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i’ m not a terrible packrat, but there are some
things I’ll just never throw away: my fourth-grade

report on “Venus: The Veiled Planet,” an English
project illustrating Booth Tarkington’s quote “It’s the land

of nowadays that we never discover,” a university paper detailing the vo-
cabulary similarities of Russian and Norwegian….

Sure, I know that none of these papers will serve a great purpose for all
humankind. It’s just for fun. Something to show my daughter someday.

I keep a lot of useful information in my bookshelves, too. But, when it
comes to keeping useful information, well, that’s where the trouble starts.

What am I going to need tomorrow, next month, next year? It’s just
impossible to tell. I’ve got to keep it all. But then, how am I going to find what
I’m looking for when the situation does arise? Sorting through all those files
and books for one piece of crucial information is not my idea of a swell time.

Steve, I have to agree with you. Paper isn’t dead. It’s alive, well, and
taking over my attic!

Seems that a lot of Circuit Cellar readers are in a similar bind. Whether
you read the magazine in the office or at home, when you’re finished with it,
you put it on your shelf. According to our latest survey, nearly all Circuit
Cellar readers keep every issue. We’ve passed issue 100, so you must be
getting buried by now, right?

It’s the curse of useful information. You want to keep it, refer to it. You
want it to be there when you need it. Of course, when you do need it, you
have to search through all those back issues for that one article or even
that one schematic that has the answer you’re looking for.

And then there’s the sheer weight of it all. I can’t tell you how many
requests we’ve had over the years for back issues on CD-ROM simply
because CDs are so much easier to move than boxes of paper.

So, it’s happened at last—Circuit Cellar back issues on CD-ROM! It
took us some time, some investigating, some investment, but I think you’ll
appreciate the result. This spring, two CD-ROMs will be available: one of
the first five years (issues 1–30), and one of years six through ten (issues
31–89). These versions will have black and white pdf files of the scanned
magazine, and most importantly, you’ll be able to search them digitally.

Starting this June with Circuit Cellar 1998 (issues 90–101), annual CD-
ROMs will be made as well. The annual versions will have full-color pdf files
created directly from the layout files (not scanned pages).

As well, on every CD-ROM, we’ll include the complete Circuit Cellar
index and the relevant software for the issues on that disk.

We believe these CD-ROMs will be a boon, even if you’re partial to paper.
After all, it’s a lot easier to stick a CD in the drive and look up that project
from who-knows-how-many years ago than it is to go hunting through stacks
of magazines. Once you find what you’re looking for, you can then read the
information off the pdf file or go pull that issue off the shelf.

Of course, CD-ROMs aren’t always the answer. If you want to take a
walk down memory lane and show all those projects to your kids, isn’t it a
bit more fun to sift through all the back issues?
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READER I/O

• If the “Web-Based Circuit Design” article in this issue has you interested in online
simulation, check out the online hardware simulators hosted in Design Forum.

• Wouldn’t it be great if you could remember exactly which issue of Circuit Cellar
contained certain projects or applications? And wouldn’t it be helpful if there was
an easier way to search past articles for certain topics (besides flipping through
the pages of 104 back issues)? Stop wishing and start clicking! Head over to
our homepage to find out how to get your searchable CD-ROM of the Circuit
Cellar back issues. Don’t forget to order before April 1 for additional savings.

• All aboard the INFO Express ! Loaded with the latest news and information about
Circuit Cellar INK as well as any additions or changes to our web site, the INFO
Express stops right at your e-mail address. Visit our homepage to sign up for
this new service from Circuit Cellar.

• While you’re working on your entry for Design99, don’t forget to check the
Design99 Rules Update  section for the latest updates on contest guidelines.

www.circuitcellar.com

Be sure to visit the Circuit Cellar Design Forum this month for more great
online technical columns and applications. The Design Forum password is your
key to great new columns, monthly features, and PIC Abstracts.

Silicon Update Online:  Yet Another Architecture?—Tom Cantrell
Lessons from the Trenches:  Getting a Head Start on Software Development—In

the Real World—George Martin
Building an Automatic Guitar Tuner:  Massimo Porzio
Embedded Development Tools:  Richard Russell

MISSING PARTS
In “Mobile Environmental Control” (INK 100),

Dan Leland described a great project that enabled his
quadriplegic friend to remotely control television,
VCR, and other home-control settings.

I was interested in using the technology he
mentioned so I contacted Universal Electronic for the
remote control. However, I was told that they no
longer make the OFA8 remote. Is there a substitute
model? A friend asked me to build a similar project
and it’s only possible if a serial remote is available.

Raymond Lagacé
rlagace@cyanic.org

I recently found out myself that Universal
Electronics, who manufactures the One-For-All line of
infrared remotes, decided to give up the business. I

couldn’t believe it! After all, they were the leader in
that area.

I’ve had a few people contact me about this
matter, and there are some options. Some OFA8s may
still be available from either www.homecontrols.com
or www.smarthome.com. These mail-order compa-
nies offer all kinds of home-automation technology.

Apparently, Universal Electronics licensed their
technology to a company called Impact Merchandise.
Impact is going to produce OFA models 8200, 8080,
and 8090 only. These units have the necessary serial
port but, I’ve never mapped the command structure so
you’ll have to figure out the necessary serial commands.

Although the OFA models are not included on
their website, you can reach Impact Merchandise at
(800) 323-9688 or (925) 373-9700 for more information
on the product line.

Dan Leland

ONLINE
Circuit Cellar

If you miss the Circuit Cellar
BBS, then the cci newsserver is
the place to go for on-line
questions and advice on embed-
ded control, announcements
about the magazine, or to let us
know your thoughts about Circuit
Cellar. Just visit our home page
for directions to become part of
the newsgroup experience.

The March
 Design Forum
password is:

Tools

New!

Design Forum

Newsgroups
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NEW PRODUCT NEWS
Edited by Harv Weiner

PROTOTYPING TOOL
Design Center is a stand-alone self-contained design

development/training tool that supports students and
engineers involved in the prototyping of microcontrol-
ler-based electronic circuits. It enables easy testing of
software and hardware components in designs that
use embedded microprocessors.

Design Center features three adjustable DC voltage
supplies, a 60-Hz reference, a frequency generator (to
1 MHz), and a pulse generator. Also included are com-
mon peripheral components and test equipment for
building and debugging microcontroller-based circuits,
such as two RS-485 interfaces, two RS-232 interfaces,
a 4 × 4 matrix keypad, eight DIP switches, four push-
buttons, six LEDs, and a four-digit alphanumeric LED
display. Not to be forgotten are the two SPDT slide
switches, five potentiometers, two DE-9 connectors
(one male, one female), and a 2 × 16 LCD module.

A unique adapter cradle permits current and future
components in just about any package to be used.
Design Center also has two identical measurement
and control modules (MCM), which are intelligent
built-in meters that can measure voltage, current,
frequency, period, duty cycle, or pulse count of an
input signal. Each MCM has an RS-232 port (with
female DE-9 connector) which, when connected to a
PC, enables monitoring or control of the circuits
under test.

Pricing for the Design Center starts at $997.

Diversified Engineering
(203) 876-7408
www.diversifiedengineering.net

UNIVERSAL SIGNAL-CONDITIONING MODULES
The ADAM-3000 signal-conditioning modules can

process a wide range of sensor and transducer signals
and provide excellent protection against the harmful
effects of ground loops, motor noise, and other types
of electrical interference. The modules are ideal for
industrial equipment, data acquisition, or control
devices that require external signal conditioning.

The ADAM-3000 modules are designed to operate
in a wide range of conditions at minimal power con-
sumption. They accept voltage, current, or thermo-
couple signals as input and provide either voltage or
current output to the PLC or controller.

The thermocouple module features built-in linear-
ization circuitry and cold junction compensation to
ensure accurate temperature measurement. The mod-
ules use optical isolation technology to provide full
three-way (input/output/power) isolation to 1000 VDC.

The modules are factory precalibrated for all stan-
dard input and output ranges. They can isolate and
convert various combinations of user-customized
analog and industry-standard signals. DIP-switch
range selection eliminates the need to order different
modules for different input and output signals.

Modules can be easily mounted on a standard DIN
rail. Signal wires are connected through a front-access
screw terminal, as is the +24-VDC required power.
Two-wire input/output cables help simplify the wiring.

Prices range from $70 to $210 in single quantities.

American Advantech Corp.
(408) 245-6678
Fax: (408) 245-8268
www.advantech-usa.com

www.diversifiedengineering.net
www.advantech-usa.com
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NEW PRODUCT NEWS
HIGH-SPEED MICROCONTROLLER

The DS87C550 is a high-speed microcontroller with
an on-chip ADC and PWM. It is 100% code- and pin-
compatible with the industry-standard 8051. The micro-
controller is ideal for battery chargers, industrial and
research test or diagnostic instruments, household appli-
ances, TVs, VCRs, stereos, computers and printers, auto-
mobile engines, and climate or environmental controls.

The DS87C550
executes 8051 instruc-
tions up to three times
faster than the original
8051 architecture at
the same crystal speed,
thanks to an efficient
instruction-execution
method that eliminates
wasted clock and mem-
ory cycles. As a result,
an instruction typically
uses four clock cycles
instead of 12, thereby
tripling the speed of a
standard 8051. A maxi-

mum crystal speed of 33 MHz gives the DS87C550
apparent execution speeds of up to 99 MHz, and a
single-cycle instruction executes in just 121 ns.

This device includes a 10-bit ADC, four channels of
8-bit PWM, 8-KB EPROM, two full-duplex serial ports,
three 16-bit timer/counters, as well as four capture and
three compare registers. Also featured are a watchdog

timer, brownout detec-
tion, power-fail reset,
and 16 interrupt sources.

Pricing for this de-
vice starts at $12.60
each in 1000-piece
quantities. It’s also
available in 68-pin
PLCC, 68-pin win-
dowed CLCC, and
80-pin PQFP packages.

Dallas Semiconductor
(972) 371-4448
Fax: (972) 371-3715
www.dalsemi.com

www.dalsemi.com
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NEW PRODUCT NEWS
8051 IN-CIRCUIT EMULATOR

The iceMaster-8051-SF ICE provides full-featured
real-time transparent emulation at frequencies up to
40 MHz. The unit supports bank switching and time-
stamp and also includes 512 KB of code memory and
512 KB of XDATA memory. A 64-KB trace buffer reduces
debug time.

The iceMaster-SF has a command window that lets
the user create macro-like routines for repetitive testing.
Other features include an elapsed timer and two pass
count/delay timers.

The emulator system
is made up of

interchangeable probe cards and a PC adapter con-
nected to an emulator base. Full portability is achieved
via a 57.6-kbps serial interface between the emulator
base and PC. The probe cards plug directly into a target
application or can operate in stand-alone mode.

A Windows-based host interface enables high produc-
tivity. The iceMaster-SF supports most third-party
assemblers and compilers. It also features full symbolic
and source-level debugging. The context-sensitive hyper-

text and hyperlinked help system
make the interface easy to learn and

use. The iceMaster-SF can handle
any large or complex 8051

project and supports all
major C compilers. The

complete system
costs less than

$5000.

MetaLink Corp.
(602) 926-0797
Fax: (602) 926-1198
www.metaice.com

www.metaice.com
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NEW PRODUCT NEWS
INDUSTRIAL SMART CAMERA

The VC Series of smart cameras
are complete machine vision sys-
tems that include up to 8 MB of
RAM, 2 MB of flash memory, and
a powerful DSP. The 120 × 50 ×
35 mm camera features optically
isolated industrial I/O (four 12–
24-V inputs and four 150-mA out-
puts), an RS-232 serial
interface, RS-170/CCIR
video output, and pixel-
identical sensor readout.

They feature shutter
speeds from 1/100,000 s to
20 s. CCD sensors with
up to 1280 × 1024 pixels
provide high resolution
and sensitivity, allowing
accurate measurements
down to 1 µm. Progres-
sive scanning, a color
sensor, and flicker-free

SVGA video output are offered as op-
tions on some models.

A normalized grayscale correlation
(NGSC) software library is available for
use in addressing precision registration,
alignment, and robot-guidance tasks.
The software can be used to create
correlation-based OCR, OCV, logo/

mark inspection, IC pin-one indi-
cator detection, and golden tem-
plate comparison inspection
solutions.

VC Series-compatible software
decodes the two-dimensional
ECC200 data matrix codes used
in various industries.

An integrated Windows-
based development environ-
ment, which includes a C
cross-compiler, real-time
OS, and a large optimized
image processing library is
available.

Pricing ranges from
$1150 to $3953.

Vision Components
(617) 492-1252
Fax: (617) 492-1252
www.vision-components.de/

www.vision-components.de/
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A CEBus
Plug-and-Play Relay

FEATURE
ARTICLE

Peter House

m
Now that prices are
falling for a complete
receive-only device,
it’s getting even
easier to create a
low-cost consumer
electronics device.
Listen up to see how
Peter built this CEBus
relay. The secret for
its success is in the
power line.

y idea of a low-
cost device is one

that sells for around
$20. This price requires

the bill of materials to run between
$5 and $10, depending on the means
of distribution.

Before January 1998, a complete
chipset for implementing consumer
electronics bus (CEBus) communica-
tions cost about $15 in 100,000-piece
quantities and took two or three ICs.
That price didn’t include the power
supply, microcontroller, or application
circuit (relay or triac). Today, however,
a complete receive-only device can be
purchased and imported (in quantity)
for about $12.

STARTING THE CEBus
The CEBus standard, originally pub-

lished in 1992, was updated as ANSI/
EIA-600 in 1998. It describes commu-
nication between devices in the home
over five media—infrared (IR), coax
(CX), twisted pair (TP), radio frequency
(RF), and power line (PL).

Because we all have power lines in
our houses, the power line is the most
practical medium for low-cost imple-
mentation and universal usage. The
CEBus standard for PL describes every-

12

18

22

28

A CEBus Plug-and-Play
Relay

In Black and White

Driving in
New Directions

Web-Based
Circuit Engineering
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thing from low-level data transmission
to the common application language
(CAL), which is the high-level language
used to send control information.

Using the CEBus standard as a guide,
you can build a device that sends CAL
messages to a device made by someone
else. And, you have pretty good assur-
ance the message will be understood.

Unfortunately, the CEBus standard
doesn’t give a clue about which mes-
sages to send at any given time. Some
messages are easy to figure out, but
others aren’t so simple.

Well, if you want a light turned on,
you send a light control message with
the command to turn on the light. Easy.

But, let’s say you plug in a new
device from one of those home im-
provement places. What message(s)
does it send and how does it link up
with other devices? The home plug-
and-play (HomePnP) standard attempts
to answer these questions.

WHAT IS HOMEPnP?
Three companies with an interest

in CEBus and consumer electronics
started the HomePnP specification.
Microsoft, Honeywell, and Intel wanted
to know how a device interacts with
other similar devices on the network
as far as addressing and binding to other
devices to share control information.

If you look at the CEBus specifica-
tion, you might conclude that it tells
the devices how to communicate with
each other. Unfortunately, it doesn’t
tell devices what to say. That’s where
the HomePnP specification takes over.

HomePnP is an industry specifica-
tion managed by the CEBus Industry
Council to ensure interoperability at a
system level. It’s the system-level
specification used to tie together indi-
vidual CEBus-compatible devices.

ONE-WAY SOLUTION
When you design a device for sales

in the consumer electronics market,
there are three reasons to do anything—
cost, cost, and cost. The choice between
a receive-only device and a device that
can transmit and receive goes directly
to the BOM.

A device that can also transmit
requires more code and more electron-
ics. You need the code to implement

the device transmission and the added
electronics to drive the communication
signal on the power line. The transmit
amplifier and coupling drive the cost up.

To a transmitter, a power line looks
like an impedance between 10 and
40 Ω in a 100–400-kHz transmit band.
The complexity surfaces when you
look at the power-line environment.

Because this device will occasionally
be plugged in next to a computer with
a switching power supply, your output
amplifier must be able to drive a short
circuit without failure. These switchers
have a filter on the input to prevent
noise from the switcher from getting
coupled to the power line. The filter
has a capacitor directly across the power
line, making for a low-impedance load.

If that isn’t bad enough, a simple
linear power supply has diodes that turn
on and off 120 times per second. And,
when they turn on, they connect an-
other capacitor to the power line. Your
amplifier has to drive this wildly chang-
ing impedance with very little distor-
tion or your signal won’t get through.

Did I mention the power supply for
the amplifier? It has to provide current
for an amplifier trying to drive a low
impedance load with a signal of –5 V.
How much current does it take to
drive a 1-Ω load with a 5-Vp-p signal?

Fortunately, the device rarely has
to transmit. So, you can use an energy-
storage device like a capacitor to store
current for transmit requirements.

But, adding transmit circuitry and
beefing up the power supply costs about
$3 on the BOM, or an additional $12
to the end user. These costs are on top

of a BOM that’s in the $5–7 range. By
removing the transmit portion, you
can sell the device for under $20.

Keep in mind that there are two
ways this relay module will be used—
control by a computer and control by
a person. So, there are subtle implica-
tions regarding the message received
and how the device handles certain
message situations.

Also, a two-way device needs addi-
tional firmware to hail for and track
address resources and context instance
resources (I’ll explain these later). This
requirement complicates the user
interface and requires a more detailed
explanation than I can provide here.

DEMONSTRATION PLATFORM
I based this project on the EKP300

evaluation kit from Intellon. Intellon
uses this kit to provide customer evalu-
ation of the P300 or P200 series of
CEBus interface ICs (see Photo 1).

The eval board connects to the power
line using a special wall wart providing
10 VAC and signal coupling for the
spread-spectrum signal. The board has
two switches, two LEDs, a socket for
a 68HC05C9A microcontroller, a P300
or P200 CEBus communication IC, a
P111 power amplifier/line drive IC, and
the necessary power-supply circuitry.

The output of my device is a single
LED. Because I did this project for a
customer demo, I didn’t connect it to
a relay.

USER INTERFACE
Because you save money on the

transmit circuitry, you can splurge on
the user interface and have a single-
character keyboard (one button) and a
one-pixel video display (LED).

The HomePnP specification suggests
some general functionality for this
interface. The button has three actions
defined as press, hold, and long hold.

Press is any key press released within
0.75 s. Hold is any key press released
after 0.75 s but before 3 s, and long
hold is any key press lasting longer
than 3 s. The long hold is ignored
after 8 s in the case of a stuck switch.

A long hold places the device in
setup mode. In setup mode, the device
does not respond to control messages
but does receive binding messages. The

Figure 1— Here’s the CEBus context specification for
the receive-only relay. Most of a normal context specifi-
cation is not necessary.

Context

Universal

Object

Name Type

Dataobject_list

Lighting

Analog control (Light Level Control)

current_value

feature_select

Numeric

Context control

Object

Name

Numeric

Type
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service types without transmit circuitry,
I couldn’t think of a good reason to
ignore these messages simply because
they used the wrong DLL service.

So, if the sender of the message sent
everything else correctly, the code
accepts the message and controls the
device. Remember this.

The CEBus protocol includes a net-
work layer that’s used for segmenta-
tion, routing, and brouting control.
Segmentation breaks up long messages
into many packets, with each packet
being a maximum of 32 bytes long.

Routing control enables each packet
to control how it is routed (i.e., moved
from one network segment to another)
around the network. Brouting is like
routing except that it takes into ac-
count unwired media such as IR.

Because IR is line-of-sight, you’d
need an IR router in each room of your
house. The problem occurs if you stand
in a doorway and press a key on your
remote. Two routers receive the IR
command and pass it on to the power
line. This process causes redundant
and potentially harmful results.

Brouters prevent such problems, but
my device doesn’t accept brouted pack-
ets. If you want to control the device
using an IR remote, use an intermedi-
ary device (gateway) to translate IR
commands into appropriate PL com-
mands. The device does not permit
the use of extended network services
and only responds to devices on PL.

The application layer in the CEBus
protocol includes facilities for rejecting
duplicate messages and specifying
responses from the receiving device.
Because they cause no harm in my
application, duplicate messages aren’t
rejected. If my device receives two On
messages, it turns on twice. The only
command where this is a problem is
the toggle command.

But the primary use of the toggle
command is for personal control, so I
left duplicate rejection to the user.
Because this is the receiving device and
there are no transmit facilities, you can
ignore this part of the application layer.

CAL METHODS
CAL is object oriented (with certain

exceptions) and has methods that oper-
ate on objects and pass parameters

(called instance variables [IVs]) based
on the method and the object. My
device only responds to a subset of CAL
methods: SETON (0x42), SETOFF (0x41),
and SETVALUE.

SETON and SETOFF turn the device
on or off, and SETVALUE sets the relay
to something between on and off. If
the relay were a light dimmer, being
set between on and off would work
fine. Instead, SETVALUE sets the value
of the relay between 0 and 100 where
any nonzero value is On.

A CAL IV is a single variable that
models the value of a particular behav-
ior in a CEBus device. I only used the
current-value and feature-select IVs.
CAL methods are usually directed to
an IV. For example, the SETON method,
when directed to the current-value IV,
sets it to a value of 100s.

My device has two objects to receive
CAL messages. The context-control
object handles the address assignment,
and the light-control object controls
the relay. There are three IVs associ-
ated with the light-control object (see
Figure 1).

Each CAL object is a list of CAL
IVs and represents a functional group
of IVs in the CEBus device. As you’ll
see, you can have objects without
associated IVs in a receive-only device.

A CAL context is a group of CAL
objects that represents an externally
identifiable group of control objects in
a CEBus device. Almost every CEBus
device has a universal context defining
its presence on the network.

The definition takes the form of
house and unit codes, group IDs, and
other network management informa-
tion regarding operation on the CEBus
network. My device is CEBus compat-
ible but not CEBus compliant, so it
doesn’t have a universal context or a
real address on the CEBus network.

CONTROL FIELD
Also known as the LPDU header, the

control byte instructs the DLL how to
handle the packet. The control-byte
bit definitions are listed in Table 1.

Because the device is limited to the
UNACK_DATA DLL service, only the
sequence-number bit isn’t used. The
service class is basic, and the reserved
bit is 0.

Table 1—This data link layer control field shows the bit
values used to control how the packet is sent and what
happens at the receiver.

user interface LED also blinks while in
setup mode. As soon as a binding mes-
sage is received, the device exits setup
mode and the LED stops blinking.

If another long hold is detected
during setup mode, the device clears
all binding memories, exits setup
mode, and stops the LED from blinking.
When the device isn’t in setup mode,
pressing the button toggles the state
of the load, which gives the user local
control over the controlled output.

ADDRESSING REFRESH
A CEBus device has 32 bits of address

that’s divided into two parts—system
address and the MAC address. I’ll refer
to these two parts by more common
names that may be familiar if you have
X-10 experience—house code (system
address) and unit code (MAC address).

However, unlike with X-10, these
are 16-bit values and are stored in EE-
PROM. Rotary or DIP switches would
be unwieldy and costly.

MESSAGE BASICS
There are four CEBus data link layer

(DLL) services—ACK_DATA, UNACK_
DATA, ADR_ACK and ADR_UNACK. I
wrote this code to work with either a
P300 or P200 CEBus interface IC.

The P200 only supports the UNACK_
DATA service, but the P300 supports
all DLL types. Even though the device
cannot acknowledge the acknowledged

Packet type (bits 0, 1, 2)
000 IACK
001 ACK_DATA
010 UNACK_DATA
011 *
100 FAILURE
101 ADDR_ACK_DATA
110 ADDR_IACK
111 ADDR_UNACK_DATA

Packet priority (bits 3, 4)
00 High
01 Standard
10 Deferred
11 *

Reserved (bit 5)
Service class (bit 6)

0 Basic
1 Extended (undefined at this time)

Sequence number (bit 7)
Alternates each time a new packet
is sent to a destination address
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The packet priority can be any of
three two-bit combinations, and the
packet type should be UNACK_DATA. If
the type is ACK_DATA, ADR_ACK, or
ADR_UNACK, the packet is accepted even
though the P200 doesn’t support these
services. If the packet type is an ADR
service, the sequence number is ex-
amined to reject duplicate packets.

The code doesn’t compare sequence
numbers. The design decisions I covered
are based on the fact that duplicate mes-
sages cause no harm to the application
and are indistinguishable to the user.

ADDRESS FIELDS
The destination address is the cur-

rent house code of the sending device,
and the unit code is the HomePnP
broadcast address (0xFFFF). Any Home-
PnP device can receive the message,
but because you can’t send a response,
the source address is ignored.

