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Persistence Pays

i t’s often said that showing up is half the
battle. And if it gets you 50% of the way toward

your goal, well, then that’s great. In fact, maybe if
you can get that far ahead so quickly, then you get to

save up all your energy for what is, in my opinion, the hardest part—sticking
it out until the end.

Whether it’s developing a marketable embedded system, pulling to-
gether another magazine’s worth of quality editorial, or starting a business
venture, the process is pretty much the same. Design it, do it; tweak it, do it
again; fiddle with it, do it some more.

The necessary ingredients are similar, too. There are the moments of
inspiration, the months of headaches, and of course all those times when
you can’t figure out what could possibly be the problem with that one part
that just won’t come together the way you want it.

In this issue, with its focus on development and debugging, our concern
is on not only the how-we-do-it (the trademark Circuit Cellar article) but on
how-we-circumvent-all-the-obstacles-that-keep-us-from-doing-it. Of course,
I’m not talking here about how to budget your time more effectively so you
can accomplish two tasks at once or how to tell the guy in the next cubicle
to turn his radio down so you can even begin to think.

But the willingness to keep plugging away on a project—that’s a charac-
teristic we all can benefit from. Think about it: how many people do you
know who will start a project but never finish? And how many people do you
know who, once they set their mind to a task, will never quit? (Which num-
ber is higher? Who do you admire more?)

On a rare occasion, it may be worthwhile to throw in the towel. But it’s
more likely that you just need a different approach. There’s a big difference
between quitting and changing direction.

More often than not, regardless of what you’re working on, the original
ideas need to be changed around a bit. Nobody starts a project with the
perfect plan. And nobody executes a task perfectly from beginning to end.

But we are always encouraged to hear stories about beating the odds,
overcoming setbacks, or finding the new approach that leads us more
effectively to the goal. We have such articles in abundance in this issue.

First off, Thomas Anderson examines how virtual components ease the
task of designing for reuse. Next, the debugger comparison presented by
John Andrews and John Day helps you choose the appropriate system that
enables you to get your latest project to market faster.

In our third feature, Gordon Dick tackles a variable frequency drive
project that’s been haunting his workbench for years. And Kenneth Ciszew-
ski explains how flash memory can be a cost-efficient solution when you’ve
got tough design requirements in front of you.
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NEW PRODUCT NEWS
Edited by Harv Weiner

MICROCONTROLLER CHIP
The BasicX microcontroller was designed for rapid

development of control applications using an easy-to-
learn BASIC language compiler. Its controller features
an on-chip multitasking OS with IEEE single-precision
floating point and networking. The chip supports com-
piled code up to 8 MB and RAM up to 128 KB in exter-
nal storage. A built-in network allows multiple BasicX
processors to communicate with each other over an
RS-485 multidrop connection at speeds up to 460 kbps.

BasicX also features on-chip peripherals and func-
tions like real-time clock/calendar, timers and counters,
analog comparator, watchdog timer, dual PWMs, and
SPI peripheral bus. It offers high-power I/O lines and
low-power sleep modes as well. BasicX has up to 32
programmable I/O pins. Routines are provided to com-
municate with LCD, servos, ND converters, and other
typical applications.

The BasicX development kit ($99.95) includes an
RS-485 network, RS-232 COM port, in-circuit emulator/
expansion connector, 32-KB code EEPROM, and 256 bytes
of on-chip RAM. The development system is connected
to a PC parallel port for downloading, and a complete
BasicX compiler and editor allow easy development.

BasicX is currently available in three packages:
40-pin DIP, 44-pin PLCC, and TQFP. Quantity pricing
is $9.95 in 1000s.

NetMedia, Inc.
(520) 544-4567 • Fax: (520) 544-0800
www.netmedia.com

POINTING STICK CONTROLLER
The USAR PixiPoint Z encoder IC is a strain-gauge

miniature joystick with z-axis functionality. The device
is equipped with an advanced motion algorithm that
provides smooth and accurate cursor control in all
directions.

The IC implements the Tap (select), Double Tap
(execute), and Press Hold (drag) functions in firmware
with no need for special drivers. Additionally, the track
stick IC enables Scroll as well as the anchor functions
of Autoscroll and Panning. Panning allows for both
horizontal and vertical movement.

Other features include a PS/2 port for the hot-plug
connection of an additional pointing device and Clean-
Stop and EasyDrag technology. USAR’s proprietary
CleanStop technology ensures that the cursor stops the
instant the user needs it to. The EasyDrag function
reduces the cursor’s speed when the user drags an ob-
ject on the desktop, making it simple to accurately
handle the object.

The USAR PixiPoint Z IC uses a sophisticated high-
precision signal-conditioning circuit. Simple to imple-
ment, the complete circuit requires few components,
so it is cost effective and saves real estate.

The USAR PixiPoint Z IC is $3 in OEM quantities.

USAR Systems, Inc.
(212) 226-2042 • Fax: (212) 226-3215
www.usar.com

www.usar.com
www.netmedia.com
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NEW PRODUCT NEWS
SINGLE-BOARD COMPUTER

The ipEngine-1 is a miniature
SBC and associated software de-
signed to significantly reduce the
complexity required to network-
enable embedded products. It in-
corporates a PowerPC processor,
16 MB of DRAM, and 2 MB of flash
memory. It features an LCD control-
ler, USB and Ethernet interfaces,
16,000-gate FPGA, and switching
power supply onto a board the size
of a credit card.

Complementing this highly
integrated board is a choice of two
preintegrated OS environments.
The first is BSE’s real-time pKernel
POSIX-based network OS. The
second option is an embedded
version of Linux that contains the
full kernel plus network utilities,
the Apache Web server, and a Java
Virtual Machine. Both provide full
TCP/IP networking and web-server
support.

Unlike traditional board-level
products with fixed interfaces, the

Pricing for the ipEngine-1 is
$895 for quantities 1–4 and from
$350 to $795 in OEM volumes.
The pKernel and Embedded Linux
developer’s kits have an introduc-
tory price of $1995, and they in-
clude six months of maintenance
support.

Bright Star Engineering, Inc.
(978) 470-8738
Fax: (978) 470-8878
www.brightstareng.com

ipEngine-1 can adapt itself to the
user’s hardware requirements. The
external connection to the ipEngine
hardware is via an FPGA-based “vir-
tual interface” that can be configured
on-the-fly to adapt to the user’s needs.
The FPGA can emulate a variety of
bus architectures, and it can also
implement peripheral functions like
UARTs, PWM control, memory emu-
lation, data capture and synthesis, and
interfaces to a variety of input devices.

Developer’s toolkits for both the
Embedded Linux and pKernel
operating-system environments
contain all of the hardware and
software needed for a developer
to start building applications.
The toolkits include an
ipEngine-1 board, case and
power supply, the Linux or
pKernel distribution, a GNU-
based PowerPC cross-compiler
tool suite, sample FPGA code,
documentation, and technical
support.

FUZZY-LOGIC ROBOT
OWI has introduced the WAO-G robot. This limited-

edition device attempts to dethrone the traditional
method of control and problem solving by using fuzzy-
logic principles. These principles exploit imprecise
decisions, such as “getting close is generally OK!” By
building and programming WAO-G, you can set up
membership functions and learn basic fuzzy control
principles. WAO-G can draw
straight lines, circles, and even
words by putting a pen in its
pen-holder.

WAO-G will help in under-
standing the new control meth-
ods being used in washing
machines, vacuum cleaners,
video camcorders, cameras, and
automobiles. You can learn
how to input data using eight
kinds of membership func-
tions. Simple operations are
commanded in Direct mode,
and complicated operations are

commanded in Program mode. The robot uses sensor
feelers to detect its movement, and an optional inter-
face enables the user to program the device through a
PC. Three demonstration programs (Dice, Roulette,
and Timer) are included for illustration.

The robot measures 9.5″ × 6.25″ × 3.5″ and is pow-
ered by three AA batteries and one 9-V battery. Power

consumption is 12.5 mA for
the electronics and 600 mA for
the mechanics. The unit in-
cludes 48 (max.) program steps
and 16 (max.) for-next loops.

The WAO-G robot sells for
$89.95 and is available as a kit
or fully assembled.

OWI, Inc.
(310) 638-4732
Fax: (310) 638-8347
www.owirobot.com

www.brightstareng.com
www.owirobot.com
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NEW PRODUCT NEWS
SINGLE-CHIP DATA LOGGER

The DS1615 Temperature Recorder is an integrated
temperature recorder that combines a Y2K-compatible
real-time clock with temperature data-logging and histo-
gram capabilities. It is designed for applications that
require temperature profiling over a given period of time.

The DS1615 can operate in a stand-alone system as
a complete data logger or in an embedded system to track
environmental conditions during system powerdown or
minimal power periods. Its digital thermometer measures
temperatures from –40°C to +85°C in 0.5° increments
with ±2° accuracy. The data
can be used in calibration,
maintenance, and warranty
applications. Also, the DS-
1615’s real-time clock and
temperature sensor are
available to the system.

Both standard three-wire
synchronous and RS-232
interfaces with a built-in
CRC generator are available.
Nonvolatile memory can
record 2048 consecutive

temperatures, which the user can program to start at
specified times and be taken at selected rates. Alarms
and interrupts can be programmed for user-determined
out-of-spec conditions, including expiration dates and
extreme temperatures. The separate histogram mem-
ory allows for longer term data collection and distribu-
tion analysis.

A DS1615K evaluation kit enables designers to
program and retrieve data from the DS1615. The kit has
a self-contained data-logger board, RS-232 cable, Win-

dows-driven software, source
code, and documentation.

The DS1615 Tempera-
ture Recorder costs $5.43 in
1000-piece quantities. The
DS1615K Temperature Re-
corder evaluation kit costs
$75 in single quantities.

Dallas Semiconductor Corp.
(972) 371-4448
Fax: (972) 371-3715
www.dalsemi.com

www.dalsemi.com
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READER I/O

Popular Science is one of my favorite publications
also and I hadn’t been able to put a finger on why it
seemed less satisfying now than in the past. As an
instructor of electronics technology (mostly DC, AC,
transistors, and digital), I use Circuit Cellar as a tool to
introduce first-year students to the applications part of
the technology with hopes that during their second year
they will go beyond the textbooks with their projects.

