permit full shar-
ing. So, I went back to the bench and
ripped out the new and put in the old. I
then picked up all those bad cables and
reboxed that bad hub.

During all of this, I’d at least ironed out
one problem—the lack of SSD space to
hold the network files. Remember, there’s
about 512 KB of flash memory posing as
a hard drive available after ROM-DOS
and BIOS get through playing, but there’s
plenty of DRAM to turn into a virtual disk.
I can cram the other program-related stuff
into battery-backed SRAM if necessary.

Here’s how I squeezed the network
code in. I first ran the set-up program that
identifies the network card and also asks
other pertinent networking questions on a
standard PC running DOS.

Once the network directory was com-
pleted, I zipped the directory and loaded
the zip file into the flash SSD along with
the unzip program.

The 6040 comes with a terminal pro-
gram (PC SmartLink) that has the capabil-
ity of making the flash memory look like a
local drive on the host PC. This program
makes copying files between the 6040
and a host PC easy. With a little batch file
magic, I created a VDISK in the remaining
DRAM space and unzipped my network
directory into it.

Once the network files were placed
into their drive, I pointed to them and
executed the proper NET command to
load the SMC9000 Ethernet chipset on

Photo 4—
Mark should be
an astronaut. Most
astronauts would fly
just to watch  the lights,
push the buttons, and read
the LCD on this interface
panel.

Finally, the host embedded hardware
is complete and ready to be programmed
and configured. Photo 5 shows the 5500
card that gave me so much grief.
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GETTING
ON THE STIC
The idea here is to

integrate a couple Pic-
Stic-4Qs with the 6040 us-

ing minimal external hardware
and a somewhat common pro-

gramming language. The end re-
sult is a powerful embedded host
system and an equally powerful
subsystem. So, let’s map it out, and
I’ll show you snippets of the more
significant code.

Figure 1 shows the pinouts of the
two PicStic-4Qs. PS-A controls the
stepper motor that drives the Medusa
syringes. PS-A RB3 is the output
pulse applied to the stepper. PS-A
RB4 determines the step direction.
The module measures the relative
humidity and temperature using a
HyCal sensor via the PS-A AIN pins.

The sensor is factory-calibrated and
emits a voltage for a percentage of humid-
ity. Temperature readings are provided by
a thermistor that we read the voltage across.
A small constant current is applied to the
thermistor to provide a voltage that corre-
sponds to temperature.

Eight bits of resolution is fine for our
needs. The RS-232 port, defined by PS4
BASIC at PS-A RB1 and RB2, relays data
to the 6040 host. In case of emergency,
the RS-232 port determines the health of
the computing hardware.

Two pins at PS-A, DIO3 and DIO4, are
used to communicate between PS-A and
PS-B. This communications channel is used
as an “are you there” between the two
devices. The protocol is clocked (i.e., one pin
clocks the data presented on the other pin).

Figure 1—PS-A has pins dedicated to temperature, humidity, and more (a), whereas PS-B is monitoring camera power, among other things (b).
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Photo 5—It's all here. You just need to know what to do with it
when you find it.

Using the same “are you there” prin-
ciple, PS-A RB7 is configured as an input
that expects to see a continuous square
wave from the 6040 host. If it isn’t detected,
the 6040 is presumed to be out of service.

Both PicStics monitor this line and vote
on the health of the host. If both don’t see
a signal, it’s a landslide that the 6040 is
dead. At this point, each module reverts to
its internal clock and continues until its
memory was exhausted. This way, at least
some data is gathered.

If one PicStic votes yes and the other
votes no, it’s possible that one of them is
wrong and possibly broken. At this point,
PS-A uses the serial port to attempt to
communicate with the 6040. If all is well,
operations resume as normal but keep-
alive monitoring is disabled on the incor-
rect voting module.

If both PicStics vote “dead” but
continue to be given commands,
then hopefully they can at least
see each other and signal that
they both may be broken. This
situation would be classified as
fatal and all processing would be
terminated. If all seems to be in the
dumper, PS-A pin DIO2 is poised
to reset the 6040.

Normally, I’d note these events
in a log, but for this experiment,
that would take up precious space
and time. The last thing I want is a
logging loop. Listing 1 shows how
the PicStic-4Qs cast their ballots.

The “I am here” square wave
from the 6040 is generated in the
background and places little, if
any, burden on the main thread.
CAMBASIC has the versatility to

run other asynchronous activities in the
same fashion.

Another good example of background
execution is the serial I/O function of CAM-
BASIC. The main thread can be executing
at full speed while the background serial
I/O routine buffers incoming data. Listing
2 shows the “I am here” code.

Of course, the main purpose of assem-
bling all this computing power is to germi-
nate some vegetation. Photo 6 shows the
test fixture that drives the Medusa stepper
and the HyCal sensor.

Pushing fluids to exact locations is
rather difficult in orbit, which is why the
Medusa system was designed. The lack of
gravity tends to mess up things that were
intended to stay on earth. So, Medusa has
to pump liquid in a precise manner to
wherever it needs to end up.
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Fred Eady has over 20
years’ experience as a
systems engineer. He has
worked with computers and com-
munication systems large and small,
simple and complex. His forte is em-
bedded-systems design and communications.
Fred may be reached at fred@edtp.com.

SOURCES
80386 6040
Octagon Systems
(303) 430-1500
Fax: (303) 426-8126
www.octagonsystems.com

IH-3602
Honeywell/HyCal
(800) 932-2702
www.honeywell.com/sensing/prodinfo/temperature/

Pico FA
Phoenix Technologies
(408) 654-9000
Fax: (408) 452-1985
www.ptld.compico

PicStic-4Q
Micromint, Inc.
(800) 635-3355
(860) 871-6170
Fax: (860) 872-2204
www.micromint.com

ROM-DOS V.6.22
Datalight
(800) 221-6630
(360) 435-8086
Fax: (360) 435-0253
www.datalight.com

Once the veggies come alive and all
the pictures are taken, the plants are fixed
or killed so their states are preserved. This
technique enables the ground scientists to
further study the experiment.

The PS-A RB5 is responsible for fixa-
tion. It controls a pump that forces a fixation
liquid from an IV bag into the plant

chambers. PS-A pins DIO 5, 6, and 7
control the solenoids that determine which
chamber gets fixed.

STEPPING OUT
PS-B’s code is like the PS-A’s stepper

code. The camera arm is calibrated by
moving a flag into an optical sensor. The
number of steps between dishes is deter-
mined, and steps happen until something
says stop. The camera attached to the arm
feeds NTSC video to a frame-grabber
board plugged into the passive backplane.

There’s plenty of EZ I/O left. Some of
it will be allocated to running the front-
panel LEDs that signal experiment status.

The experiment is still in the preflight
stages, and I’m sure almost all of the I/O
lines will be used before it’s over. If we run
out of I/O on the 6040, there’s lots of
PicStic-4Q I/O left, too. These three mi-
crocomputers make up a formidable ex-
periment control system with system diag-
nostic capability built in.

 The combined power of PicBasic,
CAMBASIC, PicStic-4Q, and the 6040 has
once again proven that it doesn’t have to
be complicated to be embedded. APC.EPC

Photo 6—Here’s what a full-blown machine
shop with a intuitive operater/owner can do
with a PicStic-4Q and some perfboard. (I
supplied the electronics.)

www.octagonsystems.com
www.honeywell.com/sensing/prodinfo/temperature/
www.ptld.compico
www.micromint.com
www.datalight.com
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From the Bench

Silicon Update

DEPARTMENTS

hen I began this
series last month, I

focused on the most
common timer/counters

found on microprocessors and intro-
duced the time processor unit. In this
installment, I want to apply the TPU
to some common and normally proces-
sor-intensive timing functions.

In these applications, the TPU
handles all the timing and counting
details. When the TPU completes the
timing function, it passes the results
to the CPU, increasing system through-
put. In fact, several timer/counter
applications are so processor-intensive
that, without the TPU, a multiproces-
sor solution would be required.

As you may recall, the TPU is a
coprocessor to the CPU and runs semi-
autonomously. The CPU sets up the
TPU for the required timing function
and is then free to perform other tasks.