The network-layer header specifies
unprivileged, flood or directory route,
only packet (for single nonsegmented
messages), no extended services, this
media only, and no brouter address.

Bit 5 is not affected, so the network
header byte must equal 0x70 or 0x50.

The application-layer header speci-
fies basic one byte fixed, explicit or
implicit invoke, and a don’t-care invoke
ID. This means bits 0–3 are don’t care
and the upper nibble must equal 0xE.

RECEIVED MESSAGES
My device can receive messages that

fall into either setup or operation
messages. The setup message takes
the form of a macro sent to the context-
control object of the universal context
and includes the message DE 21 01 93
31 F5 EC 08.

Here’s how to interpret the message:
all instances (0xDE) of the lighting-
control context (0x21) the context-
control object (0x01) macro 20 (0x93),
with parameters instance 1 (0x31) and
(0xF5 0xEC) type 8 (0x08). The 0xDE
byte is a CAL token and uses all in-
stances of the following object.

Macros are defined using the value
of 0x80 to mean macro 1. Incrementing
to 20 leaves 0x93 as macro 20. The
macro system is documented by the

CEBus specification and the meaning
of macro 20 is specified by HomePnP.

The instance is any instantiation of
the lighting-control object that is con-
trolled and represented by the ASCII
value of the desired instance. The 0xF5
is a delimiter, and the EC is a CAL
token indicating that a literal expres-
sion will follow. Because my device is
receive only, the message type 8 is
defined in the HomePnP specification
and is not used.

When the relay control is in the set-
up mode and this message is received,
the relay control stores the destination
house code and the lighting-context
instance in a look-up table.

When future control messages are
received, their destination house code
and instance value are compared to
the stored value. If the new message
matches the stored value, the control
message is accepted. So, it takes three
bytes to make a control association.

CONTROL MESSAGES
A control message can control the

relay using either the current value or
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most everything, but not without minor
inconsistencies in the implementation.

FEATURE SELECT
Feature-select messages are sent to

the feature-select IV of the light level
control object of the lighting-control
context. These messages are like mac-
ros because they have defined function-
ality and affect the current value. Table
2 lists feature-select values.

A1 21 02 45 66 F5 31 30 30 changes
the state of the relay using the feature-
select IV and is read: instance 1 (0xA1)
of the lighting-control context (0x21)
light level control object (0x02) SET-
VALUE (0x45) feature select (f or 0x66).
SETVALUE sets the value of a CAL IV.
A value of 100 for feature select should
toggle the state of the relay.

THE SOFTWARE
The software is written in 6805

assembler and the complete code is
1454 bytes long, plus interrupt vectors.
The evaluation board is designed around
a 68HC05C9A, so the code takes ~10%
of the possible program memory.

I made one modification to the board
for this project. I originally intended
to control a triac and made a circuit to
get the zero crossings from the power
line. I used a simple RC network to
connect the 60-Hz signal to the input-
capture input.

Timing in the module is based on
the 120 interrupts/s from that source.
In retrospect, I should have used the
timer to generate 100-ms interrupts.
After all, this project is a demo and
the triac might have been a distraction.

Seven source-code files make up
the project: main.asm, light.asm,

timers.asm, CENode.asm, subs.asm,
e2subs.asm, and GLEquates.asm.
main.asm is the main program loop
including RAM definitions, general
initialization, and interrupt vectors.

light.asm contains the message
parser and the code to control the relay.
timers.asm contains the code for the
’05 onboard timers which also includes
the input-capture code. CENode.asm
is the initialization, messaging, and
interrupt routines for communicating
with the CEBus Node or Px00 IC.

subs.asm has a couple of routines
that didn’t fit anywhere elsea timer
delay loop (used during power-on) and
an ASCII numeric number parser for
getting the ASCII numbers out of the
HomePnP messages. e2subs.asm has
all of the interface code for the EEPROM
memory used to store the house codes
and lighting context instance numbers.
GLEquates.asm contains all of the
bit, byte, and register definitions.

Because of the project size and the
compiler’s speed, I used the assembler
to do the linking and bypassed a sepa-
rate link step. The source files are
included in the main.asm file so no
linking takes place outside of the
assembler program. Unfortunately,
this untested (but documented) mode
of the assembler led to the following.

ASSEMBLER ERRORS
Every now and then, I made a simple

change to the code and nothing would
work. The change could have been as
simple as adding a NOP!

I isolated the problem to an assem-
bler bug that caused the first byte in a
subroutine to be swapped with the last
byte in the code immediately prior to

the subroutine. I finally identi-
fied this bug by tediously com-
paring the listing and .s19 files.

Fortunately, only the object
file was incorrect. Placing NOPs
in strategic places was a good
workaround.

Unfortunately, Motorola no
longer supports this assembler,
which is only two years old.
Motorola tech support said
they’d never heard of this bug
when using the separate linker
program after assembling to
object code.

Photo 1 —The Intellon P300 evaluation board shows the proper implementation
of the power-line communication ICs in an easy-to-probe package.

feature select. The current value can
be set to any value between 0 and 100,
where 0 represents off and any other
value is on. This range is necessary
for the current value to be compatible
with a dimmable load control.

A1 21 02 45 43 F5 30 turns off the
relay using the current-value IV. This
message is read: instance 1 (0xA1) of
the lighting-control context (0x21)
light level control object (0x02) SET-
VALUE (0x45) current value (C or 0x43)
to (0xF5) 0 (0x30).

The instance value is added to 0xA0
to create the instance specifier for the
context object to follow. SETVALUE
sets the value of a CAL IV. C or 0x43
represents the current-value IV, and
0xF5 is a delimiter character followed
by the new value for the IV specified
by the ASCII character for 0.

To toggle the relay using the feature-
select IV, use A1 21 02 45 66 F5 31 30
30. It reads: instance 1 (0xA1) of the
lighting-control context (0x21) light
level control object (0x02) SETVALUE
(0x45) feature select (f or 0x66) to (0xF5)
0 (0x30).

The feature-select IV is represented
by f or 0x66. 0xF5 is a delimiter char-
acter followed by the new value for the
IV specified by the ASCII characters
for 100. The feature-select command
changes the state of the relay and is the
only command I know of (for my device)
that is affected by duplicate messages.

A1 21 02 42 43 also turns on the
relay using the current-value IV. It
reads: instance 1 (0xA1) of the light-
ing-control context (0x21) light level
control object (0x02) SETON (0x42)
current value (C or 0x43). SETON sets
a CAL IV to an implicit value deter-
mined by the application. For
the lighting context, the cur-
rent value is set to 100.

Note that in the macro 20
message, the instance is speci-
fied as an ASCII value, and in
the control message, it is
added to 0xA0. The instance
is specified that way (although
it doesn’t seem to make sense)
because the specifications had
many contributors and evolved
over more than 10 years.
Thanks to all those contribu-
tors, the standard covers al-
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Peter House spent four years at Intellon
as an applications engineer working
with power-line communications. He
is now a contract engineer and consult-
ant specializing in applications where
firmware meets hardware. You may
reach him at peter.house@iname.com.

RRH reads the message header so the
microprocessor can determine if the
destination is correct. CW follows RRH
to let the Px00 know what to do after
the complete message is received. And,
PR retrieves the complete message from
the Px00 after it’s received.

The Px00 is always host driven so
you don’t have to poll it, which would
waste valuable communications band-
width over the serial data link. When
you have the chip-select line active,
each interrupt is part of the current
communication session in progress.

If the chip-select line isn’t active and
the microprocessor receives an interrupt,
it’s treated as a request for service and
the microprocessor responds with an
IR to find out what’s going on. This is
called an attention sequence. Because
there’s no need for polling with the
Px00 parts, polling should be avoided.

20 MS IN THE LIFE…
When the device is powered on, the

host sends an LW to initialize the Px00.
The next step is to wait for an incom-
ing message or user action. For now,
let’s focus on an incoming message.

A typical CEBus message of the
proper length to control this relay
module is ~20 ms long. The preamble
and header last for ~10 ms, and the
data makes up the rest. When the Px00
receives the last data in the header, it
generates an interrupt to let the host
know something is going on.

The host responds with an IR and
determines if a header is available for
transfer. It uses RRH to get the header

THE PX00 INTERFACE
The interfaces for the P300 and P200

ICs are identical so I’ll refer to them
as the Px00. The hardware interface to
the microprocessor uses six lines—
reset, chip select, serial clock, serial
data in, serial data out, and interrupt.

The host controls all transactions
and each byte transferred generates an
interrupt by the Px00. The serial lines
and the chip select make up an SPI-
like interface that can be clocked up
to 2 MHz. The maximum rate that
this ’05 can run is 500 kHz, and a byte
takes only 16 µs to transfer.

It may seem like 2 MHz would be
four times faster, but because there’s
an interrupt for every byte transferred,
the interface can’t run much faster.
When the code initiates an SPI read,
the read is finished in a couple of spins
around a spin loop while waiting for
the transfer complete flag to be set.
This can be done with a couple NOPs
because the transfer is completed in
hardware and always finishes in the
same amount of time.

Each message is made up of a com-
mand byte, length byte, and one or
more data bytes. I use these messages
to communicate with the Px00: layer
management write (LW), interface read
(IR), read receive header (RRH), control
write (CW), and packet receive (PR).

LW initializes the Px00. Because this
application uses the simplest mode of
operation for the Px00, it has one param-
eter to set the mode. Other parameters
are passed as nulls. IR interrogates
the Px00 to determine its status.

Table 2—The feature-select instance variable represents built-in functionality for this lighting-related device.

Feature- Action for
select ID Description relay module

0 No feature selected/stop feature None
1 Ramp brightness to maximum Set C to 100
2 Ramp brightness to minimum Set C to 0
3 current_value->saved_and turn off Set C to 0
4 current_value->saved_value and ramp off Set C to 0
5 Turn on to saved_value Set C to 100
6 Ramp on to saved_value Set C to 100
7 Turn on to local brightness level Set C to 100
8 Ramp on to local brightness level Set C to 100
9 Set current brightness to minimum Set C to 0
10 current_value->saved_value and flash Flash at 1 Hz

11–99 Reserved for future use. Values >99 are
  available for manufacturer use.

100 Toggle—if 0, then set to 100. If nonzero, then Toggle
  set to 0. Note: De facto standard; used by some
  manufacturers and not defined in standard.

and checks the header contents for
the correct destination address.

If the destination address House
Code was previously stored by receipt
of a 20-ms message and the Unit Code
is the HomePnP broadcast address, the
host sends CW to tell the Px00 to inter-
rupt again when the rest of the mes-
sage is complete. If the address doesn’t
match, nothing is done and the Px00
does nothing when this message is
completely received.

When the message is complete and
if the Px00 was instructed by CW, an
attention sequence is generated and
the host responds with an IR. The
result of the IR indicates a received
packet, and the host uses PR to get its
contents. The incoming message is
then parsed and the relay controlled.

DEVELOPMENT TOOLS
Development was accomplished

using Premia’s Codewright editor, a
Motorola EVS development system and
assembler, and an HP 54645D scope.

I connected the six lines to the logic
analyzer inputs and triggered on the
chip select. With one of the analog
inputs on the power line, I could see
the incoming packet and all of the com-
munications between the micropro-
cessor and Px00 in one screen capture,
which simplified debugging and made
quick work of interface timing issues.
I could also zoom in and see bytes trans-
ferred serially over the SPI-like inter-
face, which was clocked at 500 kHz.

So, as you can see, designing the
hardware and firmware is easier than
ever for a high-performance appliance
control using the power line for com-
munications. I

SOURCE

EKP300
Intellon
(352) 237-7416
Fax: (352) 237-7616
www.intellon.com

www.intellon.com
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In Black and White

FEATURE
ARTICLE

Craig Pataky

f
Decoders are plentiful
and you can certainly
buy one, but some-
times you need to
build your own for a
custom application.
That’s what happened
to Craig. Listen up as
he explains how to
make sense of the
world in black and
white.

rom the produc-
tion line to the

checkout line, the bar-
code reigns supreme.

Look around. There’s one on every
container, wrapper, and can. Open your
computer and you see barcodes on
every PCB, disk drive, and power sup-
ply. You probably even have one on
your driver’s license.

A barcode is present on any item
that must be read quickly, accurately,
and economically. Other technologies
exist, but nothing is more cost effective
than applying a barcode sticker. And
the proliferation of inexpensive scan-
ning equipment practically guarantees
the barcode a long and glorious future.

Although there’s no shortage of off-
the-shelf scanners, I sometimes need
to integrate a decoder into a custom
application. For example, one client
was using a PC-Lite in the field to log
rainwater samples. He would go to the
site, find the vials, type in the serial
numbers, and enter the results of vari-
ous quality tests. Naturally, typing in
all the data was slow and prone to error.

You may encounter such problems,
too, so enough with the introduction.
Let’s get to work and create a decoder
of our own.

LINGO
Every industry has its own jargon,

and barcode is no different. So, before
I begin, a few general definitions are
in order.

First, each different type of barcode
is called a symbology, and there are
numerous symbologies out there (e.g.,
Code 39, Code 128, Codabar, UPC,
and I2of5). Each symbology has its
own niche in one industry or another.

The black bars and white spaces
that make up every barcode are called
elements. It takes a certain number of
elements (the exact number depends
on the symbology type) to represent a
single character.

A complete barcode of any symbol-
ogy type is called a symbol. On the
cover of this issue, you’ll see a UPC
symbol in the lower left corner. At the
bottom of Figure 1 is a Code 39 symbol.

Every symbol has a leading white
space area called a quiet zone. Like a
pause between sentences, the quiet zone
helps a decoder pick out the symbol
from its surroundings.

An input device converts the black
bars and white spaces into discrete
logic levels called video and feeds it
into a decoder. The decoder interprets
the video and generates characters that
you and I can understand. A decoder
is always based around a microproces-
sor, be it a simple PIC or a Pentium.

CODE 39
Here, I’d like to focus on Code 39,

which is the de facto standard for
most industries around the world and
is required in many government bar-
code specifications. Unless your busi-
ness is strictly retail, I’m certain you’ll
run across Code 39.

Code 39 is popular because it repre-
sents both text and numbers (i.e., A–
Z, 0–9, +, –, ., and <space>). Figure 1
shows all the encodation patterns for
the Code 39 symbology.

Each Code 39 character is made up
of five bars and four spaces, making a
total of nine discrete elements. Of
these nine elements, three are always
about twice as wide as the others. The
placement of the wide elements deter-
mines which character is represented.

Because Code 39 has only two ele-
ment widths—wide and narrow—a

A Barcode Decoder



Circuit Cellar INK®       Issue 104 March 1999        19

binary translation comes
naturally. Simply think of
every narrow element as a 0
and every wide as a 1.

Using Figure 1, you can
easily determine that an en-
coded letter A is represented
by the pattern 100001001b or
109h. Similarly, the pattern
for B is 001001001b or 49h.

A Code 39 symbol always
begins and ends with an en-
coded asterisk. Referred to as
the start/stop code, this char-
acter frames the encoded data.
You can think of the asterisk
as a preamble and closing
that lets the decoder know
where a Code 39 symbol begins and
ends.

MAGIC WAND
Now that you can decode a symbol

with your own eyes, it’s time to give
some specialized sight to a decoding
platform. There are different types of
input devices, but for this project, I
used a simple wand. Most wands look
like a thick pen and have three signals—
+5-V power, ground, and video out.

The internal operation of a wand is
rather straightforward. Light from the
tip illuminates the symbol, and an
internal sensor converts the black bars
and white spaces into logic levels.

You can probably build your own
wand with an LED, Schmitt trigger,
and phototransistor, but I recommend
buying one. Hewlett Packard’s HBCS-
A500 operates at 5 V and draws a mere
5 mA. I bought mine direct for $110,
which I consider to be a small price
for a solid product.

INTO THE PC
The decoding platform I chose to

develop for is a ’486 running DOS V.6.2.
It seemed to be the best middle ground
between the embedded world and
Windows NT.

My hope is that anyone can quickly
adapt a DOS example to suit their needs.
Besides, it’s a safe bet that you have a
PC at your disposal, so here we go.

Wands don’t come ready to connect
to a PC, so I constructed an interface. I
first created an adapter for the parallel
port by connecting the wand’s ground
to parallel port pin 25, video, to pin 15.

For power, I used a 5-V regulator
connected to a 9-V power lump on the
wall. However, an AC power converter
eliminates any possibility for portable
applications, and I wouldn’t inflict a
battery pack on anyone.

A while back, I read some documen-
tation about the comm port and noticed
that each pin can source 10 mA—more
than enough to drive my 5-mA HP

wand. Eureka! I cast aside my
AC converter and made the
interface depicted in Figure 2.

To apply power to the wand,
I set DTR high (+12 V). The
100-Ω resistor, in series with
DTR, works in conjunction
with the wand’s internal resis-
tance to yield the required 5 V.

Here’s something to keep in
mind: When you’re construct-
ing your own interface, don’t
overlook the protection diode
or you may damage the wand.

SOFTWARE SIDE
With the hardware complete,

it’s time to dig into software.
For this application, I used Borland C
V.3.1. You can use another compiler,
but my examples and source code may
not compile without modification.

Whatever compiler or language you
choose, the source code is still your
best resource for understanding the
decoding process. Nevertheless, I want
to cover some important areas that will
make the source code more readable.

Any given comm port is controlled
by 10 programmable one-byte registers,
all of which are accessed through port
addresses 3F8h–3FEh for COM1, or
2F8–2FE for COM2. Of these registers,
the decoder is only interested in two.

Apply power to the wand by writing
a 1 to 3FCh (COM1) or 2FCh (COM2). If
you’re probing DTR, you should see it
jump to +12 V. Turn off the wand by
writing a 0, and DTR drops to –12 V.
With DTR set to +12 V, you can get
the status of the video line by reading
bit 7 of port address 3FEh (COM1) or
2FEh (COM2) (see Listing 1).

Do this several times in a loop as
you move the wand over a printed
page. A little experimentation shows
that bit 7 is set when the wand is on a
black region and clear when it’s on
white. Note that lifting the wand away
from the white paper produces the
same effect as scanning a black region.

When scanning barcodes, most users
place the tip of the wand on the quiet
zone to the left or right side of the code
and then move it across the symbol.
When the scan is complete, the user
lifts the wand and gets ready for the
next scan. The initial placement of

Figure 1 —Here’s the complete Code 39 character set. You may want to enlarge
it on a copier so you can better see the ratio of wide to narrow elements.

Listing 1 —Sampling the video couldn’t get any easier. Embedding the code to set RTS is a convenient way
of ensuring that the wand is always enabled.

#define COM1 0x3F8 // base address of COM1
#define WHITE 0 // bit 7 is low on white
#define BLACK 0x80 // bit 7 is high on black
BOOL SampleWandVideo(void)
{
  BOOL Data;
  outp(0x3FC,3); // be sure to raise RTS!
  Data=inp(0x3FE); // sample the data
  if ((Data&BLACK)==BLACK) // if we're on black, return false
    Return (FALSE);
  else return(TRUE); // otherwise on white, return true
}

A A L L W W 8 8
B B M M X X 9 9
C C N N Y Y 0 0
D D O O Z Z $ $ <

E E P P 1 1 / / >

F F Q Q 2 2 + +
G G R R 3 3 – -
H H S S 4 4 . .
I I T T 5 5 <spc>  >

J J U U 6 6 % %
K K V V 7 7 * *

* C C I *
*CCI*
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SOFTWARE

Source code for the barcode decoder
is available via the Circuit Cellar
web site.

When the counts are decomposed
into wide and narrow elements, you
chunk through the buffer, comparing
the binary patterns against a look-up
table and appending the decoded char-
acters to a string. That’s it!

In the past, you might have resorted
to clever look-up methods like hash
tables. But, even the slowest processors
today provide more than enough horse-
power to justify a brute-force sequential-
search approach.

CHECK-OUT TIME
For clarity, I focused on Code 39,

but the same principles apply to any
symbology type: collect buffer, con-
vert to a binary pattern, and perform a
brute-force match. The only thing
that varies is the patterns to look for.

I built this decoder on a PC, but
you can just as easily apply it to an
embedded platform. In fact, an em-
bedded implementation is easier be-
cause you have more direct control of
pin I/O and timers. Good luck! I

the wand on the quiet zone provides
the decoder with an easily recogniz-
able moment to begin digitizing input.

As the wand moves across the sym-
bol, the decoder records the time spent
on each black or white element. The
timer that tracks the element widths
is usually nothing more than a loop
counter. As the decoder hits a black-
to-white or white-to-black edge, it saves
the count value, resets the counter,
and waits to hit another edge.

The wider the element, the more
counts it takes to cross it. If the counter
overflows or exceeds a processor-depen-
dent value, the wand has probably been
lifted from the paper and you can begin
decoding the buffer.

PATTERN MATCHING
Next, you convert the buffer of

counts into discrete element widths.
As I mentioned, all Code 39 characters
are made up of nine elements—six
narrow and three wide. To determine
if an element is wide or narrow, com-
pare its width (in counts) against the
average of its eight closest neighbors.

If an element is greater than 1.4×
the average, it is definitely wide. By
substituting 1s and 0s for wide and
narrow, you can build the pattern for
a look-up table.

You may wonder, “Why compare
against the average of the eight closest
neighbors? Why not take the average
of all sampled elements and compare
against that?” I fell into this trap at
first, and wound up with a decoder
that didn’t work at all.

Fact is, you tend to accelerate as
you move the wand across the symbol.
So, a narrow element at the start of
the symbol may be 10,000 counts, but
one at the end will be a miniscule 1000
or even 100 counts. By averaging the
element widths on an as-you-go basis,
you can factor out most of the error.

SOURCES
HBCS-A500
Hewlett-Packard
(800) 235-0312
(408) 654-8675
Fax: (408) 654-8575
www.hp.com

Borland C V.3.1
Inprise Corp.
(800) 457-9527
(831) 431-1000
Fax: (831) 431-9527
www.inprise.com
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Figure 2 —Because the PC serial port is rated to source
10 mA per pin, I can tap more than enough power off
DTR. As a bonus, this unorthodox interface leaves the
Rx/Tx lines free for other applications.
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a
Chipsets cut down
on development time
because there’s less
of a need to evaluate
interacting compo-
nents. They’re even
more valuable if they
can be applied to a
number of related
products (ABS, TCS,
and ESP come to
mind…).

ntilock braking
systems, traction-

control systems, and
electronic-stability pro-

grams are all closely related and can
often be standardized on one control
platform.

In this article, I explain how a chip-
set optimizes this solution. I also discuss
the electronic implementation and
basic control strategy of each system.

A chipset’s real value is illustrated
when it can be applied across several
products that are related, as in the
case of ABS and vehicle control sys-
tems. Chassis-control systems
are often based on a single
platform but vary in features
and functionality. Basic system
requirements can be met with
a chipset, and interchangeability
with pin-for-pin–compatible
variants permits upgradability
to higher performance systems.

BRAKE  TIME
Antilock braking systems

(ABS) monitor four wheel-
speed sensors to evaluate
wheel slippage. Slip is deter-
mined by calculating the ratio
of individual wheel speed to

vehicle speed, which is continuously
estimated from the four wheel speeds.

The control system has to maintain
maximum possible wheel grip on the
road (without the wheel locking) by
manipulating the hydraulic fluid via
electronically controlled solenoid valves.
The relationship between wheel slip
and the coefficient of friction on the
road surface is shown in Figure 1. By
manipulating these solenoid valves to
maintain, reduce, or increase pressure
at the wheel cylinder, the brake pres-
sure is controlled at each wheel.

The limiting factor on the control
cycle time is the actuation time of the
hydraulic solenoid valves (~10 ms).
Applying Nyquist’s theorem determines
that the control loop must execute in
~5 ms. In that time, each wheel-speed
input must be processed, wheel slip
determined, and the appropriate output
actuation signals sent to the valves and
hydraulic pump motor.

Figure 2 illustrates the relationships
between wheel speed, solenoid valve
pressure control, and hydraulic pressure
at the wheel cylinder. Note that such
characteristics exist for each wheel.

At t = 0, the driver applies the brakes.
The speed reduces and the hydraulic
pressure increases until t = a, at which
time the vehicle speed falls below the
control-reference speed.

The control-reference speed is de-
termined by the microcontroller ex-
ecuting the control algorithm. When
the speed falls below this reference
speed, the slip ratio becomes excessive
and the solenoid valve is fired into the
pressure-hold position by an output of

Figure 1 —This graph illustrates lateral and longitudinal grip as
well as the relationship between slip and the frictional coefficient
of the road surface.

