
 # 1 0 7 J U N E 1 9 9 9

COMMUNICATIONS
A Low-Cost Software Modem

Development Considerations
for Internet Applications

Circuits for RS-485 Networks

Build a Compact
Portable Scanner

CELLAR
T H E M A G A Z I N E F O R C O M P U T E R A P P L I C A T I O N S

w
w

w
.c

ir
c

u
itc

e
lla

r
.c

o
m

CIRCUIT
®

2 Issue 107 June 1999 CIRCUIT CELLAR ® www.circuitcellar.com

TASK MANAGER

EDITORIAL DIRECTOR/PUBLISHER
Steve Ciarcia

MANAGING EDITOR
Elizabeth Laurençot

TECHNICAL EDITORS
Michael Palumbo
Rob Walker

WEST COAST EDITOR
Tom Cantrell

CONTRIBUTING EDITORS
Ingo Cyliax
Ken Davidson
Fred Eady

NEW PRODUCTS EDITOR
Harv Weiner

ASSOCIATE PUBLISHER
Sue Skolnick

CIRCULATION MANAGER
Rose Mansella

CHIEF FINANCIAL OFFICER
Jeannette Ciarcia

ART DIRECTOR
KC Zienka

ENGINEERING STAFF
Jeff Bachiochi

PRODUCTION STAFF
Phil Champagne

John Gorsky
James Soussounis

PROJECT EDITOR
Janice Hughes

Cover photograph Ron Meadows—Meadows Marketing
PRINTED IN THE UNITED STATES

For information on authorized reprints of articles,
contact Jeannette Ciarcia (860) 875-2199 or e-mail jciarcia@circuitcellar.com.

Circuit Cellar INK® makes no warranties and assumes no responsibility or liability of any kind for errors in these
programs or schematics or for the consequences of any such errors. Furthermore, because of possible variation in
the quality and condition of materials and workmanship of reader-assembled projects, Circuit Cellar INK® disclaims
any responsiblity for the safe and proper function of reader-assembled projects based upon or from plans, descriptions,
or information published in Circuit Cellar INK®.
Entire contents copyright © 1999 by Circuit Cellar Incorporated. All rights reserved. Circuit Cellar and Circuit Cellar
INK are registered trademarks of Circuit Cellar Inc. Reproduction of this publication in whole or in part without written
consent from Circuit Cellar Inc. is prohibited.

CONTACTING CIRCUIT CELLAR INK
SUBSCRIPTIONS:

INFORMATION: www.circuitcellar.com or subscribe@circuitcellar.com
TO SUBSCRIBE: (800) 269-6301 or via our editorial offices: (860) 875-2199

GENERAL INFORMATION:
TELEPHONE: (860) 875-2199 FAX: (860) 871-0411
INTERNET: info@circuitcellar.com, editor@circuitcellar.com, or www.circuitcellar.com
EDITORIAL OFFICES: Editor, Circuit Cellar INK, 4 Park St., Vernon, CT 06066

AUTHOR CONTACT:
E-MAIL: Author addresses (when available) included at the end of each article.
ARTICLE FILES: ftp.circuitcellar.com

CIRCUIT CELLAR INK®, THE COMPUTER APPLICATIONS JOURNAL (ISSN 0896-8985) is published monthly by
Circuit Cellar Incorporated, 4 Park Street, Suite 20, Vernon, CT 06066 (860) 875-2751. Periodical rates paid at
Vernon, CT and additional offices. One-year (12 issues) subscription rate USA and possessions $21.95,
Canada/Mexico $31.95, all other countries $49.95. Two-year (24 issues) subscription rate USA and
possessions $39, Canada/Mexico $55, all other countries $85. All subscription orders payable in U.S. funds
only via VISA, MasterCard, international postal money order, or check drawn on U.S. bank.
Direct subscription orders and subscription-related questions to Circuit Cellar INK Subscriptions,
P.O. Box 698, Holmes, PA 19043-9613 or call (800) 269-6301.
Postmaster: Send address changes to Circuit Cellar INK, Circulation Dept., P.O. Box 698, Holmes, PA 19043-9613.

ADVERTISING
ADVERTISING SALES MANAGER

Bobbi Yush Fax: (860) 871-0411
(860) 872-3064 E-mail: bobbi.yush@circuitcellar.com

ADVERTISING COORDINATOR
Valerie Luster Fax: (860) 871-0411
(860) 875-2199 E-mail: val.luster@circuitcellar.com

elizabeth.laurencot@circuitcellar.com

EDITORIAL ADVISORY BOARD
Ingo Cyliax Norman Jackson David Prutchi

Not Just One of the Guys

a s I write this, I’m waiting for projects to come
in for Design99, Circuit Cellar’s eleventh annual

design contest, sponsored this year by Motorola. If
you’ve kept up with the trials we’ve experienced with this

contest so far, you’re aware of how difficult it has been for some would-be
contestants to find sample parts.

Fortunately, people did get their hands on the ’908GP20 sample packs.
So, for all the difficulties we’ve had, I’m still expecting a lot of entries to be
appearing on the Circuit Cellar doorstep in the next week. But what I’m not
expecting so much is how many of those entries (or whether if any of those
entries) will be submitted by women.

Does this potential fact frustrate me? Hell, yes. Why? Because as a
doctoral student in a “techie” department and even in a “techie” subfield, I
have experienced first-hand the hassles of trying to succeed while being a
woman. In fact, I can count on one hand the number of American women who
have jobs doing what I went to school to do. Interestingly, there are Asian
and European women who do hold such jobs. But Americans? No, not really.

Which is not to say that we (American women interested in the technical
side of things) weren’t there in the beginning. But somehow, over the years,
our interests shifted. I’m the only one still pursuing the original “techie” goal.
The others, if they stayed in the program at all, started paying more atten-
tion to the “feminine” subfields. Why?

I believe it is a mentoring issue. People talk all the time about how
women and men communicate differently. Fine. I can buy that, and given
what I read, it seems most people agree on that point. So, here’s my ques-
tion: how do you communicate with a student or new employee who is a
woman? If you’re male, you probably say that you treat her the same as
anyone else, but consider that “anyone else” most likely means one of the
men you’ve worked with for however many years. In other words, you
expect her to interact with you as if she were a man.

In my case, there are no women (at least in my department) who I can
honestly say have research and career interests similar to mine. The end
result is that for me to succeed (i.e., defend my dissertation and receive the
Ph.D.), I have to do it in the style of my advisors, all male.

Of course, there are so many issues on the table relating to how women
are managing their professions in technical fields (e.g., a recent study at MIT
proved that women there were paid less, given less lab space, and so on; to
MIT’s credit, statistics have made a difference and they are making up for
the discrepancies).

However, I think that to maintain (if not expand) what female population
there is in the universities and in the professional fields, we first have a very
basic problem to solve: how to communicate. Until we address that issue,
the changes many of us seek aren’t going to even have a chance of success.

THE MAGAZINE FOR COMPUTER APPLICATIONS
THE MAGAZINE FOR COMPUTER APPLICATIONS

CIRCUIT CELLAR ® Issue 107 June 1999 3www.circuitcellar.com

38 Nouveau PC
edited by Harv Weiner

41 Embedded Ethernet Fundamentals
Aaron Feen

45 RPC Real-Time PC
Astronomical Issues—Part 3: Filters and Undersampling
Ingo Cyliax

52 APC Applied PCs
Embedded Internet—Part 2: TCP/IP and a 16-Bit Compiler
Fred Eady

ISSUE
INSIDE

Low-Cost Software Bell-202 Modem
Stephen Holland

Designing RS-485 Circuits
Jan Axelson

A Web-Based Chart Recorder
Paul Breed

Embedded OSs for Internet Appliances
David Brooks

Compact Optical Image Scanner
John Luo

I MicroSeries
USB Primer
Part 2: Classes and Drivers
Jim Lyle

I From the Bench
Look Ma, No Hands
The Qprox Touchless Sensor
Jeff Bachiochi

I Silicon Update
XLR8R
Working with Accelerometers
Tom Cantrell

2

6

8

83

95

 96

E
M

BE
DD

ED
P
C

12

20
26
58
64

68

74

78

107107

Task Manager
Elizabeth Laurençot

Not Just One of the Guys

Reader I/O
Circuit Cellar Homepage

New Product News
edited by Harv Weiner

Test Your EQ

Advertiser’s Index
July Preview

Priority Interrupt
Steve Ciarcia

Servings Per Issue

READER I/O

6 Issue 107 June 1999 CIRCUIT CELLAR ® www.circuitcellar.com

• Whether you’ve got extra components lying around or you’re just looking for
some used parts, the Circuit Cellar Parts Bin is the place to go. The Parts Bin
is where engineers can buy, sell, or trade parts, components, and tools of the
trade. Every project involves a trip to the parts bin, so if it’s not in your parts bin,
try ours. See our homepage for submission guidelines.

• All three searchable CD-ROMs of the Circuit Cellar back issues are ready to be
shipped, so stop by our homepage and place your order!

Silicon Update Online: The Modem Squad—Tom Cantrell
Lessons from the Trenches: Logging in the ’90s: Part 2—George Martin
Getting Your Product to Work Outside the Lab: Part 1—Enduring Environmen-

tal Challenges—George Novacek

The June
 Design Forum
password is:

Grape

New!

Design Forum

The cci newsserver is the place to go
for on-line questions and advice on
embedded control, announcements, or
to let us know your thoughts about
Circuit Cellar.

Newsgroups

HOMEPAGE
Circuit Cellar www.circuitcellar.com

Y2K UPS AND DOWNS
As an avid reader of Circuit Cellar and Steve Ciarcia,

Priority Interrupt usually gets my first glance each month.
After reading “Sitting in the Dark” (Circuit Cellar 105),
I felt some clarification was necessary.

With 26 years of experience on the technical side of
the elevator business and as the founder of Integrated
Display Systems, a company that produces the leading
networked PC-based elevator management system (with
lots of embedded processors and plenty of Y2K poten-
tial), I felt qualified to comment.

Over 70% of the elevators in the U.S. are controlled
by relay or TTL logic and have no microprocessor or
knowledge of the date. Date-aware microprocessors have
only been used on elevator systems installed within the
last 15 years or so. Of the date-aware group, those that
shut down based on a date, Y2K or otherwise, are less
than 1% (excluding external security systems, etc.). The
algorithm is usually based on the number of days since
the last reset and has nothing to do with the year.

Because of the need for absolute safety, elevators shut
down on their own for dozens of reasons. On any given day,
at least 1.6% of the elevators in the US shut down for valid
reasons. Any additional shutdowns on Jan. 1, 2000 will
hardly be noticed, let alone bring the country to its knees.

Now, your refrigerator may spray ice cubes all over the
floor, but most elevators will remain blissfully ignorant.
But, if it happens to be the elevator in your building….

Winslow D. Soule
winssoule@msn.com

ROCK, CANNONBALL, OR WHAT-HAVE-YOU
The cover and Task Manager of Circuit Cellar 106

brought back memories of when I lived in northeast
Nebraska. Out there, they have what’s known as a Ne-
braska Weather Station (NWS). The NWS is usually set
up in the farmyard where it can be seen from a kitchen
window.

It consists of a heavy steel tube post, 5″ or 6″ in diam-
eter, set with about 5′ visible above ground. To prevent
the post from moving too easily, it’s set in a yard or so of
concrete. A piece of 1⁄2″ logging chain about 3′ long is
welded to the top of the post and a cannonball (generally
a 22 pounder) is welded to the other end of the chain.

The weather report goes like this:

• if the ball is wet, it’s raining.
• if the ball is white, it’s snowing.
• if the ball is buried in the snow, get out the shovels,

one for each kid.
• if the ball is standing straight out, it’s too windy to go

out and chore.

Although some people don’t believe me, one farm-
house that I drove past every day actually had a NWS. I
even saw the cannonball blowing out around 25° a time
or two. That’s breezier than the standard three-garbage-
can-lids rating and makes it rather difficult to stay be-
tween the ditches while driving.

Gene Heskett
geneheskett@iolinc.net

8 Issue 107 June 1999 CIRCUIT CELLAR ® www.circuitcellar.com

NEW PRODUCT NEWS
Edited by Harv Weiner

SPRING-CONTACT TEST PROBE
A revolutionary spring-contact probe is available

from Interconnect Devices. The ICT Probe features
four bifurcated beams at the top of the barrel that
provide uniform radial pressure on the plunger shaft,
holding the plunger parallel with the barrel. This
construction provides a constant contact between the
plunger and barrel at all times during the actuation
process without any biasing. The probe is available
for 0.100″ (2.54 mm), 0.075″ (1.91 mm), and 0.050″
(1.27 mm) centers.

The mechanical benefits of this design include
reduced probe wear and elimination of sideloading or
biasing of the plunger, a wiping action on every de-
flection to ensure good electrical contact, and a typi-
cal pointing accuracy of less than 0.001″ (0.025 mm).
The electrical benefits include extremely low resis-
tance (as low as 8 mΩ on a 0.100″ [2.54 mm] center
probe), consistent resistance (deviation of less than
5 mΩ throughout the entire probe life), and a consis-
tent resistance during compression.

The ICT Probe is also ideal for contaminated or
no-clean environments. The compliant or pressure fit
between the plunger and the barrel virtually seals the
internal portion of the probe from contaminates. This
lack of abrasive and nonconductive grit normally
found in a probe prolongs the device’s life both me-
chanically and electrically.

Prices range from $0.46 to $2.34, depending on
model and quantity.

Interconnect Devices, Inc.
(913) 342-5544
Fax: (913) 342-7043
www.idinet.com

SINGLE-BOARD COMPUTER
Industrologic has introduced the SBC-1

Single-Board Computer/Controller board and
development package. Based on the venerable
80C51 processor with 8 KB of EEPROM and
8 KB of RAM, the SBC-1 features a powerful
ROM-based monitor and developer interface,
including commands that permit it to be oper-
ated as a slave to any RS-232 device. Also fea-
tured is an onboard, enhanced TinyBASIC with
functions and variables defined for the unit’s
I/O, serial port, and real-time clock.

The SBC-1 includes 50 DIO signals when
used in its maximum I/O configuration (24 TTL
inputs, two interrupt inputs, 24 open-collector
outputs), a 0–5-V 8-bit ADC input, two RS-232
physical ports with DE-9 connectors, and a real-
time clock that can be set or read from the
monitor or TinyBASIC. The serial upload and
download capability can be used to store and
retrieve user programs, and the system I/O rou-
tines are in a “call table” toolbox for user access.
All chips are installed in sockets for easy replace-
ment, if necessary. The board features terminal
block connectors to allow quick connection to
many of the signals.

The SBC-1 includes the circuit board, a serial
port cable for connection to a PC-compatible
computer, wall-block power supply, host-com-
puter software with programming examples, and
an extensive hardware and software reference
manual.

The SBC-1 package is available for $179.

Industrologic, Inc.
(314) 707-8818
www.industrologic.com

www.idinet.com
www.industrologic.com

CIRCUIT CELLAR ® Issue 107 June 1999 9www.circuitcellar.com

NEW PRODUCT NEWS
RTD/TC SIGNAL CONDITIONER

REMOTE TEMPERATURE MODULE
The JDS-148 Remote Temperature Module is de-

signed for general-purpose temperature measurements. It
interfaces to Dallas Semiconductor’s DS-1820 or DS-
1821 temperature controllers and provides temperature
values over either RS-232 or multidrop RS-485/-422.

Each module automatically scans and records the
temperature conversions and communicates back to a
host computer with ASCII commands.

The JDS-148 communicates over a 1-Wire inter-
face and features jumper-selectable data rates to

38.4 kbps. It auto-identifies the control-
ler ID and includes 32 unique module
addresses. The 1.5″ × 1.5″ board oper-
ates on an input voltage from 8 to
15 VDC, and it has a measurement
range from –15°C to 105°C with an
accuracy of ±0.5°C.

The JDS-148 sells for $45 (RS-232 or
RS-485/-422 version).

J-Works, Inc.
(818) 361-0787
Fax: (818) 270-2413
www.j-works.com

The MCR-T/UI
Universal Signal Condi-
tioner accepts any RTD/
thermocouple signal
and converts, isolates,
filters, and amplifies in
one module. The mod-
ule addresses any RTD
sensor and thermo-
couple type, enabling
RTDs in platinum,
copper, or nickel to be
converted to a standard
industrial analog signal.
Because any temperature
sensor type, temperature
range, and output can
be programmed, this
module is excellent for
use anywhere in the
process.

All standard outputs
can be programmed,
and standard signals of
0–20 mA, 4–20 mA, 0–
5 VDC, 0–10 VDC,

+5 VDC, and 110 VDC can
be easily selected. The mod-
ule features a program-
mable high-/low-transistor
alarm output at 24 VDC,
100-mA switching capabil-
ity, and programming for
line break, overrange, and

underrange. The tempera-
ture range of the module is
–200°C to +800°C for RTDs
and –200°C to +2300°C for
thermocouples.

All parameters are set by
a simple Windows-based
configuration software

package. The module is
featured in the unique
MB-housing design and
only takes 17.5 mm of
DIN rail space.

Pricing for the MCR-
T/UI is $299 in single
quantities.

Phoenix Contact, Inc.
(800) 322-3225
(717) 944-1300
Fax: (717) 944-1625
www.phoenixcontact.com

www.phoenixcontact.com
www.j-works.com

10 Issue 107 June 1999 CIRCUIT CELLAR ® www.circuitcellar.com

NEW PRODUCT NEWS
DEVELOPMENT BOARD

The ATDEV-8535-1 Develop-
ment/Prototype Board for the Atmel
AT90LS8535 microcontroller is
now available from Baritek. The
AT90LS8535 features 8 KB of flash
program memory, 512 bytes of
internal SRAM, and 512 bytes
of EEPROM. This device
also has an operating-
voltage range from 2.7
to 6 V, eight 10-bit
A/D channels, and a
programmable UART.

The board features
in-circuit programming
from the serial port of a
PC. All of the microcon-
troller ports are brought
out to 10-pin headers,
and a large prototyping
area is available for user
signal-conditioning or

from 1.25 to 6.0 V to simulate
battery operation. The ATDEV-
8535 was designed to support
Atmel’s free development tools

for the AT90LS8535.
The ATDEV-8535-1

is priced at $89.95.

Baritek, Inc.
(781) 749-2550
Fax: (781) 749-3151
www.baritek.com

display devices. Also featured are eight
momentary push-button switches and
eight LEDs that can be connected to
any port of the AT90LS8535 via a 10-
pin ribbon cable. The onboard power
supply can be adjusted

www.baritek.com

12 Issue 107 June 1999 CIRCUIT CELLAR ® www.circuitcellar.com

Low-Cost Software
Bell-202 Modem

FEATURE
ARTICLE

Stephen Holland

i
Imagine this: rapid
and reliable data
processing via a low-
cost software modem.
With the 50-MIPS
Scenix SX MCU,
Stephen designed
just such a modem,
and it offers the ease
of flash memory and
in-system debugging.

n every ATM,
point-of-sale termi-

nal, and automated gas
pump there’s an embedded

modem whose only purpose is sending
and receiving identity-verification data
and purchase information. These are
typical of a broad range of applications
in which “data communications”
doesn’t mean transmitting huge pdf
files or other attachments between PCs.

Instead, embedded modems for
information processing need to connect
rapidly and reliably as well as be able
to transmit and receive relatively small
amounts of data at a rate that a person
standing in front of an ATM perceives
as fast. For this, low-speed (1200 and
2400 bps) Bell-202- and 212-compatible
modems are adequate.

Because embedded modems are
often used in places that require small
size and low cost, designers must get
a least-cost implementation that is as
close to a single-chip solution as pos-
sible. An attractive solution would be
one relatively cheap MCU with all the
modem functions inside, eliminating
everything except a serial connection
and the digital access arrangement
(DAA) for the telephone line.

But, this solution wasn’t available
until recently. Embedded modem
designers typically had to go with
either a multichip implementation
consisting of an inexpensive 8-bit MCU
and an external modem chip, or move
up the complexity and cost curve to
16- and 32-bit MCUs and DSPs that
avoid the silicon penalties by handling
the modem functions in software.

There’s an 8-bit MCU that performs
the types of modem functions needed by
the vast majority of embedded appli-
cations in software. Using a Scenix
Semiconductor SX series MCU, I put
together a circuit that, in a form factor
smaller than 2″ × 3″, provides all the
basic functionality of a Bell-202 modem,
including FSK generation and detection
and DTMF generation and detection.

The key to the design is that soft-
ware modules, or “virtual peripherals,”
for each function are loaded into a fast
(10-ns access time) on-chip flash pro-
gram memory and executed as needed.
This eliminates external modem and
memory chips and additional internal
silicon development, and results in an
extremely cost-effective implementa-
tion. In fact, the entire bill of materials
totals right around $7.

MCU ARCHITECTURE
For an 8-bit MCU to do what the 16-

and 32-bit MCUs do, it needs many of
the same architectural features, includ-
ing a streamlined, four-stage RISC-like
pipelined architecture to minimize
code size and maximize performance.

Coupled with extremely fast on-chip
instruction and data memory, this
arrangement permits every instruction
to be executed in a single clock cycle.
A 50-MHz clock can provide an instruc-
tion throughput rate of 50 MIPS, and a
100-MHz clock gives 100 MIPS.

Another requirement is a determin-
istic interrupt-response capability that
services interrupts in a small and pre-
cise number of cycles every time. With
older architectures, tasks are only inter-
rupted at instruction boundaries, so the
number of cycles required to respond
to an interrupt is unpredictable.

This setup not only produces slow
interrupt responses but also introduces
jitter into the system timing, which
limits performance and accuracy. Short

www.circuitcellar.com CIRCUIT CELLAR ® Issue 107 June 1999 13

predictable interrupt-response times,
with critical registers automatically
stored in special hardware stacks dur-
ing an interrupt, eliminate the problem
of jitter and ensure proper execution
of virtual peripheral functions.

AT THE BLOCK LEVEL
The modem design in Figure 1 uses

the Scenix SX28AC, which runs at up
to 50 MHz and has a 50-MIPS data
throughput rate. Although the design
accommodates connecting to a PC via
an RS-232 connector, it can be changed
to some other type of serial interface.

The modem functions can be down-
loaded from the Scenix web site as
virtual peripherals and stored in the
on-chip program memory. The virtual
peripherals used in this design are:

• two 16-bit timers—one for the power-
on LED and one for FSK and DTMF
tone duration

• DTMF detection
• FSK detection via on-chip hardware

comparator
• DTMF generation
• FSK generation
• UART (1200 bps to 115.2 kbps)

Additional features like caller ID,
voice recognition, LCD drive, and
numerous types of I/O can be added by
downloading the appropriate virtual
peripheral into the program memory.

To achieve the lowest implementa-
tion cost, the design uses a component
(rather than a module) approach for
connecting to the external world. For
example, the cost of a DAA module is
typically about $4. But, a 1200-bps
modem doesn’t need the sophisticated
DAC, compression and decompression,
and other functions performed by a
DAA module.

Instead, as you see from Figure 2, I
used a configuration based on opto-
isolators and a transformer to provide
coupling to the telephone network,
which complies with the Bell-202
standard and makes the cost of the
components significantly less than
that of a DAA module.

DTMF AND FSK DETECTION
Connection with the telephone net-

work is controlled by the Ring and
Hook signals, which are passed through
optoisolators U5 and U6 to either
establish or break the connection.

When the connection is made, data
received from the network is coupled

Figure 1 —A full-featured modem can be implemented with the SX28AC 8-bit MCU. The combination of high-speed
MCU and software peripheral functions results in an extremely compact and cost-effective implementation.

Tx

Rx

Tx

FSK

Timers

DAA

Rx

RS-232
Driver

RS-232

Core

SX28AC

Flash
Crystal

UART

ADC

Modem

(2)
DTMF

RJ-11

Figure 2— Using discrete components rather than sophisticated modules for the DAA and RS-232C interfaces dramatically decreases the modem bill of materials. At 1200 bps,
this configuration meets the Bell-202 standard.

14 Issue 107 June 1999 CIRCUIT CELLAR ® www.circuitcellar.com

through audio transformer T1, as well
as input filter and DC offset circuit to
an operational amplifier, U2 (see Figure
3). The op-amp splits the single bit-
stream of the input into separate DTMF
and FSK signals and applies them to
the MCU, where they are converted
from analog to digital and processed.

The DTMF signal is applied to pins
RC0 and RC1 of the SX28AC. The
MCU converts this from analog to
digital by sampling it in software using
a digital form of the Geortzel discrete
Fourier transform (DFT) algorithm.
Eight separate DFTs, each with an accu-
racy of greater than ±1%, simulta-

neously sample the signal looking for
the row and column frequencies that
identify digits within the DTMF matrix.

To be properly selective on the
target frequencies, a performance level
of at least 50 MIPS is required; the
sine and cosine reference signals for
each DFT operation are being gener-
ated in software within the interrupt
service routine to enable multiple
virtual peripherals to run in parallel.
A clock frequency of at least 50 MHz
is required to give the DFT accuracy
better than the required DTMF speci-
fication of ±1.5% (i.e., the higher the
clock rate, the better the accuracy).

The same DFT technique would be
possible at a much lower MIPS rate,
but at the sacrifice of needing to be
executed in straight-line code to main-
tain accuracy. Additionally, the stan-
dard for the DTMF tone duration lets
it be as short as 48 ms, which the
SX28AC can easily handle.

The current DTMF algorithm can
detect tones as short as 14 ms. By con-
trast, most other 8-bit MCU imple-
mentations need at least 150 ms to
detect the tone because of the straight-
line nature of the code.

The FSK signal from the op-amp is
applied to pin RB1 of the SX28AC.
Detecting the FSK data (1200 Hz rep-
resenting a logic 1, and 2200 Hz repre-
senting a logic 0) and its conversion to
a digital format is done by an on-chip
hardware comparator and a reference
level set by an external resistor voltage
divider (R3, R4) using a form of zero-
crossing detection. The comparator is
one of the basic sets of silicon periph-
erals included in the SX28AC.

The digital DTMF and FSK data is
processed by the software UART and
transmitted to a PC through a simple
implementation of an RS-232 interface.
Because the connection to the PC isn’t
meant to be over a long distance, a
two-transistor (Q1, Q2) circuit operat-
ing at 5 V rather than the more-typical
9 V is sufficient to drive the line.

DTMF AND FSK GENERATION
Digital data received from the PC

through the RS-232 interface and soft-
ware UART is converted to analog
signals for transmission over the tele-
phone network using PWM techniques.

Figure 3 —The op-amp
splits the DTMF and
FSK portions of the
single input stream. It
also shifts the DC offset
of the PWM output to
meet telephone network
requirements.

16 Issue 107 June 1999 CIRCUIT CELLAR ® www.circuitcellar.com

To minimize I/O pin usage, a single
PWM output pin is used. This arrange-
ment is possible even for the two
DTMF tones because the SX28AC
sums the DTMF signals internally to
create a single signal.

To ensure the smooth frequency
shifts that are required by the Bell-202
specification, all the FSK shifts are
phase-coherent. Although this require-
ment is easily accomplished in hard-
ware, it requires a level of processing
power only available in the SX series
to work in software.

The PWM output of the MCU is
applied to the op-amp, where its DC
offset is moved to accommodate the
needs of the telephone network. The
result is applied to the acoustic trans-
former and on to the network.

Even though it provides all the
functionality of a complete 1200-bps
modem, this design uses only nine of
the 20 I/O pins available with the
SX28AC MCU.

It also doesn’t use all of the device’s
50 MIPS of processing power. This
setup makes it easy to add features

like an LCD interface, motor control-
ler, or I2C-to-EPROM interface by
loading the appropriate virtual periph-
erals into the on-chip memory and
using the extra I/O pins.

