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Is the Head Screwed on Straight?

a s if you didn’t know this already:
robots are cool. When I asked a friend why he

enjoys robots, his response was “because they’re
cool!” And when Ken proofed this issue, several times

the articles were returned with the comment, “This is cool!” or even “This is
very cool!” Indeed. No doubt. But, robots seem kind of like some of the
teenagers I’ve met. You know, definitely “cool” but lacking common sense.

Of course, robots are fun. Robots are interesting. Robots are educational.
And importantly, robots are useful. Let me mention just a few of the thou-
sands of possible applications.

Robots build cars. They can map the ocean floor and report on whale
pod migration. Devices such as the Stiquito, which James Conrad and
Jonathan Mills discuss, help us conduct research on sensors, machine
vision, and cooperative behavior.

Robots entertain us. They make cute little beep-beep sounds like R2-D2
and they smash cars at monster truck rallies. They play robo-soccer, as
Jeanne Dietsch and her colleagues mention in their article on Pioneer robots.

Robots can even save lives. In this issue, Silvio Tresoldi presents an
odor-perceiving robot that detects certain gases and follows a path to their
source, which allows humans and animals (with their perceptive noses but
vulnerable lungs) to stay out of danger.

Clearly, these are all good things, all good reasons to have robots as
part of our daily lives. The problem is that robots do exactly what they’re
created to do. We program them to go forward, they go forward. We tell
them to put that box there, and well, they put that box there.

What if there’s a cliff? Or a puddle of water on the warehouse floor? Do
they walk off the cliff? Drop the box in the puddle? Admittedly, these situa-
tions are simplistic, and sure, you can tack on a lot of sensors and program
the robot to evaluate the relative safety of every next step. But that seems
like overkill for some applications, doesn’t it?

Although we humans have plenty of problems making contingency plans
for ourselves, when the unexpected happens, we do adjust. We use our
common sense and make the best choice we can. But is it remotely possible
that we can plan for all the situations our robot might encounter? No way.

It’s not an issue of hardware. The circuits are capable. But the software
gets in the way. That’s because, in order to write the code for the robot to
make the best choice given the circumstances, we have to think about how
we think—and that’s tough. And then there’s the difficulty of explaining how
we think to someone else. Philosophers and psychologists having been
grappling with this for centuries!

I may be too optimistic, but given all the artificial intelligence research
happening in the world, perhaps the day will come when we can teach a
robot common sense like we (try to) teach our kids. Now, that will be cool!
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NEW PRODUCT NEWS
Edited by Harv Weiner

PICmicro EDUCATION BOARD
The Qik Start PICmicro Education Board is a pre-

wired hardware platform based on the Microchip PIC-
16C74 microcontroller.

 
Designed specifically to support

educators in teaching embedded control design, the
board can be used to demonstrate subroutines, port
configuration, interrupts, A/D conversion,
and other microcontroller functions.

Software routines can be written to test
a 4 × 4 matrixed keypad, display informa-
tion on 2 × 16 alphanumeric LCD, and
track A/D inputs from three potentiom-
eters.

 
Other routines include storing and

retrieving information in memory, inter-
facing to the temperature sensor, mea-
surement of rotary encoder signals, and
communicating on an RS-232 buffered
serial port.

The board comes complete with a UV-
erasable PIC16C74 microcontroller (in-
cluding demo software), 4-MHz crystal,
keyboard, a 2 × 16 LCD display, eight
LEDs, three potentiometers, and a regu-

lated power supply. A breadboarding area is also pro-
vided for building custom circuits (such as a CAN inter-
face or motor controller), and it also incorporates an RJ
connector for interfacing to the in-circuit debugger
(ICD) available on the new Microchip products.

The product is available in three pack-
ages: the standard board (905170); the full-
featured board (905171), which includes
memory, RS-232, and ICD interface; or the
whole-course solution (905175), which
includes the standard board, textbook, and
lab manual.

Diversified Engineering
(203) 799-7875
Fax: (203) 799-7892
www.diversifiedengineering.net

www.diversifiedengineering.net
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NEW PRODUCT NEWS
SINGLE-BOARD COMPUTER

The MMT-51/251 is an SBC designed around the
Intel 8051 core.

 
Although designed with the Intel 8xC251

in mind, it supports any of the ’51 core processors and
many of the Philips and Dallas derivatives.

The MMT-51/251 provides all
the interfaces needed for a
wide variety of OEM control
applications.

 
Features include

two RS-232 serial ports (third
RS-232 port available with the
D580C320), 24 lines of parallel
I/O, up to 64 × 8 of battery-
backed SRAM/flash memory, and
up to 64 × 8 ROM (EPROM, flash 5
or 12 V). Also featured are low-
power modes, a watchdog timer, a
power-fail-detection option, two
external interrupt sources, and 3–6
counter/timers.

Options for the board include RS-
422/-485 levels for communication up
to 5000′,

 
a clock/calendar, seven-posi-

tion DIP switch, indicator LEDs, and I2C bus (Access.
bus connector). Other options include eight channels of

12-bit ADC (four channels differential), four
channels of 12-bit voltage out DAC, 128–

512-KB serial EPROM, and a monitor/
debugger in ROM with 8-KB SRAM.

The MMT-51/251 can be ordered in
several different configurations.

Pricing starts at $104/$199.20 in
quantities of 100.

Midwest Micro-Tek
(605) 697-8521

Fax: (605) 692-5112
www.midwestmicro-tek.com

www.midwestmicro-tek.com
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NEW PRODUCT NEWS
GPS

 
DATALOGGING SYSTEM

The TDS2020GDL GPS
 
Data-

logging System makes it easy to
build a custom datalogger to store
position and other information on
PCMCIA or CompactFlash cards
for later

 
retrieval and examination.

After the module has run for min-
utes or months on a small battery,
the data-storage cards can
be removed for easy data
transfer into a PC.

 
Applica-

tions range from satellite-
fed position information
on latitude, longitude,
date and time, to pres-
sures, temperatures and
rotation rates.

The TDS2020GDL
GPS Datalogging System
consists of two parts—the
TDS2020C logger module
and the GPS receiver.

Forth programs can be user-cus-
tomized.

 
Data and GPS logging in

.csv format is provided as a
ready-made program, but sampling
rate and sleep times can be changed.

With a keypad and graphics
display, the module is a complete
portable instrument or controller.

Two serial ports and an
optional CAN-bus inter-
face enhance its commu-
nications capability.

The TDS2020GDL
GPS Datalogging Starter
Pack, which includes the
Rockwell Jupiter GPS
Receiver, sells for $999.

Saelig Co. LLC
(716) 425-3753
Fax: (716) 425-3835
www.saelig.com

Data is recorded on CompactFlash
cards in a Windows-compatible format
so a PC can directly read the data into
an Excel spreadsheet or Access database.

Interactive design enables an engi-
neer with little programming knowl-
edge to tailor the module to exact
requirements, and supplied high-level

www.saelig.com
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Sniffing Robot

FEATURE
ARTICLE

Silvio Tresoldi

t
Silvio’s robot can
perceive odor
concentrations and
follow a trail, which
could be useful in
situations where
there are harmful
gases or other toxic
substances. Watch
out, bloodhounds;
this robot smells
better than you!

he continuing
improvements in

electronic technology
have resulted in machines

and robots with incredible character-
istics. Every day, new robots with
human-like abilities are being designed.

Until now, one of the human senses
not yet implemented in a robot was
the sense of smell. This article presents
a possible application of odor sensing
in mobile robots. The robot estimates
the maximum gas concentration point
and moves toward it or can also fol-
low a smelling path on the ground.

A typical application for this kind
of detector would be location of gases
or dangerous substances. The smelling
path follower can be used as a naviga-
tion system by allowing the robot to
follow an odor trail on the ground or
detect it to divert its trajectory [1].

This application is an example of
how a midrange microcontroller (a
40-pin DIP Microchip PIC16C67) can
be used in robotics. Particular care
was spent on electronic design and
power consumption.

The robot includes two gas sensors
(to measure gas concentration), two
Hall-effect sensors (to control the

motor rotation), and a serial interface.
By using the information derived from
gas sensors, the robot recursively cal-
culates concentration gradients and
decides which direction to go, thereby
defining the duty-cycle values of the
square waves driving the motors.

Two DC motors driven by PWM
signals directly derived from the micro
provide movement. A fuzzy-logic con-
trol monitors the correct movement.

GAS SENSORS AND
CONCENTRATION MEASURE

With today’s technology, it’s pos-
sible to build an electronic nose with
two gas sensors. In this application, I
used Figaro TGS822 solvent sensors
that are tin-dioxide (SnO2) semicon-
ductor gas sensors [2]. When a gas is
present, an oxido-reduction reaction
occurs on the sensing element and the
surface resistance changes.

The sensor can be seen as a concen-
tration variable resistor described by:

RS = R0
α

where RS is the sensor resistance, R0 is
the sensor resistance with no gas, and
α is the sensibility.

I chose to measure the concentration
by means of a technique based on
capacitor-charge timing. As shown in
Figure 1, two sensors and two resistors
are connected to a capacitor. When a
pin is configured as an output and is
set to a logic high, C begins charging.

All the other pins must be config-
ured as inputs. If the pin is connected
to the reference resistor RC, C charges
up to VthH (high-threshold voltage of
internal Schmitt trigger) in a time TC:

TC = C × RC × 1n
Vref

Vref – Vth

If the pin is connected to a sensor (RS),
C takes a time TS before reaching VthH:

TS = C × RS × 1n
Vref

Vref – Vth

You can use a micro timer to moni-
tor these delays. To guarantee the same
initial condition on C, define a sampling
period and use Rd to discharge the
capacitor (configure the connected pin
as an output and reset it to a logic
low). By dividing TC and TS, you get:

Robotic Odor Perception
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TC
TS

=
RC
RS

By knowing RC and measuring TC and
TS, you can determine RS and then the
gas concentration. This technique can
use the micro’s 16-bit internal timer,
which improves the measure resolution.

Even though it’s possible to delete
undesirable effects of capacitor and
resistance tolerances, the obtained
resolution is limited to 11 or 12 bits
because of the electronic noise and
the pins’ leakage current. When pins
are configured as inputs, they absorb a
current that causes the capacitor to
charge more slowly.

Let’s say ileak is the typical pin leak-
age current (1 µA) [3]. Because four pins
are configured as inputs and one as
output, it’s possible to demonstrate
that the C voltage raising time is:

TS = C × RS × 1n
Vref – 4ileakRS

Vref – VthH – 4ileakRS

Let’s use a particular algorithm to
calculate the concentration gradient.
In order to work properly, sensors must

be heated. A heater is implemented
into the sensor and presents a low
value resistance (30–40 Ω) that must
be connected to a power supply. The
corresponding high current (150 mA)
increases power consumption.

Instead of a DC current flow, I
used dynamic driving by means of a
switching-mode transistor (BS107)
driven by a square-wave signal with a
duty cycle of 50%. A sensible decrease
in power consumption was obtained
and robot autonomy increased.

By using the gas-concentration
measures, the robot decides to go
toward the maximum gas concentra-
tion point. Using two gas sensors
mounted on the robot at a proper
distance, you can obtain information
about the spatial distribution of gas.

Note that the direction where the
gradient is null describes the maximum
increasing direction of function U.
Therefore, by sampling the gas con-
centration U using two sensors, it’s
possible to determine the gradient:

gradU = ux × δU
δx + uy × δU

δy + uz × δU
δz

As shown in Figure 2, by estimating
the direction where the gradient is null,
you can find angle θ, which is the
steering angle in the robot motion.

To calculate the gradient, I imple-
mented an algorithm (the Crank-
Nicholson differentiator) [4] in which
each directional difference is deter-
mined as:

δU
δx =

TS22 + TS12
2TC

–
TS21 + TS11

2TC
TS22 + TS12

2TC
+

TS21 + TS11
2TC

=
TS22 + TS12 – TS21 – TS11
TS22 + TS12 + TS21 + TS11

δU
δy =

TS22 + TS21 – TS12 – TS11

TS22 + TS21 + TS12 + TS11

where time (TS) is a concentration
measure (in fact, it’s directly propor-
tional to the sensor’s resistance, RS).
Thanks to this equation of the direc-
tional difference, it’s possible to dem-
onstrate that the effect of leakage
currents is deleted.

By having the gradient expression,
the robot can determine the angle θ and,
knowing the direction, move toward it.
This method can be used when the robot
is a maximum concentration point
detector or a smelling-path follower.

ROBOT CHARACTERISTICS
The robot must have small dimen-

sions to move in restricted spaces, so
small motors were a necessity. I used
two 3–6-VDC motors that provided
low price, good characteristics, and
easy driving control.

These motors are sources of strong
electromagnetic emissions that could
compromise the micro’s functionality,
so mechanical shielding and two dif-
ferent PCBs were introduced. On the
first PCB, there are gas sensors, a
micro, a serial interface, and the cir-
cuitry for the Hall-effect sensors and
driving bumpers (see Figure 1). The
motor drivers are on the second PCB.

A PIC16C67 with a 4-MHz quartz
oscillator was used and the PCB has a
5-VDC voltage supply obtained by a
9-VDC battery and a DC/DC step-
down voltage regulator (a National

Figure 1 —Here are the electronics for gas measurement and fuzzy control. You can see the voltage regulator, two
gas sensors, serial interface (with ICL232) and inverter 74HC04 (to have antiphase signals drive DMOS), and the
connection to the second PCB and Hall-effect sensors.
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Semiconductor LM2575), which can
decrease power losses and assure the
correct voltage even when the battery
voltage drops.

A resistive partitor was introduced
to monitor battery charge. A micro pin
is connected to the central point and
when the voltage reaches the low
threshold voltage of the internal Schmitt
trigger (VthL), the robot is stopped. This
technique ensures that the correct
input value is sent to the voltage regu-
lator and then to all the circuitry.

I chose pulse-width modulation to
drive the motors. Modulating the duty
cycle of square-wave signals enables
you to change average motor voltages
(VLm), as shown by:

VLm = VS(2D – 1)

where VS is the voltage supply and D
is driving signal duty cycle.

Driving a motor with different volt-
ages permits different rotation veloci-
ties. The robot is steered by rotating
the driving wheels. It’s possible to vary
motor rotation and have the robot steer-
ing only work on duty-cycle values.

It’s also possible to guarantee nega-
tive average voltages (which reverses
the motor rotation). During gas-con-
centration measurement, the robot
switches off the motor (working on the
ENABLE pin) to reduce noise effects.

Full-bridge DMOS drivers (L6202
SGS-Thomson) are mounted on the
second PCB (see Figure 3). Thanks to
the switching unipolar devices, power
losses are strongly reduced and because
of internal implementation, the DMOS
driver can connect directly to the micro.

A locked anti-phase control is used,
and with a single PWM input signal,
it’s possible to drive a diametrically

opposite pair of DMOS switches to-
gether. The two pairs of switches are
driven by the anti-phase signal obtained
by the 74HC04 on the first PCB. For
avoiding cross-conduction (two DMOS
on the same side switching on con-
temporary and then short-circuiting
the power supply), an internal dead-
time logic is implemented.

By having two separate voltage
supplies for the PCBs, you remove the
effect of conducted noise from the
motors, which are directly mounted
on the robot chassis. The chassis is
made of aluminum (to have a light
structure) and consists of a plane under
which the motors are mounted (see
Photo 1a). The metal plane can serve
as an electromagnetic shield to reduce
the motors’ electromagnetic emission.

After estimating the direction to
follow (and the angle θ), it’s possible
to determine the difference of the duty
cycle, thus giving the proper signals to
the motors. The robot is monitored to
ensure it doesn’t get diverted because
of mechanical or dynamic phenomena.
Sensors track the wheel rotation and
estimate the robot’s direction.

Hall-effect sensors and eight little
magnets were put on each wheel. Every
time a magnet passes the sensor, it
generates a signal and the micro incre-
ments a counter (if the signal is derived
from the right wheel) or decrements it
(if the signal is derived from the left
wheel). Optical sensors were not used
because any powder or dust along the
path influences the sensors’ response.

 The gas sensors must be positioned
in different places when the robot is
working as a maximum-concentration-
point detector and when it is working
as a path follower. As a maximum-
concentration-point detector, the sen-
sors must be as far apart as possible to
provide more information about the
gas distribution. When following a
path, the sensors must be as near as
possible to the smelling path.

To ensure a correct operation with-
out moving the sensors, I used an
aspiration system, which lets me
choose where the robot “sniffs” by
simply bending two tubes (see Photo 1b).
Fuzzy logic is used to link informa-
tion about the gradient estimation
and the direction of travel.

ROBOT LEARNING
Because of differences among mo-

tors and sensors, a learning function is
used to reach two goals—to determine
both the R0 and duty-cycle values for
each gas sensor to guarantee identical
motor rotation.

As I mentioned, R0s are different
from sensor to sensor. It’s possible to
delete this undesirable tolerance by
performing lots of measures without
gas and calculating the average value
of RS for each sensor (without gas, R0 =
RS). The measure with gas (RS) is then
compared with this value.

Figure 3 —These schemat-
ics show the PCB (a) and
internal electronics (b) of
the SGS-Thomson L6202
DMOS driver. It is possible
to bootstrap the capacitor,
which is directly connected
to the outputs and the
internal charge pump,
voltage reference, and
thermal shutdown.

Figure 2— Having a concentration measure enables
you to calculate the direction where the gradient is null,
thus estimating the steering angle θ of robot motion.

RS21

RS22 RS12

RS11

x

y

b)a)
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When the same voltage is supplied
to the two DC motors, because of inter-
nal electrical and mechanical differ-
ences, different rotations are noted. To
delete this effect and guarantee identi-
cal rotation, the duty-cycle value
must be measured. This measurement
is obtained via signals from Hall-
effect sensors and a continuing varia-
tion of duty-cycle values.

At the beginning of the process, a
threshold value is loaded into the
micro’s counter and the same duty-
cycle values are supplied to the motor
drivers. Rotations are measured as dif-
ferent signals from the Hall-effect sen-
sors and thus different values of the
micro’s counter (remember, its value
is increased or decreased each time a
signal from the left or right wheel is
sensed). This value is used to estimate
the difference of the duty cycle to
apply to motor drivers.

When no difference between the
counter and threshold values is de-
tected, the duty-cycle values are loaded
into memory cells and added to the
gradient information. When the angle
θ is null, you have a linear trajectory
even though there are strong differences
in the motors’ characteristics. This
procedure annuls the intrinsic motors’
diversity and guarantees that steering
is a result of gradient estimation, not
dynamic or mechanical problems.

FUZZY-LOGIC CONTROL
After you estimate the direction the

robot needs to go, you have to combine
gradient information and Hall-effect
signals to control the correct movement.
Fuzzy-logic control helps solve this
problem. I used fuzzyTECH-MP devel-

opment tools (see Photo 2) to combine
fuzzy variables gradient and diff_
motor to have the output fuzzy vari-
able diff_duty.

The variable gradient comes from
gradient estimation and presents three
MBFs—left is activated if the gradi-
ent estimation gives a left direction to
follow, null if the direction is straight,
and right if the gradient is to the right.

diff_motor derives from the Hall-
effect signal (and represents differences
of rotation). It is also described by three

MBFs. Each MBF is activated if the
robot is going toward the left (diff_
left), the right (diff_right), or
straight (diff_null). The output
variable diff_duty represents the
difference of the duty cycle to apply.

Typical fuzzy rule structure makes
control easy. By introducing three MBFs
for each fuzzy variable (as shown in
the lower side of Photo 2), it’s possible
to have nine activation rules (as shown
in the upper right side of Photo 2). A
typical activation rule is made of:

a)
Photo 1a— Note the two PCBs on the
sniffing robot. While the robot is working
as a maximum gas point detector, the
aspirator tubes are far from each other.
b—When the robot works as path
follower, all you have to do is bend the
tubes down toward the ground and the
sensors can follow the odor trail.

b)
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IF cond1 AND cond2 THEN cond3

where cond1 is a condition of the vari-
able gradient, AND is a Zadeh logic
operator, cond2 is a condition of diff_
motor, and cond3 is the activation
diff_duty.

It’s possible to use human thought
to write activation rules. The gradi-
ent information is compared with the
diff_motor information. If they
match, the regulation action is light.
In fact, this situation means a correct
robot direction, and dutynull is
activated to ensure a light regulation.

If the gradient and diff_motor
information contrast, regulation is
strong. In this case, the robot isn’t
going in the correct direction and has
to divert, so the fuzzy variables duty-
left or dutyright are activated.

Defuzzification is obtained by the
CoM (Center of Maximum or Sugeno)
algorithm to ensure good resolution
and easy calculation. Thanks to the
RS-232 serial interface, it’s possible to
adjust the fuzzy parameters as MBF or
index of activation of each rule.

RESULTS
This project required many tests.

Initially, the robot had to learn in a
gas-free environment. At first, the robot
moved chaotically, but because of the

Silvio Tresoldi works as an electron-
ics designer in microcontroller appli-
cations. You may reach him at
set_electronics@usa.net.
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Photo 2 —This is what the fuzzy-logic controller, spreadsheet rule editor, and MBF of the input fuzzy variables
gradient and diff_motor look like.

dynamic regulation of the duty cycle, it
soon began to follow a linear trajectory.

To test the robot as a maximum-
gas-concentration-point identifier, a
plate with alcohol and naphthalene
was set up to simulate a gas source.
Given the solvent sensors, the elec-
tronic-nose response was good even
though we didn’t use gas. At 4–5 m
from the source, the robot came close
to the plate (less than 15 cm away) and
even touched it several times.

To test all possible behaviors, dif-
ferent starting positions were tried.
The main setback was airflows, which
tend to spoil the spatial distribution
of gas and divert the robot from the
gas source.

To test the robot as a path follower,
we drew a path using the same alcohol
and naphthalene mixture but more
concentrated. The odor trails had
different shapes to test the robot’s
ability to follow paths.

If the trail contained an angle less
than 120°, the robot had problems
following the path. A better aspiration
system and mechanical structure may
solve this problem.

In other tests, we found that by
using a switching voltage regulator
and unipolar motor driver, it’s possible
to decrease power losses and increase
robot energy autonomy.
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Using a micro, we integrated all the
work into one device. Good software
development decreases the number of
components on the PCB, lowering cost.

An electronic nose may seem strange,
but an odor-sensing robot can be use-
ful when the presence of gas or toxic
substances is dangerous to humans. I
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A PC-Based Controller
for the Stiquito Robot

FEATURE
ARTICLE

James M. Conrad &
Jonathan W. Mills

t
Small. Inexpensive.
Easy to develop.
The Stiquito meets
all of these require-
ments. If you’ve
never worked with
one before, listen up
as James and
Jonathan explain
how they made this
little robot walk with
a tripod gait. Simple.

he typical legged
robot is large, com-

plex, and expensive.
Naturally, such factors

have limited the use of legged robots
in research and education.

Few universities can afford to con-
struct robot centipedes or 100 six-legged
robots to study emergent cooperative
behavior. Even fewer universities can
give each student in a robotics class
their own walking robot.

The introduction of the Stiquito,
which is shown in Photo 1, changed
all of that. The Stiquito was devel-
oped from a larger and more complex
robot called Sticky (because it looked
like an insect commonly called a
“walking stick”).

Photo 1 —The stiquito is an inexpensive
hexapod robot that uses nitinol wire for
propulsion. When nitinol is heated by
running current though it, the wire con-
tracts, moving the legs back, and the
robot forward. Watch out! Nitinol has a
tendency to eat batteries in no time, so an
external power supply is suggested.

The Stiquito is a small, simple, and
inexpensive six-legged robot that has
been used as a research platform to
study computational sensors, subsump-
tion architectures, neural gait control-
lers, emergent behavior, cooperative
behavior, and machine vision. It has
also been used to teach science in
primary, secondary, and high school
curricula.

Jonathan Mills announced the
availability of the Stiquito in 1992.
For $10, you could order a kit from
Indiana University to build the small
robot. Jonathan didn’t envision the
number of requests he would receive,
which by 1996 had reached more than
3000. The volume of orders strained
his personal ability to fulfill them and
he soon stopped supplying the kits.

At the same time, we were finishing
the book Stiquito: Advanced Experi-
ments with a Simple and Inexpensive
Robot. The book contains instructions
on building the Stiquito and its control
circuits as well as a robot kit.

One of the most flexible ways to
control the walking gait of a Stiquito
robot is by using a PC and writing a
program. The program controls the
contractions of the nitinol wire, thus
making the Stiquito walk.

This article contains the instructions
for making a circuit that can be plugged
into the parallel port of a PC. We also
discuss the concepts of the PC parallel
port and provide instructions on how to
write a program to make the Stiquito
walk with a simple tripod gate.

THE BIG PICTURE
The PCB plugs into the PC’s parallel

port and generates enough current to
light up LEDs on the board and make
the Stiquito walk. The LEDs help you
develop your computer program, and
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the board provides an easy-to-see report
on how your program is executing. Once
your program correctly works and the
LEDs show a viable gait, you can plug
the Stiquito control wires into a socket
on the board.

The black lines in Figure 1 show
the logic on the circuit board when
the Stiquito isn’t attached. The ULN-
2803 driver chip inverts the value of
the input so the LED will light up
when current is drawn towards the
ULN2803.