The CPU can monitor the TPU’s
progress by polling it. But, a far more
common and useful method is to have
the TPU generate an interrupt when it
completes the timing function.

A timing function is a set of TPU
microcode instructions that directs
the TPU in performing a specific task.
TPU microcode is run by the execu-
tion unit in the TPU. This architec-
ture is completely different from the
standard timer/counter that’s found
on most microprocessors.

2

Freeing the CPU

4
Now that
we know
what the

TPU is, we can begin
to put it to work for us.
In this installment,
Joe applies the TPU
to some processor-
intensive applications.
The big advantage of
TPU is the increase in
throughput.
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Parameter word 0
Parameter word 1
Parameter word 2
Parameter word 3
Parameter word 4
Parameter word 5
Parameter word 6
Parameter word 7

Channel 14
and 15 only

Channel function CFSR0, CFSR1, 
select CFSR2, CFSR3

Channel priority CPR0, CPR1

Host sequence HSQR0, HSQR1

Host service HSRR0, HSRR1

Interrupt enable CIER

Interrupt status CISR

Bit fields Name Registers

Channel
control

Parameter
RAM

C
P

U
 interface

Channel
15

Channel
14

Channel
13

Channel
12

Channel
11

Channel
10

Channel
9

Channel
8

Channel
7

Channel
6

Channel
5

Channel
4

Channel
3

Channel
2

Channel
1

Channel
0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

HSRR1

HSRR0

HSRR (Host service request register)

The TPU can perform prepackaged
timing functions (i.e., microcode stored
in microprocessor ROM). Or, it can
run user-written microcode stored in
onboard RAM or flash memory. This
month, I discuss the preprogrammed
“canned” functions that were listed in
Table 1 of Part 1 (p. 70, INK 102).

Once again I’ll be working with the
68332 microprocessor from Motorola.
The TPU on the 68332 has 16 channels
that can be programmed to perform any
combination of functions. Here, I use
the TPU in two applications: motor
speed control as well as distance, speed,
direction, and position mapping.

From a programmer’s point of view,
running the canned functions is straight-
forward. The CPU globally initializes
the TPU and sets up the individual
channel for the desired timing function.
Global initialization was discussed in
Part 1, so now it’s time to talk about
programming the individual channels
for particular timing functions.

SPEED CONTROL OF DC MOTOR
The speed of a DC motor is propor-

tional to the voltage applied to the
motor—the larger the applied voltage,
the faster the motor rotates. In low-
power systems, the motor drive can
be a DC voltage. But as power levels
increase, heat-dissipation problems
occur in the output driver stage.

For this reason, at higher power
levels, DC motors are normally
driven using PWM signals. Figure
1a shows a motor-speed control
scheme using analog blocks.

To control the speed of a DC
motor using a microprocessor, we
have to measure the speed of mo-
tor rotation and produce a PWM
drive signal. Although imaginative
programmers can use just about
any timer/counter to perform this
task, the TPU’s built-in functions
make it ideal for this application.
Figure 1b shows how the TPU can
control the speed of a DC motor.

An optical encoder (see sidebar,
“Encoders”) connected to the
shaft of the DC motor produces a
pulse train with a frequency that rep-
resents the motor speed. The function
measuring the frequency of an incom-
ing signal on a channel’s external pin
is the frequency measurement function
(FQM)—function $C of mask set G.

The FQM measures the number of
pulses that occur during a time win-
dow, and the value is passed to the
CPU. The CPU then calculates the
frequency by multiplying or dividing
to normalize to cycles per second. The
’332 has a multiply/divide instruction
that takes 64 clock cycles.

Because the time window is user
defined, selecting a time window of

base 2 enables the multiply/divide
instruction to be a shift/rotate to the
right or left. If the actual frequency of
motor rotation isn’t needed, the num-
ber of accumulated pulses can be used
to represent motor speed.

Once the CPU obtains a represen-
tation of the motor speed, it can derive
or look up the required PWM charac-
teristics. The CPU then uses another
TPU function to produce a PWM mo-
tor-drive signal.

Mask set G has a multichannel PWM
function that can generate the required
PWM signal. But, it’s intended for com-
plex multichannel PWM applications.

When you’re using mask set G and
a single PWM channel is required, the
queued output match function (QOM)
is a better choice. If you use mask set A,
select functions PPWA and PWM to
perform the FQM and PWM functions.

Now, let’s set up the TPU channels
for the FQM and PWM functions. Recall
from Part 1 that each TPU channel
has a number of bit fields used to set
up and control timing functions. Each
channel also has six words (channels
14 and 15 have eight words) of dual-
port parameter RAM for transfering
data to or from the CPU.

Figure 2a is a programmer’s map of
a TPU channel. Although setting up a
TPU channel is straightforward, be-
cause the channel bit fields are in TPU
registers shared by other channels, you
have to be careful.

For example, as you see in Figure
2b, there are two host service request

Figure 1a —This DC motor-speed control scheme uses a
PWM drive signal. b—This one, by contrast, uses a TPU-
equipped 68332. Note that only two microprocessor pins are
required to control the motor speed.

a)

b)

a)

b)

Figure 2a —Here’s the programmer’s map of a single TPU channel. b—In the host service request register layout,
there are eight channels sharing each register. In changing any channel’s HSRR bit field, you must ensure that the
other channels are not affected.
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WINDOW_SIZE is a 16-bit
number representing the num-
ber of timer ticks in the time
window. Multiplying this
parameter by the timer period
gives the time window in
seconds.

After this, the host se-
quence bits are written to
define the function’s action.
This setup must match the
one established by CHANNEL_
CONTROL.

Next, the CPU writes the
host service request bits—in
this case, 10—to have the
TPU perform an initialization
once the channel is enabled.
As their name implies, the host ser-
vice request bits indicate to the TPU
channel what type of service the CPU
is requesting.

Once the channel interrupt bits are
set up, there’s only one more step to
go. Set the channel priority bits to any
one of the three possible nonzero
values—01, 10, 11. This enables the
function and assigns priority as low,
medium, or high. The TPU then ex-
ecutes a channel initialization.

After the TPU channel is initialized,
it waits for the first appropriate edge
transition to appear on its external
pin. The transition signifies the start
of an incoming pulse, and the time
window begins.

When the opposite edge is detected,
the transition signifies the end of the
incoming pulse, and the value in IN_
WINDOW_ACCUMULATOR is incremented.
The value in IN_WINDOW_ACCUMU-

LATOR is incremented every time a
pulse is detected until the time win-
dow (WINDOW_SIZE) expires.

When the time window expires, the
parameter RAM value in IN_WINDOW_
ACCUMULATOR is transferred to the
parameter RAM location PULSE_
COUNT and an interrupt is issued. If
the TPU channel is set for single-shot
mode, it stops and waits for the CPU
to issue another service request.

In continuous mode, after the value
in IN_WINDOW_ACCUMULATOR is
transferred to PULSE_COUNT and an
interrupt is requested, a new time
window is started and the channel
begins accumulating pulses as illus-
trated in Figure 4.

Note that the new timing window
begins immediately and any pulses
that cross over timing windows are
automatically taken care of by the
TPU, ensuring that they are only
counted once.

In single-shot mode, the CPU reads
the PULSE_COUNT at any convenient
time, as long as the interrupt is handled
or disabled. In continuous mode, the
CPU has a time equal to the WINDOW_
SIZE to read the PULSE_COUNT. Oth-
erwise, the value is written over at
the end of the next time window.

Figure 4 —This diagram
shows the frequency mea-
surement function (FQM) in
continuous mode. At the end
of each time window, Int is
requested and Pulse_
Count is updated.

0

3 2 1 0

1 0

1 0

0

1 0

Channel
interrupt enable

Channel
function select

Host sequence
bits

Host service
bits

Channel priority

Channel interrupt
status

Name Options

0—Channel interrupts disabled
1—Channel interrupts enabled

—FQM function number, $C

00—Begin with falling edge,
        single-shot mode
01—Begin with falling edge, 
        continuous mode
10—Begin with rising edge, 
        single-shot mode
11—Begin with rising edge, 
        continuous mode

00—No host service 
       (reset condition)
01—Not used
10—Initialize
11—Not used

00—Disabled
01—Low priority
10—Medium priority
11—High priority

0—Channel interrupt not asserted
1—Channel Interrupt asserted

Channel control

Window size
Pulse count

In window accumulator

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
w0

w1

w2

w3

w4

w5

Written
by CPU

Written
by TPU

0 1 2 301 23 4 5 01

TPU
channel

initialized

Window size

*INT request
PULSE_COUNT = 3

Incoming signal on TPU external pin

Window size

*INT request
PULSE_COUNT = 5

registers, HSRR0 and HSRR1. HSRR0
contains the host service request bit
fields for channels 0–7, and HSRR1
contains the host service request bit
fields for channels 8–15.