APPLICATION DEVELOPMENT
Adding functions to an SX28AC-

based design is as simple as going to a
web site and downloading the desired
virtual peripherals. New software

Listing 1 —Developing the Bell 202-compatible modem program was simplified by using an Edit window on a
PC. This code describes the initialization sequence for the design.

reset_entry
mov m,#$0f
mov ra,#%0110 ;init ra
mov !ra,#%0010 ;ra0-1 = input,ra2-3 = output
mov rb,#%00000000 ;init rb
mov !rb,#%00001110 ;rb1-3 = input,rb0,rb4-7 = output
mov rc,#%00000000 ;init rc
mov !rc,#%11111101 ;rc0,rc2-7 = input,rc1 = output
mov m,#$0d ;make rc0 cmos-level
mov !rc,#%11111110
clr fsr ;reset all ram banks

:loop setb fsr.4
clr ind
ijnz fsr,:loop
bank dtmf_gen ;Initialize variables
mov delay,#23
clr flags
mov !option,#%00011111

;enable wreg and rtcc interrupt
jmp @main ;Jump to main code
�

18 Issue 107 June 1999 CIRCUIT CELLAR ® www.circuitcellar.com

Photo 1 —The Debug window of the SX-Key development system
provides visibility into the contents of all device registers, allowing
individual bits to be changed as necessary.

development and programming
are equally painless.

The chip is programmed
over its oscillator pins (26, 27)
using the SX-Key development
system (a 0.5″ × 1.5″ module
that connects at one end to a PC
by a standard DE-9 connector
and at the other end to the
system board by a four-pin
header interface connector).
The SX-Key software, which
includes an editor, programmer,
and debugger, can be installed
on a PC and run under Windows.

With the SX-Key software
loaded and the PC connected to
the circuit through the hard-
ware module, software develop-
ment begins immediately. The first
screen is a device setup window.

It lets you set parameters such as
the number of pins and on-chip mem-
ory size of the SX-series MCU you’re
using, the clock source (an external
frequency generator in this design,
although a range of internal oscillator
frequencies can also be selected), and

additional options like stack extensions
and an on-chip watchdog timer. A
configuration window lets you select
the desired communication port and
specify the erase and program times
for the flash program memory.

With the chip parameters estab-
lished, an Edit window lets you write
the program. All timing-dependent

operations must be run within an
interrupt service routine, so the code
needs to be written using an interrupt
indicator.

An on-chip hardware timer produces
a real-time clock/counter (RTCC)
signal that generates interrupts. The
RTCC can be set to establish how many
clock cycles occur before an interrupt
must be serviced.

The general program flow is:

(load RTCC countdown)
run application code
RTCC times out, issues interrupt

interrupt service routine
run peripheral routine

load RTCC countdown
RETI (return from interrupt)

run application code

Listing 1 shows the initialization part
of the program for this modem design.

After resetting the SX chip, the I/O
ports and the default values for some
software variables must be initialized.
The final line of code in the reset
entry code typically loads the Option

www.circuitcellar.com CIRCUIT CELLAR ® Issue 107 June 1999 19

SOURCE

SX28AC
Scenix Semiconductor, Inc.
(408) 327-8888
Fax: (408) 327-8880
www.scenix.com

register with the proper value to en-
able RTCC clock rate and interrupts.

In this design, the contents of the
RTCC are incremented each clock
cycle. If the RTCC overflows, an in-
terrupt request follows. The RTCC
overflow interrupt is essential to the
virtual-peripheral concept, as it pro-
vides a jitter-free time base that is
used as the time slice for the peripher-
als. Much like an RTOS, this master
clock can then increment other clocks
specific to each task.

The completed program and the
virtual peripherals are loaded into the
MCU’s on-chip program memory
through the SX-Key module. A Debug
window (see Photo 1) displays the result
of programming the chip and provides
interactive debugging options.

The left column shows the con-
tents of registers 00–0F of the selected
RAM bank in hex and binary num-
bers. The contents of registers 10–1F
of the remaining RAM banks are dis-
played on the right side.

In the middle of the Debug window,
the contents of the M and W registers

Stephen Holland is a senior applica-
tions engineer at Scenix Semiconductor.
Before joining Scenix in early 1998,
he worked for over six years in the
electronics and computer industries in
Canada and Hong Kong. You may reach
him at stephen.holland@scenix.com.

SOFTWARE

Software for this article is available
via the Circuit Cellar web site.

are shown as well as interrupt and
skip flags. Beneath that is listed the
address, opcode, and assembler mne-
monic of the selected part of the pro-
gram memory.

Buttons for emulation functions are
arranged across the window bottom:

• step—executes one instruction
• walk—executes multiple instructions,

one at a time
• run—executes instructions at full

speed
• stop—halts execution of a walk or

run operation
• reset—resets the MCU
• exit—closes the Debug window

To debug the program, just reset
the contents of any of the registers.
All the changed registers are marked
with red during debugging so you don’t
lose the track of what you’re doing.

When you’re satisfied that you’ve
corrected the bugs, reprogram the chip.
Because you’re working with flash
memory, you can go through as many
iterations as you want to get it right.

AT LAST, A CHOICE
 For about $7, I was able to design a

compact fully functional embedded
modem that meets the needs of all
kinds of applications. It was possible
because designers have a choice not only
of modems, but also of every imagin-
able type of embedded system. I

www.scenix.com

20 Issue 107 June 1999 CIRCUIT CELLAR ® www.circuitcellar.com

Designing
RS-485 Circuits

FEATURE
ARTICLE

Jan Axelson

w
Jan knows that
RS-485 is perfect for
transferring small
blocks of information
over long distances,
and she finds the
RS-485 standard
extremely flexible.
Here, she shows
us several circuits
for RS-485 networks.

hen a network
needs to transfer

small blocks of informa-
tion over long distances,

RS-485 is often the interface of choice.
The network nodes can be PCs,

microcontrollers, or any devices capable
of asynchronous serial communications.
Compared to Ethernet and other net-
work interfaces, RS-485’s hardware
and protocol requirements are simpler
and cheaper.

The RS-485 standard is flexible
enough to provide a choice of drivers,
receivers, and other components de-
pending on the cable length, data rate,
number of nodes, and the need to
conserve power.

Several vendors offer RS-485 trans-
ceivers with various combinations of
features. Also, there are options for
methods of terminating and biasing
the line and controlling the driver-
enable inputs.

In this article, I show you several
circuits for RS-485 networks. Even if
you use prebuilt cards or converters,
understanding the options will help
you choose the right product and
configure it to get the best results for
your application.

RS-485 IN BRIEF
But first, a quick look at RS-485.

The interface popularly known as RS-
485 is an electrical specification for
multipoint systems that use balanced
lines. RS-485 is similar to RS-422, but
RS-422 allows just one driver with
multiple receivers whereas RS-485
supports multiple drivers and receivers.

The specification document (TIA/
EIA-485-A) defines the electrical char-
acteristics of the line and its drivers
and receivers. There are brief sugges-
tions relating to terminations and
wiring, but there’s no discussion of
connector pinouts or software proto-
cols (as there is for RS-232).

An RS-485 network can have up to
32 unit loads, with one unit load equiva-
lent to an input impedance of 12k. By
using high-impedance receivers, you
can have as many as 256 nodes.

An RS-485 link can extend as far as
4000′ and can transfer data at up to
10 Mbps, but not both at the same
time. At 90 kbps, the maximum cable
length is 4000′, at 1 Mbps it drops to
400′, and at 10 Mbps it drops to 50′.
For more nodes or long distances, you
can use repeaters that regenerate the
signals and begin a new RS-485 line.

Although the RS-485 standard says
nothing about protocols, most RS-485
links use the familiar asynchronous
protocols supported by the UARTs in
PCs and other computers. A transmitted
word consists of a start bit followed by
data bits, an optional parity bit, and a
stop bit.

Two ways to add RS-485 to a PC
are on an expansion card and by at-
taching an RS-485 converter to an
existing port. Converters for RS-232
are widely available and Inside Out
Networks has developed a USB–to–
RS-485 converter, also available from
B&B Electronics. On microcontrollers,
you can connect an RS-485 transceiver
to any asynchronous serial port.

Many network circuits also require
a port bit to control each transceiver’s
driver-enable input. Ports designed for
RS-232 communications can use the
RTS output. If that’s not available, any
spare output bit will do.

Most serial-communications tools,
including Visual Basic’s MSComm,
support RS-485 communications with

www.circuitcellar.com CIRCUIT CELLAR ® Issue 107 June 1999 21

RTS controlled in software. The
COMM-DRV serial-port drivers
from WCSC have automatic RTS
control built-in.

The main reason why RS-485
links can extend so far is their
use of balanced, or differential,
signals. Two wires (usually a
twisted pair) carry the signal
voltage and its inverse. The re-
ceiver detects the difference
between the two. Because most noise
that couples into the wires is com-
mon to both wires, it cancels out.

In contrast, interfaces like RS-232
use unbalanced, or single-ended, signals.
The receiver detects the voltage differ-
ence between a signal voltage and a
common ground.

The ground wire tends to be noisy
because it carries the return currents
for all of the signals in the interface,
along with whatever other noise has
entered the wire from other sources.
And noise on the ground wire can cause
the receiver to misread transmitted
logic levels.

The datasheets for interface chips
label the noninverted RS-485 line as
line A and the inverted line as line B.
An RS-485 receiver must see a voltage
difference of just 200 mV between A
and B. If A is at least 200 mV greater
than B, the receiver’s output is a logic
high. If B is at least 200 mV greater than
A, the output is a logic low. For differ-
ences less than 200 mV, the output is
undefined.

At the driver, the voltage difference
must be at least 1.5 V, so the interface
tolerates a fair amount of non-common-
mode noise and attenuation.

Vendors for RS-485 transceivers
include Linear Technology, Maxim,
National Semiconductor, and Texas
Instruments. These companies are
also excellent sources for application

notes containing circuit examples and
explanations of the theory behind them.

RS-485 is designed to be wired in a
daisy-chain or bus topology. Any stubs
that connect a node to the line should
be as short as possible. Most links use
twisted pairs because of their ability
to cancel magnetically and electro-
magnetically coupled noise.

GENERAL-PURPOSE LINK
Figure 1 shows a general-purpose

RS-485 network. Each node has a Texas
Instruments SN75176B transceiver
that interfaces between RS-485 and
TTL logic levels.

The chip has a two-wire RS-485
interface, a TTL driver input and re-
ceiver output, and TTL enable inputs
for the driver and receiver. Similar
chips include Linear Technology’s
LTC485, Maxim’s MAX485, and Na-
tional Semiconductor’s DS3695.

The circuit has two 120-Ω termi-
nating resistors connected in parallel,
at or just beyond the final node at each
end of the link. One end of the link
also has two 560-Ω biasing resistors.

The terminations reduce voltage
reflections that can cause the receiver
to misread logic levels. The receiver sees
reflected voltages as output switches,
and the line settles from its initial
current to its final current. The termi-
nation eliminates reflections by making
the initial and final currents equal.

The initial current is a function of
the line’s characteristic impedance,
which is the input impedance of an
infinite open line. The value varies
with the wires’ diameters, the spacing
between them, and the insulation type.

For digital signals (which consist
mainly of frequencies greater than
100 kHz), the characteristic impedance
is mostly resistive; the inductive and
capacitive components are small. A
typical value for 24-AWG twisted pair
is 120 Ω.

The final current is a function of
the line termination, the receivers’
input impedance, and the line’s series
impedance. In a typical RS-485 line
without a termination, the initial cur-
rent is greater than the final current
because the characteristic impedance
is less than the receivers’ combined
input impedance.

On a line without a termination,
the first reflection occurs when the
initial current reaches the receiver.
The receiver’s input can absorb only a
fraction of the current. The rest re-
flects back to the driver. As the cur-
rent reverses direction, its magnetic
field collapses and induces a voltage
on the line. As a result, the receiver
initially sees a greater voltage than
what was transmitted.

When the reflected voltage reaches
the driver, which has a lower imped-
ance than the line, the driver absorbs
some of the reflection and bounces
the rest back to the receiver. This
reflection is of opposite polarity to the
first reflection and causes the receiver
to see a reduced voltage. The reflections
bounce back and forth like this for a
few rounds before they die out and the
line settles to its final current.

If the line terminates with a resistor
equal to the line’s characteristic im-
pedance, there are no reflections. When
the initial current reaches the termi-
nation, it sees exactly what it was
expecting—a load equal to the line’s
characteristic impedance. The entire
transmitted voltage drops across the
load. In a network with two parallel
terminations, the drivers drive two
lines with each ending at a termination.

The biasing resistors hold the line
in a known state when no drivers are
enabled. Most RS-485 transceivers

Figure 1 —This general-purpose RS-485
network can have up to 32 nodes. Biasing
resistors ensure that there are no false start bits
when no drivers are enabled.

22 Issue 107 June 1999 CIRCUIT CELLAR ® www.circuitcellar.com

little stronger and one receiver
will have a slightly larger input
impedance.

Without a common ground,
the circuit may work, but the
energy from the imbalance has to
go somewhere and may dissipate
as electromagnetic radiation.

The RS-485 specification rec-
ommends connecting a 100-Ω
resistor of at least 0.5 W in series
between each node’s signal ground
and the network’s ground wire,
as Figure 1 shows. This way, if

the ground potentials of two nodes
vary, the resistors limit the current in
the ground wire.

SIMPLIFIED LOW-POWER LINK
Adding terminations increases a

link’s power consumption. With two
parallel 120-Ω terminations and a dif-
ferential output of 1.5 V, the current
through the combined terminations is
25 mA (disregarding the effects of bias-
ing, attenuation, etc.).

Without terminations, the load is
the parallel combination of the receiv-
ers’ input impedances and varies with
the number of receivers. The maximum
32-unit loads have a combined parallel
impedance of 375 Ω to ground or V+.

For some shorter and slower links,
you can save power and components
by not using terminating and biasing
components. This option is feasible if
the line is electrically short, which
means it behaves as a lumped, rather
than distributed, system. On a short
line, the reflections die out long before
the receiver is ready to read the signal.

A general guideline is that a line is
short if the rise time of its signals is
greater than four times the signals’ one-
way delay. The one-way delay is the
amount of time needed for a signal to
travel from the driver to the receiver.

It’s a function of the
line’s physical length and
the speed of signals in the
line. In copper wire, a
typical speed is two-thirds
the speed of light, which
works out to 8 in./ns.
Cable manufacturers often
specify a value for prod-
ucts likely to be used in
network wiring.

The rise time is specified in the
driver’s datasheet. The slowest chip
I’ve found is Maxim’s MAX3080, with
a minimum rise time of 667 ns. With
cables of up to 100″, the rise time is
greater than four times the one-way
delay (4 × 150 ns), so the line behaves
as a short line and doesn’t need termi-
nating or biasing. Another advantage
is that the internal biasing pulls idle
lines to nearly V+ and ground, so you
get greater noise immunity.

The downside to using this chip is
that the slow rise time means that it’s
rated for use only at 115,200 bps or less.

SHORT-CIRCUIT PROTECTION
The previous circuits ensured that

the line was in a predictable state when
idle or open. The circuit in Figure 2
also protects the network as much as
possible if the signal lines are shorted.
Instead of a single pair of biasing re-
sistors for the entire line, the circuit
has four biasing resistors at each node.

The circuit uses Texas Instruments
75ALS180B transceivers, which have
full-duplex RS-485 inputs and outputs.
The separate transmit and receive pairs
enable the receiver to have its own
series biasing resistors. The two RS-485
lines connect just beyond the biasing
circuits.

If the signal lines short together,
the 1.8-kΩ series resistors in combina-
tion with the 36-kΩ biasing resistors
hold input A more positive than B. Of
course, the node can’t communicate
with the network if the line is open or
shorted, but at least it remains in an
idle state (with no false start bits)
until the problem is fixed.

Another way to accomplish the
same thing is to use transceivers with
built-in fail-safe protection for open
and short circuits. Chips that have
this feature take varying approaches.

Figure 3 —A galvanically isolated link has no ohmic connection to earth
ground or to the other circuits the network connects to.

Figure 2 —The biasing resistors in this network hold the
receiver’s inputs in an idle state when no drivers are enabled, or
if the node disconnects from the network, or if the signal lines
are shorted.

have internal biasing circuits, but add-
ing a termination defeats their ability
to bias the line. A typical internal cir-
cuit is a 100-kΩ pullup from line A to
V+, and a 100-kΩ pulldown from line
B to ground.

With no termination and when no
drivers are enabled, the biasing resistors
hold line A more positive than line B.
When you add two 120-Ω terminations,
the difference between A and B shrinks
to a few millivolts, much less than
the required 200 mV. The solution is
to add smaller resistors in parallel with
the internal biasing so that a greater
proportion of the series voltage drops
across the termination.

The size of the biasing resistors is a
tradeoff. For a greater voltage difference
and higher noise immunity on an idle
line, use smaller values. For lower
power consumption and a greater
differential voltage on a driven line,
use larger values.

When the receiver is disabled, the
receiver’s output is high impedance. If
the output doesn’t connect to a input
with an internal pullup, adding a pull-
up here ensures that the node doesn’t
see false start bits when its receiver is
disabled.

To comply with the specification,
all of the nodes must share a common
ground connection. This ground may
be isolated from earth ground.

The ground wire provides a path
for the current that results from small
imbalances in the balanced line. If the
A and B outputs balance exactly with
equal, opposite currents, the two cur-
rents in the ground wire cancel each
other out and the wire carries no cur-
rent at all. In real life, components don’t
balance perfectly; one driver will be a

24 Issue 107 June 1999 CIRCUIT CELLAR ® www.circuitcellar.com

Linear Technologies’ LTC1482 has
a carrier-detect function that brings the
receiver’s output high when the differ-
ential input voltage is too small to be a
valid logic level. The chip has a carrier-
detect output that indicates when the
line is in an invalid state. National
Semiconductor’s DS36276 has internal
circuits that bring the receiver’s out-
put high if the line is shorted or open.

Maxim’s MAX3080–89 series provide
short-circuit biasing by redefining the
threshold for logic 0. Instead of specify-
ing all differential inputs of less than
200 mV as undefined, these chips define
a differential voltage of –50 mV or
greater as a logic 0.

Voltages equal to or more negative
than –200 mV remain defined as logic
1s. The only undefined region is from
–50 to –200 mV. With these definitions,
a shorted line (which results in a differ-
ential input of 0 V) is a logic 0, which
results in a high output at the receiver.

ISOLATED LINK
The entire RS-485 network has to

share a ground, but the network can be
galvanically isolated from other circuits
the network connects to as well as
from earth ground.

All RS-485 components must be able
to operate with common-mode voltages
between –7 V and +12 V. Some compo-
nents have higher ratings. The common-
mode voltage at the receiver equals half
the sum of the two signal voltages, refer-
enced to the receiver’s signal ground.
The voltage varies with the differen-
tial signal voltages, the difference in
ground potentials between the driver
and receiver, and noise on the line.

Where the ground connection is
long, isolating the ground can ensure
that the components don’t exceed their
ratings. Isolation also protects the cir-
cuits the network connects to if the
network circuits are damaged by high
voltage.

Complete isolation requires isolating
the power supplies and the network’s
signals. The power supplies typically
use transformer isolation, whereas the
signals use optoisolators (see Figure 3).

A one-chip way to achieve isolation
is to use Maxim’s MAX1480, which
contains its own transformer-isolated
supply and optoisolated signal path.

AUTO-SWITCHING LINK
One of challenges in designing

an RS-485 link is controlling the
driver-enable lines. Because all of
the nodes share a data path, only one
driver can be enabled at a time. Before
transmitting, a driver must be sure
that the previous driver has been dis-
abled.

Many RS-485 networks use a com-
mand/response protocol; one node
sends commands and the node being
addressed returns a response. The UART
in the node being addressed detects
the final stop bit in the middle of the
bit width, or slightly sooner or later if
the sender’s clock doesn’t match exactly.

A very fast node may be ready to
send a reply within a few microseconds
after detecting the stop bit. To prevent
the need for a delay before responding,
the sending node’s driver should be
disabled as soon as possible after the
leading edge of its final stop bit.

In most systems, the transmitting
driver is enabled on the leading edge
of the start bit and remains enabled for
the entire transmission. It is disabled as
soon as possible after the final stop bit.
In the delays between transmissions,
biasing holds the line in an idle state.

There are various ways that the
transmitting node can determine when
a transmission has finished and it is
safe to disable the driver. The node
may read back what it sent, or it may
use a hardware or software timer to
estimate the time needed to transmit.

Figure 4 shows a completely auto-
matic way to control the enable line so
the driver is disabled as quickly as
possible, soon after the leading edge of
the stop bit. With this circuit, the
program code doesn’t have to toggle a
signal to enable and disable the driver,
and a transmitting driver doesn’t need
to allow extra time to be sure that the
previous driver has been disabled.

Unlike other methods of automatic
control, there are no jumpers to set for
a particular bit rate. I learned of this
method when I saw it in R.E. Smith’s
IRSFC24 Isolated RS-485 board.

Instead of keeping the transmitter
enabled for the entire transmission,
the circuit in Figure 4 enables the driver
on the leading edge of the start bit or
any logic low at the driver’s input. It
also disables the driver ~40 µs after the
leading edge of the stop bit or any logic
high at the driver’s input. When the
driver is disabled, biasing resistors en-
sure the receiver’s output is a logic high.

The delay is generated by a 555 timer
configured as a monostable (one shot).
The enable inputs of the driver and
receiver are tied together so the receiver
is disabled when the driver transmits.

The timer’s output controls the
transceiver’s enable inputs. A falling
edge at Data Out indicates a start bit
and triggers the timer. The timer’s
output goes high, enabling the driver
and bringing line B more positive than
line A. Diode feedback to the Trig
input holds the timer’s output high
for as long as Trig remains low.

When Data Out goes high, the RS-
485 line switches, bringing line A more
positive than line B. The same logic
high also causes the timer to begin
timing out. About 40 µs after the rising
edge, the timer’s output goes low, dis-
abling the driver.

The delay ensures that the driver’s
RS-485 output switches without delay,
while the driver is enabled. When the
driver is disabled, the biasing compo-
nents continue to hold A more posi-
tive than B.

Similarly, any falling edges in the
transmitted data enable the driver and

Figure 4 —This circuit’s automatic driver-enable
ensures that the previous driver is disabled by the
time the next node begins to transmit. The driver-
enable line follows the data with a short delay
before disabling the driver. Biasing circuits hold
the line in the correct state when the driver is
disabled.

www.circuitcellar.com CIRCUIT CELLAR ® Issue 107 June 1999 25

any rising edges disable the driver
after the delay. On the final stop bit, the
driver is disabled no later than 40 µs
after the stop bit’s leading edge.

At rates of 9600 bps or less, the bit
width is greater than 100 µs, which
means the driver is disabled at around
the middle of the bit width. At faster
bit rates, the driver will still be disabled
no more than 40 µs after the stop bit’s
leading edge. For networks needing very
fast response time at faster bit rates,
decrease R4 for a shorter delay.

A downside is that the final voltage
for logic zeros is the biasing voltage,
which is usually less than the differen-
tial voltage when the driver is enabled.
But because the biasing voltage needs to
be great enough to prevent errors from
noise on an idle line, it should do the
job for active logic states as well. I

SOURCES
RS-485 transceivers
Linear Technology
(408) 432-1900
Fax: (408) 434-0507
www.linear-tech.com

Maxim Integrated Products
(408) 737-7600
Fax: (408) 737-7194
www.maxim-ic.com

National Semiconductor
(800) 272-9959
(408) 721-5000
Fax: (408) 739-9803
www.national.com

Texas Instruments, Inc.
(800) 477-8924, x4500
(972) 995-2011
Fax: (972) 995-4360
www.ti.com

REFERENCE

J. Axelson, Serial Port Complete:
Programming and Circuits for
RS-232 and RS-485 Links and
Networks, Lakeview Research,
Madison, WI, 1998.

Jan Axelson has been involved with
computers and electronics for over 20
years. Her books include Serial Port
Complete, Parallel Port Complete,
and The Microcontroller Idea Book.
You may reach her at jan@lvr.com or
on the web at www.lvr.com.

TIA/EIA-485-A
Global Engineering Documents
(800) 854-7179
(303) 397-7956
Fax: (303) 397-2740
www.global.ihs.com/sitemap.html

USB–to–RS-485 converter
Inside Out Networks
(512) 301-7080
Fax: (512) 301-7060
www.ionetworks.com

B&B Electronics Manufacturing Co.
(815) 433-5100
Fax: (815) 434-7094
www.bb-elec.com

COMM-DRV serial-port drivers
(with RS-485 support)

WCSC
(800) 966-4832
(281) 360-4232
Fax: (281) 360-3231
www.wcscnet.com

RS-485 interface with automatic
enable control

R.E. Smith
(513) 874-4796
Fax: (513) 874-1236
www.rs485.com

www.linear-tech.com
www.maxim-ic.com
www.national.com
www.ti.com
www.global.ihs.com/sitemap.html
www.ionetworks.com
www.bb-elec.com
www.wcscnet.com
www.rs485.com

26 Issue 107 June 1999 CIRCUIT CELLAR ® www.circuitcellar.com

A Web-Based Chart
Recorder

FEATURE
ARTICLE

Paul Breed

s
From needing a
forklift to fitting in
your pocket, chart
recorders have under-
gone some big
changes. Paul’s
recorder has some-
thing even newer—it
accesses up-to-the-
minute information
using an embedded
web server.

ixteen years ago
I was finishing my

engineering degree and
working part time at JPL.

The engineer that I was working with
wanted to record a number of tempera-
tures as we tested a newly repaired
microwave instrument. I was instructed
to go the equipment depot and get an
8-channel strip-chart recorder.

The only available recorder was a
24-channel unit that was 3′ wide and
4′ tall, and it weighed far more than I
could possibly carry. It was delivered
to our building with a forklift.

Over the next few weeks, we ran a
forest of paper through that machine,
which had the mad-
dening habit of clog-
ging the pen just when
the signal was getting
interesting. Today, we

can do the same job with equipment
that fits in our pockets.

Recently, I needed to record some
temperatures for an engineering project
so I created a virtual strip-chart re-
corder using a Netburner embedded
web server and an RS-232 DVM. Al-
though this is overkill for the applica-
tion, it illustrates the concepts behind
dynamic graphics on a web server.

When I set out to do this project,
my goals were to:

• create a virtual strip-chart recorder
to record temperatures

• enable the user to scroll and zoom
on the chart

• enable the user to change the record-
ing parameters

• do all of this using a standard web
browser

Most of these requirements were
straightforward, but displaying the
chart was the hard part. There were
two possible solutions. I could either
embed a Java applet in an HTML page
and have the Java applet scroll and
zoom on the chart, or I could have the
embedded web server generate embed-
ded images on-the-fly.

Although Java may be up and com-
ing, it’s difficult to save images to
disk or to print from
an embedded Java
applet. I
chose to
generate
embedded
images on-
the-fly.

Photo 1 — A Netburner embed-
ded web server and an RS-232
DVM make a fully functional
chart recorder.

www.circuitcellar.com CIRCUIT CELLAR ® Issue 107 June 1999 27

Using the Netburner environment,
the development steps are:

• copy one of the development examples
into a new directory

• add the desired HTML pages
• add the desired program functionality
• compile and compress the code and

HTML files into a flash image
• download the flash image to the Cold-

Fire board using the Ethernet link
• restart the ColdFire board
• test the result
• repeat steps 2–7 until done

tion is downloaded into the embedded
system’s flash memory, the only PC
software that is necessary is a standard
web browser.

The embedded application was
developed using the GNU/EGCS Cold-
Fire cross-compiler running on a Win-
dows workstation [4]. The standard
Netburner web server and RTOS were
used as is.

Some of my code samples are spe-
cific to the Netburner environment,
but the concepts are the same for any
embedded TCP/web server product.

SYSTEM HARDWARE
The data-gathering front end for

this project was a Protek 506 DMM
that offers a number of measurement
capabilities and an almost RS-232
interface. The brains and web server
were implemented on a Netburner
development board.

I originally thought that I could
just plug the two units together and
be done with the hardware design. It
is never that simple.

The Protek DMM has an RS-232
interface that doesn’t directly gener-
ate RS-232 levels. In its normal appli-
cation attached to a PC, it seems to
steal voltage from the PC’s hardware-
flow control lines.

Because the Netburner board only
implements the RX and TX lines, no
such voltage was available. The quick
fix of tying +5 V to pins 6 and 7 of the
DVM quickly solved this problem [1].

After the hardware shown in
Photo 1 was complete, the rest was a
simple matter of software. But, before
we can discuss the software, let me
provide some web background.

WEB BROWSER 101
When a browser is given a URL, it

first breaks down the URL into its
component parts [2]. The protocol
specifies how the browser should get
the requested document, the server
part specifies where it should get the
document, and the document part
specifies what document to get.

The browser sends a request (usually
HTTP) to the server asking for the
document [3]. After the browser has
the document, it looks inside it to see
if it contains embedded images or
applets. It then generates requests for
each of these embedded elements.