The addition to Figure 1, shown in
blue, illustrates the attachment of the
Stiquito robot. In this circuit, the LEDs
light and the nitinol legs contract.

The circuit in Figure 1 should be
used without the Stiquito attached to
test your hardware and software. This
precaution protects the Stiquito’s
nitinol actuators from damage while
you are developing your circuit.

The parts needed to build this
simple board are readily available
from electronics suppliers and cost
about $5. In addition to the circuit
board, we made a tether to connect
the board to the Stiquito robot.

MAKING THE PCB
Although there are many circuits

you can build to attach to the parallel
port, we recommend using a circuit
that doesn’t draw current from the PC.
We recommend a dedicated power
supply, a 5–6-VDC transformer, or a
9-V battery.

To make the parallel port board,
simply insert the sockets, integrated
LEDs, and connector into the board
and start soldering. After that, insert
the ULN2803 chip into the socket and
solder your power source to the two-pin
jumper post. Make sure you insert the
LEDs into the board in the correct
orientation. We used integrated LEDs,
which have a diode and resistor com-
bined in one package.

The component and solder sides of
the PCB are shown in Photo 2. Although
we made a custom PCB, we have also
used a Radio Shack perf board 276-150,
which is particularly handy because it
has board holes electrically connected
like a breadboard.

Your PC parallel PCB is now com-
plete. Using your ohmmeter, put one

contact on the pin labeled 1 or 9 of
the header and the other contact on
each of the other eight pins, one at a
time. Make sure the ohmmeter registers
some resistance, but not infinite resis-
tance. Check your work to make sure
you have no shorts or broken traces.

GETTING ATTACHED
Now that you’ve built the parallel

port controller board, you need to
prepare the Stiquito robot and make
its control tether.

Cut a small length of wire-wrap
wire and solder it to the center Stiquito
bus bar and then to the center pin of
the three-pin jumper. Solder the other
two Stiquito tripod control wires to the
two outside pins of a three-pin jumper.

Sand all six ends of the three wires
of the magnet wire group. Next, you
need to solder the three wires at one
end of the magnet wire to the three
pins of a three-pin socket. Identify the
wire soldered to the center of the
three-pin socket and solder it to the
first pin of a nine-pin jumper post.

Solder one of the remaining wires
of the tether to the next four pins of
the nine-pin socket and use some of
the wire-wrap wire to connect these
four pins together (repeat this step
with the remaining wire of the tether).

Plug the tether into Stiquito, but
don’t plug it into the parallel
port card yet. Use the board to
test your Stiquito walking

program by observing the LEDs (per-
haps preventing damage to the nitinol
wires because of a programming error).

THE PARALLEL PORT
The parallel port was designed to

serve as an output port from a PC and
attach to a printer. Some parallel ports
allow both input and output, but we
only used the port as an output.

Although there are 25 pins for a
parallel port, we only use nine. Eight
lines are used as data output lines and
one line serves as the electrical ground.

When using the parallel port, com-
puter programmers usually write
information to two locations. One
register location controls the port, and
the other contains the data to send.
We used only the data register.

Some computers have more than one
parallel port, generally labeled LPT1,
LPT2, and LPT3. Each has a different
data register. You can access them by
using a different register address.

Typically, the register address for
the single parallel port (or LPT1) is
&H378, but your PC may use another
address like &H278 or &H3BC. You
can verify this by using the Microsoft
diagnostics program (MSD.EXE) and
examining the port address.

We use all eight of the parallel port
output lines to control our Stiquito

Figure 1 —Only nine of the parallel port pins
are used. The ULN2803 Darlington transistor
array is a common chip used as a current
driver. The integrated LEDs are used to help
program Stiquito’s walking gaits. Four transis-
tors drive three Stiquito legs.
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Photo 2 —This board was custom made for this circuit, but you can use perf board material as well. We also
recommend socketing the ULN2803 instead of soldering the chip to the board in case the chip fails.



20        Issue 108 July 1999      CIRCUIT CELLAR ® www.circuitcellar.com

an insect leg is also quite complicated.
But even though the Stiquito is simple,
small programs can demonstrate the
fundamental features of arthropod
locomotion.

Later on, you can develop more
realistic models of gait controllers
based on neural networks or central
pattern generators and feedback from
strain gauges or other sensors that

Listing 1 —This program makes Stiquito walk with a tripod gait. This code assumes that the upper nibble
controls one tripod, and the lower nibble controls the other. We allow the nitinol to rest after it is activated.

REM "OUT &H378" sends an 8-bit value to the printer port.  The
REM data sent is hexadecimal.

DELAY = 14000
10 OUT &H378, &HF0 : REM &HF0 is binary 11110000
FOR x = 1 TO DELAY : NEXT x

OUT &H378, 0
FOR x = 1 TO DELAY : NEXT x

OUT &H378, &HF : REM &HF0 is binary 11110000
FOR x = 1 TO DELAY : NEXT x

OUT &H378, 0
FOR x = 1 TO DELAY : NEXT x

REM If a key on the keyboard was pressed, then end.
REM Otherwise, walk some more!
a$ = INKEY$
IF a$ = "" THEN GOTO 10
END

robot, and we control each line with a
binary digit, or bit. A response of 1
means turn on the line, and a response
of 0 means turn off the line.

To write to the parallel port, write
eight bits of data to the parallel port’s
data register. For example, to write
the signal 1 to the top four bits and 0
to the lower four bits of the register,
send the eight bits 11110000 to the
port. In QBASIC, this is written as
OUT &H378, data, where data is
the bit pattern 11110000.

Unfortunately, we can’t represent
the bit pattern 11110000 as data in the
QBASIC language. But, we can con-
vert it to hexadecimal representation.

For our Stiquito control application,
we only used nibble values of 0000 (0)
and 1111 (F). To define the value in a
hexadecimal number, we put &H in
front of the digits. The line is now
written OUT &H378,&HF0.

GAIT PROGRAMMING
The mechanisms of arthropod loco-

motion are complex and have been
extensively studied. The structure of
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mimic the sensorimotor loop in a real
insect.

The gaits of insects are believed to
be a result of central pattern genera-
tors that vary the animal’s gait from a
metachronal wave to a tripod gait and
all the variations in between. Each
gait conserves energy as it preserves
the balance of the insect. As the se-
quences in Figure 2 indicate, the insect

is always in a stable position with at
least three legs (and often more) on
the ground at all times.

The metachronal wave is the slow-
est and most stable gait. It’s seen when
a “wave” of leg movement ripples down
each side of the insect or arthropod.
The animation sequence in Figure 2a
shows two waves flowing down each
side of a ten-legged insect robot.

The tripod gait is the fastest stable
gait, with two legs on one side of the
insect and one on the other side alter-
nately on the ground or in the air, as
shown in an animation of an advanced
six-legged insect robot (see Figure 2b).

This tripod gait relies on a leg that
has two degrees of freedom. The Sti-
quito assembled using our book has
only one degree of freedom.

Our Stiquito walks with a simpler
form of the tripod gait shown in Fig-
ure 2b. The legs only flex and relax
while they are on the ground. This is
the same way it is controlled using
the manual controller explained in
our book.

Using QBASIC to control the walk,
you’ll need to use the OUT statement
to activate and deactivate the legs. You
should add a delay in your program to
hold the activation signal for about
1 s, then hold the deactivation signal
for 1 s. The code to perform this task
for one tripod is shown in Listing 1.

The number 14000 is an arbitrary
value that is computer dependent.
You may have to make this number

Listing 2— This code piece shows how to keep nitinol contracted with a 33% duty cycle.

REM High-frequency pulses initially contract actuators
FOR a = 1 TO 20
  OUT &H378, &HF0              : REM &HF0 is binary 11110000
  FOR x = 1 TO 100 : NEXT x
  OUT &H378, 0
  FOR x = 1 TO 100 : NEXT x
NEXT a

REM Low frequency pulses maintain actuator contraction
FOR a = 1 TO 40
  OUT &H378, &HF0              : REM &HF0 is binary 11110000
  FOR x = 1 TO 100 : NEXT x
  OUT &H378, 0
  FOR x = 1 TO 200 : NEXT x
NEXT a
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Metachronal wave

Tripod gait

leg on ground

leg in air

leg on ground, flexed

leg in air, flexed

higher if your computer is faster than
a ’486-based machine (66 MHz).

SAVING POWER
Driving the nitinol actuator with

the same amount of current is unnec-
essary after the nitinol contracts. Only
enough current to keep the nitinol
contracted (i.e., just enough to replace
the energy that escapes as heat) is
needed. The current and the voltage
supplied to the nitinol cannot be
changed dynamically, but the power
can be varied using a technique called
pulse frequency modulation (PFM).

PFM means that the number (fre-
quency) of pulses is varied over time.
The PC parallel printer port and the
interface card can generate a PFM signal
because the nitinol reacts slowly com-
pared to the speed with which a BASIC
program can turn the ULN2803 driver
chip on and off.

By varying the length of time that
the driver chips are left off, the fre-
quency of the pulses can be increased
or decreased. This arrangement allows
the power used to drive the robot to
be varied dynamically.

The nitinol actuator behaves as a
leaky integrator of the current pulses
sent to it and responds to the heat gener-
ated by the current pulses and lost to
convection from the wire. Figure 3
shows how a PFM driver program
works, and Listing 2 shows how to
use PFM to control one tripod of the
Stiquito robot.

JUST THE BEGINNING
The purpose of the Stiquito robot

kit is to enable you to create a platform

James Conrad is an engineer at Erics-
son Inc., and an adjunct professor at
North Carolina State University. He

has written on the topics
of robotics, parallel
processing, artificial
intelligence, and engi-
neering education. You
may reach him at
jconrad@stiquito.com.

Jonathan Mills is an associate professor
in the Computer Science Department
at Indiana University and director of
Indiana University’s Analog VLSI
and Robotics Laboratory, which he
founded in 1992. Jonathan invented
the Stiquito to use in multirobot
colonies and to study analog VLSI
implementations of biological systems.
You can reach him at stiquito@cs.
indiana.edu.

REFERENCES

J.M. Conrad and J.W. Mills,
Stiquito: Advanced Experiments
with a Simple and Inexpensive
Robot, IEEE Computer Society
Press, Los Alamitos, CA, 1997.

J. W. Mills, Stiquito: A Small,
Simple, Inexpensive Hexapod
Robot. Part 1: Locomotion and
Hard-wired Control, Technical
Report 363a, Computer Science
Department, Indiana University,
Bloomington, IN, 1992.

Stiquito information,
www.computer.org/books/
stiquito; www.stiquito.com

SOFTWARE

Software for this article is available
via the Circuit Cellar web site. The
parts list and photos of the finished
product are posted there as well.

from which you can start experimen-
tation for making the robot walk. The
instructions in the book show how
you can create a Stiquito that walks
in a tripod gait. The circuitry and
computer programs we’ve shown in
this article enable you to control this
tripod gait via a PC parallel port.

If your plans include independent
control of each of the Stiquito’s legs,
you should modify the assembly of
your robot such that you attach con-
trol wires to each leg individually. If
the design of your robot includes put-
ting something on top (e.g., a circuit
that enables it to walk on its own),
you should consider how you want it
to walk.

If you simply want the robot to
walk, a tripod gait may be sufficient.
But, if you plan to put complex cir-
cuitry like a microcontroller on top,
you may want the flexibility of being
able to control all six legs. I

Figure 2 —The robot walks best on a slightly rough surface, like linen tablecloths or roughly sanded wood. Compare
the metachronal wave gait (a) versus the tripod gait (b). Check out the Stiquito supplemental web site for BASIC
programs used to make the robot walk in a tripod gait.

a)

b)

Percent of length that actuator contracts

Apparent current

Current pulses

OUT statements that generate current pulses (note variable delay)

a)

b)

c) Figure 3a —The nitinol wire will
contract and stay contracted until it
cools. b—To stay contracted,
nitinol wire needs only 25–35% of
the current needed to initially heat
it. c—Pulsing current with a 25–
35% duty cycle will keep the wire
contracted.

SOURCE
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IEEE Computer Society
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Fax: (714) 821-4641
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Internet
Appliance Interface

FEATURE
ARTICLE

Myron Loewen

f
Internet appliances
still aren’t the most
reasonable things
out there. (Why pay
hundreds more for a
$20 toaster?) But,
Myron uses a PIC and
a 2400-bps modem
to make an Internet
interface that leads the
way to less-expensive
Internet appliances.

or years, we’ve
been hearing about

the promises of every-
thing from coffee makers

to lawn sprinklers being connected to
the Internet for remote control and
monitoring. Yet, none of these devices
ever became a commercial product.

Two major roadblocks have pre-
vented this dream from coming true—
the cost of connecting to the Internet
and the cost of an Internet terminal.
No one wants to pay an extra $300 for
a $40 appliance, plus $25 a month for
the Internet service, just to have the
ability to check on their home appli-
ances from work.

But, things are changing in the mar-
ket that could clear this roadblock
forever. Cable modems are bringing
continuous Internet connections into
homes without the hassles of extra
telephone lines and hourly billing.

Another recent change is free web
access by local telephone numbers in
some cities, if you can tolerate a little
advertising. A dumb terminal like a
coffee maker could care less how many
banner ads it has to ignore. And the
cost of the Internet interface is drop-
ping to under $50 with the introduc-

tion of systems-on-a-chip complete
with TCP/IP stacks.

In this article, I show how the
Internet interface can be made even
cheaper and simplified to run on a $2
PIC processor and a retired 2400-bps
modem. The PIC dials and establishes
a point-to-point protocol (PPP) connec-
tion with an ISP and exchanges data
with remote servers. I don’t have a
cable modem or access to free web
browsing yet, but there are many
other applications that already need a
small or cheap Internet interface.

Even though this project was con-
ceived solely for the Circuit Cellar
Design98 contest, it has since found
use in everything from industrial
controls to surveillance cameras. It’s
most suited for remote data collection,
where the samples are stored until an
alarm trigger point and then dumped
to a central database through a local
ISP. This has huge cost savings over
leased lines.

My design, shown in Photo 1, uses
the PIC12C672 to emphasize how small
the device can be—only eight pins and
under $2. Even with such a simple
processor, I managed 2400-bps serial
communications with the modem,
three analog inputs, one digital output,
and some of the Internet protocols.

The serial communications had to
go through a software-emulated serial
port (bit banging) because this device
has no USART. The result was a demo
Internet node with a remote-controlled
red LED indicator and remote monitor-
ing of three potentiometer settings
with 8-bit resolution.

SIMPLE INTERNET
Packing this kind of functionality

into such tiny resources required a lot
of tradeoffs. I studied a ton of Internet
Request for Comment (RFC) docu-
ments, the public source code to Wat-
TCP and Linux TCP/IP stacks, and
TCP/IP Illustrated Volumes I, II, and
III. Then, I whittled it down to the bare
essentials, making many assumptions
and forfeiting universal compatibility.

Here’s a summary of how I imple-
mented the Internet protocols and a
description of the software. If you want
to learn more, read a book like the
one in the references and download
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some of the Internet documentation
listed in the Digging Deeper sidebar.

If you’ve read this far, you probably
have quite an interest in TCP/IP pro-
tocols, but bear with me as I cover the
basics. If it doesn’t make sense to you,
remember that this protocol stack is
far from conventional. Try instead to
focus on the flow of data instead of what
software layers and state machines are
missing.

I justify this reckless abandon of
standards as necessary to shrink the
code to the point where connections
can barely be made with a majority of
ISP servers. This will not endanger the
standards of the Internet because these
are end-user devices that perform no
routing and are tweaked until they
satisfy the end user. There are already
inconsistencies between products from
major brand names, which prevent the
appliance from being able to log into
some ISP servers.

Let’s first look at how the Internet
works and how data can cross such a
maze of distant computers with vary-
ing physical connections and operating
systems. Each computer gets a unique
IP address, much like your mailing
address. The data to be sent is broken
into chunks that are stuffed in specially
marked small envelopes that indicate
the type of data (e.g., web page, e-mail).

Each of these goes into a medium-
sized envelope, specially marked to get
it to the right program on the remote
computer. The type of data determines
if the medium-sized envelope is a
simpler UDP type or more robust TCP
type. The TCP packet generates extra
packets to open and close transmis-
sions and resends packets that get lost.

The medium envelopes go into
larger envelopes with source and des-
tination Internet addresses on them.
This is called the IP packet. It’s like
international mail; the address gets it
to any destination on the Internet.

But, the Internet works more like
passing notes in class. The large enve-
lope goes in a bigger one with your
friend’s name on it. Your friend opens
the big envelope, sees where the large
envelope wants to go, and puts it into
a new big one.

Your friend then passes it to another
friend who is closer to the final desti-

nation, and the process repeats. The
mail doesn’t always take the same
path and sometimes it gets lost along
the way. With luck, the large envelope
eventually ends up at its destination.

When it arrives, it is opened and
the medium envelope is removed to
see what program gets the data. That
program then opens the little envelope
to gets its data. Most OSs do this with
a TCP/IP stack like WinSock. To save
all the envelope handling, my algo-
rithm puts on x-ray glasses and looks
through all the layers for the data in
the middle. The format of the enve-
lopes or packets is shown in Figure 1.

There are protocols for the data
following the IP header (e.g., ICMP for
pinging, TCP for web browsing, and
UDP for voice over Internet). You need
to implement ping to test the Internet
connection and send keep-alive packets
to prevent the server from disconnect-
ing. You also need a way to send data
to the appliance and receive data back.

You’re probably familiar with ftp
for transferring files. It runs over TCP,
which handles opening a high-level
connection across the Internet with
error detection and retransmission.

TCP has large RAM and ROM
requirements to keep track of open
connections and packets that have not
yet been acknowledged by the remote
computer. It turns out that there’s
another less popular file transfer pro-
tocol, called tftp, which runs over UDP.
UDP is much simpler to implement
than TCP because each packet is sent
in response to the last one received
and there is no retransmit buffer or
table of connections to keep track of.

I couldn’t choose tftp without client
software for people to access their new
appliances. With a quick search, I found
several freeware, shareware, and demo
tftp servers and clients for various OSs.
The http links to these packages are
available via the Circuit Cellar web site.

Another protocol I considered was
SNMP. It is much more popular, has
built in remote alarm monitoring and
reporting, and lots of shareware cli-
ents, but is a little more complicated.

If you need it to be even simpler,
just return data appended to pings.
But then, you need to write a custom
ping routine.

tftp has another advantage over ping
and SNMP. It provides simple data
logging of daily uploads on a central
tftp server. tftp clients just have to
upload files with unique filenames
and they are stored on the server.

NEGOTIATING PPP
A modem connection to the Internet

is used because it’s the most common
method for remote data collectors. If
we go back to the envelope analogy,
the Internet appliance and the ISP

Figure 1 —The tftp packet shows how the A/D readings
are wrapped in layers of packets to get a PPP packet.

A/D readings

tftp header Filename

data

data

data

data

UDP header

IP header

7E PPP header CRC 7E

Photo 1 —The first prototype
of the Internet Appliance uses
three potentiometers for
remote inputs and an LED to
test remote control. The
2400-bps Cermetek modem
provides a fast enough
Internet connection to ex-
change the control packets.
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modem server are the close friends
exchanging the big envelopes. The
envelopes used in dialup connections
come in two forms—SLIP and PPP.
More acronyms are listed in Table 1.

I only had room for one protocol,
so I chose PPP because some ISPs
prevent SLIP from establishing a con-
nection. The PPP connection can also
go straight to a local server’s serial
port to save the cost of a modem.

PPP is a protocol to encapsulate IP
packets on a serial link. On an asyn-
chronous link (like the modem serial
connection), it requires the data format
to be 8 data bits with no parity.

The sample packet in Figure 1 shows
that character 0x7e starts and stops a
packet. All other instances of 0x7e must
be changed to the two-byte sequence
0x7d 0x5e to prevent false starts. The
character 0x7d becomes an escape
character that means complement bit
6 in the following byte.

Any original instance of 0x7d, 0x7e,
or bytes inclusively between 0x00 and
0x1f, must be changed to 0x7d followed
by the original XORed with 0x20.
This bit stuffing eliminates false
packet breaks, false characters, and
RS-232 control characters under 0x20.

The PPP connection procedure can
be broken into several phases. First, if
the link is dead, carrier detect is one of
the stimuli that moves us to the next
phase. The link establishment phase
uses LCP to detect and negotiate link
options with the remote computer.

Next, the authentication phase
verifies your password using PAP.
Although it is not one of the phases,
this is where ISPs generally configure
data compression with CCP packets.

The final phase is the network-
layer protocol (e.g., IP). Each protocol
is configured with its protocol; IPCP
in the case of IP. Of course, there’s also
the terminate phase to close the link.

The LCP, PAP, CCP, and IPCP pack-
ets look similar and negotiate options
in the same way. Only the protocol
field and the meanings of the options
are different. Figure 2 illustrates what
an LCP packet looks like and how
options are negotiated across the se-
rial link.

Basically, the packet can request,
deny, and accept options. Both sides

must issue an accept before the LCP
negotiation is complete. Figure 3
depicts the packet exchanges.

Negotiation starts with one side
requesting a list of options in a REQ
request packet. Each option consists
of a length byte, option number, and
option parameters. The other side
responds with an ACK if it accepts all
the options. If it doesn’t like an
option’s parameters, it responds with

a NAK and a list of the options that it
rejected with parameters that would
be acceptable.

If required options are missing, it
adds those to the rejected list in the
NAK reply. If some options are not
recognized or are considered nonnego-
tiable, the other side should respond
with a REJ reply and list the bad options.

The first side resubmits updated
option lists until it gets an ACK reply.

Digging Deeper
Anyone trying to build an Internet appliance will find that this article

barely scratches the surface of the Internet protocols. Fortunately, the
Internet is fairly well documented and, best of all, the standards are free
in the form of request-for-comments documents (RFCs).

RFCs are the working notes of the Internet research and development
community. RFCs can be written by anyone to introduce a new protocol,
modifications, new methods, or explanations. They are often updated by
later RFCs with higher numbers, so make sure you use the latest revision
and refer back to updated RFCs.

You can find RFCs on several Internet sites including www.cis.ohio-
state.edu/hypertext/information/rfc.html or by emailing:

To: rfc-info@ISI.EDU
Subject: getting rfcs
Message body: help: ways_to_get_rfcs

Here are some helpful RFCs to get you started:

RFC 768 UDP specification
RFC 791 IP specification
RFC 792 ICMP specification, updated by RFC 950
RFC 867 Getting time and date from the server
RFC 1055 Serial link IP (SLIP)
RFC 1071 Internet checksums
RFC 1144 Compressing TCP/IP headers
RFC 1157 Simple network management protocol (SNMP)
RFC 1332 PPP Internet protocol control protocol (IPCP)
RFC 1334 PPP authentication protocols (PAP)
RFC 1350 tftp version 2
RFC 1547 PPP requirements
RFC 1570 LCP extensions, updates RFC 1548
RFC 1624 Internet checksum via incremental update; updates RFC 1141
RFC 1661 PPP, the protocol itself; obsoletes RFCs 1548, 1331, 1172,

1171, 1134
RFC 1662 PPP framing, the CRC checksum; obsoletes RFC 1549
RFC 1663 PPP reliable transmission
RFC 1700 Assigned numbers, parameters, and keywords
RFC 1962 Compression control protocol (CCP)
RFC 1989 PPP link quality monitoring; obsoletes RFC 1333
RFC 1990 PPP multilink protocol (LCP stuff)
RFC 1994 PPP challenge handshake authentication protocol (CHAP)
RFC 2153 PPP vendor extensions
RFC 2484 LCP international extension
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The other side can start negotiat-
ing its options at any time. The
resulting link may have differ-
ent options for each direction.

I didn’t implement the ter-
minate, code reject, protocol
reject, echo, and discard pack-
ets. The terminate packets can
be replaced by disconnecting
the modem. The code and pro-
tocol reject packets are possibly
required to connect to updated
servers in the future. The echo
and discard packets are for test-
ing the serial path and can be
ignored for most ISP connections.

The only LCP option that I
accepted and required was num-
ber three for authentication
using PAP. Authentication with
PAP is as simple as sending a
PAP request with a user ID and
password and then waiting for
an acknowledge. I had to force this
option to avoid the alternative (CHAP),
which appeared more complicated and
required more RAM and ROM.

The MRU option was omitted
because, although my receive buffer
was only 49 bytes, all the packets I
used were small. On top of that, I didn’t
have enough RAM or ROM to recon-
struct fragmented packets.

My ISP wanted to negotiate the
character-map option to reduce the
number of characters under 0x20 that
had to be bit-stuffed and sent as two
bytes. They also wanted to compress
the protocol, address, and control fields.
Although these would have been good
at the low 2400-bps bandwidth, it was
not worth the extra software.

The magic-number option may be
required by a few ISP servers, but I
ignored it because it needed four extra
bytes of RAM and a lot of ROM. There
are a lot more options, and this is
definitely one area where you’ll need
to play with the code to make it more
compatible with your ISP servers.

Once the LCP options are agreed
on, the PAP authorizes your user ID
and password as I described. Then, the
CCP compression options are negoti-
ated. These options compress the
entire serial stream and could easily
use up the entire memory space by
themselves. Because my packets are

tiny and traffic is low, I chose to disable
them and go under the puddle-jumper
option number three.