When you update the host service
request bits for any given channel, be
sure that you don’t inadvertently alter
the host service request bits of other
channels.

MEASURING FREQUENCY
The FQM function has two modes

of operation—single shot and continu-
ous. In single-shot mode, incoming
pulses are accumulated for one time
window. But, in continuous mode, the
pulses of repetitive time windows are
accumulated.

The CPU must perform the follow-
ing steps to start the FQM function,
assuming global initialization was
already performed. Actually, the first
step is to select a channel. This deter-
mines the bit fields in the shared TPU
registers that must be programmed.

For example, if you are using TPU
channel 5, then bits 8 and 9 in the
HSRR0 form the bit field for the host
service request, as you can see in
Figure 2b. Figure 3 shows all the bit
fields that need to be programmed,
along with the parameter RAM.

The first step in setting up a TPU
channel to run the FQM function is to
clear the appropriate channel priority
bits that disable the channel. Next,
the FQM function number ($C) is
written into the appropriate bits of
the channel function-select register,
selecting the FQM function for that
channel.

As the third step, the CPU writes
CHANNEL_CONTROL and WINDOW_SIZE
values into channel parameter RAM.
The CHANNEL_CONTROL parameter sets
the rising or falling edge to start pulse
detection on, timer TCR1 or TCR,
and continuous or single-shot mode.

Figure 3 —The CPU sets up the TPU via the
bit fields and parameter RAM. The TPU
returns results to the CPU via parameter
RAM.
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quired to control the motor speed.
From a hardware viewpoint, only two
external pins are needed.

PARAMETER MEASURMENT
There are countless applications

that require the measurement of dis-
tance traveled, speed of travel, direc-
tion of motion, and position mapping.
The TPU can be very useful in mea-
suring these parameters.

If you take the encoder used in the
previous example and attach it to a
wheel, you can use the FQM function
or the PPWA function in mask set A
to count the number of pulses gener-
ated as the wheel rotates.

Knowing the number of pulses per
revolution and the circumference of
the wheel, you can calculate distance
and speed, giving you an odometer
and speedometer. The TPU makes
these measurement simple, present-
ing the CPU with the data it needs to
easily and quickly calculate distance
and or speed.

But, neither an odometer nor
speedometer gives directional infor-
mation. To get direction you need a
more sophisticated encoder—a quad-
rature encoder.

A quadrature encoder is basically a
dual encoder generating two pulse

trains 90° out of phase as in
Figure 6. If signal A leads
signal B, this signifies travel
in one direction, but if sig-
nal A lags signal B, travel is
in the opposite direction.

The TPU function fast
quadrature decode (FQD),
on both mask sets A and G,

decodes the signal from a quadrature
encoder. Two adjacent TPU channels
are required. Once they are selected,
one channel is designated as primary
and the other as secondary. Encoder
output A connects to the external pin
of the primary channel, and output B
connects to the secondary channel’s
external pin.

By attaching a quadrature encoder
to a wheel of known circumference
and knowing the number of encoder
pulses per wheel revolution, we have
an odometer that also gives directional
information.

The operation of the FQD is quite
simple. The function maintains a
16-bit register in parameter RAM that
is incremented or decremented, depend-
ing on direction of travel, whenever
there’s a transition on the primary
channel. This register is POSITION_
COUNT and is stored in the primary
channel’s parameter RAM.

Like the setting up of the FQM
function, the setup for the FQD re-
quires several steps. The first step for
setting up the TPU to read a quadra-
ture encoder is to disable the two
channels by clearing their associated
priority bits.

Next, write the FQD function num-
ber ($6) to both channels’ function

select bits. You then set up
parameter RAM registers in
both channels.

After that, initialize
POSITION_COUNT to the
desired start value. POSITION_
COUNT is the primary output
of the function residing in
parameter RAM of the pri-
mary channel. This param-
eter can be written or read at
any time by the CPU. A
secondary output, EDGE_
TIME, provides a time stamp
by capturing the value of
TCR1 at the time of transition.

Figure 5 —Here’s the signal produced by QOM function. Both the high time Off-
set_2 and the low time Offset_1 are user-programmable. The TPU produces
this waveform with no CPU intervention, and the channel is set up.

GENERATING A PWM
SIGNAL

Based on a sequence of
matches, the QOM function
generates a pulse train with-
out CPU intervention. You
can define a series of match
values and store them in
sequence in parameter RAM.
When the value of a free-running
counter (TCR1 or TCR2) is equal to
the first match value, a match occurs.

When a match occurs, a pin action
(i.e., pin is taken high, is taken low,
or remains the same) takes place on
the channel’s external pin. The next
match value is obtained, and the se-
quence repeats. The pin action is
programmable.

The QOM function enables the TPU
to output a PWM signal on any TPU
channel. Setting up the QOM function
for PWM output is similar to setting
up the FQM function.

The CPU has direct control over
the low and high times of the PWM
signal via parameter RAM values
OFFSET_1 and OFFSET_2. These val-
ues can be changed or updated at any
time by the CPU. The duty cycle
ranges from 0 to 100%. Figure 5
shows the output of the QOM func-
tion used to produce a PWM signal.

 To sum up how to use the TPU to
control the speed of a DC motor, first
the CPU sets up one TPU channel to
run the FQM function and another
TPU channel to run the QOM. Then
the CPU starts the TPU channels.

The CPU then goes on to other
tasks, and when the FQM function
generates an interrupt request, the
CPU services this request in
a time no greater than
WINDOW_SIZE. Next, the
CPU reads the PULSE_
COUNT and uses it as a vec-
tor to a look-up table that
contains the PWM param-
eters. After that, the CPU
then goes on to load the new
PWM parameters into the
TPU channel running the
QOM function.

From a programmer’s
viewpoint, once the initial-
ization is done, only a few
lines of CPU code are re-

Offset_1 Offset_2

MATCHMSR%10

Offset_1 Offset_2 Offset_1 Offset_2

MATCH MATCH MATCH MATCH MATCH

Etc.

Figure 6 —A quadrature encoder is basically a dual encoder. Directional information
is related to the phase relationship between signals A and B.
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The TPU executes the initialization
of the channels and starts decoding. It
then updates POSITION_COUNT every
time there’s a valid transition on the
primary channel’s input pin. All the
CPU has to do is read the POSITION_
COUNT value in parameter RAM to
obtain position information.

Note that I used the term “position
information,” not “position.” That’s
because the term “POSITION_COUNT”
is a bit of a misnomer. It’s not really
the position. It’s distance with a di-
rection. Let me explain.

Let’s start at point x in Figure 7
and move out 1 m, setting movement
towards the top of the page as forward
and movement towards the bottom of
the page as backwards, and always
moving at right angles to the horizon-
tal axis of the page. Doing this, you
end up at either point f or point b.

The TPU would indicate in its
POSITION_COUNT that you are 1 m
forward or back of position x. Of
course, the CPU would have to work
out the distance based on counts per
revolution and wheel circumference.

Now, if you move out from point x
at 45° angles to the horizontal of the
page, you either end up at points 1 or
2 if you travel forward, or at points 3
or 4 if you travel backwards. But, the
value in POSITION_COUNT is exactly
the same depending on which half of
the circle you are on, regardless of
whether you are at points 1, 2, or f, or
at points 3, 4, or b.

Therefore, by using a quadrature
encoder you can determine the dis-
tance traveled and the direction. With
regards to position, all you can say for
sure is that you’re on either the top or
the bottom semicircle in Figure 7.

To get position, then, you need
another wheel and another quadrature
encoder. Look at Figure 8 and you’ll
see two wheels with a quadrature
encoder on each wheel, meaning that
you need four TPU channels.