The new-product quickies are important, but it’s the
complete projects with in-depth coverage that makes
this magazine unique. The touchless sensor (“Look Ma,
No Hands”), working with accelerometers (“XLR8R”),
and the “USB Primer” Microseries are three excellent
examples of what’s needed in today’s classrooms and
labs. Don’t make too many changes.

George Shaiffer
gshaiffer@uswest.net

As a subscriber since Circuit Cellar’s first issue, I
enjoy the in-depth articles. Even though I don’t always
have time to read them all, I know the meat is there in
case I get really hungry. Better than the other way
around, isn’t it?

Last year, MIT’s Technology Review magazine made
the sort of transition that you described regarding
Popular Science. I hate the result to the point that I no
longer look forward to reading the publication.

Why is everyone trying to copy Wired magazine’s
practice of bombarding the reader with trivia? Engineer-
ing is not a trivia quiz. When I need snippets of informa-
tion, there are plenty of publications and trade journals
available.

If anything, I’d like to see Circuit Cellar articles offer
more theory along with the nuts and bolts. Like many
people, I learn best from a happy marriage of theory and
practice. Please don’t stop selling steak and offer just
sizzle. Leave the glitz to the others, and keep helping us
become better designers as you’ve been doing all along.

Phil Doucet
pjdoucet@aol.com

“Servings Per Issue” doesn’t have a single numerical
answer. I need about one hundred new ideas a week to
feel satisfied. At the same time, I also have a need to
learn the detail behind those ideas.

Product announcements and sound bytes don’t teach
much, but full-length articles do. For example, where
else would I find out how to create a web-based strip
recorder? Sure, I could find out where to buy one. But I
derive my satisfaction from learning how to build
things, not just where to buy them.

The web is great if you know what you’re looking for so
the needle in a haystack problem becomes trivial. The
problem is that you’ll never find the stapler, thread, or any
of the thousands of possible substitutes for the needle.

Short paragraphs arranged in a special-interest
magazine can show those alternatives, but it’s not
enough to present other people’s products and inven-
tions. A magazine article should have in-depth content
that teaches how to build new products and how things
work. It should present different approaches to a
problem and point out how others have solved similar
problems. A vendor has no desire to teach people how to
build their products, but a magazine article can teach
the underlying technology of new products and con-
cepts, and that’s something that appears nowhere else.

Paul Hittel
phittel@microtest.com

I have been an avid reader of Steve’s work for many
years dating back to the BYTE days. I go all the way
back to the 4004, 8008, and 6800 micros and have
enjoyed watching and applying the changes in technol-
ogy to the hardware interface world.

In my opinion, don’t change anything about Circuit
Cellar. It’s the last great hope to us aging hardware
junkies who rely on you and your team to help guide the
way through uncharted waters. And don’t let whatever
happened to BYTE happen to Circuit Cellar.

James J. Aschberger
jaschbrg@memphis.edu

GETTING A MOUTHFUL
Steve’s “Servings Per Issue” editorial (Circuit Cellar 107) generated plenty of responses with regards to the

editorial direction of the magazine. Here are a few of your responses:
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System-on-Chip Design
with Virtual Components

FEATURE
ARTICLE

Thomas Anderson

d
Here in the Recycling
Age, designing for
reuse may sound like
a great idea. But with
increasing require-
ments and chip sizes,
it’s no easy task.
Thomas explains how
virtual components
help suppliers get
more mileage out of
their SOC designs.

esign reuse for
semiconductor

projects has evolved
from an interesting con-

cept to a requirement. Today’s huge
system-on-a-chip (SOC) designs rou-
tinely require millions of transistors.
Silicon geometry continues to shrink
and ever-larger chips are possible.

But, the enormous capacity potential
of silicon presents several challenges
for designers. Design methodology and
EDA tools are being severely stressed
by SOC projects at the same time that
narrowing time-to-market requirements
demand more rapid and frequent in-
troduction of new products.

 SOC projects present another
problem—how to design enough logic
to fill up these devices. Few compa-
nies have the expertise to design all
the intellectual property (IP) needed
for a true SOC, and few have enough
engineering resources to complete
such a massive project. Even those with
the required knowledge and plentiful
resources may still be unable to finish
a complete chip design in time to
meet accelerated market demands.

The net result: SOC projects require
design reuse. Only by leveraging off

past designs can a huge chip be com-
pleted within a reasonable time. This
solution usually entails reusing designs
from previous generations of products
and often leverages design work done
by other groups in the same company.

Various forms of intercompany
cross licensing and technology sharing
can provide access to design technol-
ogy that may be reused in new ways.
Many large companies have estab-
lished central organizations to pro-
mote design reuse and sharing, and to
look for external IP sources.

One challenge faced by IP acquisi-
tion teams is that many designs aren’t
well suited for reuse. Designing with
reuse in mind requires extra time and
effort, and often more logic as well—
requirements likely to be at odds with
the time-to-market goals of a product
design team.

Therefore, a merchant semiconduc-
tor IP industry has arisen to provide
designs that were developed specifically
for reuse in a wide range of applications.
These designs are backed by documen-
tation and support similar to that
provided by a semiconductor supplier.

The terms “virtual component”
and “core” commonly denote reusable
semiconductor IP that is offered for
license as a product. The latter term is
promoted extensively by the Virtual
Socket Interface (VSI) Alliance, a joint
effort of several hundred companies to
set standards for VC design, verification,
and use. In this article, I describe the
major virtual component (VC) types
and discuss their use in SOC designs.

FORMS OF VC
VCs are commonly divided into

three categories—hard, soft, and firm.
A hard VC or hard macro is a design
that is locked to a particular silicon
technology. Such macros are fully
placed and routed and are available in
a fixed size and format.

They can be easily dropped into the
floorplan for a chip in the same target
technology, because the silicon tech-
nology is known, and they usually have
predictable timing. However, they
can’t easily be mapped to another
silicon vendor (e.g., a second source)
or even to a different technology from
the same vendor. The VC user also
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has little or no choice in terms of fea-
ture set modification or customization.

Hard macros are most often pro-
vided by ASIC and FPGA vendors as
part of their library. Such macros are a
natural extension to the basic cell
library used to implement the VC user’s
design. Because the silicon vendor
sells chips, there’s no incentive to
provide a VC in a more portable form
that makes it easier for the customer
to switch to another supplier.

Some IP vendors, especially those
supplying microprocessor and DSP
designs, also provide a VC in hard
form. This option shows that the key
elements of processors, especially
data paths for arithmetic computa-
tion, are often designed at the transis-
tor level for maximum performance.

Some processors, as well as many
other kinds of VC products, are avail-
able from IP vendors in soft (or syn-
thesizable) form. A VC described in
Verilog RTL or VHDL code gives the
user maximum flexibility. It can be
mapped to virtually any target ASIC
or FPGA technology using commer-
cial logic synthesis tools.

The user may also be able to con-
trol the VC feature set, for example,
by setting variables in the code or by
running a utility that modifies the
code under user control. Of course,
because the user licenses the actual
Verilog or VHDL source code, it can
always be modified directly.

One issue with a synthesizable VC
is that the precise timing is not known
until the VC is mapped to a target
technology. Accordingly, soft VC
suppliers must synthesize to a range
of representative target libraries and
ensure that timing is satisfied.

The supplier may also have to
supply guidelines to assist the user in
laying out the chip containing the VC
so that the postroute timing is
still correct. Such guidelines may
include recommendations for
target technology, pin assign-
ments for external I/O, floor-
planning for key modules, and
routing of critical paths.

The definition of a firm VC
varies widely. The term is used
most commonly to refer to a soft
VC accompanied by an example

layout-level implementation, although
some people refer to a VC as firm
whenever it comes with layout guide-
lines. The term also refers to a netlist-
level VC that has been mapped by
synthesis to a target technology but is
not yet placed and routed.

It is possible, although difficult, to
make customizations to a VC in
netlist form. Synthesis tools can also
provide some degree of portability to
new technologies, but the range of
optimizations available when synthe-
sizing from the netlist level is more
limited than from Verilog or VHDL.

VC FUNCTIONS
Numerous factors can lead to a

decision to license a commercial VC
for inclusion in an SOC design. The
expertise and resources available and
the time-to-market requirements for
the end product must be balanced
against the expense of the VC license.
Even a company with vast, expert
resources may be able to produce a
better product faster by leveraging
external IP.

This is especially true if the VC
implements a common function be-
cause little is gained by designing and
optimizing such a function rather
than focusing on product-differentiat-
ing features. For example, the VC may
duplicate the function of existing
stand-alone chips (e.g., a UART or a
floppy disk controller) or implement a
common arithmetic function such as
a multiplier.

Perhaps the highest leverage is
provided by a VC that implements a
formal or de facto standard. Because
many types of chips and end products
must meet a standard, a VC that
implements this standard is ideal as a
commercial IP product. It’s rare that
an end user can add enough value
with an in-house design to offset the
time savings and standards expertise
embodied in a well-designed VC.

The standards provided by VCs range
from formal IEEE, ANSI, and IEC
specifications to new technologies.
Examples include communications
protocols like Ethernet and ATM,
computational functions such as
MPEG and JPEG, parallel intercon-
nect standards such as PCI and AGP,
and serial interconnects like USB and
IEEE 1394. These examples have wide
applicability to many different types of
SOC-based products, and the standards
themselves are well enough defined to
allow implementation as a VC.

A VC implementing an interconnect
technology probably has the widest
range of application. For example, PCI
is used in diverse types of electronic
products. Although it was developed
as a personal computer peripheral bus,
PCI has now been adopted for work-
stations, mainframe computers, mili-
tary applications, and networking/
telecommunications systems. USB is
following a similar expansion of scope
beyond the PC, as it is used to con-
nect peripherals to gaming systems,
set-top boxes, and PDAs.