The final group of options configure
the IPP settings with IPCP. I disabled
the TCP/IP header-compression option
to keep the software simpler and be-
cause I don’t intend to transmit any
TCP packets. I do, however, use this
protocol to get the IP address of the
Internet appliance. After this, only IP
packets are sent and there is no harm in
ignoring the server’s rare LCP packets.

IP PACKETS
The IP packets start with a 20-byte

header followed by data. The data is
either an ICMP, UDP, or TCP header
followed by its data. The IP header
directs the data to the destination and
keeps multiple data packets from
arriving out of order.

The first four bits are the IP version.
The next four bits are the header length,
always equal to 20 in this application.
The 8-bit type of service field sets the
routing priority to minimize delay and
cost as well as maximize throughput
and reliability. Then comes the total
16-bit length of the header plus data,
about 40 for most of the Internet-
appliance packets.

The 16-bit identification identifies
each packet and is used with the fol-
lowing flags and fragment offset to

reassemble fragmented packets.
Following all that is the time-to-
live byte, which sets the maxi-
mum number of hops this packet
can be routed toward the desti-
nation before giving up. The next
byte indicates what type of pro-
tocol is riding in the IP data.

Next, comes a 16-bit check-
sum of the 20-byte IP header. Be
careful—this is a 16-bit one’s
complement checksum, not your
ordinary math (described later).
After that is the 32-bit source IP
address and finally the 32-bit
destination. You’re probably used
to seeing these addresses in a
form like 10.97.123.67.

The easiest to understand
protocol that rides the IP header
is ICMP, which is used to ping
Internet nodes. Named after the
sonar method for locating ob-

jects, it sends out a packet and waits
for a reply.

You need ICMP in this application
to keep the Internet connection alive
and respond to others that are looking
for the health of your Internet node.
The test is usually repeated several
times indicating pass or fail and re-
sponse time.

The ping packet is 20 bytes of IP
header, then 8 bytes of ICMP header
and some data to echo. The first two
bytes of the ICMP header are type=8
and code=0 for the ping request. Type
is 0 for the ping reply.

After that comes a 16-bit one’s
complement checksum of the ICMP
header and echo data. Then, an identi-
fier for multiprocessing systems and a
sequence number increment each
iteration.

The other protocol essential here is
UDP, which is used to send data over
tftp. Because of its simplicity, this
protocol is used for everything from
H.323 multimedia applications to
SNMP network management.

Each output operation produces only
one packet. Like IP headers, it can’t
ensure that the data gets to the desti-
nation, but it does check the data for
errors.

The protocol simply takes the IP
header, adds four 16-bit parameters and
a string of data. The four parameters

Table 1—These are the acronyms used in this article. Check the Digging
Deeper sidebar for where to find full descriptions and technical details.

ACK acknowledgement
CRC cyclic redundancy check
CHAP challenge-handshake authentication protocol
ftp file transfer protocol
ICMP Internet control message protocol
IP Internet protocol
IPCP Internet protocol control protocol
ISP Internet service provider
LCP link control protocol
MRU maximum receive unit
NAK negative acknowledgement
PAP password authentication protocol
PPP point-to-point protocol
REQ request
REJ reject
RFC request for comment
SLIP serial line Internet protocol
SNMP simple network management protocol
TCP transmission control protocol
tftp trivial file transfer protocol
UDP user datagram protocol
USART universal synchronous asynchronous receiver

transmitter
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are a source-port number, destination-
port number, length, and one’s comple-
ment checksum.

The port numbers identify which
process gets the data in a multiprocess-
ing system. The length is redundant
with data in the IP header—eight for
the UDP header plus the number of
data bytes. You may want to bury your
own CRC checksum in important data
because UDP and TCP only use an
inferior checksum.

TCP is the protocol for transferring
web pages and e-mail across the Inter-
net. TCP negotiates a connection,
transfers the data, does error checking,
retransmits bad or missing packets,
and closes the connection.

A more complex protocol has to
handle a lot of special cases and keep
track of lots of data, which takes more
RAM and ROM than is available in
the PIC. But, it would be an interest-
ing project to see just how small TCP
could be implemented in another
processor.

EXCHANGING DATA
I already indicated how data

could be transferred using the echo
data on the ping command and why
I chose tftp instead. This section is
a look at how tftp works and how
the Internet appliance uses it.

tftp is intended for bootstrap-
ping diskless workstations, so it is
small and easily fits on a ROM.
Each data exchange begins with
the client asking the server to read
or write a file. There are five pack-
ets used to transfer the data, Read
Request (RRQ), Write Request (WRQ),
Data, Acknowledge (ACK), and error.

The packet is laid out as 20 bytes of
IP header, 8 bytes of UDP header, and
the opcode for type of packet. Opcode
1 is for RRQ and is followed by a null-
terminated filename, and a null-termi-
nated ASCII or binary transfer mode.
Opcode 2 is for WRQ and it has the
same format as an RRQ packet.

Opcode 3 indicates a data packet and
is followed by the block number and

up to 512 data bytes. Opcode 4 is
for ACK and is followed by the
block number being acknowledged.
Opcode 5 indicates an error and is
followed by the error number and
a null-terminated error message.

All data packets must have
512 bytes of data except the last
packet in the file. A packet length
under 512 bytes indicates the end
of the file. Lost packets are detected
when the sender has a time-out
and the last packet is resent.

Just like ftp, there is no security.
Instead, the tftp server usually
limits transfers to files with world-
read and world-write permissions.

For this Internet appliance, you
want to read three analog inputs and
set one digital output. There’s even
a way to do both in one operation.

Reading a filename that ends
with a 0 clears the output. If the
filename ends with a 1, the output
is set; otherwise the output is
unchanged. The returned file con-
tains the output setting and the
three A/D readings in ASCII format.

Many variations of this process
can be implemented. If the output
was a PWM analog output, the digit
in the filename can be extended to

a three-digit value. The digits can be
moved anywhere in the filename. The
number of outputs and inputs is only
limited by the transmit buffer size and
maximum filename length.

The appliance can dump its data to
the server by writing a file with a
unique filename based on date. The
server would have a directory of files
logging the daily data of the appliance.
The appliance doesn’t need a real-time
clock because the date and time can be
retrieved from most Internet servers
from UDP port 13 [1].

THE HARDWARE
I chose to implement this project

in the smallest processor I could find
(the 8-pin PIC12C family) to empha-
size how compact the code is. In the
PIC12C family, I chose the device with
the most RAM and ROM (at the time),
the PIC12C672. Although it only has
128 bytes of RAM, that should be
enough for the variables, a small trans-
mit buffer, and a small receive buffer.

At first I was scared that the code
wouldn’t fit and it would force me to
a larger processor. The 2 KB of ROM
turned out to be plenty and left the
possibility of a more robust PPP stack,
EEPROM routines, SNMP routines,
and other options. If I could start over,
I’d choose a processor with a USART
to simplify and speed up the serial I/O.

The other main component is the
modem. I had plenty of old 2400-bps
modems to choose from, but I went
with the Cermetek for its small size
(and because there were several laying
around the lab from old projects). If
you’re not as lucky, you should still
be able to locate a 2400-bps external
modem. You could add RS-232 drivers
to the circuit or, even better, bury the

Internet provider Internet  appliance

LCP-REQ1 2 3 7 8 19 LCP-REJ1 1 2 7 8 19

LCP-REQ2 3 LCP-ACK2 3

LCP-ACK3

LCP-REQ3

Connection established

PAP-REQ1 userid password

PAP-ACK1

User authenticated

CCP-REQ1 17
CCP-REJ1

Compression negotiated

IPCP-REQ1 2 3

IPCP-REJ1 2

IPCP-REQ2 3

IPCP-ACK2 3

IPCP-NAK 3 real IP address

IPCP-REQ3 3 fake IP address

IPCP-REQ4 3real IP address

IPCP-ACK

IP address found, ready for ping

Figure 3 —This is a typical exchange of option requests in the
negotiation of a PPP connection. Each request (REQ) is
numbered and the replying acknowledgment (ACK) or reject
(REJ) must reference the same number. The list of numbers at
the end of a packet identify each option as highlighted in
Figure 2.

Figure 2 —The LCP packet shows how the configuration
options are sent in a PPP packet. This example highlights the
MRU option.

Type Length

LengthId

Data

Option Option Option More options

LCP packet

Code

PPP Protocol Checksum

7E FE

01 04 05 F4

01 01 00 1B 07 02

FF 03 C0 21 5C 6D

08 02…
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whole circuit inside the modem case.
The schematic for this project is shown
in Figure 4.

Open the external modem case,
remove the RS-232 driver chip, attach
the circuit, connect the Tx and Rx pins
to the correct driver chip pins, and
connect power and ground. Be sure to
stay away from the high voltages on the
incoming power and telephone lines.

Also, use potentiometers that fit
and mount nicely on the modem case.
You won’t need the resettable fuses
and overvoltage limit components
because the modem already has them.

I used 10-kΩ potentiometers from
Tocos. These are nice for breadboarding
because they have through-hole leads
and a nice knob for days when you can’t
find your pot tweaker. You can use any
LED to indicate the digital output,
including one already in the case if you
use the modified external modem.

The circuit is quite simple so I
breadboarded it instead of waiting for
a PCB. You could go even smaller and
make it all surface mount.

Don’t worry about finding the exact
components. Any 1–10-kΩ potentiom-
eter will do, as will any normal LED.
You can even omit sidactor U3 and
replace the resettable fuses with 5-Ω
resistors. Note that this circuit is not
FCC approved and thus should not be
connected directly to your local tele-
phone service.

THE SOFTWARE
I wrote the software in C because

the contest deadline was approaching.
I intended to rewrite it in assembler
to squeeze in some more options. After
working with the AN555 serial I/O
app note from Microchip, I decided
that future implementations would
have to have a serial port.

If you are going to experiment with
this project, choose a flash-memory–
based micro with a serial port and at
least 500 bytes of RAM. The code
should compile with most C compil-
ers for any common microcontroller,
so use one you’re familiar with. Once
you get it working, scale it down to a
smaller processor with OTP memory.

I did all the PPP algorithm develop-
ment on a laptop computer with Bor-
land’s Turbo C. It was great because I

could use the internal modem, sprinkle
printfs everywhere, and trace through
the problem areas of code. This method
worked so well that I logged onto the
Internet after only two weekends of
coding and debugging.

The software is set up to have the
serial bit-banging routines running in
the background and the IP state ma-
chine running in the foreground. There
are only a couple of subroutines to
transmit a serial string, calculate CRC
checksums, create a new packet, check
for config options, and remove a config
option. You can check out the code
details via the Circuit Cellar ftp site.

The software initializes the global
variables and modem and redials every
30 s until it connects to the ISP modem
bank. When state is set to 0 for no
connection, the state machine takes
over and loops forever, checking for
received characters, transmitting the
next queued character, generating reply
packets, and initiating its own packets.

The state machine keeps the value
of the current state in none other than
the state variable. Another important
variable is the in counter, which incre-
ments on every pass through the main
loop. This variable is for triggering the
appliance-generated packets and is
zeroed so the packets will be retrans-
mitted if the stack gets stuck in a state.

The IP state machine is initialized
to state 0 after the modem connects
with the ISP server. This state waits
for an LCP packet from the ISP.

Getting an LCP packet moves it to
state 1 (i.e., server detected). Also,
getting an LCP request (REQ) packet
means that the server is negotiating a
PPP connection and it jumps to state 2.
If the only ISP connection is requesting
option 3, reply with an ACK; other-
wise reject (REJ) the other options.

If you stay in state 0 too long, you
send an LCP REJ to kickstart the ISP
server into sending an LCP REQ. After
you’ve been in state 2 long enough,
make your own LCP REQ with no
options. If you receive an LCP ACK
packet, it means the server accepted
your connection options and you en-
ter state 3.

After entering state 3, send a PAP
REQ packet with the user ID and pass-
word. If the password is rejected, the
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SOURCE

PIC12C672
Microchip Technology, Inc.
(602) 786-7200
Fax: (602) 899-9210
www.microchip.com

Modem
Cermetek
(408) 752-5000
Fax: (408) 752-5004
www.cermetek.com

Potentiometers
Tocos
(847) 884-6664
Fax: (847) 884-6665
www.tocos.com

SOFTWARE

Source code and information regard-
ing embedded Internet solutions
and tftp resources is available via
the Circuit Cellar web site.

Myron Loewen is a design engineer at
Norscan Instruments, a leader in
fiber-optic cable management systems.
He enjoys simplifying complex prob-
lems to find the optimal solution. You
may reach him at myron@norscan.com.
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ch1786%20rev%20o.pdf

in and ended up with little more than
the PPP negotiation, ping, and tftp. I
was excited at how easily it worked
with one ISP server but was frustrated
by differences between other servers.

The books and RFCs have a lot of
information, but some is hard to digest
and some is hard to find. I hope this
article provides the extra information
that inspires new ideas or bridges a
gap in your implementation of the IP
and PPP protocols. I

state machine locks up in state 4. Other-
wise, the ISP server sends a PAP ACK
followed by a CCP REQ. If the CCP
requests only option 3, it’s accepted
with a CCP ACK. All other options get
rejected with a CCP REJ. The server will
retry CCP REQ with reduced options
until it gets a CCP ACK reply.

With CCP negotiated, the server
attempts to negotiate IPCP with an
IPCP REQ. Again, you negotiate the
options down to number 3 using IPCP
REJ and IPCP ACK. After you accept
the server’s options, the state moves
into position 5. After waiting in state 5,
the state machine generates its IPCP
REQ to the server.

The server replies to the IPCP REQ
with an IPCP NAK because you didn’t
know your IP address. The stack gets
the right IP address from the NAK
packet, updates its global address vari-
ables, and makes another IPCP REQ
with a good IP address. When it gets
the IPCP ACK from the server, it jumps
to the final state.

In state 6, it sends out a periodic
ping or tftp packet, depending on which
line is REMed out. A tftp server can
capture the packets to log the potenti-
ometer positions. If the appliance gets
an IP packet, it treats it as a ping and
bounces back a reply.

MakePacket creates an outgoing
packet in the transmit buffer. Every
loop of the state machine checks if
the transmitter is ready for another
character. If the transmit buffer has
characters, it transmits the next char-
acter and resets the buffer on the final
character in the packet, 0x7e.

Every loop of the state machine also
checks the modem for received charac-
ters. Bit-stuffed characters are imme-
diately converted from their two-byte
form to the original character.

Some ISP servers compress the PPP
control and protocol from 0x038021 to
0x21, others from 0x038021 to 0x0322.
The state machine decompresses the
control and protocol so the IP header
always starts at the same buffer offset.

The CRC checksum is immediately
calculated as the bytes come in so that
there is no pause for a big calculation
at the end of a packet. If the packets
are longer than the receive buffer, the
CRC is still calculated but the extra
bytes are lost. Instead of calculating
the CRC checksum over the final 0x7e,
it stops a character early and should
be 0xf0b8 instead of 0x0000.

OptionTest is true if the configu-
ration option is in the string and no
other options are present. Remove-
Option removes the specified configu-

ration option from the option list.
The rest of the code is pretty

basic, but you’ll want a fair under-
standing of the protocols before
making modifications. A lot can
be improved on, especially mak-
ing it robust enough to connect to
any PPP server. You may even be
able to squeeze TCP into a tiny
micro for the world’s smallest
web server.

More important are the end
uses for this kind of technology.
I chose to use the technology for
low-cost remote data collection.

Because it uses a normal mo-
dem for dial out only, you should
be able to string a hundred of them
in parallel along a 5-mi. twisted
pair. It would also be a simple way
for utility companies to read resi-
dential meters. Maybe it’ll even
find use in everyday appliances.

I started off thinking the whole
TCP/IP stack could be squeezed

Figure 4— This schematic shows the details of the prototype in
Photo 1. These processor ports were chosen to maximize the
versatility of the remote accessible pins. Pins AN1, AN2, AN3,
and GP5 can be configured as digital inputs or outputs, or pins
AN1, AN2, or AN3 can be 8-bit analog inputs. R5 limits the
current to the modem during in-circuit programming.

www.cermetek.com/pdf/ch1786%20rev%20o.pdf
www.microchip.com
www.cermetek.com
www.tocos.com
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SINGLE-BOARD COMPUTER
The PCM-5894 is a PC-compatible, Pentium MMX/K6 SBC

in a compact 5.75″ × 8″ form factor. Certified by Annasoft for
Windows CE 2.0 operation, it
enables customers to use their
knowledge of Windows API to
develop embedded applications
with minimal size and complexity.

The PCM-5894 supports Intel
P54C/P55C, AMD K5/K6, and
Cyrix M1/M2 CPUs. It supports
Socket 7, features the SiS 5582
chipset, and has Award flash
BIOS. Two 72-pin SIMM sockets
can handle up to 128 MB of
DRAM, and 512 KB of onboard
cache is included.

Other features include Chips
and Technologies 65554 video
chipset (64-bit video with 1024 ×

768 video resolution at 64K colors), four COM ports (three RS-232
and one RS-232/-422/-485), a fast 100BaseT Ethernet, up to

72 MB of DiskOnChip with boot-
up support, superb power man-
agement, multimode parallel port
(SPP/EPP/ECP), an Ultra DMA/
33-enhanced IDE controller, key-
board interface, and PS/2 mouse
interface.

The PCM-5894 sells for $444
with integration and $404 with-
out integration.

Emac, Inc.
(877) 724-3963
(618) 529-4525
Fax: (618) 457-0110
www.emacinc.com

ANALOG AND DIGITAL I/O BOARD

connector provides 16-bit stack-through compatibility and access
to all upper interrupt request lines.

The GPIO-104 sells for $237.

Scidyne
(781) 293-3059 • Fax: (781) 293-4034
www.scidyne.com

The GPIO-104 is an 8-bit analog
and digital I/O module that combines the

most-requested analog and digital I/O func-
tions in one PC/104-compliant module. Applica-

tions include industrial automation and process
control, and scientific apparatus and instrumentation.
The eight single-ended 12-bit analog inputs are indepen-

dently programmable to operate in one of four ranges: ±10,
±5, +5, or +10 V. This effectively increases the dynamic range
to 14 bits when using range-switching software techniques.

The ADC operates at up to100 kilosamples per second
and enables the separate acquisition and conversion
intervals to be controlled by the host software or automati-
cally timed by the GPIO-104 hardware. Overall timing is
precisely maintained by a crystal oscillator.

Four 12-bit analog outputs are provided, each with its
own range: ±5, +5, or +10 V. An onboard DC/DC converter
permits the bipolar and +10-V ranges to be achieved while
operating the module from a +5-V power supply. The analog outputs
can be updated simultaneously using one software command—a
necessity in phase-critical applications like x-y positioning.

The 24 DIO lines are TTL-/CMOS-level compatible and offer
programmable port directions and strobed handshaking. A
standard J1/P1 stack-through connector enables the GPIO-104 to
reside anywhere within an 8-bit PC/104 stack. An optional J2/P2

www.scidyne.com
www.emacinc.com
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PC/104 BATTERY BACKUP MODULE
Tri-M Systems’ BAT104-7AA Battery Backup Module

works with power management, battery charger, and power
supply units to create a complete UPS system. For loads less than
30 W, the BAT104-7AA can supply backup power for up to 5 min.
If a larger load is needed, two units can be plugged together.

The BAT104-7AA can be used as a battery backup in
embedded vehicle applications based on the PC/104 architec-
ture. Power interruptions resulting from engine startups or power
system switchovers aren’t compatible with modern OSs. Unix and
Windows systems require the PC to properly close all files and
applications before the power can be terminated. This power-
down cycle may take 30–90 s, which is far longer than the hold-
up charge in the capacitors. The BAT104-7AA is a perfect solution
to these power interruptions in embedded applications.

The BAT104-7AA has a thermal fuse and a current fuse for
protection against overcharging and shorts on battery output. This
LM35 temperature sensor provides temperature feedback for charge
termination and can be read by the power management unit.

A low-resistance isolation MOSFET connects the batteries to
the output whenever a +5-VDC signal is present. The power
management system can therefore isolate itself from the BAT104-
7AA by turning off the power-supply output.

The BAT104-7AA is priced at $149.

Tri-M Systems, Inc.
(604) 527-1100
Fax: (604) 527-1110
www.tri-m.com

INDUSTRIAL SBC
The Model 5811 is a

PC/104-plus industrial SBC
that supports the Pentium MMX
and 450-MHz AMD K6-2/3D
on a 100-MHz system bus. It
addresses up to 512 MB of
ECC SDRAM on two 168-pin
DIMM sockets. The ECC fea-
tures can reduce system fail-
ures, increasing the success
rate in many mission-critical
applications.

The SBC supports all of the
features typically required in
a flat-panel computer, includ-
ing touchscreen interface, four
serial ports, LCD interface,
network interface, 144-MB
flash disk, and ultra fast and
wide SCSI interface. An
onboard LVDS interface ca-
pable of driving the 36-bit
high-resolution flat-panel dis-
play at distances up to 20′ is
included.

The integrated 10/100-
Base-T network interface (which
uses an Intel 82558) and the
PCI-based bus master ultra fast
and wide SCSI (using Sym-

bios 53C-
875) ensures
that software com-
patibility and perfor-
mance needs, as well
as the long-term support
required in many industrial
applications, are satisfied.
System designers only need to
add power supply, flat panel,
and the enclosure to complete
their system.

The Model 5811, with a
350-MHz K6-2/3D processor,
10/100Base-T, LCD, SCSI,
touchscreen interfaces, and
four serial ports, sells for
$775, in quantities of 100.

Toronto
MicroElectronics, Inc.
(905) 625-3203
Fax: (905) 625-3717
www.tme-inc.com

www.tri-m.com
www.tme-inc.com
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Jeanne Dietsch,

William Kennedy,

 John Belanger & Kurt Konolige

When Activmedia Robotics was looking to improve the Pioneer robot, the
number-one requested enhancement was an onboard PC. But how do you
embed a PC on a mobile robot? The first task: catch up with the robot!

Starting a new project typically in-
volves running up against some rather
basic constraints or problems. The project
of embedding a PC in a robot is no
exception.

The first realization that confronts you
when you try to put a PC in a robot is
that your PC is no longer sitting
placidly at your fingertips. In fact,
your PC is now scooting around the
room, doing its best to avoid you, as
well as the desks and chairs.

Unless you plan to chase the beast
around the room watching its display
scroll, you’ll want an offboard means
to monitor what’s happening. You’ll
probably want to program via an Ether-
net connection—at least for debugging.

In a way, linking to an offboard
PC appears to defeat the purpose of
embedding the PC in the first place.
So, why did we choose to embed a
computer in our robot?

In fact, when Kurt Konolige of
SRI’s Artificial Intelligence Center first

designed the Pioneer 1 robot, he used an
external (nonembedded) PC partly for
that very reason—not to mention the fact
that it costs more to build a robot with an
internal embedded PC. Because the $2500
Pioneer 1 robot could perform many tasks

that previously required a $20,000 robot,
it was an instant hit even though it only had
a 68HC11 microcontroller server inside.

A DAY IN THE LIFE OF A
MOBILE ROBOT

As we pass into the new millenium,
highly intelligent mobile robotic but-
lers like C3PO still only exist in the
minds of visionaries like George
Lucas. What can today’s mobile
robots do?

Don’t fire your cleaning service
yet, but mobile robots can vacuum.
Although they don’t vacuum at rates
anyone but the Gates estate can
afford, the day of Ray Bradbury–like
vacuuming robotic mice is not so far
off (also, see Frank Jenkins’ “HomeR”
article in Circuit Cellar 81).

NASA and DARPA have taken
over support of many of the activities
of the artificial intelligence and ro-
botics research and development
community. They are building a

PC/104 Takes a Ride
Embedding a PC in a Robot

Photo 1—The Pioneer 2-DX shows off its new embedded
computer, complete with PC/104 and PCI buses. The Pioneer’s
removable nose allows easy access to add PC/104 accessory
cards for GPS, video capture, speech recognition, and more.
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wireless link is a weak link. In any contest,
demo, or even most applications environ-
ments, available bandwidths are jammed
with competing signals.

At 900 MHz, cell phones compete. At
410 and 433 MHz, you need FCC ap-
proval and local TV stations may interfere.
Audio-video transmitter/receivers and
other high-throughput applications tend to
slice up the 2.4–2.83-GHz bandwidth.

That leaves little free space, even for
radio Ethernet devices that employ fre-
quency hopping to minimize interference.
The less-expensive 900-MHz radio modems
used by many university researchers were
hopelessly overwhelmed.

The second reason the researchers
and engineers desperately wanted an
onboard PC was so they could analyze
vision data in real time. Even 1.6-Mbps
Ethernet moves data too slowly to handle
real-time visual data efficiently.

An embedded PC’s PCI bus, with up to
132-Mbps throughput, is a whole differ-
ent story. That’s two orders of magnitude
improvement. The researchers processing
images for shape identification and navi-
gation purposes could now use our system
plug-and-play (see Photo 1).

Speaking of Ethernet, higher
communication speed was an-
other carrot enticing us to move
to an embedded PC. Many
bleeding-edge AI research

projects (and the government grants fund-
ing them) deal with distributed intelli-
gence and multiagent systems.