The wheels are connected together
by a 1-m axial but rotate independently.
In Figure 8a, the connecting axial
extends 1 m to the left and is fixed at
point x, whereas in Figure 8b, the
connecting axial extends 1 m to the
right and is fixed to point y.

In Figure 8a, by rotating the wheels
counterclockwise around point x, you
see that in one full rotation, wheel 1
travels 6.28 m and wheel 2 travels
12.58 m (i.e., 2pr). As you can see in
Figure 8b, rotating the wheels clock-
wise around point y means that in one
full rotation, wheel 2 travels 6.28 m
and wheel 1 travels 12.58 m (i.e., 2pr).

Note that the wheels travel differ-
ent distances only when a change of
direction occurs, which is something
that occurs continuously when travel-
ing in a circle. If no change in direction
occurs, the wheels travel the same
distance.

One method for determining exact
position is shown in Figure 8c. Now,
let’s move the wheels from position

Once POSITION_COUNT is initial-
ized, use the host sequence bits to
define function operation. Select one
channel as primary and the other as
secondary. Then, you should choose
and set the mode.

Normal mode increments or decre-
ments the POSITION_COUNT on every
valid transition. Fast mode increments
or decrements the POSITION_COUNT
on every fourth valid transition. Fast
mode is used when incoming transi-
tions occur rapidly and no direction
change is immanent.

A host service request is issued to
initialize the function, and finally, the
two channels’ priority bits are set to
any one of the three possible nonzero
values—11, 10, 01. This action enables
the function and assigns priority as
either low, medium, or high.

Encoders
Encoders provide a simple and cost-effective means

of obtaining position and/or speed data. There are many
types of encoders, but the four most popular types are
capactive, magnetic, contact, and optical. Here, I only
want to discuss optical encoders—specifically, rotary
optical encoders.

Rotary optical encoders translate a rotation into a
pulse train. The frequency of that pulse train is repre-
sentative of the rotation.

Optical encoders are made up of a light source (nor-
mally a collimated LED), a light detector (usually a
photodiode), conditioning electronics, and a wheel or
disk with a pattern of alternating translucent and
opaque sections (see Figure i).

The photodiode output is fed into the conditioning
electronics for shaping and sharpening. The patterned

wheel is placed between the light source and the light
detector. The encoder is mounted onto any shaft so that
when the shaft rotates, so does the encoder wheel. The
rotation of the encoder wheel causes the pulse train,
which is representative of the shaft’s rotation, as you
can see below.

Figure i —Rotary optical encoders, like the one diagrammed here, translate a
rotation into a pulse train.
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electronics

Slotted
wheel

Lens

LED Output

Slotted
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Figure 7 —A quadrature encoder can give you distance
travelled and direction. But with regards to exact position,
the best you can say is that you are on the top or bottom
half of the circle.
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Figure 8a —Wheel 1 (w1) will not travel as far as wheel 2 (w2) as they are rotated around x. b—But, w1 will travel
farther than w2 as they are rotated around y. c—Therefore, w1 and w2 travel different distances from p1 and p2.
The values shared by the TPU are s1 and s2. Because the angle is common and you know d, it’s a matter of simple
algebra to determine r1 and r2 and, therefore, the exact position.
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p1 to position p2. s1 and s2 are ob-
tained from the POSITION_COUNT
parameter values. s1 and s2 are equal
to the radius in radians multiplied by
the angle q (see equations 1 and 2).
The relationship between r1 and r2 is
given in equation 3.

s1 = r1 ´  q [1]

s2 = r2 ´  q [2]

r1 = r2 + d [3]

In equation 1 and 2, the angle is the
same (q), therefore:

s1

r1
=
s2

r2
[4]

Because we know d (i.e., the distance
between the two wheels), we have
equations 3 and 4 and unknowns r1
and r2. The determination of exact
position is only a matter of algebra.

You now have a means of obtaining
several parameters of travel. Because
there are so many applications that
require speed, distance, direction, or
the mapping of position, I’ll have to
stop here.

The important thing that I want
you to keep in mind is that these
travel parameters were obtained using
only six TPU channels and very little
CPU time. Now you see how using
the TPU’s canned timer functions can
increase the functionality and perfor-
mance of microprocessor-based systems.

Motorola provides a wide range of
timer/counter functions for the 68332
in mask sets A and G. But, even a
company the size of Motorola couldn’t
provide canned functions for every
application. So, they did the next best
thing.

x 1 m
w1 w2

1 m

a)

y1 m

w1 w2
1 m

y

r2

r1

w2w1 d
p1

p2

s1
s2

b) c)

Using microcode, the TPU can be
programmed by the user, giving the
user complete control over it. This
greatly expands the application field
for the TPU.

In fact, the TPU doesn’t need to be
used strictly for timing/counter func-
tions. Its 16 channels are completely
under programmer control, and many
nontiming applications can benefit
from this flexibility.

Programming the TPU using micro-
code will be the topic of the next two
articles in the series. Beginning next
month, I’ll look at the register struc-

ture of the TPU, the link between the
TPU, the TPU microcode, and pro-
gramming the TPU. I

freeware.aus.sps.mot.com
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FROM THE
BENCH

Jeff Bachiochi

JTAG Testability

Seems
that some
standards
don’t do
what they

were designed for.
They turn out to do
more! This month, Jeff
explains why JTAG is
being so widely adopted
by manufacturers of
everything from chips
to systems.

ove over Justice
League, Fantastic

Four, and X-Men. Here
comes the Joint Team

Action Group!
These guys, also known as JTAG,

aren’t your run-of-the-mill Saturday
morning TV supergroup. They can’t
change the course of mighty rivers or
bend steel with their bare hands. But,
they did establish a solution for board
testing and made it an industry standard.

Is JTAG a term you’re not comfort-
able with? Well, it beats the official
specification, IEEE Standard 1149.1-
1990, or “Test Access Port and Bound-
ary-Scan Architecture.”

Testing is defined as the observation
of output produced by carefully con-
trolled input. When you’re testing the
components on a circuit board, you
observe output behavior based on cer-
tain input stimuli. Observing incorrect
behavior is as important as observing
correct behavior. After all, we want to
identify both good and bad products.

Identifying the cause of a bad board
helps in two ways. Fault identification
enables reclamation to be performed
at a less technical level. And, lower
reclamation expenditures keep the cost
of finished goods down.

BED-OF-NAILS TESTERS
To test for manufacturing defects

like missing, damaged, or misaligned

devices and open or shorted circuits,
testing houses were forced into using
a bed-of-nails in-circuit tester.

Similar in appearance to the Indian
fakir’s torturous bed of nails, these
testers are strategically placed spring-
loaded nails that make contact with
traces (or component leads protruding
through the circuit board). By contact-
ing an individual net of the circuitry,
each nail enables the tester to control or
monitor the boundaries between parts.

When you apply controlled stimuli
to inputs, you can monitor each net
for proper response. With bed-of-nails
testing, input stimuli cascades through-
out the board. An improper signal out-
put by a device to a boundary (net) is
passed on to the following devices,
possibly looking like additional errors.

What’s needed here is the ability to
remove the output drive to a net and
give the tester complete control of that
net. But, that’s not possible with bed-
of-nails testing because the tester does
not have a way to break the signal path.

BOUNDARY-SCAN ARCHITECTURE
JTAG proposed an architecture that

provides complete control of each net
by defining basic functional specifica-
tions without becoming bogged down
in the specifics of design. The group
didn’t need to consider the future pos-
sibilities of today’s devices because
they left adequate breadth in the specs.

For a device to be JTAG compliant,
it needs a few basic elements. Four I/O
pins must be dedicated as TDI (test
data in), TDO (test data out), TCL (test
clock), and TMS (test mode select).
They are internally connected to the
TAP (test access port). The TAP con-
troller needs to function like a pre-
defined state machine.

One boundary-scan cell must be
located between each device and its
I/O pin. As well, all cells have to be
internally connected to form a serial
boundary-scan shift register. There
needs to be an IR (instruction register)
of at least two bits, and there must be
a bypass register as well.