The widest penetration of all
may occur with 1394, which is
designed to interconnect both
computers and diverse consumer
electronics devices. Products
available today with 1394 sup-
port include video cameras, digi-
tal televisions, digital VCRs and
professional audio equipment.
Although it is not yet supported
in mainstream PC chipsets,

Figure 1— A soft VC intercon-
nect fits between the applica-
tion logic and the I/O signals.
Implementation instructions
generally include guidelines for
connecting the interconnect to
the external chip pins.

Figure 2 —System-on-chip designs may contain both a system bus
connect and a peripheral bus connect. Custom I/O blocks that provide
functions not commercially available may also be included.
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many desktop and laptop computers
offer 1394 support and such peripherals
as disk drives and videoconferencing
cameras are starting to appear.

USING A VIRTUAL COMPONENT
The path for a chip designer to use

a VC depends on both form and func-
tion. A hard macro can be dropped
into a chip layout fairly easily, as long
as the macro and chip use the same
silicon technology. But, simulation
and timing analysis with a hard macro
is not as simple.

Generally, the VC supplier must
provide separate simulation and timing
models. Correlation of these models
to the hard-macro implementation may
be a difficult problem for the VC pro-
vider and a potential issue for the user.
A VC at the netlist level has fewer
problems, although the inefficiency of
gate-level simulation may require the
VC supplier to provide a high-level
model in addition to the netlist.

 A soft VC has several advantages
in terms of design flow because it can
usually follow the same design pro-
cess as the rest of the chip. The user
runs synthesis to map the RTL design
to the target technology, uses static
timing analysis to verify timing, lays
out the chip following the supplier’s
guidelines, and reruns static timing
analysis with back-annotated
postroute delays.

The VC also has the same
advantages as any RTL design
in that the source code also
serves as the simulation and
timing model. The lack of per-
turbation to the user’s design
methodology is a key attraction
for a synthesizable VC.

A VC with no requirements
for connection to chip pins,

such as a fully embedded processor, is
wired into the chip design like any
other module. An interface VC, how-
ever, generally has some I/O signals
that need to connect to external chip
pins. The implementation and layout
instructions for a soft interconnect
VC generally include guidelines on
how to connect to the pins.

As shown in Figure 1, such a VC
essentially fits in between the chip
pins and the user’s application logic.
The set of VC I/O signals to which
the user connects is often referred to
as the application interface.

MULTIPLE VC APPLICATIONS
It’s becoming common for an SOC

design to use more than one VC. Al-
though there may be no direct interac-
tion between one VC and another, in
other cases they may be linked on a
common bus. The term “on-chip bus”
(OCB) describes a formally specified
bus that interconnects multiple VC
blocks within a single chip.

An OCB is likely to fall into one of
two categories—system or peripheral
bus. A system bus connects an embed-
ded processor or DSP with the memory
controller and higher speed I/O devices.
A peripheral bus connects to lower
speed I/O technologies.

An interface block generally bridges
these two buses, although some embed-
ded processors directly drive both buses.
In SOC designs with multiple embed-
ded processors, the processors generally
communicate over the system bus.

 Figure 2 shows an SOC that has
both system and peripheral OCBs. In
an actual chip, the system bus might
link to a 400-Mbps 1394 interconnect
VC and the peripheral bus would sup-
port slower I/O technologies such as
USB, RS-232, and IrDA (infrared). It’s

also possible for the SOC designer to
create custom I/O blocks that connect
to an OCB to support functions not
available from commercial VC sources.

It would be nice if widely adopted
OCB standards existed, but this is not
the case. Nearly every embedded pro-
cessor has its own proprietary system
bus; some have defined proprietary
peripheral buses as well. This situa-
tion can make it difficult to take a VC
designed for an SOC with one embed-
ded processor and move it to a different
chip. A few buses (e.g., AMBA buses for
ARM processors) are supported widely
enough to be considered a de facto
standard in some application spaces.

One interesting option for a periph-
eral OCB is an on-chip version of PCI.
Several popular embedded processors
are available in versions that provide
PCI support, and many interconnect
VC families include an option for PCI
support on the application interface.
Using a PCI OCB also enables exist-
ing PCI-based chips to be easily trans-
formed into macros for use in larger
SOC designs in newer technologies.

The size of a PCI VC, which usually
ranges from 7k to 15k gates, is not a
major issue in the context of a million-
gate SOC. Other objections to PCI as an
OCB (e.g., its use of tristates and multi-
plexed address/data lines) can be ad-
dressed by using a PCI derivative.

In fact, a number of SOC designers
use PCI or a derivative bus as an OCB.
Figure 3 shows one interesting appli-
cation, a multiprotocol I/O controller.

This design allows multiple I/O
technologies (e.g., USB, 1394, and
Ethernet) to be combined by using a
VC with PCI for each and then using a
PCI OCB to link the VCs together. A
PCI-to-PCI bridge permits this wide
range of I/O support while using only

a single PCI load on the mother-
board or a single PCI slot in the
system.

VSI is tackling the OCB issue
by defining the virtual compo-
nent interface (VCI), a standard
application interface for VC
designs done in-house or avail-
able from commercial IP sup-
pliers. VCI is not an OCB but a
standard VC interface that en-
ables OCB usage.

Figure 3 —A multiprotocol I/O controller can be enabled
using PCI as an on-chip bus. In this application, a PCI-
to-PCI bridge supports multiple I/O technologies using a
single PCI load or slot.
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Figure 4 —A verification environment provides behavioral models and test
scripts to verify the functionality of the VCs. This approach can be used in
full SOC verification as well as stand-alone VC verification.
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The idea is that the SOC designer
needs to develop only a bus translator
from VCI to the chosen OCB. With
this translator, any VCI-based block
can easily be connected to a given OCB.
VCI has been defined for easy transla-
tion to popular OCBs (including PCI)
and translators for such buses will be
available as licensable IP.

VC VERIFICATION ISSUES
One area common to both single-

VC and multiple-VC SOC designs is
the need to verify and test the com-
plete chip. The SOC design and test
engineers want to leverage and build
on the verification and test done for
each individual VC, and accordingly
they expect the VC provider to assist
in this process.

As previously noted, each VC is
accompanied by some sort of simula-
tion model that enables the SOC
designer to run chip-level tests that
involve the VC. But, that doesn’t
provide any support for determining
whether the VC is connected properly
in the design and is operating correctly
in the context of the full SOC. A VC
with a miswired application interface
will simulate, but the results may not
be correct.

Many suppliers address this problem
by providing a verification environ-
ment along with the VC itself. Such
an environment provides behavioral
models (usually in Verilog, VHDL, or
C) that interact with the VC and a set
of test scripts that use these models
to verify the functionality of the VC.
Figure 4 shows a sample verification
environment for an interconnect VC
such as PCI or 1394. Key components
of this approach include:

• master model to address the VC as a
target

• target model to respond to VC as a
master

• sample application code to stimulate
VC

• tests written as scripts of procedural
calls

• monitors for protocol and timing
correctness

As a stand-alone test for the VC, a
verification environment lets you verify
a postsynthesis netlist or a customized
version of the VC to ensure that protocol
and timing rules are satisfied. A simple
set of test vectors performs much the
same function for stand-alone VC
verification, but debug is harder with-
out monitors and readable test scripts.

One of the main advantages of the
verification environment approach is
that many of its components can be
used in the full SOC verification in
addition to the stand-alone VC verifi-
cation. The master and target models
can be connected to the SOC bus
interface while the protocol and tim-
ing monitors can continue to be used.

It may be possible to continue to
run the same test scripts on the SOC,
requiring the chip designer to modify
the procedural interface to stimulate the
VC from the actual SOC logic rather
than from the sample application.

A verification environment can be
provided with any VC, whether in hard
or soft form. Synthesizable-VC suppli-
ers usually provide verification environ-
ments and hard-macro suppliers often
provide some components such as bus
models to aid in SOC verification.

Many of these components are useful
to a designer developing a custom
implementation of an interface or
processor. So, it’s quite common for
IP providers to license a verification
environment even to customers who
do not license the VC itself.

VC TEST CHALLENGES
By its nature, a VC is embedded into

the SOC design by the VC user. Once
a VC is inside the larger chip design,
it’s no longer accessible as a stand-
alone functional block. Whatever test
vectors or methods the VC supplier
provides can no longer be used without

Functional
logic

VC

VC test mode

SOC

Figure 5 —One test method for legacy VCs is a parallel
access test process. This process uses multiplexers to
bring all inputs and outputs to the external pins and
plays a predefined set of test vectors.
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special considerations to design-for-test
(DFT) approaches during chip design.

The challenges of embedded VC
tests depend on the nature of the VC
itself. A synthesizable VC is the easi-
est case. The VC user runs synthesis
to map the Verilog or VHDL code to
the target technology, lays out the
chip following the supplier’s guide-
lines, and runs timing analysis with
back-annotated postroute delays.

The result, as I noted, is that the VC
follows the same design process as the
rest of the chip. The same is generally
true for chip test methodology, since
virtually all test insertion tools run
on the postsynthesis netlist. Whatever
approach the VC user takes for the rest
of the chip—full scan, partial scan,
built-in self test (BIST), or JTAG—is
usually applied to the soft VC also.

 To ensure that the user has no prob-
lems, a soft-VC supplier should use a
clean design style with DFT in mind.
Typically, soft VC designers use simple
clocking schemes, avoiding latches and
gated clocks unless they are required.

For example, the USB protocol has
suspend and resume commands that
put a peripheral device into a minimal-
power state. Some amount of clock
gating is unavoidable in a USB device
VC because of this requirement.

In contrast, a hard macro user is
stuck with whatever test technique (if
any) is built into the VC. If the VC
includes full scan, partial scan, or BIST
technology, it’s helpful if the remainder
of the chip also uses this approach.
Integrating a VC scan chain into the
full-chip scan chain is usually a simple
matter of running scan insertion and
stitching tools.

Sometimes the hard macro includes
no internal DFT at all (often called
legacy VCs because the user needs to
treat them as black boxes in terms of
testing). Generally, the VC supplier
provides a set of test vectors, perhaps
guaranteed to provide a certain level
of coverage as defined by the single
stuck-at fault (SSF) model. Of course,
running this exact set of tests on the
VC once it’s embedded in a chip can
be a challenge for the VC user.