A Chipset for Vehicle Control
Systems
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the control unit. This position puts a
constant high pressure on the wheel
so its speed continues to reduce.

At t = b, the wheel speed falls below
the pressure-reduction reference speed
(also derived by the microcontroller).
The solenoid valve is then fired into
its pressure-decrease position to reduce
the pressure applied to the wheel.

To facilitate the pressure decrease,
a hydraulic pump motor switches on
to pump the hydraulic fluid from the
wheel cylinders back to the master
cylinder. This action causes the pulsing
feedback on the pedal that the driver
feels when ABS is engaged.

When the wheel speed increases
again at t = c, pressure hold is reacti-
vated until the wheel speed exceeds
the control-reference speed, at which
time the cycle starts again.

Incidentally, if the driver relaxes
the pressure on the brake pedal, ABS
is disengaged. The control system works
only when the foot is pressed firmly
on the brake pedal.

GET A GRIP
Traction-control systems (TCS) are

like ABS, except that traction control
optimizes wheel slippage when the
vehicle is accelerating. This principle
is illustrated in the right side of Figure
1, where the tire speed is greater than
the vehicle speed.

TCS uses almost identical hardware
to the ABS system with the addition
of minimal hardware (usually two
solenoid valves) and some software.
Communication with the
powertrain system is
required to retard the
engine torque while brak-
ing. This step is necessary,
or the energy from the
engine will dissipate in
the transmission system.

RIDING STABLE
ABS improves stability

by preventing the wheels
from locking. If the front
wheels lock, steering
control is lost. If the rear
wheels lock, the vehicle
may yaw longitudinally
and spin around. The
next generation of ABS

may further improve lateral
stability using a system
known as the electronic
stability program (ESP).

ESP requires only slightly
more complex hardware
and software than a basic
ABS. A yaw-rate sensor,
lateral low-g accelerometer,
and steering-angle sensor
are added as inputs. The
control algorithm compares
the driver’s actions (from
the steering-angle sensor)
with the motion of the
vehicle (from the wheel-
speed, yaw-rate, and low-g
sensors).

If the vehicle becomes
unstable, the brakes are
automatically applied to
create a yaw movment in opposition to
the instability, canceling out the lateral
forces that cause the instability.

Taking the concepts of ESP a bit
further, a fully integrated chassis-control
system would seamlessly handle the
suspension, steering, and braking and
would require real-time information
on all six degrees of freedom of the
vehicle as well as information on the
status of each systems-control variable
and a real-time communication link
with relevant systems (e.g., powertrain).

Today, it’s normal for the TCS to
communicate with the powertrain
system to adjust throttle angle while
applying braking forces to achieve
optimum traction. In the near future,

one system will control the interoper-
ability of these related subsystems.

The only real difference between the
basic ABS, TCS, and ESP systems is
the relatively small amount of incre-
mental hardware and software, but a
chipset approach works well. The soft-
ware is written in a modular style (i.e.,
modules for wheel speed, traction con-
trol, etc.), and the electronic compo-
nents’ performance is determined with
worst-case requirements in mind.

Figure 3 diagrams a chipset solution.
There are four basic elements in every
automotive electronic control unit—
conditioning system inputs, condition-
ing system outputs, processing, and
housekeeping functions (e.g., maintain-

ing a stable power supply).
Three basic semiconduc-

tor technologies are applied—
HCMOS for the processing
portion, analog ASICs for
the I/O conditioning and
housekeeping, and Power-
FETs for driving power
stages (in this case, switch-
ing the hydraulic pump
motor, which can be peak
rated at over 100 A). With
these basic technologies,
infinite partitioning options
are possible.

The input portion trans-
lates all the analog input
signals to clean digital wave-
forms that can be applied

Figure 2 —These graphs demonstrate hydraulic pressure control
using solenoid valves.

Figure 3 —This block diagram is generic enough to cover the electronic controls required for
two- or four-wheel ABS, ABS with traction control, and electronic stability programs.
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to ensure that the system
remains in a safe oper-
ating mode.

FAILSAFE SYSTEM
The failsafe configu-

ration is implemented
using two microcontrol-
lers (or two CPUs on a

single microcontroller) and can oper-
ate in many different ways.

One approach—symmetrical redun-
dancy, shown on the left-hand side of
Figure 4—is to run the same software
simultaneously on two identical CPUs.
Symmetrical redundancy requires only
one program to be written, but it’s often
inefficient in terms of silicon use.

The failsafe function can also be
implemented by a less powerful CPU
that performs only plausibility checks
on key parts of the data. This equally
popular approach is known as asym-
metrical redundancy.

The chipset approach requires modu-
lar software that can be implemented
selectively for different related systems
such as ABS, TCS, and ESP. So, it’s
advantageous to use a pin-for-pin–
compatible family of microcontrollers
that differ only in memory size.

Because the ESP algorithm is more
complex than the TCS algorithm,
which is in turn more complex than
the ABS algorithm, the CPU should
be fast enough to execute the most
complex algorithm within the mini-
mum loop time of ~5 ms. Conversely,
when the chipset is applied to only
the basic ABS function, significant

processing headroom is available. The
wasted performance is certainly ineffi-
cient but is insignificant when micro-
controller, hardware development, and
software costs are considered.

SYSTEM PARTITIONING
The first step in electronic system

partitioning is to evaluate system func-
tionality and mapping the functional
requirements to the basic technology
that can implement these functions.
Software must also be considered.

For example, it’s possible to imple-
ment the wheel-speed timer system
as a hardware unit that doesn’t inter-
rupt the CPU or as a basic unit that
requires significant software control.

For the ABS/TCS/ESP chipset, tech-
nology mapping can be summarized as
Sensors (wheel speed, steering angle,
yaw rate, low-g accelerometer), Ana-
log (signal conditioning, physical layers
for mux comms, Vreg, solenoid drivers
and charge pumps for high side drivers),
Digital (MCU and failsafe), and Power
(safety relay driver, pump motor driver).

At least in the near future, it’s likely
that sensors will continue to be imple-
mented discretely with a conventional
twisted-pair coupling directly to the
ECU. But before too long, smart sen-
sors that provide onboard diagnostics
and communications will be deployed.
These sensors will come with signal
conditioning and will transmit infor-
mation digitally on a multiplexed bus.

The high-rated power FET devices
requiring current ratings that exceed
the capability of a conventional analog

ASIC may be implemented
differently as well. One pos-
sibility is to remove the pump
driver FET from the ECU and
mount it mechatronically as
part of the hydraulic pump
motor assembly.

If the switching transistor
and freewheeling diode were
mounted inside the motor
housing, a Faraday shield
would be formed by the mo-
tor housing and would re-
duce radiated emissions. It
may then be possible to
switch the transistor faster
and thus reduce losses as
well as device costs.

directly to the microcontroller I/O.
Figure 3 illustrates all of these sensor
inputs grouped together in a single
device. Although a single input condi-
tioning device is possible, it is seldom
implemented as such.

Because of the interfacing for steer-
ing-angle, low-g, and yaw-rate sensors,
this device would only be required in
the ESP system but would probably
not be cost effective in a basic ABS.
For this reason, at least two interface
devices are usually specified. The sec-
ond device is added to the basic chip-
set when the ESP system is developed.

Two processing elements are re-
quired in the processing portion of the
circuit because a failsafe system is
necessary. A failsafe system ensures
that any faults in the electrical/elec-
tronic system are self-diagnosed and
result in the system switching itself
off safely, which would leave the con-
ventional hydraulic brakes fully func-
tional (pressure-increase mode) with
the absence only of the ABS control.

Theoretically, a single microcon-
troller can observe and check each
part of the system with the exception
of itself. So, a second failsafe micro-
controller is used to observe the op-
eration of the master micro.

The output-conditioning
portion of the electronic
control system is, like the
input portion, implemented
in analog-based technology.
SmarTMOS technology per-
mits basic logic to be incor-
porated onto these devices to
enhance performance. This
smart functionality is used
for diagnostics and to en-
hance failsafe operation.

For example, if a short or
open circuit is detected at an
output driver, the SmarTMOS
device communicates that
status to the microcontroller

Figure 4 —In the variable reluctance wheel-speed sensor input circuit, the
capacitors protect against electromagnetic interference and electrostatic
discharge.

Figure 5 —If a master and a slave microcontroller are implemented and the slave
only performs plausibility checks, the configuration is asymmetrically redundant.
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Figure 7 —Here you see the ECT latch mode for the ECT operation.

The analog ASIC handles output
signals and is expected to provide the
drive signals for the dashboard lamps
indicating ABS, TCS, and brake. In
modern vehicles, these lamps are driven
directly from an integrated dashboard
control unit rather than the ABS unit.
The ABS ECU talks directly to the dash-
board ECU using the multiplexed serial
communications link shown in Figure 3.

Figure 5 shows an implementation
of a chipset that gives a tradeoff between
standard components and custom
devices. In reality, it’s impossible to
determine an optimal chipset until each
of the system specifications for ABS,
TCS, and ESP are understood, as well as
the production forecasts for each system.

A physical interface for the control-
ler area network (CAN) 2.0B serial
communications system is included
on the MC33389 device. If the preferred
multiplexed communications was SAE
J1850, this chip could be replaced by a
pin-for-pin–compatible version with a
different physical interface. These func-
tions can also be implemented discretely
by using stand-alone voltage regulators.

The MC33298 is used as the sole-
noid valve driver device, which, like
the MC33389, includes a serial periph-
eral interface (SPI). There are eight
power switches for the solenoid valves.
In a TCS or ESP system, more solenoid
valves are likely to be needed, so two
MC33298 devices can be used or a
custom driver can be implemented.

Reducing the chip count can reduce
the physical size of the ECU, which
lets you mount the control unit
directly on the hydraulic valve
block/pump motor assembly.

The best way to evaluate the
CPU’s processing requirements is
via simulation. Once you know
the processing requirements, you
can select a microcontroller family.

Early systems were based on
8-bit CPUs, but as control algo-

frequency of the pulses is from 6 Hz
per km/h to a maximum of 6 kHz for
250 km/h. This setup provides an inter-
rupt, on average, around every 160 µs.

The ECT counts pulses from each
wheel (using four timer channels) to
generate the information required to
calculate wheel speed every control
cycle loop. After the information is
saved in the input capture register, hold-
ing register, and pulse accumulator, only
one interrupt is generated per cycle.
The ECT timer is depicted in Figure 6.

Data is latched into the input cap-
ture holding register and into the pulse
accumulator holding register. At the
end of a control loop cycle, all relevant
information required to calculate wheel
speed during that cycle is available to
be read directly from the CPU in these
registers. The wheel speed can be cal-
culated if the time of the first and last
pulse is known along with the number
of pulses acquired during the cycle.

BRAKING BY WIRE
No doubt, today’s standard hydrau-

lic-fluid braking system will someday
be replaced by fully electrical systems.
Brake-by-wire has several advantages—
no brake fluid, reduced maintenance,
lighter weight, increased performance
(quicker response time), and minimized
brake wear (spreads load across wheels
more evenly).

There are also production advantages
such as more simplistic/faster assem-
bly and testing, more robust electrical
interface, no mechanical linkage through
the bulkhead, and fewer parts than a
hydraulic-based system.

A few major issues must be ad-
dressed before brake-by-wire systems
are adopted. For instance, in systems
where the hydraulics are completely
removed, there’s no independent backup
actuation system. So, fail-safely systems
must be replaced with fault-tolerant

(or fail-operational) systems.
The basic approach is usually

redundancy. If nodes or ECUs
fail, backups must come online
without destroying the existing
system integrity.

The degree of fault tolerance
and where it’s employed is likely
to differ from application to
application. But, it’s reasonable to

Figure 6 —The M•Core programmer’s model is defined separately for two
privilege modes—user and supervisor.

Clock Timer
Input
capture

Input capture register

Latch IC holding register

Pulse accumulator

DB

DB

PAC holding register
DB

DB

Host

CNI

TTP/C

Host

CNI

TTP/C

Host

CNI

TTP/C

Host

CNI

TTP/C

rithms become complex,
16- or 32-bit CPUs will be
used.

To support the chipset’s
range of ABS, TCS, and ESP
systems, three pin-for-pin–
compatible versions of the
microcontroller would be
required, each with differ-

ent memory sizes ranging from about
32 KB for basic ABS to 512 KB for an
integrated vehicle-dynamics system.

THE M•CORE TEST
Implemented as a 32-bit RISC, the

M•Core CPU is a good choice for the
main algorithm controller in a braking
and chassis-control chipset because it
has a high throughput at a low clock
speed and was developed specifically
for automotive real-time control.

If only 16-bit performance is required,
the 68HC12 architecture is suitable.
The 68HC12 was developed for real-
time embedded control applications and
has custom features that were devel-
oped for ABS applications. One is the
enhanced capture timer (ECT), which
was implemented on the ’HC12BE32,
’HC12D60, and ’HC12DG128.

The ECT consists of a 16-bit soft-
ware-programmable counter driven by
a prescaler. The timer can be used for
many purposes including input wave-
form measurements while simulta-
neously generating an output waveform.

There are eight input capture/output
compare channels, four of which include
buffers called holding registers. These
buffers let two different timer values
be memorized without the generation
of an interrupt. Four pulse accumulators
are associated with the four buffered
channels to count pulses during a time
specified by a 16-bit modulus counter.

In a braking application, the ECT
offloads the timer interrupts associated
with the wheel-speed sensors. The input
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expect that the important sensors and
controllers (but not other components)
will be replicated.

TIME-TRIGGERED PROTOCOL
Time-triggered protocol (TTP/C) is

expected to become the standard tech-
nology in implementing fault-tolerant
serial communications. The distributed
embedded-control world already sup-
ports several serial communications
systems (e.g., CAN, SAE J1850-DLC,
and SAE J1850-HBCC specifications).

Three categories of communications
systems are classified by the Society of
Automotive Engineers. Class A is for
low-speed networks used in vehicle
body controls. Class B is for high-speed
networks with no safety-critical require-
ments. Class C systems have stringent
safety-critical requirements.

Because the existing protocols don’t
meet Class C requirements, the TTP/
C was developed. The additional re-
quirements are that message transfer
must be deterministic with small and
bounded latencies, all fault scenarios
must be accounted for with a safe alter-
native operating mode, distributed clock
synchronization (global time) must be
supported, and the bus is guarded against
“babbling idiot” nodes.

The existing protocols are unsuitable
because they are event-triggered and
the precise moment when a message
will be received isn’t specified. A com-
munications protocol can only be pre-
dictable if worst-case transmission
time and jitter are known during design
and meet the application’s requirements.

Real-time control applications are
very sensitive to jitter. The time delay
between presenting a message to be
transmitted at the sender’s interface
and getting it at the receiver’s interface
is called the transmission time. Jitter is
the variability of this transmission time
(maximum transmission time minus
minimum transmission time). The

maximum jitter depends on the long-
est message that can be transmitted.

To ensure regularity of information
transfer, the most suitable type of com-
munications protocol is time-division
multiple access (TDMA). Using a
TDMA scheme ensures that nonpre-
dictable message delays are not possible.
Message transmissions are scheduled
at the time of the design.

Each ECU is assigned a time slot in
which it has exclusive access to the bus
in order to send messages. Since every
unit has its own time slot, collisions
are impossible. Each transmission has
the same priority for bus access so
worst-case jitter can be calculated.

TDMA-based systems transmit state
messages (e.g., whether a switch is on
or off). State messages can be observed
for a longer time than an event and are
transmitted periodically. The state
information is not consumed when it’s
read and no new value overwrites an
old value until the next TDMA round.

In a typical distributed embedded
control system, sensors are sampled or
polled periodically during the control
cycle. State messages are the most suit-
able message type for closed-loop con-
trol applications. But, events contain
information that’s valid at a certain
point in time (until an overriding event).

Event messages are typically queued
for consumption and consumed when
read. They are more efficient in systems
that have sporadic or rare occurrences
that must be observed.

In time-triggered systems, all actions
are derived from the progression of a
globally synchronized time base ac-
cessible to all nodes. In event-triggered
systems, all actions asre derived from
the occurrence of events.

The resource requirements for a
time-triggered system are determined
before runtime so it behaves predictably
and handles peak load situations de-
terministically. Event-triggered systems

are less efficient than time-triggered
systems when the system is operating
at less than peak load because the sys-
tem is set up to handle worst-case
conditions that may rarely occur.

Figure 7 shows a TTP/C-based net-
work. The four host controllers could
be ECUs in a vehicle network (e.g.,
braking, steering, suspension, power-
train). Each node is composed of a host,
controller network interface (CNI),
and TTP/C controller. Two buses sup-
port redundancy, so if a fault develops
on one, the alternative bus is available.

Fault tolerance is implemented by
duplicating nodes. If one has a fault, a
replica-determinant redundant node
broadcasting the same result in another
time slot replaces that node’s signal.

The main strategy for fault tolerance
in the TTP/C system is replicating
fail-silent nodes. A fail-silent node must
deliver a correct output or no output
at all. When no output is generated, the
hardware or software has a fault.

Several error-detection strategies are
used to ensure fail-silence at the ser-
vice level. The TTP/C controller uses
watchdogs and a bus guardian, enabling
the bus driver only during the node’s
transmission slot and disabling it at
all other times.

COMING TO A STOP
Developing and selecting a chipset

for an application is tough. And, the
problem is compounded when the chip-
set must support several platforms.

The enabling technologies for con-
ventional braking systems and brake-
by-wire systems are similar. The major
differences are the fault-tolerant and
motor-control technologies. Just be
sure to look at the total system.  I

Ross Bannatyne has worked with micro-
controller products for the past seven
years and currently works with auto-
motive electronics in Motorola’s trans-
portation systems group. You may reach
Ross at r11607@email.sps.mot.com.

SOURCE

M•Core, 68HC12
Motorola
(602) 952-4103
Fax: (602) 952-4067
www.mot-sps.com

Sensor Analog Digital Power

Wheel speed Signal conditioning Microcontroller Safety relay
Steering angle Mux phy. layer I/F Failsafe control Pump motor driver
Yaw rate Vreg  and reset cct
Low-g accel. Solenoid drivers

Precharge cct

Table 1—Here’s a basic list of the requirements and implementation needs for the typical chipset.

wwwmot-sps.com
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Web-Based
Circuit Engineering
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Bob Perrin

t
You use the Internet,
right? E-mail, online
catalogs, search
engines—they’ve
become part of daily
life. Soon, you may
even get to simulate
circuit designs online.
Listen in as Bob sorts
through the design
trends available on
the web.

he web is evolv-
ing so quickly, it’s

tough to keep track of
what’s hype and what’s

not. Anyone with a few bucks and an
idea can put up a web page.

The web is one of the few refuges for
low-overhead entrepreneurial startups.
Ideas, concepts, and techniques are
pretty fluid in this environment.

The interactivity of the web prom-
ises to change the way we work. Or
does it? So far, the Internet has prima-
rily been used the same way we use
the telephone or mail.

If you want a book, CD, or video,
you go to www.amazon.com, give
them your credit card number, and a
few days later, your new book shows
up in the mail. If you want a datasheet
for the AD620 instrumentation ampli-
fier, you dial a URL, the web delivers
the PDF, and you print the datasheet.

But, the web is more than a fancy
telephone and express mail service. It
has introduced some new tools as well.
For example, search engines are front
ends to massive databases, and they’ve
changed the way many people do
research. If you want to learn about
mule-driving, for example, just run a
search at www.yahoo.com.

The technology exists for the web
to serve as a live front end to sophisti-
cated CAD, CAM, and simulation
tools as well. Many of the electronic
design aids (EDAs) that engineers use
every day could be used via the web.

WHY ONLINE EDA?
Traditionally, when an engineer

needs an EDA, the company buys or
leases it. Tool prices range from $35
to $350,000, and the rule is pretty
simple: you get what you pay for.

But, the web may change all that.
As pipe bandwidth increases, subscriber
costs decrease, and tool vendors recog-
nize there’s money to be made, EDAs
will become available online.

Imagine surfing to a site that offers
a suite of PCB layout tools from Men-
tor Graphics, a SPICE simulation pack-
age, or an online version of MathCAD
from MathSoft. The best tools in the
industry would be available via the
browser on your desk.

Will these tools be free? Probably
not. Perhaps a user will rent time or a
web site will sponsor the tool in order
to attract people to the site.

The end effect would be an afford-
able way to use the best tools out
there. Putting good tools in the hands
of good engineers means shorter design
cycles and faster time to market.

Small firms and consultants would
reap the most benefits. For example,
Z-World recently moved to a new set
of schematic capture and PCB layout
tools. The cash expenditure was signifi-
cant because they purchased a large
number of seats for the in-house engi-
neering staff.

Z-World routinely uses a small pool
of consultants, and these consultants
had to purchase the new tool suite to
continue to supply compatible CAD/
CAM files. But, if the tools were on
the web, both the company and the
consultants could purchase time on
the tools on an as-needed basis.

System administration issues asso-
ciated with EDAs are significant, too.
Installing the tools, getting them to
work with existing hardware, and
ensuring that they don’t conflict with
existing software are all overhead
tasks that have nothing to do with
product design.
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In the web-based client/server model,
the EDA vendor carries the system-
administration burden. The user should
not have to know anything beyond how
to install a browser.

WHICH TOOLS?
EDA is a broad-brush acronym that

encompasses everything from VHDL
simulators to VLSI layout tools, from
schematic-capture tools to word pro-
cessors. So, what types of tools are
most likely to be found on the web?

Circuit simulators (SPICE) and
special-purpose calculators are already
available. Currently, they are most
useful as educational supplements,
but over time, you can expect them to
grow into usable engineering tools.

Special-purpose calculators are
simulators dedicated to a single-cir-
cuit topology. For example, a special-
purpose calculator may be set up to
model an inverting amplifier designed
around an op-amp. The user can adjust
the parameters associated with various
components (e.g., resistors, op-amp
characteristics, power supplies, and
input stimulus) and simulate the circuit.

These calculators can be helpful for
learning about various circuit configu-
rations. That’s why they are cropping
up as part of online courses and inter-
active app notes. But, they’re typically
too limited to be useful as a real tool.

To be useful, these calculators have
to handle moderate scale end-use type
circuits. For example, a calculator that
models an inverting amplifier with
sufficient feedback elements and para-
sitics would help you design a signal
conditioner or transimpedance amplifier.

This type of application is easier to
use than a full-blown SPICE simulator,
and in that simplicity lies its beauty.
Neurons, like iron, get rusty. When a
tool like SPICE goes unused, it’s hard
to remember how to create simulations
that provide reasonable results. Special-
purpose calculators take a lot of the
guesswork out of simulation.

Analog filter design is one area
where a lot of engineers end up digging
through dusty textbooks trying to
remember how to put together a filter
for their application. Many excellent
texts show standard filter topologies
normalized to 1 radian/s [1]. The engi-

neer has to scale the component values
to suit the current application, select
standard values, and then simulate for
component tolerances and temperature
characteristics.

Special-purpose calculators could
assist the engineer in all stages of
design. The user would enter parameters
describing the filter passband, ripple,
stopband, and other characteristics.
The calculator would then determine
how many poles are needed, recom-
mend a circuit topology, and compute
target values for the components.

If the application was smart enough,
it could juggle standard values into
the equation and recommend the best
compromise on standard parts and
tolerances. As well, it could export a
netlist for use with other EDAs.

Digital-filter design poses different
obstacles. Quantization errors, numeri-
cal errors (rounding, truncation, over-
flow), sample rate, implementation
(fixed-point, integer, floating-point),
selection of coefficients and filter topol-
ogy are all factors that must be consid-
ered when you design digital filters.

Many engineers find it daunting to
understand, select, and simulate these
parameters. Special-purpose calculators
help remove some of the mysteries.

www.circuitsim.com offers several
examples of special-purpose calculators
as well as an analog-design wizard.

Although the site and tools are still
under development, there are some
good examples of simple analog design
and simulation aids.

See the sidebar “An Instrumentation
Amplifier Tutorial” for a look at an-
other type of online simulation tool—
the interactive application note.

Filter design aids and similar tools
(e.g., FilterCAD and SwitcherCAD
from Linear Technology) exist today
as autonomous applications. Their
relatively limited scope makes them
fairly easy to convert to web-based tools.

And, what HTML and CGI can’t
handle, Java can. Soon, instead of run-
ning some ancient filter-design calcu-
lator off of the 51⁄4″ disk packaged with
an old college text, you’ll find similar
but enhanced tools on the web.

These applications will run over the
web in a client/server model. You can
probably expect them first from com-
panies like Burr-Brown, Analog Devices,
and Linear Technology.