When it has all of the document
and the embedded pieces, it renders
the result onscreen. So, if an HTML
document has some text and two
embedded pictures, it requires three
HTTP transactions to properly render
the document: one request for the
base document and a separate request
for each of the embedded pictures.

DEVELOPMENT ENVIRONMENT
The beauty of this project is the

lack of PC software. After the applica-

Listing 1 —This code gathers samples from the DVM and stores them in a circular buffer. It also detects
errors in the DVM connectivity and settings.

while (1)
{
 char buffer[40]; /* buffer to accumulate DMM chars in */
 DWORD now;
 int n,cnt;
 /* Set up interval to wait for next sample */
 next_read+=gSampleInterval;
 now=TimeTick;
 if (now<next_read)
 OSTimeDly(next_read-now);
 /* An RTOS function that yields for some number of ticks */
 else
 next_read=TimeTick;
 write(fddvm,"\r",1); /* Ask DVM for a new sample */
 cnt=0;
 /* Read data from DVM */
 while(1)
 {
 n=ReadWithTimeout(fddvm,buffer+cnt,40-cnt,TICKS_PER_SECOND);
 if (n<=0)
 {/* DVM is probably off */
 next_read=TimeTick+gSampleInterval;
 DVMState=DvmDead;
 break;
 }
 else
 {
 cnt+=n;
 buffer[cnt]=0;
 if (buffer[cnt-1]=='\r')
 {
 if ((strncmp(buffer,"TEMP",4)==0))
 {/* Last DVM reading was a Temperature */
 int t;
 t= atoi(buffer+5);
 DVMState=DvmOk;
 StoreSample(t);
 }
 else
 {
 DVMState=DvmSetWrong;
 }
 break;
 }
 }
 }/* While reading */
}/* While forever */

28 Issue 107 June 1999 CIRCUIT CELLAR ® www.circuitcellar.com

Listing 2 —These data-rendering function calls are selected from comments in the HTML code. They are
used to render dynamic values in the web page.

void DoMaxD(int sock, PCSTR url); /* Maximum display value */
void DoMinD(int sock, PCSTR url); /* Minimum display value */
void DoMaxT(int sock, PCSTR url); /* Right end of the graph */
void DoMinT(int sock, PCSTR url); /* Left end of the graph */
void DoSize(int sock, PCSTR url); /* Graph size selection combo */
void DoShowStatus(int sock, PCSTR url);

/* The status table on bottom */
void GetImageKey(int sock, PCSTR url);

/* The gif image URL */

After the code is de-
ployed, it’s also possible to
update the running code
over the network without having any
physical access to the unit. I believe
that good, rapid development is an
iterative process and the speed of your
tools is important.

Using the EGCS/GNU tools and
Ethernet for the flash download, the
entire recompile (compress and down-
load process) takes about 30 s (on a P-
II 450).

SOFTWARE FUNCTIONALITY
The system software only has to

perform two functions—gathering and
storing the data, and presenting the
data as a web page.

The data gathering is done with the
simple task code shown in Listing 1.
It waits 1 s, sends a read request to
the DVM, and stores the response in a
large circular buffer. The values are
stored as simple integers.

Most of the software work went
into the user interface and display
code. The user interface consists of
the web page shown in Photo 2. The
page is an HTML form with an em-
bedded image.

This form allows the user to set
the extent of the graph and control the
size of the embedded image. The form

was originally laid out and tested as
an HTML file on the PC.

Because multiple users may want
to display different views of the same
data, I wanted to store display infor-
mation for each user. The most logi-
cal way to do this is to store the page
settings in the URL used to access the
web page. In an embedded environ-
ment, there’s nothing special about
the document section of the URL.
You’re free to encode whatever you
want in that name.

When the web page is first accessed,
it assigns default values for the display
limits and graph sizes. When a user
changes these settings, the choices are
encoded in the new URL. Table 1
shows the URL used in this applica-
tion and how it is encoded.

All of the numerical values are
encoded in eight hex digits and all
times are in seconds. Using this scheme
to store settings in the URL enables
multiple users to save different display
formats by bookmarking the page.

Photo 2 shows a plot of tempera-
ture outside my house in New Hamp-
shire. Putting a simple web page on
the embedded server is trivial; this
page was a little more complex.

Table 1—A URL like http://10.1.1.95/
INDEX.HTM?S0000000AFFFFFFF1
FFFF23B000000000 has a number of
data fields.

Field Meaning

http:// URL protocol field
10.1.1.95 IP address of the embedded server
INDEX.HTM? Root name of the document
S Size of the requested graph

 (‘T’iny, ’S’mall, ’M’edium, ’L’arge)
0000000A Top or maximum of the graph

 (10 in this case)
FFFFFFF1 Bottom of the graph (–15 in this case)
FFFF23B0 Starting edge of the graph

 (–15 h 40 min. in this case)
00000000 Ending edge of the graph

www.circuitcellar.com CIRCUIT CELLAR ® Issue 107 June 1999 29

Listing 3 —The DoMaxD function is called when the HTML code contains a comment of the form
<!--FUNCTIONCALL DoMaxD-->. This mechanism is used to put dynamic content into an other-
wise static web page.

void DoMaxD(int sock, PCSTR url)
{
 GraphData gd;
 SizeData sd;
 GetData(&gd,&sd,url);
 char buffer[20];
 sprintf(buffer,"%d",gd.MaxD);
 writestring(sock,buffer);
}

Listing 4 —The GetImageKey function renders the setting components of the URL (the part past the “?”)
to the page being displayed. It passes the URL setting to the HTML page so that it can be sent as part of the
GIF image request that draws the graph.

void GetImageKey(int sock, PCSTR url)
{
 const char * cp= url;
 while ((*cp) && (*cp!='?')) cp++;
 if (*cp) writestring(sock,cp);
}

This page has to parse the URL and
fill in the proper values in the form
elements, reference the proper embed-
ded image to display the graph that
the user wants, allow changes to the
settings, and render the embedded GIF.

Filling in the proper values is quite
straightforward. The Netburner system
enables you to embed a specially for-
matted comment in the HTML page
wherever you want to embed dynamic
content. A dynamic snippet of this
HTML code is:

<INPUT TYPE="text"
NAME="MaxD" VALUE="<!--
FUNCTIONCALL DoMaxD -->"
SIZE=5>

Whenever this code is encountered
in a web page, it causes the web server
to call the C function DoMaxD. The

actual web page used in this example
has seven of these function calls,
shown in Listing 2.

DoMaxD has to fill in the current
value of the maximum display on the
chart, so it calls a function to extract
the GraphData and SizeData struc-
tures from the URL. Then it’s just a
simple matter of displaying the proper
value (shown in Listing 3) and refer-
encing the proper embedded image to
display the graph the user wants. To
display the page, the system down-
loads the HTML page and the embed-
ded image.

Both the page and the graph need to
know the value of the user’s display
settings (encoded in the URL). So, the
seventh function in the list, GetImage-
Key (see Listing 4), is a little different.
It takes the URL value used to render
the HTML page and adds this URL to

Table 2—The variables encoded in the
form response are used to control the
display.

Variable
name Meaning

MaxD Maximum displayed temperature
MinD Minimum displayed temperature
MaxT Maximum displayed time
MinT Minimum displayed time

-gSize Size combo box
-submitv Name of button used to submit the form

 (Set, Show All, Show Last hour)

30 Issue 107 June 1999 CIRCUIT CELLAR ® www.circuitcellar.com

Listing 5 —This code processes the variables sent in the POST request from the web browser. It extracts
the individual control variables and uses them to generate a new URL that reflects the new settings.

int DoGraphPost(int sock, char * url, char * pData, char *
 rxBuffer)
{
 GraphData gd;
 gd.MaxD=100;
 gd.MinD=-10;
 gd.MaxT=0;
 gd.MinT=-24*3600;
 char buffer[80];
 char * cp;
 char siz;

 /* Extract basic variable */
 ExtractIntPostData("MaxD",pData,gd.MaxD);
 ExtractIntPostData("MinD",pData,gd.MinD);
 ExtractTimePostData("MaxT",pData,gd.MaxT);
 ExtractTimePostData("MinT",pData,gd.MinT);
 ExtractPostData("gSize",pData,buffer,80);
 siz=buffer[0];

 /* Extract button pressed to submit form */
 ExtractPostData("submittv",pData,buffer,80);
 cp=buffer;
 while ((*cp) && (isspace(*cp)))cp++;
 /* Values for buffer are set Show Last Show All */
 if (buffer[1]!='e')
 {
 if (buffer[5]=='L')
 {/* Show Last Hour */
 gd.MaxT=0;
 gd.MinT=-3600;
 }
 else
 {/*Show All */
 gd.MaxT=0;
 if (gNextPosition> gMaxStored) gd.MinT=gMaxStored;
 else
 gd.MinT=gNextPosition;
 gd.MinT*=gSampleInterval/TICKS_PER_SECOND;
 if (gd.MinT<60) gd.MinT=60;
 gd.MinT=gd.MinT*-1;
 }
 }

 /*Send requester back to proper web page */
 sprintf(buffer,"INDEX.HTM?%c%08X%08X%08X%08X",siz,gd.MaxD,gd.MinD,
 gd.MinT,gd.MaxT);
 RedirectResponse(sock,buffer);
}

the end of the image URL so that the
GIF image rendered on the form is the
proper image.

The HTML image specification for
the graph is <IMG SRC ="IMAGE.GIF
<!--FUNCTIONCALL GetImageKey
-->" >. When the user wants to
change any of the settings, they press
one of the buttons, which causes the
HTML browser to generate a post
request. This request passes the val-
ues of all the inputs on the form to

the web server. This form encodes the
variables shown in Table 2 and sends
them to the web server.

This process is done in the DoGraph-
Post function. After processing all of
the form elements, DoGraphPost
constructs a new URL that represents
the user’s selections and redirects the
browser to reload that URL. This code
is shown in Listing 5.

The final step in the display pro-
cessing is the generation of the GIF

www.circuitcellar.com CIRCUIT CELLAR ®

Listing 6 —Here is the interface for the GIF-generation class. This class encapsulates a small subset of the
public-domain GD graphics library.

class DrawImageObject
{
 BYTE * m_pImageBuffer;
 BYTE * m_pColorArray;

 int m_xSize;
 int m_ySize;
 int m_nColors;
 int m_curx;
 int m_cury;

 private:
 int GIFNextPixel();
 void compress(int init_bits, int fd);
 public:
 DrawImageObject(int xsize, int ysiz, int ncolors);
 ~DrawImageObject();
 void PutPixel(int x, int y, BYTE color);
 BYTE GetPixel(int x, int y);
 void SetColor(BYTE index, BYTE red,BYTE green, BYTE blue);
 void Line(int x1, int y1, int x2, int y2, BYTE colorindex);
 void Box(int x1, int y1, int x2, int y2, BYTE colorindex);
 void FilledBox(int x1, int y1, int x2, int y2, BYTE fillc,
 BYTE outlinec);
 void Text(const char * pText,int x1, int x2, const char *
 fontrecord, BYTE color);
 int TextXsize(const char * pText,const char * fontrecord);
 int TextYsize(const char * pText,const char * fontrecord);
 void WriteGIF(int fd); /* Writes GIF to file descriptor */
};

Photo 2 —Here’s a web-browser view
of the web chart recorder. This particu-
lar graph shows a plot of the tempera-
ture outside my house in New
Hampshire.

image that displays the data. When
the browser loads the main page and
its embedded IMG tag, the browser
parses this IMG tag and generates a
separate request to get the GIF file.
The server parses the URL and creates
a GIF image that is sent to the user’s
browser over the network connection.

Before I can discuss the
graph drawing-code, I need
to tell you about building
a GIF-generation library.
There are a number of

packages available that programmati-
cally render GIF images, but most of
them have some problems for embed-
ded work. I chose to adapt the library
GD because source was readily avail-
able, and it contained a run-length
compressor that avoids the Unisys
patent [5].

32 Issue 107 June 1999 CIRCUIT CELLAR ® www.circuitcellar.com

Listing 7 —The MyDoGet code looks at the document URL and performs different actions depending on
the document name part of the URL. If it is IMAGE.GIF, the request is sent to the image-rendering sys-
tem. If it contains RESET, it processes one of several actions and redirects the browser to a new web page.

int MyDoGet(int sock, PSTR url, PSTR rxBuffer)
{
 if (strlen(url))
 {
 if(httpstricmp(url,"IMAGE.GIF"))
 {/* Browser is asking for GIF image */
 GraphData gd;
 SizeData sd;
 GetData(gd,sd,url);
 SendGifHeader(sock);
 DrawGraph(sock,sd.xsize,sd.ysize,gd.MinD,gd.MaxD,gd.MinT,gd.MaxT);
 return 1;
 }
 else
 if(httpstricmp(url,"RESET"))
 {/* Browser is asking us to reset limit values */
 char buffer[80];
 char * cp=url;
 while ((*cp) &&(*cp!='?')) cp++;
 sprintf(buffer,"INDEX.HTM%s",cp);
 /* Decide what kind of reset request it was */
 if(httpstricmp(url,"RESETMAX.HTM"))
 {
 gMaxMeasured=-9999;
 }
 else
 if(httpstricmp(url,"RESETMIN.HTM"))
 {
 gMinMeasured=9999;
 }
 else
 if(httpstricmp(url,"RESETBUF.HTM"))
 {
 gNextPosition=0;
 }
 RedirectResponse(sock,buffer);
 return 1;
 }
 }
 return (* oldhand)(sock,url,rxBuffer); /*Use old handler */
}

Here’s a brief update on the patent
issue. The normal GIF image is com-
pressed using the LZW compression
algorithm. Many years after Compu-
Serve promoted the GIF format as the
de facto graphics exchange format,
Unisys figured out that they held the
patent on the underlying compression.
As a result, people are searching for
ways to circumvent this patent.

The technically correct solution is
to use the new patent-free graphics
standard, PNG. Unfortunately, not all
older browsers support it. The addi-
tional problem is that it has a much
bigger code impact in an embedded
environment.

I modified the GD system in sev-
eral steps. First, I removed everything

except the GIF compressor and then
encapsulated the global statics in a
C++ class.

Next, I added some general-purpose
line-drawing routines from my tool-
box. I then compressed the large GD
fonts and wrote some font-rendering
routines to use the new format.

The result is a simple GIF genera-
tion class with the public interface
(see Listing 6). This class is simple, but
it was sufficient to create the graphs
for this project.

GRAPH-DRAWING CODE
When the web server gets a request

for a URL, it usually tries to satisfy
that request from its compressed store
of HTML files and images. In the case

34 Issue 107 June 1999 CIRCUIT CELLAR ® www.circuitcellar.com

of the GIF image, there is no compressed
store. The image is entirely generated
programmatically.

Besides capturing the GIF request, I
also need to capture the reset and
clear requests from the data summary
box at the bottom of the displayed
page. This process is done in the func-
tion MyDoGet, shown in Listing 7.

Once the GET that is redirecting
code recognizes the request as a request

for IMAGE.GIF, it sends a GIF header,
and it then calls DrawGraph:

di.WriteGIF(sock);
return 0;

DrawGraph performs four func-
tions. It initializes the image and
color map, draws and labels the x
axis, draws the data, and then draws
and labels the y axis.

Listing 8 —This code draws the tick marks and numbers on the x-axis. It adjusts the spacing of the numbers
to fit on the displayed scale.

yh=di.TextYsize("T",TinyFont); /* Draw x-axis scale and text */
mark_inc= maxg-yaxis.map_2_to_1((5*yh));
if (mark_inc <=1)
{
 mark_inc=1;
 semi_inc=0;
}
else
if (mark_inc <=5)
{
 mark_inc=5;
 semi_inc=1;
}
else
if (mark_inc <=10)
{
 mark_inc=10;
 semi_inc=2;
}
else
{
 mark_inc=25;
 semi_inc=5;
}

start_pos=((((maxg+ming)/2)/mark_inc)*mark_inc);
/* Move from start position to beginning of drawable area */
while (start_pos > ming) start_pos-=mark_inc;
/* Draw large ticks and text labels*/
for (i=start_pos; i<maxg; i+=mark_inc)
{
 int y=yaxis.map_1_to_2(i);
 if ((y<GYSIZE) && (y>0))
 {
 di.Line(0,y,0+BIGTICK,y,4);
 di.Line(0+BIGTICK,y,GXSIZE-1,y,5);
 }
 if ((y<GYSIZE-yh) && (y>yh))
 {
 sprintf(buffer,"%d",i);
 di.Text(buffer,0+BIGTICK,y-(yh/2),TinyFont,4);
 }
}
if (semi_inc) /* Draw small ticks */
{
 for (i=start_pos; i<maxg; i+=semi_inc)
 {
 int y=yaxis.map_1_to_2(i);
 if ((y<GYSIZE) && (y>0))di.Line(0,y,0+SMTICK,y,4);
 }
}

36 Issue 107 June 1999 CIRCUIT CELLAR ® www.circuitcellar.com

SOFTWARE

Two sets of source code are avail-
able via the Circuit Cellar web site
for this project. NBGifGraph.zip
is a complete build project for the
Netburner environment. There’s
also a sample of the stripped-down
GIF compressor example program
that runs on a PC in any other
embedded environment.

Paul Breed is currently chief architect
at Netburner. He has been designing
and building embedded widgets of all
sorts since 1982. You may reach him
at paul@netburner.com.

SOURCES

Development kit
Netburner
(619) 530-0293
Fax: (619) 530-0240
www.netburner.com

Protek 506 DVM
Hung Chang Products Co.,Ltd
+02 395-8611-20

Active Electronics
(781) 932-0050

REFERENCES

[1] Hung Chang Products, Protek
506 Digital Multi Meter User’s
Manual, Seoul.

[2] T. Berners-Lee, RFC 1738 Uni-
form Resource Locator, Univer-
sity of Minnesota, December,
1994.

[3] T. Berners-Lee, R. Fielding, and
H. Frystyk, RFC 1945 Hypertext
Transfer Protocol—HTTP/1.0,
UC Irvine and MIT, May, 1996.

[4] EGCS, www.cygnus.com;
prebuilt binary images
www.calm.hw.ac.uk/davidf/
coldfire.htm

[5] corp2.unisys.com/LeadStory/
lzwfaq.html

Listing 10 —This code sets up the graphic response object, sets some default colors, and draws an outside
border in preparation for drawing the actual graph data.

int DrawGraph(int sock, int GXSIZE, int GYSIZE, int ming, int
 maxg, int mint, int maxt)
{
 int xw,yh,mark_inc,semi_inc,start_pos;
 char buffer[20];
 int i;

 transmap yaxis(ming,maxg,GYSIZE,0); /* Initialize drawing system */
 transmap xaxis(mint,maxt,0,GXSIZE);
 DrawImageObject di(GXSIZE ,GYSIZE,256);
 /* Draw box around whole image */
 di.SetColor(0,255,255,255);
 di.SetColor(1,255,0,0);
 di.SetColor(2,0,255,0);
 di.SetColor(3,0,0,255);
 di.SetColor(4,0,0,0);
 di.SetColor(5,192,192,192);
}

Listing 9 —This code draws the temperature data in the graph. It uses the temperature data stored in the
circular buffer gMeasurments. It also uses two-axis map objects to scale the data properly.

if (gNextPosition!=0) /* Draw actual data */
{
 int sp,ep; /* sp=starting poiint ep=ending point*/
 int lastx;
 int lasty;
 int gNow;
 gNow=gNextPosition-1;
 if (mint < -gNow)
 sp=-gNow;
 else
 sp=mint;
 ep=maxt;
 lasty=yaxis.map_1_to_2(gMeasurments[(gNow+sp)%gMaxStored]);
 lastx=xaxis.map_1_to_2(sp);
 for (i=sp+1; i<ep; i++)
 {
 int y=yaxis.map_1_to_2(gMeasurments[(gNow+i)%gMaxStored]);
 int x=xaxis.map_1_to_2(i);
 di.Line(lastx,lasty,x,y,1);
 lastx=x;
 lasty=y;
 }
}

In the graph initialization, two trans-
map objects—xaxis and yaxis—are
created, which permit easy mapping
from the natural units on time and
temperature to the graph dimensions
of pixels.

After the graph object is initialized,
the program draws the x axis by mea-
suring the size of the display text and
figuring out how close together it can
place the x-axis tick marks (see Listing
8). The data is drawn (see Listing 9)
and sent out to the web browser in
Listing 10.

FUTURES
In its current implementation, the

graphics class is a RAM hog. It creates
an uncompressed image buffer before
it compresses the image. It’s possible
to write a GIF generator that doesn’t
buffer the whole image prior to com-
pressing it, but this arrangement is
more complex and error prone. Because
4 MB of embedded DRAM costs less
then $8, it wasn’t worth the effort.

Once embedded developers become
comfortable using the Internet tech-
nologies and capabilities in their envi-

ronment, the possibilities are endless.
You might set limits and send e-mail
when the limits are exceeded, or even
have the system dial up an ISP via
modem and send an e-mail message
with an attached GIF image showing
the problem. I

www.netburner.com

CIRCUIT CELLAR JUNE 199938

N
PC

www.circuitcellar.com

PCNouveau
edited by Harv Weiner

EMBEDDED COMPUTER PLATFORM

DATA ACQUISITION BOARD
The PDA500, from Signatec, is one of the fastest 8-bit PCI

A/D boards on the market. It captures waveform frequencies and
transfer data at up to 500 MBps, and provides a full 500-MHz
bandwidth. Applications include communications, ultrasound,
radar, sonar, mass spectroscopy, and spectrometry.

The PDA500 has two input channels and a multiplexer to select
the digitization source. A digitally controlled attenuator gives the
unit 14 input voltage settings. Up to four PDA500 boards can be
connected in a master/slave configuration to achieve synchro-
nized data samples. The PDA500 implements the Signatec Auxil-
iary Bus (SAB), which permits both block and packet data
transfers at a sustained rate of 500 MBps to other processing,
playback, and storage devices without any PC intervention.

The PDA500 is available in 1- and 4-MB onboard memory
configurations. An excellent software package, which includes
device drivers and example applications for DOS and Windows
95/NT, is provided at no additional cost. An extensive library of
C-language functions with source code is supplied with the board
to ease the development of application software.

tional three ISA-bus connectors for oversize (up to 10.5″ × 12″)
circuit boards or other components such as disk drives, pumps,
valves, actuators, or other electronic peripherals.

Additionally, the DIPU module can be attached directly to the
user’s existing equipment enclosure to instantly provide a com-
mand and control module for the whole system and enable
network or Internet connectivity for any device or machine.

The Instant Instrument is constructed of cast aluminum and
stainless steel. The DIPU measures 10″ × 8.8″ ×
12″, and the ASCU 2.7″ × 10.75″ × 13″. It is
designed for ruggedness, EMC control, and
corrosion resistance. As well, this platform
features internal batteries, power supply,
and charger circuitry to power the unit for
approximately 2 h for portable use or
backup in case of power failure.

The Instant Instrument starts at $4900
for the base unit without touchscreen.

Instant Instrument
(813) 289-5555
Fax: (813) 289-5454
www.instantinstrument.com

The Instant Instrument is a complete
PC-based instrument platform designed for spe-

cialty applications that use embedded computers,
including test and measurement, data acquisition, com-

munications, and medical electronics. The unit includes the
complete enclosure, display, power supply, battery, and

computer subsystem with additional space and slots for custom
circuitry. The designer creates only the application software
(Windows, DOS, Unix) and provides any
specific hardware required.

The Instant Instrument is modular
and comprises the DIPU (display, in-
put, processing unit) and optional ASCU
(application-specific circuitry unit) mod-
ules. The DIPU contains a five-slot PCI/
ISA bus, a scalable PCI/ISA SBC
starting at a 133-MHz ’586 with 32-MB
DRAM, a PC/104 bus connector, a
10.4″ TFT VGA display with optional
touch capability, an internal disk drive,
and the standard PC interface ports.
The optional ASCU module is both
mechanically and electrically attached
to the DIPU and provides an addi-

The PDA500 is priced from $6100 to $7500, depending on
memory configuration and SAB implementation.

Signatec, Inc.
(909) 734-3001
Fax: (909) 734-4356
www.signatec.com

www.instantinstrument.com
www.signatec.com

JUNE 1999 EMBEDDEDPC 39

N
PC

www.circuitcellar.com

PCNouveau

INTEGRATED VEHICLE COMPUTER
The PC/Piranha is a Windows CE computer especially

designed for the rigors of use on vehicles. A highly integrated thin-
client platform, the PC/Piranha takes advantage of the latest
technology and miniaturization of electronics to bundle features
found in many devices into a single compact unit. This computer
can be used in wide-area wireless and in-premise, local-area
wireless applications.

The PC/Piranha features an 80-MHz 32-bit RISC processor
with up to 32-MB DRAM and 16-MB flash memory. Three display
technologies are available, including a DMTN sunlight-readable
LCD display. An analog resistive touchscreen and voice-recogni-
tion input capabilities are also included.

Expansion is facilitated through two Type II PC-Cards or one
Type II and one CompactFlash card. I/O is available through a
104-key scan keyboard interface, serial ports, an IR port, and
audio input/output ports.

The PC/Piranha uses the standard Microsoft Windows CE 2.1
operating system and can run a wide variety of applications.
Network options include wireless LAN, wireless WAN, vehicle
bus, CAN interface, and GPS satellite navigation.

In single quantities, the PC/Piranha sells for $1495.

Kinetic Computer Corp.
(978) 439-0500
Fax: (978) 439-0501
www.kin.com

MULTIMEDIA
ENHANCED SBC

The VIPer826 is a half-size, industrial single-
board computer for PC/104-Plus, ISA passive back-
plane, or stand-alone operation. Its Cyrix architecture
provides a highly integrated multimedia (data, video, and
sound) capability that delivers Pentium-class performance at a
reasonable cost.

The board features a Cyrix MediaGX MMX processor operat-
ing at speeds up to 266 MHz, integrated 16-KB Level 1 cache,
and up to 128 MB of unbuffered SDRAM memory. Also included
is VGA support for simultaneous CRT and TFT flat-panel operation,
PC 97–compliant 16-bit audio with AC 97 CODEC assistance,
and Ultra DMA/33 IDE support. Also onboard are serial/
parallel, USB, floppy, keyboard, and mouse ports. 10/100Base-
TX Ethernet connectivity is optional.

The Award Hi-flex BIOS, in boot-block flash memory with
emergency recovery code, supports serial/parallel port remap-
ping, keyboard disable, and console redirection. Other features
include a PC/104-Plus expansion header, bootable CompactFlash
disk support, a CPU temperature monitor, watchdog timer, and
power-fail circuit.

The single-unit price of the VIPer826 with a Cyrix 233-MHz
MediaGX processor without Ethernet and memory is $650,
including a two-year warranty.

Teknor Industrial Computers, Inc.
(800) 354-4223
(450) 437-5682
Fax: (450) 437-8053
www.teknor.com

www.kin.com
www.teknor.com

CIRCUIT CELLAR JUNE 199940

N
PC

www.circuitcellar.com

PCNouveau

SERIAL-TO-TCP/IP CONVERTER SOFTWARE
TCP/Com is a software package that

enables any RS-232 serial port on a PC to
interface directly to a TCP/IP network. Any other

computer on the same network is able to access the
serial ports on the PC where TCP/Com is running via a

TCP/IP socket connection.
For example, a user can connect

a serial device (barcode reader,
modem, electronic balance, or in-
strument) to a COM port on a PC,
run TCP/Com, and then connect to
the device from any other PC on a
network through a TCP/IP socket
connection. This would allow the
use of telnet, TCPWedge, or any
other TCP/IP communications soft-
ware to read or write to the serial
device directly from any PC located
on the same network. TCP/Com

can also be used to pass serial data across a corporate intranet
or over the Internet.

TCP/Com is easy to use. The user selects the serial port and
communications parameters for that port, enters an IP address
and socket number, and activates the software. TCP/Com fea-

tures 115-kbps serial communica-
tions, 16 simultaneous COM ports,
and 16 IP addresses that can be
either a client or server.

TCP/Com sells for $259 in a
two-license package (for use on two
PCs simultaneously). A free test ver-
sion can be downloaded from the
company’s web site.