When the only test method available
for a legacy VC is “playing” a set of
predefined test vectors, two approaches
are common. The first is simply to
bring all VC inputs and outputs out to
external chip I/O pins using multi-
plexers as shown in Figure 5.

The parallel test-access process can
be automated by test-insertion tools
and requires only a VC test-mode pin
setup prior to running functional vec-
tors on the VC. This approach is at-
tractive for interconnect VCs like PCI
because some VC inputs and outputs
will already be connected to chip I/O
pins for functional reasons.

This method breaks down if there
are more VC inputs and outputs than
chip pins available. Staging registers
may be needed to accrue each complete
VC vector over several clock cycles. If
the test vectors are also intended to
check VC timing, inserting multiplex-
ers into the path adds delays and may
require changes to the timing vectors.

This approach doesn’t work at all
for analog VCs unless some sort of
analog multiplexer is available. Inter-
vening digital logic makes it impos-
sible to apply or measure continuous
analog values.

The second approach, called internal
boundary scan or VC isolation, sur-
rounds the legacy VC with a JTAG-
like register chain that can drive the
VC inputs and read the VC outputs.
As shown in Figure 6, this setup re-
quires some form of TAP-like test
controller to run the scan chain.

Because this technique relies on
serial access to the VC I/O signals, test
times can be long for complex blocks
like embedded microprocessors. So, IP
suppliers are developing methods to test
complex VCs using existing functional
datapaths, including on-chip buses.

Figure 6 —Another approach for testing legacy VC
involves serial access to the virtual-component I/O
signals. The legacy VC is surrounded with a JTAG-like
register chain that can drive VC inputs and read VC
outputs. The disadvantage of this method is that test
times can be very long for complex blocks.
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CORES IN FPGA DEVICES
As I mentioned, it’s common for

FPGA and ASIC vendors to provide
hard macros for common core functions.
Traditionally, these offerings have been
limited, but the increasing speed and
size of FPGAs means a broader scope
of core offerings.

For example, 33-MHz PCI cores are
readily available, and some FPGA
vendors even claim fully-compliant
66-MHz cores. Such cores require a
great deal of hand-tuning during the
design and layout stages so they are
optimized for a particular technology.

Like their ASIC counterparts, FPGA
designers may desire flexibility and
portability and can therefore benefit
from synthesizable designs. There’s
no reason that synthesizable cores
can’t be targeted to FPGA designs, but
mapping a core to an FPGA technol-
ogy does present challenges.

In general, commercial synthesis
tools are less efficient at mapping to
complex programmable logic blocks
than to relatively simple ASIC cell
libraries. The effect of routing length

is usually greater for FPGAs, producing
unanticipated delays on critical paths.

The design-tool flows for most FPGA
vendors do not have a tight loop from
layout back to synthesis. So, the syn-
thesis process usually can’t take into
account useful layout information
(e.g., a chip floorplan specifying the
location of timing-critical blocks.

The result: less correlation between
the preroute timing estimates from the
synthesis tool and the accurate post-
route timing results. When it comes
to final chip timing, surprises are
usually negative rather than positive.

Finally, the gate capacity of even the
largest FPGA devices is far below that
of ASICs and custom chips, which
limits opportunities for multicore
designs. So, on-chip buses aren’t com-
mon in FPGAs.

Combinations of a few cores are
possible in large programmable devices:
for example, including several Ether-
net cores to implement a network re-
peater, or pairing a PCI core and a USB
host core for an adapter chip to add
USB to a PC without chipset support.

WORKS IN PROGRESS
Design reuse, including licensing of

commercial IP, is key to SOC design.
And a significant industry has arisen
to provide a wide range of VC products.
Several industry initiatives are address-
ing the needs of VC suppliers and users.

The IEEE Test Technology Techni-
cal Committee Embedded Core Test
Study Group has also been working
on VC test issues, and this has led to
the proposed IEEE P1500 specification.

It’s important not to minimize the
issues and concerns involved in VC use.
Recognizing this, two industry groups
focus on the business and legal aspects
of VC license and use.

Many VC suppliers are members of
the RAPID trade association, which
works on common VC license agree-
ments and catalog methods. RAPID
cooperates with the Virtual Component
Exchange (VCX), which is developing a
structure for simplified VC transactions.

The immaturity of EDA tools for VC
integration and SOC design is one chal-
lenge to design reuse. Also, new suppli-
ers may underestimate the difficulty
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Debugging,
In-Circuit Style

FEATURE
ARTICLE

John Andrews & John Day

t
Looking for a tool
that will shorten the
development and
debug cycle? Ask
John, or John, and
they’ll point you to in-
circuit debuggers.
Listen in as they
compare emulators,
simulators, and other
tools that can reduce
your time to market.

hanks to the
amazing Turing

machine, embedded-
system designers can cre-

ate an endless array of different end
products using the same simple, finite
instruction set of their choice.

This freedom means that a generic
tool that supports the features of a
specific processor can address the needs
of developing a flight-control system
or a toaster oven. For those of us in
the business of creating flight-control
systems, toaster ovens, or any other
electronic systems, this is a good thing.

Arguably, the strongest advantage
of basing a design on programmable
digital logic, as opposed to fixed func-
tion digital or analog devices, is the
ability to bring these generic tools to
bear. There’s no doubt that, in practice,
every system must be brought to life
in a test bed as unique as itself. Thanks
to the theoretical advances of people
like Mr. Turing and the practical ex-
perience of generations since, a lot of
the work has been done for us.

The standard tools of the trade for
embedded-system design range from
purely software monitors and simula-
tors to custom silicon for in-circuit

emulation. The main objective of all
these tools is to provide a window
into the operation of the software
inside the embedded processor.

A software simulator is independent
of the hardware under development,
and an in-circuit emulator seamlessly
replaces the target processor for maxi-
mum hardware control. Other tools
range between these approaches in
cost and performance. The benefit of a
tool in shortening the product devel-
opment cycle increases with its level
of integration with the end-product
hardware.

SIMULATION
Many embedded processors are

supported with software instruction
simulators. Some of these only simu-
late instruction execution. Most offer
breakpoints, which allow fast execution
until a specified instruction is executed.
Many also offer trace capability, which
shows the instruction-execution history.

All simulators provide read and
write access to the internal processor
registers and control of simulated
program execution. Although instruc-
tion simulation is useful for algorithm
development, embedded systems (by
their nature) require access to periph-
erals, including I/O ports, timers, ADCs,
PWMs, and so on.

More advanced simulators (such as
MPLAB-SIM) implement many periph-
eral features including I/O pins, inter-
rupts, as well as status and control
registers. These peripheral simulators
help you verify timing and basic periph-
eral operation.

They provide various stimulus
inputs, ranging from push buttons
connected to I/O pin inputs, to logic
vector I/O input stimulus files, to
regular clock inputs and internal reg-
ister value injection for simulating A/D
conversion data or serial communica-
tion input. Many embedded systems
can effectively be debugged using the
proper peripheral stimulus.

Simulators also offer you the lowest
cost development environment. In
many cases, they’re available free of
charge. Peripheral implementations
help debug peripheral interaction and
are more effective than instruction-
set-only simulators.



www.circuitcellar.com CIRCUIT CELLAR ®                                                                                                             Issue 109 August 1999        21

Unfortunately, it’s rather difficult
to simulate all possible external con-
ditions, so many real-time systems are
tough to debug with simulation only.
Also, simulators typically run at speeds
100–1000× slower than the actual
processor, so long timeout delays
must be eliminated when simulating.

IN-CIRCUIT EMULATION
In-circuit emulators (ICEs) offer

real-time code execution, full periph-
eral implementation, and breakpoint
capability. High-end emulators also
offer real-time trace buffers, and some
will timestamp instruction execution
for code profiling. Emulators plug into
your target system in place of the
embedded processor.

ICEs are sometimes implemented
with a special ASIC or FPGA that imi-
tates the core processor code execution
and peripherals. Although this approach
can yield an emulator that supports
more processor families, behavioral
differences between the actual device
and emulator can crop up.

Some manufacturers have lock-
stepped the behavior of emulated and
real processors by designing special
bond-out emulation devices. These
devices use the same circuit technology
as the target processor and provide the
emulator access to the internal data
registers, program memory, and periph-
erals. This process is accomplished by
eliminating the processor’s internal
program memory and providing this
memory through emulation RAM.

The microcontroller firmware is
downloaded into the emulation RAM,
and the bond-out processor executes
these instructions while using the
same data registers and peripherals as
the target processor. The I/Os of the
bond-out silicon are made available
on a socket that’s plugged into the
system under development instead of
the target processor being emulated.

Emulator systems provide the most
direct connection between the user
interface host and the system being
developed. Direct I/O and peripheral
access is provided by the bond-out
chip. The emulation RAM supports
fast “single button” code revision
downloads.

State-of-the-art emulators provide
additional aids, like multilevel condi-
tional breakpoints and instruction
trace including date- and timestamp.
For example, the MPLAB-ICE 2000
trace analyzer permits system debug-
ging without halting the processor.

With development tools, like any-
thing else, you get what you pay for.
The complexity of trace buffers, high-
speed emulation RAM, and specialty
bond-out chips make emulators more
expensive.

Some manufacturers also place
restrictions on maximum processor
clock speed or operating voltage. Cabling
to the system can be clumsy or cause
RF interference. Also, a system with
close mechanical constraints may have
difficulty accommodating the emulator
probe instead of the target processor.

DEBUGGING WITHOUT AN
EMULATION SYSTEM

The price/performance gap between
the emulation’s total replacement of
the target processor and interpreting
hints from a software simulator leaves
a lot of room for intermediate solutions.
The simulator provides the basic user
interface required for embedded hard-
ware cross-development (breakpoints,
single-stepping, watching variables, etc.).
Its main limitation is its complete
isolation from the target hardware.

If you’re simulating, you’re also
probably using the burn-and-learn
method of run-time firmware develop-
ment. First, you burn a chip with a
device programmer, then plug it into
the target hardware and watch the sys-
tem crash. After much head scratching
and reproducing the symptoms in
simulation, you change the source code,
rebuild the executable, and burn an-
other chip.