The Pioneer 1s messaged each other
via radio-modem pairs, but this peer-to-
peer arrangement required a pair for
each robot or custom engineering to man-
age the signals. With an embedded Ether-
net port on every robot, we could vastly
increase our communication speeds. Radio
Ethernet access points and our Aylla multi-
agent software directs messaging among
the various computers, embedded and
otherwise.

Another reason for moving to embedded
is sensor based. We wanted to add a few
more sensors to the robot, including a
laser range finder (10 KBps, 10–30 Hz),
inertial navigation system (1 KBps, 100 Hz),
motion radar (20 KBps), and video camera
(5 MBps, 30 Hz).

Many of these sensors use serial ports
for their data output, and it would take
custom hardware to package these out-
puts and ship them out by wireless Ethernet.
Even more problematic is synchronizing
the signals.

For example, many robot mapping
and localization algorithms rely on fusing

wealth of new knowledge that
is hastening the day when re-
mote handling and reconnais-
sance robots form the front line
in space and military operations.

So, the highly affordable
Pioneer 1 found a ready home.
Engineers looking for proto-
typing platforms or a COTS
base for robotic experiments
or applications found the Pio-
neer appealing. The artificial-
intelligence research commu-
nity adopted it as the VW of
mobile robotics research.

Because the Pioneer came
with built-in libraries of obstacle
avoidance and other navigation basics, it
easily jump-started many projects. Instead
of raising tens of thousands in grant money
or building their own robots, researchers
could now focus on the true topic of their
research: robotic behaviors, experiments,
or commercial applications.

Since 1997, Pioneers have dominated
American Association for Artificial Intelli-
gence annual contests. They also took first
and second prizes in the World RoboCup
Soccer Championship in 1998. But, even
these winners made clear the Pioneer 1’s
shortcomings because all six Pioneer teams
at the World RoboCup Soccer Champion-
ships wore strapped-on PCs! One team
went so far as to saw their Pioneer robot
in two, in order to fit computers inside!

And if we didn’t have proof enough,
when we asked team members for a wish
list for the next generation of Pioneer,
guess what was number one on their wish
list. That’s right, an onboard PC!

WHY BUILT-IN?
Why were they so desperate to have

PCs onboard if they have to program them
from the desktop anyway? First, in a
communications-jammed environment, any

Figure 1—
This illustration
shows the various
printed circuit as-
semblies mounted in
the robot. The basic con-
figuration includes a bat-
tery connect board, power
supply/motor driver board,
microcontroller board, and front
sonar board.

Motors/Encoders
(500 counts/rev)

PC/104 expansion
modules (5 max.)

+5 V
+12 V

7 A
1 A

RS-232

Expansion
bus

Sonar transit
receive

multiplex

Optional
rear
sonar
ring

Front
sonar
ring

Power supply
and motor driver

PC board

Battery
connect

PC board
(3 batteries)
24-V output

optional

Siemens
C166 

P2
Microcontroller

PC board

Controls

LCD

Optional

Ethernet
radio

modem

Optional

2.5″
disk drive

(4 GB)

Optional
rear sonar

boards

Front
sonar
board

P233
MMX

Optional
PC/104+motherboard

(EBX form factor)

Y
W

X

Figure 2—If the Pioneer 2’s bat-
tery voltage drops below 10 VDC,
or when the computer power is
switched off, an embedded cir-
cuit delays shutoff of the onboard
computer’s dedicated power
supply (12:5 DC/DC voltage con-
verter) for 2 min. Software oper-
ating in the background senses
the state of the DCD line on the
circuit’s serial connector and
gracefully shuts down the com-
puter before power is removed.
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• large number of serial I/O ports
• low power draw
• concomitant low heat generation
• high-speed CPU
• good onboard I/O capabilities
• expandability
• modest price
• good operating temp and shock/vibe

specs
• high reliability

We settled first on the EBX form factor
with PCI-enabled PC/104-Plus expansion
bus as our desired configuration. The Ampro
Little Board/P5e met all the requirements
and also met many of our wish-list desires.

The availability of Linux drivers was a
critical feature. Linux is important not just
because the AI community prefers Unix-
like OSs but also because of a unique
property of robots mentioned earlier—
robots move while you’re debugging them!

One solution is to run the embedded
computer as an X Windows terminal under
Linux from an offboard computer during
the software development process. This
can also be done under WIN with Timbuktu.
But, being integrated and free, X Windows
is the preferred solution among academics.

An alternative debugging solution is to
tether and dolly the robot and watch the
screen and wheel motions. Or, you can plug
a monitor and keyboard into the robot’s
control panel and follow it around. Obvi-
ously, terminal emulation saves shoe leather.

CHALLENGES GALORE
The Little Board/P5e also offered rea-

sonable speeds, excellent I/O, expand-
ability, and a reasonable cost. The only
feature we failed to find at that point was
low power drain and low heat, so we did
our best to accommodate with battery
capacity and mechanical design.

Robotics designers try to minimize space
because the more space inside the robot,
the more weight in its case. The more weight
in the case, the larger the motors and
number of batteries are required.

Placement of the embedded PC within
the robot was a difficult decision. Where
do we put the board so users can access
it? How does it integrate with the rest of
the robot electronics (see Figure 1)?

 We wanted to allow as many PC/104
expansion modules as practical. This led
to the decision to use a 2.5″ hard drive,
even though it was more expensive than a

embedded-PC technology. The list of re-
quirements included:

• SBC readily available off-the-shelf
• small form-factor
• PCI expansion bus
• Ethernet port
• Linux and Windows support
• readily available expansion modules

for I/O, sound, video capture, etc.
• reliable supplier

The wish list was also short, but it
seemed a more difficult challenge:

together successive
sensor readings, with

odometry giving a rough
indication of how they align.
Because the Ethernet data-

stream is not deterministic, packets
for the different sensors would arrive at

different times. The robot then requires a
complicated timestamping system to sort
things out when the packets finally arrive.

PICKING THE RIGHT PC
We had a short (but stringent) list of

requirements when we set out to select an
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SOURCE
Little Board/P5e
Ampro Computers, Inc.
(408) 360-0200
Fax: (408) 360-0222
www.ampro.com

Jeanne Dietsch is founder and vice presi-
dent of business development for Activ-
Media Robotics, her third start-up, includ-
ing a venture with Pat McGovern, chair-
man of IDG. She has spoken at Comdex,
CES, and other events on new technolo-
gies and has worked in computer-related
fields since 1981. You may reach her at
jdietsch@activmedia.com.

William Kennedy is president and chief
technologist for ActivMedia Robotics. He
has been working in robotics for three
years and handled circuitry and electron-
ics design for the embedded computer in
Pioneer 2. You may reach him at
wkennedy@activmedia.com.

standard 3.5″. We needed the extra
space to shock-mount the drive.

The Little Board/P5e was simple enough
to cable to for power and to connect one
of its serial ports to our robot’s built-in
micro. More difficult was the decision as
to which other capabilities to bring to our
control panel on the robot’s exterior. We
decided to bring out the serial mouse, CRT
interface, Ethernet port, and reset button.

Robots have a tendency to be powered
down suddenly if their batteries run low or
if users arbitrarily turn them off without first
shutting off the computer. So, we designed
and embedded delay circuitry to help the
robot power down gently (see Figure 2).

A TASTE OF TILLAMOOK
Although we didn’t know it then, the

solution to one of our compromises (power
drain) was just around the corner:  Ampro’s
Little Board/P5x, based on Intel’s Tillamook
mobile Pentium with MMX technology.

The P5x also improved the robot’s vision-
processing capabilities. With the Image-
nation PXC200 frame grabber, the Little
Board/P5e could process 16-bit color at
30 frames per second.

But, with the P5x’s faster PCI bus (based
on the Intel TX chipset), we could offer full
32-bit color at 30 frames per second as
well as faster processor speeds. All this, with
lower power drain and less heat generation.

The newest generation of Pioneer 2s,
with the internal EBX embedded PC op-
tion, was an instant hit. Because we used
an off-the-shelf embedded PC, our re-
search and development costs were low.
And thanks to manufacturing changes, we
brought in the new base platforms at a
price below that of the Pioneer 1s!  EPC

consulting professor of
computer science at Stan-
ford University. His current
research interests are fuzzy con-
trol for reactive systems, real-time
vision systems (especially stereo), and
mapping and navigation for mobile ro-
bots. You may reach him at konolige@
ai.sri.com.

John Belanger is senior mechanical engi-
neer for ActivMedia Robotics. He collabo-
rated with Kurt Konolige on designs for all
the new Pioneer 2s, including mechanical
design for embedding the Ampro LB3-P5e
board in Pioneer 2. John has 35 years of
involvement in all aspects of electronic
packaging. You may reach him at
jbelanger@activmedia.com.

Kurt Konolige, designer of both the Pio-
neer 1 and Pioneer 2 robots, is a senior
computer scientist at the Artificial Intelli-
gence Center of SRI International and a

www.ampro.com
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Real-Time PC

Ingo Cyliax

Astronomical Issues
Part 4: Digital Radio Software

OK, so here I am at the end of this
series on a digital receiver for radio
astronomy projects. Although this is the
last part, the project is far from complete.

One reader pointed out that it would
be nice to be able to duplicate projects
like this. The current state of this digital
receiver project uses mostly
off-the-shelf components that
were in my lab, including FPGA
modules from Derivation Sys-
tems and a PC/104-compat-
ible CPU from Versalogic. The
A/D modules are Analog
Devices and Burr-Brown evalu-
ation modules.

About the only components
custom designed for this
project are the CORDIC and
decimation filter implementa-
tion in an FPGA configuration
(also called the bitstream) that
can be downloaded to the
FPGA module and the host

software to read out the data from the
FPGA modules. This month, I talk about
the host software. Both the FPGA configu-
ration and examples of the host software
are on the Circuit Cellar web site.

The base components for the current
implementation of this project probably

T minus four, three, two, one! It’s time to complete this series on radio
astronomy! In this final installment, Ingo focuses on the host software and
FPGA configuration so you too can tune in to radio emissions from Jupiter.

Photo 1—Many FPGAs come in quad flat pack (QFP) packages, and these
surface-mount adapters allow you to use them in a prototype system where
you may want to wire-wrap or solder the chip to other components that use
through-hole mounting. The commercial adapter (on the left) fits different
packages up to 240 pins. On the right is an adapter I designed for a 304-pin
QFP package.

aren’t inexpensive enough for someone to
go out and purchase them just for a
project like this. I used stuff I had around
the lab, but I realize that not everyone has
these components in their parts box. In the
near future, I plan to reimplement this
project on a more available platform.

FPGA FOR
PROTOTYPING

The new implementation
will still use FPGAs because
the technology acts as a sort of
enabling technology for doing
this kind of high-speed DSP. It
would be impractical to imple-
ment this design using 74xxx
TTL parts. Let me demonstrate
by showing you the number of
chips you’d need to implement
a 12-bit pipelined CORDIC.

Each stage of the CORDIC
would be constructed with
nine 4-bit adders to implement,



JULY 1999 EMBEDDEDPC

R
PC

43www.circuitcellar.com

Now that there is solder everywhere,
show it to your boss. Just kidding. Use
some solder wick to pull the solder away
from between the pins and leave a perfect
connection, like the one shown in Photo 2.

This package is a 304-pin QFP. Prob-
ably not the best package to start with, but
it illustrates that it can be done. I’m pretty
sure 304 pins is the largest PQFP pack-
age, with about 0.020″ pin spacing. The
finest pin spacing is in a 128-pin QFP
where it is approximately 0.015″. The
160-pin QFP has a pin spacing of around
0.025″ and is a good package to start with.

Incidentally, there is a company that
sells “dummy” chips for practicing your
SMT soldering technique. Unfortunately,
they only sell them in “trays.” If any of you
are interested in some single dummy chips,
I can organize a group buy. By the way,
I do have some more 304-pin chips….

By now, using an FPGA shouldn’t seem
as scary as it did at first. Chips are
available; there’s free software on the
web. If you’re a student, you can get
cheap software. Chips are available in
packages that can be used in prototyping,
and the databooks and app notes from
most vendors are available online.

Now you know why I use FPGAs in
many of my designs, even if they end up
in a digital-radio implementation on a
PC/104-based PC. Let’s look at how I
designed and implemented the FPGA de-
sign for this project.

FPGA DESIGN QUICKIE
In general, I’m stingy. Unless I can get

software and hardware at a low cost, I
tend to roll my own. For example, the CPU
board I used here is used for many other
projects and serves as my hardware,
software, and RTOS development system.

I did the PCB layout for my
PC/104 FPGA board using a
freely available PCB layout pro-

gram (see Sources). It’s even a two-layer
board, so it’s less expensive to fabricate.

Because I don’t have the budget to buy
high-end design software for doing VHDL
or Verilog designs, I use an ad hoc way
of designing for FPGAs. The “source” or
design capture is done in a netlist lan-
guage I developed for my own use. The
language has a simple syntax that lets me
specify networks conveniently.

Listing 1 shows how I specified the
phase register in my CORDIC implemen-
tation. Notice that each line starts with a
keyword like power or gate. The gate
keyword means I want to instantiate a
symbol, which can be implemented using
another netlist file or a primitive in the
FPGA design system. For example, in
Listing 1, I invoked a 12-bit register reg12
and a 12-bit adder addsub12 symbol,
as well as primitives and and or.

Each gate line has a list of signal pairs.
The first is the name of the port on the
subsymbol I want to connect to, and the
second is the network or signal name I
want to connect the port to. Signal names can
be buses (e.g., a[11:0]) or simple signals.

The CORDIC routine is generated (syn-
thesized) in this format with a program
because it’s too tedious and error prone to
generate by hand. You specify the data
word size of the CORDIC processor and
the script generates a large netlist file with
all of the signals and components in it.

An awk script converts these netlist
descriptions into the native netlist format
that the FPGA design implementation soft-
ware uses. Awk is a pattern-processing
language like Perl or Tcl that’s available
under Unix or Linux. By changing the
translation, I can target different FPGA
technologies, assuming I made some intel-
ligent choices about the symbols I used.

Photo 2—This
dummy chip was
mounted on my
adapter using the sol-
der-wick method. Even
though it's not very hard, it
pays to practice your tech-
nique with junk or dummy chips,
especially using lower pin count
and coarser pin spacing than this
304-pin monster.

three 12-bit adders, five 8-bit registers,
and 14 total per stage. With 12 stages,
that gives you 168 74xxx chips.

I believe that FPGAs and CPLDs are
pretty much going to be the future for
implementing prototypes and low-vol-
ume digital hardware. Of course, one
of the stumbling blocks for using them
is the software you need to implement
your design. But, even the software is
cheaper and much more available.

If you’re a student or  affiliated with
a university, Xilinx will sell you a stu-
dent edition of their software with a
book for $79. Otherwise, the entry-
level price for their software is $500.

By the time you buy the hundreds of TTL
chips, the wire-wrap wire, and the proto-
type board to implement the equivalent of
a single low-density FPGA, you’d have
spent almost as much money as if you had
bought the design software that enables
you to implement circuits like this in FPGA.
I agree that $500 is a bit steep just to play,
but both Xilinx and Altera offer free web-
based access to their tools.

Another stumbling block for working
with FPGA and CPLDs is the availability of
parts in packages that you can easily
solder. My favorite package is the 84-pin
PLCC (J-lead) package.

The package is inherently surface-mount
technology (SMT), but reliable through-
hole sockets (which can be plugged into
wire-wrap sockets) on 0.1″ centers are
available. Most FPGA and CPLD vendors
have low- and medium-density parts avail-
able in this package.

If you need more I/O pins than the
84-pin package provides, the jump to
plastic quad flat pack (PQFP) isn’t too
scary. A common package is the PQFP-
160. Several vendors make SMT–to–
through-hole adapters like those in Photo 1.

But, you still need to solder the package
on the adapter. Avoid the test-socket type
adapters: they’re unreliable and expensive.

Soldering these packages isn’t so hard.
First, align the chip on the pads. This is the
hardest part and takes the most patience.
Then, with a fine-pitch soldering iron,
solder only the corner pins to the pads and
don’t worry about solder bridges.

Once the chip is aligned and tack
soldered to the corner pads, apply a
bunch of solder to the rest of the pins.
Don’t worry about shorting the pins but
keep the solder near the pads on the pins.
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implemented separately. The configuration
files are concatenated into one large con-
figuration file and saved in an ASCII-
formatted hex file. These are then
downloaded into the board.

I bundled up the Xilinx netlist files, the
files needed to tell the Xilinx software how
to assign the I/O pins for my FPGA board,
and the program needed to download the
design into the board, and put it all on
Circuit Cellar’s ftp site. You can use the
Xilinx design implementation software (the
commercial or student edition) to convert
these to the FPGA configuration files. If
you don’t have access to the Xilinx imple-
mentation software, don’t worry. I also
included the final configuration file that
you can directly download to the board.

Although this approach isn’t the best,
it has served me for many years and is
fairly portable. Of course, over the years
Xilinx has changed their netlist format
from a readable text-based format (XNF)
to a binary data-based format (NGD),
which is not documented. They still pro-
vide conversion utilities from XNF and
EDIF to their internal database format.

To implement my design after convert-
ing it to Xilinx specific netlists, I used the
normal Xilinx FPGA implementation tool
chain, which processes the netlist, maps it
to the specific internal logic block repre-
sentation, and then places and routes the
design into a configuration file.

The board I built uses three FPGAs.
Each FPGA has its own netlist files and is

Listing 1—This constant-phase register illustrates the netlist file format I use. At each clock
tick, one gets added to the current phase. The back end makes sure that the phase is
calculated correctly for the CORDIC implementation.

# 12-bit triangle wave generator between 3ff and c01
power 0 zero11
power 0 zero10
power 0 zero9
power 0 zero8
power 0 zero7
power 0 zero6
power 0 zero5
power 0 zero4
power 0 zero3
power 0 zero2
power 0 zero1
power 0 zero0
power 0 one13
power 0 one12
power 0 one11
power 0 one10
power 0 one9
power 0 one8
power 0 one7
power 0 one6
power 0 one5
power 0 one4
power 0 one3
power 0 one2
power 0 one1
power 1 one0
power 1 vcc
# here is the phase accumulator
gate addsub12 add vcc a[11:0] ang[12:1] b[11:0] one[11:0] o[11:0]
  n[12:1]
gate reg12 c c ce ce d[11:0] n[12:1] q[11:0] ang[12:1]
#
gate and 1 /ang12 2 /ang11 o quad1
gate and 1 /ang12 2  ang11 o quad2
gate and 1  ang12 2 /ang11 o quad3
gate and 1  ang12 2  ang11 o quad4
gate or 1 quad2 2 quad3 o neg
# correct up/down slope
power 0 ang0
# negate in quadrants 2 and 3
gate addsub12 add /neg a[11:0] zero[11:0] b[11:0] ang[11:0]
  o[11:0] o[11:0]
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Listing 2—This Tcl script sets the frequency of the radio. This script includes an external
module that implements functions to access the PC/104 I/O space directly. The 16-bit
quantity is shifted into the FSW using the CSR on the FPGA board.

#! /usr/bin/tclsh
load ./jvm-demo/lib/pf2kio.so
io_init 0x270
io_outb 0 0x270
if {$argc > 0} {

set fsw [expr [lindex $argv 0] | 0x10000]
} else {

set fsw 0x000
}
io_outb 0x04 0x270
for {set i 16} {$i >= 0} {incr i -1} {

puts -nonewline [expr ($fsw >> $i) & 1]
if {[expr ($fsw >> $i) & 1] == 1} {

io_outb 0x6 0x270
io_outb 0xe 0x270
io_outb 0x6 0x270

} else {
io_outb 0x4 0x270
io_outb 0xc 0x270
io_outb 0x4 0x270 }

}
puts ""
io_outb 1 0x270

Listing 3—This interrupt service routine reads the radio board. On each interrupt, we clear
the interrupt-pending register and read the I and Q values, adding them to a couple of
FIFOs for the upper level routines to read.

void intr_handler(void)
{

short x[2];
outb(inb(0x270),0x270); /* clears interrupt and pointer */
insb(0x271,&x,4);
rtf_put(0, &x[0], 2); /* I queue */
rtf_put(1, &x[1], 2); /* Q queue */

}

RADIO SOFTWARE
In my digital radio, the input from the

antenna is amplified and low-pass filtered
before digitizing with a high-speed ADC.
The low-pass filter is an antialiasing filter,
which ensures that only the Nyquist band
we’re interested in is sampled and con-
verted. Last month, I explained that the
low-pass filter can be replaced by a band-
pass filter to convert other Nyquist bands
by undersampling the signal.

After the signal is digitized, use a
CORDIC implementation and phase reg-
ister to implement a direct conversion
receiver. The CORDIC multiplies the input
signal by cosine and sine of a particular
phase. The phase register is changed by
a fixed phase angle on each clock cycle.

In effect, you’re multiplying the input
signal with the sine and cosine of a numeri-
cally controlled oscillator (NCO). This pro-
cess is called heterodyning, which, in the
frequency domain, corresponds to shifting
the input signal by the frequency of the NCO.

Two products exist after the multiplica-
tion—the sum and difference of the signal

and the NCO frequency. We’re inter-
ested in the difference, and filter it crudely
using two 16:1 decimation filters.

This process is implemented in an
FPGA design on a PC/104 FPGA module.
The result is a datastream of the in-phase
I(t) and quadrature signal Q(t) at 1⁄256 of
the data rate used to sample the original
data. We can use the frequency setting
word (FSW) of the NCO to select the
frequency of the signal shift and thus
continuously tune the receiver.

To read the output datastream of the
downsampled radio spectrum, use the 8-bit
ISA-bus I/O mapped interface in Figure 1.
The software can set the FSW in the FPGA
using the control/status register (CSR).
The FSW is implemented via a three-wire
shift register (see Listing 2).

The CSR contains the interrupt-enable
bit that enables the interrupts from the FPGA
card. Reading the CSR lets you check for
a pending interrupt and clears the interrupt
if it was pending.

The data register is implemented using
an 8-bit port into a 32-bit shift register,
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Listing 5—This routine implements a simple AM detector. It reads
I and Q and computes the vector magnitude. This stand-alone
program runs on a Linux machine with  Soundblaster cards and
pipes the output samples into the sound device /dev/audio.

#include <math.h>
#include <sys/file.h>
main()
{

int fd1;
int fd2;
short i,q;
int j;
unsigned char amo;
double sqrt();
j = 0;
while(1){

read(0,&i,2);
read(0,&q,2);
amo = sqrt((double)(i*i)+(double)(q*q))/2;
write(1,&amo,1);

}
}

Listing 4—This Tcl script controls the radio over the entire radio
spectrum and collects a power sample at each dwell point.  It was
used to collect the data for the spectra in Part 2.

#! /usr/bin/tclsh
load ./jvm-demo/lib/pf2kio.so
io_init 0x270
// set the frequency word to the desired frequency
proc setfsw {fsw} {

io_outb 0x04 0x270
for {set i 16} {$i >= 0} {incr i -1} {

if {[expr ($fsw >> $i) & 1] == 1} {
io_outb 0x6 0x270
io_outb 0xe 0x270
io_outb 0x6 0x270

} else {
io_outb 0x4 0x270
io_outb 0xc 0x270
io_outb 0x4 0x270

}
}

}
// collect and time average 512 samples
proc collect { fdi fdq } {

set power 0
for {set i 0} {$i < 512} {incr i} {

set di [read $fdi 2]
set dq [read $fdq 2]
binary scan $di "s" x
binary scan $dq "s" y
set power [expr $power + ($x*$x + $y*$y)]

}
return $power

}
// set up to read the I and Q FIFO channels
set fdi [open "/dev/rtf0" "r"]
set fdq [open "/dev/rtf1" "r"]
fconfigure $fdi -translation binary
fconfigure $fdq -translation binary

io_outb 0 0x270
// cycle through all the frequencies and collect power
puts 512
set fsw 0x10000
for {set i 0} {$i < 512} {incr i} {

setfsw $fsw
io_outb 1 0x270
after 10
io_outb 0 0x270
puts [collect $fdi $fdq]
incr fsw 0x40

}
// we're done
close $fdi
close $fdq



R
PC

CIRCUIT CELLAR JULY 199948 www.circuitcellar.com

SOFTWARE
FPGA configuration and examples of the host software
are available on the Circuit Cellar web site.

SOURCES
A/D modules
Analog Devices, Inc.
(781) 937-1428
Fax: (718) 821-4273
www.analog.com

Burr-Brown Corp.
(520) 746-1111
Fax: (520) 889-1510
www.burr-brown.com

FPGAs
Derivation Systems, Inc.
(760) 431-1400
Fax: (760) 431-1484
www.derivation.com

PC/104 CPU
Versalogic Corp.
(800) 824-3163
Fax: (541) 485-5712
www.versalogic.com

Ingo Cyliax has written for Circuit Cellar
on topics such as embedded systems,
FPGA design, and robotics. He is a re-
search engineer at Derivation Systems Inc.,
a San Diego–based formal synthesis com-
pany, where he works on formal-method
design tools for high-assurance systems and
develops embedded-system products. You
may reach him at cyliax@derivation.com.