TAL Technologies, Inc.
(215) 763-7900
Fax: (215) 763-9711
www.taltech.com

www.taltech.com

JUNE 1999 EMBEDDEDPC

E
P
C

41www.circuitcellar.com

Figure 1a—Ethernet networks wired with coaxial cable typically use a bus
architecture. b—However, those networks wired with twisted pair are often in
conjunction with a star architecture.

Aaron Feen

Ethernet connectivity is desirable in many real-world applications. To get your
embedded device connected, listen up as Aaron overviews the hardware and
software considerations you’ll need to think about.

People have always sought methods to
communicate over great distances. Although
the technologies have dramatically im-
proved over the last three millennia, iden-
tifying the right communication solution
for an embedded design is a nontrivial task.

One increasingly popular choice is
Ethernet. Ethernet is well worth consider-
ing if you encounter one of these major
design requirements:

• distance—communicating with another
system, whether it’s a kilometer or a
continent away

• interoperability—communicating with
one or more systems based on com-
pletely different hardware and software

• connection sharing—shar-
ing data and/or connec-
tions with other devices

For example, a medical
device might share its infor-
mation with any other de-
vice on a hospital’s network,

regardless of what hardware and soft-
ware the other equipment is based on.

Or, if you’re an avid windsurfer like
me, you might want a device that mea-
sures the current wind speed. Thanks to
Ethernet, your high-tech manometer can
dynamically generate a web page that
lets you (and your fellow windsurfers) view
the current wind conditions via the Internet.

Clearly, Ethernet connectivity is desir-
able in a variety of real-world situations.
That’s why a lot of people think of Ethernet
as the serial port of the ’90s.

ETHERNET HARDWARE
Ethernet networks were originally de-

signed and physically arranged in a bus

structure (see Figure 1a). In this configura-
tion, the network devices are placed in
series. An Ethernet packet travels past
each device until it encounters the termina-
tion resistor at the end of the network.

However, most Ethernet installations
today use a star architecture like the one
in Figure 1b, in which all nodes connect to
a central hub. Although the physical struc-
ture is different, logically the network is
still a bus. The hub’s job is to repeat any
information received from a single node
to all other nodes (electrically speaking,
this is the same as being on a single bus).

Although a star configuration may in-
crease the amount of wiring, it offers two
advantages. First, a network fault (e.g., a

broken wire) in a star network
only affects a single node,
whereas the same failure in a
bus-oriented network may
cripple the entire system. Also,
adding or removing a node is
as easy as changing a single
connection.

Embedded Ethernet

Fundamentals

Huba) b)

CIRCUIT CELLAR INK JUNE 199942 www.circuitcellar.com

Regardless of the physical network
structure, all devices are electrically con-
nected to the same bus, so you need to be
concerned about collisions. Collisions
occur when two devices attempt to trans-
mit on the same bus at the same time.

Ethernet resolves the situation by using
a carrier sense multiple access/collision
detect (CSMA/CD) scheme. You can think
of it as the “cocktail party protocol.”

If a group of people are talking at a
cocktail party and two people start to
speak at the same time, they both stop and
wait a certain amount of time for the other
person to begin first (if they’re polite!). If
one person’s internal timer decides that
enough time has passed and no one else
has begun speaking again, that person
will take the floor and begin speaking.
Ethernet uses the same method to share
the network.

Using CSMA/CD has two implications.
First, there’s no minimum guaranteed time
in which data will be transmitted. As
network traffic increases, the number of
collisions increases. As collisions increase,
the average time it takes to transmit on the
network increases.

Ethernet has traditionally been consid-
ered suboptimal for applica-
tions requiring isochronous data
transfers (e.g., real-time voice
telephony and video telecon-
ferencing). But as improvements
are made in Ethernet controller
and infrastructure technology,
isochronous communication is
rapidly becoming a reality.

The second ramification
when using CSMA/CD is that
because Ethernet is a shared
network, no single device uses
the full 10, 100, or 1000 Mbps
(known as Ethernet, fast Ether-
net, and gigabit Ethernet, re-
spectively). Even if only one
device is transmitting on the
network, the overhead associ-
ated with an Ethernet frame
(e.g., destination address, CRC)

prevents the full bandwidth from being
available for data transfers. Despite these
limitations, even 10-Mbps Ethernet pro-
vides more bandwidth than most embed-
ded designs require.

Ethernet controllers generally consist
of two components—a media access con-
troller (MAC) and a physical layer control-
ler (Phy). The Phy provides the correct
electrical interface; the MAC formats and
addresses the data. All of this is outlined
in the IEEE 802.3 Ethernet specification.

Most Ethernet and many fast-Ethernet
solutions have integrated the MAC and
Phy onto a single chip. Few, if any,
gigabit-Ethernet solutions have integrated
both onto one chip. When selecting an
Ethernet controller, make sure you under-
stand whether or not you’re getting the
complete solution.

The different Ethernet network types
are referenced by their speed and cable.
Some common types are given in Table 1.

Although coaxial cable permits farther
transmission between network components,
twisted pair has become the dominant
solution thanks to its smaller size, lower
cost, and the ease with which nodes can
be added or subtracted from the network.

Name Data rate Wiring Comments

10Base-2 10 Mbps Coaxial cable Limited to <200 m between hub and node
10Base-T 10 Mbps Twisted-pair wire Limited to <100 m between hub and node
100Base-T 100 Mbps Twisted-pair wire Requires high-quality Category 5 wire

Table 1—Different types of Ethernet networks are referenced by their speed and type of cable.
I listed some of the most common implementations here.

Photo 1—AMD’s Net186 evaluation board implements a
full embedded Ethernet design while keeping board space
to a minimum.

JUNE 1999 EMBEDDEDPC

E
P
C

43www.circuitcellar.com

Years ago, the
branches of the U.S. armed
forces each developed indi-
vidual computer networks. The
Department of Defense quickly re-
alized that in times of war, all these
networks would be unable to communi-
cate with each other. So, they funded the
development of a scheme that eventually
became the transmission control proto-
col/Internet protocol (TCP/IP).

TCP/IP enables different networks to
communicate. This “network of networks”
has evolved into the Internet. So if your

network. An interesting bit of history is
how one of the most widely used protocol
stacks originated.

SOFTWARE
Ethernet software is referenced by its

position in a standardized, seven-layer
model. This model was developed by the
International Standards Organization
(ISO) and is known as the open systems
interconnection (OSI) model (see Table 2).

By following this model, the hardware
is abstracted from the software. In theory,
you can substitute any Ethernet controller
for any other Ethernet controller and leave
the upper layers of software untouched
(except for replacing the second layer’s
driver software, which I discuss later).

But, models are rarely 100% represen-
tative of reality. Although most designs
implement the various functions described
by the OSI model, few real designs strictly
enforce the separation of the layers.

The lowest OSI layer, the physical
layer, is implemented in hardware by the
Ethernet solution selected. It is responsible
for the mechanical and electrical interface
that transmits the raw bits over the wire.

The remaining six layers are primarily
performed in software, which is why I tend
to believe that Ethernet hardware design
is easy, relative to the software effort
involved. Too many engineers add Ethernet
hardware to a design and remove it once
they see how much software is required!

But don’t despair. The key to success is
selecting a hardware vendor whose solu-
tion is already supported by software.

The functions of the next layer up, the
data link layer, are performed by a driver,
which provides instructions that tell the
microprocessor how to work with the
Ethernet controller. The driver (with help
from the MAC) is also responsible for
framing and addressing the information.

The next three layers (session, trans-
port, and network) are referred to as the
protocol stack and are often purchased
from a third-party vendor. The protocol
stack is responsible for establishing an
error-free virtual connection across the

Table 2—The Open System’s Interconnection (OSI) 7-layer model provides a framework for
developing communications protocols.

Layer Name Function Example

7 Application Application software Netscape Navigator
6 Presentation Formatting, encryption, and compression …
5 Session Establishes and terminates connections TCP
4 Transport Ensures error-free delivery of message IP
3 Network Transmission and routing of frames …
2 Data Link Frames and addresses packets Driver software + MAC
1 Physical Mechanical and electrical interface Phy

CIRCUIT CELLAR INK JUNE 199944 www.circuitcellar.com

Aaron Feen handles product marketing in
Advanced Micro Devices’ embedded pro-
cessor division. He also worked for five
years as an AMD field sales engineer. You
may reach him at aaron.feen@amd.com.

SOURCE
Net186, Am186ES, PCnet-ISA II
Advanced Micro Devices, Inc.
(408) 732-2400
Fax: (408) 732-7216
www.amd.com

Figure 2—A processor, Ethernet controller, memory, and a modest amount of glue logic is all
that’s required to implement an embedded web server.

embedded design may someday need to
communicate over the Internet, you’d do
well to select TCP/IP as your protocol stack.

DESIGN EXAMPLE
To see how you might create an embed-

ded web server, let’s consider AMD’s
Net186. It’s a useful starting point for
designs in which the embedded device is
dealing with information over Ethernet.

Two criteria were used when selecting
the microprocessor for this board. First,
there needed to be enough performance
to run a protocol stack and still have
sufficient bandwidth to perform the other
tasks required by the system.

Second, most Ethernet controllers have
a PC-style bus interface (e.g., PCI, VL, or
ISA), so selecting a processor or a system
architecture that included a PC-style bus
reduced the glue logic required. The Am-
186ES offers both adequate performance
headroom and an ISA-like bus interface.

Because 10-Mbps Ethernet is more
than sufficient for most embedded designs,
it was used here. To lower wiring costs,
twisted-pair wire is supported. The PCnet-
ISA II Ethernet controller, which supports
10Base-T Ethernet and offers an ISA bus
interface, seemed to be the best fit.

The most interesting aspect of the design
was the human interface. We wanted to
let users surf the information on the Net-
186 board with a standard web browser.

Most designers develop their embed-
ded web applications on top of an RTOS.
Here, there must be two components to the
software running on top of the RTOS.

The application is responsible for the
primary functions of the system, and there

must be some web-serving software to
generate the HTML that makes up a web
page. The web-serving software also con-
tains a protocol stack (e.g., TCP/IP).

Here’s how it all works together. When
you sit down at a PC that has a web browser
running as its OSI layer 7 application
software, the software builds a request
asking for information from the embedded
web server. This request goes down the
client’s protocol stack, which begins plac-
ing the message in a form ready for
transmission on the network. The Ethernet
controller puts the message on the network.

When the Ethernet packet gets to the
embedded web server, the opposite pro-
cess happens. The packet arrives at the
embedded system’s Ethernet controller
and is passed up through the OSI layers to
the application software.

HERE ARE THE KEYS
Whether it’s high bandwidth, long-

distance communication, or interoperability
with a variety of devices, Ethernet is up to
the task. The key to success is selecting a
processor or system architecture that pro-
vides straightforward connectivity to existing
Ethernet controllers as well as sufficient
software support to perform the task. EPC

www.amd.com

JUNE 1999 EMBEDDEDPC

R
P
C

45www.circuitcellar.com

Real-Time PC

Ingo Cyliax

Astronomical Issues
Part 3: Filters and Undersampling

A s we move into looking at digital
filters, I want to focus on one technique
you can use to design finite impulse re-
sponse (FIR) filters, which are used in all
kinds of DSP applications. Besides de-
signing FIR filters, I also discuss some
aspects of implementing these filters in
FPGAs and talk about undersampling, a
technique used in digital radio design.

The effects of filters can be best described
by looking at what they do in the fre-
quency domain. In other words, look at what
kind of frequency response the filter has.

A low-pass filter passes frequencies
below a cutoff frequency and
blocks higher frequencies. A high-
pass filter is the dual of low-pass
filters. It blocks frequencies below
the cutoff frequency and passes
higher frequencies.

Bandpass filters pass frequen-
cies that are higher than a low
cutoff frequency (f1) and lower
than a high cutoff frequency (f2).

You can think of a bandpass filter as a
low-pass filter having a cutoff frequency at
f2 followed by a high-pass filter with a
cutoff frequency of f1.

A band-block filter is a filter that passes
all frequencies outside the two cutoff fre-
quencies of f1 and f2. Figure 1 shows the
idealized frequency spectrum of all of
these filters.

When the difference of f1 and f2 is small
compared to the absolute frequency, band-
pass filters are also called resonant filters.
Narrow band-block is sometimes called a
notch filter.

DSP applications often incorporate FIR filters. This month, Ingo discusses
digital filters and FIR techniques, as well as implementing these filters in
FPGAs and undersampling—a process used in digital radio design.

Figure 1—The ideal frequency responses of a low-pass filter (a),
high-pass filter (b), bandpass filter (c), and the bandstop filter (d)
are rectangular in shape and feature sharp cutoff points.

0

0

f1 f2

f1 f2

a)

0

0

Fc

Fc

Idealized filters are filters with rectan-
gular frequency spectrums. Of course,
there’s no such thing as an ideal filter in
which the filter response drops off vertically
at the cutoff frequency and the phase delay
is constant for all of the frequencies in its
pass band. But, thinking of idealized filters
will help you understand digital filters.

DOMAINS
If the frequency-domain representation

of a perfect filter response is a rectangle,
surely you can describe what this filter
looks like in the time domain. One way to

do this is to take the inverse Fourier
transform of a rectangle or pulse.

Although we typically consider
spectra to only cover positive fre-
quencies, they also contain a nega-
tive dual. The negative spectrum is
a mirror of the positive spectrum.
Mathematically, a low-pass filter
(0–Fc) has to be considered a pulse
from –Fc to Fc.

b)

c)

d)

CIRCUIT CELLAR JUNE 199946 www.circuitcellar.com

To find out what this frequency
domain pulse represents in the time
domain, take the inverse Fourier trans-
form of the pulse. Luckily, the pulse
function is one that’s popular and
the transform can be found in a table.

The Fourier transform for a pulse
in the frequency domain of 2F width
(where F is the cutoff frequency) is
the function 2F × sinc(2πFt). The sinc
function sinc(x) is equivalent to
sin(x)/x. Similarly, the transform for
the high-pass filter, where the pulse
wraps around positive infinity, is

–2F × sinc(2πFt). Figure 2 shows what
these functions look like.

Great, you might think, what do I do
with this? Obviously, it’s hard to visualize
implementing a circuit that implements the
sinc function in analog. At least it is for me.
But then, we’re discussing digital filters so
we don’t really care how it might be done
in analog. The question is, how do we
implement it digitally?

The time-domain representation we found
is the transfer function of a circuit that
implements such a filter. In the analog world,
the transfer function is the impulse response
of a circuit. To find out what a transfer
function in the time domain does to a signal,
we use a technique called convolution.

In the frequency domain, convolution
is simply multiplying the functions. But, in
the time domain, we’re not that lucky. The
basic algorithm is:

y(t) = x(n∆t) × h(n∆t)Σ
0 → n

where h(t) is the transfer function of the
filter, x(t) is the input signal, and y(t) is the
output signal.

Basically, you start at one end and
multiply each discrete time step of the
signal with that of the function at the other
end. But in our case, the transfer function
is symmetric so it doesn’t matter which
end you start at.

For real signals, let ∆ approach zero and
then the whole thing becomes an integral
over time. For digital signals, you can use
the above form. With this information,
you might be able to tell that if the input
signal is an impulse, the output signal y(t)
will be equal to the transfer function x(t).
I wonder if they did that on purpose. ;-)

A digital filter can be implemented
almost directly from the above form. Take
a look at the FIR filter in Figure 3. The
coefficient h0–hn and the value of the
transfer function at discrete time steps are
multiplied by the input values as they are
delayed and summed to provide the output
y(t) at a specific time instance. To imple-
ment a real convolution, you’d have to go
back in time to the beginning.

It should be almost obvious that if you
make the coefficients in the FIR filter match
the shape of the sinc() or –sinc() function,
you can implement both the idealized
low-pass and high-pass filter. In fact, with
a FIR filter, you can implement all transfer
functions as long as they are symmetric.

Figure 2—Here’s the time-domain impulse response
for various filters. The bandpass and bandblock
filters have an f2 equal to 3 × f1.

1

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8

–1
–10 –5 0 5 10

sin(x)/x
–sin(x)/x

sin(3x)/(3x)–sin(x)/x
sin(x)/x–sin(3x)/(x)

JUNE 1999 EMBEDDEDPC

R
P
C

47www.circuitcellar.com

There is one gotcha with this method.
As I mentioned, the input signal x(t) and
the transfer function h(t) go on forever in
time (i.e., the n in the equation above would
be infinity). This situation presents a prob-
lem because it’s only practical to consider
building FIR filters where the number of n
steps is finite.

The effect of this time-limited function is
that you essentially have a pulse-function
response in time overlaid on top of the h(t)
function, which causes some ripples in the
frequency spectrum.

The pulse has a sinc frequency re-
sponse, and the resulting filter response is
affected by the ripples. For our “ideal”
filter, this means that the passband and
stop band won’t be flat in the pass and
block band.

To reduce the effects of the edges,
round off the edges of the h(t) function by
using a windowing function. The window
function makes sure that the edges of the
sinc function are zero (or close to it), and
minimizes the effects on the rest of the
filter.

Different windowing functions have
different effects and vary by complexity.
A simple windowing function is the Han-
ning window function.

The coefficients you compute for the
filter are adjusted by a function that looks
like a half circle with diameter of the
number of steps (N), or taps, in the filter:

0.5 + 0.5 × cos 2πn
N

Other windowing functions are a varia-
tion of the Hanning functions. The Ham-
ming window function is quite popular
and gives a little flatter frequency re-
sponse than the Hanning function:

0.54 + 0.46 × cos 2πn
N

FILTER EXAMPLE
So, let’s put this all together by

doing an example. Say you want
to design a low-pass digital filter to
cut off at 1 kHz when the sampling
rate is 8 kHz. In DSP, it’s convenient
to express the frequencies as a
ratio of the sampling rate, so 1 kHz
at 8 kHz is 1⁄8, or 0.125. Let’s find
the coefficients for a 15-tap FIR filter
(N = 15) and compare the response
with a different windowing function.

First, calculate the constants you
need to compute the sinc function

for this low-pass filter. Remember, the
function is defined as:

2F × sinc(2πFt)

Scale the frequency by 0.1 and plug it
into the equation and you get:

0.2 × sin 0.628t
0.628t

The coefficients are then computed at
for the 15 taps. The first column in Table 1
shows the coefficients. The window func-
tion is computed for the coefficient and

multiplied together with
the coefficient.

Columns 2 and 3 in Table
1 show the modified coefficients
for the Hanning and Hamming win-
dows, respectively. Figure 4 plots what
the coefficients looks like graphically. You
see the windowed functions have coeffi-
cients that are nearly zero at both edges.

I computed the response to these filters
by running an impulse into the input and
looking at the output signal using a digital
Fourier transform program. Figure 5 shows
the frequency responses for the three fil-
ters. As you see, all three filters implement
a low-pass filter that has a 3-dB (half
magnitude) point at 10% of the total band.

As predicted, the nonwindowed filter
has a bunch of ripples, whereas the
Hanning filter is much smoother. The Ham-
ming filter is only a little smoother than the
Hanning filter and a little steeper in the
transition band.

Now that I’ve demonstrated how to
compute coefficients for a FIR filter, let’s talk
about some issues. The method I used is
only one approach for designing a FIR filter.
See the references for other methods.

Figure 3—A FIR filter uses delayed input values (x1...xn)
and coefficients (h1...hn) to compute the output value
y(t). The coefficients are derived from the impulse
response of the filter.

h2 hnh0 h1

x1+1 x0 x1 x2 xn

y1+1

...

R
P
C

CIRCUIT CELLAR JUNE 199948 www.circuitcellar.com

Some DSPs use fixed-point num-
bers (integers) and others use float-
ing-point numbers. Obviously, using
floating-point numbers is nice be-
cause you don’t have to worry about
truncation or overflow as much as
with fixed-point numbers. Also, float-
ing-point numbers have much better
dynamic range. But floating-point DSP
processing is expensive, and DSPs
that implement floating point are
expensive compared to fixed point.

For simple algorithms such as
FIR filters, the truncation and over-
flow is predictable and, with careful
design of the software or hardware,
isn’t an issue—especially where cost
and speed concerns are important.

The sequential nature of computers
and even DSPs are a drawback when
trying to implement high-speed signal-
processing algorithms (e.g., FIR filters).
Some processors have multiple data paths.

For example, the MMX instructions in a
Pentium CPU can operate on four pieces
of 16-bit data simultaneously, but this is
only a 4× improvement over purely se-
quential computers. For these algorithms,
the inner loop that executes the MAC
instructions over and over is the bottleneck.

When DSPs and processors aren’t fast
enough and using arrays of DSPs isn’t cost
effective, we turn to hardware to imple-
ment these functions. Although neither
solution is the save-all, systems composed
of a general-purpose processor to control
low-speed signal processing, DSPs to
handle medium or floating-point signal
processing, and hardware to perform
high-speed processing are usually found
in many applications.

FPGAs AND FILTERS
Field-programmable gate arrays are a

good fit for implementing high-speed al-
gorithms. They offer many architectural
features like look-up tables and fast carry-
chains. Also, many FPGAs are in-circuit
reprogrammable so it’s almost as easy to
change the algorithm implemented on them
as it is on a processor (one reason FPGAs
are so popular in the signal processing
and telecommunication industry). Once you
have an FPGA-based signal-processing
chain, it’s usually easy to change or adjust
the parameters or algorithm, even after
the product is already in production.

There are some special techniques that
you can use when implementing signal-
processing functions like the FIR filter in
FPGAs. Let me show you some of the methods
that can be used to implement FIR filters.

The most obvious improvements in
hardware are that each tap can be com-
puted in parallel and summed with wide
adders (i.e., adders with more than two
inputs). By adding pipeline registers, it’s
possible to design FIR filters that can
compute a new y(t) sample for each clock
cycle. A processor needs at least N cycles
(one for each tap) to compute one sample.

When implementing the type of FIR
filters I’ve talked about, the coefficients are
symmetrical. Here, h0 = h14, h1 = h13,
and so on. You can use this to your advan-
tage and even change the order somewhat.

Figure 7 shows that adding the x(n)
values for the symmetric taps before you
multiply saves you about half the multiplier.
Till now, I’ve only designed odd-numbered
taps, but it’s possible to design FIR filters
with even-numbered taps.

Figure 5—The effects of windowing on a 15-tap FIR filter. All of these implementations have a
cutoff frequency of 0.125 Fs but vary in their steepness and how smooth they are in the pass
and block band. Figure 4—This graph shows the time impulse response for the 15-tap FIR filter
with various windowing functions. Notice that for the two-window function, the edges are close
to zero.

0 100 200 300 400 500 600

non.dat
han.dat
ham.dat

1.2

1

0.8

0.6

0.4

0.2

0

Table 1—This table shows the coefficients for the 15-
tap FIR filter with and without the windowing functions
applied.

T None Hanning Hamming

–7 –0.000473 –0.043247 –0.003895
–6 –0.031183 –0.002978 –0.005234
–5 0.000000 0.000000 0.000000
–4 0.046774 0.020943 0.023009
–3 0.100910 0.066047 0.068836
–2 0.151365 0.126324 0.128328
–1 0.187098 0.179010 0.179657
0 0.200000 0.200000 0.200000
1 0.187098 0.179010 0.179657
2 0.151365 0.126324 0.128328
3 0.100910 0.066047 0.068836
4 0.046774 0.020943 0.023009
5 0.000000 0.000000 0.000000
6 –0.031183 –0.002978 –0.005234
7 –0.043247 –0.000473 –0.003895

a)
0.2

0.15

0.1

0.05

0

–0.05
0 2 4 6 8 10 12 14

non.cof
han.cof
ham.cof

b)

How do you deter-
mine the number of time

steps (or taps) for a FIR filter?
In general, the number of steps

determines the steepness of the fil-
ter. In the example, I showed a 15-tap

filter, which roughly gives you a transi-
tion band of 1⁄15 the sampling rate. A 2-tap
filter gives you a transition rate of half the
sampling rate. Figure 6 shows the response
for different number of taps for our filter.

The half-band filter is a special kind of
filter that’s used to filter either the top or
bottom half of the spectrum. It’s special
because every other coefficient is zero
(which leads to efficient implementation)
and only half of the computations have to
be performed, compared to a filter which
has the same number of taps but isn’t
exactly a half-band filter.

I’ve given you a brief background in
designing and computing the coefficients
for digital filters. These filters can be imple-
mented with any kind of digital computer.
The computational complexity is related to
the number of taps in the filter as well as
if any special conditions like half-band are
implemented.

General-purpose computers have fixed
word-length instructions (i.e., a 32-bit gen-
eral-purpose computer can efficiently per-
form 32-bit integer operations like adding
and multiplying). These machines usually
have separate multiply and add instructions.

Computers that are optimized for sig-
nal processing usually have a multiply-and-
add instruction that accumulates the result
into a register. These instructions can
implement operations like FIR filters effi-
ciently (with one instruction per tap), but
they are still linearly executed.

 JUNE 1999 EMBEDDEDPC 49www.circuitcellar.com

Also, because SRAM-based
FPGAs are reloadable, you can
implement the multipliers as con-
stant multipliers. Instead of reload-
ing registers or arrays that might
hold the constant values and using
general multipliers, you just reload
the whole FPGA with a new filter.

For example, in a digital ra-
dio, you might have a 6-kHz filter
for AM, a 3-kHz filter for single-side band,
and a selection of really narrow filters (300
or 500 Hz) for Morse code. You’d change
the filter in the FPGA with a general-
purpose CPU whenever you switch receiving
modes. Reloading an FPGA takes tens of
milliseconds. This is a good example of the
system approach of using a CPU for control
and an FPGA to accelerate processing.

The next optimization isn’t quite as
obvious at first. If you implement the adders
and multipliers as bit-serial components,
you can sometimes gain speed. Each tap is
still done parallel to each other, but the
whole chip is clocked at the bit rate instead
of the sample rate, which means the bit rate
for the chip might be 8× the sample rate (if
the word width is 8 bits).

Serial adders that run at close to the
maximum clock rate of the FPGA can be
implemented faster in many FPGAs be-
cause all of the signals needed to compute
the next bit of a word are local and routing
is minimized. With parallel adders, the
speed is limited by the routing of the carry
chain. Obviously, the tradeoff between bit-
serial adders and parallel adders has to be
evaluated for each design and FPGA ar-
chitecture to find out which is faster.

These are just a few of the optimizations
that can be done in hardware. Others,

such as distributed arithmetic, would take
a whole article to describe.

To find out more, the web sites of the
FPGA vendors listed under Sources con-
tain application notes that describe how to
squeeze even more speed from the parts
for signal processing. Some FPGA vendors
even have downloadable software that
generates these constructs for you.

OTHER FILTERS
As I mentioned last month, my ap-

proach is to use a multi-FPGA-based high-
speed signal processor married to a generic
CPU for control and low-speed processing.
I also looked at the CORDIC algorithm that
was implemented in hardware to synthe-
size sine waves and used to mix the input
signal down.

Another element I talked about was the
decimation filter, which filters part of the
frequency spectrum before reducing the
sampling rate. The half-band filter I men-
tioned is often used as a 2:1 decimation filter
before reducing the sampling rate by half.

However, at the input side of my radio,
the sampling rate is high. So, building multi-
tapped FIR filters isn’t easy, even with most
of the obscure design techniques avail-
able. Here, I used a Comb filter.

You can think of a Comb filter as a FIR
filter where all of the taps use the
same coefficient. A 4:1 decima-
tion filter based on this architec-
ture would just add the last four
x values without multiplying by
a coefficient.

This type of filter computes
the running average of the input
signal. Because the time-domain
representation is a pulse shape,
the frequency response now
looks like a sinc function. The
low-pass portion looks like an
old-fashion barn door, hence
the nickname “barn-door filter.”

Figure 8 shows a 4:1 Comb
filter spectrum. It’s a crude low-

Figure 6—By increasing the number of taps in the FIR filter,
you can make the transition band steeper. The cost, of
course, is the higher computation rates necessary to imple-
ment the filter.

0 100 200 300 400 500 600

ham7.dat
ham15.dat
ham31.dat

ham127.dat

1.2

1

0.8

0.6

0.4

0.2

0

Table 2—Here are a few different Nyquist bands that can
be used by undersampling.