Without access to internal proces-
sor RAM, the program counter, and
quick program-memory downloads and
breakpoints, this debugging method
can be inefficient, slow, and tedious.
Routines can be added to dump vital
debugging information to a serial port
for display on a terminal. I/O pins can
be toggled to indicate program flow.

Obviously, if more symptoms are
provided by the target system as it runs,
you can make more logical changes to
the source code. Otherwise, it’s frustrat-
ing to wonder why certain things are
happening when you use this method.

Table 1—Choose the appro-
priate development tool by
comparing the features and
tradeoffs of the various
options available.

Burn and Software In-circuit In-circuit In-circuit
Feature learn simulation simulation emulator debugger

Real-time execution Yes No No Yes Yes
Low cost Yes/free Yes/low/free Yes/low No/high Yes/low
Full device peripheral Yes No/limited Yes/limited Yes Yes
  implementation
Automatic download No Yes Yes Yes Yes
  of new program
No loss of target device I/O Yes Yes/sometimes Yes/sometimes Yes No
  pins when debugging
View and modify RAM No Yes Yes/limited Yes Yes
  and peripherals
Resources needed to None None Serial port, None Two or less I/O,
  support debugging some I/O pins minimal program

and data RAM
Simple connectivity of None None No/complex No/complex Yes
  debugger to target
Real-time trace buffer None No/limited No/limited Yes No
Single-stepping None Yes Yes Yes Yes
Hardware breakpoints None Yes/unlimited Yes/limited Yes/unlimited Yes/one
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IN-CIRCUIT SIMULATORS
When simulating code where

branches are conditional on the state
of an input pin or other hardware
condition, a simulator needs to know
that state from the target hardware.
Usually, you can manually provide this
information in the form of simulator
stimulus. If the simulator can ask the
target hardware for the stimulus di-
rectly, it takes one step away from being
software-only and enables a certain
amount of hardware debug.

This approach is taken by the SIM-
ICE development tool for the PIC16C5x
8-bit microcontroller family. SIMICE
integrates the capability of the MPLAB-
SIM simulator with a communication
module that acts as the target processor.

The module stimulates the simula-
tion directly from the target processor’s
digital input pins and enables the simu-
lator to set binary values on the output
pins. This compromise gets the simu-
lator one step closer to the hardware and
overcomes the expense of an emulator.

If a well-developed software simula-
tor exists, providing it with a means of
gathering stimulus, via communication
with target hardware, makes it more
valuable. But, there are a few hurdles
that SIMICE doesn’t overcome.

It runs at the speed of a simulator so
it can’t set and clear output pins fast
enough to implement timing-critical
features like a software UART. It also
doesn’t support the more complex
peripheral features (e.g., ADCs, PWMs)
of higher integration microcontrollers.

RUN-TIME MONITORS
One important feature present with

in-circuit simulators is a communica-
tion channel between the host develop-
ment system and the target hardware.

Once this channel exists, the next
logical step takes execution of the tar-
get code out of the host system’s simu-
lator and cuts it loose on its native
target hardware. This multiplexed
execution of code under development
and communication of debug informa-
tion with a cross-development host is
referred to as a run-time monitor.

Such tools typically consume some-
thing like a UART in the target hard-
ware to provide the communication.
The host can then issue commands to

the target processor so it performs debug
functions like setting or reading mem-
ory contents.

Some code-execution control is also
possible. Software breakpoints are
implemented by inserting GOTO instruc-
tions in locations where you want code
execution to vector to the monitor and
provide control and data to you. If the

features of an existing host-system
simulation tool can provide the user
interface, then existing technology may
be leveraged into greater functionality.

Software breakpoints can be built in
at compile time. Other features, such
as hooking into a periodic timer inter-
rupt to copy data from the target to the
host, can also be included when building
the executable. These techniques don’t
require writing to program memory at
runtime, so they can be used with burn-
and-learn debug using OTP devices.

It’s amazing that the time spent
waiting for windowed devices to UV
erase didn’t get included in “crash,
erase, and burn.” If changes are being
made quickly and only a few devices
are available, the erasing can be the
most time consuming. So, monitors
that can be written quickly and with-
out a UV erase cycle are often found
in systems with RAM or flash pro-
gram memory.

The routines that transfer debug data
to the host or download a new execut-
able (i.e., the monitor code) occupy a
certain amount of program memory on
the target. They also require data mem-
ory and consume some of the target
processor’s bandwidth in addition to the
UART or other communication device.

The bandwidth consumption is
largely mitigated by the fact that most

of this overhead occurs when target
code execution is not in progress.
Uploading data values to a watch
window while servicing a software
breakpoint or downloading a new
target code revision both occur when
the target code isn’t running.

A run-time monitor is a great step
forward from simulating in isolation
from the target hardware. But because
it’s a purely software tool running on
the target processor, there are some
limitations on how much control it
can get over program execution. Add-
ing a few simple support features in the
silicon of the target processor can turn
a software monitor into a system with
all the basic features of an emulator.

IN-CIRCUIT DEBUGGERS
The widespread advent of reprogram-

mable flash program memory has made
in-circuit debugger tools practical for
single-chip embedded microcontrollers.
In-circuit debuggers enable the embed-
ded processor to self-emulate.

It’s hard to describe a debugger’s
capabilities and tradeoffs of a debugger
without referring to a example. So, let’s
take a look at MPLAB-ICD, which is
based on the PIC16F877 8-bit flash
memory microcontrollers and can be
used to develop various PIC16Cxx con-
trollers. It’s also a programmer for the
flash PIC16F87x family.

MPLAB-ICD uses the in-circuit
debugging capability built into the PIC-
16F87x. This feature, along with the
in-circuit serial programming (ICSP)
protocol, offers in-circuit flash program-
ming and debugging from the GUI of
MPLAB’s IDE.

You can develop and debug source
code by watching variables, single-
stepping, and setting breakpoints. Run-
ning at full speed enables you to test
hardware in real time.

The in-circuit debugger consists of
three basic components—the ICD
module, ICD header, and ICD demo
board. Your serial port connects the
MPLAB software environment to the
ICD module. When instructed by MP-
LAB, this module programs and issues
debug commands to the target ’16F87x
using the ICSP protocol, which is
communicated via a 9″ six-conductor
cable using a modular plug and jack.

Careful comparison
of the wide variety of

development tools
available today is the
best way to figure out

how to get your
product to market in

a timely fashion.
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SOURCE
MPLAB-SIM/-ICE/-ICD
Microchip Technology, Inc.
(888) 628-6247
(480) 786-7200
Fax: (480) 899-9210
www.microchip.com

John Andrews has more than 15 years
of experience as an embedded system
hardware and software design engi-
neer. He is currently a principal field
applications engineer at Microchip.
You may reach him at john.andrews@
microchip.com.

Also a principal field applications
engineer, John Day has worked for
Microchip for six years and was previ-
ously senior hardware design engineer
for Digital Equipment Corporation’s
Alpha Workstations Group. You may
reach him at john.day@microchip.com.

A modular jack can be de-
signed into a target circuit board
to support direct connection to
the ICD module or the ICD
header can be used to plug into
a DIP socket. The ICD header
contains a target ’16F877, a
modular jack to connect to the
ICD module, and provides 40-
and 28-pin male DIP headers to
plug into a target circuit board.

You can plug the ICD into
custom hardware or use the
included ICD demo board,
which provides 40- and 28-pin
DIP sockets that accept a
’16F87x device or the ICD
header. The board also offers
LEDs, DIP switches, an analog
potentiometer, and prototyping
area. Even if your hardware isn’t
available, PICmicro prototype
development and evaluation of
the MPLAB-ICD are feasible
with this board.

RUN-TIME OPERATION
The debug kernel is downloaded

along with the target firmware via the
ICSP interface. A nonmaskable inter-
rupt vectors execution to the kernel
when the program counter equals a
preselected hardware breakpoint ad-
dress, after a single step, or when a halt
command is received from the host.

As with all interrupts, this interrupt
pushes the return address onto the stack.
On reset, the breakpoint register is set
equal to the reset vector, so the kernel
is entered immediately when the device
comes out of any reset.

The ICD module issues a reset to
the target ’16F877 immediately after a
download. So, after a download, the
kernel is entered and control is passed
to MPLAB running on the host.

You can then command the target
processor as you choose. All RAM
registers including the PC and other
special-function registers can be modi-
fied or interrogated. You can single-
step, set a breakpoint, animate, and
start or stop full-speed execution.

Once started, a halt of program
execution causes the PC address prior
to kernel entry to be stored, which
enables MPLAB to display (in source
code) where execution halted. When

you command the target host to run
again, the kernel executes a return from
interrupt instruction and execution
continues at the address that pops off
the hardware stack.

SILICON REQUIREMENTS
The breakpoint address register and

comparator, along with some logic to
single-step and recognize asynchronous
commands from the host, make up most
of what’s needed in silicon. The ICSP
interface is in place to support program-
ming and doesn’t constitute an addi-
tional silicon requirement.

When this channel is used for in-
circuit debug, these I/O pins may not
be used for other run-time functions.
Photo 1 shows the device’s major func-
tional blocks. The ICD uses very little
Si area because it connects the existing
features of the ICSP interface and ICE
support with only a little extra logic.

RUN-TIME REQUIREMENTS
Besides the I/O pins of the ICSP

interface, the ICD consumes several
other processor resources. The debugger
kernel must reside and execute in the
target processor, so it consumes a
small amount of what’s available:

• ~256 words of program memory
• ~10 bytes of general-purpose RAM

• one level of hardware subrou-
     tine stack
• two general-purpose I/O pins

The processor bandwidth consid-
erations are the same as those
for a run-time monitor. All
debugging processing is done at
a time when target code isn’t
running anyway (e.g., between
single steps or after hitting a
breakpoint).

We’re fortunate that the days
of hand-assembling source code
and keying it into a bootloader
are long gone. Make sure the
development tool you choose
has full source-level debugging
and all the other modern crea-
ture comforts. Table 1 summa-
rizes the important features of
emulators, simulators, and in-
circuit debuggers.

With basic run-time features
of single step, hardware breakpoint,
full-speed execution, and full access
to all RAM and peripherals, an in-
circuit debugger is a reasonable alter-
native to in-circuit emulators.