Web-based tools will be easy to use,
have software that’s updated with cur-
rent device models by the server’s web-
master, and won’t require installation
of obscure and seldom-used software.

One nice feature of the client/server
model is that you don’t have to worry
about downloading a virus-infected
executable. Only the data of interest
is delivered.

An Instrumentation Amplifier Tutorial
Application notes and tutorials from semiconductor manufacturers are

plentiful, and many engineers rely on them to stay current with new tech-
nologies. Silicon vendors use app notes to showcase their latest products.

Consider Errors and Error Budget Analysis of In-Amp Applications [2],
which can be found in PDF format at www.analog.com. It covers the basics
of error sources in instrumentation amplifiers and contrasts Analog Device’s
AD623 with Burr-Brown’s INA126. The tutorial contains a lot of information.
Understanding the interaction of error sources in instrumentation amplifiers
isn’t trival.

Interactive web-based tutorials such as in Photo i also exist. In addition
to theoretical models, the application contains models for two commercial
devices—Analog Device’s AD620 and Burr-Brown’s INA118. This page is
located at www.circuitcellar.com/simulation.htm

This application offers several advantages over text-only tutorials. As the
reader navigates through the sections and examples, the simulator is auto-
matically configured to illustrate the concept being discussed. The reader
is free to use the HTML form to modify simulation parameters for additional
self-guided experimentation.

(continued on page 33)
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You’ll also find simulators on the
web. There are sites where a generic
SPICE deck (SPICE netlist) can be sub-
mitted, the simulation run, and the
graphic plots displayed. No special soft-
ware is needed, just a browser.

Most of these sites are university
pages and seem to come and go on a
semesterly basis. Check out http://
nn.uwyo.edu/sip for a good example
of an online SPICE package.

In the future, we’ll see schematic
capture, PCB layout, and Gerber view-
ers online. Because these applications
revolve around the creation of intel-
lectual property (IP), security issues
are sure to abound.

Users may be reluctant to do large
designs over the web because the tool
vendor will have access to the complete
design. The possibility of leaking a
customer’s IP certainly exists, but this
issue isn’t new and is usually handled
via a simple NDA.

REQUIREMENTS
In order for web-based tools to be

implemented, it’s going to take big fat
network pipes, cheap bandwidth, con-
tinued innovation by tool companies,
and, most of all, loud cries from engi-
neers waving money at EDA vendors.

The fat network pipes and cheap
bandwidth problems are interrelated.
The network pipes have to be large
enough to carry the vast amounts of
information required to serve the
graphic data over the web. And, band-
width must be cheap enough for every-
one to have on their desk.

Larger pipes are available in many
cities. The monthly cost of a T1 is only
a few hundred dollars. That puts reason-
able bandwidth within the reach of
most small- and medium-sized com-
panies. And, you can expect the price/
performance ratio to continue to drop.

Even if bandwidth is plentiful, on-
line tools won’t make it without con-
tinued innovation from EDA vendors.
But, to predict the future behavior of
vendors, you must first build a model.
To do that, you have to look at history.

EDA companies seem to come and
go. For the most part, they follow a
me-too model.

Initially, a few simple schematic-
capture and PCB layout tools cropped

up. Then, almost overnight, there were
dozens of CAD/CAM companies.

Most likely, this trend will continue.
EDA companies already use the web
as a distribution conduit for product
and technical support. For example,
the folks at www.geda.seul.org use
the web to distribute GNU EDAs.

Some companies use the web to
maintain collaborative libraries. Sooner
or later, some company will offer a web-
based EDA. And once again, the me-
too folks will hop on the bandwagon.

The final ingredient is demand.
Engineers must make the noise and
wave the dollars to show they want
web-based tools.

DESIGN TOOLS
EDA vendors are hard at work ex-

ploring various forms of a web-based
client/server paradigm. Many are search-
ing for a profitable business model.
Others are boldly wading into the
stream. Here’s where a few of them
are headed.

Intusoft manufacturers various
simulation tools but is probably best
known for their ICAP/4 SPICE simu-
lator. Intusoft is already on the web
with SpiceFarm.

SpiceFarm consists of 32 Pentium II
300-MHz computers (the workers)
attached to a single “farm manager.”
The farm manager acts as a gateway
to the web and distributes tasks to the
workers. SpiceFarm is currently free
to anyone using Intusoft’s tools.

Failure-analysis simulations are
SpiceFarm’s specialty. This type of
analysis is computationally intensive
and involves many independent simu-
lations. After these simulations run in
parallel on the 32 workers, the farm
manager collects the results and sends
the data to the user via the web.

Intusoft hinted that they will have
a “service side model” (client/server
based) simulator online within a year.
Issues related to security, scalability,
maintenance, and billing still need to
be worked out. But, no technological
barriers are preventing these tools from
becoming a reality.

After merging with Microsim,
OrCAD added PSpice to its suite of
schematic capture and PCB layout
tools, which already contained Or-



Photo ii —When a simulation is run, the graphic results are
displayed in a pop-up browser window.

The user can also select
the graphic format for re-
sults (see Photo ii). This
feature is useful if you
want to capture the results
and use them in another
document or if your browser displays some images better than others.

Traditional app notes for electronic components are nothing more than
short tutorials. In the web environment, you can expect companies to
imitate good ideas. An app note with a virtual workbench or breadboard
(simulator) is an excellent idea.

One candidate for conversion to an interactive web-based application
note is Fast Settling Low Pass Filters [3], which can be found at www.burr-
brown.com/download/ABs/AB-022.pdf. It discusses how to use back-to-back
diodes to reduce the setting time for filters subjected to large-amplitude
step inputs. The techniques are useful in systems where a single antialias
filter is multiplexed across several independent transducers.

But, learning the concepts and playing with the technique in op-amp
circuits requires a bit of time to reason out. Reasoning is simply a manual
simulation process. If the Burr-Brown note was converted to an interactive
tutorial, the end user would be able to quickly simulate various circuit
configurations. The engineer would spend less time doing thought experi-
ments and there would be more efficient communication between Burr-
Brown and the customer.

Another large on-line tutorial can be found at www.fp.physik.uni-konstanz.
de/Applets/LockIn/LI1.shtml. This tutorial covers a somewhat obscure
piece of instrumentation called a lock-in amplifier. These simulations
require a Java-enabled browser like Internet Explorer 4.0 or Netscape Com-
municator 4.01. The tutorial isn’t frames-based, so it’s a bit harder to use
than the application in Photo i. The site content, however, is excellent.

The Java front end for the lock-in-amplifier simulation is live. As you
move sliders and click but-
tons, you immediately see
the effects on the simulation
waveforms, which con-
stantly scroll across the
simulation window. The
look and feel is almost like
sitting in front of a piece of
test equipment.

Java is the key to such
interactivity. HTML is
mostly limited to text-based
forms of interactivity, but
Java can provide a real-time
front end to the application.

Photo i —This is the first page of an
interactive tutorial that compares
monolithic instrumentation amplifiers
with a three–op-amp discrete imple-
mentation.

(continued from page 29)
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CAD Capture and OrCAD Layout. The
new arrangement gave OrCAD a well-
rounded set of EDA tools.

Although OrCAD doesn’t have much
in the way of web-based simulation,
they do have the Component Informa-
tion System (CIS), an online component
library coupled with a web crawler.
Users of OrCAD EDAs can use CIS to
find and manage library components.
The web crawler goes out to manufac-
turer sites and acquires component data.

As for future online EDAs, OrCAD
is considering a thin client (client/
server web-based) model. OrCAD also
has a fresh approach to looking at
business models for web-based tools.
They don’t consider traditional leasing
and pay-per-use models to be issues
and are more concerned with enhanc-
ing the tools.

Another popular Windows-based
EDA vendor is Accel Technologies.
Accel’s EDA suite provides schematic
capture and PCB layout tools that are
easy to use and quite stable.

Accel has a project underway that
will enable customers to download
distribution files from an ftp site. At
this time, they don’t see the need for
online web interfaces to their CAD
tools. And, because they haven’t re-
ceived many requests for
lease, loan, or rent plans,
a pay-per-use model isn’t
a priority for Accel.

Photo 1 —MathCAD enables you to
quickly create live simulations and
solve problems in a human-read-
able freeform document.

Accel has considered
developing a web-based
library assistant or li-
brary manager but is not

currently working on the project. For
now, they’re content to wait and see
where the rest of the industry leads.

Accel isn’t the only company taking
a somewhat passive approach. Mentor
Graphics, the heavy hitter in the EDA
arena, has no current plans to move its
tools to a web-based client/server model.

Their tools already run in a client/
server configuration over local high-
speed Ethernet connections between
workstations. Mentor believes that the
web’s current bandwidth limitations
will make tools less than pleasant to
use. Mentor still has a positive outlook
on web-based tools, but it may be 5–7
years before they pursue such ideas.

COMPUTATION TOOLS
There are many other types of EDA

tools in use. Several numerical analysis
and symbolic evaluation tools can be
found on the desks of engineers. Math-
CAD, MatLab, and Mathematica all
fall under the broad brush of EDA tools.

MathSoft manufactures several
numerical analysis and data manipu-
lation packages. Their MathCAD V.8.0
is already web friendly.

MathCAD is a mathematical scratch-
pad. You enter equations, define func-
tions, write programs, and build graphs

Photo 2 —Users of Netscape or
Internet Explorer can view and use
MathCAD worksheets over the web.
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in a graphical environment that’s simi-
lar to using a pen and paper. The re-
sult is a document that looks like an
engineer’s notebook but is live and
interactive. Photo 1 shows an example
of a MathCAD document being created.

The computational engine links to
the graphical page so the page evaluates
and updates interactively. As you enter
new data, the document updates, simi-
lar to how a spreadsheet recomputes.
MathCAD supports both symbolic and
numerical problem-solving techniques.

MathCAD 8.0 supports web inter-
action in two ways. It understands
HTTP and can retrieve and use docu-
ments over the web. It can also save
documents as HTML pages. For ex-
ample, the 4 × 4 admittance matrix
solver in Photo 1 was saved as an
HTML document and opened over the
web with a browser (see Photo 2).

Web friendliness was important in
developing 8.0. The product’s compo-
nents (computational engine, symbolic
engine, graphic interface and file ma-
nipulation unit) were cleanly separated
to enable easy implementation of a
web-based client/server architecture.
MathSoft is trying to figure out a prof-
itable business model before releasing
a client/server version.

MathSoft has another application
tool (StatServer) running under a client/
server model over the web. This data-
mining tool identifies and extracts
patterns and trends from data.

FPGA TOOLS
Another EDA field concerns tools for

developing applications using FPGAs.
Xilinx, the foremost manufacturer of
FPGAs, released its Silicon Xpresso
initiative for Internet-based design.

Designers can use a number of tools,
including evaluation fitters, resource
estimators, power estimators, and an
industry-wide (versus a Xilinx-only)
search engine. Xilinx is watching to
see how these tools are accepted and
used. The feedback will determine the
direction of the next phase of Silicon
Xpresso’s implementation.

The web-based fitter is currently
limited to CPLDs and only returns the
fitter reports, not a bitstream (loadable
file). This tool helps evaluate how well
a design will fit into a Xilinx CPLD.
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engineers will have a higher comfort
level and use the tools more.
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WHERE IT STOPS…
There’s no question that the web
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If online EDAs become a reality, it will
be because you made the choice.

In a few years, we’ll see the impact
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we’ll know if all the uproar was hype
or prophecy. Only time will tell. I
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PC/104 ENCLOSURE
 Tri-M Engineering’s PC/104 Can-Tainer protects

PC/104 electronics such as instrumentation, data collectors,
remote terminals, or SCADA packages that operate in hostile

environments. The enclosures can accommodate any number of
PC/104 modules and their cabling and peripherals in minimal space.
The Can-Tainer ensures that the PC/104 modules receive maximum

protection from vibration and G-forces by using a dual system of isolating and
absorbing rubber mountings. Internally, each corner of the PC/104 stack is
held in place by a rubber corner system that isolates the cards from the
extruded aluminum enclosure as it absorbs high-frequency vibration.

Externally, the anodized aluminum enclosure mates with a thick rubber
mounting pad. This permits the Can-Tainer to be attached to a bulkhead while
it absorbs low-frequency G-forces.

The Can-Tainer endcaps are available with or without I/O DE-9 and DB-25
holes. The Can-Tainer is NEMA rated when used with optional endcap gaskets
and appropriate endcap and connectors.

The standard black anodized aluminum enclosure is available in three
standard heights of 4″, 6″, or 8″. The Can-Tainer kit includes one solid endcap
with no I/O openings, one I/O endcap with openings for four DE-9s and two
DB-25 connections, 16 endcap screws, and one mounting kit.

The mounting kit has two gaskets, four rubber corner guides, eight rubber
corner stops, CA glue, and an external thick rubber antishock mounting pad.
A variety of other accessories including a mini-fan kit, cable kit, vertical
divider, and heat tubing, are also offered.

The Can-Tainer sells for $99. Custom versions are available.

Tri-M Systems, Inc. • (604) 527-1100
Fax: (604) 527-1100 • www.tri-m.com

SINGLE-BOARD COMPUTER
The MMT-188ES is a low-cost SBC featuring the

AM188ES 40KC/W microcontroller. This device
provides a cost-effective solution for instrumentation
and stand-alone embedded controllers.

The MMT-188ES features 512 KB of RAM and
ROM, battery-backed memory, flash memory, and a
real-time clock. Twenty-four programmable DIO lines
and two serial ports (RS-232/-422/-485) provide
the interfaces needed for a variety of OEM control
applications.

Also included is a two-channel 8-bit DAC, a
voltage-to-frequency converter, and eight channels
of optoisolated I/O (three out, five in). Two DMA
channels, four IRQ lines, one timer input, two status
LEDs, and provisions for 12-V power are available as
well. The MMT-188ES’s PC/104 support enables the
user to expand these interfaces even more.

The MMT-188ES developer’s kit includes a pro-
gramming cable, DOS in ROM, manual, and files.

Pricing is $120 in 100-piece quantities.

Midwest Micro-Tek
(605) 697-8521
Fax: (605) 692-5112
www.midwestmicro-tek.com

www.tri-m.com
www.midwestmicro-tek.com
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PENTIUM-BASED INDUSTRIAL SBC
TEK-CPCI-1004 is a CompactPCI SBC built around a Pentium

processor and ALI Aladin V chipset. It supports Socket 7 and Super
7 Pentium processors at 133 and 166 MHz and Pentium processors
with MMX technology at 200 and 233 MHz. The board supports
a front-side bus of up to 100 MHz. and
is targeted for datacomm, computer
telephone integration, and industrial
control/automation applications.

The board comes in 6U single slot
(4HP) and 6U dual slot (8HP) form
factors. The 6U-4HP board integrates
an ultra fast/wide SCSI-3 interface,
two 10/100Base-TX Ethernet interfaces,
PCI-to-PCI bridge, and PMC mezza-
nine-support CompactFlash. There’s
a high-performance 64-bit AGP graph-
ics interface with 2 MB of Rambus
video memory as well as 64 MB of
ECC SDRAM. The 6U-8HP supports

all single-slot features, onboard hard disk and
floppy drives, and up to 768 MB of ECC SDRAM
or registered SDRAM on three industry-standard DIMMs.

The standard configuration has a built-in EIDE disk
interface, which supports four
hard disks, an onboard ultra-
fast/wide SCSI-3 controller, two
onboard PCI 10/100Base-TX Ether-
net controllers, 512 KB of L2 cache,
a PCI-to-PCI bridge, standard I/O
devices, and two USB ports.

Pricing starts at $1830 without
SDRAM.

Teknor Industrial
  Computers, Inc.
(450) 437-5682
Fax: (450) 437-8053
www.teknor.com

www.teknor.com
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RTPX MULTITASKER

PC/104 SINGLE-BOARD COMPUTER
parallel port. Also, there is a watchdog and dual-voltage power
hardware monitor, real-time clock with battery, PC speaker
output, AT style keyboard, and PS/2-style mouse ports.

The PC/II+DX uses a Local-bus architecture for its peripher-
als to maximize the processing power of its ’486 proces-

sor without the normal speed limitations of the ISA
bus. This Local-bus design is provided for the

VGA/LCD controller to ensure maximum
speed.

Pricing for the base model
PC/ll+DX starts at $315 in
quantity.

Megatel Computer
(1986) Corp.

(416) 245-2953
Fax: (416) 245-6505

www.megatel.ca

The PC/II+DX is a PC/104-compliant
SBC that can be configured to optimize price and

performance. The computer is based on an Intel or
AMD ’486DX 100-MHz CPU with up to 32 MB of EDO

DRAM or 128 MB of SDRAM.
Provisions are made for 2 MB of video memory

and up to 8 MB of user-programmable flash
memory array storage. Outputs for SVGA
and LCD displays are available as is
support for two 3.5″ floppy disks
and two IDE hard disk drives. A
10BaseT or AUI Ethernet LAN net-
work connection as well as a SCSI-
2 controller with optional offboard
termination can also be added.

Other optional features include an
SODIMM-144 socket, 32-pin socket for M-
Systems DiskOnChip support, up to four 16550
serial ports with RS-232 transceivers, and an EPP/ECP

www.megatel.ca
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Richard Russell

Embedded Framework

and Foundations

This article is about carpentry and foun-
dations. No, not the kind you use to build
a house—the kind you use to build small
embedded systems. All systems need a
framework, something on which to build
the structure of an embedded application.

A good embedded framework includes
basic functionality support such as a heap
manager, a printf() engine, and de-
bugging macros like assert(). A good
framework also includes more than source
code. It has make files, an easy-to-use direc-
tory structure, support for source-level debug-
ging, and provisions for portability between
compilers and other development tools.

Developing such a framework incurs
some interesting problems. First, the envi-
ronment in which an embedded program
runs is different from that of a workstation.
Workstation applications depend on the
OS for basic functionality like I/O, memory
allocation, and exception reporting.

In an embedded system, functionality is
provided by the framework code. This
statement holds especially true for smaller

systems that can’t afford a full-blown RTOS
with an I/O subsystem.

Developing framework code often puts
firmware engineers in a difficult position.
Writing a new application, or porting an
existing one, can’t begin until the system
framework is running. But, this low-level
code can be difficult to write and must often
be done with unfamiliar tools or hardware.

The third problem is tools. Workstation
compilers are designed to develop software

for workstations, not embedded systems.
For example, most compiler libraries aren’t
suitable for embedded systems—especially
standard C libraries that come with work-
station compilers such as Microsoft, Bor-
land, GNU, and the compilers distributed
with most Unix systems.

These libraries are designed to inter-
face to an OS and are written assuming
workstation-level resources. Also, worksta-
tion libraries aren’t designed to support
storing data in ROM.

Take printf(), for example. The stan-
dard call is just an alias for fprintf() to
the stdout stream. For small embedded
systems, there is no stdout stream.

More complex embedded RTOS prod-
ucts do provide a file-system interface,
much like a workstation OS. Even with no
file-system–like I/O interface, these systems
still let you configure the RTOS.

I’ve put together an application frame-
work on an AMD Am186ES and Am186CC-
based embedded systems that solves these
(and other) problems. This framework pro-

Any structure needs a good foundation, and embedded applications are no
different. Effective development of the structure requires a sturdy framework.
Richard helps us out by putting one together for ’186-based systems.

Figure 1—A good
directory is impor-
tant. This one is
easy to understand
and allows the en-
tire application to
be built of multiple
tool chains.
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TOOLS
Management (and sometimes engineer-

ing) occasionally underestimates the value
of good embedded development tools.
I’ve seen countless projects struggle with
poor or insufficient tools. Often, just get-
ting an environment up and running takes
longer than developing the application.

A complete embedded tool chain in-
cludes more than just a make utility, com-
piler, linker, and debugger. You need:

• an optimizing compiler with support for
embedded targets

• an assembler
• a linker
• a locator (often part of the linker)
• a remote source-level debugger
• a remote monitor
• an in-circuit emulator (ICE)
• a good make utility and scripting language

Tool selection is often a matter of taste
(i.e., the best tool is often the one you know).
Other times, there are technical reasons
for selecting a tool chain. Each of the tools
I developed the framework with works
well under Windows NT 4.0 and 95/98
and targets all AMD ’186-based products.

CAD-UL provides a complete and fully
integrated tool chain including a com-
piler, assembler, linker/locator, remote
monitor, source-level debugger, and a
graphical development environment. Their
debugger also works with the QED emula-
tor from Embedded System Products (ESP).

ESP provides the Beacon Suite, includ-
ing the Metaware C compiler, a linker/
locator, a remote monitor, and a nice
debugger. Their tools also work with V.8.0c
of the 16-bit Microsoft C/C++ compiler
16-bit Borland C/C++ compiler. ESP’s
hardware emulator (the QED) supports AMD
’186 microprocessors and microcontrollers.

Paradigm Systems has long provided
an embedded tool chain based on the

vides the functionality
needed for an embedded

application, including a heap
manager, a printf() engine,

debugging macros, routines for han-
dling interrupts, timer support, make files,

and support for a source-level debugger.

GOALS
When developing the framework, I

had several design goals in mind. First, it
had to be simple, straightforward, and
easy to understand. Too often, low-level
code is a Byzantine mess of uncommented
assembly and cryptic make files.

On many projects, team members are
afraid to touch the low-level code because
it has proven to be fragile. The make
environment is often messy, difficult to
understand, and prone to errors.

I recently worked on a project that only
ran when it was built in debug mode and
crashed when built with optimizations
turned on. The debug build worked OK, so
the binary file was shipped with the debug
options. Worse, the make file dependency
rules didn’t take into account the project
include files, so the system wouldn’t
recompile after header files had changed.

Second, the framework replaces some
standard C library functionality that’s un-
suitable for use in an embedded system.
Support for printf() and malloc()
are prime examples.

Many printf() engines that come
with compilers are big, rather slow, and
coupled too closely with the I/O system.
Mine is small, simple, and highly modular.

Third, I wanted the framework to be
portable among different tool chains. Be-
ing portable between compilers is just the
first step. The framework can link, locate,
and be debugged with three different tool
chains. Two 16-bit compilers (from Micro-
soft and CAD-UL) are supported.

My fourth goal was for the framework
to be unencumbered by big-company li-
censing agreements. The framework is
royalty-free and you can use it however
you like. All I ask is that you keep the
KUDOS section in each source file intact.

This framework certainly isn’t the end-
all be-all embedded library, but it does
provide features I’ve found useful over the
years (e.g., heap manager functionality
not found in most workstation libraries).

Table 1—Here is a list of all the ELIB source files. The code is relatively modular and the lowest
level code is in assembly language.

Filename Description

AM186LEDS.C Supports the discrete LEDs on the AMD eval boards
AM186SER.C Supports interrupt-driven communication on both serial ports on the Am186ES

and the Am186CC
ASSERT.C Provides a portable code checking macros and functions
BQUE.C Contains a simple small FIFO queue handling routine used by the serial

drivers
CRC32.C Calculates 32-bit CRCs
ELIB.C Provides some of the function calls normally found in the standard library
HEAP.C Replaces the MALLOC functionality in the C libraries that come with the

compiler
IN186.C Contains system initialization code for the AMD boards
PRINTFE.C Contains a small (about 1126 bytes), simple, and modular printf() engine. It’s

much easier to use than the one included with the compilers and is much
smaller. It’s also stand-alone and requires no other source files.

TMR186.C Provides an interrupt-driven timer
TOASCII.C and Provide functions for converting values to and from ASCII. These are more
  ANYTOI.C   efficient to use than scanf().
LLIO.ASM Provides support for I/O routines that are portable across compilers
LLINT.ASM Supports using regular C functions as interrupt service routines without

using compiler-specific keywords
LLPTR.ASM Provides pointer manipulation routines that are used by HEAP.C to manipu-

late pointers without using the HUGE compiler keyword
LLAPI.ASM Provides support for critical sections and test-and-set operation

Listing 1—Here’s a basic printf implementation that uses a static buffer to hold the
intermediate output. It’s a typical implementation, but not as efficient as it could be.

int eprintf( const char* fmt, � ) {
static char buf[ 128 ];
int rv;
va_list args;
va_start( args, fmt );
rv = vsprintf( buf, fmt, args );
serial_send( strlen( buf ), buf );
return rv;

}
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Listing 2—This implementation of printf() is muchbetter. It doesn’t use any intermediate
buffer (either static or on the stack), which makes it inherently thread-friendly and
removes output limitations.

static int consend(char c, void* ctx) {
// Send a carriage return if you have a new line character

  if (c == '\n') {
// Loop while the transmit queue is full

  while(Async186_putc(ctx, '\r') != Success)
  {;}
}

// Now, send the character
  while(Async186_putc( ctx, c) != Success)
  {;}
  return 1;
}
int printf(const char* fmt, ...) {
  va_list args;
  va_start(args, fmt);
  return printfe(consend, Async186_ctx( CONSOLE_CHAN ), fmt, args);
}

Borland 16-bit tools.
Their latest version,  based

on the Borland V.5.0 develop-
ment chain, supports their 16-bit

locator and adds other debugging
features. Their tools work with both the

16-bit Borland and Microsoft compilers.
The MKS toolkit from Mortice Kern

Systems is a Unix-style Korn shell for Win32.
It has a great make utility and is an
excellent development environment. MKS
also sells a version-control system called
Source Integrity, which is fast and easy to
use. It also handles complex projects well.