Band Frequency
Low High Name sense

0 1/2 Fs 1st Nyquist band low ➙ high
1/2Fs Fs 2nd Nyquist band high ➙ low
Fs 3/2Fs 3rd Nyquist band low ➙ high
3/2Fs 2Fs 4th Nyquist band high ➙ low
2Fs 5/2Fs 5th Nyquist band low ➙ high

R
P
C

CIRCUIT CELLAR JUNE 199950 www.circuitcellar.com

REFERENCES
K. Chapman, Constant Coefficient Multipliers for the

XC4000E, Application note, Xilinx, 1996.
L.W. Couch II, Digital and Analog Communication

Systems, Macmillan, New York, NY, 1983.
G. Goslin and B. Newgard, 16-Tap, 8-Bit FIR Filter

Application Guide, Application note, Xilinx, 1995.
E.C. Ifeachor and B.W. Jervis, Digital Signal Process-

ing, Addison-Wesley, Reading, MA, 1993.
S.K. Knapp, Using Programmable Logic to Accelerate

DSP Functions, Application note, Xilinx, 1995.
C.B. Rorabauch, Digital Filter Designer’s Handbook,

McGraw-Hill, New York, NY, 1997.
Xilinx Corp., The Fastest Filter in the West, Application

note, 1996.
Xilinx Corp., The Programmable Logic Data Book, 1998.

SOURCES
Floating and fixed-point DSPs
Texas Instruments, Inc.
(508) 236-3800
www.ti.com

Motorola
(512) 895-2649
Fax: (512) 895-1902
www.mot.com/sps/general

ADCs
Analog Devices, Inc.
(800) 262-5643
(781) 937-1428
Fax: (718) 821-4273
www.analog.com

Burr-Brown Corp.
(520) 746-1111
Fax: (520) 889-1510
www.burr-brown.com

FPGAs
Xilinx Corp.
(408) 559-7778
Fax: (408) 559-7114
www.xilinx.com

Altera Corp.
(408)544-7000
Fax: (408) 544-7755
www.altera.com

Actel Corp.
(888) 992-2835
(408) 739-1010
www.actel.com

Lattice Semiconductor Corp.
(503) 681-0118
Fax: (503) 681-3037
www.lattice.com

PC/104 FPGA board
Derivation Systems, Inc.
(760) 431-1400
Fax: (760) 431-1484
www.derivation.com

Figure 8—In this frequency response of a 4:1 Comb filter,
you can see the magnitude of the sinc function (i.e., the
negative components are positive). With imagination,
the low-pass portion looks like a barn door.

0 100 200 300 400 500 600

dec.dat
4

3.5

3

2.5

2

1.5

1

0.5

0

Ingo Cyliax has written for Circuit Cellar
on topics such as embedded systems,
FPGA design, and robotics. He is a re-
search engineer at Derivation Systems Inc.,
a San Diego–based formal synthesis com-
pany, where he works on formal-method
design tools for high-assurance systems and
develops embedded-system products. You
may reach him at cyliax@derivation.com.

Figure 7—Be-
cause coefficients

are symmetric in this
FIR filter implementa-

tion, you can add the cor-
responding x values and then

scale them only once, which
reduces the number of multiplica-

tions required by up to half.

xn–2xn–1

...

...

...h2h0 h1

x1+1 x0 x1 x2

xn

y1+1

pass filter with a sloppy cutoff and ripples
in the block band. It’s the digital equiva-
lent of a RC low-pass filter.

But because the filter is in the front-end
of the radio, you can compensate for the
sloppy drop-off in the high-end off this
filter by designing a FIR filter that compen-
sates for this droop. You can compute the
frequency spectrum of this FIR filter and do
a Fourier transform to the time domain. In
the time domain, this operation is likely to
be a modified sinc function from which
you pick the coefficients used in a FIR filter.

Computing this transfer function is be-
yond the scope of this article and is best
done with CAD tools rather than working
through the transform by hand. Check out
some of the DSP textbooks available for
techniques and software.

UNDERSAMPLING
When learning about data acquisition,

you were told to use an antialias low-pass
filter with a cutoff frequency of half the
sampling rate. Even though the Nyquist
sampling theorem says you need to have
a sampling rate of twice the bandwidth
you’re interested in to reproduce the origi-
nal signal, it doesn’t say that the band of

interest has to be the baseband (i.e., from
DC to 1⁄2 Fsampling). In fact, it can be any
multiple of this band. Table 2 shows
examples of these bands.

This whole process is just another form
of mixing, except this time you use a digital
signal as the local oscillator. This causes
many harmonics to be present in the
product (besides the sum and difference),
which makes it possible to sample several
bands. This mixing is, in essence, aliasing.

All you need now is to bandpass-filter
the band of interest, assuming your ADC
has sufficient analog bandwidth. The ADCs
I used (Analog Devices AD6640 and
Burr-Brown AD807E) are specially de-
signed for this application and have ana-
log bandwidth of well over 200 MHz.

You can also sample more than one
Nyquist band at one time if the signals
you’re interested in don’t end up on the
same frequency. For example, if the sam-
pling rate is 10 MHz, then a signal in the
second Nyquist band at 18 MHz will look
like a signal at 2 MHz. But, you can look
at a 3-MHz and an 18-MHz signal at the
same time.

By using several analog bandpass
filters that can be switched in and out with

relays before the ADC, I can extend
the basic receiver spectrum of my
receiver from 0–10 MHz to 0–
50 MHz, keeping in mind that I
can only look at one 10-MHz band
at a time.

The only gotcha is that I can’t
listen to a signal that’s exactly a
multiple of my sampling rate if the
phase is exactly aligned (coherent).
It will look like a DC signal. But this
is very unlikely—especially in radio
astronomy, where we look at a wide
spectrum of signals anyway.

Next time, I’ll cover the software
and interface on the CPU that powers
this system. The CPU is a PC/104-

based SBC that runs RT-Linux. It configures
the FPGAs with the signal-processing cores,
selects the frequency in the CORDIC pro-
cessor in one of the FPGAs, and reads out
the downconverted data from the FPGA-
based signal (co)processor. RPC.EPC

www.ti.com
www.mot.com/sps/general
www.analog.com
www.burr-brown.com
www.xilinx.com
www.altera.com
www.actel.com
www.lattice.com
www.derivation.com

A
PC

JUNE 1999 EMBEDDEDPC 51www.circuitcellar.com

Applied PCs

Fred Eady

Fred continues his journey into embedded ’Net technology by implementing
the Netsock/100, an embedded PC with a built-in TCP/IP stack. Regardless
of your coding skills, WinSock programming can be yours!

People with bad habits check into clinics
to clean up their acts. I’m wondering if I
should find a clinic for embedded junkies.
I can’t get enough of this stuff!

Last month, I discussed TCP/IP with a
hint of embedded and promised some
additional dialog. In the meantime, I’ve
been on the phone and on the web.

As you might imagine, a box recently
arrived on my porch. I already know
what’s inside and I think you’ll find it very
interesting. With that, let’s get to work!

SOMETHING OLD,
SOMETHING NEW

In the past, I’ve extolled the virtues of
Phar Lap’s Embedded ToolSuite. It’s every-
thing one could ask for in an embedded
application tool. Just last month, I used it
to promote the embedded TCP/IP para-
digm we’re discussing right now. Thus, I
am a believer in the Phar Lap product. I’ve
used it. I’ve written about it. It works.

I said all of that to say this: although
that product is very good, I have an

opportunity to tell you about something
new. What if I could show you how to
write TCP/IP-enabled programs with a
simple 16-bit C compiler? And, what if I
could show you how to write Ethernet-
based client/server TCP/IP enabled ap-
plications using Visual Basic and that little
16-bit C compiler?

Well, I can. The gravy is that the ideas
I’ll present here can be done with the Phar
Lap tools, too. After all, this is about TCP/
IP, a rock-solid standard in the networking
world. TCP/IP is a suite of protocols based
on the concept of a logical stack.

Remember the good times playing ball
in an open field with a bunch of friends?
There was always the kid who had the
equipment. You know, the one with the
ball, bat, or whatever the sport required.
The game couldn’t be played without him
and his gear.

Doing TCP/IP stuff is similar to that
backyard ballgame. Someone has to bring
the ball. To implement TCP/IP, someone
has to bring a stack.

I’ve been teasing you along with my
“what ifs” about software and TCP/IP, but
what if I could show you an embedded PC
that was designed from day zero to net-
work using the 16-bit–compiler TCP/IP-
stack principle?

Well, I can. I brought the ball and I’m
ready to play. The “ball” is the Micro/Sys
SBC1190 embeddable computer board
in Photo 1. The game is TCP/IP over
Ethernet.

NETSOCK/100
Deep thoughts by Fred. “If a windsock

indicates the direction of the wind, does a
Netsock indicate the direction of net-
works?” Hmmm….

I don’t know about you, but I’m sick
and tired of writing code that has to
depend on a serial port to communicate
with the outside world. Don’t get me
wrong. I realize that serial ports are
universal to a certain degree and are
good ways to put embedded and not-so-
embedded computers in touch. On the

Embedded Internet
Part 2: TCP/IP and a 16-bit Compiler

A
PC

CIRCUIT CELLAR JUNE 199952 www.circuitcellar.com

RS-232 RS-232

RS-485

512-KB
Flash

512-KB
RAM

128-KB
Socket

Counter/
Timers

Ethernet

82C55
Parallel I/O

A/D and D/A
options

80C188EB

COM1 COM2

Watchdog

P
C

/1
0

4
 I

/O
the board. Although there are
numerous ICs on the back side,
the main part that stands out is the
512 KB of 5-V flash memory.
RUN.EXE firmware is resident in
part of the flash memory.

As an industrial-grade BIOS, a
DOS emulator, and an XMODEM
download system, RUN.EXE ini-
tializes the 80C188EB registers
and sets up the environment to
mimic a PC running DOS. This
setup enables the programmer to
be free from worrying about things
like memory sizing and initializa-
tion and system timing.

The RUN.EXE app is small and
resides with the power-up vector
at the top of memory, permitting
the flash memory to carry down-
loaded applications as well. If the
program you write can be compiled to run
as a PC-compatible 16-bit executable, the
SBC1190 (with RUN.EXE) can run it.

If your application is coded in C,
RUN.EXE redirects all console I/O to
COM A. RUN.EXE isn’t required if your
needs are particular. The Micro/Sys SBC-
1190 reference manual (all 0.5825″ of it)
includes all the data for all of the periph-
eral components on the card. In so many
words, you can roll your own RUN.EXE.

An onboard flash programmer enables
the downloading of an application pro-
gram into flash. The flash programmer is
implemented as one bit of the 80C188EB
port 1 that enables writes to the flash memory.

At powerup or reset, the SBC1190 can
be instructed to execute the program re-
siding in the remainder of lower flash

memory. A minimum of
100,000 download cycles
would be necessary to
“break” the flash memory.
Unless you’re from Mars and
write Plutonian code using
a Venusian 1-bit compiler,
you won’t have to change
the flash out in your lifetime.

Need extra RAM? No
problem. There’s a socket
for 32 or 128 KB of SRAM
or EPROM onboard.

The two asynchronous
serial ports are integrated
into the 80C188EB. RUN.
EXE covers for DOS, but
the serial ports aren’t PC

compatible. That’s a drawback as far as
writing for compatibility, but the ports
make up for it by operating in 9-bit mode
and incorporating high transfer rates that
can reach above 200 kbps.

The 80C188EB serial port 0 is COM B,
and serial port 1 terminates at the COM
A connector pins. The COM B port is used
for debugging because it’s interruptible.

COM A’s utility lies in its duality. With
the movement of a jumper, COM A can be
either RS-232 or RS-485. Micro/Sys offers
the CommBLOK software library for those
that need to be compatible.

I noticed that the Micro/Sys reference
manual spent a bunch of words on serial
ports. So, if you plan to work the SBC1190
serial ports like cheap labor and haven’t
done any 80C188 coding in a while,
read the manual carefully in this area.

Digital I/O is supplied via the ever-
present 82C55. I don’t have to say any-
more about that.

As well, there’s an integrated interrupt
controller with seven maskable and one
nonmaskable interrupt. Two interrupts in-
ternal to the 80C188EB are sourced by
the timers and the COM A serial port.

There’s also a 1.6-s onboard watchdog
timer and three timer/counters. Dallas
Semiconductor makes the SBC1190 timely
with a DS1302 clock chip, and SMC
provides the LAN connectivity with a
LAN91C94 Ethernet controller IC. The
SBC1190 becomes a Netsock/100 with
the addition of the Ethernet controller and
Embedded Netsock system.

other hand, Ethernet
is so elegant and so fast.

But Ethernet is as hometown
and apple pie as RS-232, so

why not use it? The Micro/Sys
Netsock/100 (a.k.a. SBC-1190)

embeddable PC does.
The Netsock/100 is a dainty little

embedded PC that packs a powerful
punch. The SBC1190 is based on the Intel
80C188EB and thus is an XT-class ma-
chine. The Netsock/xxx series includes
’386, ’486, and Pentium processor power-
plants as well.

As you know, the 80C188EB is a
16-bit CMOS CPU that executes 8086
instructions. The selling point of the 80C-
188EB is the integration of common PC
peripherals and a single +5-V power
requirement.

By design, there’s only eight bits at the
data bus. The 80C188EB was built to
reduce chip count in its domain. On-chip
peripherals include an interrupt control-
ler, three 16-bit timer/counters, a wait-
state generator, and two UARTs. Figure 1
blocks out the SBC1190.

When I receive new embedded plat-
forms, I like to just sit and gander at the
work of the board layout engineer. The
SBC1190 layout is extremely efficient. ICs
are packed in tight and populate both
sides of the board. I/O connectors are
gold-plated male headers and there’s
even a PC/104 connector for the 104
heads. Take a peek at Photo 1 while I give
you a play by play of who’s what.

SBC1190 memory consists of a 32-pin
JEDEC memory socket and 512 KB of
surface-mounted SRAM on the top side of

Figure 1—Just think. Years ago, a not-as-well-equipped XT
computer like this was heavy and cost thousands of dollars!

Photo 1—The Ethernet circuitry is between the battery
and the Ethernet connector. ADC and DAC capability can
also be added under and around the battery.

 JUNE 1999 EMBEDDEDPC 53www.circuitcellar.com

Listing 1—netsock.h is all you need to move from the serial world to
the socket world.

#include <stdlib.h>
#include <conio.h>
#include <dos.h>
#include <bios.h>
#include <stdio.h>
#include <memory.h>
#include <string.h>
#include <ctype.h>
#include <time.h>

#define NETSOCK_MASTER
#include "netsock.h"

#define DACQ_PORT 5001
//the UDP port this server will listen on

Listing 2—With the exception of the socket stuff, this is standard C, too.

// Global Variables
WSAData SocketData;
unsigned long messagesize;
int fromlen,numbytes,debug,commanddone,err;
char datagram[80];
char parameters[11];

SOCKET msgsock;
struct sockaddr_in local, from;

Listing 3—I tried running this on a desktop without Embedded
Netsock support, and sure enough, I received the message from the
ENE_LDEER_BIOS error trap.

err = WSAStartup(0x101, &SocketData);
switch (EmbeddedNetsockLoadError)
{
case 0:
printf("Embedded Netsock started..\n\r");
break;

case ENE_LDERR_BIOS:
 printf("System BIOS does not support Embedded

 Netsock!\n\r");
break;

case ENE_LDERR_ADAPTER:
printf("No network adapter found!\n\r");
break;

case ENE_LDERR_MEM:
printf("Error allocating memory!\n\r");
break;

case ENE_LDERR_NETSOCK:
printf("Netsock not available!\n\r");
break;

}
if (err)
{
 printf("WSAStartup failed with error
 %d\n\r",err);
 WSACleanup();
 exit(1);
}

A
PC

CIRCUIT CELLAR JUNE 199954 www.circuitcellar.com

data is going, the other side knows where
it’s coming from, and acknowledgements
are optional). On the RS-485 side, UDP
over Ethernet adds multidrop capability
and additional speed.

Second, Windows products on stan-
dard desktop or embedded computers
are a good choice for embedded network
management. The NT products provide a
relatively easy means of monitoring and
administering a gaggle of embedded
computers. The Windows 95/98/NT
computers also act as buffers to outside
networks, just in case your data must act
like Elvis and leave the building.

Finally, Embedded Netsock is preinstall-
ed in flash memory on the Netsock/100.
All you need is a compiler that can create
16-bit DOS.EXE files. Most of Bill’s and
Borland’s compilers meet this requirement.

Borland’s Turbo Debugger works a
little better with the Netsock/100 than
Bill’s. Add NETSOCK.H as include in
your application code, and the features of
Embedded Netsock are at your disposal.

If you’re not a TCP/IP coder, Micro/
Sys includes an Embedded Netsock API
that takes some of the particulars and
gotchas out of the implementation of the
standard API. The Micro/Sys API is similar
in function and simpler to use. The standard
WinSock API subset is shown in Table 1.

Listing 4—I admire thinkers, but the Embedded Netsock Alternate API was designed to help
the inexperienced TCP/IP programmer eliminate gibberish like the in_addr structure.

msgsock = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
if (msgsock == SOCKET_ERROR)
printf("Error %d from socket()\r\n",msgsock);

local.sin_family = AF_INET;
local.sin_port = htons(DACQ_PORT);

typedef int SOCKET; // From NETSOCK.H

// standard 32-bit IP address structure (Berkeley) is confusing because
// of access by bytes, words, or long
struct in_addr
{
union

 {
struct { unsigned char s_b1, s_b2, s_b3, s_b4; } S_un_b; // byte access
struct { unsigned short s_w1, s_w2; } S_un_w; // word access
unsigned long S_addr; // long access
}

 S_un;
};

#define s_addr S_un.S_addr // nickname for accessing in_addr as long

// standard structure for specifying socket address (Berkeley)
struct sockaddr_in {
short sin_family; // address family (i.e. AF_INET)
unsigned short sin_port; // port for transport layer
struct in_addr sin_addr; // 32-bit IP address structure
char sin_zero[8]; // unused padding

};

That pretty much
describes the SBC1190,

but there’s one more impor-
tant item on the board. Data

bit D6 of the 80C188EB port 1 is
connected to an LED. Setting and

clearing this bit illuminates and extin-
guishes the LED. Das blinkin lites—a fea-
ture built in just for me!

ETHERNET, EMBEDDED STYLE
Building on your knowledge of TCP/IP

and your newly acquired knowledge of
the Netsock/100, we can move the kind
of bits across Ethernet that we embedded-
control types are used to moving.

Some embedded apps are control-
oriented only. These include machine
control, fluid-level measurement, and gen-
eral data acquisition. Although I know
that many of you push embedded boxes to
their logical limits, we’ll concentrate on
control this time around.

So, we have a Netsock/100 embed-
ded PC with a TCP/IP stack onboard. The
Netsock/100 will be called the “server”
in our configuration. The client is a standard
desktop PC running Bill’s Windows 98.

Mark this in your PDA: Fred is wob-
bling off the beaten path. No Bill C
compiler for this application. For the first
time in this series, a Borland product
(Borland C++ 5.02) will be the compiler
of choice on the server side. Visual Basic 5
and its WinSock control will support the
client. Here’s the plan.

THE OLD UNRELIABLE
To make this complicated, all I’d have

to do is follow the Internet TCP/IP–to–
WinSock paradigm. I’d write code that
includes all of the “historical” ways to do
TCP/IP coding and rigidly follow the
WinSock API standards.

For traditional TCP/IP implementations,
each layer (by definition) must be totally
independent of the surrounding layers,
which implies that any datalink protocol
should be able to work with any physical
protocol and any transport protocol should
be able to work with any network proto-
col. All of this adds up to passing informa-
tion from layer to layer because layers
don’t know anything about other layers.

This information-passing trap is also
true for data entering the stack. Micro/Sys
and I have the same motto: it doesn’t have
to be complicated. So, here’s how the

Embedded Netsock and I will deploy the
Netsock/100.

First of all, control applications rarely
venture out of the local Ethernet network.
This eliminates routers, phone lines, and
all the other traditional Internet stuff. And,
because Ethernet is proven and reliable,
we can employ the “unreliable” UDP.

Using UDP reduces the coding complex-
ity because it is connectionless and doesn’t
require the data-integrity overhead that
TCP does. You just have to know the address
of the receiver and send the message.

The procedure is like doing an RS-232
serial datalink (i.e., you know where the

Table 1—Put an “EN” before some of these
and you have the names of the easier-to-use
alternate API subset.

WinSock API subset

socket()
closesocket()
setsockopt()
getsockopt()
recvfrom()
sendto()
bind()
ioctlsocket()
inet_addr()
inet_ntoa()
WSAStartup()
WSACleanup()
WSAGetLastError()

A
PC

JUNE 1999 EMBEDDEDPC 55www.circuitcellar.com

SERVING THE WIN98 MASTER
I keep reminding myself to get a pro-

gram that does screenshots with NT. Again,
I’m forced to move to an OS that supports
HiJaak 95. I’ve heard awful things about
Windows 98, and for a time, I refused to
even load a Windows 98 testbed in the
Circuit Cellar Florida Room. I also recall
colleagues putting Windows 95’s face
into the dirt, too.

Personally, I’ve never had a problem
with Windows 95 that I couldn’t solve. So,
I’m going to give Windows 98 the same
treatment. If I can’t tame it, I won’t use it.
I recently put up three machines running
Windows 98 in my lab, and other than my
ignorance, I’ve experienced zero prob-
lems. Am I doing something wrong?

Anyway, if any of you have sugges-
tions for a new screenshot program, drop
me a line. For now, Windows 98 is the
client OS for our Netsock/100.

If we can move a simple command
across the client/server bridge, then we can
move anything else we want across the
same path. In this example, I’ll target the
Netsock/100’s 82C55 with simple com-
mands issued by the Windows 98 client.

I don’t have room to show the complete
listing, but as the code goes, there’s not
much difference in the logic that you’d
normally employ to do this operation with
a serial port. Instead of COM ports, I’ll use
sockets. With that similarity in mind, let’s
take a command through the hoops.

Just like any other embedded pro-
gram, the first thing to do is initialize the
environment. Listing 1 is typical of the first
few lines of any C program with the
exception of the netsock lines.

NETSOCK_MASTER is a common defi-
nition for both the standard and alternate
API. Because a define for ALTER-
NATE_API isn’t present, this program
uses the standard WinSock API functions.

To complete the address, the port must
be specified, which is done in the DACQ_
PORT line. Note in the comments of the
port line that UDP is implied. You’ll see
later where this is defined.

Listing 2 is a view of the global vari-
ables that have to do with WinSock. Of
course, all of the variables that the program
would use are included here, too. I’m not
going to explain these because you’ll see
them out in the open as we continue.

Now that all of the initial and neces-
sary C things are done, it’s time to start the

Note that there is a
local and from structure.
The host-to-TCP/IP-network
(htons) byte order call puts the
port address in the proper orienta-
tion. In other words, our host order
0x5001 port address in network order is
0x0150. I included the netsock.h defi-
nitions in the lower frame of Listing 4.

To effect an end-to-end link, you need:

• local host IP address (192.168.1.50)
• local host port number (5001)
• remote host IP address (unknown now)
• remote host port number (unknown now)

Photo 2 shows the Netsock/100 net-
work setup screen, which is where the
local host IP address is set. Ports and
applications go together in the TCP/IP
world and that’s where we set the local-
host port number (see Listing 1). I don’t
know about the remote host yet, and if I
did, there’s nothing I could do about it.

There is a local-host port address and
a local-host socket that know nothing
about each other. You have to bind the
socket and local-host address (IP address
+ port address) together to form an end-
point at the server side.

Essentially, the socket is nameless be-
fore the bind. The name in this instance is:

• TCP/IP address family—AF_INET
• host IP address—192.168.1.50
• application port number—5001

The TCP/IP address family and applica-
tion port number parameters are manually
entered via code. The host IP address is set
in the Netsock/100 flash and retrieved
during the initialization of Embedded
Netsock (see Photo 3). The bind is shown in
Listing 5.

Photo 3—If you’ve ever wondered why, this is some
of the stuff sent with the request. In this case, the IP
information is like a return address on an envelope.

Photo 2—All of this data is transferred to a
structure called NetsockConfig for later use
by the application calls.

WinSock engine. Calling WSAStartup
(shown in Listing 3) gets things going.

WSAStartup initiates the use of the
Embedded Netsock TCP/IP stack and
starts the underlying network layers. Note
the reference to the SocketData structure
I defined in the Global Variables area.

The SocketData structure receives
details of the available Embedded Netsock
support. The 0x101 denotes WinSock API
V.1.1. If err is returned as 0, then all is
well and the program can continue. My
program is designed to post the error and
perform a WSACleanup before exiting.

WSACleanup terminates Embedded
Netsock functions and releases any mem-
ory allocated by WSAStartup. Once the
Embedded Netsock is up and running,
you can interrogate the SocketData
structure for any information you want to
pass along to the user.

The idea is to establish communica-
tions between two endpoints or sockets.
So, let’s socket to it at the server end.
Listing 4 shows msgsock, which was
defined at type SOCKET in the Global
Variables area, as the receiver of the
results following the creation of our socket.

AF_INET is the TCP/IP address family
parameter and the only one Embedded
Netsock supports. SOCK_DGRAM tells us
that datagrams will be used, which im-
plies that the link will be connectionless
and fixed in size. SOCK_DGRAM also
implies that UDP is the protocol of
choice. Looking at the next parameter
(IPPROTO_UDP), this becomes clear.

Using datagrams and UDP en-
ables you to send and receive from
arbitrary hosts using the sendto()
and recvfrom() calls. Good old
“unreliable.” The final lines, begin-
ning with local, stuff values into the
sockadder_in structure called lo-
cal. The sockadder_in structure
is commonly referred to as the name
of the socket.

A
PC

CIRCUIT CELLAR JUNE 199956 www.circuitcellar.com

SOURCES
Netsock/100
Micro/Sys
(818) 244-4600
Fax: (818) 244-4246
www.embeddedsys.com

Visual Basic
Microsoft Corp.
(206) 882-8080
Fax: (206) 936-7329
www.microsoft.com

Borland C++
Inprise Corp.
(408) 431-1000
(800) 457-9527
Fax: (831) 431-4142
www.borland.com

Fred Eady has over 20 years’ experience
as a systems engineer. He has worked
with computers and communication sys-
tems large and small, simple and com-
plex. His forte is embedded-systems design
and communications. Fred may be reached
at fred@edtp.com.

If there are bytes in the buffer, the recv-
from call is made to retrieve them.

Assume you’ve retrieved your command
bytes from the datagram and stored them
in the command array as shown. At this
point, you can execute the command and
do nothing in response or execute the
command and respond to the requestor or
client. But how do you know where the
request or command came from?

The next thing we
need to do after the bind

is successful is to wait for
requests from clients and re-

spond to them. In our case, the
requests are really commands that

work against the 82C55.
Listing 6 uses the ioctlsocket call

to determine if any bytes are waiting to be
processed from the socket we just bound.

The recvfrom call not only garners
the data but also stores the source IP
address and port of the requestor. Here,
the from structure I discussed earlier is
used. By adding a return datagram of
your choice, you can send that datagram
to the requestor using the sendto call and
the from structure as shown in Listing 7.

It’s a bit easier on the Visual Basic side.
Listing 8 shows how the VB client gets
addresses and protocols for its socket
along with the methods and events to send
and retrieve data.

The VB-client IP address is set in the
Windows 98 TCP/IP networking area.
The VB WinSock object dynamically sets
the VB-client local port for this application
and can be a fixed value, if you so desire.

GETTING SMARTER
If you’re a C coder, a VB coder, or a

noncoder, WinSock programming is within
reach. If you’re new to C and C++, get the
“Teach Yourself C++ in 21 Days” package
with the Borland 3.1 C++ compiler on CD.
The Micro/Sys folks put a copy in my box
because it works well with the Netsock/100.

The Netsock/100 documentation was
useful, with datasheets for everything on-
board. I suggest you get your own data-
sheets though, because some of the deeper
stuff may not be in the Micro/Sys sheets.