A five-wire cable can give a clear
window into the device code execution
and peripheral state. Such tools may
shorten your development cycle and
get your product to market sooner. I

Photo 1— The Si area that implements the ICD feature is very small com-
pared to the major peripherals labeled in this die photo of the PIC16F877.

www.microchip.com
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Induction Motors

FEATURE
ARTICLE

Gordon Dick

s
If at first your variable
frequency drive project
doesn’t succeed….
Fueled with the desire
to make a VFD project
work and armed
with an embedded
controller, Gordon
charged through the
setbacks and reached
his objective at last.
Here’s how.

everal years ago,
I started a variable

frequency drive (VFD)
project. The circuit came

from an applications book and it pro-
duced a variable frequency squarewave
whose amplitude also varied to keep
the voltage-to-frequency ratio constant.

To get the variable amplitude, I
built a variable supply that used a
phase-controlled SCR bridge feeding
an LC filter. The high-voltage electro-
lytic for the filter was quite expensive
and the inductor was made from a
microwave oven transformer rewound.
The squarewave was produced by
connecting the motor to a power FET
bridge supplied from the variable-
amplitude supply.

I have no doubt that the
circuit would have eventu-

ally worked, but during the proto-
typing I managed to blow all four
devices in the bridge drive section
twice. I can’t remember my exact
mistakes, but the frustration and
anger are still fairly vivid in my mind.

After the second blowout, the
project sat on my bench for a long
time and was eventually dismantled
to make way for something else. It
always bothered me that I let that
project beat me.

The project I’m going to describe
here is also a VFD, but it’s implemented
in quite a different way. An embedded
controller is a significant component
to this project, which was not the case
the first time around.

That makes this project more diffi-
cult in some ways (there’s all that
code to create, debug, and test) but it
certainly makes it more powerful. If
you want to add a feature, just create
the code and reblast the EPROM.

I believe I’ve vindicated myself. I
eventually did get a VFD project to
work, albeit many years later. And, in
many ways, this VFD is superior to the
one I first tried to build.

CURRENT STATE OF VFD
Many semiconductor manufacturers

produce complete lines of power mod-
ules suitable for driving induction mo-
tors, and modules capable of driving
motors in the 20- to 50-hp range are
available. IGBTs are the usual power
devices used in a power-module drive
bridge.

A power module only gives you the
muscle; there’s still quite a bit of cir-
cuitry required before you have a motor-
drive unit. For example, there’s the
drive circuits for the IGBTs as well as
the circuitry to monitor the motor-

Photo 1 —Here’s the complete system.
The wirewrap board contains the ’HC11
and the SA828, and the speed knob is
the red pot in the corner. The IRPT-
1059C is mounted to the vertical heat-
sink. The motor is a 1⁄3-hp 1725-rpm
unit and the isolation transformer is a
10-kVA unit—big and heavy.

Part 1: A Different VFD
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drive current, voltage, and
temperature. International
Rectifier produces a reasonably
priced motor-drive module for
three-phase motors up to 1 hp
(they make modules for larger
motors, too).

The IRPT1059C PowerIR-
Train does everything I men-
tioned above and also has the
rectifier/filter unit to produce
the inverter supply voltage.
The functions contained in the
IRPT1059C are shown in Fig-
ure 1. In Photo 1, the green
PCB with two large black
electrolytics standing on the
board mounted to a vertical
heatsink is the IRPT1059C.

There may be other folks
that make PWM waveform generators,
but I came across Mitel first, and after
they sent me evaluation samples, I had
no need to look for others. Certainly,
another device may have features that
make it more attractive in a particular
application, but the Mitel SA828 has
an impressive list of features:

• MOTEL interface that enables it to
be used with most micros

• wide power frequency range
• 12-bit speed control accuracy
• carrier frequency selectable to 24 kHz
• sinusoidal waveform data stored in

internal ROM

The block diagram of the SA828 is
shown in Figure 2. From the program-
mer’s perspective, there are five regis-
ters to be written to. Unfortunately,
like many micro peripherals, this
device is write-only.

PROGRAMMING THE SA828
BLOCK

There are two 24-bit registers that
need to be written to 8 bits at a time
to use the SA828. One of the registers
receives initialization data and the
other receives operating data.

I won’t go through the procedure for
establishing the bit pattern for these
registers here because it’s somewhat
tedious and involves lots of new acro-
nyms (for details, see the SA828 data-
sheet and the code posted on the
Circuit Cellar web site).

The code for the SA828 was built
in blocks (or modules). After wiring a
socket for it on my trusty ’HC11
prototyping board, I created some
simple code just to verify that data
was being received properly. Once I
knew data was getting to the SA828
and it was creating PWM waveforms
correctly, I gained some confidence.

Because the motor speed in this
project is established by setting a
speed setpoint potentiometer, some
code is created that will read one of
the ’HC11 ADC inputs (which has a
pot connected to it) and convert that
to an appropriate frequency value to
send to the SA828. The ’HC11 has
nothing else to do here but look after
the SA828. I have it average the four
ADC result registers before using the
setpoint from the pot.

To convert the ADC number to a
desired motor frequency, multiply it by:

90
256

and add 10. This way, you never try
for zero speed. The ADC values range
from 0 to 255, and the desired motor
frequency varies from 10 to 100 Hz.
For the 1725-rpm motor I used, this
would produce synchronous speeds of
300–3000 rpm.

Before the number from the ADC
can be used as desired motor frequency
by the SA828, it needs to be converted
to a 12-bit power frequency select word
(PFS, as it’s referred to in the data-

sheet). This conversion is done by multi-
plying the number from the ADC by:

4096
100

Keep in mind that these numbers are
for this project only.

At this point, I have a routine that
reads the ADC, calculates the PFS, and
sends a new desired frequency to the
SA828 continuously. I can verify that
this routine is working correctly with
a scope by checking the PWM outputs
of the SA828. There’s still no motor
connected and won’t be for a while.

When the speed of the motor is
reduced below 60 Hz, the motor volt-
age should be reduced proportionately
to keep the voltage-to-hertz ratio
constant. The amplitude of the PWM
voltage is established by an 8-bit ampli-
tude select word (ASW), and maximum
voltage corresponds to the ASW = 255.
For frequencies below 60 Hz, this
implies a relationship between fre-
quency and amplitude of:

 amplitude = 4.25 × frequency

The 4.25 factor is convenient from
a programming perspective, in that
multiplication by four can be done
with shifts and multiplication by 0.25
can also be done with shifts. So, the
4.25 factor can be handled without
any floating-point routines or approxi-
mations. This completes the code for
the SA828.

Figure 1 —IR doesn’t give us a complete schematic of the IRPT1059C, but this figure shows the functions that the board implements.
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MOVING OUT
It’s time to begin the

move to a stand-alone
system. Until now, the
SA828 has been mounted
on the prototyping
board and all that hap-
pened was the creating
and testing of code.

Now the SA828 will
be mounted on its own
board. In addition to
that, it will get output
buffers for the PWM
outputs so that opto-
isolators, which will
eventually drive the
IRPT1059C, can be
installed.

However, the ’HC11
on my prototyping board
is still controlling the SA828. Once
the wiring is complete, I’m able to
verify that the SA828 is running fine
on its own board. The added buffers
and optoisolators are working as well.

The optoisolators I used here aren’t
just general-purpose devices. Because

PWM switching could be happening in
the 24-kHz range, I wanted to use opto-
isolators intended for motor-control
applications. I had some HP datasheets
for suitable devices and was able to get
them easily. The HCPL-4506 devices
work fine and are reasonably priced.

Here’s where things
can get interesting in
several ways. It’s time
to connect some of the
building blocks together

and make a system. At best, there’ll
be a motor running whose speed is
controlled by a pot setting. At worst,
a problem will appear and when you
check the motor voltage with the
scope, the scope ground becomes an
arc welder when connected.

Figure 2 —This simple block
diagram hides a lot of circuit
complexity. The switches on the
right produce the PWM drive
signals for the bridge, and the
’HC11 interface pins are on the
left.
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Figure 3— A rather conventional embedded system, a PWM chip (U5)
and some optoisolators make up the VFD system.
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I’ve seen my students do
this many times when
working on unisolated
equipment connected to
the AC power line. It’s
important that some care
and thought be applied here
to avoid equipment damage
and shock hazard.

Isolation is important.
You either isolate the circuit
under test or the test equip-
ment (when the prototyping
phase is complete, you can
remove the isolation).

In this case, it was con-
venient to isolate the circuit. I didn’t
have 220 VAC where I was working
on this project so I used a heavy-duty
step-up transformer to get from 110 to
220 VAC. With this increase, I got
isolation. More than once when I con-
nected the scope to check something,
I was pleased that I had isolation. No
shocks and no arc welding!

Some initial testing on the IRPT-
1059C indicated that a pullup was
required on the *RESET input. The
logic high-level didn’t seem to be high
enough. This turned out to be a mistake.

After extensive troubleshooting and
hairpulling, I found where it said in
the datasheet not to add any pullup on
the *RESET input. When I took out the
pullup, it appeared to power up cor-
rectly. Shot myself in the foot again.

Before the IRPT1059C will operate
properly, it requires a short initializa-
tion sequence. With this code executed
after the previously created code and
with the motor and 220 V connected,
I get motor operation. Excellent! Ro-
tating the pot changes the motor speed,
and it looks like I’ve got functionality.
The project is almost complete.

A SELF-CONTAINED VFD
Although I have a system that works,

it’s not a stand-alone unit. It’s time to
add an ’HC11 to this board and stop
using the micro on my prototyping
board. There are some choices to make
here. Do I use the ’HC11 in single-chip
mode and make use of its internal
512-byte EEPROM or do I use expanded
mode and attach additional memory?

Having done an earlier project in
single-chip mode (Circuit Cellar 92), I

remembered that code development
was somewhat difficult, due mostly
to not having 48-pin ZIF sockets. And
although you can do an amazing amount
in 512 bytes, I concluded that may not
be enough for later enhancements. So,
I decided to use expanded mode with
a 32-KB EPROM.