PC Lint V.7.50 from Gimpel Software is
an indispensable tool that finds all kinds of
hard-to-find nits in your source code that
compilers miss. All of my framework code
has been subject to Lint’s scrutiny.

The Microsoft, CAD-UL, and Paradigm
tools come with graphical development
environments. V.1.0 of the MS Visual
environment is just not suitable for embed-
ded development. The CAD-UL tools come
with an environment called the Workbench.

The Workbench is designed to drive a
tool chain for embedded development. It
has some nice features and enables you to
easily plug in your own tools to the build
environment.

I saw a comprehensive—and impres-
sive—demo of the latest tools from Para-
digm a couple of months ago. They extended
the basic Borland environment with many
features useful for embedded development.

In short, graphical development environ-
ments are fine for Windows development,
but I don’t use them for embedded develop-
ment. I find command-line tools faster, easier
to use, and much more flexible.

But that’s just me. Try a graphical tool
yourself. If you like it, use it.

LOCATING THE SOURCE
I tried to keep the framework directory

structure simple. Although all of these tools
support long file names, I didn’t use any for
source files. Most of the source code is in
a directory called ELIB.

There are three build directories that
contain make files specific for each tool
chain—BLDBT for the Beacon Tools, BLDPD
for the Paradigm Tools, and BLDCD for the
CAD-UL tools. The source for the applica-
tion (which you get to write) goes in the
APP directory.

The make files for each environment
are in the build directories with the start-up

MAIN.C. Each of the build directories has
a LST and an OBJ directory. That’s where
intermediate files are placed. Figure 2
shows the overall build flow.

All of the code can be compiled and
linked with all three tool chains. The code
is quite modular, and each source file
supports a basic part of the functionality.

It’s not rocket science, but you’d be
surprised at the commercially available
source-code products that pile all kinds of
unrelated stuff into source and header
files. The files in the ELIB directory con-
tain the functionality found in Table 1.

Each file has a corresponding header file
that declares the functions and data defined
in that module. I like this approach better
than the single include file that declares
everything. Table 2 lists a couple of other
header files that are also important.

Table 2—These are the most important header files. STDINC.H is particularly key and defines
types in a portable, system-independent manner.

code for that environment. The build direc-
tories have some key files besides the
make file.

The ENVIRON.KSH shell script sets up
the environment for each tool chain. You’ll
need to modify it to suit your needs. If you
don’t use the MKS toolkit, you can easily
change them to DOS-style batch files.

DEPS.MAK contains all the dependen-
cies, which were auto-magically generated
by a Perl script called MAKERULE.CML
(available with the framework source code).

MR.KSH runs MAKERULE.CML to gen-
erate the dependency file. LIN.KSH runs
Lint over the entire framework and dumps
the output into LINT.TXT.

The ELIB directory contains the frame-
work, and the APP directory is where the
application source code goes (see Figure
1). In the example, only one file is named

Filename Description

STDINC.H Defines a set of portable data types used throughout the code. It’s also
designed to be portable across a wide variety of compilers and target
processors. I’ve used this header file (or a simple derivative of it) on 16-
and 32-bit ’x86, MIPS, 68k and PowerPC. The EDN Embedded Bench-
mark Consortium is also using this header for all its benchmarks that run
on systems from 21 microprocessor manufacturers.

COMPILER.H Used to define items that are compiler-specific. For example, the NEAR and
FAR keywords are different between the CAD-UL and Microsoft compil-
ers.

DEV186.H Defines I/O locations and other information for the AMD 16-bit processors
ELIB.H Declares functions normally found in the standard C library such as printf(),

malloc() and exit(). Generally, with the standard C libraries that come with
workstation compilers, it’s not possible to use most of the functions from
the following header files: assert.h, errno.h, signal.h, stdio.h, stdlib.h,
time.h
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To support items like signal() and
fopen(), an embedded system needs
significant support from a framework or
embedded OS. Some RTOSs support an
embedded file system that resides in flash
memory. These products provide a signifi-
cant amount of code to support the C
library file I/O routines.

On the other hand, functions like
printf() and getchar() are useful
functions and don’t require file handles.
They are straightforward to implement
over a serial port. ELIB.H defines these
and other common functions, and ELIB.C
maps them to their appropriate embed-
ded implementations.

PRINTF
printf() is a good example of a

useful function that doesn’t require file
handles. In an ANSI C standard library,
printf() is part of the file I/O system
and is a shell around the generic
fprintf().

The standard implementation of
printf() formats the data and sends it
to the stdout file handle provided by the
C library, which sends it to the OS. This
data can show up onscreen or end up in
a file, depending on how the program’s
standard I/O pipes were initialized.

On many small embedded systems,
there’s no OS and the size and speed
required to implement the C stream-based
file I/O functions is burdensome. I’ve seen
projects implement functionality similar to
printf() using sprintf() or vs-
printf()(see Listing 1).

There are a few problems with this
function, and they all have to do with the
character buffer buf, which holds the
formatted results from vsprintf(). As
coded, the buffer is static and is neither re-
entrant nor thread friendly.

Because many systems don’t use threads,
that usually isn’t a problem. The framework
doesn’t have any explicit support for threads,
but most of it is re-entrant and thread friendly.

Using a buffer to hold the formatted output
limits the size of the data. Dumping a lot of
data using printf() overruns the internal
buffer, corrupting memory and causing bugs.

One system I worked
on had a 50-character inter-
nal buffer. It ran fine until the
debugging printf() calls were
enabled. Then the system crashed
because most of them printed out more
than 49 characters.

If you make the buffer big (1024 bytes
or larger), then RAM is wasted. You may
not think this situation is a problem, but try
using an Am186ER that has 32 KB of
RAM. When you use this processor with
just a small flash memory, every byte
counts.

Listing 3—Initializing the heap is easy. There are two required pieces of information:
where the heap starts and how big it is.

extern Word heap_start_seg; // Start segment of the heap
extern Word heap_end_seg; // End segment of the heap
extern char FAR heap_start; // First byte of the heap

heap_size = ((BlockSize)(heap_end_seg-heap_start_seg)) << 4;
heap = heap_initialize(&heap_start, heap_size);
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If you need to make
this function re-entrant for

use from a thread or an inter-
rupt service routine, the buffer

needs to be made automatic (by
removing the static declaration). Making

the buffer automatic puts it on the caller’s
stack and makes the function re-entrant
and thread friendly.

But, it eats up lots of stack space. Do
you really want to add 128+ bytes to each
thread’s stack just so it can call printf()?

For this framework, I implemented a
printf() engine that is completely stand-
alone. It and all the support it needs are
contained in PRINTFE.C and implemented
using printfe(). The printf() engine
supports the d, I, o, u, x, X, c, s, and p
conversions but not floating-point data or
the variable-width field specifier.

Most importantly, printfe() only
buffers enough data to do individual conver-
sions (i.e., all data is output as it is format-
ted). This technique supports arbitrarily long
outputs with only one call to printf(), is
fully re-entrant and thread friendly, and
supports synchronization with output
streams better.

All of this is done by passing printfe()
a pointer to an output function (called the
sender). As printfe() generates the
formatted output, it calls the sender function
to output the data. My printf() function
is implemented in ELIB.C (see Listing 2).

printfe() is a pointer to consend(),
which sends the formatted data out the
console serial port. Note how consend()
translates single '\n' (new line) charac-
ters to the \n\r (new line, carriage-return
sequence). Other printf-style functions
are implemented in the same manner.

MALLOC
Dynamic memory allocation is useful for

many programming tasks, but it’s seldom
used for embedded systems. One reason
is that, on small embedded systems, RAM
is almost always a limited resource.

Traditional malloc() and free()
routines are designed for workstations so
they assume there’s more than enough
memory. And, it’s often acceptable to report
an out-of-memory error to the user and fail
an operation or exit the program. But, this
is unacceptable for embedded systems.

ELIB.C maps malloc() and free()
to the heap_alloc() and heap_free()
routines in HEAP.C, respectively. The heap

manager is quite different from the malloc()
support in the compiler’s C library. As Listing
3 shows, it’s straightforward to initialize.

The heap routines in the compiler’s
libraries are usually set up in the start-up
code from assembly language. The frame-
work’s heap manager is portable, builds
under many compilers, and supports many
different targets.

Initializing the heap manager is simple.
It just needs to know where the heap starts
and how big it is. The start and end segments
and the heap_start label are defined in
startup\heapdef.asm under each
build directory. These segments are put in the
right place by the linker command scripts.

The heap manager has some important
functionality not found in standard C li-
braries. This makes dynamic memory allo-
cation in embedded systems more reliable.

heap_reset() permits a program to
reinitialize the heap to its initial state. This
function is easier to use than heap_ini-
tialize() and lets you keep all the
initialization work in one place.

heap_free_space() returns the total
number of free bytes in the heap. This
function is helpful during debugging, and I
often put a command in a small console
interface that dumps this information.

Often it’s more important to know the
size of the largest free block than the total
number of free bytes. heap_biggest_
free_block() traverses the free blocks
and determines the largest one.

heap_check() checks the entire heap
and detects inconsistencies or corruption of
the heap structure. heap_stats() handles
statistics concerning the available free
space, total size of the heap, number of
free blocks, and number of allocated blocks.

There are two debugging compile-time
flags for error checking and reporting.
When enabled, the heap manager checks
for writing past the end of blocks and the
validity of pointers passed to its routines.

The heap manager also lets you support
multiple heaps in a single application.
That’s useful when you must reserve memory

for a specific function like communications
buffers. You can also use the heap manager
as a low-level fixed-size buffer manager
(also called a pool).

The framework’s heap manager isn’t
the most sophisticated, but it’s small, simple,
and easy to debug. Especially now that
you have the source!

MOVING IN
Of course, no framework is the ultimate

for every application, but this code shows
how to write a simple, modular, and por-
table framework for a ’186-based system.
Enjoy! EPC

Richard Russell is the manager of systems
software engineering for AMD’s embed-
ded processor division. He has been de-
veloping software for embedded systems
for 15 years for devices such as wind-genera-
tor controls, point-of-sale systems, and fast
Ethernet switches. He is also active in the
EDN embedded benchmarking consortium.
You may reach him at richardr@io.com.
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Figure 2—The build flow is pretty
straightforward. The most important
aspect is how the directories are sepa-
rated. The library, application, and tool-
dependent startup code are in separate
directories, and I like to send the listing
and object files to their own directories
as well.

SOFTWARE
Source code for this article is available via the Circuit
Cellar web site. More information is in Design Forum.

www.amd.com
www.beacontools.com
www.cadul.com
www.gimpel.com
www.mks.com
www.devtools.com
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Real-Time PC

Ingo Cyliax

Embedded RT-Linux
Part 5: Real-Time Programming

I t’s hard to believe that Part 5 is here
already. I was sitting in a coffeeshop with
my laptop trying to figure out the best way
to conclude this series on embedded RT-
Linux. There’s so much information left to
cover…. Then it dawned on me—informa-
tion is useless without application.

If you’ve been following this series,
you know RT-Linux is a real-time extension
to the standard Linux kernel. It permits
priority-based preemptive multitasking
under Linux and has facilities for dealing
with interrupts. It also communicates with
non-real-time processes (i.e., regular Linux
processes) using pipe-like FIFOs.

Traditionally, you use a small real-time
system to handle timing-critical control and
connect it to a system that handles the
higher level non-timing-critical management,
perhaps over a serial port. That way, the
real-time system can run independently and
programs on the non-real-time system (per-
haps for the user interface) are written in
any way that’s convenient.

With RT-Linux and FIFOs, you can com-
bine both computers into a single system.
The real-time system runs in the RT-Linux
extender as a real-time task, and the higher
level non-real-time component runs under the
standard Linux environment without changes.

INSTALLING RT-LINUX
Because RT-Linux is an extension to

Linux and isn’t normally bundled with
desktop distributions, you have to get the
RT-Linux installation kit from www.rtlinux.org.

The kit comes in several versions, de-
pending on which Linux kernel is on your
system. Select the one that matches your
kernel and download it.

The kit comes in a gzip’ed tar archive.
To unpack it, use the tar command (e.g.,
tar xzf rtlinux-0.5.tg). This com-
mand creates a directory and unpacks
everything you need to get started.

To build an RT-Linux kernel, you need
the kernel sources, which are usually on the
CD that comes with the Linux distribution.

Information without an application doesn’t take you far. So, Ingo finishes up
this series by showing us how to put Linux to work. He describes how to install
the RT-Linux extender and demonstrates how the different functions work.

Once you install the kernel source tree and
RT-Linux kit, you’re ready to build the kernel.

The RT-Linux kit contains a patch file for
the kernel. patch is a Unix/Linux utility
that lets you update existing files based on
a list of differences contained in the patch
file. The file is a text file that you can look at.

The differences are generated with
another program—diff. With an RT-
Linux patch, you can install all the changes
necessary to convert the generic Linux
kernel into an RT-Linux kernel.

Of course, I didn’t follow my own direc-
tions. I applied a patch for the 2.0.35
kernel to the 2.0.34 kernel that came with
the RedHat 5.1 distribution. No big deal.
patch was able to patch all of the files
except one. By using the patch file as a
guide, I could apply the difference to the
remaining kernel module that it failed on.

The file had changed slightly from 2.0.34
to 2.0.35 to support a new feature. Because
the patterns it was looking for weren’t in
the same place, the patch file got confused.
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them when you’re finished to preserve
memory. Listing 3 shows how that’s done.

PROGRAMMING
Now you’ve installed the system and

verified that it works, so let’s look at how
RT-Linux is programmed. In Part 1, I showed
you a table of the RT-Linux API (INK 100,

devices automatically. Listing 2 shows
what I need to do in order to build and run
the 2Tasks example.

Of course, you only need to install the
FIFO device entries once. The kernel
modules, however, need to be loaded
each time you use the RT-Linux subsystem.
Because they are modules, you can unload

Luckily, the patch
file format is readable

and easy to understand (and
I had kernel sources in the first

place). That could have saved the
day if I were in the field without a

network.
In the latest patch kit (rtlinux-0.9h), you

simply run a make and the kit will patch
and install itself into the kernel sources.
Once you apply the patch, you’re ready
to compile and compress the kernel and
its modules. First, execute:

make zImage
make modules

To install the kernel, copy it to the /boot
directory. I gave the RT version a different
name than the standard kernel so I can
use LILO to boot either one.

Listing 1 shows my /etc/lilo.conf
file. To install the kernel and modules, use
cp arch/i386/boot/zImage /boot/
vmlinuz-rt make install_modules.

After installing the kernel, you need to
run the LILO command to build the tables
necessary to load the boot images at boot
time. Now, the kernel will take effect when
you reboot the system.

I’m assuming that you’re doing all this
on your development system. Being able
to run the embedded application on your
development system means you can de-
velop and test it before embedding it into
a flash disk. My laptop serves as my
development system, portable information
system, and terminal (on the rare occa-
sions that it is connected to the network).

Once you boot the RT-Linux kernel, run
some of the test programs that come with
the RT-Linux kit (in the testing sub-
directory). Each program has a readme
file that tells you how to build and run
each test program. There’s also a make-
file so you can build the module.

Most RT-Linux programs have two
parts—a real-time module with the real-
time–sensitive tasks and initialization rou-
tines, and a Linux user-level program that
communicates with the real-time task
through FIFOs. I’ll run the 2Tasks ex-
ample and show you how it works.

First, I need to create the FIFO devices
under the /dev/ directory and load the
real-time kernel modules that provide the
scheduler and FIFO device driver. In
rtlinux-0.9h, the make will create the FIFO

Listing 1—With this /etc/lilo.conf file configuration for my laptop, I can choose to boot
either Windows 95 or one of several Linux boot images.

boot=/dev/hda
map=/boot/map
install=/boot/boot.b
prompt
timeout=50
image=/boot/vmlinuz
label=linux
root=/dev/hda5
read-only

image=/boot/vmlinuz-rt
label=rtlinux
root=/dev/hda5
read-only

image=/boot/vmlinuz-2.0.34-1
label=linux-orig
root=/dev/hda5
read-only

other=/dev/hda1
label=dos
table=/dev/hda

Listing 2—The first steps to running the 2Tasks example that’s part of the RT-Linux
installation kit are to create the FIFOs necessary for the real-time tasks to communicate
and install the kernel-level drivers and the module containing the application (rt_process).
Once the modules are installed, the user-level program (app) starts the tasks as well as
reads and displays information from app onscreen.

[root@hugo 2tasks]# for i in 0 1 2 3; do mknod /dev/rtf$i c 63
$i; done

[root@hugo 2tasks]# modprobe rt_prio_sched
[root@hugo 2tasks]# modprobe rt_fifo_new
[root@hugo 2tasks]# insmod rt_process.o
[root@hugo 2tasks]# lsmod
Module         Pages Used by
rt_process         1 0
rt_fifo_new        2 [rt_process] 0
rt_prio_sched      1 [rt_process] 0
ds                 2 2
i82365             4 2
pcmcia_core        7 [ds i82365] 3
[root@hugo 2tasks]# ./app
FIFO 0: Frank Frank Frank Frank Frank Frank Frank Frank Frank
Frank Frank Fra

FIFO 1: Zappa Zappa Zappa Zappa Zappa Zappa Zappa Zappa Zappa
Zappa Zappa Zap

FIFO 0: nk Frank Frank Frank Frank Frank Frank Frank Frank Frank
Frank Frank

FIFO 1: pa Zappa Zappa Zappa Zappa Zappa Zappa Zappa Zappa Zappa
Zappa Zappa

FIFO 0: Frank Frank Frank Frank Frank Frank Frank Frank Frank
Frank Frank Fra

FIFO 1: Zappa Zappa Zappa Zappa Zappa Zappa Zappa Zappa Zappa
Zappa Zappa Zap

FIFO 0: nk Frank Frank Frank Frank Frank Frank Frank Frank Frank
Frank Frank

...
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p. 54). This API is implemented by the
include files you link into your modules
and the kernel modules that must be loaded
before you run the application.

There are several include files for
each subsystem in the RT-Linux kernel.
rt_sched.h describes the main API to
start and schedule real-time tasks. rtf.h
describes the FIFO interface as seen by the
real-time application, and rt_time.h is
the interface to the timer subsystem.

The include files are stored in the
Linux include directory (usually in /usr/
include/linux). On my system they’re
installed in /usr/src/rtlinux/in-
clude/linux because I want to run
several different versions of the kernel.

An RT-Linux application module has
two entry points that are called by the
module loader. The entry points—
init_module() and cleanup_-
module()—are called when the module
is installed and removed from the system.

All of the initialization required to start
the application (e.g., allocating tasks,
installing interrupt handlers, creating FIFOs,
and starting the tasks) is done in init_
module(). When you remove the mod-
ule from the system, cleanup_module()
stops the tasks and frees up the resources
(e.g., removing interrupt handlers and FIFOs)
that were allocated in init_module().

To initialize a task, you need to allocate
a task-data structure in global memory
space by building a table of task slots. For
example, RT_TASK tasks[2]; allocates
two task slots.

If you want to use the tasks slots,
initialize them with a call to rt_task_
init(). This call takes a pointer to a task
slot—a function that runs the stack size
and priority of the task.

For example, rt_task_init(&tasks
[0], fun, 0, 3000, 4); initializes a

task with priority four and a stack size of
3000 bytes. The entry point is the function
fun and it takes an argument (e.g., 0).

rt_task_delete()is the complement
to rt_task_init(). It suspends the task
and frees up the task slot for another task.

The task is initialized in a dormant
state and needs an external event to wake
it up. One way to wake up the task is to
explicitly start a task off with rt_task_
wake(), which makes the task runnable.

Typically, you want the task to wake up
to a periodic timer. You can make a task
periodic with a call to rt_task_make_
periodic(). This function takes three
arguments—the task slot pointer, a start
time, and when the task needs to run.

When it’s time to run, the task wakes up,
goes to work, and puts itself back to sleep
using rt_task_wait(). Other running
tasks and handlers can put lower  priority
tasks to sleep via rt_task_suspend().

Another way to wake up tasks is via
handlers. One of the two handler systems
in RT-Linux is an interrupt handler, and
you can register interrupt handlers for IRQ
levels in the system.

When an IRQ occurs, all the interrupt
handlers registered for that IRQ are run. A
handler can then decide to wake up a task,
which runs as soon as the interrupt han-
dler is done and the interrupt is serviced.

To register an interrupt handler, use
request_RTirq(). It takes two argu-
ments—the interrupt request level and a
pointer to a C function—to call when the
interrupt is activated. To unregister an
interrupt handler, call free_RTirq()
for the interrupt level.

That brings me to the topic of I/O. All
RT-Linux tasks run in kernel mode and thus
have access to all I/O ports. In other words,
writing real-time device drivers using RT-
Linux modules is easy.

[root@hugo 2tasks]# lsmod
Module         Pages Used by
rt_process         1 0
rt_fifo_new        2    [rt_process] 0
rt_prio_sched      1    [rt_process] 0
ds                 2 2
i82365             4 2
pcmcia_core        7    [ds i82365] 3
[root@hugo 2tasks]# rmmod rt_process
[root@hugo 2tasks]# rmmod rt_fifo_new
[root@hugo 2tasks]# rmmod rt_prio_sched

Listing 3—You can remove the modules needed to run real-time tasks under Linux when
you finish. Removal is done with rmmod, which simply undoes the effects of modprobe and
insmod. 1smod can be used to check the status of all installed modules.
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#define MODULE
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/version.h>
#include <linux/errno.h>
#include <linux/rt_sched.h>
#include <linux/rtf.h>
#include "control.h"

RT_TASK tasks[2];
static char *data[] = {"Frank ", "Zappa "};

void fun(int t) /* t�the fifo number */
{
while (1) {
rtf_put(t, data[t], 6);
rt_task_wait();

}
}

int my_handler(unsigned int fifo)
{
struct my_msg_struct msg;
int err;
RTIME now;
while ((err = rtf_get(2, &msg, sizeof(msg))) ==

    sizeof(msg))
  {
    switch (msg.command) {
      case START_TASK:
      now = rt_get_time();
      rt_task_make_periodic(&tasks[msg.task],
        now, msg.period);
      break;
      case STOP_TASK:
      rt_task_suspend(&tasks[msg.task]);
      break;
      default:
      return -EINVAL;
    }
  }
if (err != 0) {

    return -EINVAL;
  }
  return 0;
}

int init_module(void)
{
rtf_create(0, 4000);
rtf_create(1, 4000);
rtf_create(2, 100);  /* input control channel */
rt_task_init(&tasks[0], fun, 0, 3000, 4);
rt_task_init(&tasks[1], fun, 1, 3000, 5);
rtf_create_handler(2, &my_handler);
return 0;

}

void cleanup_module(void)
{
rtf_destroy(0);
rtf_destroy(1);
rtf_destroy(2);
rt_task_delete(&tasks[0]);
rt_task_delete(&tasks[1]);

}

Listing 4—Here’s the rt_process.c listing. This module contains the
code to start and remove 2Tasks, as well as provide communication
with the user-level program through the FIFOs.
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#include <stdio.h>
#include <errno.h>
#include <sys/time.h>
#include <sys/types.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <linux/rtf.h>
#include <asm/rt_time.h>
#include "control.h"
#define BUFSIZE 70
char buf[BUFSIZE];

int main()
{
fd_set rfds;
struct timeval tv;
int retval;
int fd0, fd1, ctl;
int n;
int i;
struct my_msg_struct msg;
if ((fd0 = open("/dev/rtf0", O_RDONLY)) < 0) {
fprintf(stderr, "Error opening /dev/rtf0\n");
exit(1);

}
if ((fd1 = open("/dev/rtf1", O_RDONLY)) < 0) {
fprintf(stderr, "Error opening /dev/rtf1\n");
exit(1);

}
if ((ctl = open("/dev/rtf2", O_WRONLY)) < 0) {
fprintf(stderr, "Error opening /dev/rtf2\n");
exit(1);

}
  msg.command = START_TASK; /* now start the tasks */
  msg.task = 0;
  msg.period = (RT_TICKS_PER_SEC * 5000) / 1000000;
  if (write(ctl, &msg, sizeof(msg)) < 0) {
    fprintf(stderr, "Can't send command to RT-task\n");
    exit(1);
  }
  msg.task = 1;
  msg.period = (RT_TICKS_PER_SEC * 2000) / 1000000;
  if (write(ctl, &msg, sizeof(msg)) < 0) {
    fprintf(stderr, "Can't send command to RT-task\n");
    exit(1);
  }
  for (i = 0; i < 100; i++) {

FD_ZERO(&rfds);
FD_SET(fd0, &rfds);
FD_SET(fd1, &rfds);
tv.tv_sec = 1;
tv.tv_usec = 0;
retval = select(FD_SETSIZE, &rfds, NULL, NULL, &tv);
if (retval > 0) {
if (FD_ISSET(fd0, &rfds)) {
n = read(fd0, buf, BUFSIZE - 1);
buf[n] = 0;
printf("FIFO 0: %s\n", buf);

}
if (FD_ISSET(fd1, &rfds)) {
n = read(fd1, buf, BUFSIZE - 1);
buf[n] = 0;
printf("FIFO 1: %s\n", buf);

}
}

  }
  msg.command = STOP_TASK; /* stop the tasks */
  msg.task = 0;
  if (write(ctl, &msg, sizeof(msg)) < 0) {

fprintf(stderr, "Can't send a command to RT-task\n");

Listing 5—The user-level control process (app.c) is the program you run to start real-time tasks
and communicate with them. When the program is done, it shuts down the real-time tasks.