It makes sense that the first parts
to implement a JTAG port were the
bus latches and drivers. Because these
common parts tie larger elements
together, having control of the latches

m
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and drivers on a circuit board isolates
most circuitry. Let’s look at how this
arrangement is implemented in the
standard 74xx374-latched driver.

To comply with JTAG specifications,
two elements are added to the latched
driver’s circuitry. The first is the
boundary-scan cell, which may be as
simple as two 2-to-1 multiplexors
(mux) and two D-type register latches.
These cells are placed between a
device’s I/O pin and the device.

The data signal passes through
the boundary-scan cell unencum-
bered in the default power-up
mode, as you see in Figure 1a.
The output mux handles this
operation but enables the path
through the cell to be broken
under control conditions. Under
these conditions, the input mux
can choose the original data (see
Figure 1b) or serial scan data from
the JTAG TDI or previous cell
(see Figure 1c).

The chosen signal is applied
to the D input of the first latch.
This output of this register be-
comes the serial scan data to
TDO (or the next cell) and is
applied to the second D-type
register. When clocked, this
register holds the original data or
the serial-scan data (see Figure
1d) and applies it to the other
input of the output mux.

What’s the effect of the
boundary-scan cell? The cell
should look invisible under nor-

Figure 1 —These diagrams show the makeup of a simple boundary-scan cell and the four possible data paths
through it—(a) normal operation, (b) sample cell input data, (c) shift through serial data, and (d) set serial data at the
cell’s output.

mal operating conditions, but once
enabled, it can disconnect the flow of
circuit data, sample data coming in
and shift it out TDO, shift external
data in from TXI, and apply the new
data to the output. These actions give
complete control of the data coming
into and going out of a device’s I/O
pin, and the data coming into and going
out of the device.

By controlling the data on each pin,
full testing of all the interconnections
between pins can be handled indepen-
dently and tested in parallel with other
independent nets. Because all connec-
tions between the device pin and the
device are disconnected internally by
the boundary-scan cell, the devices can
be tested for functionality as well. Some
newer devices have built-in self-testing.

The second element added to the
standard driver circuitry is the TAP
controller. The four required JTAG
signals—TDI, TDO, TMS, and TCK—
are integral parts of the TAP controller
and add four pins to the standard device
(see Figure 2).

The TCK input is the signal man for
the TAP, sampling the TDI and TMS
inputs on the rising edge and latching
TDO outputs on the falling edge. TMS
data determines the activity of the TAP
controller.

Figure 3 shows how the TMS affects
the TAP outputs. There are three main
states. In the Reset state, the device is
unimpeded. In the Select DR-Scan
state, the data register is placed be-
tween TDI and TDO. The instruction

a)

b)

c)

d)

Figure 2a —Boundary-scan V cells interrupt
the flow of data in and out of each I/O pin.
The TAP controls all BSCs. b—Here’s the
same device without JTAG support.

a) b)
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register is placed between TDI and
TDO in the Select IR-Scan state.

The IR/DR-Scan states have identi-
cal subloops. The only difference is

Figure 3 —This JTAG state diagram demonstrates how the TAP oper-
ates based on the TMS input clocked by TCK.
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When multiple devices are connected
in a daisy chain, the resulting serial
word can be quite long. Bypassing de-
vices keeps word length to a minimum.

The second required data register is
the boundary-scan cell (BSC) register.
The device has an equal number of BSC
registers and I/O pins, so the tester can
supply data into TDI and the data is
clocked through each BSC register.

The instruction register can use the
data to force the BSC register’s outputs
into a particular state. Other instruc-
tions load the BSC registers with the
data present on the BSC inputs. The
tester can then shift the data out the
TDO to acquire that data.

From the PCB point of view, each
device on the board has its TDI daisy-
chained from a previous device (or the
board’s TDI input pin) and its TDO
daisy-chained to the next device (or
the board’s TDO output pin).

Optional data registers may include
a 32-bit device or user identification
register. Only one data register can be
active at a time, and it is controlled
by the instruction in the IR.

INSTRUCTION REGISTER
Because the IR is two bits wide (the

absolute minimum), you’d expect four
possible instructions. But in fact, only
three are needed.

The 11 instruction calls for a By-
pass Data register to be connected
between TDI and TDO, leaving the
device functioning normally. The
device can then be totally bypassed,
and fewer shifts (TCKs) are required
to get data through to other devices.

00 Extest places the BSC registers
between TDI and TDO, and between
the device’s pins and the device. This
arrangement permits TDI data to be
placed on the cell outputs connecting
to device pin outputs. It also permits
the cell input data from device input
pins to be monitored via TDO.

The third mandatory instruction,
Sample/Preload, uses a bit code left
up to the vendor (but which has to be
01 or 10 in a two bit-wide instruction
register). It places the BSC registers
between TDI and TDO while enabling
the device to function normally.

With this code, samples of the data
coming into the device pins or out of

which register the operation
affects (IR or DR). The sub-
loop captures data from the
register to a shadow register
and exits or shifts the data
in the shadow register.

If the data shifts, it can
shift again, exit, or update
the register from the shadow
register. Remember that
external data comes from
TDI shifting through a
shadow register and exiting
through TDO. Thus, a regis-
ter can be read from and/or
written to in one access.

DATA REGISTERS
A JTAG-compliant device

has at least two data regis-
ters, with the simplest being
the Bypass register. When it
is enabled between TDI and
TDO, the Bypass register

clocks the data through without modi-
fication. It enables the tester to skip
over this device, thereby shortening
the required serial datastream.
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the device core can be taken while the
device is operating normally. Also, set-
up data can be shifted into the bound-
ary-scan cells prior to issuing Extest.

Because JTAG requires a minimum
instruction register size of two bits,
the protocol leaves an open door for
optional instructions using a larger
resistor size. Optional instructions
may include Intest for testing the
device itself and Runblist for run-
ning a device self-test.

Another optional instruction, Clamp,
sets the output pins via Sample/Pre-
load and places the TDI and TDO
into bypass mode. Highz places all
output pins into a high-impedance
state. Idcode dumps a 32-bit manu-
facturer device type and version code
out TDO, and Usercode dumps 32 bits
of user-defined information out TDO
while the device operates normally.

Obviously, these optional instruc-
tions can’t all be contained within the
minimum two-bit IR, so each device
has additional bits in the IR. If these
bits are implemented, it’s up to the
manufacturer to define them.

That’s where the IEEE Standard
1149.1-1990 gets its true power. It
offers strict implementation of basic
functions, yet it’s open to potential
expansion through a nonstandard
instruction set. Compatible, yet ex-
pandable—that’s JTAG.

JTAG PORT
Connecting to the JTAG design

requires only four signals and ground.
Most JTAG ports consist of a 2 ´  5
square-pin header. Although a maxi-
mum of five wires is required, a 10-pin
connector permits the interleaving of
grounds within a flat ribbon cable. The
intersignal interference is improved,
but the pinout of the JTAG connector
may be nonstandard.

By designing with JTAG-compliant
devices, the complete bed-of-nails
hardware test becomes unnecessary.
Eliminating the need for major fix-
tures is an immediate cost savings.
So, even though connectors on the
PCB still require some level of con-
nection for testing, the JTAG design
simplifies them.

Jeff Bachiochi (pronounced“BAH-key-
AH-key”) is an electrical engineer on
Circuit Cellar INK’s engineering staff.
His background includes product design
and manufacturing. He may be reached
at jeff.bachiochi@circuitcellar.com.

The level of testing can now go
beyond simple monitoring. The test
routines can pinpoint where problems
occur and even suggest specific steps
to correct the problem.

It’s no wonder JTAG ports are pop-
ping up in many of today’s designs. As
you might suspect, it’s not just about
boundary-scan testing anymore. Indeed,
JTAG might empower you as the next
great superhero of testability. I
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Table 1—The 1451.2 standard defines what is known as the TII, a 10-pin clocked serial transducer-independent
interface.

a lthough the
concept of smart

sensors isn’t new, as
of today, the traditional

signal chain, composed of sensor, signal
conditioning, and A/D conversion, is
proving stubbornly resistant to change.
This old soldier not only isn’t dying
but doesn’t seem to be fading away,
either.