The 256 bytes of internal RAM on
the ’HC11 will be adequate so I don’t
need a RAM chip on the VFD board.
The memory map is also a duplicate of
the prototyping board to make things
as convenient as possible. After quite
a bit more wirewrapping, I have an
’HC11, a 27C128, and glue logic wired
onto the VFD board.

Now, how do I test that it works?
There’s no monitor program and serial
link to a PC to help. I decided to make
a simple test program that exercises the
micro and memory. An interrupt-driven
clock program done for another project
will do just fine for the test program.

First, I got the test code to work
correctly on the prototyping board,
which took a couple of tries since I
hadn’t made any ROMable code for so
long that I forgot some of the details.
But, once I got it working on the proto-
typing board, it was time to try it on
the VFD board.

I transferred the EPROM and you
guessed it, it doesn’t work. I was pre-
pared for this so it wasn’t a downer.
There were several small snags to
correct on the VFD board before it
would run the test code.

The Eclk was running too slow
because I had used crystal capacitors
that were a bit too large, thinking it
wouldn’t matter much. Seems it does,

so I replaced them with
the proper value and the
Eclk signal was fine.

The MODA and MODB
lines were still open and
they had to be tied high
for expanded mode. Only
after ringing out all the
data and address bus wires
did I find the error. Pin 11
of the 573 had to be
grounded, not tied high. I
fixed my schematic and
changed it on the VFD
board, and the test code
works fine (see Figure 3).

All I had to do was reblast the
EPROM with the code that was already
working and I’d be done. But no, it
didn’t work. I can’t explain how those
couple of lines of code in the RAM
version didn’t come along to the ROM-
able version. But when that discrepancy
was fixed, I had the working system
(see Figure 4).

The system works much as I ex-
pected. Keep in mind that I don’t have
the test equipment to do detailed
measurements of torque or speed on
the motor, but the motor speed certainly
tracked the fundamental frequency of
the PWM drive signal minus the nec-
essary slip.

The routine to vary the motor volt-
age does its job (demonstrated nicely
as the speed is reduced). At the mini-
mum setpoint of 10 Hz (300 rpm), the
motor runs but with very little torque
because the motor voltage is so low.
You can stop the motor by hand and
the motor friction is sufficient to
inhibit the motor from getting itself
going again.

IMPROVEMENT POSSIBILITIES
After the motor runs for several

minutes, the body gets quite warm
(without a load connected to it). As
well, the noise from the switching is
quite irritating. Both of these prob-
lems exist because the PWM carrier
frequency is too low (about 2.4 kHz).

In Figure 3, the CLK input of U5 is
fed from the Eclk signal from U2, which
is 1.23 MHz when a 4.9152-MHz
crystal is used with U2. Using the
1.23-MHz signal, the highest-frequency
PWM carrier is 2.4 kHz.

Figure 4— The complete system wiring is shown here. The step-up transformer provides
isolation, which means safety.
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SOFTWARE
The complete source code for this
article is available via the Circuit
Cellar web site.

SOURCES
SA828
Mitel Semiconductors
(619) 675-3400
Fax: (619) 675-3450
www.mitelsemi.com

IRPT1059C
International Rectifier
(310) 322-3331
Fax: (310) 322-3332
www.irf.com

HCPL-4506
Hewlett Packard
(800) 235-0312
(408) 654-8675
Fax: ( 408) 654-8575
www.hp.com

If the signal fed to CLK of U5 is
increased to the maximum of 12.5 MHz,
the PWM carrier can be boosted to
24.4 kHz. That puts it well out of the
audio range and should also be high
enough that the switching shouldn’t
produce any heat in the motor.

This project begs for an LCD to
provide information about what’s
happening with the VFD. I’d first add
a display of what frequency the system
is driving the motor with, which should
probably be displayed in revolutions
per minute rather than hertz.

This is actually a fair bit of code to
create. There’s the LCD initialization
code. Then there’s all that massaging
from hex to decimal and converting to
ASCII for the LCD. Maybe that 32-KB
EPROM isn’t too large after all.

Information about motor current
and voltage would also be useful. The
motor current and voltage are available
as signals from the IRPT1059C. How-
ever, they are unisolated.

HP has some chips that are made
just for this job. If 8 bits of current and
voltage are sufficient, you can use an
HPCL-7840 analog isolation amplifier
followed by a stage of differential to
single-ended conversion. You’d get a
signal that could be fed directly to one
of the ADC inputs on the ’HC11.

The code to implement this version
would be fairly straightforward. But, if
like the “tool man” you need more
power, HP has an isolated 15-bit ADC
(a two-chip solution) that would fit here
nicely. Along with more bits, it inter-
faces to the micro via a three-wire link.

The coding here is potentially more
difficult, and you still have two chips
to connect. But, if you want 15 bits of
resolution, you’ll do it.

Another nice feature would be a
soft start/stop where motor voltage is
increased from zero rather than starting
at maximum. A stop button would need
to be added to implement a soft stop
because the micro has no other way to
know when a stop will occur. You can
also ensure that rapid setpoint changes
are translated into slow speed changes.

There’s one last improvement to
consider—making use of the *FAULT
signal from the IRPT1059C and the
TRIP input on the SA828. The *FAULT
signal is activated on various current

fault conditions as well as overtemp-
erature. If the micro used this as an
interrupt and shut off the PWM signals
using the TRIP input on the SA828, it
would be a nice protection feature. It
could also check to see if the fault was
removed and subsequently enable the
PMW signals.

I imagine some of you are more inter-
ested in controlling the speed of single-
phase induction motors rather than
three-phase motors. You can build your
own motor-drive module or buy one.

Mitel has that base covered, but IR
doesn’t. Mitel offers the SA838 single-
phase PWM waveform generator, but IR
doesn’t have motor-drive modules for
single-phase applications.

Next month, I’ll explain some of the
improvements and additions I’ve made
to this VFD project and the lessons I
learned while implementing them. I

Gordon Dick is an instructor in elec-
tronic technology at the Northern
Alberta Institute of Technology, Ed-
monton, Alberta, Canada. He consults
occasionally in the area of intelligent

motion control and is an avid wood-
worker. You may reach Gordon at
gordond@nait.ab.ca.

www.mitelsemi.com
www.irf.com
www.hp.com
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Flash Memories Do
Double Duty
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Kenneth Ciszewski

i
Before your micro
leaves home, you
want to make sure its
bags are all packed.
But what if the soft-
ware doesn’t fit into
the PROM, EPROM,
or EEPROM? Flash-
memory technology
offers a cost-efficient
solution for those tough
design requirements.

n the beginning,
there was PROM,

then EPROM, and then
EEPROM—various kinds

of storage for microcontroller software.
EEPROM was designed to be modifiable
on-the-fly but was, and is, expensive.
Now there’s flash-memory technology,
which is an improvement over these
technologies because it costs less and
provides in-circuit programmability.

I recently worked on a project using
a 68HC11ED0 microcontroller (a ROM-
less part). The first design requirement
for this project was that the microcon-
troller software had to be reloadable
from an external PC via serial port.
Second, front-panel control settings
needed to be stored and recalled from
time to time by the microcontroller
using onboard memory to change the
system functionality.

The third requirement was that the
front-panel control settings had to be
saved via serial port to a PC. And
lastly, different sets of front-panel
settings needed to be loaded into the
system via serial port from a PC.

The first requirement immediately
suggested the use of flash memory
because EPROMs aren’t in-circuit

reprogrammable. For the other require-
ments, I could have used any of the
serial EEPROMs available (I2C or SPI
interface) because the microcontroller
has an SPI port and plenty of I/O pins
that could be used to bit-bang a syn-
chronous serial interface. Rather than
add an extra part, I decided to store
the front-panel control settings in
another part of the flash memory.

Most flash memories have fairly
large partitions or sectors (4+ KB), and
because you must program a complete
sector at one time, they require a large
SRAM or DRAM buffer to hold the
data to be programmed.

Although these flash memories work
well with PCs and workstations, they
aren’t readily adaptable for use with the
many 8- and 16-bit microcontrollers
that have small quantities of SRAM.
Fortunately, some flash memories
have very small sectors.

The Atmel AT29C256 is a 32K × 8
flash memory that has 64-byte sectors.
The Atmel AT29C010A is a 128K × 8
flash memory with 128-byte sectors.
Both are 5-V-only parts (no extra 12-V
regulators required) and have become
reasonable in price. I estimated the
amount of software and data that the
system would require and decided to
go with the AT29C010A.

SYSTEM CONFIGURATION
Placing the flash memory in the

microcontroller address space takes
planning (see Figure 1). The interrupt
vectors of the 68HC11 (which has a
64-KB address space) start at $FFD6,
and the internal registers and SRAM
may be placed on any 4-KB boundary
in the memory map.

In this design, the registers are left
at $0000 and the SRAM is placed at
$1000 at startup by writing to the
Config register. I placed the flash
memory at $8000. At this location, it
extends beyond the normal 64-KB
address space.

To use the entire memory, I used
two Port A output pins on the ’HC11
connected to address lines A15 and
A16 as page selects (see Figure 2). This
gave four 32K × 8 pages in which to
store software and front-panel settings.

The requirement for reloading the
microcontroller software meant that I
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needed a place to store loader programs.
The AT29C010A has two memory
areas, the lowest 8 KB and the highest
8 KB, that can be individually block-
locked after programming. Once block-
locked, these areas cannot be changed
ever again.

I selected the top 8 KB to hold the
loader software because it will always
be the same, once developed and de-
bugged. And once locked, it can never
overwrite itself. This ensures the abil-
ity to always reload the system software.

I also included initial front-panel
default settings to permit the unit to
be set to a baseline control functional-
ity, should the saved settings become
trashed or otherwise unsuitable.

The initial software and front-panel
settings can be programmed into the
flash memory using a standard flash-
memory programmer. But, a word of
caution is in order.

Like most programmable-
memory manufacturers, Atmel
recommends certain device pro-
grammers whose programming
algorithms have been validated
by them. Data I/O, BP Microsys-
tems, and System General were
three device-programmer brands
that were recommended by my
friendly Atmel FAE. Because of the
complexity of the flash-memory
algorithms, problems can occur
when using equipment whose
algorithms are not validated.