Listing 6—This ISR was used with the AM detector in Listing 5. The I and Q values are
decimated some more and then sent over the FIFO. A simple program then reads the I and
Q stream from the FIFO and sends them over the network to a machine with a sound card.

#define N 14
RT_TASK mytask;
int ints,ptr;
short buf[N];
short i,q;

void intr_handler(void)
{

outb(inb(0x270),0x270); /* clears interrupt and pointer */
insb(0x271,&buf[ptr],4); /* get i/q */
ptr += 2;
if(ptr == N){

i = q = 0;
for(ptr=0;ptr<N;ptr+=2){

i += buf[ptr];
q += buf[ptr+1];}

ptr = 0;
rtf_put(0, &i, 2);
rtf_put(0, &q, 2);}

}

where the I and Q
samples are stored as

two 16-bit values.
To read the receiver card, set

the FSW word, set up the interrupt
vector for the IRQ line that has been

selected via a jumper on the card to point
to the interrupt service routine (ISR), and
enable the interrupts on the card. When
an interrupt request comes in, the OS
dispatches the ISR.

Now write to the CRS to clear the
interrupt and read four bytes from the
data port. If more than one board shares
this IRQ level, read the CSR and check the
interrupt-pending bit to make sure this
board was the one that fielded the interrupt.

Once the data is read, the ISR splits it
into two FIFOs, which behave like circular
buffers—one for I and one for Q samples.
Then, get out of the ISR as fast as possible.
Listing 3 shows the ISR for this card.

After the I and Q samples are read
from the receiver, you can do more pro-
cessing. To use the receiver as a spectrum
analyzer, scan the receiver over the desired
frequencies in tuning steps, measuring
power along the way. To measure the
power, add the squares of the I and Q to
each other.

By averaging the readings, you can
enhance the receiver’s sensitivity because
all random noise will average out over
time. The longer the averaging time, the
more sensitivity can be achieved. The
code in Listing 4 was used to make the
spectrum plot in Part 2.

Because you have I and Q signals, in
theory you can implement almost any
demodulator you want. The simplest, of
course, is the AM demodulator or detec-
tor, which measures the amplitude of the
signal by computing the vector magni-
tude. I implemented a crude AM receiver
using the demodulator code in Listing 5.

Compared to the 10-kHz channel spac-
ing you’d need to receive a standard AM
broadcast station, our receiver still has

too much of a bandwidth. We decimated
by 256:1, which gives a sampling rate
of 8 MHz per 256 (i.e., 31.25 kHz) and
a bandwidth of ~16 kHz. Listing 6 band-
limits the signal before demodulation,
which is done at interrupt time.

FURTHER PROJECTS
This receiver is adequate for observing

Jupiter emissions using the undersampling
technique and increasing the sampling rate.
To increase the sampling rate, you need
a faster bus interface; our 8-bit PC/104 bus
interface is limited. At 31.25 kHz, you
have to read four bytes plus reset the
interrupt request, so the transfer rate is 5 ×
31.25 kHz = 1.5 Mbps (about the maxi-
mum for an 8-bit ISA bus).

One solution is to use 16-bit I/O or a
PCI interface, like that in the PC/104-plus
spec. If you only care about the power in
the selected band, you can have the FPGA
integrate power over some amount of time.
Or, you can have one of the FPGAs auto-
matically scan the frequency and collect
power samples in its onboard SRAM
frequency bins. This arrangement reduces
the load on the host system and provides
a near real-time power spectrum.

To monitor the 1428-MHz hydrogen
band, you need to add a dish antenna, a
low-noise amplifier, and a downconverter.
You can use an existing receiver that
provides the last IF as an output. Some
commercial receivers provide a 10.7-MHz
IF output, which can be fed into my digital
receiver for wide-band digital processing.

I have some other projects brewing as
well, such as a WWV time station receiver
combined with a web server. So, don’t go
anywhere; this could get good. RPC.EPC

Figure 1—Here is the bus interface
for the digital radio. The I and Q
samples are stored in a shift register
that can be read using an 8-bit port
on the PC/104 bus. The command
and state register (CSR) is used to
program the frequency setting word
(FSW) of the numerically controlled
oscillator (NCO) and to manage the
interrupt request (IRQ).

PC/104

I Q FSW Sample clock/256

data I Q

CSR
status

irq
&

enable
IRQ

www.analog.com
www.burr-brown.com
www.derivation.com
www.versalogic.com
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Photo 1—Touch the screen and completely
prepare a DOS drive. Imagine that!

Applied PCs

Fred Eady

DOS is dead? Not according to Fred! In fact, he thought DOS was the most
feasible solution to his recent project. Fred put some diagnostic and service
routines behind a touchscreen interface, and DOS made it easy.

L ike you, I read to keep up with the
changes in technology. It seems that every
embedded piece I see has to include a
mathematical equation that only the Al-
mighty and a Pentium XXI running a
Romulan RTOS could solve.

On the other side of that equation, most
embedded hardware ads use the word
“serious.” You’ve read them: “Can be
programmed in C for the serious embed-
ded application.”

Ok, define “serious.” To me, any em-
bedded application that you take your
time and thoughts to write is serious.

To quote a programmer friend, “It doesn’t
matter what language you use or what
hardware is involved. The object is to make
the software and the hardware work to-
gether to perform the desired task.” Yep.

I was recently given a task along with
some embedded hardware and told to
code and deploy a solution in a short de-
velopment window with minimal cost. The
task involved putting diagnostic and service
routines behind a touchscreen interface.

Being embedded oriented, I’m used to
not having the everyday items like key-
boards and mice, but one of the tasks was
to totally prepare a hard disk with the
touch of an onscreen button. Have you
ever tried to automate the DOS FDISK
command? How about FORMAT?

If you answered yes to both questions
and made it work, stop reading and turn
the page. If you answered yes and did not
succeed, answered no to either question,
or are just plain interested in finding out
how I did it, read on. (You can tell this is
going to be a software piece by the “if-
then” and “or” sentences you just read.)

IN THE BEGINNING…
There was DOS. Some famous guy

said that DOS would be dead by now.
Some other famous guy quipped that the
world of computing and information tech-
nology will become paperless. Well, DOS
is alive and well, and I still use a printer.

You know where I stand on those
points and you’ve figured out that the OS
will be DOS for this project. DOS says
simple to many of you, but as I pointed out,
automating simple isn’t so simple.

One of the most important tasks to be
performed is a single-touch FDISK and
FORMAT operation resulting in a bootable
MS-DOS 6.22 partition on a hard disk. I
investigated various scripting programs
that could probably have done the job.

The problem was that I had to perform
this operation on various-sized hard disks,
which meant writing and keeping up with
multiple scripts. That’s not so bad, but I only
had the space of a high-density diskette to
fit all of the routines and scripts into.
Multiple anything was not a good idea.

Easy DOS it
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a form is presented and you put controls
and buttons on the form and write event-
driven code behind them.

Visual DOS may be the ticket. It supports
its own graphical interface and a mouse.
Mouse support is important because my
touchscreen pretends to be a mouse.

After a few hours of remembering how
to make it work, I put Visual DOS back on
the shelf. The functionality was there, but
the GUI was not “today.” I wasn’t satisfied
with the grainy “yesterday” look of the
buttons and screen. The end user de-
served a better-looking interface. With
this discovery, the project ground to a halt.

FALL BACK AND REGROUP
At this point, I felt I’d given this thing an

initial stab with the thought of
keeping everything as simple
as possible. But the problem
wasn’t solved. I had to select the
right components to complete
the job and I had to do it quickly.

In addition to FDISK and
FORMAT duties, I needed to:

• send test messages to two
types of serial printers

• provide a message area for
any errors

• provide printed logs and in-
structions

• execute various DOS-
based utilities

• execute a touchscreen cali-
bration utility

First, I needed a suitable program-
ming-language package that included a
good-looking GUI that can easily be ported
to DOS or works natively in DOS. The
logical selection would be something like
Bill’s Visual DOS product, but better. The
application-language package has to open
files, write and read the standard PC I/O
devices, and allow external programs to
execute or be called to execute from within
the executing program.

After another search of the bookshelf,
I came away with PowerBASIC 3.5. This
product is standard BASIC with a twist.

PowerBASIC 3.5 has all the functionality
of standard BASIC and then some. Al-
though I won’t need it here, PowerBASIC
3.5 does C things like bit arithmetic and
inline assembler. Most importantly, Power-
BASIC 3.5 compiles into a compact ma-
chine-language .EXE and that makes it
suitable to embed.

PowerBASIC 3.5 is the answer for the
serial printer issue and the external pro-
gram execution parts, but there’s still the
problem of getting a GUI to front the code.
I remembered that PowerBASIC 3.5 had
some add-on products that just might meet
the needs of this project.

You know, it pays to read. I keep all the
paper that comes with software products
for just this kind of moment. A bright yellow
flyer in the PowerBASIC 3.5 box described
all the stuff that can extend the usefulness
and power of the PowerBASIC 3.5 package.

I originally purchased this package
because it can be used with a companion
product to construct standard DLLs from

The FDISK/FORMAT utility also had to
work with the programming language
selected for this project. Because the OS
is DOS, 16-bit applications will be the
rule. The programming language and
utilities have to be able to display a GUI
with buttons and controls corresponding
to x and y coordinates on the touchscreen.

My first thought was to use Borland’s
C++ Builder. Good choice for Windows,
but overkill for a simple DOS application.
My next choice was Microsoft’s C++ in a
16-bit flavor. Same as Borland and still no
“built-in” DOS GUI.

You C brethren out there, don’t get me
wrong. Both of the C packages I men-
tioned are capable and could be applied
in this application, but I really didn’t have
the time to construct a suitable GUI from
scratch with any language. My final and
most desperate thought was to browse the
Circuit Cellar Florida Room for some long-
lost off-the-shelf application construction
package I had previously used.

Aha! Bill’s prelude to Visual Basic—
Visual DOS. I’ll bet the younger of you didn’t
even know such a thing existed. Although
quite unsupported, Visual DOS was de-
signed to give a DOS application the look
and feel of the Windows environment.

Visual DOS was similar to the latest
Visual Basic packages except it was de-
signed for DOS. Like today’s Visual Basic,

Photo 2—It’s kind of rough looking, but it beats drawing all
this from scratch.

Listing 1—All of the includes are provided with the PB/Vision package. Those that are not
included are automatically generated in Workshop.

$INCLUDE "COMM.BI" ' add comm routines
$INCLUDE "WINDOW.BI" ' add window routines
$INCLUDE "FORM.BI" ' add form routines
$INCLUDE "POPMENU.BI" ' add popmenu routines
$INCLUDE "MOUSE.BI" ' add mouse routines
$INCLUDE "EVENT.BI" ' add event routines
$INCLUDE "RESOURCE.BI" ' add resource routines
$INCLUDE ".\CCINK.BI" ' add project file

$IF %HELPCODE
$INCLUDE "HELP.BI" ' add help system
$ENDIF

DIM frmCCINKData AS SHARED frmCCINKTYPE  'frmCCINK
DIM frmCCINKHandle AS SHARED INTEGER
DIM pullHandle AS SHARED INTEGER
DIM statusHandle AS SHARED INTEGER
DIM resourceFile AS SHARED STRING
DIM HelpFile AS SHARED STRING
DIM CtrlBox AS SHARED MenuColorTYPE
DIM MenuColor AS SHARED MenuColorTYPE

$INCLUDE ".\CCINK.INC" ' add user file

CCINK.INIT ' initialize the interface
CCINK.RUN ' run the program
CCINK.DONE ' shut down the interface

END
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Listing 2—This file is used as food for the appinit function.

APP.ATTR = &H8F
APP.PATTERN = 32
APP.ROWS = 25
APP.MENUATTR = &H0070
APP.STATUSATTR = &H0030

IF LEN(ENVIRON$("windir")) THEN
APP.GRAPHICSMODE = 0
APP.GRAPHICSMOUSE = 0

ELSE
APP.GRAPHICSMODE = 1
APP.GRAPHICSMOUSE = 1

END IF

'APPTITLE &H1F, "CCINK.BAS (Edit CCINK.INC to customize desktop)"

CtrlBox.kolor = &H7170
CtrlBox.borderattr = &H70
CtrlBox.titleattr = &H2E
CtrlBox.highlight = &H0B03
CtrlBox.sepbar = &H7B
CtrlBox.border = 1
CtrlBox.Flags = %DRAGBAR OR %CONTROL OR %SHADOW

$IF %HELPCODE
Help.rows = 12
Help.cols = 70
Help.kolor = &H7F70
Help.border = 1
Help.borderKolor = &H70
Help.Title$ = "Edit CCINK.INC to change title"
Help.titleKolor = &H9F
Help.textKolor = &H7170
Help.style = 1
Help.buttonStyle = 3
Help.buttonKolor = &H7F70
Help.buttonHighlight = &H707F?
Help.flags = %SHADOW OR %DRAGBAR
$ENDIF

Right below the INCLUDEs is a line
that enables you to include a HELP system.
Pretty strong stuff compared to the BASIC
I learned in the Radio Shack showroom.

Moving on down the listing, you see
where the SHARED resources are declared.
These are pretty obvious as to what they
are. Following the SHARES area is a line-
include file that is application specific. The
CCINK.INC include file in Listing 2 deter-
mines what the GUI looks like graphically.

The three main modules (actually sub-
routines) I described earlier are declared
following the CCINK include file. It’s
interesting that the PowerBASIC 3.5 de-
velopers enable you to manually edit any
file in the source chain.

Although there are warnings all along
the way about changing something here
that affects something there, change is still
allowed. I figure that’s for you brave types.
For us scared guys and gals that work
under tight schedules and high pressures,
the PB/Vision utility Workshop (included
in the PB/Vision package) provides all of
the switches programmatically that you can
select manually. Guess which way I went.

you put on the initial form. As you might
imagine, PowerBASIC 3.5 isn’t natively
event driven or real-time oriented. In most
applications, the touchscreen would be
polled and x or y coordinates would be
manipulated to determine which button
was touched. The PB/Vision package does
even better and provides an environment
that mimics an event-driven system.

Three main modules make up the PB/
Vision event-driven system: INIT, RUN,
and DONE. Listing 1 shows all of the
necessary run-time routines that are
INCLUDEd at the top of the compile phase.

Photo 3—
There aren’t

as many prop-
erty choices as I’d

like, but what’s there
works well.

Visual Basic 5 source. As the
PowerBASIC 3.5 package is a
native DOS product that can be
used in a Windows environ-
ment, I read through the flyer hoping for a
pot of gold at the end of the rainbow.

Apparently enough folks had this prob-
lem before me for a product to be offered.
PB/Vision for DOS looked like the an-
swer. The flyer read “Create visual text
applications with windows, menus, but-
tons, and much more.” Hmm….

Next morning, I assembled the Power-
BASIC 3.5 toolset I needed to complete
this project—PowerBASIC 3.5 Compiler
for DOS and PB/Vision for DOS.

BUILDING THE DOS GUI
I had already experimented with “script-

ing” the FDISK and FORMAT commands
with limited success. I could redirect the
answers to the prompts via a file, but if
anything bombed out in the meantime,
there was no way to recover. In essence,
the program would hang at the anomaly.

I decided to continue getting the main
program frame assembled and solve the
problems as they arose. A good-looking
user interface was most important, so I went
about it. Photo 1 is what the user sees.

Photo 2 is well past the starting point,
but I think you get the idea. Just like VB5
and VB6, PB/Vision uses a form as the
basis for the GUI. Photo 2 was built by
placing controls and buttons on the initial
form and naming them appropriately.

Photo 3 is an example of how the
FDISK and FORMAT area was constructed.
If you’ve ever done any of Bill’s Visual
stuff, this is similar. I was a little disap-
pointed with the lack of “controls” that I
could tweak to make the GUI behave like
I wanted it to, but hey, this is DOS.

Although I wasn’t happy with the way
I made the GUI, I was happy with the
professional look I ended up with. The
GUI-under-DOS problem was solved.

PowerBASIC 3.5, like VB, provides a
skeleton for the code based on the buttons
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Listing 3—It sure would be nice to know what appinit really does here.

SUB CCINK.INIT ' program initialization code
winUseUMB = 1 ' add upper memory support
IF BIT(pbvHost, 5) THEN ' test if in IDE

resourceFile$ = "CCINK.RES"
HelpFile$ = "CCINK.HLP"

ELSE
resourceFile$ = AppName$ ' program is compiled, get name of EXE
HelpFile$ = AppName$

END IF
APPINIT
gottaMouse% = MOUSEINIT(mouseButtons%)
MOUSECURSORON
REGCOMMANDBUTTON ' install driver
REGPANELBUTTON ' install driver

frmCCINKHandle% = FRMCCINK.INIT  ' Load "frmCCINK" object
 END SUB

The INIT subroutine in Listing 3 takes
care of initializing the environment. This
includes finding a mouse, determining the
type of memory support available, install-
ing the necessary button driver code, and
loading the main GUI. A function call to
APPINIT uses the APP variable param-
eters found at the beginning of Listing 2
(APP.XXXXXX) to help start things up.

The GUI is in front of the user at this
point and it would be nice to have some-
thing happen when the screen is touched.
The RUN subroutine is responsible for this.
As you see in Listing 4, there’s not much to
this routine except for the GETEVENT call.

I was disappointed that I couldn’t get
more in-depth information about GETEVENT.
This call does a bunch of stuff under the
covers. The same goes for APPINIT.

Anyway, GETEVENT is the means by
which the event-driven mechanism is fueled.
The program loops here, waiting for an
event to occur. When it does, the GET-
EVENT routine provides user feedback by
performing a “virtual button move” on the

screen. Then, by means unknown to me,
it calls the function in Listing 5.

Here’s where all the user code is in-
serted for each button defined on the GUI.
I included separate BASIC modules for
each instance of a button. It’s not important
here as to what’s in each module because
I’m pretty sure you grasp the logic of the idea.

I will show you the contents of the FD
and FDB files as they are what drive the
automated FDISK and FORMAT engines.
I went ahead and included the DONE
routine in Listing 4, because there isn’t
much to say about it except that it contains
a call to APPCLOSE.

That’s it. Use Workshop to create a
GUI and use PowerBASIC 3.5 to add the
code and compile a nifty-looking DOS
application. Compared to working with its
Windows counterpart, the PB/Vision prod-
uct is somewhat limited. The redeeming
factor is that although there are limita-
tions, the PB/Vision–PowerBASIC 3.5
combo is a good programming tool for
embedding DOS applications.

Listing 4—Although it doesn’t look like much, the getevent call is pretty powerful.

SUB CCINK.RUN ' program execution loop
DO

eventNo% = GETEVENT(0)
SELECT CASE eventNo%

CASE 102
EXIT LOOP

CASE 103
$IF %HELPCODE
HELPSHOW HelpContext%, HelpFile$, Help
$ENDIF

CASE ELSE
END SELECT

LOOP
END SUB

SUB CCINK.DONE PUBLIC ' program termination code
  MOUSECURSOROFF
  APPCLOSE
  END
END SUB
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Listing 6—The execute commands turn control totally over to PartitionMagic. This helped
conserve precious DOS memory.

*** CODE SNIPPET FROM FD.BAS
if f$ = "N" then
  execute "A:\PQMAGICE /CMD=NEWFD.TXT /LOG=RESULTS.FIL /
    ERR=ERROR.FIL"
end if

if f$ = "Y" then
  execute "A:\PQMAGICE /CMD=OLDFD.TXT /LOG=RESULTS.FIL /
    ERR=ERROR.FIL "
end if

*** OLDFD.TXT
Select Drive 1
Select Partition 1
Check
Label /SetLabel=""
Delete "NO NAME"
Create /FS=FAT
Format "NO NAME" /FS=FAT
Set Active

*** NEWFD.TXT
Select Drive 1
Select Partition 1
Create /FS=FAT
Format "NO NAME" /FS=FAT
Set Active

*** FOR DRIVES > 2 GB
Create /FS=FAT /SIZE=2040

Listing 5—This approach isn’t as elegant as Bill’s, but it serves the purpose.

FUNCTION FRMCCINK.ROUTINE% (BYVAL handle%, BYVAL eventNo%, BYVAL
parm1%, BYVAL parm2%) PUBLIC

SELECT CASE eventNo%
CASE 101                ' <CR>
CASE 102                ' <ESC>
CASE %cmaxiohmclick
$INCLUDE "C:\POSFILES\AXIOHM.BAS"

       CASE %cmprt1click
         $INCLUDE "C:\POSFILES\PRIN1.BAS"
       CASE %cmprt2click
         $INCLUDE "C:\POSFILES\PRIN2.BAS"
       CASE %cmsetcnfg1
         $INCLUDE "C:\POSFILES\SET1.BAS"
       CASE %cmsetcnfg2
         $INCLUDE "C:\POSFILES\SET2.BAS"
       CASE %cmsetcnfg3
         $INCLUDE "C:\POSFILES\SET3.BAS"
       CASE %cmdexit

close
system

CASE %cmfd12
FD

CASE %cmfd17
FD

CASE %cmfd25
FDB

CASE %cmfd32
FDB

CASE %cmfd42
FDB

CASE %cmfd64
FDB

       CASE ELSE
END SELECT

    FRMCCINK.ROUTINE% = eventNo%
 END FUNCTION

AUTOMATING
FDISK AND FORMAT
We’re down to the big

one. I searched all over the
Internet attempting to find some-

one smarter than me who had fig-
ured out a way to do the FDISK/

FORMAT thing without a keyboard. I con-
sulted with Mr. Norton and a Ghost. I
even studied Unix scripts hoping to port
some knowledge to my little DOS app.

Finally, as I was reading through a
thread on formatting, some Joe shouted,
“It’s all in PartitionMagic from PowerQuest.”
Duh. I have that. For those of you scratching
your head and mumbling “Who the heck
is PowerQuest?” you may know them for
products like DriveCopy and DriveImage.

Well, after I picked myself up off the
floor, I pulled out PartitionMagic and looked
at its feature set. Seems that the Enterprise
version comes with a scripting capability.

This package does everything, including
creating, deleting, moving, and resizing
FAT, NTFS, and HPFS partitions. Some of
these commands sound like FDISK and
FORMAT to me. I’m on the way, but first
I’ve got some housekeeping to do.

I needed a way to determine if a DOS
partition was already on the target drive.
In the beginning of the diagnostic program,
I attempt to read and write the active
partition. Depending on the results, I set a
DOS environment flag as Y or N.

When the FDISK/FORMAT button is
touched, I read the environment flag into
a string variable and determine how I
want to initialize the target drive. I put
some fancy user output around the opera-
tion, but I know you’re only interested in
the facts shown in Listing 6.

The code at the top of Listing 6 is the
PowerBASIC 3.5 code that invokes Partition-
Magic via the command line. N in the DOS
environment variable signifies that a new
or unpartitioned drive is to be prepared.
An environment variable with the value Y is
already partitioned and possibly formatted.

The error log and result files give the
user some feedback as to what is happen-
ing with the FDISK/FORMAT process. Also,
the log and result files are used as logical
flags to help determine if the newly parti-
tioned and formatted drive can be made
bootable via the diagnostic program.

Let’s look at the TXT files called in the
PartitionMagic command line. OLDFD.
TXT prepares drives that are determined
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that aren’t often thought
of as “embeddable.”

By the way, the diagnos-
tic package size, including all
of the modules and PartitionMagic,
was a little less than 1.18 MB. What
started out as complicated, is now “seri-
ous” and embedded. APC.EPC

SOURCES
PowerBASIC 3.5, PB/Vision for DOS
PowerBASIC, Inc.
(813) 659-8000
Fax: (831) 659-8008
www.powerbasic.com

PartitionMagic
PowerQuest Corp.
(801) 437-8900
Fax: (801) 226-8941
www.powerquest.com

Touchscreen
MicroTouch Systems, Inc.
(978) 659-9000
Fax: (978) 659-9105
www.microtouch.com

Fred Eady has over 20 years’ experience
as a systems engineer. He has worked
with computers and communication sys-
tems large and small, simple and com-
plex. His forte is embedded-systems design
and communications. Fred may be reached
at fred@edtp.com.

The final step is to issue FORMAT Par-
tition and set the newly created and
formatted partition active. At this point,
PartitionMagic automatically reboots the
embedded PC and the AUTOEXEC.BAT file
inspects the error log and results file. If all
is well, a DOS SYS command is issued and
Bill’s COMMAND.COM and a couple hidden
files are transferred to the new partition.

A simple BOOTPC executable is invoked
to return the user to the GUI for another
operation. As you see in Listing 6, the only
difference in the OLDFD and NEWFD script
files are the commands and flags needed
to negate the partition label.

WHAT HARDWARE?
That’s how it’s done—just like you’d do

it with a keyboard answering the prompts.
This solution can be ported to just about any
embedded platform that runs DOS. In fact,
the only hurdles I had to overcome were
DOS induced.

There’s no reason this concept can’t be
implemented with any other program-
ming language with or without a GUI. The
idea was to introduce you to another aspect
of embedded design using software objects

to be partitioned and formatted. The first
line of this script selects what is equivalent
to the C: drive. The next step selects the
first (and in this case, the only) partition.

Check is a PartitionMagic command
that checks the drive for errors. If the drive
doesn’t pass this step, the PartitionMagic
program ends and returns an error code.