Not that there haven’t been some
inroads. For instance, various devices
have emerged that combine a number
of links in a single device, such as
micromachined pressure sensors and
accelerometers that incorporate signal
conditioning to present a high-level
(e.g., 0–5 V) output. Even brainier
sensors (common examples are tem-
perature and optical) throw in the

ADC as well, delivering a digitized
output (parallel I/O or pulse train) for
direct connection to your favorite
micro or DSP.

That’s all well and good, but prob-
lems remain. For instance, there’s little
agreement on the digital I/O format and
even less on the software machinations
required to get at our beloved 1s and 0s.
The result is that a seemingly simple
change from brand x to brand y is
likely to require a wholesale redesign
of both hardware and software.

And it gets worse. So far, we’re
only talking about basic point-to-
point lashups, which work fine for a
few channels. But, what if the goal is
to minimize wiring by connecting
multiple devices on a single bus? Of
course, the analog world has long relied
on the good old 4–20-mA current loop
for just such a purpose.

Ah, but the digital world is another
story. Talk about putting multiple
digital sensors on a single bus, and
you open a closet door behind which
rattle a bewildering array of skeletons.
In fact, the so-called fieldbus concept
is so confusing that, as far as I can
tell, the whole idea threatens to col-
lapse under its own weight.

Consider the sidebar “Sensor Con-
trol Networks,” which shows you the
latest (but likely not the last) version
of the line card that confronts design-
ers. Can anybody out there make sense
of this, much less pick the likely win-
ners and losers?

THE GREAT BYTE HOPE
Lurking at the edge of the ring is a

new contender, the IEEE 1451 standard,

Car 1451,
Where are
You?

Smart
sensors
aren’t
new, but
the IEEE

1451 standard is. As
Tom investigates this
new development, he
asks whether we’re
entering the digital age
of sensors. Should
you scrap all of your
op-amp databooks?

SILICON
UPDATE

Tom Cantrell

Line Logic Driven By Function

DIN Positive logic NCAP Address and data from transport from NCAP to STIM
DOUT Positive logic STIM Data transport from STIM to NCAP
DCLK Positive logic NCAP Positive-going edge latches data on DIN and DOUT
NIOE Active low NCAP Signals that the data transport is active and delimits

data transport framing
NTRIG Negative logic NCAP Performs triggering function
NACK Negative logic STIM Serves two functions: trigger acknowledge and data

transport acknowledge
NINT Negative logic STIM Used by the STIM to request service from the NCAP

NSDET Active low STIM Used by the NCAP to detect the presence of a STIM
POWER N/A NCAP Nominal 5-V power supply

COMMON N/A NCAP Signal common or ground

A Look at the IEEE 1451 Standard
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that purports to bring sen-
sors into the digital age
and then some.

I’m usually rather skep-
tical whenever I hear about
the latest and greatest
ultimate solution that’s
going to sweep all prob-
lems and uncertainties into
a tidy little package for
disposal on the ash heap of
computer history. Heard it before and
will hear it again, although the next
big thing almost never lives up to its
advanced billing.

Thus, for now at least, I’m not
recommending that anyone chuck
their op-amp databooks. Judgment
certainly needs to be withheld until
you understand what’s under the hood
and, even further, satisfy yourselves
that the wind is blowing in a favor-
able direction.

However, I will say this for 1451.
First, as an IEEE standard, you’re given
some assurance that it’s both open
and credible. Yes, I say “some” rather
than “total” because we’re all familiar
with the way special interests some-
times jockey for position behind the
standards veneer, attempting to gain
proprietary advantage.

As for credibility, heck, even the
long-buried S-100 bus got blessed by
IEEE. But, I don’t think 1451 has ei-
ther been hijacked or is undeserving.

Another positive factor for 1451 is
the relative absence of hype that often
surrounds proposed standards. In fact,
the effort could use a shot of PR. Few
beyond those who specialize in sensors
have even heard of it, much less know
what it is. Compared to the puffery that
often accompanies standards efforts, it
appears 1451 proponents are adhering
to a “walk softly but carry a big spec”
strategy.

Enough background. Let’s take a
look at some of the details and you
can judge for yourself. It’s important
to be informed since, à la democracy,
you’re going to get the smart sensors
you deserve.

DOTS NOT ALL
The 1451 standard consists of four

parts, “dot-1” to “dot-4” (i.e., 1451.1–
1451.4), respectively. However, the

history of 1451 is a little more convo-
luted than the nice sequential number-
ing scheme might indicate.

Development started a few years
ago within IEEE and NIST on “A Smart
Transducer Interface for Sensors and
Actuators,” now delivered under the
auspices of IEEE 1451.2. Essentially,
the standard defines what’s known as
a smart transducer interface module
(STIM).

The key definitions incorporated
into 1451.2 are a standard digital inter-
face known as the transducer-indepen-
dent interface (TII) and the format of a
built-in transducer electronic datasheet
(TEDS).

As you can see from Table 1, the
electrical connection (i.e., TII) is rela-
tively straightforward. It’s a clocked
serial interface (à la SPI) with most of
the action revolving around a data clock
(DCLK) and unidirectional data lines
(DIN and DOUT).

NIOE is an output enable driven by
the host (in 1451-speak, a network-
capable application processor [NCAP])
that frames activity on the data lines.
NACK is driven by the STIM to indi-
cate that a byte transfer can proceed—
that is, the host can drive
DCLK.

Using NACK as a byte
handshake reduces the tim-
ing burden on the STIM. The
timing spec, which is shown
in Figure 1, calls for all de-
vices involved to support a
minimum 6-kHz DCLK, but
they’re allowed to mutually
agree on a higher rate.

Now, 6 kHz is well within
the means of most chips’
clock serial ports, so that’s
not a problem during a
single-byte transfer. But,
allowing only 166 ms be-

tween bytes might be prob-
lematic, depending on the
amount of work the STIM
needs to do between one
byte transfer and the next.
Requiring the host to hold
off DCLK until the STIM
gives the OK with NACK
eliminates such concerns.

NTRIG can be asserted
by the host to initiate a

particular operation in the STIM. This
action lets you establish precise tim-
ing when necessary, independent of
any latency or uncertainty associated
with communication and setup.

For the most part, all activities are
carried out under direction of the host,
except that NINT can be driven by the
STIM to allow it to request service
asynchronously. However, even in
this case, the host response timing is
not restricted. Thus, the host is in
charge of its own destiny, which means
that practically any device, fast or
slow, can fill the role.

NSDET is also driven by the STIM
as a way to signal its presence or ab-
sence. In simple configurations, it
might be connected to ground on the
STIM and pulled up on the host. But
in other cases, the STIM may exercise
explicit control to simulate a discon-
nect/reconnect (i.e., hot swap) cycle.

Finally, the host is responsible for
providing power (up to 75 mA at 5 V)
to the STIM. The STIM is certainly
allowed to use an independent power
source (e.g., if a high-power transducer
or actuator is incorporated), but power
for the interface itself should come

Figure 1 —The TII features a data clock (DCLK), separate data lines (DIN and DOUT),
various control signals, and power and ground. NACK is used to throttle transfers at the
byte level, eliminating the need for especially fast hardware to prevent overrun.
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Figure 2 —1451.2 features an optional correction engine that handles
calibration and standard units conversion. Here, it uses a polynomial
equation to transform raw sensor output into meaningful information.
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from the host. This setup minimizes
noise and ground loops.

One interesting note is the connec-
tor standard—to wit, there isn’t one.
Many of the early units incorporate a
10-pin (2 ´  5) header, whereas others
use a DA-15. In essence, the parties
involved decided that, given the breadth
of possible applications, there’s more
to be gained leaving users some flexibil-
ity than blessing a particular connector.

WHO’S ON FIRST?
The other major aspect of 1451.2 is

its requirement that the STIM be the
repository for the TEDS. This datasheet
permits the host to find out what’s on
the other end of the wire—a sensors
version of plug and play, if you will.

The TEDS comprises eight fields—
two mandatory and six machine read-
able, each consisting of a length (byte
count), data, and checksum. The two
mandatory fields (Meta-TEDS and
Channel TEDS) are machine-readable
descriptions that uniquely identify the
STIM and characterize the function of
each channel.