(continued)
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 Listing 5—continued

exit(1);
}
msg.task = 1;
if (write(ctl, &msg, sizeof(msg)) < 0) {
fprintf(stderr, "Can't send a command to RT-task\n");
exit(1);

}
return 0;

}

Of course, you have to make sure you
don’t put something Linux needs in a
strange state. The practical solution is to
not share devices with Linux and RT-Linux
applications unless you make special ar-
rangements with the corresponding de-
vice driver under Linux and ensure that
both devices know about each other.

I’ve covered field interrupts, how to start
and manipulate tasks, and how to control
hardware directly in an RT-Linux applica-
tion. Now let’s see how RT-Linux applica-
tions communicate with Linux processes.
Remember, even though RT-Linux runs un-
derneath Linux, the Linux processes aren’t
aware that it’s running.

RT-Linux FIFOs are virtual device drivers
that have ports in both the Linux and RT-
Linux contexts. You can think of them as
pipes that transport bytes from one do-
main to another. Whatever you write into
one side comes out the other.

On the RT-Linux side, FIFOs are created
with rtf_create(). This call identifies
which FIFO to use and the buffer size. If an
RT-Linux task wants to read and write the
FIFO, it uses rtf_put() and rtf_get().

Under Linux, a process opens a special
file in the /dev directory corresponding
to the FIFO. If you want to use FIFO 2, then
the device is /dev/rtf2. Once opened,
Linux processes read and write the FIFO
via the read() and write() system calls.

By implementing a simple character
device, the designers of RT-Linux enabled
any process under Linux to communicate
with a real-time task. It’s even possible to
communicate with real-time tasks using
commands from the command line.

For example, you can use redirection
to read and write a FIFO. cat /dev/rtf1
& echo "s0" > /dev/rtf0 sends the
string "s0" to a real-time task via pipe 0 and
continuously reads the results from pipe 1.

The 2Tasks example shows how it all
fits together. Listing 4 contains the source
code to the real-time module for 2Tasks.

Listing 5 is the user-level application code
that controls the real-time task and reads
the results.

In the real-time module, two tasks are
initialized in init_module(), which is
the module’s entry point. init_module()
creates three FIFOs that are used to communi-
cate with the Linux application in Listing 5.

FIFO 2 is used as a control channel for
the Linux application, and a handler is
installed. A FIFO handler behaves like an
interrupt handler. When there’s activity on
the FIFO, the registered handler (e.g., my_
handler()) wakes up and goes to work.

my_handler() implements the task
manager. The Linux-based application can
send commands to this handler to start

and stop each of the
two tasks.

Remember, when tasks are
initially created, they are sus-
pended in a dormant state. The Linux
application sends a start command
over the control FIFO for each task. When
my_handler() receives the commands
from the FIFO, the tasks are scheduled
periodically. Tasks can also be suspended
so they stop running.

What do the tasks do? They send a six-
character string to one of the two remain-
ing FIFOs (one sends Frank and the other
sends Zappa). After adding the string to
the FIFO, they suspend themselves using
rt_task_wait() and wait for the next
periodic timer wakeup.

When the module is removed, cleanup_
module()deletes all the FIFOs, makes the
tasks inactive, and removes them from the
scheduler. Because deleting the FIFO au-
tomatically removes the handler, you don’t
have to unregister the handler for the
FIFO. Any attempt to use the FIFO from the
RT-Linux or the Linux side results in an error.

Now, let’s look at the Linux application
side. Listing 5 starts by opening the Linux
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side of the FIFOs cre-
ated on the RT-Linux side

(i.e., /dev/rtf0, /dev/
rtf1, and /dev/rtf2).
After opening the necessary

FIFOs, the program creates a message
to start each task. It chooses a period of

RT_TICKS_PER_SEC × 5000

1000000

or 5 ms. In my system, the hardware timer
resolution is 0.8 ms, and RT_TICKS_
PER_SEC equals 1,1931,80, which is
the frequency that the timer chip sees.

Once the two tasks are started, the
program sits in a loop and reads data
from the FIFOs. It uses the select()
system call, which is a Unix/Linux facility
that handles event processing.

With a bit mask, you select which open
file descriptors (like file handles under
Windows/DOS) to block on. If there’s I/O
activity on the specified file descriptors or
a specified timeout occurs, the select()
call unblocks. This method is an efficient
way to deal with many I/O channels and
makes Unix and Linux popular in commu-
nication applications.

Ingo Cyliax has written for Circuit Cellar
on topics such as embedded systems,
FPGA design, and robotics. He is a re-
search engineer at Derivation Systems
Inc., a San Diego–based formal synthesis
company, where he works on formal-
method design tools for high-assurance
systems and develops embedded-system

After reading from the FIFOs, the data is
sent to the standard output channel, which
is the display. When the final count of 100 is
reached, the process sends messages to the
FIFO handler to suspend the tasks. Having
done the work, it closes the FIFOs and exits.

THAT’S ALL, FOR NOW
As you see, RT-Linux is a great tool.

www.rtlinux.org has links to interesting
projects like a haptic interface, data acquisi-
tion systems, and a control software proto-
type for a CNC machine (see Photo 1).

Look for more RT-Linux applications in
upcoming articles. Because it runs on my
laptop, I prototype ideas there first. Once
I iron out the initial concept and take care
of some bugs, I may port it to another
system. Or maybe not. RPC.EPC

Photo 1—The kinematics necessary to control
this Stewart platform–based CNC machine
machine were prototyped in RT-Linux.

products. Before joining DSI, Ingo worked
for over 12 years as a system and re-
search engineer for several universities
and as an independent consultant. You
may reach him at cyliax@derivation.com.
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Photo 1—Everybody needs a toy like this one.

Applied PCs

Fred Eady

Faster than a speeding bit, able to emulate ’486 processors in a single bound—
it’s SuperTAP. This virtually crash-proof system uses two processors for
debugging, and Fred’s got all the hardware details right here.

Recently I started a new hardware
design project. I began by searching the
Circuit Cellar Florida room for all the
necessary goodies. You know the routine—
wire cutters, voltmeters, o-scopes, solder-
less breadboards, things like that.

The most interesting tool I had to revive
and verify was an in-circuit

emulator (ICE). I’ve reached
the point where I won’t

sit down and de-
sign anything

complex un-
less I can

twiddle the bits electronically. No more
burn and churn for me. I depend on my
emulator.

In fact, I thought my PICmaster ICE was
broken, so I replaced every IC on the
interface card only to find out later that an
Ethernet card and Windows NT in the
host PC were the bad guys masking the
existence of my ICE card.

Whether it’s PIC or ’x86, the ICE gives
the designer an incomparable view of the
firmware and hardware. Such a beneficial
tool deserves a closer look. Thanks to the
folks at Applied Microsystems, you and I
will be privy to the hardware and software
that make up the ‘486-based ICE called
SuperTAP. There’s 3.46²  of SuperTAP
documentation, so let’s get going.

INVENTORY
The SuperTAP emulation system came

in a rather large box. Let’s open it up and
take a look inside.

The first thing we’d look for is the
SuperTAP hardware itself. Look no further

than Photo 1. The SuperTAP is palm-sized
and packs all the hardware necessary to
emulate a ‘486 processor. The whole
idea here is to debug stuff.

The SuperTAP replaces the target
system’s embedded processor. Communi-
cation with a host PC is done through RS-
232C or Ethernet. I like this already.
Those of you who follow my column know
how much I like Ethernet interfaces. The
Ethernet lashup provides data-transfer
speeds that approach 7 MB/min.

The ultimate destination for any infor-
mation emanating from SuperTAP is the
CAD-UL XDB high-level language debug-
ger loaded on the host PC. Using the Super-
TAP with XDB, you can interactively control
and examine the state of the target system.

For the advanced user, SuperTAP
comes standard with features like trace
disassembly, overlay memory, and a four-
level event system. There’s also the capa-
bility of operating with low-voltage tar-
gets. The voltage function is switch-se-
lected on the SuperTAP in Photo 1.

ICE on Tap
Part 1: SuperTAP Setup
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also responsible for monitoring the emula-
tion processor activity.

The result: a virtually crash-proof system.
By isolating the target-system processor
from the debugger, two things automati-
cally happen. First, the target can hang
and the debugger side keeps on truckin’.
Second, real-time operation is guaranteed.

Another side effect was also incorpo-
rated as a feature. The feature is nonstop

emulation (NSE), and it enables the target
to run unabated even while you define
events and upload traces.

Applied Microsystems claims that 95%
of software bugs are the result of data
corruption in the stack and at the data
pointer level, which causes program leaps
to nonexistent code. These leaps typically
take the emulator with them…right into la-
la land.

Fortunately, SuperTAP’s dual-proces-
sor configuration provides crash recovery,
which shields the control/debugger portion
of the emulation process from the target.

In a nutshell, the SuperTAP boasts:

• real-time emulation up to 66 MHz
• crash recovery
• 3- or 5-V operation
• hardware and software breakpoints
• overlay memory
• a GUI-based state-machine event system
• high-speed trace with timestamp
• trigger I/O capability

It also detects CPU clock frequency, target
VCC, and hung-bus conditions.

You’ve seen the star player, so let’s
look at the rest of the team members. The
box also contained an ISA Ethernet card
and all the necessary cables to attach the
SuperTAP to a target and host. I found it
interesting that a couple of Ethernet adapt-
ers for AUI and BNC were included. These
folks have it covered.

Box number two (inside the main box)
contained an Ethernet adapter (see Photo
2) designed to attach the SuperTAP to a
network and a 3Com ISA Ethernet adapter
for a PC. Again, the Applied Microsystems

If you’ve ever built
an ICE device, do you

remember struggling with
the hardware design to leave as

many open I/O lines as possible
after you implemented your emulator

hardware? Remember writing the code as
efficiently as possible in an attempt to leave
as many resources as possible for your
target? Remember writing the monitor code?

Success depended on which platform
you targeted and how rich the I/O set on
that target was. Well, if you ended up
working for Applied Microsystems and
you worked on the SuperTAP project, you
learned to use no target resources.

None. No memory, no I/O ports, no
serial ports. SuperTAP is transparent to
the target system right down to the soft-
ware level. SuperTAP doesn’t interfere
with target interrupts and doesn’t insert
wait states during emulation.

How can this be? The answer lies in the
processors—SuperTAP uses not one but
two. The emulation processor replaces
the target processor. The second proces-
sor (the control processor) is in charge of
communicating with the debugger and is

Figure 1—This is the raw hosts file that came with my “Chicago.”

This is a sample HOSTS file used by Microsoft TCP/IP for Chicago.

This file contains the mappings of IP addresses to host names. Each entry should be kept on
an individual line. The IP address should be placed in the first column followed by the
corresponding host name. The IP address and the host name should be separated by at
least one space.

# Additionally, comments (such as these) may be inserted on individual
# lines or following the machine name denoted by a '#' symbol.
#
# For example:
#
# 102.54.94.97 rhino.acme.com # source server
# 38.25.63.10 x.acme.com # x client host

# 127.0.0.1 localhost this is the original entry

126.1.1.1 taphost # Host PC
126.1.1.2 tapcard # SuperTAP ethernet card
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A typical software break-
point vectors the main pro-
gram to a diagnostic routine
that reports user-defined sta-
tus to the designer. SuperTAP
responds to a software

breakpoint by halting execution and re-
placing the breakpoint opcode with the
original instruction. Software breakpoints
in SuperTAP can only be implemented in
RAM because you can’t write to ROM.

If you can’t write to ROM and you need
to break inside ROM space, SuperTAP
gives you eight hardware execution
breakpoints that work in the ROM domain.
Four of these are in user-mode address
space, and the remaining four are in system
management mode (SMM) space.

Hardware breakpoints work like soft-
ware breakpoints, with one exception.

some time, bear with me. I think it’s appro-
priate to take time to define some of the
features for the newer readers.

BREAKING IT DOWN
Let’s start with breakpoints. What they

are and how they work is generally under-
stood. The object here is to define how they
work with the SuperTAP. I’ll begin with
software breakpoints.

SuperTAP provides you with 256 soft-
ware breakpoints. They replace instruc-
tions in the target with a special opcode
that forces a specific predefined task.

Photo 2—
This module
sets the Super-
TAP apart, in my
eyes.

engineers covered all the
bases, right down to termina-
tors for the BNC Ethernet link.
The RS-232C interface gear
was stowed here, too.

Box three included more
power cables and a big ol’
brick power supply. Hmmm,
what’s that in Photo 3? A full-
blown ’486 (without proces-
sor, of course) made by
Adastra Systems.

I searched the world over
for documentation, but found
none in the boxes. Good thing I do embed-
ded. It looks like a standard configuration.

Thanks to the Internet, documentation
(or the lack thereof) should pose no prob-
lem. If I need to know more about the
Adastra board, I’ll get on the ’Net and put
out the word.

SUPERTAP 101
I know most of you are experienced

engineers and thinkers. I use the word
“most” because some readers may be
reading their first embedded feature. For
those of you who’ve been embedded for
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Photo 3— Looks like a ’486, feels like an embedded ’486, smells like....

• breaking emulation
• switching between event-system levels
• counting occurrences with 32-bit counters
• tracing a single cycle
• turning trace on or off
• generating a trigger output

SuperTAP’s four-level architecture and
“trace one cycle” action lets you define a
sequence of events for capturing a trace of
a particular cycle or set of cycles during
program execution. The timestamp func-
tion provides accurate timing information
ranging from 30 ns to 8 h.

TRACING HISTORY
If you single-step through code and

write down all the information you think you
need, you don’t need trace history. If your
code is lengthy, you may be debugging
that project for a few months.

But, if you use SuperTAP’s trace-history
feature, you can capture and record real-
time execution history of your target system’s
processor. SuperTAP can store up to 64k
bus cycles, all of which are timestamped.
You can even view and upload the trace
data without stopping the emulation.

Trace history enables you to view raw
bus cycles, assembly and/or C-level
source, and data cycles. The CAD-UL XDB
debugger permits scrolling and search-
ing to speed the trace-reading process.

MORE THAN MEMORY
Technically, overlay memory is just

RAM. But not just any RAM. Overlay
memory is SuperTAP emulator RAM that
can wear many different hats.

Overlay RAM can be target read/
write, target read-only, reserved or
guarded, 8-, 16-, or 32-bit. One advantage
of using overlay RAM as guarded memory
is that if your application decides to write
to the guarded area, a breakpoint is gener-
ated and an access violation is reported.

If this happens, your program has tried
to get at memory outside its limits. The
same is true for read-only overlay memory.
You can think of it as automatic debugging.

NSE GOTCHA
One last comment before we start

passing electrons through SuperTAP. NSE
is neat, but you never get something for
nothing. You can dynamically view registers
and variables during program execution
with NSE, but there’s a price.

Every time the screen updates, it mo-
mentarily stops emulation to read the
emulator memory. If your application
chokes on this type of activity, you can
disable the dynamic update operation in
the XDB debugger application.

HARDWARE SETUP
Basically, there are two ways to imple-

ment the SuperTAP—RS-232C and Ether-
net. Let’s try both, starting with RS-232C.

SuperTAP requires a host PC with a
’486 or greater processor and at least
one 16550-equipped serial port. If you’re
serial-port challenged, an empty ISA slot
for that Ethernet card included in the
SuperTAP evaluation kit will do. Fortu-
nately, all of those requirements are met
with the equipment at hand.

As you might imagine, connecting the
SuperTAP to a serial port is
child’s play. A modular RJ-45
cable connects the SuperTAP
to a 9- or 25-pin adapter that
plugs into the PC’s serial port.

While you were reading, I
took the liberty to install the
CAD-UL XDB debugger soft-
ware. SuperTAP automatically
adjusts for the transfer rate se-
lected by the debugger. That’s
pretty straightforward. Let’s
move on to the Ethernet setup.

There’s a couple ways to
get SuperTAP attached to
Ethernet. The first one assumes
that you don’t want to share it
on a LAN. Let’s do a little
SuperTAP LAN 101.

Hardware breakpoints
work in ROM and RAM.

They occur only when the
instruction is actually executed

to prevent breaking on a pre-
fetched break opcode.

TRIGGER HAPPY
Remember, at first, I was seeking out

test equipment. Why? Because sometimes
you have to “see” a signal. Embedded
computers run very fast and the only way
to capture or see a particular event is to
trigger on it.

SuperTAP provides one input pin and
one output pin to support external trigger-
ing. This trigger I/O enables logic ana-
lyzers and storage scopes to capture the
event for later viewing and debugging.

Now, let’s define the event system and
its relation to the triggering process. The
SuperTAP NSE lets you modify events
without stopping emulation so you can
effectively debug in real time.

Event triggering is based on event
comparators. There are four levels of
events and eight comparators that are
defined by address, data and status con-
ditions. These comparators enable you to
set event breakpoints on program events,
target hardware events, and CPU bus
state. Several events can be set up:

• address match
• address range
• data match
• data range
• external trigger input
• trace full
• counter value
• event system level

You can include bus cycle
status as part of your compara-
tor condition for event-system
hardware breakpoints. The con-
ditions include:

• memory read and write
• instruction fetch
• I/O read and write
• system-management mode
• branches

CPU signals like NMI or INTR
also qualify as an event. Once the
event conditions are specified
and met, SuperTAP responds by:
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And let’s not forget the Adastra ’486.
Looks like next month’s article is set. Check
in to see if SuperTAP can help take the
complicated out of embedded. APC.EPC

SOURCES
’486
Adastra Systems Corp.
(510) 732-6900

Fred Eady has over 20 years’ experience
as a systems engineer. He has worked
with computers and communication sys-
tems large and small, simple and com-
plex. His forte is embedded-systems design
and communications. Fred may be reached
at fred@edtp.com.

SuperTAP uses TCP/IP to communicate
with the host PC in a stand-alone Ethernet
network configuration. As you know, each
device on a TCP/IP network has its own
unique address.

To set up our stand-alone TCP/IP net-
work, make sure Bill’s TCP/IP software is
installed and the Ethernet adapter works.
The Applied Microsystems folks supplied
the necessary parts in the evaluation kit.

Next, install the 3Com Ethernet card.
Once that’s done, it’s simple Windows
95/NT stuff to load a TCP/IP stack. I
prefer NT, but due to the limitations of
HiJaak, I’m forced to use Windows 95 here.

With the physical card and TCP/IP
stack loaded, we can identify the PC host.
Let’s use 126.1.1.1 with a netmask of
255.255.0.0 to identify our PC host.

The next step is to create a hosts data-
base to identify the PC host and the
Ethernet adapter and associate the IP
addresses and host names of both devices.
When you do this, be careful not to
overwrite IP information that already exists.
If your file has good stuff in it, save it
somewhere and create a new hosts file.

Either way, edit the hosts file to reflect
the Internet address and host name of the
host PC and the same for the Ethernet
adapter. Our hosts file is shown in Figure 1.

That special Ethernet adapter (see Photo
2) is the Applied Microsystems Ethernet
communications adapter. It connects to
the network via a 15-pin AUI interface.

A modular cable connects this adapter
to the SuperTAP. Remember the interface
adapters? Now we know what they’re for.

Now, you connect a terminal (either a
dumb 3101 type or a smart Windows
Hyper type) to the Ethernet adapter and
load the flash memory with the Ethernet
adapter’s IP address and netmask. Of
course, these entries must match what you
put into the hosts file.

ON TARGET
So far, I’ve described the SuperTAP

evaluation system and its physical compo-
nents. Although it runs in a stand-alone
mode, the next step is to connect it to the
embedded PC that came with the package.

But, connecting SuperTAP is only the
beginning. We still haven’t explored us-
ing the it over a multimachined LAN. And,
right now, all you know is the name of the
debugger software. I want to show you
how it plays with the SuperTAP hardware.

Fax: (510) 732-7655
www.adastra.com

SuperTAP
Applied Microsystems Corp.
(800) 426-3925
(206) 882-2000
Fax: (206) 883-3049
www.amc.com

XDB debugger
CAD-UL, Inc.
(602) 945-8188
Fax: (602) 945-8177
www.cadul.com

ISA Ethernet adapter
3Com
(800) 638-3266
(408) 326-5000
Fax: (408) 326-5001
www.3com.com

www.adastra.com
www.amc.com
www.cadul.com
www.3com.com
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Silicon Update

DEPARTMENTS

n Parts 1 and 2,
I looked at some

common implemen-
tations of the timer/

counter function found on micropro-
cessors. I also introduced the time
processor unit (TPU) and explained
how it increases system throughput
by freeing up the CPU from having to
handle timing/counting functions.

Essentially, the TPU is a copro-
cessor that runs its own microcode
and operates semiautonomously from
the CPU. To program the TPU, you
must use its native microcode.

In Part 1, I provided a table of the
canned TPU functions for mask sets
A and G of the Motorola ’68332 (INK
102, p. 70). You may have noticed that
these TPU functions are well suited
for automotive and motor/motion-
control applications.

For example, in the automotive field,
the TPU’s ability to autonomously
provide pulses of controllable times
and widths is used in ignition systems.
As well, its ability to read encoders and
measure pulse widths or frequency is
useful in flywheel/gear-tooth applica-
tions.

The TPU also has extensive motor/
motion control functions such as
reading Hall-effect sensors associated
with brushless motor applications and
controlling stepper motors. Given the
number of microprocessors used in

3

Programming in Microcode

4
If you’re
going to
program

the TPU, you’d better
know how to use its
native microcode! But,
the real trick to writing
microcode is under-
standing the hardware.
Fortunately, Joe has
all the explanations
right here.
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the automotive and motor/motion-
control areas, tailoring the canned
functions to them is a good marketing
decision.

There are also several other canned
functions that aren’t related to either
of these areas. For example, one canned
function produces a universal asyn-
chronous receiver transmitter (UART).

The canned functions not only
increase system throughput by off-
loading some of the CPU’s work, they
also reduce programming time. Given
the extensive list of canned functions,
learning to program the TPU may seem
like an esoteric exercise done merely
for the edification of the programmer.

However, no matter how extensive
the canned functions are, there can
never be enough mask sets to match
the requirements of all users and ap-
plications. More importantly, having
the TPU resources under direct pro-
grammer control provides another
level of flexibility.

Keep in mind that TPU use isn’t
limited to just timing/counting func-
tions. Once you can program the TPU,
only your imagination limits what the
TPU can be used for.

You can think of the TPU as a small
microcontroller. I’ve found that the
best way to understand a new micro is
to study the assembly-language instruc-
tion set and the hardware diagrams.

In a complex microprocessor, of
course, that can be a time-consuming
exercise. However, with the TPU, it’s
fairly quick because the TPU command
set consists of only 11 subinstructions.
So let’s review the instruction set and
structure of the TPU’s microcode, as
well as the TPU hardware structure.