Remember, in Bill’s FDISK utility you
must enter the partition name to delete the
partition. That’s one of the keyboard-needed
gotchas I was contending with before
finding out I could use PartitionMagic.

Using Label, I can set the partition
label name to anything I desire. Here, I nulled
it out so the next command (a Delete
Partition with a NO NAME flag) could
be issued and completed successfully.

After the old partition is deleted, a new
partition can be built using Create Par-
tition. The /FS=FAT flag tells Partition-
Magic to make a standard FAT partition.
Create assumes you want to use the
entire drive unless you enter the /SIZE
parameter as shown at the bottom of
Listing 6. For drives greater than 2 GB, I
used /SIZE to ensure that the drive size
didn’t exceed the DOS limits.

www.powerbasic.com
www.powerquest.com
www.microtouch.com
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Low-Cost Data
Acquisition System

FEATURE
ARTICLE

Michael Bading

i
Michael uses a
single-board 8-bit
computer complete
with its own OS and
BASIC interpreter to
create a data-acqui-
sition system for
under $1000. He did
it in three months, too.
And the best part is
the one it lacks: no
PC required.

was working late
one Friday when the

phone rang. It was my
friend Paul, a design engi-

neer in the solar division of the local
power company. He was asking me to
build a data-acquisition system for him.

“Sam Easly’s lights went out about
half an hour ago while he was sitting
down to dinner and he was steamed!
I’m tired of getting these calls. I’ve
got to do something about it.”

It turns out the company was invest-
ing heavily in a solar resources program.
Part of the program was supporting
off-grid customers (e.g., ranchers like
Sam Easly) by providing them with
solar power and servicing their systems.

Because the program was fairly new,
it also involved working with custom-
ers who already had solar systems.
Each system was different so it was
quite a challenge to diagnose prob-
lems among the various systems.

“I need some type of data-gath-
ering system that can be easily
configured to diagnose each
customer’s system without having
to send a programmer into the
field every time one of my field
technicians goes on a service call,”
explained Paul.

“And I need it quick. It has to
be in production in less than three
months. We need to be able to

Figure 1 —In a basic solar energy system, energy is converted
from sunlight to electricity by the solar array and is then stored
in the battery bank for later use to be converted directly to AC.

diagnose where the energy losses are
and how to improve each system. I have
some room in the budget for develop-
ing a data-acquisition system, but the
retail price has to be less than a $1000
and it needs to work without a PC.”

I held my breath and listened.  I
wouldn’t mind having a system like
that for myself, I thought. But just
about every data-acquisition system
I’d seen required some programming,
none were less than $2000, and most
of them required a PC to operate.

After getting off the phone, I won-
dered whether I could design a system
that would take accurate data, was
easily configurable, and was still inex-
pensive. I also thought about how
quickly he wanted the system devel-
oped and what the best approach to
the problem would be.

SOLAR SYSTEM BASICS
I considered the typical parts of a

modern solar power system and what
data had to be gathered to solve Paul’s
problem of determining what and
where the losses are in each system.
At the heart of each solar electrical
system are the four basic components
shown in Figure 1—a solar array, a
charge controller, a battery bank, and
some type of inverter to convert the
DC power to usable AC electricity.

He also wanted to be able to moni-
tor each customer’s major electrical
devices. If no problems could be found
with their solar electrical system, he
could tell them which device or appli-
ance was causing the outages.

Any first-year engineering student
knows that before you can determine
the losses in a system, you have to
know what’s going into it. The fact
that a photovoltaic (PV) array’s volt-

Solar array

DC

Charge
controller

Inverter AC

Battery bank

+  – +  – +  – +  –

+
–

+
–

+
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age and current varies throughout the
day (as well as from day to day) makes
loss assessment difficult.

The importance of getting an accu-
rate base of what’s being generated is
directly related to the accuracy of
assessing the losses. Problem is, there
are nearly as many configurations and
sizes of PV arrays as there are people.
Also, the voltage and current measure-
ments for the PV array needed to be
easily scalable to work with arrays
ranging from 300 W to 5 kW.

To determine the losses of each
component, current and voltage mea-
surements are needed before and after
each system component. Data has to be
gathered at regular intervals to deter-
mine where in the system the problems
may be.

For the front end of the solar-pow-
ered system, all of the voltage and
current measurements would be DC
because only the final stage (the in-
verter) would be AC. If no problems
were found with the solar electrical
system, the remaining sensor inputs
would measure AC voltage and current
at each major appliance.

KEEPING IT SIMPLE
I know data-acquisition systems all

require some programming as well as
knowledge of conversion from digital
values to a real-world measurement or
a shunt resistor to convert current to
a measurable voltage. I also knew any
existing user-friendly system was at
least double Paul’s ballpark budget (just
for the basic model without options).

How was I going to design a
system that could be used by
someone with a limited techni-
cal background and keep it
under a grand? What exactly is
a data-acquisition system, and
why are so many data-acquisi-
tion systems so complex? Ulti-
mately, I decided that only four
parts are needed for any data-
acquisition system like the one
diagrammed in Figure 2:

• a sensor or set of sensors
• a measurement device
• a way of switching or multi-

plexing between sensors and
the measurement device

• a means of storing the measured
values

Next, I began to throw out
what I knew wouldn’t work.
The application engine needed to
be a preexisting device that was
available at a low cost and had
enough computing power to
handle the job.

An 8-bit controller would be
more cost effective than a 16-bit
one. But if I went the 8-bit route,
it needed to have the accuracy
and speed necessary to manipu-
late the data and still perform
math functions.

Because assembly-language
programming and debugging is usually
slow and arduous, coding in a higher
level language was a must, which
meant I had to use a controller with a
robust set of peripherals and a devel-
oped set of routines. The peripheral
set, at a minimum, had to include a
real-time clock, two RS-232 serial ports,
and a 12-bit ADC onboard.

STARTING A FIRE
With the hundreds of controllers

on the market, how would I find such
a device? A single-board 8-bit computer
complete with its own OS and a BASIC
interpreter, the Firecard in Photo 1
was an easy choice to start with (see
Figure 3). But would it be right for this
application? How much additional
hardware and software were necessary?

The Firecard 24/20 is a 24-MHz
8-bit Z180–based SBC system with a

disk operating system (Fire-DOS) and
a BASIC interpreter (Fire-BASIC). The
system software takes up 2.5 KB of
memory, boots in 2–3 s, and has fast
program execution (typically several
thousand lines of BASIC code per
second). All other programs supplied
with the Firecard are less than 64 KB.

The command set is reliable and
easy to learn. Because the programming
language is interpreted BASIC, a com-
piler isn’t needed and debugging is fast.

The hardware includes 1-MB fixed-
flash memory for data and program
storage, 64-KB SRAM, and 8-KB EE-
PROM. It has two asynchronous serial
ports with RS-232 drivers and clocked
serial output port for printer.

It also features an 8-channel 12-bit
ADC and two PWM 8-bit DACs with
buffers. It has a real-time clock and
32 bytes of RAM with battery backup.

As well, the I/O configuration
is customizable through a
Xilinx FPGA.

With the 1-MB fixed-flash
memory set up as a hard disk,
the 1-MB removable flash
memory set up as a bootable
floppy, and a clocked serial
port configured as a printer
interface, the system architec-
ture is transparent to the user
and can be viewed almost like
a PC. The system calls to the
peripherals are straightforward.

The Firecard’s edge connec-
tor can be inserted into a 30-pin
SIMM socket to allow external
access to the system peripherals.

Figure 2— In a basic data-acquisition system, sensors convert
physical properties into electrical signals, a switch or multiplexer
then determines which signal is measured by the device (ADC),
and the corresponding value is stored in memory or some other
digital medium.
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Photo 1 —The Firecard 24-MHz single-board computer offers lots of power
for many applications.
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INITIAL PARAMETERS
Paul and I agreed on some initial

parameters. The data-acquisition
system should be able to measure up
to 48 channels at a speed of at least
once per second or greater. The sys-
tem should be able to measure DC
voltage up to 100 V (both single-ended
and common-mode), DC current, AC
voltage (peak and RMS), AC current,
temperature, and contact closures.

Next, I had to come up with a plan
for designing the data-acquisition
system, what hardware would be
used, and how to make the user inter-
face and system setup and configura-
tion easy to understand. Last but not
least, I had to provide something in-
herent to all authentic data-acquisi-
tion systems—calibration.

I presented the requirements to my
design team and advised them to keep
one idea in mind—simplicity. I
showed them my data-acquisition
block diagram and instructed them
that any changes that increased the
complexity of the system would have
to either directly make the system
easier to use or help reduce cost.

With low cost as a key require-
ment, we couldn’t use all the fancy
goodies out there. We had to focus on
the basics. Yet, at the same time, it
had to be an actual data-acquisition
system—not a PC card that pretends
to perform data-acquisition.

Out of the initial brainstorming
session, four concepts developed that
would eventually form the basis of our
system, which we call the DAS-100.

The first of these concepts involved
a simple user interface in which all

data calculations and conversion are
automatically performed by the system.
System setup was menu driven. The
user would only be prompted for card
information (which cards were installed
in the system), which channels would
be used for which measurements
(including what units the information
should be displayed in), and two simple
calibration values (gain and offset), if
needed, for each sensor. During actual
data gathering, a 16 × 4 LCD with four
menu buttons would be used to real-
time monitor the data being collected.

To perform measurements with a
large common-mode voltage, we needed

an isolated ADC separate from the
Firecard. Although the Firecard has an
ADC built in, its measurement could
only be referenced to ground. Also, the
system might be required to measure
subtle differences at an elevated volt-
age so a differential input was needed
to measure small voltage changes
between inputs.

One example of this would be the
need to measure small changes of 10–
20 mV from a shunt resistor (to mea-
sure current) on a 60-V PV array. If we
were unable to use a common-mode
method of measurement, the resolu-
tion would be quite large.

The third concept was to attenuate
the data signal coming in and then
use a programmable gain amplifier
(PGA). This arrangement would inher-
ently protect the system from being
damaged in an overvoltage situation
and would give the widest range of
data scaling at the lowest cost.

The final concept was the minibus.
Because the Firecard already had an
edge connector that enabled external
peripheral access, the minibus was
developed to allow the greatest com-
patibility with the Firecard yet still
lend itself toward the specific applica-
tion at hand.

Figure 3 —Here you see the block diagram of the Firecard. The Xilinx FPGA handles the addressing of all onboard
peripherals and is easily reconfigurable at bootup.

Figure 4 —The DAS-100’s
minibus is largely based on
the Firecard’s edge connec-
tor pinout. This sped up
both hardware and software
development for the project.
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Photo 2 —By using current sensors with toroid
cores with Hall-effect devices and RJ-11 connec-
tions, shunt resistors and circuitry are not needed.
Installation of the sensor is a breeze.

RIDING THE MINIBUS
In Figure 4, compare the Fire-

card pinout with the diagram of
the minibus. They’re similar, but
with some important changes. The
Firecard’s RS-232 signals (pins 4–7)
were routed to a user interface on
the motherboard, but on all the
other cards in the system, these pins
were used for either the single-ended
or differential analog inputs to the
measurement device, or not used at all.

Digital signals are routed to one of
the two digital input bits (pins 19–20).
The 8-bit digital I/O bus (pins 8–15)
were broken up into a 4-bit Address/
Data bus, three strobes, and a Read/
Write signal. All other signals were
left unchanged so they would be di-
rectly compatible with the Firecard’s
connector pinout.

Although the 4-bit bus permits
addressing for up to 16 input option
cards, only eight devices are addressed.
This setup leaves room for expansion

in possible future designs or room for
more complex addressing schemes.

Each device, including the measure-
ment device (consisting of the attenu-
ator, PGA, and an isolated 12-bit ADC),
has an individual address and is accessed
through the 4-bit bus and three active-
low strobes—card, address, and data.

Addressing a particular channel on
an option card and acquiring data from
that channel into the 12-bit ADC is a
five-part process. First, the card strobe
is held low and a 4-bit address is sent
and decoded on the motherboard to
the corresponding option slot.

After the correct card is selected,
the data or address strobe (along with

a 4-bit code) is used to select the de-
sired channel. Once the channel is
selected, it’s inherently connected to
the 12-bit ADC by means of multi-
plexing or relays.

For the third step, the ADC is sig-
naled to begin sampling. Once the
sample is made, the data is math-
ematically adjusted (based on the type
of measurement and units desired)
and stored.

Finally, the data channel is dese-
lected. The Firecard coordinates all
the timing of the measurement pro-
cess, performs the calculations, and
stores the data.

The PGA and attenuator pair present
a flexible method for preconditioning
the signal before it’s sampled by the
ADC. The PGA circuit in Figure 5
offers two modes to permit either
unipolar or bipolar measurements by
the ADC. For unipolar measurements,
the incoming signal is referenced to
ground. For bipolar measurements,
the incoming signal is reference to
midscale of the ADC or +2.5 V.

The PGA also has four scales—×1,
×10, ×100, and ×1000. Along with the
divide-by-100 attenuator, it enables
the 12-bit ADC to measure incoming
voltages from a low range of 0–0.5 V
to a high range of 0–500 V, with each

Figure 5 —This circuit accommodates both unipolar and bipolar differential measurements in four different ranges. The divide-by-100 attentuator before the PGA protects the
circuit from being overdriven.
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range having 12-bit resolution (corre-
sponding to 4096 steps). Even though
the input voltage can theoretically go
to 500 V, for safety reasons we decided
to specify only 100 V.

CHOOSING OPTIONS
Now that a method of measuring

signals is established, let’s focus on
the types of data to be measured. The
team came up with two types of op-
tion cards that can be used in two
different configurations. Because we
agreed to only address eight system
devices, one of which was the mea-
surement device (address 000, device
0), that left seven devices that we
could still address.

Six option slots (addressed 001–110,
or devices 1–6) on the motherboard
permit the system to be configured
and changed, depending on the option
card used. Two input cards (DC and
AC) and one sensor card were created
to handle the bulk of measurements
used in a typical application.

The final device group (consisting
of three relays) was added to the
motherboard (address 111, device 7).
Through software, these relays can be
used to control external components
while data is being acquired. A simple
latch (74HC174) and a transistor con-
trol the coil of each relay.

Because the system’s measurement
device is set up to measure voltage in
a variety of ranges, the DC input card
design in Figure 6 consists of a latch
and relays that select the channel to
be measured. For measuring DC volt-
ages, no additional hardware is needed.
DC current measurement is converted
to a voltage using either Hall-effect
DC current sensors or shunt resistors.

The simplicity of the DC input
card design results in a low produc-
tion cost. This card can also be used
as a relay-switching card to expand
the capability of controlling external
devices beyond the three relays in-
cluded on the motherboard.

For AC measurements, an AC sen-
sor interface—in addition to the AC
input card—allows the measurements
to be digitized at the source, solving
several problems. Sensors can be placed
farther away from the data-acquisition
unit and noise immunity increases.

The AC input card is a digital in-
put card that is designed to work in
conjunction with the AC sensor inter-
face. Only an 8-bit latch and buffers
are needed to select the channel.

Data from the AC sensor interface
card (see Figure 7) is transmitted back

serially through another multi-
plexer on the AC input card and
read into the Firecard through
the digital input pins on the
minibus. This card can also be
used purely as a digital input
card because the design is iden-
tical to what would be needed
to read digital inputs.

RELATING TO THE
REAL WORLD
All connections are done with
four-conductor RJ-11 connectors
(phone plugs) and have the iden-

tical pinout (see Photo 2). The only
requirement for any of the sensors is
that their measurements are converted
to a DC voltage or digital value. Be-
cause the DC voltage measurements
require no special interface, the iso-
lated ADC in the system is already

Photo 3 —The completed DAS-100 in this
waterproof enclosure is ready for action!
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set up to evaluate a wide
range of single-ended and
differential voltages.

DC current measure-
ments are made using a
Hall-effect DC current
sensor or shunt resistor.
Using Hall-effect DC
current sensors enables
current measurements to
be read as a voltage with
no need for shunt resis-
tors. Although shunt
resistors can give accu-
rate readings of current,
they are usually more
difficult to set up and
aren’t recommended
because of the inherent
IR losses associated with
them. Sensor calibration
is performed once during
system setup via software.

AC measurements are
made with either Hall-
effect current sensors (to
measure AC current) or
transformers (to measure AC voltage).
They are then fed into the AC sensor
interface, which is housed in a box
near where the measurements are made.
Both of these sensors output a voltage
that is offset at 2.5 V to achieve a true
bipolar measurement of the AC. Again,
these sensors are calibrated during
system setup.

The AC sensor interface measures
two channels of AC (usually voltage

and current) and transmits a digital
signal back to the AC input card. The
AC sensor interface in Figure 8 consists
of an analog multiplexer, a 12-bit ADC,
and two 68HC705 microcontrollers.

The front-end microcontroller
switches the analog multiplexer be-
tween the two AC input channels and
clocks the ADC to allow 50× over-
sampling of each channel for a typical
60-Hz AC signal. It also reads the

corresponding digital value, and trans-
mits each value to the back-end micro.

The back-end microcontroller then
evaluates the peak and sum-of-squares
value (used to calculate RMS) of each
channel read and converted by the front-
end microcontroller over the data cycle
(set by the data-acquisition unit).

An LM335 precision temperature
sensor makes temperature measure-
ments that can be directly calibrated
in kelvin. Operating as a two-terminal
zener, the LM335 devices have a break-
down voltage directly proportional to
absolute temperature at +10 mV per
kelvin. This linear relationship corre-
sponds to 2.73 V at 0°C. The LM335
operates from –40° to +100°C.

SYSTEM SOFTWARE
The system software has three

parts—configuration and calibration,
the data-acquisition run-time soft-
ware, and the user-interface software.

System configuration and calibra-
tion consists of a menu-driven user
interface. During setup, the user is
prompted to enter the type of card in
each option slot, which channels are
used, calibration values of each sensor,
and the units of measure to be displayed.

Figure 7 —By using two 68HC107J1A processors and an LT1268 12-bit ADC, the digital conversion as well as the
Vp-p and VRMS calculations are performed before being sent to the AC input card.

Figure 6 —From this DC input card schematic you
see that the circuit board layout permits the card to
be configured as either differential or single-ended
DC input.
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All sensors are factory-tested and
the calibration values (gain and offset)
are stamped on the side of each sensor
(if needed). During setup, the user is
prompted for each value. Once these
value are entered, calibration is com-
plete. The user can also set up as many
as 10 different screens on the LCD.

The run-time routines work in a
simple polling method for each chan-
nel. A look-up table of the card type
in each slot and what is to be measured
from each channel determines how
the data is to be scaled and processed.

Scaling is based on the type of
units the user selects during setup.
Typical data processing may include
the average value, minimum value,
maximum value, and temperature.

The AC sensor interface calculates
the peak and sum-of-squares values, so
only the square-root function is needed
to calculate the VRMS of the AC measure-
ments. Once the data is processed, it
is saved in an array until it is logged.

The user interface can be approached
as a menu-driven program with a PC
or as a screen-driven program with the
16 × 4 LCD and four menu buttons
(no PC required) included with the
system. The LCD panel displays up to
10 screens, each showing two param-
eters that monitor while the system is
operating.

ON THE PATH TO A QUIET DINNER
Almost three months have passed

since Paul told me about his problem,
and now the DAS-100, shown in Photo
3, is about ready to go into production.
When I first heard about Paul’s di-
lemma, I didn’t think a system like
the DAS-100 could be built with such
a short development time and still
fulfill all of the requirements.

Before too long, Sam Easly may be
able to sit down to a quiet dinner on a
Friday night without his lights going
out, thanks to the DAS-100. Unfortu-
nately, it can’t stop the telemarketers
from calling during his meal. I

SOFTWARE

Software for this project is available
via the Circuit Cellar web site.

(520) 526-1133
Fax: (520) 527-4664
www.firewindandrain.com

68HC705
Motorola
(512) 328-2268
Fax: (512) 891-4465
www.mot.com

LM335
National Semiconductor
(408) 721-5000
Fax: (408) 739-9803
www.national.com

SOURCES

Firecard
Fire Wind & Rain Technologies LLC
(800) 588-9816

Michael Bading is the senior applica-
tions engineer at Fire Wind & Rain
Technologies. During his 12 years in
the computer and electronics industry
he has worked with embedded control-
ler design, embedded systems program-

ming, PC peripheral development, and
semiconductor testing. You may reach
him at mbading@firewindandrain.com.

www.firewindandrain.com
www.mot.com
www.national.com
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Figure 1— In this simple phone
line interface, the processor
generates a one-bit pulse-
modulated signal, which is
low-pass filtered and sent over
the phone line. The transformer
is for DC isolation between the
circuit and phone line, and the
sidactor protects against high-
voltage spikes and surges.
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Low-bandwidth one-
way communication
that’s wireless and
cost effective is the
big reason Ingo sees
pagers being applied
to embedded control
applications. Tune in
as he uses pager
technology to monitor
and send alarm
conditions to pagers.

think it’s safe to
say that everyone’s

comfortable with the
person-to-person aspect of

pager technology. Some of us, though,
wish that pagers and cell phones were
never invented.

However, there are some interesting
applications, like pager-based news
services. Both ESPN and CNN offer a
subscription service that sends news
blurbs to your alphanumeric pager.

There are also communication
applications that don’t involve people,
such as a TV program listing service.
The paging receiver is embedded in a
set-top box, and the service sends list-
ings to be stored in the box. When the
viewer wants to see the TV listing, the
information is recalled and displayed.

I can already envision other uses.
You could embed a paging receiver in

a remote controller. To activate or
switch something, you’d send a code
to the device. In an agricultural appli-
cation, that device could control a
pump for an irrigation system.

Those are just a few services that
could implement a paging receiver in
an embedded system. But, consider an
application that involves the sending
end of the paging service. The applica-
tion involves monitoring and sending
alarm conditions to pagers—obviously
an embedded paging application. The
thing is, there aren’t a whole lot of
embedded solutions out there.

I became involved with the applica-
tion of alarm and monitoring systems
a few years ago when the Internet first
started to take off. I ended up consult-
ing for several local Internet service
providers (ISPs).

One common problem is that serv-
ers and network devices sometimes
crash or hang, usually at odd hours.
Because ISPs offer service 24-7, long
downtimes mean losing accounts. And,
most small ISPs can’t afford to have
operators on duty 24 hours a day.

The standard solution is to have
software that monitors critical ser-
vices—for example, a script that tries
to retrieve web pages from a server.

When the script detects a failure of
a service (usually when it times out),
it sends an e-mail to an address that
gateways the e-mail to a paging service.
If the operator on call has an alphanu-
meric pager, messages like “server
www.superhot.com not responding” or
“UPS on battery backup” can be sent.

This arrangement works fine most
of the time. Also, tools that gateway
e-mail to pagers are easily obtainable
for some OSs. They’re even freely
available for Linux.

Notice I said “most of the time.”
What if the machine that scans the
services hangs as well? Anyone who

Pager Technology in Embedded
Control
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uses computers on a LAN knows
that a network problem often
locks up every computer on
the LAN segment, even if it’s
not involved in any of the traffic
or using the LAN at the time.

Or, what if the UPS that
handles a critical service dies
as soon as the power glitches
and the machine that sends the
e-mail SOS happens to be on
that UPS. These are the kinds
of situations in which you want
your operator to be notified.

In some situations, adding a PC to
monitor critical service isn’t practical.
Imagine an independent device that can
monitor events, dial a paging service,
and send a page to alert the on-call
operator that something is amiss, or
perhaps that everything is OK.

Before I show you my prototype, let’s
go over some basics on the protocols
used by paging services. These proto-
cols are called central office protocols,
and one of them is telelocator alpha-
numeric protocol (TAP).

CENTRAL OFFICE PROTOCOLS
There are two protocols for com-

municating with paging service pro-
viders—one for numeric and one for
alphanumeric paging.

Numeric paging is the simplest.
You just use standard touch-tone tones
to tell the paging service which num-
bers to send to the pager. The hardware
is relatively easy, too. Figure 1 shows
a touch-tone telephone interface that
might be used for a BASIC Stamp.

The relay switches the dialer in and
out of the phone line, and the trans-
former isolates the Stamp circuit from
the phone line. The Stamp generates a
pulse-coded signal that, when low-pass
filtered with an RC filter, approximates
the touch-tone frequencies needed. The
circuit also has some spike protection.

With a simple dialer, dialing a
numeric pager is as easy as:

• pick up the phone and wait for the
dial tone

• dial the pager number and wait
• enter an optional PIN and wait
• dial the number to send a message

and terminate with a #
• hang up

The tricky part is knowing how long
to wait. Certain call-progress tones tell
you if the line is available or busy, or
when to send the PIN and message.

To decode these signals, you need a
telephone interface that can decode the
tones and give you digital signals. Many
modem chips have this capability.

But if you don’t have a way to de-
code call-progress indicators, you can
still use numeric paging. You have to
determine the appropriate timeouts
and wait periods empirically. Just dial
the paging service and use a stopwatch
to get some upper and lower bounds
for the wait times.

Because there’s no guarantee that
the message will get through and be
received, be persistent and keep trying
every 5–15 min. during the alarm.