The first optional field is the ma-
chine-readable Calibration TEDS. It
relates to another major 1451.2 capa-
bility—the correction engine. In short,
the idea is that the STIM should handle
all adjustments and conversions needed
to convert sensor input into something
usable by the host.

Typically, correcting a sensor output
involves using an equation to adjust a

Photo 1a— The CogniSense module from Electronics Development
Corporation (EDC) combining a PIC and signal-conditioning ASIC
can be programmed to function as a 1451.2 STIM (smart transducer
interface module). b—A good way to get started with 1451.2 is this
development kit from EDC. It includes an NCAP and two STIMs as
well as software.

b)a)
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Figure 3 —The 1451.1 standard
defines a software backplane for
high-level objects, including NCAPs
(Network Capable Application
Processors), transducers (T-blocks),
and functions (F-blocks).

raw A/D reading. The 1451.2 approach
supports a variety of transformations
including linear, polynomial (see Fig-
ure 2), and multisegment polynomial.

The correction engine also accom-
modates conversion to and from IEEE
754 floating-point representations of
SI (Standard International) units. STIMs
from different vendors and based on
completely different underlying tech-
nology can deliver exactly the same
information to your program. Neat!

The next three fields are optional
human-readable equivalents of the
first three. Because humans come in a
variety of flavors, a wide variety of
languages and character sets is allowed,
not just English and ASCII.

Another optional field is the Appli-
cation-Specific TEDS, which is any
(human readable) stuff you care to add.
Finally, the spec makes provision for
future growth with an arbitrary num-
ber of Extension TEDS.

The only definition associated with
Extensions is an ID number that re-
quires blessing by the IEEE. One ID
number is reserved specifically to

enable prototyping and experimentation
prior to official assignment.

An interesting aside: Nothing says
a STIM has to be a monolithic device.
It’s quite often the case that the sensor
itself must work in an environment
far too harsh for any chip.

Thus, you’re free to connect the
brains of the STIM and the sensor any
way you please. However, although by
no means enforceable, keep in mind
that it’s the intent of the spec that a
sensor and its associated TEDS remain
together until death do they part.

HANDS ON
As I mentioned, until now, 1451

action has largely been confined to
sensor-industry gurus and insiders.
Short of ordering the spec from the
IEEE, there’s been little the average
embedded-system designer could do
to check it out, much less get a head
start on development.

I’m pleased to report that one outfit,
Electronics Development Corporation
(EDC), has stepped into the breach with
a lineup of low-cost evaluation and

development gear that puts
the spec within reach of mere
mortals.

In fact, EDC was an out-
sider until commissioned to
help put together a 1451 demo
at a tradeshow. They did this
by tweaking their nifty Cogni-
Sense module, shown in
Photo 1a, combining a PIC
and signal-conditioning
ASIC.

Subsequently, they jumped
in with both feet and are
certainly the best source I’ve
found to help you get up to
speed. Probably the best way
to start is with their EDC
1451.2-KA Smart Transducer
Interface kit (see Photo 1b).
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For $450 you get an RS-485 network
adapter (i.e., NCAP), RS-232–to–RS-485
adapter cable (connects the network
adapter to a PC COM port), two Cogni-
Sense-based STIMs (one preconfigured
with an accelerometer and one for
experimenting with your own sensor)
plus TEDS editing and STIM control/
viewing software. Up to 255 of the
network adapters can be daisy-chained
on the ’485 bus, and they, along with
the STIMs, are also sold separately.

THE BIGGER PICTURE
Although you may be just getting

your first good look at 1451.2, as an
approved IEEE draft standard, it’s well
on its way to hitting the street. How-
ever, dot-2 isn’t the whole story.

What about dot-1, dot-3, and dot-4?
Is it the infamous spec creep in which
every Johnny-come-lately starts load-
ing stuff on to what might otherwise
be a good (i.e., simple) idea?

A key point is that the numbering
isn’t tied to chronology. IEEE 1451.1,
although it has a working group in
place, is not as far along as 1451.2.
And, IEEE 1451.3 and 1451.4 are only
at the PAR (Project Authorization
Request) stage.

Rather, the numbering is meant to
reflect a hierarchical level of abstrac-
tion, from a 1s-and-0s network on the
dot-1 end to a mostly analog gadget on
the other side of dot-4. Here’s the (by
necessity, very brief at this point) story.

Hewlett-Packard has been a driving
force behind dot-1, which can be con-
sidered both a theoretical and pragmatic
response to the fieldbus chaos reflected
in the sidebar.

On the theoretical side, the benefit
of 1451.2 compatibility will be hobbled
by network incompatibilities. What
good is a compatible sensor if it is
hidden behind an incompatible net-
work? Software developers still face
that prospect hacking away at their
programs to support different networks.

As well, HP is of the belief that
Ethernet, while never designed for
this purpose, has a lot going for it as a
fieldbus—namely, it’s cheap, it works,
and it’s widely available. But, simply
adding Ethernet to the laundry list of
sensor networking schemes will do
little to further their cause.

Sensor Control Networks
This list (see http://129.6.36.211/Home/P1451/IeeeSite/contnet.htm)

highlights the dilemma designers face. So many networks, so little time.

ARCNet—Attached Resource Computer Network, developed in 1977 by
Datapoint. Maximum data rate of 2.5 Mbps.

ASI—Actuator Sensor Interface, developed in Germany by a consortium
of sensor suppliers. A low-cost, bit-level system designed to handle four
bits per message for binary devices in a master/slave structure operating
over distances up to 100 m.

BACnet—Building Automation Control Network, an American Association
of Heating, Ventilation, Refrigeration, and Air Conditioning Engineers
(ASHRAE) standard developed by HVAC system suppliers. It supports
networking options: ARCNet, Ethernet, a master/slave token passing
(MS/TP) network based on RS-485 protocol, and LonWorks.

Bitbus—developed in 1984 by Intel around the 8044 microprocessor. Features
multitasking with a master/slave structure using RS-485 serial linking.

CAN bus—Control Area Network bus, developed in Germany by Robert
Bosch GmbH with Intel and Philips in the early ’80s for automotive in-
vehicle networking. This peer-to-peer Carrier Sense Multiple Access
(CSMA) system supports selectable data transfer rates up to 1 Mbps and
twisted-pair, fiber, coax, and RF media. CAN is ISO Standard 11898,
approved for passenger-vehicle applications. CAN-based systems were
approved by SAE as Standard J1850 for American passenger cars and
Standard J1939 for trucks and large vehicles. A CAN in Automation
(CIA) Group has been formed in Germany to work on application issues.

CEBus—originally approved as Consumer Electronics Bus by the Electronic
Industries Association. Today, CEBus goes far beyond consumer elec-
tronics. Primarily used in home automation, it supports coax, RF, power-
line, twisted pair, and infrared and has provisions for fiber-optics media.

DeviceNet—version of CAN developed by Allen-Bradley. It features object-
oriented software and is used in industrial control systems. It uses a
four-wire (signal pair and power pair) shielded cable and supports up to
64 nodes per network at speeds up to 500 kbps at 100 m and 125 kbps at
500 m. An Open DeviceNet Vendors Association (ODVA) exists.

Foundation Fieldbus—formed from the merging of components of specifi-
cations by WorldFIP and Profibus supporters. It was formed to test and
demonstrate fieldbus components to support an eventual single, universal
fieldbus standard.

GPIB—General-Purpose Interface Bus, became the IEEE-488 Standard in
1978. It’s more of a data-acquisition system with limited node capabili-
ties and is used in laboratories and industrial instrument systems.

HART—Highway Addressable Remote Transducer, a network produced
by Rosemount. It provides two-way digital communication atop tradi-
tional 4–20-mA loops. A HART organization has been formed.

Interbus S—open system developed by Phoenix Contact.This fast sensor/
actuator data-ring–type bus uses RS-422 transceiver technology and
handles analog via separate I/O modules. Up to 256 drops per network
and up to 4096 digital I/Os can be supported. The network is determin-
istic with data throughput in the low milliseconds.