When you write in microcode,
understanding the hardware is much
more important than if you were
writing in C. It also helps to keep the
hardware registers in mind, visualize
the flow of data, and understand the
TPU time slices. All of these actions
are necessary because programming in
microcode is far less accommodating
than programming in assembler or C.

The TPU lacks many standard hard-
ware features that are taken for granted
in C or assembler. For example, when
you’re programming the TPU, remem-
ber to latch the condition codes if you
want to use them in the next instruc-
tion. The hardware doesn’t automati-
cally latch them.

EXECUTION UNIT
The execution unit—the heart of

the TPU—executes the microcode
instructions. Figure 1 shows the ex-
ecution unit’s register set. These reg-
isters are connected to one another by
two buses, as you can see Figure 2.
Notice that some registers can
access both buses whereas
some have access only to bus A.

The execution unit is a
shared resource among all the
TPU channels, but each TPU
channel also has three indi-
vidual 16-bit registers—the
match event register (MER),
capture register, and greater
than–or–equal to register.
These registers communicate
with the execution unit via
the ERT register.

The accumulator (A), data
I/O buffer (DIOB), and preload
(P) registers are all general-
purpose registers. Each chan-
nel’s registers can place their
contents on bus A or B but can
only accept data from bus A.

The DIOB and the P regis-
ters can read and write data to
TPU parameter RAM. These
registers are the only ones in
the execution unit that can
access TPU RAM. Parameter
RAM is the only means of
data transfer between the
TPU and CPU. The P register
has the added feature of 8- or
16-bit operation.

The AU unit performs arithmetic
operations, as well as shifts using the
AU shifter. When combined with the
shift register, a 32-bit shift is possible.

Two latches, one for bus A and one
for bus B, are associated with the AU
unit. The AU unit also has carry-in and
B-invert bits. Note that data can be
written into the AU unit from either
bus A or B but that the AU unit can
only write to bus A.

There are also four status bits—
carry (C), overflow (V), zero (Z), and
negative (N)—associated with the AU
unit. They are similar to status bits
found on standard microprocessors.

The link register links channels
together and enables a channel to
respond based on events occurring on
other channels.

The decrementer register (DEC) is
used in the REPEAT and DEC_RETURN
subinstructions, and it is also used as
a counter value.

The channel register (CHAN_REG)
holds the active channel. It is required

Figure 1 —Here’s the register set of the TPU’s execu-
tion unit. All TPU channels share these registers. The
active channel is determined by CHAN_REG.

Figure 2 —The execution unit is shared by all TPU channels. Notice
that some registers have access to both A and B buses, and other
registers have only limited access. Note also that registers DIOB
and P are the only ones with access to TPU parameter RAM, and
are used to pass parameters to the CPU.
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Before setting the EMU bit, you
have to load the microcode into on-
board RAM or flash memory (depend-
ing on the micro). For example, the
TPUASM produces an S19 file that
must be downloaded into onboard
RAM. For the ’68332, it is loaded into
2 KB of onboard RAM. Once the EMU
bit is set, the CPU cannot access the
onboard RAM (see Figure 3).

MICROCODE STRUCTURE
TPU microcode is made up of micro-

instructions that have the following
structure:

{label} subinstruction 1 {;
subinstruction 2 ;
subinstruction 3 �}

where items enclosed in {} are optional.
Each micro-instruction is 32 bits long
and must have one of the five possible
formats shown in Figure 4. Subinstruc-
tions have the structure keyword
field 1 { , field 2, field 3);.

Each keyword specifies a TPU
resource. Within the same micro-
instruction, no two subinstructions can
have the same keyword. field pro-
vides operands for the subinstructions.

The syntax for a micro-instruction
is quite simple. Micro-instructions
end with a period. Subinstructions
(also called subcommands) are sepa-
rated by semicolons, and fields are
separated by commas.

In the following sample microcode,
ram, chan, goto, and au are keywords.
Note that the carriage return is not a
delimiter.

ram field;
chan field, field;
au field, field.
chan field, field;
goto label.

because the execution unit is a shared
resource.

The event-register temporary (ERT)
register captures the contents of one
of the active channels’ registers based
on the channel’s setup. Note that the
ERT can only access the active channel
or A bus. It has no access to the B bus.

As I discussed previously (INK 102),
the ’68332’s two timers (TCR1 and
TCR2) are free running. Both TCR1 and
TCR2 have access to the TPU chan-
nels and A bus but not to the B bus.

I made a point of indicating which
registers have access to which bus to
emphasize that, when you’re writing
microcode, you must keep accessibility
in mind. Hardware accessibility de-
fines which commands are valid and
which are not. Now, let’s look at the
microcode instruction set.

TPU MICROCODE
To aid in the development of micro-

code, a TPU assembler is available. I
use the TPUASM assembler which
executes on IBM-compatible machines
and assembles the microcode from a
user source file.

Motorola maintains a master library
of functions (including the canned
functions) which can be downloaded
and used by any programmer. This
library enables you to combine some
of the canned functions with custom
functions. You can even order your
own custom mask set containing any
combination of functions, provided
you meet the minimum order quantity.

In normal mode, the TPU runs
microcode that is stored in processor
ROM (i.e., mask set A or G). For the
TPU to run user code, it must be placed
in emulation mode. You do this by
setting the EMU bit in the TMCR
register (covered in the previous ar-
ticles in this series).

Figure 3 —In nonemulation mode, the TPU runs the
canned functions stored in the processor’s ROM
and the CPU has access to onboard RAM. In
emulation mode, the TPU runs microcode that has
been downloaded into onboard RAM, prior to
entering emulation mode. In emulation mode, the
CPU has no access to onboard RAM.

RAM

TPU

IMB

Microcode
ROM

RAM
Microcode

Emulation
mode

Nonemulation
mode

CPU can access RAM CPU has no access

TPU

IMB
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where adest is the A bus destination.
Valid word destinations are a, diob,
p, sr, tcr1, tcr2, ert, and nil. Byte
destinations are p_high, p_low, and
chan_dec. The valid nibble destina-
tions are link, chan_reg, and dec.

op is the operator. It can perform
its operation on the valid constants or
expressions listed in Table 1. Valid B
sources are all word length and can
only be a, p, sr, or diob.

The optional ccl instruction latches
the condition codes at the end of the
instruction. If ccl isn’t included in
the subinstruction, the condition codes
aren’t changed. That’s a detail that isn’t
an issue in assembly or C programming.

The optional shift instruction
shifts the contents of the shift register
to the right one-bit position.

The optional read_mer instruction
reads the match event register (MER)
into the ERT register.

You can see that the au subinstruc-
tion can have up to two sources—one
from bus A and one from bus B. At
the start of the subinstruction, the AU
latches are loaded and added together.
Subtraction is accomplished by in-
verting the Bsource before addition.

The results pass through the AU
shifter and are placed back on the A
bus and routed to the destination.
Note in Figure 5 that addition occurs

in T2 and a fetch of data
from parameter RAM occurs
in T4. So, if a value in pa-
rameter RAM is part of the
au instruction, an au in-
struction to load p or diob
with the desired parameter
RAM value is required before
the addition operation.

The micro-instruction au
:= diob +para0. (where
parm0 is parameter RAM
location zero of the active
channel) appears to add the
parm0 value to DIOB and
store it in A. But, it doesn’t
give the desired result. The
desired result is obtained by:

ram p:=parm0.
au a:=diob +p.

Take a look at the instruc-
tion formats shown in Figure
4. Note that all of the au
instructions are format 1 or
2, except for the au instruc-
tions that have immediate
data (format 5).

Knowledge of the instruc-
tion format is important
because you can identify
valid instructions. The as-
sembler catches most of the
invalid instructions, but it
doesn’t make any guarantees.

BINV is asserted in sub-
traction operations and in-

Figure 5 —A TPU instruction is executed in two CPU
clocks. There are four time slices (T1–T4) associated
with each TPU instruction.

A micro-instruction executes in
two CPU clocks. As Figure 5 shows,
this arrangement gives four time slices
per instruction. It’s important to note
when certain actions take place relative
to the four clock slices, as I’ll show
you shortly.

SUBINSTRUCTIONS
Let’s look at the 11 subinstructions

in more detail.
au performs arithmetic and shifting

operations. The operands are sourced
from the A and B buses and the results
placed on the A bus. The syntax of
this subinstruction is:

au adest op (constant / ex-
pression) {,ccl} {,shift}
{,read_mer}

T1 T2 T3 T4

0
R
/

W

A bus
source

(11)

A bus
destination

(13)

AU
shift

control

S
h
i
f
t

C
C
L

B bus
source

(11)

C
a
r
r
y

B
Inv

Register/
Address

mode

Parameter RAM
address (14)

END/
REPEAT

0

3 1 3 0 2 9 2 8 2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 1 9 1 8 1 7 1 6 1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1 0
Format 1: execution unit and RAM

1
A bus
source

(11)

A bus
destination

(13)

AU
shift

control

T
D
L

M
R
L

B bus
source

(11)

C
a
r
r
y

B
Inv

Pin action
control

END/
REPEAT

0

W
M
E
R

L
S
L

PIN
immed.
action

3 1 3 0 2 9 2 8 2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 1 9 1 8 1 7 1 6 1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1 0

Set/
Clear
flags

C
I
R

Format 2: execution unit, flag, and channel control

0
Branch

condition
Microcode 

address
Time base

select
Pin action

control

enable/
disable
m/tsr

1
B
T
F

PIN
immed.
action

3 1 3 0 2 9 2 8 2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 1 9 1 8 1 7 1 6 1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1 0

Set/
Clear
flags

f
l
u
s
h

P
config

Format 3: conditional branch (if...then), flag, and channel control

0
Microcode 

address
Time base

select
END/

DEC_RT
1

3 1 3 0 2 9 2 8 2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 1 9 1 8 1 7 1 6 1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1 0

f
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h

1
R
/

W

goto
call

return

L
S
L

Register/
Address

mode

Parameter RAM
address (14)

Format 4: goto, call subroutine, return from subroutine, flag, and RAM

1
A bus
source

(11)

A bus
destination

(13)

AU
shift

control

S
h
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f
t

C
C
L

Immediate data (7:0)
T1BBI

X
END/
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1

3 1 3 0 2 9 2 8 2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 1 9 1 8 1 7 1 6 1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1 0

1
L
S
L

X
Set/

Clear
flags

C
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R

Format 5: execution unit, immediate data, and flag

A

DIOB

SR

ERT

P_high P_low

P

15 0

LINK

DEC

CHAN_
BFG

CHAN:DEC

7 4 3 0

A bus sources
Word source—p, a, diob, tcr1, tcr2, ert, o,
Byte source—p_high, p_low, dec, chan_reg, o
Special—read_mer, ert-mer (during t2)

B bus sources
Word sources—p, a, sr, diob, o, max ($8000)
B bus can be inverted (1’s compl.) with t

A bus destination
Word destination—p, a, diob, tcr1, tcr2, ert, nil
Byte destination—p_high, p_low, chan:dec
Nibble destination—link (7:4), chan_reg (7:4), dec (3:0)

Special
Write_mer—ert=mer (during next t2)
Shift—shift register shift control
CCL—condition codes latch (z, c, n, v)
TDL—transition detect latch negate
MRL—match recognition latch negate
LSL—link service latch negate
BTF—branch on true or false
P config—config TBS, PAC, PSC by P
CIR—channel interrupt request

Figure 4 —When programming, keep this format in mind. A valid instruction must be in one of these formats.



68       Issue 104 March 1999       Circuit Cellar INK®

the next inline subinstruction. no_
flush is the default condition.

DEC_RETURN
dec_return returns the program

sequence from a subroutine when a
certain number of micro-instructions
in the subroutine have been executed.
The number of micro-instructions is
set by the value in the decrementer
(DEC) when the subroutine is called.

Every time a micro-instruction in
the subroutine is executed, the value
of the decrementer is reduced by one.
When it reaches zero, the program
sequence is returned. You need to load
dec first before calling the subroutine:

au dec:=#6
call SUB1,flush:dec_return.
labe1 next command

Six commands in SUB1 are executed.
Then, the program returns to label
and executes the next command.

The code block called doesn’t have
to be a subroutine. It can be any block
of code identified by a label. This fea-
ture enables the programmer to save
code space, which is somewhat limited
in the TPU.

Let’s say that somewhere in the
code you perform the operation:

label1
ram p:= para1;
diob:=para2.
au a:=p + diob.
ram a:>parm0.

This operation adds parameter RAM
values in locations one and two and
stores them in location zero. If, in
another part of the microcode, you
wish to use the exact code, you can
use dec_return:

au dec:=#4.
call label1,flush:dec_return.
next command

OTHER INSTRUCTIONS
end controls the end of a state, ends

the current state once it is completed,
and returns control to the hardware
scheduler. The syntax is simply end,
and it can be used with the au, chan,
and ram subcommands.

The goto subinstruction branches
unconditional to the specified loca-
tion. The syntax is goto label{,

verts the B bus data. Carry in (CIN) is
asserted in subtract operations, when
the 1 and $8000 constant are specified.

Valid au subcommands are:

• au a:=1.—assign the value 1 to a
• au a:=p+diob.—add p to diob

and assigns results to a
• au p:=a+diob +1, ccl.—add a

to diob plus 1 and assigns results
to p and latches the condition codes

• au diob:=#34—assign p with the 34

The only invalid au subcommand is
au a:=p+tcr1. because the B bus
doesn’t have access to tcr1.

CALL
The call subinstruction branches

to a subroutine. The syntax is call
label {,flush | , no_flush).

The flush/no_flush option deter-
mines whether the next subinstruction
after the call is executed before the
branch to the subroutine or on return
from the subroutine (see Figure 6). This
detail has caught me more than once.

For example, consider:

au a:=1.
call sub1, flush.
au a:= diob.

au a:=1.
call sub1, no_flush.
au a: = diob.

In the first example, the A register
enters sub1 with the value of 1. In
the second example, it enters sub1
with the DIOB value.

The flush and no_flush are nec-
essary because the TPU prefeteches

Figure 6 —When the call to sub is made with no_
flush, Inst 1 is executed prior to the execution of the
subroutine. But, when flush is included in the call,
Inst 1 is executed after the subroutine is complete.

No flush Flush

Inst 1

Inst 2

NOP

Subroutine Subroutine

Call
Sub

Call
Sub

Inst 1

Inst 2

Call Sub.
Inst 1.
Inst 2.

.

.

.
Call Sub, flush

Inst 1.
Inst 2.

.

.

.

Table 1—These are valid
operations and expressions
that are used with the au
subinstruction. Note the valid A
and B bus sources.

Valid operations
:= Assignment
:=<< Assignment and shift left
:=>> Assignment and shift right
:=R> Assignment and rotate right

Valid constants
0, +1, �1, $8000, $ffff.

Valid expressions
Asource
Asource + constant
Asource + Bsource
Asource + Bsource + 1

Asource � Bsource
Asource � Bsource � 1
Asource + !Bsource
Asource + !Bsource + 1
Asource + #data
  (where #data == immediate data)
#data

Valid A sources
Word sources—a,diob, p, sr, tcr1, tcr2, ert, nil
Byte sources—p_high, p_low, chan_dec
Nibble sources—link, chan_reg, dec

Valid B sources
Word sources—a,diob, p, sr
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flush | no_flush}, which is simi-
lar to the call subinstruction.

if branches conditionally to a speci-
fied location. The syntax is if {con-
dition := condtion_value} then
goto label {,flush | no_flush}.

The possible conditions are Less_
than, Low_same, V, N, C, Z, Flag0,
Flag1, Flag2, TDL, MRL, LSR, HSQ1,
HSQ0, PSL, and PIN. Possible condi-
tion values for the if subinstruction
are 1, 0, True, and False.

The if subinstruction is similar to
other if branches found in standard
assembly language (with the added
concern of the prefetch taken care of
by the flush operation). The instruction
if a:= less_than diob goto
label, flush. reads: if A is less than
or equal to diob, then branch to label.

NOP performs no operation, but it is
useful in terms of timing. For example,
you can use it to ensure that data is
stetted with respect to time slices.

The ram subinstruction reads or
writes to parameter RAM. Only execu-
tion unit registers P and DIOB can
access parameter RAM, and all accesses
are 16 bits. The syntax is:

ram ram_reg r/w ram_address.

where ram_reg is either P or DIOB,
and r/w indicates whether it’s a read
(<-) or a write (->). ram_address is
the current channel’s parameter RAM,
including prm0 to prm6.

There are several ways to address
parameter RAM, but the most common
are ram diob <- prm5 and ram diob
-> prm5. These two subinstructions
show how to write into and read from
the parameter RAM, location 5, of the
current channel. In ram p -> (2,3),
p is written into parameter RAM loca-
tion 3 in channel 2.

repeat places a micro-instruction
under the control of the decrementer
(DEC). The micro-instruction is ex-
ecuted the number of times set by the
decrementer, plus one more.

repeat is similar to dec_return,
only there’s no branch. In this example,
au a:=a+p executes seven times:

au dec:=#6.
repeat;
au a:=a+p.

return returns control of the pro-
gram to the address stored in the return
address register (hidden from user). It’s
a standard return instruction with the
condition (like all sequencing in micro-
code) that the prefetch must be taken
care of with flush. The syntax is
return {,flush | no_flush}.

Because there’s only one return
address register, calls cannot be nested:

return.
au a:=diob.

Here, the return jumps to the location
stored in the return address register
and sets A equal to DIOB.

ALMOST THERE
Once you understand the few idio-

syncrasies associated with microcoding,
it becomes clear that programming in
microcode isn’t much different than
programming in a higher level language.

Next month, I’ll look at the last
subinstruction—CHAN_REG. I’ll also
discuss scheduling, entry points, and
microcode programming examples. I
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JTAG

A lot of
manufac-
turers
are see-
ing the

advantages of JTAG,
especially when it
comes to in-circuit se-
rial programming. Join
Jeff as he  takes a
look at one of the low-
cost tools that make it
all possible.

avoided program-
mable logic (PALs

and PLAs) until Inter-
national CMOS Technolo-

gies (ICT) introduced programmable
electrically erasable logic (PEEL) in
1987. Before this, there were only OTP
devices that gobbled up high currents
compared to standard logic devices.

Companies were rather hush-hush
about their proprietary programming
algorithms. Special programming volt-
ages were necessary, which required
special programmers.

If you happened to be at a company
with established programming hard-
ware, you might be able to get a hold
of the algorithms. But, as for you or
me building a programmer, forget it.

The PEEL devices added a new twist
to the equation—CMOS devices that
were reprogrammable. What did that
mean to the designer using program-
mable logic devices in a design? Re-
programmability gave the designer a
level of flexibility that was never
achievable before.

Suddenly, all the logic between the
input and output pins of the device
could be altered without having to
design a new PCB. That is, assuming
the device was a DIP part and was
inserted into a DIP socket on the PCB.

I was already convinced that the
payback for using IC sockets on PCBs
was justifiable, so using PEELs

merged easily with my mindset. Now,
I’m not trying to tell you that a pro-
grammable device can always fix the
problems without PCB redesign, but
in many instances, it does just that.

One of the simplest examples is
using the programmable logic device
as an address decoder. Perhaps you
need to move or swap some I/O selects.
A quick change to the logic equations
can reconfigure any or all of the I/O
without any change to the PCB. This
procedure also saves cuts and jumpers
to existing boards.

REAL ESTATE BROKER
Using programmable logic may

have been thrust on you for reasons
other than flexibility of reconfiguring
the internal logic. Population density
may have been a factor.

With programmable-logic devices,
you can eliminate a large number of
the standard bubblegum-logic devices.
Although the programmable device
costs more, it pays for itself in saved
real estate both on the PCB and in the
inventory room.

Today, programmable devices are
growing in size and density. The com-
plex programmable logic device (CPLD)
not only has more I/O pins but also
more macrocells. In fact, the number
of macrocells available can outnumber
the actual I/O pins. This added density
can potentially eliminate even more
support chips.

Your company may have already
made the leap of faith into the world
of SMT designs. SMT parts aren’t easily
socketed, so reprogramming these logic
devices is a hassle. What’s a designer
to do?

Enter JTAG. (You probably knew I
was going to say that.)

ISP, JTAG STYLE
Somewhere along the development

path, programmable-logic manufactur-
ers started eyeing the flexibility of the
JTAG testability standard. JTAG archi-
tecture enabled these manufacturers
to solve the in-circuit programming
problem by simply adding additional
programming logic and allowing con-
trol via JTAG extensions.

By increasing the instruction register
size (bit width), you allow additional

i

Working with CoolPLD
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programming instructions. These in-
structions enable an additional data
register called the ISP register.

The ISP register is how the program-
ming information actually gets to the
array fuses (E2). Voilà—in-circuit pro-
gramming via the JTAG port.

Philips Semiconductor is one manu-
facturer of CPLDs. They have a family
of fast (almost) zero-power (FZP) devices
with JTAG ISP in 3- and 5-V versions.

These FZP devices use extended
programmable-logic arrays (XPLA) to
achieve macrocell propagations in the
low nanoseconds while keeping currents
in the low milliamperes at speeds
above 1 MHz. Figure 1 gives you an
idea of how the XPLA is laid out.

XPLA ARCHITECTURE
The PZ3065 and PZ5064 (3 and 5 V,

respectively) are the smallest CPLDs
that Philips manufactures with the
JTAG ISP. They are packaged in vari-
ous package sizes and styles from
44-pin PLCC to 100-pin QFP.

The packages with more pins offer
more I/O without necessarily increas-
ing the macrocell count. If you need
more facilities, the larger pin packages
let you substitute a higher density CPLD
without having to redesign the board.

The XPLA architecture is made up
of multiple logic blocks (LBs), which are
interconnected by a zero-power inter-
connect array (ZIA). The ZIA is a large
row/column array consisting of inputs
to each LB and feedback from each
macrocell and I/O pin (see Figure 1).

Figure 2 shows the PAL array of 16
individually programmable five-input
AND gates (built for speed) that make
up each LB. Each gate is OR’d into
one of 16 macrocells along with a

Figure 1 —The XPLA architecture shows how the logic block and
macrocells are interconnected using a cross point switch (ZIA).

programmable PLA array of
32 AND/OR gates used when
there’s a need for increased
product term density. The
ZIA also supplies six possible
control terms in support of
the macrocells.

Each macrocell consists
of a flip-flop that is configur-
able for either D or T types
(see Figure 3). The clock to
the flip-flop can be synchro-
nous or asynchronous and
can clock off either the ris-

ing or falling edge.
Up to four different clocks are avail-

able to the macrocells. They can be
from synchronous external sources or
asynchronous internal macrocell out-
puts. Powerup initializes all F/Fs into
an initial 0 state, but preset and reset
inputs can be implemented using two
of the four control lines from the ZIA.

The remaining four control terms
can be selected as output-enable control.
Notice that the macrocell can be by-
passed if necessary. Also, all outputs
have a global tristate (*GTS) control.

GTS control, when enabled, permits
all the pins on the device to be tristated
by a single input pin. This arrangement
releases the driving potential of all
outputs to aid in testing (which could
also be accomplished via the JTAG
facilities).

Feedback to the ZIA comes from
the macrocells’ output and the I/O pin,
with the output driver between the two.
When the pin is used as an output, it’s
driven from the macrocell (via its out-
put driver) or the ZIA.

When the pin is used as an input,
the macrocell’s output driver is dis-
abled. The input then goes to the ZIA,
and the macrocell’s output is also fed
back to the ZIA.

DESIGN TOOLS
Philips has a full line of tools start-

ing with a $99 Coolrunner XPLA de-
signer kit. To simplify the hardware
side, a $50 ISP prototype board lets
you see some immediate results. The
ISP board comes with a PLCC PZ5128
CPLD device, a two-digit seven-segment
LCD, and lots of prototyping area.

The XPLA designer software is a
Windows-based suite of tools that

carries you through the five steps of a
CPLD design—design definition, device
fitting, functional simulation, timing
simulation, and programming. The
XPLA designer produces a JEDEC out-
put file that the ISP prototyping board
and programming software use to pro-
gram a device through the JTAG port.

The process begins with the design
definition. XPLA designer uses a hard-
ware descriptive language (HDL) for
design entry. This HDL is supported
in one of three formats—Boolean equa-
tions, state machines, and truth tables.

A Philips hardware design text file
(.PHD) is created to hold the design
definition. This file contains three
basic sections—the header, declarations,
and logic description. The header is
information (e.g., title and special
notes of interest) about the design.