To use TAP, you need a 300- or
1200-bps modem. Many central pag-
ing services don’t accept connects
from auto-training modems. If you
have a “V.everything” modem, turn
off the protocol negotiation and tell it
to use standard 300- and 1200-bps
modulation schemes. This also means
no error control/correction/
compression protocols.

The protocol is fairly simple,
but you would think otherwise
if you read through the actual
definition. Table 1 shows the
basic syntax of the messages.

Perhaps the hardest part of
the process is obtaining the

telephone number of the cen-
tral office for the paging service.
These numbers differ from the
pager number assigned to you,
and you have to get them from
your pager service.

Once you have the paging
service central-office number,
you can dial it and the modem
pool will answer with a 300-
or 1200-bps modem. Remember
to turn off any compression or
error-correction protocols on
your modem.

After connecting, the central office
determines the transfer rate you need.
Seems redundant, but remember, these
standards were designed to be robust.

The transfer rate is determined by
sending a carriage return (<CR>) every
2 s until the service answers with the
system prompt, ID =. The prompt may
be followed by a <CR> or a line-feed
(<LF>) <CR>.

Now you can log in. You need to
identify the protocol you wish to con-
tact (in our case, PG1). Some paging
systems require a password, which is
added to the protocol identifier. If the
password is 00000, then the complete
string is PG100000 followed by a <CR>.

The central office then sends some
text that is not important to the pro-
tocol. It acknowledges the login by
sending <CR><ACK><CR>.

If the login is wrong, the protocol
sends <CR><NAK><CR> and you need
to try again. If the system is too busy
or otherwise not available, it may ask
that you disconnect by sending <CR>
<ESC><EOT><CR>.

When the system is ready to accept
messages, it sends<ESC>[p <CR>,

Photo 1— Here’s the prototype PCB, with LCD
and button matrix. The power is provided by an
external 9-VDC 500-mA wallwart-type power
supply.

Device Central Office

<CR> “ID= ”{<CR><LF>}
<ESC>“PG1”{password}<CR> <ESC>“[p ”<CR>
<STX>
PagerID<CR>
Message<CR>
<ETX>
checksum
<CR> Message sequence

<CR>{<ACK>|<NAK>|
  <RS><ESC><EOT>}<CR>

Table 1—Here’s the basic syntax that occurs between the device and the
central office.
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resend of the block with the
<CR><ACK><CR> or
<CR><NAK><CR> response.
It may also tell you that
something in the block was
wrong but not to retry, by
sending a <CR><RS> <CR>.
This response might be sent if
the pager ID was invalid.
When the service wants to
disconnect, it sends <CR>
<ESC><EOT><CR>.

Most services let you send
more than one message, so sending
pages to several pagers is efficient. But,
some services may ask you to discon-
nect after each message is sent.

After your messages are accepted
by the paging system, it queues them
for transmission. If the service is very
busy, it may take several minutes to
transmit the message.

The service is supposed to reject new
messages if it can’t handle them. In
theory, this means that once the ser-
vice accepts the message, it’s commit-
ted to delivering it to the pager. Of
course, the pager may be turned off or
out of range. Remember, be persistent.

MAKING IT HAPPEN
To make it easy to add paging to a

monitor or alarm application, I decided
to build a paging device. This device
does a little more than wait for alarm
events. It can also be used to arbitrate
redundant resources depending on
their status. This ability is important,
for example, if you have two web
servers (one primary and one spare).

Normally, you want both web
servers to field requests to balance the
load. But if one fails, the other server
needs to know about it.

When a web server acts as a backup,
it needs to configure a host-address

which means you can start sending
requests. The paging requests are made
up of transaction blocks. Each block is
initiated with a start-of-text (<STX>)
character and terminated with an end-
of-text (<ETX>) character followed by
a three-digit checksum and a <CR>.

Each block must be less than
250 bytes. If it needs to be longer, use
<ETB> instead of <ETX> to end the
block. The next block will then con-
tinue where this one left off.

If <ETX> or <ETB> is used, a check-
sum is sent. Long blocks are usually not
encountered because most pagers can’t
deal with messages longer than 80 or
120 characters.

The blocks consist of fields, each
one terminated with a <CR>. For the
alphanumeric paging protocol, there
are two fields. The first is the pager ID,
and the second is the message. Using
<CR> as the field terminator implies
that <CR> is not a legal character in
an alphanumeric pager message.

When a block with the pager ID and
message has been sent, the service
responds with an optional message
and either acknowledges or requests a

Figure 3— The Stamp controls
everything and interfaces to the
LCD, buttons, modem module, and
FPGA. The FPGA functions as a
multiple USART module.

Figure 2— In the FPGA design, there is a three-wire serial interface
for talking to the Stamp and several USARTs, as well as data-rate
generators for the USARTs.
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alias so it can pretend to be the other
web server. When the failed server
comes back online, the backup has to
be able to hand off the alias without
dropping any connections in progress.

The primary function of the paging
device is to page an operator when
something is not normal (e.g., if one or
both of the servers or ports have failed
or if the AC power has gone out).

If any of these situations happen, the
device pages up to three pager num-
bers and sends a message to each. The
message is a short numeric string that
contains the status of the device and a
programmable device ID.

To monitor these external devices,
I used two serial ports so that I can
use two different schemes to sense
external devices. In the simplest form,
you can wire the transmit and receive
connection of the serial port together to
form a normally closed alarm circuit.
If the circuit opens, a fault is detected.

In this mode, you can attach simple
devices like thermostats, water detec-
tors, or any kind of alarm device that
has a relay output with a no-connect.
Because RS-232 signaling is used over
this loop, the distance can be quite
far—thousands of feet, if necessary.

You can attach devices that have
RS-232 ports to the paging device. In
this mode, the protocol is simple. The
paging device sends a single ASCII
character to the external device.

If the character is echoed in less
than a second or so, everything is OK.
If the character is not echoed or an F
character is returned, it’s considered a
failure and the pager device goes into
calling mode.

In addition to sensing the state of
the two ports (A and B), it also senses
if the AC power goes away. This circuit
is not very sophisticated because it only
senses if there’s enough power to power
the device. Its 9-V backup battery lets
it tell someone about the power loss.

For a user interface, it uses a 2 × 16
LCD and several buttons. You can
program the pager to call up to three
numbers and a system ID.

The system ID helps you to iden-
tify which device sent the message.
When the LCD isn’t used to interact
with the system, it displays the status
of the two ports and the AC power.

I used a BASIC Stamp II for this
project, but other PIC processors can
be used as well. I’m currently porting
this project to a Micromint PicStic.

The Stamp handles the entire user
interface with the LCD and buttons.
The LCD interfaces to the Stamp
with a serial interface that uses only
one I/O pin. The five push buttons are
muxed using three I/O pins, and
debouncing is handled in software.

To permit asynchronous communi-
cation with a host via the serial port
for the arbitration function, the serial
port function is implemented in an
FPGA. Implementing the UART ex-
ternally to the Stamp lets it receive
serial data at the same time that it is
transmitting—a situation that occurs
when you use the port in an alarm
circuit. The FPGA interfaces with the
Stamp via a three-wire serial interface.

Implementing the UART in an FPGA
is overkill, but having an FPGA onboard
enables you to implement other inter-
faces besides standard serial protocols.
For example, you can implement the
Dallas 1-wire protocol used with their
temperature sensors in the FPGA.

To adapt the TTL serial levels to
RS-232 levels (necessary for commu-
nicating with a server) I used a MAX232
RS-232 line driver/receiver. The MAX-
232 generates ±10 V using a flying
capacitor converter from a 5-V supply.

The line drivers in the package use
the ±10-V supply to provide RS-232 line
levels. This setup can be a bit noisy,
so a bypass capacitor across the VCC

and ground pins is necessary.
The TX/RX signals then just go to

a DE-9 connector. To interface an alarm
circuit, all you have to do is get a DE-
9 plug and some wire to connect it to
a no-connect contact. The RS-232 levels
ensure that there’s sufficient drive to
overcome some rather long cable runs.

Finally, I used a Cermetek modem
module that interfaces with the tele-
phone circuit. The modem module is
a complete 1200-bps modem with a
Hayes-compatible command set in an
extra-wide (0.700″) 24-pin DIP package.

The interface to the Basic Stamp is
via TTL-level signals, RX/TX, and
DTR/DCD. Because I only implemented
numeric paging, I could get away with
using the simple circuit in Figure 1.
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transistor battery. Because I’m only
using a linear regulator, I have about
30–45 min. to get off the alarm pages.
A more expensive switching regulator
would extend the battery life, especially
if the sleep mode of the BASIC Stamp
was used to conserve power.

The wired prototype in Photo 1 has
been implemented in PCBs, and several
units are available. I’m also working
on an upgraded version of this device.

So, now I’ve shown you some uses
for pagers in embedded-control appli-
cations. Using pagers is a cost-effective
means for wireless low-bandwidth one-
way communication from machine to
machine or machine to human. I

But, designing in a 1200-bps modem
will enable me to add alphanumeric
paging by simply changing the software.

BASIC Stamps are programmed in
PicBasic. A small BASIC interpreter
lives in the PIC chip in the BASIC
Stamp and interprets BASIC tokens
read from a serial EEPROM.

The PicStic, however, is a native
PIC implementation and a PicBasic
compiler can be used to program it. The
compiler is compatible with the BASIC
dialect in the BASIC Stamp I, which
is similar to that in the Stamp II. So,
porting this code to a PicStic shouldn’t
be too hard and it will run faster.

After initializing the FPGA interface
and the modem, the program enters a
big main commutator loop. This step
is necessary because the BASIC Stamp
doesn’t have threads or interrupts.

The main loop calls out the arbitra-
tion state machine, which is respon-
sible for implementing the logic. The
state machine drives the two serial
ports and receives input from them.

When it decides that an alarm
condition has occurred, another state
machine dials the numbers and imple-
ments the required timeouts. It’s
important that the dialer state machine
and the arbitration state machine can
both be run in parallel.

Along with the state machines,
there’s a user interface loop that looks
at the button states and enables the
user to view and change the three
phone numbers and the ID number.
These parameters are stored in the
BASIC Stamp’s serial EEPROM so
they can be remembered even when
the power goes out.

The power monitor is a diode-
protected high-impedance voltage
divider network with an input to one
of the Stamp’s I/O ports. If the un-
regulated voltage falls below the
threshold, the program considers this
an alarm condition and signals the
dialer state machine.

The Stamp I/O pins are protected
with diodes so an overvoltage isn’t
harmful as long as it doesn’t inject too
much current. The unregulated input
can be as high as 12 V, so I just added
an in-line resistor to limit the current.

When the main supply fails, a diode
network transfers input power to a 9-V

SOURCES
Modem, telephone interface
Cermetek Microelectronics, Inc.
(408) 752-5000
Fax: (408) 752-5004
www.cermetek.com

PCB
Derivation Systems, Inc.
(760) 431-1400
Fax: (760) 431-1484
www.derivation.com

Basic Stamp
Parallax, Inc.
(916) 624-8333
Fax: (916) 624-8003
www.parallaxinc.com

PicStic
Micromint, Inc.
(860) 871-6170
Fax: (860) 872-2204
www.micromint.com

MAX232
Maxim Integrated Products
(408) 737-7600
Fax: (408) 737-7194
www.maxim-ic.com
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lmost two years
ago, I read a trade-

publication announce-
ment for a new 8-bit USB

microcontroller from Cypress Semi-
conductor. Coming from a background
in PID and PLC controllers, I immedi-
ately saw the potential for such a chip.

At $1 apiece, you could create fami-
lies of USB-smart motors, sensors, and
actuators, all plugged into a USB-based
microcontroller. Imagine not having to
worry whether a thermocouple is J, K,
or T type because the calibration and
correction factors are already taken
care of by the USB microcontroller.

A standard digital interface elimi-
nates the need to configure special
inputs and outputs before shipment to
a particular customer. The tiered star
arrangement of the USB interface lends
itself nicely to the wiring structure of
many industrial machines and elimi-
nates the rat’s nest of wires that con-
verges at the back of an embedded
multiloop controller.

The resulting collection of USB
smart peripherals forms a simple dis-
tributed processing network, a poten-
tially useful feature. The hot-swap
and plug-and-play features of the USB
offer the possibility of being able to do
service and maintenance on a machine
without costly shutdowns.

Not only does a digital signal path
offer tremendous noise immunity

3

Low-Speed USB Host Controller

To wrap up
our series
on the

Universal Serial Bus,
Glen presents a two-
part discussion on
building USB hard-
ware from scratch.
This month, he lays
the groundwork for
putting together a
USB host controller.

4

over millivolt-level analog signals in
the industrial environment, but it also
allows for the use of optoisolators for
electrical isolation—a must in an
environment where 220 and 440 VAC
are standard working voltages.

Finally, the ability to put a USB
microcontroller to sleep means low
power consumption for those situa-
tions where that’s a consideration.
With all of this in mind, I ordered the
Cypress USB Development Kit (“USB
Micro,” Circuit Cellar 88).

When it arrived, I fired it up, wrote,
downloaded, and ran a few simple
programs, but that was it. My older
workbench computer doesn’t have
USB ports, nor were there any USB
interface plug-in cards available.

On top of that, the only USB soft-
ware driver available was a beta version
for Windows 95. All my development
software is DOS- and Windows 3.1-
based, and I wasn’t ready to buy a new
Pentium motherboard with USB sup-
port for my workbench and then install
Windows 95 on it.

Not to be deterred, I looked into
the availability of a chip or chipset
that I could use to implement a USB
host controller. The few I could find
were all targeted to the PCI bus. None
were targeted to the embedded micro-
controller market.

I checked into the possibility of
obtaining a USB host controller as
intellectual property in HDL format,
but price tags were five and six figures
in size. Another dead end.

After downloading and reviewing
the Universal Serial Bus Specification,
Rev. 1.0, it was apparent that the low-
speed USB specifications were a some-
what reduced and doable subset of the
full-speed USB specifications. At this
point, I decided that I could and would
build my own low-speed USB host
controller from scratch.

Eight months and many dead ends
later, I finally put together the four-
port USB host controller shown in
Photo 1, tied it to an 8051-type micro-
controller, and got it to talk to the
CY7C3650 USB development card. So,
what started out as a personal challenge
to build my own USB host controller
from scratch turned into a comprehen-
sive USB learning experience.
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This article recounts the work I did
in building my low-speed USB host
controller. By describing the problems
I encountered and the solutions I came
up with, my goal is to fill in the gaps
in the standard USB documentation
and make the USB more accessible.

This article is not a comprehensive
review of the USB. I assume you’re
already familiar with the basics of the
USB operation. For those of you who
need to brush up on it, there are many
good introductory articles to be found
in various hardware-oriented publica-
tions, starting with Parts 1 and 2 of
this Circuit Cellar MicroSeries.

Other excellent sources of informa-
tion on the USB interface can be found
in the datasheets and application notes
published by the various chip manu-
facturers that offer USB products. A
good example is Anchor Chips’ web
site, where a number of documents
are posted that contain a wealth of
tutorial-level information.

HOST CONTROLLER’S ROLE
Within the USB operation, the host

controller has a distinguished role in
contrast to those devices that are
referred to as USB microcontrollers.
The USB is a half-duplex serial bus
with only one bus master (i.e., the
host controller), but all of
the USB microcontrollers
that are commercially avail-
able are (by design) bus
slaves and cannot perform
the host-controller functions.

The advantage of the
USB is that by offering a
single standard interface for
all low- and medium-speed
peripherals, it eliminates
the hassles of installation
and configuration. It also
offers true plug-and-play
and hot-swap capabilities—
features which, until now,
have not been generally
available to desktop PC
users.

Although funneling all
the different peripheral
device communications
through a single interface
may make life easy for the
PC user, it poses a major

challenge to the hardware and software
developer. The problem with this ar-
rangement is that a single interface
must now do the work of all the vari-
ous plug-in cards and software device
drivers that currently reside in the
desktop PC.

Now, all the functions that could
previously be spread out over a num-
ber of pieces of hardware and software
must all be incorporated into a single
combined hardware/software interface—
the host controller.

To deal with the range of demands
that the different kinds peripheral
devices put on the USB interface, the
USB Specification calls for four differ-
ent modes of data transfer (control,
interrupt, isochronous, and bulk trans-
actions) and two different bus speeds
(full and low speeds with data rates of
12 and 1.5 MBps, respectively).

Applications pass data through the
USB by supplying the host controller
with pointers to memory locations
where data is to be moved from or to.
In turn, the host controller keeps track
of everything by using linked lists of
linked lists of these pointers.

It is this complexity of the host-
controller function (i.e., its need for
fast memory bus access and a fast
CPU to handle the computational

overhead of each peripheral’s associ-
ated device driver) that have restricted
the commercially available full-speed
USB host controllers to machines
with either a PCI or other fast Local
bus and OSs like Windows 98.

FULL SPEED VS. LOW SPEED
The full-speed USB protocol supports

all four modes of data transfer with a
maximum bandwidth of 1.5 MBps and
a maximum data payload per transfer
of 1023 bytes per packet per 1-ms frame
for isochronous transactions [1, p. 55].

The host controller is required to
prioritize and schedule all individual
transfers, track the timing on isochro-
nous transactions, and do error check-
ing for bulk transactions. That’s why
full-speed USB host controller functions
will always be beyond the capacity of
the small embedded microcontroller.

On the other hand, low-speed USB
supports only control and interrupt
transactions, the two modes that entail
the least computational overhead.
Although the theoretical maximum
bandwidth for low-speed transactions
is 187.5 KBps, the maximum packet
size per transaction is eight bytes.

This fact, combined with the maxi-
mum bus-access frequency per device
of once every 10 frames, translates to

a maximum data payload of
only 800 Bps per low-speed
endpoint channel (i.e., a
doable data rate, even for a
small 8-bit micro) [1, p. 57].

If you intend to interface
exclusively to low-speed
USB devices, a USB host
controller becomes a possi-
bility for small embedded
micros. The requirements
to support low-speed host
controller functions are
well within the capabilities
of any fast 8-bit controller.

Regarding low-speed data
rates, the bus access rate of
once every 10 frames is a
specification, not a hardware
limit. It may be possible
(depending on the low-speed
device being used) to exceed
this 800-Bps data rate by
accessing it more often than
once every 10 frames.

Photo 1 —This is it: the final version of my host controller project. The parts along the
top and left of the photo include a standard 8051-type microcontroller, and the parts
filling in the bottom right form the µSIE.
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A second way to multiply data rates
to an USB device is to access multiple
endpoints within a single device. How-
ever, low-speed devices are limited to
only two endpoints besides the default
endpoint 0 [1, p. 47].

On the mechanical side, full-speed
USB specifies a shielded twisted-pair
cable for the signal lines, but for low
speed, neither twisted pair nor shield-
ing is specified [1, p. 86]. Maximum
specified lengths are 5 m for full-speed
and 3 m for low-speed cables [1, p. 89].

But, for practical purposes, signal
integrity and the bus turnaround time
set the upper usable length limits. So,
despite the specifications, with proper
cable selection, you should be able to
wire a house-sized area with low-speed
USB peripherals.

No doubt you’ve already encoun-
tered the term serial interface engine
(SIE). The SIE is to the USB what the
UART is to the RS-232 interface. The
only functional difference between the
two (from the processor’s point of view)
is that a UART passes data on a FIFO
buffer (possibly only one byte deep),
while the SIE passes data directly to
and from the processor’s memory via
pointers.

For the sake of discussion, I’ll use
the term “micro serial interface en-
gine” (µSIE) to refer to the minimum
hardware necessary to implement
completely and correctly all low-speed
USB host-controller functions. Inter-
estingly enough, the µSIE hardware
requirements for the host controller
are less than those for a USB slave SIE.

Because the USB protocol encom-
passes both hardware and software

issues, it makes sense that a host con-
troller is partly hardware and partly
software in its makeup. For this rea-
son, there are many different ways to
build a host controller, depending on
which functions are implemented in
hardware and which ones are imple-
mented in software.

HARDWARE INTRODUCTION
The first step in building a USB

host controller is to visit the USB
Implementers Forum web page and
download:

• “Universal Serial Bus Specification,”
Rev.1.0 and the white papers

• “Cyclic Redundancy Checks in USB”
• “Designing a Robust USB Serial

Interface Engine (SIE)”

For a membership fee of $2500 per
year, you can join the USB Imple-
menters Forum and have extended
access to documents and tech support.
But, this membership fee is out of the
range of a lot of people, including me.

If you choose to download and read
the USB Specification, two notes of
warning are in order. First, the full
USB specifications encompass issues
of software, hardware, and communi-
cations protocol.

Unfortunately, the authors of the
document use the same words at dif-
ferent points to reference alternately
hardware, software, and communica-
tions protocol issues. Although this
overloading of definitions may not
bother a C++ programmer, it blurs the
lines between the different aspects of
the USB specifications and makes
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Figure 1 —These are the basic functional building blocks that compose my low-speed host controller’s µSIE.
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them confusing to read from a hard-
ware builder’s point of view.

Second, the USB Specification is
not and was never written to be a
systematic guide for building USB
hardware. With patience, most of the
information you need to guide you in
building a USB interface can be found
in the USB Specification. As for de-
tails not explicitly stated in the Speci-
fication, be prepared to resort to some
trial and error work to find them.

To help you locate information
within the USB Specification and
elsewhere, I included a list of refer-
ences that source specific page num-
bers and sections.

HOST CONTROLLER HARDWARE
Figure 1 shows the minimum hard-

ware configuration necessary to imple-
ment a USB host controller. A short
guided tour of this basic µSIE starts
with the output section, which is the
easiest to implement.

USB uses 8-bit bytes as its basic unit
of data. So, as in all serial interfaces,
the signal path begins with a parallel
to serial conversion. Data is loaded
one byte at a time and shifted out
starting with the least significant bit.

The next step in the signal path is
encoding and modulation, which in-
cludes bit stuffing and NRZI encoding
[1, pp. 121–122]. Extra bits are added
to the signal stream to ensure ad-
equate transitions for syncing and
clock separation. Then, data informa-
tion is encoded as a differential signal
and control information is encoded as
DC level signals [1, p. 115].

The serial signal stream is then
passed to the output buffer section.
This section is responsible for line
driving, slew rate control, hot-swap
power management functions, and
low- and full-speed device detect.

 The return signal path becomes
more complicated. Because there’s no
separate clock line in the USB, the
receive clock must be derived from
the incoming signal. This function is
performed by a digital phase lock loop
(DPLL) [2, p. 2].

DC level control signals must be
detected, bus time-out intervals must
be monitored, and this information
passed on to the control section of the

SOURCES

USB Development Kit
Cypress Semiconductor
(408) 943-2600
Fax: (408) 943-6848
www.cypress.com

Anchor Chips, Inc.
(619) 613-7900
Fax: (619) 676-6896
www.anchorchips.com

REFERENCES

[1] USB Implementers Forum, Uni-
versal Serial Bus Specification,
Rev. 1.0, www.usb.org, 1996.

[2] USB Implementers Forum, De-
signing a Robust USB Serial Inter-
face Engine (SIE), www.usb.org.

µSIE. Once it is past this input section,
the return serial signal path is just the
reverse of the outgoing path.

To avoid using memory pointers,
the µSIE uses a dual-port RAM as the
processor/µSIE interface. Rather than
passing pointers, the microcontroller’s
software is responsible for placing data
to be sent or received only at specific
memory locations. This is an example
of a hardware/software tradeoff you can
make when building a host controller.

Although the control logic is shown
as a small block in Figure 1, it repre-
sents a major portion of the µSIE. Also,
not shown is the 1-ms frame clock and
the functions of CRC generation and
checking that can be implemented
quite easily in software by the micro-
controller.

JUST GETTING STARTED
Now you’ve got a USB background

and some resources to check out for
more information. Next month, I’ll
introduce my low-speed USB host
controller and the lessons I learned
while putting it all together. My goal
is to show you that there’s no reason
USB should remain only the province
of desktop PCs. I

www.cypress.com
www.anchorchips.com
www.usb.org


74        Issue 108 July 1999      CIRCUIT CELLAR ® www.circuitcellar.com

FROM THE
BENCH

Jeff Bachiochi

Demystifying
LCD Muxing

As the
number
of LCD
segments
increases,

so do connection
problems. This month,
Jeff takes an up-close
look at multiplexing
LCDs and the prob-
lems we’re likely to
encounter working on
such a task.

ow many times
have you begun a

project where, for it
to work correctly, the

output must be nothing? That’s the
price you pay for working with LCDs.

I’m not talking about those LCD
modules where you speak serial or
parallel and its built-in processor handles
all the liquid-crystal control interfac-
ing. I’m talking about handling those
signals on your own.

For an LCD to remain functional,
its drive must average 0 V. Refer back
to my column in Circuit Cellar 78 to
get the basics on the physical make-
up of LCDs.

This month, I explain how multi-
plexed drivers create signal levels that
enable some segments and not others.
In Circuit Cellar 78, I talked about
static displays where
there’s only a single com-
mon to every LCD seg-
ment. If the common is
grounded, as in Figures 1a

and 1b, then each segment can be turned
on by applying an alternating positive
and negative voltage to each segment.
Or to prevent the necessity of a nega-
tive voltage, an alternating voltage is
applied to the common, as in Figure 2.

If the same waveform is applied to
a segment, its potential is 0 V and the
average is 0 V. But if the waveform is
inverted and applied to a segment, it
now has a voltage potential across it,
but the average voltage remains 0 V.