So, apply what you know about serial
applications and put the fundamentals of
WinSock programming to work. You’ll see,
it isn’t complicated to be embedded with
TCP/IP. APC.EPC

Listing 6—The FIONREAD is a must-do. All of the other parameters should be easy to identify
now.

err = ioctlsocket(msgsock, FIONREAD, &messagesize);
if (err == SOCKET_ERROR)
 printf("ioctlsocket failed with error %d\n\r",WSAGetLastError());
if (messagesize)
{
 fromlen = sizeof(from);
 numbytes = recvfrom(msgsock, datagram, sizeof(datagram), FLAGS_ZERO,
 &from, (int far *) &fromlen);
 if (numbytes == SOCKET_ERROR)
 printf("Failed to receive datagram: Error %d\n\r", WSAGetLastError());
 memcpy(command, datagram, 1);
 command[1] = 0; // null terminate string
 commanddone = 0;
}

Listing 7—This is almost automatic. The only parameter you need to add is your datagram.

err = sendto(msgsock, datagram, strlen(datagram), FLAGS_ZERO, &from,
 sizeof(from));
if (err == SOCKET_ERROR)
 printf("Failed to send datagram: Error %d\n\r",WSAGetLastError());

Listing 8—Visual Basic goes a long way to make it easy to do TCP/IP.

Public Sub Form_Load()
With Winsock
.Protocol = sckUDPProtocol 'set protocol to udp
.RemoteHost = "192.168.1.50" 'initialize remote host ip address
.RemotePort = 5001 'initialize remote host port number
.Bind 5001

End With
End Sub

Private Sub Winsock_DataArrival(ByVal bytesTotal As Long)
Winsock.GetData gstrData 'your data handling code goes here

End Sub

Public Sub SendMsg(ByVal gStrSnd As String)
' pass string to Winsock control to be sent
Winsock.SendData gStrSnd

End Sub

Listing 5—A successful WSAStartup must be completed to “fill in the blanks” that aren’t
entered manually.

// The "local" lines are from Listing 4, inserted here for clarity
local.sin_family = AF_INET;
local.sin_port = htons(DACQ_PORT);

err = bind(msgsock, &local, sizeof(local));
if (err == SOCKET_ERROR)
 printf("Error binding socket: Error %d\n\r",WSAGetLastError());

www.embeddedsys.com
www.microsoft.com
www.borland.com

58 Issue 107 June 1999 CIRCUIT CELLAR ® www.circuitcellar.com

Embedded OSs for
Internet Appliances

FEATURE
ARTICLE

David Brooks

i
When you’re looking
at embedded OSs
for your Internet-
capable product,
you’ve got a lot of
pros and cons to
think about. David
goes through all the
points here so when
the time comes, you’ll
be ready to figure it
out on your own!

nternet appliances
are dedicated devices

that use the Internet or
another IP network as a

communication backbone. They are
built around the open standards of the
Internet and are generally targeted at
doing one or two things incredibly well.

Internet appliances are not general-
purpose devices. Sure, you can use a
full-size oven to toast your bread, but
for many years now, people have under-
stood the benefits of a special-purpose
device with two slots in the top, heat-
ing elements on both sides, and a timer.

Likewise, you can use a PC to do
anything on the Internet. But just like
using a full-sized oven for your toast,
a PC is sometimes overkill. Industry
analysts are predicting that by 2002
the unit shipments of Internet appli-
ances will exceed those of PCs.

That’s not to say that they will
replace PCs. They will either be adopted
by users who don’t already have PCs
or as companion devices for people
who already own one. Just as families
have more than one telephone or
more than one television, people will
buy more than one device to access
the Internet.

These devices are already showing
up in the marketplace today. Web TV
is probably the best-known Internet
appliance, but there are many more.
Applio sells an Internet phone appli-
ance that uses your regular phone line
to bypass long-distance phone charges,
and Diamond Multimedia sells a por-
table music device that plays digital
music downloaded from the ’Net.

Appliances are not only personal
devices. Dedicated web servers, Inter-
net voicemail systems, and a new de-
vice from HP called a Digital Sender
hope to replace general-purpose servers,
expensive corporate voicemail systems,
and fax machines. Handheld comput-
ers and cell phones have even started
adding Internet capabilities.

WHICH OS?
Everyone is familiar with Microsoft

Windows and various versions of Unix,
but in the Internet-appliance market,
it’s still a close race. In the handheld
device category, 3Com’s PalmOS has
out-shipped every other device in the
U.S. and Psion/Symbian’s Epoch has a
strong hold in Europe and the Internet-
enabled cell-phone market. Microsoft
is investing heavily in this area and,
in some respects, provides clear ad-
vantages over the established players.

The market leader in the classic
embedded-systems race is Wind River
Systems. Their VxWorks OS not only
powers most of the HP LaserJet printers
but is also embedded in many industrial
devices that require rock-solid reliabil-
ity. Table 1 contains a selection of
products and vendors.

Now that you’ve decided to design
and build an Internet appliance, how
do you choose the OS? The decision
largely depends on the intended deploy-
ment of the device. If you’re trying to
produce a proof-of-concept lab proto-
type that will never be produced in
high volume, then your decision will
be different from a team that’s devel-
oping the next great consumer product.

COST CONCERNS
In the real world, cost can be one of

the largest concerns. Few of us have
the luxury of working for companies
with unlimited research and develop-
ment budgets.

www.circuitcellar.com CIRCUIT CELLAR ® Issue 107 June 1999 59

Unlike buying a shrink-wrapped
software package, the real costs of
selecting an OS can be fraught with
potential pitfalls that will come back
to haunt you if you don’t make a good
choice. I learned some of these lessons
the hard way, after spending millions
of dollars in a now defunct startup
company.

The up-front costs of the develop-
ment environment can vary from free
to hundreds of thousands of dollars.
Although most desktop software engi-
neers are accustomed to buying a visual
integrated development environment
(IDE) for a few hundred dollars, embed-
ded-systems developers have to spend
tens of thousands of dollars for remote
debuggers.

Be careful to select a development
environment that provides the compiler
tool chain appropriate for your target
platform and a full-featured debugging
environment. The IDE should also run
on the same development systems that
your engineers use to write their code.

If they’re using Unix workstations
for their development but your IDE
only runs under Windows, then factor
in the cost of buying new hardware. If
your engineers work with ICEs, make
sure the IDE software is compatible
with those as well.

Source-code license costs can be a
huge swing factor in the up-front costs.
Some companies offer source code for
free; some provide it only for the driv-
ers and boot code.

Most of the embedded OS companies
will sell the source but at a fairly steep
cost. If your application requires you
to modify the IP stacks or kernel OS,
you’ll most likely need source code for
at least some portion of the OS, so
budget accordingly.

The other up-front cost that is most
often overlooked is the cost impact to
your development partners. If a portion
of the product is being created by a third
party and they don’t already have the
development tools and expertise, you
end up paying for their expense as well.

The per-unit royalty is where most
OS vendors like to make their money.
Microsoft, for example, provides the
IDE software for a low up-front cost,
but it counts on large unit volumes to
make their return. Other vendors offer

a reasonable onetime buyout that
enables you to eliminate the per-unit
charge.

The embedded RTOS vendors have
royalty schedules that have sharp
volume-based pricing structures. These
vendors also like to have these volumes
committed to up front, requiring you
to put out tens of thousands of dollars
to get the per-unit rate down into the
tens-of-dollars range.

If you’re producing a consumer
product that sells for about $200, your
per-unit software budget may not bear
the burden of a $20 royalty for the OS.
But, you may have to commit to a
hundred thousand units to drive down
the cost.

On-going maintenance costs of the
software are certainly not important
for proof-of-concept prototypes, but
for most real volume products, com-
panies can spend as much on yearly
maintenance fees as they do on the
up-front purchase of the IDE.

When it comes to time-to-market
concerns, keep in mind that Internet
appliances are produced on incredibly
tight schedules. Engineers working in
this timeframe like to talk about
“Internet time,” where things happen
three times as fast as other product
categories. Specifications and product
needs change quickly, and sometimes
getting a product out fast is more
important than its cost.

It may sound like an obvious point,
but embedded OSs have a lot of com-
ponents. The bottom line: the more
features provided as part of the inte-
grated platform, the faster you are likely
to hit the market with a real product.

The ideal situation is that the OS
provider has an à la carte selection of
pieces and parts that provides almost
everything you need to build the final
product. You have a much better chance
that everything will work together
when that’s the case. However, that’s
not always true.

Some vendors provide components
for multiple-target CPUs, and not all
components are available for all CPU
choices at the same point in time. If
you’re working with a relatively new
CPU family or a new chip of an exist-
ing family, check with the OS provider
and explicitly ask if each of the com-

ponents you need is available now for
your chosen CPU.

For example, Windows CE runs on
some members of the ARM family but
not all. So don’t just ask if it runs on
ARM-family CPUs. Even if the OS and
components are available on your target
CPU, they may be newly released on
that platform. Unless you have the
stomach for it, don’t be the lead cus-
tomer for a new port of the OS.

Even if your OS vendor doesn’t
provide all the components you need,
you may still be able to acquire them
from other vendors or open-source
providers. All of the caveats discussed
for the OS vendor-supplied components
are even more important when dealing
with third-party software.

Most third-party vendors focus on
a core competency such as IrDA stacks
or audio CODEC software and try to
support multiple OS platforms to in-
crease their potential business. Verify
that they have done the software on
your version of the OS with your target
CPU before making your commitment.

Open source is a dream come true
for some appliance products. “No up-
front costs and no per-unit royalty” has
a nice ring to it. Be aware that “free”
means no support and no guarantees.
Many shareware packages require
porting to other platforms that, in
many cases, will cost more than the
purchase price from a vendor who’s
willing to support it.

If your team is already familiar
with the OS and tools, consider your-
self lucky. If you are building a team,
you might want to check with your
local recruiting resources to find out
how easy it will be to hire engineers
familiar with your OS. You may suf-
fer a significant delay getting to mar-

Table 1—These operating systems drive many of the
embedded devices sold in the world today. See the
Sources for additional contact information.

OS Company

Windows CE Microsoft
VxWorks WindRiver Systems
pSOS Integrated Systems
VRTX Mentor Graphics
Epoch32 Symbian
Linux Linux
Free BSD FreeBSD
Nucleus Accelerated Technology
SMX MicroDigital

60 Issue 107 June 1999 CIRCUIT CELLAR ® www.circuitcellar.com

new version of IP (called IPv6) was
needed to provide for the larger address
space required. For products that will
be deployed in the next year, support-
ing IPv6 isn’t necessary, but quickly
thereafter it may be required for many
types of products.

An explanation of all the IP stack
protocols required could fill an entire
book. The core set is listed in Table 2
with a brief explanation of their func-
tions. Although all of these aren’t
required for every Internet appliance,
if you choose an OS that supports
them all, you should be in good shape.

The API used to interface with these
stacks is an important feature. For
example, in the PC world, WinSock is
the API that most developers expect
to program to. On Unix OS variations,
you’ll find a different API—most likely,
Berkeley sockets.

Applications that need IP commu-
nications capabilities are written for a
specific API. If you choose an OS that
doesn’t support the API expected by
your application, you can spend a lot
of time and money to port the applica-
tion. Communications stacks can be
purchased separately, but given the level
of importance, it’s better to choose an
OS that has support already integrated.

MEMORY AND TASK MANAGEMENT
The heart of the OS is the memory

and task management function. This
is the kernel of the OS and will greatly
impact the application capabilities of
the end product.

One critical decision concerns
whether the OS must be hard real
time or not. There’s much debate in
the industry, driven mostly by vendors
whose products are not hard real time,
about what hard real time means.

The commonly accepted measure
of this capability is called determinism.
If your OS can guarantee that an inter-
rupt will be serviced and a critical task
launched with all of the resources it
needs in a fixed length of time, then it
is deterministic.

There aren’t many Internet appli-
ances that strictly need deterministic
performance. Even full-motion video
devices can get by with fast but not
deterministic performance. Be sure to
understand the requirement of your

device and factor in this choice before
any other decisions are made.

The process and memory models
supported may severely impact your
ability to quickly port applications
written on other platforms. Open-
source software written for the PC
may not port to embedded RTOS
platforms as easily as you expect.

Some RTOS choices don’t support
virtual memory concepts, reentrancy
of applications, or multiple name
spaces. This setup can impose minor
difficulties such as not being able to
simultaneously run multiple instances
of the same application or making
your programmers reserve variable
names because all of them must be
unique. The name-space issue further
impedes your ability to port open-
source software.

GUI
The GUI is the part of the OS that

may not be needed in some Internet
appliances. If it is needed, however, it
quickly drives the choice of OS pro-
viders to a small group. The two major
GUI standards in the world are MS
Windows and X Windows.

Many RTOS vendors support a
version of X Windows for their systems,
and many open-source applications
targeted for Linux support this API.
Note that this software can be quite
large and can require large graphics
libraries to work as expected. Also,
even though the X Windows API set is
supported, the underlying process and
memory architecture may make it
painful to port an open-source applica-
tion to the RTOS environment.

The MS Windows graphical API set
is supported by Windows CE and pro-
vides the single most compelling rea-
son to use CE in an Internet appliance.
Open-source packages exist that provide
a bridge from MS Windows to other
GUI API sets. The most notable is Twin
from Willows. Like most open-source
packages, support is spotty at best.

Two other emerging GUI APIs may
work for your product. If the GUI can
be implemented in an HTML browser,
then the development team can con-
centrate on buying or porting a single
application (the browser) and imple-
ment everything else as web pages.

ket if you can’t find qualified people to
do the work.

If your team is in place but the OS
is new to your organization, invest in
the training. It may be expensive, but
it will save time in the long run.

Debugging tools play a major role
in time-to-market considerations. Make
sure they provide your engineers with
all the tools needed to debug at the
highest level of source code possible.

If you’re dealing with a real-time
communications system, make sure
that real-time profiling software is
available. Inserting printf statements
can change the characteristics of the
program significantly and even make
the problem go away. The Heisenberg
uncertainty principle applies to soft-
ware as much as nuclear physics.

FUNCTIONALITY
The exact set of components that

make up an OS is being debated both
in the industry journals as well as the
courts. For the purposes of this article,
there are three major areas that must
be considered—network and commu-
nications stacks, memory and task
management, and GUIs.

All Internet appliances share two
major portions of an OS—namely, the
communication stacks and memory
and task management. There are classes
of devices that have no display or lim-
ited display needs that don’t require a
complete GUI.

COMMUNICATIONS STACKS
There is a whole host of acronyms

that make up a typical Internet appli-
ance, but the foundation of all these
protocols is simply the Internet Proto-
col (IP). With the number of devices
attached to the Internet increasing, a

Table 2—A handful of protocols make up the core of
the network stacks of Internet-connected devices. Make
sure that the embedded OS you choose provides these
capabilities as a minimum set.

Protocol Function

TCP Reliable transport
UDP Lightweight transport
DNS Name to IP address
SNMP Network management
DHCP Dynamic IP address allocation
FTP File transfer
BOOTP Network boot protocol
SNTP Time of day

62 Issue 107 June 1999 CIRCUIT CELLAR ® www.circuitcellar.com

Simple interactive capabilities can
be provided if ECMA Script (JavaScript)
is supported. This arrangement is no
substitute for a full API, but embed-
ded browsers are available for many
platforms.

Java is the other standard API that’s
widely supported. Providing a Java
virtual machine on your Internet appli-
ance carries additional risks and re-
source requirements, but it also opens
up the portability aspect of Internet
computing that may be appropriate
for your market segment.

LONG-TERM ISSUES
If the product is developed on time

and under budget, and if the sales group
is able to find homes for the products,
then you eventually have to worry about
supporting the product for several years.

Your chances of supporting the prod-
uct improve if the OS vendor is com-
mitted to the product and will be in
business for awhile. You mitigate the
risk by having all the source code, but
you’re better off letting the experts
take care of it for you.

Most Internet-appliance companies
won’t be able to keep up with the ever-
expanding data formats and communi-
cations protocols being invented every
day on the ’Net. Even if the first prod-
uct is simply the OS and your magic
sauce, eventually you’ll need software
from a third party. Selecting a widely
supported platform enables you to keep
up with your competitors when they
add a protocol to their product.

The last long-term impact of the OS
choice is your ability to retain the staff
that developed your product. Engineers
are in high demand. If they feel they
aren’t being challenged or learning a
marketable skill, they’ll go elsewhere.
Choosing a popular OS will make them
feel that the skills they learn at your
company will keep them marketable.

THE CHOICE IS YOURS
Choosing the proper OS for your

Internet-appliance project can be tough.
Taking the time to consider all the
issues may take a bit longer, but in
the end it can save you a lot of money
and many headaches. I

SOURCES

WindowsCE
Microsoft Corp.
(206) 882-8080
Fax: (206) 936-7329
www.microsoft.com

VxWorks
Wind River Systems
(510) 748-4100
Fax: (510) 749-2010
www.wrs.com

pSOS
Integrated Systems, Inc.
(408) 542-1500
Fax: (408) 542-1956
www.isi.com

VRTX
Mentor Graphics
(408) 436-1500
Fax: (408) 436-1501
www.mentor.com

Epoch32
Symbian, Inc.
(650) 598-4747
Fax: (650) 598-0231
www.symbian.com

Linux
www.linux.org

FreeBSD
www.freebsd.org

Nucleus
Accelerated Technology, Inc.
(334) 661-5770
Fax: (334) 661-5788
www.atinucleus.com

PalmOS
3Com
(408) 326-5000
Fax: (408) 326-5001
www.palm.com

SMX
MicroDigital, Inc.
(714) 373-6862
Fax: (714) 891-2363
www.smxinfo.com

David Brooks is the general manager
of the handheld products division of
inViso. Prior to joining inViso, he was
the president and CEO of WebSonic.
You may reach David at dbrooks@
inviso.com.

www.microsoft.com
www.wrs.com
www.isi.com
www.mentor.com
www.symbian.com
www.linux.org
www.freebsd.org
www.atinucleus.com
www.palm.com
www.smxinfo.com

64 Issue 107 June 1999 CIRCUIT CELLAR ® www.circuitcellar.com

Compact Optical
Image Scanner

FEATURE
ARTICLE

John Luo

m
Mobile communica-
tions systems are big
among people who
take the office on the
road. These systems
have to be lightweight
and low power. That
rules out scanners,
right? Wrong. The
details of John’s
compact scanner are
right here.

obile communi-
cation systems are

becoming more popu-
lar and the choice of many

people who need to take their offices
with them when they travel. With the
advances in technology and lower
price tag, mobile communication
systems such as the PDA, mini-note-
book, and palm-top computers are
replacing many traditional notebooks
and calculators in the hands of students,
executives, and professionals.

Because of the limited size, such
mobile devices are still inadequate in
many applications. There’s a growing
demand for accessories and peripherals
for the mobile communication systems.

What kind of peripherals are ideal
input devices for such small computers?
Even if you’re a good typist, you’d feel
the inconvenience of the small key-

Figure 1 —The captured
image is digitized by the
ADC and packed into the
RS-232 serial datastream.

board on a handheld PC, and hand-
writing input on a PDA is even slower.

Try typing business-card information
into a PDA and you may start thinking
about a better solution for the input
device. Perhaps, a scanner with optical
character recognition (OCR) software?

Today’s desktop scanners have
good performance and low prices, but
they’re big, heavy, and need a 110-V
power source. There are some hand-
held scanners, but most have power
supplies bigger than palm PCs and
come with a parallel port or USB,
which palm devices don’t have.

Even worse, you still need to get
power from an outlet. You might be
able to find a battery-powered scanner,
but they are still big, heavy, expensive,
and have no interface to the PDAs.

Is there any way to make a small,
low-power consumption, and low-cost
scanner? Yes.

SYSTEM DESIGN
From my system-design consider-

ations, a lightweight and low-power
consumption device must be the top
priority. If it’s going to be lightweight,
any external power source such as
battery pack is out of the question.

Because the device is intended as a
companion for a mobile system, a
hookup to a power outlet isn’t practi-
cal. The most ideal power source is
the host system, and it must provide
enough power to drive this device.

Most mobile computers have a
serial port for data exchange. This is
mainly because of its limited space
and weight consideration. The output
pins of this port can be used as a power
supply (a typical example of this tech-
nique is the mouse).

Because the output pins can only
provide several milliamps of current,
you need to carefully select the low-
power parts. For a scanner, the basic
components include:

Opto
sensor

Ref.

ADC

PIC12C508 RS-232C

CMOS/RS-232C
converter

TX

RTS

DTR

CTS

RX

GND

+

–

Sensor
control

Transfer
rate

generator

Ref.

+

–

Power
supply

ABC

www.circuitcellar.com CIRCUIT CELLAR ® Issue 107 June 1999 65

• optical linear sensor array as the im-
age input device

• ADC to convert the analog signals to
digital data

• system control unit to trigger the
sensor and generate serial data

• COM/RS-232C adapter to interface
to the PC

• voltage regulator to provide +5-V
power

Most communication systems need
a transfer buffer before sending out the
data. I selected a high transmission bit
rate to eliminate the buffer.

For an OCR system, monochrome
image is good enough. When a scanner
moves on a piece of paper, an array of
optical sensors picks up the image sig-
nals and saves them into the registers.
Usually, analog signals are converted
into 8-bit digital data (for 256 grayscale).

Before the image is translated to
characters, the microcontroller or PC
system converts the 256 gray levels
into black and white levels (one bit
per pixel). Here, I directly converted
the analog signal to one-bit data to
minimize the micro’s calculations.

A single line of text scanning takes
1–2 s. The image is about 1⁄4″ tall and
7″ wide. For the resolution of 200–
300 dpi (high enough for the OCR
system), the image is about 50 × 1400
to 75 × 2100 pixels.

Because I used one binary digit to
present each pixel, I need to send 7000–
15,750 bytes of data to the serial port
for a line of text in 1–2 s. For asynchro-
nous serial transmission, each byte is
accompanied by a start bit and a stop

bit; one line of text generates 70,000–
157,500 bits. I selected the 57.6 kbps
transfer rate for an acceptable scan-
ning speed and an affordable cost of
the microcontroller.

HARDWARE DESIGN
Parts selection is critical because of

the limited power supply (see Figure 1).
Initially, I chose a TSL213 64-pixel
linear sensor array, which costs $4.43
each and needs a 4-mA supply current
(too much), as the image-input device.
An alternative is a TSL1401 128-pixel
sensor array. It costs $4.43 and needs
only 2.5 mA, but the microcontroller
needs more time to acquire the data.

Because the peak responsivity of
the sensor is from 600 to 880 nm, I
used a red LED (660 nm) to illuminate
the intended target (the document).

For the one-bit ADC, I chose an
LM393 dual-voltage comparator ($0.39
each) which needs less than 1-mA sup-
ply current and 1.3-µs response time. I
used half of the LM393 as the ADC.

The reference voltage that corre-
sponds to the luminance is adjusted
by a voltmeter. The other half of the
LM393 is used as a CMOS–to–RS–
232C driver that eliminates another
standard interface chip.

I chose a PIC12C508/509 because
it has an eight-pin package, has six
I/O pins, and needs 1.8-mA supply
current. The 4-MHz clock and four
clock cycles per instruction give me
enough time to drive the sensor and
generate 57.6 kbps of serial data. The
PIC costs $9.65 for the EPROM ver-
sion and $1.88 for the OTP version.

DESIGN OUTLINES
The efficiency of the input method

is key to the speed of the image process
and the performance of the device. The
most ideal medium for image input
would be a black object with a white or
light-color background. This arrange-
ment provides the biggest degree of
contrast in the intended object and
the background.

But in real life, we live in a colorful
world, which introduces some diffi-
culties into this project. It would cost
more and the design would have to be
greatly enhanced to accommodate all
the possibilities of different image
environments and media. To simplify
this project, I’ll introduce a design with
simple dark object and light color back-
ground as the image input medium.

Let’s assume a simple document
with black (or dark) text printed on
top of a white (or light) background
paper. To drive the optical sensor, you
need two signals—a serial input (SI)
and a clock (CLK). The system logic
schematic is shown in Figure 2.

SI defines the start of the data-out
sequence and CLK controls the charge
transfer and pixel output. The LED
illuminates the text document. After
the sensor gets an SI signal from the
microcontroller, it captures an image
frame of 128 pixels. It sends 1 pixel
out through the analog output (AO)
pin each time it gets a CLK pulse.

The sequence of analog output volt-
age is arranged from 0 to 2 V and cor-
responds with the sensor’s 128 optical
diodes. After the pixel values are sent
out, a new SI pulse resets the sensor.

All the senses we encounter in life
are basically analog. The sounds we
hear are in terms of pitch. The images
we see are colors in different depths of
darkness and mixtures. It’s the same
way when you first scan the image into

Figure 2 —The system consists of three chips and some passive components. The DTR and RTS pins on the host
are set to logic 0 to provide +12-V power to the circuit.

Table 1—Here you see the I/O pin assignment of the
’12C508. No extra pins are required, and none are
wanted.

 Pin name Function

GP0 Serial data output
GP1 SI output
GP2 CLK output
GP3 Captured data input

GP4/OSC2 Crystal
GP5/OSC1 Crystal

66 Issue 107 June 1999 CIRCUIT CELLAR ® www.circuitcellar.com

the device. The information must be
converted into digital values (i.e., 1s
and 0s) before it can be processed.

To translate the signal, you must
first identify the inputt value. One of
the comparators in the LM393 com-
pares the value it gets from the sensor
with a reference voltage. If the sensor
output is higher than the reference,
the comparator sends out a high-level
voltage that presents a one-digit num-
ber of 1, and vice versa.

The voltmeter can adjust the refer-
ence voltage to control the image
luminance. Because the comparator uses
high-voltage power supply (+12 V and
–12 V), two diodes are used to force the
ADC output into the range of 0 to +5 V.

Another comparator in the LM393
is used as a CMOS–to–RS-232C con-
verter. High-voltage power supply is
required for generating an RS-232C
standard signal level (–3 to –5 V for low
level and +3 to +15 V for high level).
Keeping in mind that the ’12C508/509’s
I/O maximum output low voltage is
0.6 V, the reference voltage of the
comparator is set to be at about 0.8 V.

The I/O pin configurations are
shown Table 1. For a 57.6-kbps data
transmission, I need a crystal-stabilized
oscillator as a timing reference. The
frequency of the crystal should be
divisible by 57,600. I selected the
highest frequency possible (3.6864
MHz) so I could fit the maximum

number of instruction cycles into a
single-bit data transfer period.

POWER SUPPLY
The power source and the power

consumption were major concerns
from the start. This device is meant
to be a convenient companion for
portable computers. Therefore, its
power source must be integrated
into the overall system design.

I explored the possibility of draw-
ing the power from the host device.
When DTR and RTS signals are tied
to logic 0 on a standard RS-232C
socket, the serial port of a portable
computer can generate +9 to +12 V
for external use. The power supply
for the compact optical image scan-

Figure 3— The waveform shows the relationship among the sensor trigger signals (SI and CLK) and the analog
output (AO). For correct data acquisition, the 1.3-µs delay of A/D conversion must be considered.

Frame 1 Frame 2

1 2 1 23 4 128127

Bit 1 Bit 2 Bit 64 Bit 1

Reset

> 350 ns

> 20 ns
> 0 ns

SI

CLK

AO

Figure 4 —The program in the ’12C508/509 man-
ages the sensor triggering, data collection, and
serial data generation. Every flow of commands
should be finished within 16 ’12C508 instruction
cycles.

Start

Output: GP0 = output data, GP1 = initialize sensor,
 GP2 = sensor clock

Input: GP3 = input data
ByteCount = 8 FrameCount = 8

Initialization

Goto NextByte
Yes No

Yes

No

Initialize the sensor

Send start bit to GP0

Read one pixel value from GP3

Write the value to GP0

ByteCount --

Goto NextPixel

Send stop bit to GP0

Goto
NextFrame

Frame
Count = 8

ByteCount = 8

FrameCount --

Send clock to the sensor
for capturing one pixel

ByteCount = 0

FrameCount = 0

NextFrame

NextByte

NextPixel

www.circuitcellar.com CIRCUIT CELLAR ® Issue 107 June 1999 67

ner comes from the RS-232C
serial port of the host device.

The DTR and RTS signals
are always set as 0, which
generates +9 to +12 V on the
RS-232C socket. I used them
as the positive power source.
Because there is no data out-
put from the TxD pin of the
host, its output is –9 to –12 V
and I used it as the negative
power source.

The LM393 comparator
uses positive and negative
power sources to generate an
RS-232C signal level. A 78L05
regulator converts the +9 to
+12 V to +5 V to drive the
rest of the components.

A switch turns the +12 V
and +5 V on and off. Once the
user presses the push button
down, the scanner starts to capture
the image. The CTS pin of the RS-
232C is pulled up to +12 V to tell the
host the scanner is working.