The declaration section is where
all of the I/O pins and internal nodes
are defined and the constants, variables,
and macro functions are declared. A
macro is a reusable predefined function
such as an octal latch, which is made
up of eight individual latches with the
appropriate control logic. Because this
device may be used multiple times in
the same CPLD design or in future
designs, it makes sense to save it as a
macro function.

Naturally, it takes time to learn all
the shortcuts. The most important con-

Figure 2 —The logic block section consists of PAL and
PLA arrays, providing a combination of speed and
increased product term density.
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Figure 3— The macrocell has a variety of clocking options
as well as feedback before and after the I/O buffer.

for a specific part. There are several
options that simplify compilation
(i.e., pin assignment). The compiled
file can then be fitted into the part
yielding a resource report (.FIT), a
timing report (.TIM), and the JEDEC
file (.JED) used to program the device.

The XPLA designer’s simulator
provides a graphical logic-analyzer view
of each input, internal node, feedback,
and output signal. The inputs can be
stimulated through an interactive
waveform editor or vector file. Once
the compiled design is fitted to a part,
the simulator gives true timing char-
acteristics based on the selected device.

ISP PROGRAMMING
The XPLA ISP PC programmer

software enables you to bulk erase,
blank check, program, verify, read
device IDs, secure devices, program,
and read the user signature register.

The JTAG download cable (which
comes with the ISP programmer) con-
nects from the ISP’s JTAG port to any
parallel printer port on your PC.

Because JTAG devices are designed
to be daisy chained, if each device’s
JEDEC file doesn’t know where its de-
vice is on the daisy chain, you have a
problem. Issuing commands and having

cept here is that every net of the design
must be identified for the compiler to
see the whole picture.

The logic description holds all the
equation information on how the output
signals respond to various input signals.
Equations can be entered in Boolean
format (e.g., a simple two-input AND
gate where ANDOUT = ANDIN1 & AND-
IN2). Listing 2 shows the truth-table
format for the same gate.

The last equation format is that of
the state machine. This registered
equation uses a clock for state transi-
tions. The equation to determine direc-
tion of a biphase optical encoder might
follow the form shown in Listing 1.

SIMULATION
Once the .PHD file has all the proper

information, the file can be compiled

state_diagram sreg;
state s0:
when (phaseB==1 & phaseA==0) then (dir=1)
else when (phaseB==0 & phaseA==1) then (dir=0)
if (phaseB==1 & phaseA==0) then s2
else if (phaseB==0 & phaseA==1 then s1
else s=0

state s1:
when (phaseB==0 & phaseA==0) then (dir=0)
else when (phaseB==1 & phaseA==1) then (dir=0)
if (phaseB==0 & phaseA==0) then s0
else if (phaseB==1 & phaseA==1 then s3
else s=1

state s2:
when (phaseB==1 & phaseA==1) then (dir=1)
else when (phaseB==0 & phaseA==0) then (dir=0)
if (phaseB==1 & phaseA==1) then s3
else if (phaseB==0 & phaseA==0 then s0
else s=2

state s3:
when (phaseB==0 & phaseA==1) then (dir=0)
else when (phaseB==1 & phaseA==0) then (dir=0)
if (phaseB==0 & phaseA==1) then s1
else if (phaseB==1 & phaseA==0 then s2
else s=3

Listing 1— Sometimes a state-table format is more appropriate, as in this example for an optical encoder.

To ZIA

D/T Q

INT
(P or R)

CLK0
CLK0
CLK1
CLK1

CT0
CT1
Gnd

CT2
CT3
CT4
CT5
VCC
Gnd

Gnd

*GTS
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them go at the appropriate device
becomes a nightmare. You must re-
member the state of each device in the
chain and how many clocks it takes
data to shift into and out of each device.

Fortunately, the ISP JTAG chaining
software enables you to identify each
device along with its JEDEC file. When
you perform functions on specific
devices in the chain, the software
keeps track of the state of each device.

THE NEXT STEP
Designing with JTAG-compliant

parts doesn’t have to be difficult or
expensive. Using reprogrammable de-
vices may pay you back with dividends
if you need to alter the logic later on.

Jeff Bachiochi (pronounced“BAH-key-
AH-key”) is an electrical engineer on
Circuit Cellar INK’s engineering staff.
His background includes product design
and manufacturing. He may be reached
at jeff.bachiochi@circuitcellar.com.

SOURCES
PZ3065, PZ5064
Philips Semiconductor, Inc.
(800) 326-6586
Fax: (423) 475-0411
www.philips.com

Jam tools
Altera Corp.
(408) 894-7000
Fax: (408) 544-6403
www.altera.com

PEEL
ICT, Inc.
(408) 434-0678
www.ictpld.com

truth_table
([ANDIN1,ANDIN2]->[ANDOUT])
[0,0]->[0];
[0,1]->[0];
[1,0]->[0];
[1,1]->[1];

Listing 2 —This truth-table format can be used to describe a function.

Of course, Philips would love you
to use their parts in your next board
design, but suppose you need to use a
combination of manufacturers’ devices.
Shouldn’t be a problem, right? All
JTAG-compliant devices can be used
together, right? Right.

But, every reprogramable device has
its own programming characteristics.
So, the same programming algorithm
the Philips programmer uses may not
work with other manufacturers’ devices.

Engineers at Altera came up with
an open standard to specify ISP program-
ming for PLDs. Their Jam language
should enable programming equipment
vendors to get the data and program-
ming algorithm in the same Jam file.

A Jam composer would create the
JTAG chaining files, and a Jam Player
would interpret the Jam file and pro-
gram the targeted devices. Oh boy,
universal tools!  I

www.philips.com
www.altera.com
www.ictpld.com
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a t the Embedded
Systems Conference

West in 1998, with a
bit of help from Tom

Starnes of the market-research outfit,
Dataquest, I presented a session entitled
“8-Bits: Onward and Upward.”

Everyone knows I’ve got an 8-bit
chip on my shoulder, so I asked Tom
to provide independent confirmation
of what I know in my gut. Despite the
sizzle surrounding fancy chips, the 8-bit
market is where it’s at when it comes
to embedded.

In fact, even with the slowdown in
’98 (due to global market weakness and
declining prices), the 8-bit MCU mar-
ket is expected to get back on a growth
track. Indeed, Starnes predicts that 8-bit
MCU revenue will continue to exceed
the combined total of 4-, 16-, and 32-bit
(see Figure 1).

Don’t forget that,
given the recent price
cutting, a revenue per-
spective understates the
8-bit MCU’s popularity
in terms of units. As
Carl Sagan might have
put it, we’re talking
“billions and billions”
of 8-bit MCUs per year.

I explained the key
technology trends that
should invigorate design-
ins. These trends in-

clude things like speed (the 100-MHz
MCU from Scenix), mixed signal
(already starting to see regulators, hi-V
I/O, temp sensors, etc.), intellectual
property (the 8-bit MCU market is even
bigger if you count all the cores that
will be buried in ASICs), and so on.

But, the most apparent trend is the
widespread move to flash MCUs.
Consider...

• flash pioneer Atmel says flash share
is doubling each year, far faster than
the overall market

• Hitachi claims 30% of their H8
volume is already flash

• Microchip is increasing their lineup
from 2 to 22 devices

• Philips is dealing themselves into
the flash fray via a deal with
Macronix

• Analog Devices kicks off their foray
into MCUs with a flash ’51

It looks plenty rosy for flash MCUs,
but what’s wrong with this picture?
Let’s ask numbers guru Tom Starnes
for a hint. Hey, Tom, who’s the un-
questioned 8-bit MCU leader?

Why, Motorola, of course. Their
chips (notably the ’HC05 family) far
outsell even the most popular com-
petitors like ’51s and PICs.

Motorola may be number one, but
not when it comes to flash MCUs.
Sure, they’ve dabbled with specialized
68k (68F333) and 16-bit chips like the
’HC12 and ’HC16, but they haven’t
had anything to offer the mainstream
8-bit market in the way of flash MCUs.

Motorola may be late to the party,
but judging by the 68HC908GP20,
they’re making up for their tardiness
with a grand entrance.

Flash
Forward

Tom
thinks the
8-bit MCU
market is
getting

back on the growth
track and flash MCUs
are going to be a big
part of it. Join him as
he takes a look at a
new player whose
name you may already
be familiar with.

SILICON
UPDATE

Tom Cantrell

The 68HC908GP20

$0 B

$5 B

$10 B

$15 B

$20 B

1996 1997 1998 1999 2000 2001 2002

32 bit

16 bit

  8 bit

  4 bit

Figure 1 —Although it’s been a bit soft of late, the 8-bit MCU market is
expected to get back on track soon and remain dominant well into the future.
(Source: Dataquest).
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A WHOLE NEW ’HC05
As a matter of fact,

the ’HC908 is the sub-
ject of the Circuit Cellar
Design99 Contest, which
is already under way. No
doubt, those of you
who’ve already entered
are up to speed on this
chip, so get back to work!
The rest of you, read on.

Let’s start with the
big picture shown in
Figure 2—’HC05 up-
ward-compatible CPU,
20 KB of flash memory,
and 512 bytes of SRAM.
The peripherals include
all the usual suspects: 33
I/O lines, 2 ´  16-bit
timer/counters, 8 ´  8-bit
ADC, UART, and SPI.

If you’re unfamiliar
with the Motorola archi-
tecture, let me explain.
Like the ’51 and PIC, the
’05 is one of those oldies
but goodies. As best I
can recall, the first ’05
chips were introduced about 20 years
ago. So, it’s no surprise that the basic
architecture, comprising an accumula-
tor, index register, and stack pointer,
is about as simple as it gets.

The more recent ’08 represents a
midlife tweak of the ’05 design. It’s still
simple, but with a bit more oomph,
especially when it comes to toting the
load of C.

Upgrades include boosting the index
register from 8 to 16 bits as well as
enabling all 16 bits of the stack pointer
and program counter for full 64-KB
addressing. There are also extra ad-
dressing modes, the most appreciated
being stack relative for subroutine
parameter passing.

And, there are a bunch of instruc-
tions including stalwarts such as deci-
mal adjust accumulator (DAA) for
BCD, looping (Z80-like decrement
and branch), and multiply and divide
(five and seven cycles, respectively).

The standard device features pre-
mium specs such as a –40° to +85°C
temperature range, 3–5-V ±10% VCC

and up to 8-MHz throughput (at 5 V;
4 MHz at 3 V). Branches and instruc-

tions that access memory using the
fancy addressing modes take 3–5 cycles,
but some of the simple register ops
only take one cycle, legitimizing multi-
MIPS performance claims.

Naturally, the ’HC908 is available
in a 44-pin QFP for small-is-beautiful
apps. But, Motorola also reminds us
that DIP isn’t dead with their 40-pin
version for the through-hole crowd
(especially welcome for prototyping,
not to mention design contests).

PECK O’ PERIPHERALS
MCUs have come a long way in

terms of the quantity and quality of
built-in I/O—and the ’HC908 is no
exception. Indeed, you don’t have to
get further than traditionally mundane
items like reset and the clock genera-
tor to see what I mean.

Besides external reset (i.e., yank
*RST low), the ’HC908 includes five
additional ways to get the chip back
on track including power on, watch-
dog timer, low-voltage inhibit, illegal
opcode, and illegal address. Unlike
lesser chips, there’s no detective work
needed to figure out what happened.

The source of a reset
is explicitly identified
in a status register.

Motorola has a
knack with PLLs, and
they put it to use by
supporting a 32-kHz
watch-crystal opera-
tion. The frequency
is boosted on-chip as
high as 32 MHz,
which is four times
the internal bus clock.

Yes, PLLs have
gotchas, especially
when they’re called
on to increase fre-
quency by a factor of
a thousand. Lockup
time, noise immunity,
jitter, power consump-
tion, and support cir-
cuits (see Figure 3)
are all concerns.

Without discuss-
ing all the details of
the 30 pages devoted
to the clock generator
in the datasheet, I’ll

just say that Motorola does a pretty
good job covering the bases. If you
prefer, the PLL can be disabled in favor
of a typical 4´  crystal or external clock
configuration.

One handy feature of watch-crystal
mode is the built-in timebase feature,
which generates an interrupt at one of
eight programmable rates between 1
and 4096 Hz. Using these interrupts
to wake the MCU from its low-power
wait and stop modes can eliminate the
need for an external real-time clock.

As usual, most of the 33 (31 in DIP)
I/O lines wear multiple hats. Twenty-
four lines feature bit-by-bit selectable
pullups. All ports feature at least
10-mA drive, with five lines capable
of 15 mA. Eight lines can be configured
as so-called keyboard inputs, with
edge- or level-interrupt capability.

The eight-channel multiplexed 8-bit
ADC is a successive approximation
type with conversion time on the order
of 20 µs. A conversion-complete inter-
rupt is an option, as are single or con-
tinuous conversions. Pins not required
for the ADC are available for general-
purpose I/O use.

Figure 2 —Although it’s descended from the humble 68HC05, the ’HC908 delivers a lot more than
you might expect from an entry-level micro, including a big chunk (20 KB) of flash memory.
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The two 16-bit timer/counters
operate at up to the bus clock frequency
of 125-ns resolution at 8 MHz and
feature both input capture and output
compare. For input capture, the counter
latches when an active (programmable
as high, low, or any) edge is detected
on the input pin.

Output compare controls the output
pin (programmable set, clear, or toggle)
when the counter matches a prepro-
grammed value. The toggle-on-over-
flow mode is especially useful for PWM.

Those of you who’ve fiddled with
output compare and PWM schemes
have probably learned the hard way
that glitches can occur because of
asynchronous updates. For instance,
setting a new compare value can gen-
erate runt or missing pulses depend-
ing on when the update occurs
relative to the count.

The ’HC908 features a unique
buffered mode that combines both
channels in a ping-pong arrangement
to get around the problem.

Figure 4 —The ’HC908 programming algorithm is finely tuned
to match the requirements of the flash circuitry. Sloppy coding or
trying to roll your own algorithm is definitely a no-no.

Figure 3— Operation from a 32-kHz watch crystal is a nice feature,
but it does call for a few external discretes, including a loop filter
that optimizes PLL stability and tracking.

Unlike the stripped-down
UARTs in some low-end chips,
the ’HC908 SCI has all the
trimmings. For one thing,
there’s a built-in data-rate gen-
erator that’s good for standard
rates up to 115 kbps, depending
on the MCU clock rate.

In addition to all the usual
formats, the ’HC908 offers the
9-bit data wakeup mode popular
in multidrop applications. It
features a full complement of
error detection, including over-
run, framing, and parity, as well as
some sophisticated glitch suppression.

Finally, the four-wire (select, clock,
data in, and data out) SPI-clocked serial
port is versatile enough to adapt to vari-
ous standards (including I2C), thanks
to programmable master/slave mode,
phase, and polarity.

Although it isn’t Ethernet or Fire-
wire, don’t underestimate the SPI port’s
ability to move data around. Separate
double-buffered receive and transmit

registers can handle up to 4 or
8 Mbps (i.e., bus clock divided by
two or one) in master and slave
mode, respectively.

COOL FLASH
Flash memory is the point of

the ’HC908, so let’s take a closer
look. The 20-KB array is organized
in 8-byte pages, with eight pages
composing a row, which corre-
sponds to the minimum program-
and-erase granularity.

The eight-to-one ratio isn’t a
coincidence but a requirement.
The flash technology dictates that
a row should not be programmed
more than eight times before it’s
erased.

Eliminating the need for a sepa-
rate VPP programming voltage isn’t
easy, given the wide operating
range (2.7–5.5 V). Nevertheless,
with a built-in charge pump and
voltage regulator, Motorola pulls
it off.

Unlike other flash MCUs, the
’HC908 is completely self- or in-
operation programmable. In a
process akin to performing brain
surgery on yourself, the chip ex-
ecutes software in one portion of

the flash that programs the other. Lest
things go awry, the ’HC908 incorpo-
rates a block-protect mechanism as
malpractice insurance against a self-
lobotomy.

The programming operation isn’t
for the faint of heart. As Figure 4
shows, it’s a rather convoluted process
with specific sequencing and timing
that must be followed exactly. The
algorithm relies on a margin-read
scheme to program the flash memory
just enough to gather the 10-year data-
retention spec, without overstressing
and compromising the 100-cycle/row
write endurance spec.

The concept of self-programming
raises the question of how to get a
factory-fresh blank chip programmed
in the first place. The answer is a tiny
(307 bytes) built-in ROM monitor
with just enough smarts to get past
the who’s-on-first dilemma.

The monitor includes only a few
commands—read and write memory
(i.e., SRAM), READ the stack pointer,
and GO. On this minimal foundation,
arbitrarily complex functions, such as
programming the flash, can be built.

The monitor is entered in one of
two conditions. First, if the chip is new
or recently erased (i.e., the RESET
vector is blank). However, normal
operation of an already-programmed
chip can be bypassed in favor of the
monitor by applying a high voltage
(VDD + 2.5 V) to the *IRQ pin.

The monitor incorporates a security
feature to discourage prying eyes. On
entry, the host must send a sequence
of eight bytes that match those stored
at $FFF6–FFFD.

If you care about keeping your code
secret, don’t leave these locations

OSC1

C1 C2

SIMOSCEN

CGMXCLK

RB

X1

RS
CBYP

OSC2 CGMXFC

OSCSTOPENB
(From CONFIG)

10 k

VSSA VDDA

VDD

0.01 µF

0.47 µF
0.1 µF
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my clunker (33-MHz ’386) test. The
software-only stuff (assembling, soft
simulating, etc.) worked, but commu-
nication with the hardware was flaky.

No problems on my 300-MHz
Pentium II, though, so the thresh-
old of pain must be somewhere in
between.

FLASH TO THE FUTURE
Motorola didn’t kick off the

flash-memory trend, but their entry
into the market will add fuel to
the fire, especially since the chip
is priced at $4.95. That’s enough
to get any designer’s creative juices

flowing, as I expect we’ll see when
Design99 entries start rolling in.

Hey, Elizabeth, any chance we forgot
to put in the no-employees boilerplate
in our contest rules? I

The in-circuit debugger does a
fairly good job of controlling and
monitoring execution of an applica-
tion-programmed chip. The process is
aided by the fact that the ’HC908
incorporates a hardware breakpoint so
the flash doesn’t wear out by jamming
in software breaks. There’s no real-time
trace, but the system does execute at
full speed between debug events.

In-circuit simulation combines the
total visibility of a soft simulator with
real-world I/O. Instruction execution
is completely pantomimed by the PC,
but operations that talk to pins are
passed over to the real chip. It’s much
slower than real time and, because of
the to and fro, even slower than purely
soft simulation. But, it does enable
you to perform basic reality checks of
your circuit design and wiring.

Although the documentation says
the P&E software needs
little more than Windows
3.x or 95/98 and 640 KB
of RAM, it didn’t pass

blank. If the security check fails, at-
tempts to read or execute from flash
are blocked. But, the monitor permits
the flash to be erased, so at least the
absentminded won’t have to
throw the chip away.

HERE COMES DE BUG
Besides flash-memory pro-

gramming, the monitor provides
the hooks for a low-cost debug-
ging scheme, which Motorola
exploits in their evaluation kit
(see Photo 1).

At $295, the kit may seem
pricey, but it’s more upscale than
most. Its sturdy metal enclosure base
unit hosts the ’HC908 personality card
and connects to a PC serial port. The
QFP MCU on the personality card is
socketed so the 100-cycle endurance
limit isn’t a showstopper for us crash-
and-burn types.

A ribbon cable with a 40-pin DIP
on the end targets your own app hard-
ware as well as the requisite wall-wart
supply, which includes mains adapt-
ers that offer worldwide compatibility.

Also, there are printed versions of
the documentation, and the package
includes a nice development suite
from P&E Microcomputer Systems. It
features an IDE (see Photo 2) wrapped
around various components including
an assembler, programmer, a soft simu-
lator, an in-circuit simulator, and an
in-circuit debugger.

The soft simulator represents the
traditional approach, relying only on
the PC to host a virtual chip. It’s a
good way to check out the chip and
try some programming without spend-
ing the bucks (it’s free via the web).

Photo 1 —The $295 development kit includes the hard-
ware, software, and documentation needed to program
and debug assembly-language apps for the ’HC908.

Photo 2 —The P&E Micro software
included in the kit (and free on the
web) features an assembler and
simulator, as well as tools that work
specifically with the Motorola
hardware, like an in-circuit simula-
tor, debugger, and programmer.

Editor’s note: Sorry, Tom, no luck. But,
I’ve heard that some people are having
problems obtaining an ’HC908. Now
they can check our web site for up-
dated information on distributors.

Tom Cantrell has been working on
chip, board, and systems design and
marketing in Silicon Valley for more
than ten years. You may reach him by
e-mail at tom.cantrell@circuitcellar.
com, by telephone at (510) 657-0264,
or by fax at (510) 657-5441.

You don’t need to pay for a
development kit for Design99.
www.circuitcellar.com fea-
tures free development soft-
ware and tools, and well as
information on third-party
sources.

www.mot-sps.com/sps/general/chips-nav.html
www.pemicro.com
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Paper is Dead?

t hese days we have to deal with all the experts claiming that on January 1, 2000, there will be a complete
social and commercial meltdown. If that weren’t bad enough, apparently if I happen to survive into the new

millenium, I won’t have a job because printed magazines will be dead, too. Frankly, I could ignore all the Y2K
hullabaloo. I’ve got a diesel backup generator, a full freezer, and a well-stocked wine cellar, but I’ll be damned if I'm going

to let that rubbish about print magazines being dead go by without commenting on it. Prophecies like that have as much
merit as the one about the paperless office.

People who make these ridiculous prognostications must live in a cave. Television was supposed to kill off radio. Cheap fares
would do away with the airlines. Faxes and FedEx would kill off the Post Office. And best of all, computers would do away with paper!

If we lived in a static environment, such predictions might have some credence. Fortunately, the opposite is true. Radical
predictions fail to recognize that people do things a particular way because it’s simply the most logical way to accomplish a specific
task. The fact that a new alternative exists doesn’t automatically signal the demise of all previous methods. Only an evolution in the
task itself can do that.

The paperless office is a prime example. In 1982, when the early PCs started to gain a foothold, Americans used about 1.7 million
tons of office paper. It should be less now, right? Well, in 1997, even with recycling, we were up to 4.6 million tons of nice white office
paper! If you have any doubts, just look at the piles on your own desk.

The problem with these original predictions was ignoring that there would be something new and more interesting to put on paper.
With the advent of the Internet, e-mail, and readily available wisdom on virtually any topic, we have more information than can be
comfortably viewed on a video screen. Add to that the plethora of low-cost printers capable of spewing out a dozen pages a minute
and you define a behavior where people simply collect piles of information for later viewing or just make lots of hardcopies because it
complements normal computer activities (or the inevitable crash).

When someone says to me, “Print magazines are dead,” I laughingly answer, “Which ones?” Yes, I know that absurd predictions
like this presume that the demise of the media instantly makes us all obsolete. What's totally ignored, however, is the reason people
pay hard money for a subscription. It’s the content! I’d be in a lot of trouble if the only reason you subscribed to Circuit Cellar was
because you have a paper fetish.

Don’t get me wrong. I’m not fighting the trend. Circuit Cellar’s evolution will eventually include an online magazine, but the incentive
to expand in that direction will be to enhance the current content with web-specific resources—not simply to reformat the magazine for
electronic delivery. At the same time, if we’re talking about obsolescence, I wasn’t kidding when I said “which magazines?” In my
opinion, electronic trade magazines have to look very closely at their “task” if they are to survive as presently structured.

Traditional trade magazine content is predominately advertiser-written application notes and promotional material. They charge
exorbitant advertising rates to distribute this advertorial. Who among us doesn’t have a pile of unread free trade magazines some-
place?

In the past, manufacturers had few alternative vehicles to promote their products and readers had few places to look. With the
advent of the Internet, however, manufacturers have the same and often more application editorial on their web sites. Engineers only
have to enter a few key words into an Internet search engine to find this material. In view of the proliferation of engineering-related e-
mail lists and other online vehicles, advertisers will be hard pressed to spend big dollars in a magazine without the informative content
necessary to attract qualified readers.

Although converting all magazines from printed page to electronic screen is possible, that doesn’t make it a mandated necessity.
The staying power of a paid-circulation magazine (either online or printed) is first and foremost an issue of editorial quality, not the
communication medium. Just like the issue of going from black and white to color magazines, when a redefinition of the task results in
an improvement in the quality, the old ways won’t be so much obsolete as the new ways will appear to be the logical evolution.