ISA SP50—organized in 1985 to develop a digital signal–based standard to
complement the traditional 4–20-mA standard of the process industries.
Beset by individual company interests as well as Profibus/WorldFIP
polarizations, SP50 has had a long, tough trail in pursuing an acceptable
fieldbus standard. But, recent progress is encouraging with the support

(continued)
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Thus, 1451.1 formalizes what any
good programmer would do when faced
with such a circumstance: add a level
of abstraction like an object-oriented
API (application program interface)
between the network host and the
NCAP(s) that insulates the highest-
level software from the details of
exactly which hardware is being used.

The concept is that a system com-
prises a Lego block–like collection of
objects: NCAPs, transducers, and
functions that can publish and sub-
scribe data (see Figure 3).

Meanwhile, 1451.3 accommodates
networking on a smaller scale, address-
ing applications that call for an array
of transducers in close proximity to
the STIM, where a big network would
be overkill. Basically, dot-3 exists to
overcome the technicality in dot-2
that tightly couples a TEDS with a
single transducer.

Finally, IEEE 1451.4 recognizes that
there’s a lot of analog know-how and
installed base that won’t disappear
overnight. By defining a mixed mode
transducer interface, it plans to sup-

port transmission of basic-TEDS digital
information over an analog link.

The good news is that each higher
numbered spec is completely contained
within the confines of a lower num-
bered one. For instance, 1451.1 only
sees 1451.2 STIMs regardless of whether
they’re monolithic devices or composed
of a combination of 1451.3 and/or
1451.4 devices (see Figure 4).

HIGH-SPEED PURSUIT
For standards that purport to move

sensors into the digital age, I must say
that the backers haven’t done enough
to bring us digital types onboard. For
instance, although a number of papers
have been presented at Sensors Expo
over the years, there’s been nary a one
at the Embedded Systems Conference.

Message to 1451 folks: Don’t forget
those who design the systems and
write the software that ultimately
uses, and pays for, smart sensors.

Admittedly, I’ve only mentioned
1451 a couple of times in previous
columns myself. I hope this column
serves as a worthy first step, but more
investigation and hands-on scrutiny is
called for. Success of the standard
certainly isn’t guaranteed at this point,
but if it does take off, it’s going to be
a big deal.

Now that we know Car 1451 is out
there somewhere, let’s find it. I

Tom Cantrell has been working on
chip, board, and systems design and
marketing in Silicon Valley for more
than ten years. You may reach him by
E-mail at tom.cantrell@circuitcellar.
com, by telephone at (510) 657-0264,
or by fax at (510) 657-5441.
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Figure 4 —Putting it all together,
IEEE 1451 defines the signal
chain from analog sensor to
digital network.

of the Fieldbus Foundation. Profibus and WorldFIP offer eventual migration
paths to any forthcoming IEC 1158-SP50 world standard.

J1850—an SAE Standard for passenger cars covering mid-speed data rates
optimized at 10.4 and 41.6 kbps—rates used by GM and Ford.

LonWorks—Local Operating Network, a distributed control network de-
veloped by Echelon. It uses custom Neuron chips implementing ISO/OSI
seven-layer stack protocol. It supports media like twisted pair, coax, fiber
optic, RF, infrared, and power line with data rates up to 1.25 Mbps for
distances up to 500 m and 78 kbps at 2000 m.

Profibus—Process Field Bus, developed in Germany and strongly supported
by Siemens. It is German DIN Standard 19245. Parts 1 and 2 are designated
Profibus-FMS and cover automation in general. Part 3, Profibus-DP, is a
faster system for factory automation. A fourth Profibus-PA part is in
preparation for process control. A number of installations are operating
covering various industries. Chips and tools are available.

SDS—Smart Distributed System, developed by Honeywell MicroSwitch.
This open CAN-based system uses a four-wire cable (two twisted pairs;
signal and power). It supports up to 128 nodes at speeds up to 1.25 Mbps
interfacing with PLCs and PCs for industrial control applications.

Sercos—a bus developed in Europe for motors and motion-control applications.
Seriplex—developed by Automation Process Control (APC) Company. This

ASIC-based multiplexing system offers both peer-to-peer and master/
slave communications.

WorldFIP—Factory Information Protocol, a French National Fieldbus Stan-
dard based on the three OSI control-related layers 1, 2, and 7. There are a
number of installations primarily in France and Italy. Chips and products
are available. FICOMP (Fieldbus Consortium), begun in late 1992, is
developing board-level products and software in accordance with IEC,
Fieldbus Foundation, and WorldFIP specs.
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Survey 101

d o you ever look in the mirror and ask yourself if you’re doing things right? That might be the way to get answers
for individual or personal matters, but I’m not egotistical enough to think that I have all the right answers when it

comes to the magazine. Instead, I survey the readership every once in a while just to make sure. If you were one of
the many respondents to our latest survey, I thank you for your prompt reply and valuable opinions.

What did I learn? The good news is that you still love the magazine—96% of you save every issue and our renewal rate remains
among the highest in the industry. I wish there was a way to build this enthusiasm into a 100,000-circulation magazine, but I also know that
the vertical specialization that instills such loyalty is the uniqueness that would be sacrificed to appeal to a larger audience. It’s classic
case of damned if you do…. Don’t worry. I like what I’m doing and I intend to keep doing it.

So, who is the Circuit Cellar reader? Not surprisingly, our demographics look a lot like an electronic trade magazine. Our typical reader
is a professionally trained male. Most list themselves as engineers or engineering managers, but I’ve noticed a considerable increase in
the number of software professionals. Still, 72% say they’re involved in hardware design and more than 50% claim project management
responsibility. Over half are involved with software design or programming.

Their exceptionally high $85,000+ average salary is indicative of personal performance rather than inflationary spiral. Many readers
have been with us since issue #1 and quite a few were around 10 years before that in BYTE. These engineers and entrepreneurs are now
seasoned pros who still get involved in design management and design decisions. Our college reader program is lighting the way for
tomorrow’s designers.

I had my reasons why the survey asked what you do, what you use, and what you’d like to see. I’ve found that if a topic interests me
then it will usually interest you. Unfortunately, interest has its limits. As a guy who identifies solder as his favorite programming language, I
have to be especially sensitive to subjects that are technically significant yet boring as hell to me. I admit that I have biases, but usually if
it interests me, it will interest you.

As you might have guessed, more people are working on 16- and 32-bit applications. What surprised me was that while ’x86 and
Pentiums were the dominant processors for “current use,” Motorola MCU’s took first place under the “future use” category. Heaven forbid
that anyone out there has ever listened to my PC overkill speeches. I can only presume that competitive pressures and mandated price-
performance has made engineers consider the manufacturing cost before burying the problem with massive computing power.

 While I didn’t specifically ask an 8-bit versus the world question, I suspect these applications still dominate. Everyone seems to agree
that the most used processor in the past was the Z80, but PIC and Motorola 8-bit processors dominate present designs. That doesn’t
mean that the venerable 8051 has gone away. Certainly not. It’s just been in stealth mode (perhaps because the market is segmented
among many players). Selected slightly fewer times than Motorola and Microchip, the 8051 family has maintained a constant design-in
factor from the past, into the present, and seemingly into the future. Our survey shows that variety is still the spice of life and engineers like
having a lot of choices.

I also asked questions about editorial content and presentation. Over and over, the message was applications, hands-on projects, and
tutorials. The topics you like are robotics, signal conditioning, analog and digital interfacing, control software and algorithms, and sensors.

Tutorials may be more important for other reasons, however. Most surveys came back with comments that addressed an issue of
concern among new as well as older readers—fundamental electronics. The problem is that as microprocessors seem to be the prescribed
solution for every electronic control problem (don’t forget my PC overkill speech), schools are turning out BSEEs that are more like
microcomputer programmers. Engineers write to us offering sophisticated program enhancements for published software and at the same
time asking how to compute the gain of a single-stage op-amp in an adjacent schematic. Our hardware presentations appear to be at a
lofty level because of a deficiency in the fundamentals.

The survey pointed out the need to add more articles on basic issues like analog interfacing and real-world components (for guys who
think schematic diodes actually work like that). But, identifying the problem is only the first step. Circuit Cellar has always been a magazine
written by our readers—not by advertisers or PR agencies. Here’s an opportunity for you seasoned pros to pass something on that will be
referenced again and again.

Surveys are wonderful tools for asking questions. The key to their benefit, however, is doing the right thing with the answers.