When the user finishes scanning a
line of text and releases the button, the
scanner shuts off and the CTS pin drops
to –12 V to tell the host the scanning
is finished. Now, the RxD pin of the
RS-232C (output of CMOS–to–RS-232C
interface) drops down to –12 V to
present the rest bits for the last outgo-
ing image byte and a stop bit (logic 1).

SOFTWARE DESIGN
The TSL1401 sensor contains 128

optical diodes. My design has a 300-dpi
resolution, which is better than an
OCR-recognizable image. The height
of a character in a document is usually
less than 1⁄5″, so the pixels for the
character height are:

300
5 = 60 pixels

I selected 64 pixels (half the resolution
of the sensor). In the program, I skipped
every other pixel to get the correspond-
ing 64 bits data (I call it a frame).

A frame is separated into eight groups
(bytes) for serial transfer. I declared a
byte counter and a frame counter to
control the transfer. The default values
are eight for both counters.

The microcontroller continuously
sends SI and CLK pulses to the sensor

and gets the image data from the AO
pin of the sensor.

Each CLK signal corresponds to
one pixel, and each SI signal corre-
sponds to one frame of the pixels. As
you can see in Figure 3, the
microcontroller gets the 64 even values
and ignores the other 64 odd values.

In each frame of pixels, the signal
for the first pixel is treated a little
differently than the other pixels. The
CLK’s rising edge for the first pixel
must happen after SI’s rising edge and
before SI’s falling edge. Otherwise,
you won’t get the right sensor output
values. The timing relationship between
SI and CLK is also shown in Figure 3.

For asynchronous serial data trans-
fer, I added one start bit (logic 0) at the
beginning of each byte and one stop
bit (logic 1) at the end of each byte.
Because the CMOS–to–RS-232C con-
verter isn’t an invert comparator (not
the same as a standard RS-232C driver),
all of the bits are inverted in the CPU
before being sent out.

In the 57.6-kbps transmission pro-
cess, each bit takes exactly 16 CPU
instruction cycles (under 3.6864-MHz
clock frequency). Within the 16-cycle
period, I need to trigger the sensor, get
the data corresponding to one pixel,
and send the data to the serial port.
Even though a longer time for stop
bits doesn’t hurt, I still finished the
counters and sensor reset in 16 cycles

to ignore the gaps between
bytes and frames (see Figure 4).

Figure 5 shows that pixel
0 is the first bit sent to the
PC and is stored in the least
significant bit of one byte in
PC memory. There are two
ways the PC can test the end
of the picture—by checking
the CTS status or by checking
the gaps between the received
bytes. A gap indicates the
end of the receiving image.

READY TO GROW
The trend in the peripheral

design world is moving toward
a higher integration of multi-
functions. The functions on
the compact optical scanner
are limited now, but ideas
for future upgrades include a

USB interface to help with higher data
transfer and power supply, a variable
scan-size control to provide a more
efficient scan of different font sizes, a
multilingual scan capability, and an
independent dictionary function. I

Figure 5 —The pixels are converted into a single-digit bitstream. A start and a stop
bit are added for each group of 8 bits. Each group of 8 bits is then saved into one
byte of PC memory.

pixel 0, 63

Document image

Scanning direction

pixel 0, 0

Sensor output data

CPU output data

RS-232C interface

S = start bit
C = stop bit

63 9 8 7 6 5 4 3 2 1 0.

9 8 S C 7 6 5 4 3 2 1 S63 C Memory in PC

15 14 13 12 11 10 9 8

63 62 61

7 6 5 4 3 2 1 0

.. . .

. . . .

. . . .

SOURCES

PIC12C508/509
Microchip Technology, Inc.
(602) 786-7200
Fax: (602) 899-9210
www.microchip.com

TSL1401
Texas Instruments
(972) 644-5580
Fax: (972) 780-7800
www.ti.com

LM393, 78L05
National Semiconductor
(800) 272-9959
(408) 721-5000
Fax: (408) 739-9803
www.national.com

SOFTWARE

Source code may be downloaded
via the Circuit Cellar web site.

John Luo is a senior engineer for ESS
Technology. He specializes in the
area of video-compression and com-
munication technologies. You may
reach him at john.luo@esstech.com.

www.microchip.com
www.ti.com
www.national.com

68 Issue 107 June 1999 CIRCUIT CELLAR ® www.circuitcellar.com

MICRO
SERIES

Jim Lyle

o

USB Primer

P
ar

t

of 4
2

ne of USB’s
earliest and most

important goals was
to make it easy to use. It

has to be easy because the computer
marketplace is rapidly expanding to
include increasingly less-technical users.

These users don’t know what an
interrupt or DMA channel is, let alone
how to finesse them into a working
configuration. Nor should they have to.
Even highly technical users are tiring
of the difficulties involved in config-
uring or upgrading their computers.

From my perspective, it’s not that
difficult to install an ISA or PCI card.
I’ve been doing this for years and I
know how to set the jumpers (plug-and-
play usually takes care of it anyway). I
rarely get the cables on backwards any-
more or offset by one row of pins, either.

But, one part of the process still
strikes fear into my heart. One part of
the installation never goes quite the
way the instructions claim (when I
finally do get around to reading
them). There’s one element that
rarely fails to “blue screen” the
machine repeatedly and strangely:

THE DRIVER
I’ve spent days trying to install

the drivers for a seemingly simple
device. Sometimes, it’s incompat-
ibilities with other drivers or soft-
ware. Sometimes, the driver wasn’t

2

Classes and Drivers

Figure 1 —USB uses well-defined protocol layers to reduce
complexity and improve standardization.

Now that we
have some
of the USB

basics from Part 1,
we’re raring to go with
USB! Jim wonders if
an OS can provide all
the drivers for the
many devices there
are today. With USB
classes, he explains,
it’s entirely possible.

4

Client software

USB class driver

USB host driver

USB host controller

Function

Class layer

“Standard request” layer

USB interface

Host system Host system

tested well or has a bug and needs a
patch or upgrade. Sometimes I never
do find the problem.

Wouldn’t it be nice if all the driv-
ers you ever needed came with the OS?
You’d just plug something in and it
would work. No more installation
headaches; no problems moving from
one machine to the next or even from
one type of machine to another (e.g.,
from PC to Mac to Linux to worksta-
tion). There would be reduced disk
and memory requirements, too, and
one-stop shopping for upgrades. Over-
all, compatibility and reliability
would improve dramatically.

Developers would find tremendous
advantages as well, bringing more
products to more platforms in less
time and with less effort. Adding USB
would no longer require the expertise
(and the time, often in the critical path)
needed to write drivers. Testing and
support requirements would be reduced,
and so would the overall project risk.

There are thousands of different
kinds of devices already, and more are
on the way. An OS can’t possibly
provide all the drivers for all of these
types of devices. Or can it?

Although lots of different products
are or will be available, many of them
have more similarities than differences.
In some cases, identical devices are
produced by different manufacturers.
In other cases, the products are differ-
ent but the functions are similar.

Consider mice, track balls, and
touchpads. They are physically differ-
ent (and there’s variation even within
those broad categories), but the overall
function is the same—moving a cursor
on the screen. They all provide an x
and y displacement and two or more
buttons (or the equivalent).

What about full-page scanners,
hand scanners, digital still cameras,

www.circuitcellar.com CIRCUIT CELLAR ® Issue 107 June 1999 69

and slow-scan video cameras? All
produce an image of some form. Or
printers? Color or black-and-white,
laser or inkjet, Postscript or not—all
put an image on paper.

With a little insight and forethought,
most devices can be grouped into fewer
categories, each with a common pur-
pose and set of requirements. Then, it’s
possible to define a common API for
each category and therefore the re-
quirements of a single, generic driver
suitable for use with any of the de-
vices in that group. USB is trying to
accomplish exactly this by defining a
variety of device classes.

The USB specification defines the
mechanical and electrical requirements
for all USB devices as well as the fun-
damental protocols and mechanisms
used to configure the device and trans-
port data. The class definitions are
add-on documents that refine the basic
mechanisms and use them to establish
the class-specific blueprint for both
the device and the generic driver.

There will always be unique devices
as well as manufacturers that choose
to differentiate their product from the
competition within the driver. For
these cases, vendor-specific drivers
will always be necessary.

But for most products, it’ll be pos-
sible to use generic drivers that are part
of (or included with) the OS. That’s
one of the most important advantages
of USB.

Comm, Printer, Image, Mass Stor-
age, Audio, and HID (human interface
device) are a few of the defined USB
classes. Some devices may fit into
more than one category.

For example, there are combination
printers/scanners. Although physically
this is one device, logically it is two.
Part of the device fits into the Printer
class and uses that generic driver. Part
of it fits into the Image class and uses
that driver. Devices in more than one
class are called compound devices.

DEVICE CLASSES
Windows 98 includes many but not

all of the USB class drivers. This situ-
ation is unfortunate, but it couldn’t be
helped because some of the class defi-
nitions weren’t finished in time (some
still aren’t complete).

Future releases and service packs
will add additional class drivers until
most or all of them are available and
supported. Apple and Sun Microsystems
also have class driver implementations
available or underway for their respec-
tive platforms.

As the name implies, HIDs are
designed for some kind of human input
or output. The most common examples
are keyboards, pointer devices like mice,
and game controller devices such as
joysticks and gamepads.

This class also includes things like
front panels or keypads (e.g., on a tele-
phone or a VCR remote control), dis-
play panels or lights, as well as tactile
and audible feedback mechanisms—
essentially, anything you might press,
twist, step on, measure, move, read,
feel, or even hear.

Seemingly, this class would include
almost anything connected to a com-
puter, but it doesn’t. Its primary pur-
pose is control. Although it’s very
flexible, this class definition doesn’t
handle large amounts of data well. It
doesn’t need to; other device classes
can better serve that purpose.

In a USB speaker, for example, the
volume, tone, and other controls fall
well within the HID class. But, the
sound channels are data intensive, so
they are better handled by the Audio
class. In fact, many products in the
other classes are compound devices
with HID handling the controls.

Given the diversity of USB applica-
tions in general and HID devices in
particular, how can any one driver hope
to do all the things required by its class?
The first part of the answer comes
from the physical interface. There’s
only one! All USB devices communi-
cate with the host via their USB port.

This sounds self-evident, but the
implications are tremendous. The USB
port works according to the same
basic principles for all devices, in all
modes of operation. The class driver
never needs to worry or know about

ISA or PCI buses, SCSI, IDE, or ATAPI
interfaces, serial ports, parallel ports,
keyboard ports, mouse ports, game
ports, or anything else for that matter.

The class driver doesn’t even need
to know much about USB ports. Even
that physical interface is abstracted
and managed by the USB Host driver.
This abstraction, or layering, is another
key concept that makes class drivers
possible.

Each layer has its own responsibili-
ties and it uses APIs provided by the
lower levels to accomplish them. It
doesn’t need to know how the lower
levels work or which ones are present.

Figure 1 shows a simplified view of
the various protocol layers that might
be present for a USB device. Note that
there are connections at all levels, but
most of these are logical.

The single physical connection is
between the USB host controller and
the device’s USB interface and is at the
lowest level (shown in black). This
layer is the hardware—the cables,
connectors, and state machines.

The first layer of software, which
is required in all cases (in light blue), is
the USB host driver on the computer.
On the USB device it is the essential
firmware that manages the hardware
and provides the standard requests
(also called “chapter 9” requests be-
cause they are in that chapter of the
specification). There’s a logical connec-
tion between these layers for configur-
ing and controlling the USB interface.

The device driver layer comes next
(shown in grey) and is usually the class
driver(s) on the host side and the cor-
responding firmware on the device side.
The logical connection at this level
carries class-specific commands and
requests, although these often use
protocols modeled after those in the
layer below.

Figure 2 —USB devices use logical “pipes” to transfer
information. This device uses two.

Host system USB device

Control

Interrupt

Figure 3 —This sample report for a USB joystick shows
you one possible data organization.

Byte 0:

Byte 1:

Byte 2:

Byte 3:

<reserved> data

X data

Y data

4 3 2 1
Buttons padding

(unused)

70 Issue 107 June 1999 CIRCUIT CELLAR ® www.circuitcellar.com

report for a joystick. It’s simple
and composed of four bytes.

The first byte is unused here
but is reserved for a throttle
position on another model.
The second and third bytes are
the x and y coordinates, respec-
tively. The fourth byte contains
information about the four
buttons (one button per bit,
with four unused bits that are
zero-filled to pad out the byte).

This is just one example
for one joystick. Other HID devices
have different report structures. Other
joysticks may have other structures,
too. Some may order the data differently
or have additional functions and capa-
bilities (e.g., force-feedback).

SAMPLE REPORT
Obviously, the HID class driver

can’t keep report maps for all possible
implementations of all possible devices.
The device has to be able to describe
the report to the class driver. This too

The top (dark blue) layer is the one
the user sees and cares about. For ex-
ample, the client software on the host
might be a flight simulator and the
associated function might be a joystick.
At this layer, the only thing the client
software (and user) cares about are the
joystick inputs. It doesn’t care (and
doesn’t need to know) how those inputs
are read, packaged, and transported.

PROTOCOL LAYERS
To communicate with a USB device,

the host software opens up a series of
pipes, and uses them to transport data.
The pipes correspond to hardware end-
points, which are individual channels,
usually with dedicated buffers or FIFOs.

Pure HID devices use only two
pipes (see Figure 2). The control (default)
pipe, required by all USB devices, is
used for receiving and responding to
specific requests or commands. The
standard requests use this pipe, and
many of the class definitions (includ-
ing HID) add class-specific requests.

The interrupt pipe sends asynchro-
nous data to the host. This pipe is
poorly named; USB doesn’t support
true interrupts but rather enables the
device to predefine a maximum poll
interval. This way, if a key is pressed,
the mouse moved, or the joystick
steered, the device can report in a
timely fashion without a specific
request (from the driver) to do so.

The HID class driver starts with
the physical/standard request API
common to all USB devices and adds
the HID standard pipe structure and
command superset. The difference
from one HID device to another is the
data it returns and what the data means.

HID data is packaged into structures
called reports. Figure 3 shows a sample

is in keeping with standard USB
mechanisms.

USB devices use predefined data
structures called descriptors to describe
their identification, capabilities, re-
quirements, and protocols. The USB
spec defines device and configuration
descriptors that must be provided by
all devices. The HID class definition
adds information to these and goes on
to define a report descriptor.

The report descriptor provides the
map that the HID class driver needs
to understand and interpret the report.
The structure of the report descriptor
is complex, though flexible. Fortunately,
it doesn’t complicate the device-side
firmware because it is a data structure
that can be written and compiled
externally and then remain constant.

Listing 1 shows a sample report
descriptor. The details are beyond the
scope of this article, but note that it
defines the type of application, size,
maximum and minimum values, and
subtypes of the various report fields.

unsigned char ReportDescriptor[59] = {
 0x05, 0x01, /* USAGE_PAGE (Generic Desktop) */
 0x15, 0x00, /* LOGICAL_MINIMUM (0) */
 0x09, 0x04, /* USAGE (Joystick) */
 0xa1, 0x01, /* COLLECTION (Application) */
 0x15, 0x00, /* LOGICAL_MINIMUM (0) */
 0x26, 0xff, 0x00, /* LOGICAL_MAXIMUM (255) */
 0x75, 0x08, /* REPORT_SIZE (8) */
 0x95, 0x01, /* REPORT_COUNT (1) */
 0x81, 0x03, /* INPUT (Cnst,Var,Abs) */
 0x05, 0x01, /* USAGE_PAGE (Generic Desktop) */
 0x09, 0x01, /* USAGE (Pointer) */
 0xa1, 0x00, /* COLLECTION (Physical) */
 0x09, 0x30, /* USAGE (X) */
 0x09, 0x31, /* USAGE (Y) */
 0x95, 0x02, /* REPORT_COUNT (2) */
 0x81, 0x02, /* INPUT (Data,Var,Abs) */
 0xc0, /* END_COLLECTION */
 0x15, 0x00, /* LOGICAL_MINIMUM (0) */
 0x25, 0x01, /* LOGICAL_MAXIMUM (1) */
 0x75, 0x01, /* REPORT_SIZE (1) */
 0x95, 0x04, /* REPORT_COUNT (4) */
 0x81, 0x03, /* INPUT (Cnst,Var,Abs) */
 0x05, 0x09, /* USAGE_PAGE (Button) */
 0x19, 0x01, /* USAGE_MINIMUM (Button 1) */
 0x29, 0x04, /* USAGE_MAXIMUM (Button 4) */
 0x55, 0x00, /* UNIT_EXPONENT (0) */
 0x65, 0x00, /* UNIT (None) */
 0x95, 0x04, /* REPORT_COUNT (4) */
 0x81, 0x02, /* INPUT (Data,Var,Abs) */
 0xc0 /* END_COLLECTION */
};

Listing 1 —This ReportDescriptor function corresponds to Figure 1. USB devices use descriptors
to describe themselves to the host PC.

Figure 4 —This schematic shows you a typical connection between
the USBN9602 and the USB connector (or cable).

72 Issue 107 June 1999 CIRCUIT CELLAR ® www.circuitcellar.com

Jim Lyle is a staff applications engineer
at National Semiconductor where he
has worked with flash memory, micro-
controllers, and USB products. Jim has
also worked as a development engineer
and technical marketing engineer for
Tandem Computers, Sun Microsystems,
and Troubador Technologies. You may
reach him at jim.lyle@nsc.com.

So, a class-compliant USB product
can entirely specify what it is and how
it works in the onboard firmware. This
makes the job of building, testing, and
modifying a USB interface easier and
more modular, and it brings it within
the capabilities of most developers.

In the joystick, there are only three
essential blocks—the ADC, USB inter-
face, and microcontroller. The micro
ties it all together, sampling the joy-
stick at intervals and passing the data
up through the USB interface (also
managed by the micro).

The only new element is the USB
interface. There are many varieties
available: some are integrated with the
microcontroller and some are separate
components. These interfaces contain
the state machines and buffers necessary
to transmit and receive serial data on
the USB. Conceptually, it’s a smarter-
than-average UART-like function.

National Semiconductor’s USBN-
9602 is one example of a USB inter-
face. One side is attached to the USB
cable or connector with a circuit like
the one in Figure 4. (This figure and
the ones following are not complete
schematics; they merely highlight
specific functions and interfaces.)

C3 and C4 bypass the USBN9602’s
internal voltage regulator (used by the
internal USB transceiver). R1 is the
required pullup that the device uses to
signal its presence (and data rate) on
the bus. The other components reduce
EMI and transmission line effects to
provide a cleaner signaling environment.

TYPICAL CONNECTIONS
The other side of the USBN9602 is

the data path to the microcontroller.
This data path is flexible and allows
easy use with a variety of serial or
parallel interfaces (there’s even a
DMA interface for high data rates).

Figure 5a shows a Microwire inter-
face to a COP8 microcontroller, as well
as the requisite dot clock oscillator
circuit. Figure 5b shows an SPI interface
to a 68HC11, and Figure 5c shows a
parallel interface to an 80C188EB.

To make it even easier, several USB
device manufacturers provide sample
firmware source code. For the USBN-
9602, National provides source code
in C with compiler options for all of
the microcontrollers mentioned here
(and readily ported to others). This
code is available on the web. Such
firmware provides a ready-made solu-
tion to the some or all of the necessary
device-side protocol layers.

If you want to build a mouse, key-
board, or other HID device, just modify
the descriptor tables and a few top-level
(function and class layer) firmware
routines. Even if you’re not building
an HID device, the firmware layer
that manages the USB interface device
and responds to the standard requests
provides a solid basis to start with.

PLAIN AND SIMPLE
USB simplifies the lives of developers

and experimenters alike. It’s possible
for OSs like Windows 98 to provide
most of the drivers you’ll ever need

SOURCES

USBN9602, COP8
National Semiconductor
(408) 721-5000
Fax: (408) 739-9803
www.national.com

68HC11
Motorola
(512) 895-2649
Fax: (512) 895-1902
www.mcu.motsps.com

80C188EB
Intel Corp.
(602) 554-8080
Fax: (602) 554-7436
www.intel.com

RESOURCES

USB information, www.usb.org
HID device information, www.usb.

org/developers/hidpage.htm and
www.microsoft.com/hwdev/hid

USBN9602 firmware source code,
www.national.com/sw/USB

Figure 5 —This schematic shows a serial interface between the USBN9602 and a COP8 microcontroller. It also shows the oscillator circuit. b—Here’s another serial interface. In
this case, the microcontroller is a 68HC11. c—In this parallel interface to the USBN9602, the microcontroller is an Intel 80C188EB. But, this example would be typical of any
case where an 8-bit data bus is available.

a) b) c)

for USB devices via class drivers, which
make USB easier to incorporate into
products and embedded systems. I

www.national.com
www.mcu.motsps.com
www.intel.com

74 Issue 107 June 1999 CIRCUIT CELLAR ® www.circuitcellar.com

FROM THE
BENCH

Jeff Bachiochi

Look Ma, No Hands

Jeff
explores
the new
charge-
coupled

touch sensor—the
QT110—from Quantum
Research Group. As
you’ll see, the analog
and digital techniques
it uses improve the
long-term reliability of
capacitive sensors.

f Franklin’s kite
had actually taken

a direct hit from a
bolt of lightning back in

the 1750s, it’s doubtful that he’d be
on the $100 bill today. There’s some
doubt that he ever really flew a kite
during a thunderstorm, but investiga-
tors believe he did it to prove that
storms were massively charged.

The kite’s string successfully trans-
ferred a small portion of that charge
from the storm to his Leyden jar.
Because glass is a good insulator, the
charge remained in the Leyden jar until
it was bled off either intentionally or
through leakage. The ability of this
capacitor to transfer and hold a charge
has made it an important element in
electronics.

There are three factors
that interplay when deal-
ing with capacitance. A
voltage potential (neces-

sary to supply current flow), capaci-
tance (the ability to take on a charge),
and time (how long the potential is
applied).

We can define capacitance as the
amount of charge current that a device
takes on over time. This value is pro-
portional to plate area, distance between
plates, and the insulating material.

Naturally, some materials are bet-
ter insulators than others. At the low
end of the scale is air, with a dielectric
constant of 1. One of the best materi-
als is glass, which can have a dielec-
tric constant >8 (e.g., the Leyden jar).

The larger the capacitance value,
the slower the rate of charge. The
larger the voltage potential, the faster
the rate of charge. The reason that
time is involved has to do with circuit
resistance.

A perfect voltage source would
charge a perfect capacitor instantly.
Because of resistances in the voltage
source, the circuit connections, and
the capacitor itself, the charging cur-
rent is limited. Thus, the more resis-
tance the circuit has, the more time it
will take to complete its charge.

A capacitor will charge to 63% of
the voltage source in one time constant.
This is equal to time (in seconds)
equals resistance (in ohms) times
capacitance (in farads). So you see,
with zero resistance, time is also zero.

Accurately controlling both time
and resistance enables the capacitance
to be calculated by measuring the
amount of charge the capacitor in
question has taken on. Increasing the
capacitance (putting some capacitance

i

The Qprox Touchless Sensor

Photo 1 —All the parts for Figure 1’s
circuit mount on less than 2 in.2 of
PCB. The triac is on the bottom
where a heat sink is only needed for
higher power devices. Notice the
piezo device mounted to the blank
switch plate.

CIRCUIT CELLAR ® Issue 107 June 1999 75www.circuitcellar.com

This drift may be based on the
capacitor’s changing value over time
or temperature. But more importantly,
it can compensate for changes in local
stray capacitance.

Remember how the charging bursts
can be controlled to create just the
right charge build up on the sampling
capacitor? The burst rate helps to
compensate for total capacitance drift.

A reference-level charge is based on
past measurements of the sampling
capacitor. As the measurements rise
and fall, the reference level tracks this
to eliminate drift.

Actually, a rise in sampling mea-
surements doesn’t affect the reference
level immediately. If it did, detection
could not take place because the refer-
ence would rise with the detection
signal.

To be detected, a measured charge
must increase past an upper threshold
level. This upper level is based on the
reference level and follows its move-
ments. Two methods of reducing false
triggering are employed.

First, to eliminate spurious noise,
the measured charge must remain
above the upper threshold level for at
least four consecutive measuring
cycles. Second, the measured charge
must drop below a lower threshold
before it can again retrigger as a “hit.”

When the circuit is first powered, a
calibration routine provides a means
to establish the reference level and
then adjusts the charging bursts based
on the sampling capacitor’s measure-
ments. The automatic drift compensa-
tion is disabled whenever the sensor
recognizes a hit and is reenabled once
the sampled measurement drops below
the lower threshold.

The result of this action is if some
stray capacitance is recognized as a hit

ceramic capacitors, they can often be
used as the external capacitor with
the added benefit of audible feedback.

When the sensor is triggered, an
internal H-bridge applies a 4-kHz burst
across the two sensor inputs, driving
the sounder for 75 ms. Note that the
charging and discharging cycles also
produce some audible clicking; how-
ever, it’s generally rather low in energy.

STRAY CAPS
So, here’s another question: how

does our body look like stray capaci-
tance to a circuit that might not even
be grounded? The circuit may be ca-
pacitively coupled to earth ground
through transformer windings or, if
battery powered, through the stray
capacitance of the PCB and earth.

A path from the circuit to ground is
a must if the electrode is expected to
measure the stray capacitance of our
body to ground. Besides the hard-wired
or transformer coupling approach,
virtual capacitive grounding can be
created by increasing the ground plane
of the circuit with a conductor.

Our bodies have capacitance values
in the high-picofarad range. Although
the sensing electrode can be just about
any size, it need only be as large as the
area of touch. Surrounding the elec-
trode with ground plane is one way to
create a directional sensing field and
prevent the electrode from being in-
fluenced by nonintrusive movement.

GET MY DRIFT
In the past, when a capacitive sen-

sor was designed, it was based on a
specific capacitor and the sensor was
only as good as the stability of the
circuit. The QT110 uses signal pro-
cessing to alter the design dynamically
to adjust for drift.

in parallel) reduces the amount of
charge (for the same potential and
resistance).

If the added capacitance is stray
capacitance (like from your body), you
have just detected your presence in
the vicinity of the circuit. Stray capaci-
tance detection is the basis for capaci-
tive sensors.

SAMPLE THIS
Quantum Research Group has

released a self-contained charge-coupled
touch sensor in an 8-pin package that
will make all of your dreams come
true. Unless, that is, you don’t dream
of capacitive sensors (although after
reading this, you might start).

The Qprox QT110 uses some so-
phisticated yet simple digital and
analog techniques to create a highly
stable contactless sensor. A small
external sampling capacitor and sens-
ing electrode are all that’s needed.

The charging is controlled by the
QT110’s internal timing circuitry.
This circuitry closes a solid-state
switch, which applies a measured
charge to the sensing electrode.

When the switch is opened, the
charge remains and a second switch
enables the charge to be coupled to
the external sampling capacitor. This
process can take place a number of
times, depending on the charging
potential and the external capacitor
values. Each time, the sampling
capacitor’s charge is integrated.

The internal 14-bit ADC can then
read the accumulated charge on the
sampling capacitor. The internal con-
trol circuitry discharges the sampling
capacitor to ready it for the next cycle.

The ability to change the dynamics
of the charging pulse by using multiple
bursts improves sensor performance
over those involving tuned-circuit,
bridge, or RC-based capacitance sen-
sor techniques. This system is highly
tolerant of changes in the external
sampling capacitor and the electrode
(background) capacitance because the
threshold level is dynamically com-
pensated for over time.

The external capacitor should be
around 0.02 µF with the sensing elec-
trode looking like 20 pF. Because piezo
“beepers” are essentially large flat

Figure 1— This schematic shows how I used a QT110 to control a triac replacing a wall switch. I noticed that, after a
power failure, the switch as shown defaults to on. This can be remedied by using an inverting transistor between the
QT110’s output and the MOC32022 (because the QT110 can only source 1 mA—not enough for the MOC3022’s LED).

76 Issue 107 June 1999 CIRCUIT CELLAR ® www.circuitcellar.com

systems where a microprocessor is
monitoring the QT110’s output. The
heartbeat indicates an active sensor.

Typical operating current for the
QT110 is ~20 µA (3 V). This voltage
enables the QT110 to be powered from
a micro’s output bit. Because calibra-
tion is done automatically on power-
up, the micro can be used to route
separate sensing electrodes to the QT-
110’s sensor input, presumably enabling
it to monitor alternate electrodes.