WHY MULTIPLEX?
It seems a shame to complicate the

static method of twisting those liquid
crystals. A single common with mul-
tiple segments is simple in design and
implementation.

But, somewhere down the road,
adding more segments isn’t feasible.
Take a simple time-of-day clock, for
example. A segment for the tens digit,
one for the colon, plus seven for each
of three other digits equals 23 segments.
That’s a lot of I/O to just run the LCD
segments. What happens if you don’t
have that much I/O available? Multi-
plexing is the answer.

For an LCD to be multiplexed, it
must be manufactured with that in
mind. Static displays can’t be multi-
plexed, nor can a multiplexed display
be completely run in a static mode. A
multiplexed LCD has segment connec-
tions shared among multiple commons.

Let’s look at the clock model to see
how it might be manufactured in both
arrangements. Figure 3a shows 26
connections necessary to produce a
static display. Figure 3b shows how the
number of connections can be reduced
to 11 by using four common lines.

h

Digit backplane Digit frontplane

BP1
FP1

FP2
FP3

FP4
FP5 FP6

FP7

Figure 1a —A single-digit static LCD
may have all backplane segments
tied to one common pin while the
front-plane segments each have their
own connection (b).

a) b)
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BIAS ORIGINS
The simplest approach for providing

analog voltage levels (bias) to the LCD
is through a resistive voltage divider
network. Other methods such as DACs
or charge pumps may create discrete
analog levels. Imagine connecting these
discrete levels to each backplane and
segment connection.

This process would require a large
number of CMOS switches (four for
each connection). Luckily, much of
this is handled within backplane and
segment driver chips.

Unlike the static situation where
an on segment had AC voltage across
it and an off segment didn’t, multiplexed
segments always have some voltage
across them. Because of this, the Vlcd

becomes critical. If the Vlcd is too high,
the off voltage (1⁄3 Vlcd for 1⁄3 bias) won’t
be low enough to turn off the segment
and all segments will appear on.

BIAS LEVELS
Bias levels are voltages

other than just VCC and VSS

that drive the segment and
common lines of a multi-
plexed LCD. Figure 4 shows
how four segment inputs and
four commons use a one-
third bias to control 16 en-
tirely separate segments.
Note how each of the con-
trol signals interacts, yet the
voltages across each seg-
ment remain symmetrical AC signals.

When a backplane or common like
BP1 is in its active portion of a time
frame, it switches between Vlcd and 0 V.
Although other backplanes are active,
BP1 disables its segments by switching
between 2⁄3 Vlcd and 1⁄3 Vlcd. Segments
such as SEG1 behave similarly. During
a time frame, the segment is enabled
in turn by each of the backplanes.

When a segment backplane pair needs
to turn a segment on, the segment pre-
sents voltages of Vlcd and 0 V directly
opposing that of the enabling backplane.
To turn off a segment, the segment
offers voltages of 2⁄3 and 1⁄3 Vlcd in step
with that of the enabling backplane.

On segments have a potential of
2 × Vlcd across them, and off segments
have only 2 × 1⁄3 Vlcd across them. The
magic happens because of the difference
between Voff and Von for the liquid
crystal fluid.

NOT FOR FREE
Getting back all of those I/O lines

isn’t free. In fact, it’ll cost you dearly.
First of all, there’s the display itself. If
a segment connection is sharing signals
with more than one common, then
you only get to use a portion (1⁄2, 1⁄3, 1⁄4,
etc.) of the signal for each segment.

With four commons, each of the
four segments associated with the seg-
ment connection is enabled by one of
the commons for one quarter of the
frame time. The frame time is the time
to cycle through each common once.
If a particular segment is enabled for
only one quarter of the frame rate, two
things change.

Because the overall frame rate is
reduced (four commons must now be
individually cycled), the display seems
to flicker because it is now effectively
one quarter the static rate. Even if the
frame rate is increased to compensate,
each segment’s on time is now only one
quarter of its original on time. Thus the
contrast (and viewing angle) is reduced.

The control signals for multiplexing
are another story. The trick again is
twofold. Simple logic-level control is
out the window because of LCD rule
number one—only AC signals are
allowed as the potential across each
segment that must average 0 V. With
the logic-level controls, there’s no way
to share signals and get an AC potential
of 0 V. Enter bias-level multiplexing.

Figure 2 —Static designs offer simple, straightforward interfacing.

Figure 3 —The typical VCR clock could have (a) a static design for
simplicity or (b) a multiplexed design to save on I/O. c—For example,
to implement a number “7” in a multiplexed design, use the datastream
shown here.

a) b)
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The opposite also happens. Too low
a voltage will fail to exceed the satu-
ration voltage necessary to turn on a
segment. To allow for some adjustment
of the Vlcd, a potentiometer is used
between Vdd and Vlcd (or Vref).

In environments where temperature
is not constant, thermal compensation
is necessary. Negative temperature
coefficients of liquid crystal fluid create
contrast problems as the temperature
falls and ghosting as temperature rises.

To compensate, the VSS must be
supplied from a compensation circuit. A
temperature sensor and op-amp can
supply the optimum drive voltage based
on the manufacturer’s specifications.
This spec is based both on the fluid

type and the number of multi-
plexed backplanes.

Keep in mind that there are
tradeoffs for increasing the
number of backplanes. As the
number increases, the contrast,
viewing angle, and effective
temperature range all decrease.

To prevent the on segments
from flickering, the frame time
must be kept under 33 ms (1⁄30 s)
and generally greater than 11 ms
(1⁄90 s). A higher frame rate means
a higher load on the drivers.

Only AC is allowed across any
segment. DC voltages higher
than 50 mV cause permanent
damage. Although the wave-
forms placed on the segments
have been carefully designed to
average 0 V, the bias network
must be accurate to assure can-
cellation to within 50 mV.

If a resistor divider network
is used, pick a good 1% metal
film resistor. Even 5% resistors
can produce over 100-mV bias
due to tolerance issues.

PREPACKAGED DRIVERS
There are many manufactur-

ers of LCD drivers. Except for
some of the smaller segment
and common count drivers,
package styles are all SMT,
mainly because of the high
density attainable.

Some larger display drivers
support more than 100 commons
and 100 segments. These are

often split into separate driver chips, one
each for the segments and commons.

Each manufacturer favors a slightly
different interfacing scheme. Sharp
includes both parallel and serial inter-
face options with very high pin counts.
Philips uses their I2C serial interface
with the smaller drivers available in 28-
and 40-pin DIP packages. Rohm offers
serial interfaces for their SMT drivers,
as does Motorola.

Most drivers have an onboard oscil-
lator for automatic waveform generation
and bias generators for the multiple
voltage sources. Let’s look at a com-
mon/segment driver from Motorola.

As you see in Figure 5, the 52-pin
TQFP (tiny quad flat pack) MC14LC-

Figure 4 —Multiplexing can be accomplished by sequencing
through each backplane either by backplane (a) or by polarity (b).

a) b)
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Motorola
(602) 952-4103
Fax: (602) 952-4067
www.mot.com

500x supports four backplanes (com-
mons) and up to 32 segments. Separate
Vdd and Vlcd inputs allow special com-
pensation circuitry to be used when
necessary for the LCD bias drive.

Although an external oscillator can
be applied to OSC1, a simple resistor
can be used across OSC1 and OSC2.
The internal oscillator is divided by
1024 to bring the frequency down to
the 30–100-Hz range.

RESOURCES

LCD information, www.lxdinc.com,
www.crystaloid.com, www.sharp-
meg.com, www.eio.com.
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Figure 5 —Many backplane/segment drivers contain all the essentials
for training those pesky little crystals to sit, stand, and otherwise
perform on cue.

The synchronous serial
interface is available in SPI
or I2C flavors. SPI is a slightly
simpler interface consisting
of control word followed by
the 128 bits of pixel data in
the form BP4, BP3, BP2, and
BP1 for each of the 32 seg-
ments FP1–FP32.

The data clocked into the
128-bit shift register via DCLK
is transferred into the data
latch after the last input bit
is clocked. The data bits are
read from the latch (by the
timing generator) to build
segment (FPx) outputs with

the unique bias voltage necessary to
enable or disable LCD segments.

The I2C format requires the driver
to respond with a low (acknowledge)
bit on the data line after every byte is
clocked. In addition to writing data to
the driver, a read can also be performed
to retrieve data back from the driver.
Besides this slightly different inter-
face, the internal operations are the
same as the SPI device.

THE FINAL SEGMENT
The number of LCD segments in

today’s products continues to grow, as
does our lust for more information. But,
much of the grunt work in designing a
system to use multiplexed LCDs has
been done. App notes abound to help
you complete the task. Good luck! I

www.lxdinc.com
www.crystaloid.com
www.eio.com
www.sharp-meg.com
www.sharp-meg.com
www.mot.com
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i t was only about
18 months ago that

CMOS imaging chips
began to make their move

from the labs to the market. My De-
cember ’97 column (Circuit Cellar 89)
described one such unit from Photobit,
a southern California spinoff of JPL (an
early pioneer of the CMOS imaging
technology).

Until now, electronic imaging has
relied on charge coupled device (CCD)
technology, which has well served
applications such as camcorders, scan-
ners, machine vision, and security
systems.

CCD imagers are still going strong
and will continue to deliver highest
fidelity, thanks to their excellent
sensitivity and dynamic range.
However, CMOS imagers are
making huge strides, not only
reducing the cost of midrange
applications but enabling whole
classes of new low-price appli-
cations (e.g., toys) as well.

A look under the hood of Photo-
bit’s latest PB-300 imager reminds us
of the intriguing possibilities at hand
(see Figure 1). The image array uses
active-pixel sensors that combine a
photodetector and output amplifier
organized much like a memory chip.

Compared to CCDs, CMOS imag-
ers offer a number of advantages. For
instance, CCDs typically require mul-
tiple power supplies and watts of power
to achieve the required charge transfer.
By contrast, CMOS imagers require
1⁄100 the power and operate with a single
low-voltage (typically between 3.3 and
5 V) supply.

The memory-like nature of the design
allows random access to the imaging
array. This overcomes a weakness of
CCDs, which rely on a shift-register
mechanism.

So, a CMOS-based design can ex-
ploit “region of interest” techniques
that access only the pixels required.
For instance, a motion-detecting secu-
rity or machine-inspection system can
monitor an entire scene and then zoom
in on anything suspicious.

Because the light is converted to a
voltage and actively driven at each
pixel, readout is much faster than for
CCDs, which must wait for the slow
output of passive pixels. TV-class frame
rates of 30–60 Hz are a breeze, and
hundreds or even thousands of frames
per second are possible.

Although they don’t target the high-
est visual quality applications, CMOS
imagers aren’t shabby by any means.
In fact, a number of the analog foibles

Eye Candy

Electronic
imaging
has
largely
depended

on CCD technology,
but CMOS images are
making huge strides
these days. Tom looks
at a few units captur-
ing the low-resolution
market, and boy, are
they an eyeful!

SILICON
UPDATE

Tom Cantrell

Figure 1 —The development of CMOS
imaging ICs promises proliferation of highly
integrated, low-cost, and low-power chip
cams like the PB-300 from Photobit.
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of CCDs (e.g., blooming,
streaking, and smear-
ing) are less problem-
atic for CMOS designs.

Of course, using the
CMOS process means
all the support logic
(timing control, A/D
conversion, and all
manner of signal pro-
cessing), which re-
quires extra ICs in
CCD-based designs,
can be integrated.

Thanks to CMOS,
the imaging IC busi-
ness is no longer just
the province of heavy-
weights that can afford
specialized CCD fab
lines. The door is open for a lot of
competition—a surefire way to hasten
innovation.

PC PICTURE PERFECT
Though mega-pixel models are

within reach, the real action is centered
around lower resolution units up to and
including the ubiquitous 640 × 480
VGA class. In addition to Photobit,
there are now a number of other sup-
pliers both large (HP and Hyundai) and
small (OmniVision and VLSI Vision)
targeting the niche. Volume prices for
these units are in the $20 range, which
should capture the attention and imagi-
nation of designers.

The OmniVision OV7610 is an
example of a color imager with digital
outputs. Like other suppliers, Omni-
Vision also offers even lower cost
monochrome units as well as versions
with NTSC/PAL video outputs for
consumer products.

As shown in Figure 2, the ’7610
combines the image array with video
timing generator, signal processing,
A/D conversion, and digital video
output formatting. Setup and control
is via a clocked serial I2C interface.

Just connect a 27-MHz crystal and
have at it. Each 8-bit ADC runs at
13.5 MHz, and the output can be for-
matted in a number of ways (e.g., YUV
4:2:2 or GBR 4:2:2, interlaced or pro-
gressive) according to various digital
video standards (e.g., CCIR601 and
CCIR656).

The ’7601 handles a lot of the cum-
bersome (and speaking for myself, error
prone) details of getting a good shot,
including automatic exposure control,
automatic gain control, white balanc-
ing, and such. Being a 1s-and-0s man,
my first thought would be to crunch
the digital output with a DSP. But
according to OmniVision, the initial
round of signal processing is best per-
formed pre-ADC using analog circuits.

Nevertheless, all the automatic
adjustments can be overridden to per-
mit external control. To make it easier,
the ’7610 keeps track of parameters
such as line and field/frame average
luminance and color levels. This en-
ables an external controller to diagnose
the overall scene and make any desired
adjustments to the 50+ on-chip control
registers via the I2C bus.

When it comes to hooking cameras
to PCs, USB has (finally!) come of age.

To make it easy, Omni-
Vision offers a compan-
ion chip (the OV511) that,
with the addition of little
more than a 256 K × 16
(4 Mb) DRAM, imple-
ments a complete USB
camera (see Photo 1).

Speaking of compan-
ion chips, OEM designers
with a big enough PO in
their pocket (manufactur-
ing licenses are $85k)
should check out the
Clarity 2.0 ASIC design
from Sound Vision,
shown in Figure 3. It’s
not only adaptable to a
variety of CCD and
CMOS imagers (most

recently, Sound Vision announced
support for the new HP chip cams),
but it also deals with all the other
pieces of the puzzle, including LCD
viewfinder, CompactFlash card image
storage, and computer (USB and RS-232)
and TV (NTSC and PAL) interfaces.

Incorporating an ARM720 32-bit
CPU core with cache and two-clock
multiplier, Clarity 2.0 performs speedy
JPEG compression by processing close
to a million pixels per second. To allow
back-to-back shots, the firmware imple-
ments a hierarchical storage scheme
that includes DRAM and Compact-
Flash memory. Compression runs as a
background task, so another shot can
be taken immediately, even before the
previous shot is processed.

CMOS EYE SEES
The promise of imaging goes beyond

digital cameras. Consider the M64282FP

Figure 2 —The OmniVision 7610 illustrates the power of CMOS to integrate the entire signal chain
from photodetector to 1s-and-0s.

Photo 1 —USB is finally
on the move (ironically,
thanks to blessing by
the iMacs), and Omni-
Vision follows suit with
a highly integrated USB
camera design.
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Figure 4 —Mitsubishi calls the M64282FP an Artificial Retina be-
cause, like a human retina, it preprocesses the data by performing
edge detection and enhancement.

Figure 3 —The Sound Vision Clarity 2.0 ASIC includes an ARM CPU core and all the interfaces needed to turn an
imaging chip into a complete digital camera.

Artificial Retina (AR) from Mitsubishi.
Like the other chips, it relies on a photo-
diode array (128 × 128) built with CMOS
process, but the similarity stops there.
The artificial retina (like the human
eye) is designed to perform a variety of
local preprocessing before sending the
visual input on to a higher intelligence.

As you see in Figure 4, the chip is
quite simple and requires only 16 pins.
Basically, after the configuration is set
up by the clock serial interface, the
host uses the START and READ con-
trol lines for handshaking and shifts
out the analog image data with XCK
at up to 500 kHz. Because each frame
is roughly 16k pixels, that turns out
to be about 30 frames per second.

Yes, you can hang an ADC and
micro outside to create a simple cam-
era, but there’s more to the AR than
that. Besides handing over the raw
image, the chip can perform autono-
mous processing on the data—
notably, edge extraction and
enhancement.

The on-chip processing is
carried out in the analog do-
main via current-mode calcu-
lations between pixels and
varying the addressing pattern
when scanning the array. For
instance, edge extraction sub-
tracts each pixel from its two
(1D) or four (2D) neighbors.
Furthermore, the relative
weight of a pixel and its neigh-
bors can be programmed to
implement edge enhancement.

Putting more intelligence in the
sensor means less silicon is needed at
the other end of the wire to perform
higher level functions such as pattern
matching, orientation detection, and
motion estimation.

Mitsubishi sees opportunities for a
new human-machine interface paradigm
based on capturing gestures, notably
for PC and video gaming. Although
the success of such new application
concepts remains to be seen, there’s
no doubt the basic technology is con-
sumer-capable. The AR chip has already
been designed in at Nintendo and, by
the time you read this, should be ship-
ping to the tune of a million units per
month.

PIXEL POWER
As you can see, the CMOS imaging

frenzy is just kicking into high gear.
No doubt, we’ll see units with more
resolution and more intelligence on-
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chip, and aggressive pricing as well.
Beyond that, the next major technology
shift promises to pack more logic at
each pixel.

Recently, I attended a session orga-
nized by the local chapter of the IEEE
Signal Processing Society titled “CMOS
Image Sensors: State of the Art and

Figure 5 —According to researchers at Stanford University, in the future, not only
A/D conversion but even memory and processing will be replicated in each pixel.

Future Trends.” In the
presentation, David
Yang described the
CMOS imaging re-
search currently un-
derway at Stanford
University.

A major goal of the
Stanford effort is to
find a way to prolifer-
ate A/D conversion to
each pixel. Current
designs either funnel
all pixels through a
single ADC or, at
best, use a separate
ADC for each column.

Putting an ADC at
each pixel offers a
number of advantages.

For instance, performing the conversion
right at the pixel achieves maximum
SNR, by avoiding noise introduced
when shuffling the analog output of
the photodiode to an ADC on the other
side of the chip. Also, because each
pixel carries its own baggage, the design
is inherently scalable.

Because each pixel performs A/D
conversion in parallel, overall imager
bandwidth can be quite high even
though the individual ADCs can be
slow. For instance, a 1-M pixel unit
could deliver a billion pixels per second
with just a pokey 1-kHz ADC at each
pixel.

In turn, the extra bandwidth can be
used to extend dynamic range by mul-
tiple sampling and other pixel-parallel
real-time processing techniques. For
instance, by sampling the image at
exponentially increasing exposure times,
both light and dark areas of the image
are captured and the dynamic range
can be enhanced by a factor of two.

It all sounds grand, but there is the
minor problem of where to cram all the
extra transistors. Turns out there’s a bit
of a real-estate shortage with technol-
ogy squeezed between the rock of reso-
lution and the hard place of sensitivity.

The essence of the problem is de-
scribed by the so-called fill factor (i.e.,
what proportion of the chip is actually
performing image gathering). If the fill
factor, typically 30–40%, becomes too



CIRCUIT CELLAR Test Your EQ
Problem 1—The circuit shown below was designed
with the intention of providing both positive and
negative voltage rails with respect to a common
ground. Why doesn’t this circuit work?

Problem 2—The circuit shown below is an inverting am-
plifier. What is the purpose of R3? What is the optimal
value of R3?

Problem 3—Simplify this circuit. Assume zero propaga-
tion delay associated with the gates. The signals X and Z
are active high. The signal Y is active low.

Problem 4—What is the output of the following C code?

Have you forgotten the basics since getting that management job? Did your university ignore real circuits and tell you that HTML was the only path to fortune?  Each month, Test
Your EQ presents some basic engineering problems for you to test your engineering quotient. What’s your EQ? The answers are posted at www.circuitcellar.com along with past
quizzes and corrections. Questions and answers are provided by Ray Payne of Under Control, Benjamin Day of Schweitzer Engineering Laboratories, and Bob Perrin of Z-World.
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small, resolution (given practical chip-
size limits) or sensitivity must suffer.

Fortunately, the march of silicon
offers hope. The minimum pixel size
is about 4 × 4 µm, reflecting the reali-
ties of cost-effective lenses and signal
quality. As IC geometry shrinks, a
relatively larger proportion of the area
alloted each pixel will be available for
extra transistors.

Still, it’s easy to bite off more than
even the best fab can chew. To that end,
the Stanford researchers have come up
with a simple bit serial successive
approximation A/D technique that
requires adding only a comparator and
1-bit latch at each pixel.

Putting their research into practice,
they’ve fabricated a 640 × 512 imager
using a commercial grade 0.35-µm
CMOS process with 10.5 × 10.5 µm
pixels that achieves a 29% fill factor
and delivers up to 250 frames per sec-
ond with 8-bit A/D resolution.

The team predicts that pixel-level
A/D conversion will become common
as IC processes shrink to 0.15 µm and
beyond. At that point, they’ll turn

their attention to the next challenge.
Once each pixel has an ADC, why not
add the memory to store data at each
pixel, and ultimately a processor to
crunch it as well (see Figure 5)?

HAVE CAM, WILL CRAM
I suspect the fast pace of development

in CMOS imaging technology over the
last couple years means you can expect
to see chip cams popping up in all sorts
of applications (e.g., games, communi-
cation, robotics, pattern recognition).

Beyond just swiping market share
from their CCD- and film-based coun-
terparts, the most interesting applica-
tions will take advantage of the low
prices and high-integration opportuni-
ties uniquely offered by CMOS imag-
ing technology. I

void main(void)
{
  int i = (int)0xffff;
  if (i<0)
  printf("i is negative\n");
  else
  printf("i is positive\n");
}
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PRIORITY INTERRUPT

steve.ciarcia@circuitcellar.com

Circuit Cellar Online

i encourage reader feedback about my editorials but I must have really hit a nerve with my June ’99 “Servings
Per Issue” piece. In fact, I received more e-mails and reader reaction from that editorial than any other in our 11-

year history. So what did I say that was so significant? Who was I dumping on this time?
For those of you who don’t remember, I was discussing the defined-gratification aspects of the Internet and whether

Circuit Cellar should evolve to be more Internet-like. This paragraph pretty much summed up my opinion:

Certainly the continued growth and change of technology has prompted a wide variety of new topics that the editors feel they must cover.
Unfortunately, the reality of print-magazine economics dictates that something has to give if they expand coverage of new topics in the
same size magazine. In light of the fact that I am presented with the same technology-coverage dilemma, I find that weighing the needs of
the readers with the realities of being publisher leaves me with the same questions and no answers. It’s not that I’m going kicking and
screaming into the next millenium. I just need to feel that any editorial reorientation occurs for reasons other than being trendy.

A whole bunch of people felt the need to tell me to stick with my gut feelings and don’t get trendy.

“I like Circuit Cellar as it is. I get information from the Internet but I get insight from your magazine.” — R. Fellows
“There are very few magazines that offer any technical content…. Please do not take the path of BYTE.” — R. Pryor
“…it’s the only magazine I’m willing to pay for…. Mark me in the “don’t change the format” category.”  — B. Raymond
“I need the kind of in-depth understanding that is actually useful…. That is why I buy your magazine.” — T. Cantlon

This list could be considerably longer. There were many more comments. Invariably, the universal opinion was that you like the way we
present things and “if it ain’t broke. Don’t fix it.” OK, I get the message. But, I also know that technology is evolving and I can’t be oblivious
to it. There are lots of new topics I want to cover and many traditional ones I’ve been ignoring too long. I guess the only solution is for us to
start another magazine!

Circuit Cellar Online magazine starts this month (visit www.circuitcellar.com/online for details). Unlike most print publications (or the
trade magazines), Circuit Cellar Online is not a copy of our print publication. It’s a completely new magazine (about the same size as the
print magazine) with more of the high-quality editorial that you’ve come to expect from Circuit Cellar.  We have new columnists with lots of
great tips and tidbits. We have new departments and many more feature articles. Best of all, it’s now twice as much Circuit Cellar.

Having another publication (albeit a virtual sister) gives me the pages to expand editorial coverage for the many things we’ve discussed
like embedded Internet, signal interfacing, and design tips. You can expect a sampling of all these with the very first online issue. At the
same time, having more pages allows me to get back to some of the things I like to call “traditional values.” Yes, they’ve always been my
pet interests, but I want to see more home automation, robotics, and basic tutorial articles in our pages again.

I also want you to know that all this couldn’t happen without help. Circuit Cellar Online is hosted by ChipCenter (www.chipcenter.com ).
ChipCenter is an engineering portal owned by some very big players in the publishing, software, and distribution industries. Hosting Circuit
Cellar Online provides them with instant technically-credible traffic. What we get is a super Internet connection and the security of not
having to risk this venture alone. Of course, the success and continued availability of Circuit Cellar Online depends on its readers and the
traffic you create while reading it. I trust that you will spread the word.

Finally, I don’t look at this as accommodating evolving technology. I view it simply as the next step. The Internet can offer a world of
enhancements and opportunities to magazines that know how to use them properly. Circuit Cellar Online is a virtual extension of the print
magazine—not a replacement and not a copy. I recognize the loyalty among Circuit Cellar readers and I respect it. Rest assured, anything I
ever do to change Circuit Cellar will always follow our prime directive.