TOUCHY VS. FEELY
When entering a dark room, my

hands immediately search for the
light switch. This feely motion not
only searches for the switch’s control
lever but also for the position of the
lever (up or down). Once I recognize
the switch’s position, a quick flick in
the appropriate direction fills the
room with incandescence. Let’s use
the QT110 as the basis of a touch-
sensitive replacement to the utilitar-
ian governor of darkness.

Figure 1 depicts a design that I used
to power the sensor as well as control

the AC to the lighting fixture. The
QT110 requires little current to oper-
ate, but you must have sufficient
current left over to do the controlling.

I was tempted to use an off-the-
shelf DC-controlled AC switch like
an industry-standard OAC05. Better
yet, I could use one of those opto-
isolated black blocks with integral
screw terminals.

However, I didn't want to wait for
delivery of the parts from a supplier. I
decided to forge ahead with stuff I had
in my parts bins.

My first thought was to control the
L2008 triac directly from the QT110.
Its sensitive gate has only a small
requirement for gate current to con-
trol the 8-A output potential. Unfor-
tunately, the small current necessary
is about 20 mA, a few times what the
QT110 can supply.

The alternative was to use a Motor-
ola MOC3022 opto-triac. Although
the output is a triac itself, it was in-
tended to be used as a switch for
larger triacs, like that of a Darlington
arrangement.

and never goes away (e.g., a pen being
placed next to a sensor), the signal
may never return below the lower
threshold and subsequent hits may
not be recognized.

However, the QT110 has a time-out
feature that automatically performs a
recalibration after 10 s (or alternatively,
60 s). The recalibration now sets a new
reference level based on what it pres-
ently sees, eliminating (or compensat-
ing for) the added stray capacitance.

MODAL MANNERISMS
Once detection is recognized, there

are choices you can make as to how
this detection is presented. The output
pin can sink 4 mA or source 1 mA.
You can choose to have the output go
low while the sensing electrode regis-
ters a hit or to generate a 75-ms low for
each hit. An alternative toggle mode
changes state on each detected hit.

These modes are selected via two
option inputs. As an added benefit,
the QT110 sets the output into tristate
mode for 300 µs each charging burst.
This can be used as a heartbeat in

CIRCUIT CELLAR ® Issue 107 June 1999 77www.circuitcellar.com

Jeff Bachiochi (pronounced“BAH-key-
AH-key”) is an electrical engineer on
Circuit Cellar’s engineering staff. His
background includes product design
and manufacturing. He may be reached
at jeff.bachiochi@circuitcellar.com.

SOURCE

QT110
Quantum Research Group Ltd.
(412) 391-7367
Fax: (412) 291-1015
www.qprox.com

For the sensor electrode, I used a
bare piezo element (about the size of a
quarter) from Radio Shack. It can be
easily glued onto the back of a blank
switch plate and act as both the sens-
ing electrode and the audio feedback
device. However, seeing the lamp turn
on or off is all the feedback you’ll
need—unless of course the bulb’s life
has ended, in which case you’ll be
able to answer the age-old question,
“How many engineers does it take to
change a light bulb?”

Requiring only a few milliamps to
run the QT110 and control the opto-
triac driver gives us a new dilemma.
Where does the power come from?

A few months ago, I spent an entire
column talking about low current
AC/DC converting. Some of the Har-
ris parts I used are now obsolete.

But, wouldn’t you know, these
were the last unique parts available
for making a simple small current
step-down ADC. Now I’m looking for
only a few milliamps, so let’s try to
steal some without having to expend
too much heat.

My first thought was to use a 30-V
zener on the half-wave rectified signal
so it could be followed with a linear
regulator (whose maximum input
voltage is 35 V). I could get away with
poor filtering as long as the resulting
voltage was above the regulator’s
minimum input voltage of 7.5 V.

Quiescent current of a 7805 regula-
tor (~8 mA) was more than I needed for
the rest of the circuit, so that would
be a waste. Instead, I used a 10-V zener
as a preregulator to reduce the work-
ing voltage requirement of the filter
capacitor and save size.

Then I followed this input section
with a 5.1-V zener diode to leave the
ripple behind. The supply ripple and
noise requirement of the QT110 is
20 mVp-p (see Photo 1).

THE PRICE IS RIGHT
Parts for this project run about $10,

with the QT110 at $3.50 in small
quantities. Where can you have more
fun for a 10-spot? If you want to play
around with this device without hav-
ing to lift a soldering iron (shame on

you!), you can get a small EV board for
$15 from Quantum Research Group.

There’s a ton of proposed applica-
tions for this tough little sensor. You
may have already seen a few of them
in action without realizing it. For
example, some restroom faucets are
equipped with them. Just bring your
hands in close proximity to the faucet
and voilà, running water.

These sensors are even used in
elevator buttons (no mechanical parts
to wear out). I’ve touched the future
and it’s here. I

www.qprox.com

78 Issue 107 June 1999 CIRCUIT CELLAR ® www.circuitcellar.com

t he march of
silicon is truly a

wondrous thing. In
what other course of

human endeavor do we routinely ex-
pect to get more for less? Especially in
the embedded world, better and
cheaper chips continue to drive more
applications into more markets.

Many wonder if the pace of
Moore’s Law can be maintained, fear-
ing there’s a wall beyond which even
the IC wizards won’t be able to leap.
It’s rather unrealistic to imagine that
the pace can be maintained indefi-
nitely, and one can argue that the
reality of the chip business dictates
some fundamental limits as formi-
dable as those posed by technology.

For instance, consider the recent
wave of low-priced MCUs announced
by the likes of Microchip, Motorola,
and Zilog. Frankly, the
fact that one might cost
$0.50 and another $0.49
isn’t compelling, either
in terms of which is
chosen or of enabling
new business. What

you’re likely to see tomorrow is a
$0.50 MCU that does a lot more than
today’s, rather than one that’s a lot
cheaper.

Unlike commodity ICs, one area
where silicon is just hitting its stride
is micromachining, which turns the
IC manufacturing process into some-
thing along the lines of “Honey, I
Shrunk the Machine Shop.” Research-
ers have been able to fabricate all
manner of microscopic gadgets such
as motors, gears, and so on.

G-WHIZ
The ADXL202 two-axis ±2-g accel-

erometer from Analog Devices is a
good example of a micromachine
that’s making waves in the commer-
cial market. More sensitive than ear-
lier airbag designs, it’s well suited for
novel applications like two-axis tilt
sensing and inertial navigation. For
instance, Microsoft is using the ’202
in their new Freestyle Pro game con-
troller, which senses body motion.

The basic principle of micro-
machined accelerometers is simple
enough. A tethered or “sprung” mass
is forced into motion by an applied
acceleration. The distance that the
mass moves, and thus the accelera-
tion, is determined by differential
capacitance, as shown in Figure 1.

The principle may be simple, but
the implementation is incredible,
given the intricacy of crafting it in
silicon. Consider that the smallest
detectable capacitance change, 20 zF
(yes, that’s “z” as in 10–21 F), corresponds
to a 2-pm deflection! But while it’s
capable of resolving mere mg’s (thou-
sandths of a g), the device can take a
500–1000-g hit and keep on ticking.

XLR8R

Welcome
to the
wonderful
world of
micro-

machines! In fact,
after taking a close
look at a new two-axis
accelerometer, Tom
thinks these devices
may even dominate
the next price/
performance curve.

SILICON
UPDATE

Tom Cantrell

Figure 1 —The ADXL202 works by
translating movement of the sprung
mass into differential capacitance.

Working with Accelerometers

Proof mass = 0.7 µg

1.3-µm gap

Motion

125-µm
overlap

2-µm
thick

CIRCUIT CELLAR ® Issue 107 June 1999 79www.circuitcellar.com

The use of a standard IC process
means the same die can integrate
signal-conditioning and digitizing
circuits, dispensing with the design
hassles of dealing with low-level ana-
log signals. That makes the ADXL202
real easy to use. Just add power (3–
5.25 V, a mere 1 mA at that) and have
at it with your favorite MCU or PLD.

As shown in Figure 2, the output of
each axis is fed to a modulator (DCM)
that translates the analog signal to a
duty cycle on the digital x and y out-
put pins. The acceleration is simply
interpreted as 12.5% shift in duty cycle
(T1/T2) per g—that is, full-scale output
(–2 to +2 g) corresponds to a nominal
25–75% duty cycle (see Photo 1).

Digital output offers huge advantages,
not only eliminating the need for an
ADC but minimizing wiring concerns
as well. That’s because the digital
signals are more immune to wiring-
induced noise. The outputs drive nearly
rail-to-rail (e.g., 0.2–4.8 V in a 5-V
design), so it’s nearly impossible for the
logic at the receiving end to get confused
about whether it’s seeing a 1 or a 0.

Nevertheless, traditionalists are
placated with analog x and y outputs.
External filter capacitors allow adjust-
ing the bandwidth/noise tradeoff.

One advantage of the analog outputs
over the digital is that the former offer
higher bandwidth (5 kHz vs. 500 Hz).
But, analog output sensitivity isn’t
that great (312 mV/g; i.e., 1.248 Vp-p),
likely calling for an op-amp. Fortunately,
500 Hz (i.e., 2-ms sample time) is
plenty fast, which makes the digital

interface the proper call for
most applications.

Besides the filtering capaci-
tors (and recommended 0.1-µF
power-supply bypass cap), the
only other external component
is a resistor (RSET) that adjusts
the period of T2 anywhere
between 0.5 and 10 ms.

Generally, the proper ap-
proach is to choose the longest
T2 period possible within
constraints imposed by band-
width requirements and tim-
ing logic. For instance, if you
need to sample at 200 Hz, T2
must clearly be 5 ms or less. Similarly,
if you’re using an 8-bit counter clocked

at 10 µs, T2 should be less than
2.5 ms (i.e., 256 × 10 µs) lest
the counter overflow.

Though not targeting airbags,
the ADXL202 does inherit a
handy reliability feature from
its high-g (and highly lawsuit
prone) cousins. Setting the ST
(self test) pin high forces elec-
trostatic deflection of the micro-
machined beam sufficient to
generate an easily detectable
10% (i.e., almost 1-g equivalent)
shift in the duty-cycle output.

LET THE ACCELERATION
BE WITH YOU

The best way to understand
the design issues and tradeoffs is hands-
on experimentation. Fortunately,
Analog Devices makes it easy with
some low-cost evaluation units.

 I got my ADXL202EB off the shelf
from Crossbow Technology. Besides
some other ADXL-based mod-
ules (I see two in the latest
Jameco catalog), Crossbow is a
source for more esoteric gad-
gets like six-degree-of-freedom
fiber-optic gyros.

Although both Crossbow
and Analog Devices offer
smart modules including
MCU, RS-232 interface, and
driver software, the entry-
level ’202EB I used is little
more than an ADXL202 and a
few discretes on a tiny board.

The main virtue, besides
the $29 price, is that the board

makes prototyping with the tiny 14-pin
surface-mount package a lot easier. A
standard 0.1″ five-pin header connects
power, ground, X, Y, and ST.

The board comes without the two
filter caps and resistor installed, leav-
ing the choice of bandwidth and T2
period to the user. I decided to go for
50 Hz and 7.4 ms, respectively. Actu-
ally, I decided to use the 0.1-µF caps
and 1-MΩ resistor I found in a drawer,
and 50 Hz and 7.4 ms is what I ended
up with.

This worked out well because I was
using a small 8051-based BASIC SBC
for the evaluation. It’s no speed demon,
so I didn’t expect 50 Hz to be a speed
limit. But, BASIC52 does have float-
ing point, which eliminates concerns
about dealing with fractional math.

The first step is some software to
listen to the ’202, so let’s walk through
Listing 1. The program sets aside some
memory at the top of BASIC’s RAM
for an assembly-language routine that
performs the raw timing.

Photo 1 —Exploiting micromachine technology, the Analog
Devices ADXL202 makes precision acceleration measurement
easy and affordable.

Figure 2 —The ability to use a standard IC process enables mono-
lithic integration of the micromachined sensor and all the signal
conditioning electronics on a single die.

Figure 3 —As demonstrated in actual operation, the noise is
normally distributed and meets the datasheet specs.

–10 –8 –6 –4 –2 0 2 4 6 8 10
0

200

400

600

800

1000

g/1000

80 Issue 107 June 1999 CIRCUIT CELLAR ® www.circuitcellar.com

The BASIC program calls the re-
spective entry points to get a T1 or T2
reading. The routines use the 8051
branch-on-bit set/clear (JB and JNB)
instructions and the built-in TIMER1
to measure elapsed time between edges.
(Note: all my examples reference the
x axis, but y works exactly the same.)

After setting up the ASM routine
and specifying offset and scale calibra-
tion factors, the test program enters a
loop sampling T1 and T2, computing
the elapsed time (the 8051 TIMER1
runs at 1.085 µs per count) and corre-
sponding g’s, and then displaying the
results as shown in Photo 2a.

Ah, but where did the calibration
factors come from? Listing 2 is the
calibration routine that determines the
offset and scale factors (see Photo 2b) by
taking –1-g and +1-g readings. Calibra-
tion is a must since absolute sensitivity
and offset are rather loosely specified.

For instance, the nominal duty-cycle
shift is 12.5%/g, but it can vary by
2.5%/g between units. And the 0-g
offset, nominally 50% duty cycle, may
be anywhere between 25% and 75%.

JUST SAY NO TO NOISE
Looking closer at my test program

reveals a questionable practice—the
T2 and T1 readings aren’t taken at the
same time. It’s conceivable that an
error might be introduced by the duty-
cycle modulator beyond that inherent
in the basic sensor.

DCM error could affect both T1 and
T2 absolutely but not their ratio. Under
0-g acceleration (i.e., 50% duty cycle),
one T1/T2 reading could be:

x
2x

and a second:

x + n
2x + 2n

Both are 50%. But, a split T1 and T2
reading might result in:

x
2x + 2n

which could be a problem if n is large.
I decided to poke around the issue a

bit, starting with the raw noise spec
of the sensor, which is proportional to
the square root of the bandwidth. Ac-

Listing 1 —This program includes a small ASM routine that measures the duration of T1 and T2 and uses the
ratio, along with empirically determined offset and scale factor, to compute g’s.

PROGRAM T1T2
INTEGER i,j,t1,t2
REAL g,offset,fs

BEGIN
 MTOP = 3fdfh /* leave 32 bytes for ASM */
 GOSUB init /* copy ASM routine */
 offset = 0.154 /* offset compensation in g's */
 fs = 1.018 /* full scale compensation divider */
loop:
 TIMER1 = 0: CALL 3fe0h /* get T2 */
 t2 = TIMER1
 TIMER1 = 0: CALL 3fe8h /* get T1 */
 t1 = TIMER1
 g = ((T1/T2)-0.5)/.125 /* compute g's */
 g = g + offset
 g = g / fs
 ? USING(0),"T2 =",t2,
 ? USING(####.##),"[",t2 * 1.085,"uS] ",
 ? USING(0)," T1 =",t1,
 ? USING(####.##),"[",t1 * 1.085,"uS] ",
 ? USING(#.###)," g =",g
GOTO loop
init: /* copy ASM routine to MTOP */
 FOR i=0 TO 21
 READ j
 XBY (3fe0h+i)=j
 NEXT i
RETURN

/* ; Time ADXL202 T1 & T2 using 8051 Timer1
00008B = TL1: equ 8bh ;Timer1 LSB
00008D = TH1: equ 8dh ;Timer1 MSB
00008E = TR1: equ 8eh ;Timer1 Control
000097 = AX: equ 97h ;Port 1.7
003FE0 ORG 3FE0H
; Enter at T2 to measure ADXL202 T2 (period, i.e., AX=low&high)
; Enter at T1 to measure ADXL201 T1 (high time, i.e., AX=high)
3FE0 3097FD T2: JNB AX,T2 ;Wait until AX high
3FE3 2097FD WAIT1: JB AX,WAIT1 ;Wait until AX low
3FE6 D28E SETB TR1 ;Start Timer1
3FE8 2097FD T1: JB AX,T1 ;Wait until AX low
3FEB 3097FD WAIT2: JNB AX,WAIT2 ;Wait until AX high
3FEE D28E SETB TR1 ;Start Timer1
3FF0 2097FD WAIT3: JB AX,WAIT3 ;Wait until AX low
3FF3 C28E EXIT: CLR TR1 ;Stop Timer1
3FF5 22 RET ;Return to BASIC */

DATA 030h,097h,0fdh,020h,097h,0fdh,0d2h,08eh
DATA 020h,097h,0fdh,030h,097h,0fdh,0d2h,08eh
DATA 020h,097h,0fdh,0c2h,08eh,022h
END

cording to the datasheet, the peak-to-
peak noise (95% probability) at 50 Hz
is 17.2 mg.

Before trying to quantify any noise,
better make sure you can even see it.
Let’s start with the 8051 timer resolu-
tion. Referring back to Photo 2a, you
see the T2 period is about 6800 counts.

But, only 50% of the cycle is used
(i.e., 12.5%/g). That turns into 850

counts per g—that is, almost 1-mg
resolution, much better than the noise
spec of 17.2 mg. But, the ASM routine
has a few mg of jitter because of the
two-clock latency of JB and JNB.

Well, I could study it to death, but
it’s more fun to try some stuff and see
what happens. I modified the test
program to take readings and keep
track of the results. As Figure 3

CIRCUIT CELLAR ® Issue 107 June 1999 81www.circuitcellar.com

shows, the results well matched
the datasheet prediction (i.e., 95%
< 17.2 mg).

With timing resolution better
than the noise spec, there’s a good
opportunity to boost accuracy by
averaging multiple readings. Of
course, this cuts the bandwidth
accordingly. Averaging four 50-Hz
readings delivers 12.5-Hz band-
width. Indeed, averaging is just the
software equivalent of using bigger
filter caps but a lot easier than
getting out the solder sucker.

I modified the program to take
16 readings at a time and display
the average and the spread. As you
see from Photo 2c, the technique
worked well. Although the spread
in 16 samples routinely exceeded
10 mg, the average result only was
off by 2–3 mg. The only downside
of 16× oversampling was that BA-
SIC could only manage to eke out
about a 1-Hz sample rate.

Nevertheless, a few mg’s is
incredibly good (0.1% or so accu-
racy). It’s accurate enough for tilt-

Photo 2a —Under static 1-g
acceleration, the test
program shows that the
ADXL202 is quite accurate
(i.e., within ±0.01 g).
b—Each ADXL202 must be
initially calibrated with
device specific offset and
scale factor compensation.
c—Presuming there’s
bandwidth and resolution to
spare, simple low-pass
filtering (i.e., averaging) can
improve accuracy
significantly.

a)

b) c)

82 Issue 107 June 1999 CIRCUIT CELLAR ® www.circuitcellar.com

sensing applications that rely on trigo-
nometry to convert a g reading to
corresponding tilt (see Figure 4).

You can calculate the result directly
or use a look-up table. But, do note the
nonlinearity of the g-to-tilt function is
such that the sensitivity required varies
dramatically as the accelerometer
rotates through 90°. At one extreme
(0°; i.e., accelerometer oriented parallel
to horizon), the delta is 17.5 mg/degree.

But, at 90° (perpendicular to horizon),
it’s only a fraction of a mg per degree.
One solution is to restrict the range to
0–45° per axis, exploiting the fact that
both x and y axes are available to deter-
mine which octant you’re in. Within
the 0–45° range, a simple 16-mg/degree
approximation is quite good.

Keep in mind the accelerometer
also dutifully captures external accel-
erations. It can’t tell the difference
between acceleration due to tilt ver-
sus that created by movement of the
module. A little motion is probably
tolerable or at least filterable.

Don’t forget to account for over-
range readings (i.e., more than +1 g or

Listing 2 —This program computes the device-specific offset and scale factor by measuring the output with
the accelerometer oriented up (i.e., +1 g) and then down (–1 g).

PROGRAM calibrate
INTEGER i,j,t1,t2
REAL g,min_g,max_g,fs,offset
BEGIN
 MTOP = 3FDFH
 GOSUB init
 ?"Calibrate ADXL202"
 ?"Orient AX up and hit any key"
 DO
 i = GET
 UNTIL i<>0
 GOSUB adxl
 max_g = g /* +1 g */
 ?"Orient AX down and hit any key"
 DO
 i = GET
 UNTIL i<>0
 GOSUB adxl
 min_g = g /* -1 g */
 fs = (ABS(max_g) + ABS(min_g))/2 /* scale factor */
 offset = (max_g + min_g)/2 /* offset */
 ? "g = (g + offset) / fs"
 ?USING(#.###),"g = (g +",-offset,
 ?USING(#.###),") /",fs
 STOP
adxl:
 g = 0
 FOR j=1 TO 64 /* average 64 readings */
 TIMER1=0: CALL 3fe0h
 t2 = TIMER1
 TIMER1=0: CALL 3fe8h
 t1 = TIMER1
 g = g + ((t1/t2)-0.5)/.125
 NEXT j
 g = g / (j-1)
RETURN

CIRCUIT CELLAR
Problem 1—Show that (a ⊕ b) ⊕ b = a

Note: ⊕ means exclusive OR, also called XOR, de-
noted by ^ in the C language. a ⊕ b = a • b

–
 + a

–
 • b

Problem 2—Show how to convert an edge-triggered D
flip-flop into an edge-triggered toggle flip-flop. The
tables show the intended operation of the D and toggle
flip-flops. Assume all signals are active high.
Note: Use as many additional components as necessary.

Problem 3—Assume VBE ≅ 0.7 and VCE(SAT) ≅ 0.3.
What is the quiescent state of this circuit?
What are the voltages at VB and Vo?
Why isn’t Vo closer to ground?

Test Your EQ

Problem 4—You have a processor with only two free regis-
ters and no RAM (perhaps similar to the smallest Atmel
AVRs). The processor can perform all typical logic and
arithmetic instructions. The registers are general purpose,
and any register may operate as either a source or destina-
tion (or both) for ALU operations. Write a program to swap
the contents of the two registers.

Have you forgotten the basics since getting that management job? Did your university ignore real circuits and tell you that HTML was the only path to fortune? Each month, Test
Your EQ presents some basic engineering problems for you to test your engineering quotient. What’s your EQ? The answers are posted at www.circuitcellar.com along with past
quizzes and corrections. Questions and answers are provided by Ray Payne of Under Control, Benjamin Day of Schweitzer Engineering Laboratories, and Bob Perrin of Z-World.

SOURCES

ADXL202
Analog Devices
(617) 329-4700
Fax: (617) 329-1241
www.analog.com/imems

Crossbow Technology
(408) 965-3300
Fax: (408) 324-4840
www.xbow.com

Jameco
(800) 536-4316
(415) 592-8097
Fax: (415) 592-2503
www.jameco.com

less than –1 g). If there’s a lot of shak-
ing going on, separating out the tilt
component probably calls for adding a
second (nontilting) accelerometer to
act as a motion canceler.

PASS THE BATON
About four years ago, I put an accel-

erometer through its paces in “A Saab
Story” (Circuit Cellar 57). Have we
come a long way, baby?

That unit, from Silicon Microstruc-
tures (since acquired by Exar), had a lot
in common with the ADXL202, includ-
ing a micromachined sensor with good

Figure 4 —The ADXL202 meets the two main criteria for tilt applications: DC
response and high sensitivity.

Tom Cantrell has been working on
chip, board, and systems design and
marketing in Silicon Valley for more
than ten years. You may reach him by
e-mail at tom.cantrell@circuitcellar.
com, by telephone at (510) 657-0264,
or by fax at (510) 657-5441.

1 g

–500

0

500

–20 –40 –60 –80

Degrees

80 60 40 20 0

1 g × Scale factor(V/g)

Vout – V(0 g)

V
ou

t a
t 5

00
 m

V
/g

(= arcsin

(

sensitivity and
accuracy across the
same ±2-g range.

But, its analog
output not only
required an ADC
on the receiving
end but caused me
a bit of head-
scratching over
noise problems
that turned out to
be wiring related.

Although the basic sensor element was
micromachined, the IC process used
wasn’t suitable for integrating the con-
ditioning electronics, making for a big-
ger, heavier hybrid multichip module.

The earlier single-axis unit retailed
for over $200 in singles with high
volume quoted at around $50. That’s
almost 10× the current ADXL202 price,
not to mention getting the second axis
as well. Analog Devices is projecting
volume prices as low as $1.50 per axis!

When it comes to regular chips,
silicon may be starting to huff and puff
a bit. But, it sure looks like micro-

machines are picking up the pace and
getting ready to blast through the next
price/performance curve. I

D CK Qt+1 Operation

0
1

1
0
Qt
Qt

SET
CLEAR

Hold
Hold

D

*Q

Q Q

*Q

T

= Don’t Care

T CK Qt+1 Operation

0
1

*Qt
Qt
Qt
Qt

Toggle
Hold
Hold
Hold

D

CK

T

CK

Q1VB

VO

Q2

1 k
1 k

+5 V

www.analog.com/imems
www.xbow.com
www.jameco.com

96 Issue 107 June 1999 CIRCUIT CELLAR ® www.circuitcellar.com

PRIORITY INTERRUPT

steve.ciarcia@circuitcellar.com

Servings Per Issue

t he Internet is hard to ignore these days. Three years ago, businesses could say they weren’t ready to have a
web site. Today it’s an absolute must. The reasons aren’t all hype. Think about how you search for information

today and how you did it a few years ago. There was a time when you were happy to fill out a magazine bingo card
and wait 4–6 weeks for datasheets to arrive by regular mail. If you were more impatient than that, you’d call the

company immediately and the datasheet would arrive within a week or two.
Although I’m speaking solely for myself, I suspect that many of you do the same as I do these days. When I see an ad for a

product or company, I go directly to their web site. The reasons are twofold. First, the likelihood is that there will be some substantive
information that immediately satisfies my curiosity. The second (and more important) reason is anonymity. Sometimes I just want to
check out a product with no specific intent to buy it. I don’t want manufacturer’s reps calling the next day. I don’t want my name on
their mailing list, and I don’t want to leave a name and number on a voicemail machine. I just want to rummage a little in their
technical drawer.

So, what am I driving at? Well, it seems that we’ve changed the way we seek information in response to advertisements. Have we
also changed the way we seek solutions and guidance from the articles in technical magazines? How much has this rabid desire for
immediate gratification affected how you read or appreciate technical magazines today? Should they try to be a full-service informa-
tion source or should they be an information directory instead?

When I see this metamorphosis in other magazines, it causes me to ask if I’m being too conservative. One of my favorite
magazines through the years has been Popular Science. They’ve always been a wealth of technical information and the model for
many of the in-depth presentations you’ve come to expect from Circuit Cellar. Certainly, neither magazine expects to take the place
of fundamental learning sources, but we both strive to have our detailed technical presentations serve as a catalyst for the real
engineering experience.

In the past couple years, I’ve noticed a change in the focus of Popular Science. For as long as I can remember, Popular Science
has been a combination of technology snippets and a bunch of general feature articles. The snippets always seemed to be secondary
to the features. The evolution has been gradual and maybe it’s just my perception of things, but when I look at an issue of Popular
Science now, I get a distinct feeling of being bombarded with a magazine full of one-paragraph technical quickies.

Certainly the continued growth and change of technology has prompted a wide variety of new topics that the editors feel they must
cover. Unfortunately, the reality of print-magazine economics dictates that something has to give if they expand coverage of new
topics in the same size magazine. In light of the fact that I’m presented with the same technology-coverage dilemma, I find that
weighing the needs of the readers with the realities of being a publisher leaves me with the same questions and no answers. It’s not
that I’m going kicking and screaming into the next millenium. I just need to feel that any editorial reorientation occurs for reasons other
than being trendy. The alternative is quite disconcerting.

You get a hint of what I mean when you deal with anyone who has grown up glued to a TV screen. Do we find more short features
and highly graphic materials in contemporary consumer magazines these days because they perceive that we all have the attention
span of a grape? Are technical magazines like Circuit Cellar immune?

Circuit Cellar’s editorial direction has always been a matter of gut feeling. It has never been about any commercial game plan. My
attention span, albeit attached to an increasingly aged personality, is the same as it always has been. I like to think that our editorial
content is cutting edge, but that doesn’t mean that it has to be knee-jerk reaction to changing technology either. At the same time, I
don’t want to think that my conservative nature and general resistance to change is keeping me from recognizing that some topics
should be short and glitzy. I know from experience that Circuit Cellar readers have opinions, so let me know what you think.