I first used a Brand X program-
mer. There were many system
failures and lockups, and the
system didn’t want to start con-
sistently when powering up. I
finally discovered that the software
data (sector) protection (discussed
later) wasn’t being properly imple-
mented by the device programmer
and the flash memories were
overwriting themselves in random
places when the system power
was turned on and off.

Worse yet, this condition was
intermittent. Sometimes, the
memories would be fine. Other
times, they would die as soon as
I turned the system on or off.
Switching to a validated pro-
grammer solved this problem.

Another word of caution: on
many device programmers, the soft-
ware data protection must be specifi-
cally enabled in a configuration menu
before you program the device, despite
the apparent fact that the device will
not operate reliably in circuit unless
this is done.

It seems strange that enabling the
software data protection should be a
device-programmer option. Perhaps
this is because the Atmel datasheet
doesn’t plainly state that enabling the
protection is required.

Another issue that arose was that
the 68HC11 assembler didn’t recognize
addresses above $FFFF, although the
address space of the flash memory goes
beyond that value. So, I had to write a
simple program to take separate S-
record (.S19) files (one for each of the
four pages of the flash memory) and
combine them into a single S-record
(.S19) file with proper addresses and

line checksums that can be recognized
by the device programmer.

This translation program was writ-
ten in Visual Basic for DOS 1.0 and
enabled me to place the contents of
pages one, two, and three at arbitrary
points in the flash memory. Page zero
was assumed to start at $8000. Because
the microcontroller was also bootload-
ing software instructions to a DSP that
was part of the system, the translation
program also allowed placement of the
DSP software at a specified location
in page zero.

Using Visual Basic for the transla-
tion program permitted the creation
of a stand-alone executable file for the
PC that could be used in both batch
and make files processed by the Borland
Maker utility and used to control
assembly and linking of the software.

JUMPING BETWEEN PAGES
One challenge was figuring out

how to jump between flash-memory
pages without crashing the system.
When the software writes the change-
pages instruction to Port A, the micro-
controller suddenly finds its program
counter pointing to whatever the next
location would be, but on the new page.

Figure 1— This memory map shows the absolute addresses of
the flash memory that are used by the device programmer and,
also, the addresses seen by the microcontroller.

8-KB upper lockable
block (loaders)

Page 3 of flash
memory

Page 2 of flash
memory

Page 1 of flash
memory

Front-panel
control settings

’HC11 interrupt
vectors

Page 0 of flash
memory

System software

8-KB lower lockable
block (not locked)

$03FFFF

$03C000

$03BFFF

$038000

’HC11 system address

$02FFFF

$028000

$01FFFF

$018000

$00FFFF

$008000

$00FFD6

$009FFF

$01FFFF

AT29C010A absolute address

$01C000

$01BFFF

$018000

$0017FF

$010000

$00FFFF

$008000

$007FFF

$000000

$001FFF

$007FD6

$002000
$00A000

Figure 2— The flash memory connects directly to the
microcontroller’s address and data buses. The control
lines *CE, *OE, and *WE are created by a program-
mable logic device.

Page selection logic table for flash memory

Page selected Page select 1 Page select 0

AT29C010A 
flash memory

ECLOCK = enable clock signal from 68HC11
RW = read/write signal from 68HC11

Page 0

Page 1

Page 2
Page 3

0 0

0

1

1

0

11

A0

A14

A15

A16

D0

D7
*CE

*WE

*OE

+5 VDC

Ground

Address lines A0–A14
from 68HC11

Page select bit 0
(pin PA3 of 68HC11)

Page select bit 1
(pin PA4 of 68HC11)

Data lines D0–D7
from 68HC11

*A15 from decoder PLD

*WE = (ECLOCK) & *(RW)
from decoder PLD

*OE = (ECLOCK) & (RW)
from decoder PLD
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I needed a way to tell
the microcontroller where
it should go on the new
page, which usually doesn’t
have any particular relation
to where it was on the old
page. This was accom-
plished by loading into
the ’HC11 SRAM the code
that actually changes the
page and then jumping
into the SRAM to execute
the change.

At this point, the soft-
ware is at a known ad-
dress in SRAM and can
jump back out of SRAM
into the new page of flash memory to
any address chosen. The page-change
code can be loaded into SRAM at boot-
up or on-the-fly as required. Loading
on-the-fly allows different entry points
to different routines on the different
pages as required (see Figure 3).

STORING SETTINGS
Writing to the AT29C010A is won-

derfully simple. The memory has 1024
128-byte sectors. Address lines A0–A7
point to the byte within the sector, and
A8–A16 point to the sector within the
device. The memory has chip-enable
(CE) and write-enable (WE) pins simi-
lar to those found on SRAM devices.

The micro writes three special codes
to three special addresses for software
data (sector) protection. It then writes
128 bytes (starting at byte 0 of the sec-
tor) into a buffer in the flash memory.

The micro waits about 10 ms for
the data to be internally programmed
into the flash-memory cells. During
those 10 ms, the contents of the mem-
ory cannot be read or written, so it’s
advisable for the software to be running
in SRAM so the system doesn’t crash!

The datasheet describes how to
monitor certain data lines to find out
when the programming is complete.
Instead, I waited about 14 ms to be
safe and then continued on with the
next sector write or next software task.
This worked well.

To invoke the software protection,
the three special codes must first be
written in order to the specified ad-
dresses. The entire sector of 128 bytes
must also be written; otherwise the
software protection won’t work (see
Figure 4). Failure to follow these re-
quirements may prevent the software
data (sector) protection from working
and cause the flash memory to over-
write itself randomly during system
power-on transitions.

Also, note that the addresses used
for the data protection given in Figure
4 are for a flash-memory base address
of $8000. The flash-memory datasheet
gives different addresses for a flash
memory having a base address of $0000.
The special addresses change with the
base address of the flash memory.

I assigned one sector to each group
of settings being saved. Because I only
needed 12 bytes for the setting values,
the remaining bytes of the sector were
filled with $01, which is the NOP
opcode for the microcontroller. Of
course, there are ways to pack the data

more tightly into a sector, but
with all the memory space
available, it was simpler to
do it this way (see Figure 5).

The process of saving
settings starts when the soft-
ware writes the “save” routine
into the microcontroller SRAM
and jumps into the SRAM to
run it. The software changes
pages by setting the Port A
page select lines, writes the
software data protection codes
to the special addresses, trans-
fers the bytes to be saved from
an SRAM buffer into the
flash memory, and loads the

remaining 112 unused bytes with $01.
It then waits 14 ms before changing
back to the memory page it was previ-
ously operating in.

Next, the software exits the SRAM
and continues to run out of the flash
memory. Listing 1 shows SECLD, which
writes a sector to the flash memory,
and also LDSECLD, which loads LDSEC
into MCU SRAM before it runs (see
Figure 6). The process of recalling
settings is similar, except there’s no
need for the 14-ms delay because flash-
memory reads incur no long delays.

RELOAD FROM EXTERNAL PC
One of the goals of this design was

to use a standard PC program like
Procomm or HyperTerminal as the
loader software on the PC for design
and testing and later for updating
software in finished units. My previ-

Figure 3— Changing pages in flash memory requires loading the change-page
software into microcontroller SRAM so the change can be executed without crashing
the system.

Figure 4— Programming a flash-memory sector is done
by writing software protection codes and 128 bytes of
data to the memory, and then waiting while the memory
moves the data into its flash cells.

Continue with next software task

Wait at least 10 ms—do not attempt
to fetch instructions or data from the

flash memory during this time

Write 128 bytes to sector

Write $A0 to address $D555

Write $55 to address $AAAA

Write $AA to address $D555

Start of sector programming

Byte 0  parameter #1

Byte 1  parameter #2

Byte 2  parameter #3

Byte 3  parameter #4

Byte 4  parameter #5

Byte 5  parameter #6

Byte 6  parameter #7

Byte 7  parameter #8

Byte 8  parameter #9

Byte 9  parameter #10

Byte 10 parameter #11

Byte 11 parameter #12

Bytes 12–127 filled with
$01

One 128-byte sector of the
flash memory

Figure 5— Saving front-panel settings is simplified by
using a complete 128-byte sector, even though the
usable data is only 12 bytes.
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[Change page to page 1]

 [Jump to address YY 
in flash memory]

Address ZZ:

[Program continues in SRAM]

[Change page to page 0]

[Jump to address AA 

in flash memory]
Address YY:

[Program continues in
flash memory]

[Download page change
code (1 to 0)  to SRAM]

Jump to address ZZ in
SRAM

Code in
page 1
of flash
memory

MCU SRAM

Code in
page 0
of flash
memory
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* SECLD subroutine to save a sector of data to flash memory
* ENTRY: values to be saved to flash memory in buffer "FPLDBUF"
*   (128 byte buffer in SRAM)
*   page value (0,1,2,3) in variable  "MPAGE"
*   address of flash memory sector to be loaded in memory location
*   "CSECTOR"
* EXIT: contents of  "FPLDBUF" stored in flash memory at address
*   "CSECTOR"

SECLD LDX #FPLDBUF ;point to SRAM buffer containing code/data values
LDY CSECTOR ;point to base address of sector in flash memory

;to be loaded

* Go into MCU SRAM to write to flash memory
JMP SRAMSP ;JMP to code in MCU SRAM

RAMJSR ;beginning of code in MCU SRAM

* Code for security data protection enable for AT29C010A
; send codes to temporarily unlock memory sector protection
; then put it back in force
; addresses are based on $8000 base address of flash memory

LDAA #$AA
STAA $D555
LDAA #$55
STAA $AAAA
LDAA #$A0
STAA $D555

RPPAGEM LDAA #MPAGE;change to the page of flash memory where
;buffer is to be written

        STAA PORTA ;is to be written
LDAB #$7F ;set ACCB (AS COUNTER) for 128 bytes
NBFL LDAA 0,X ;get byte in MCU SRAM
STAA 0,Y ;store in flash memory IC (buffer)
INX ;increment pointers
INY
DECB ;have we moved all the data?
BGT NBFL ;no, do it again

;yes, we're done

LDY #$0C00     ;minimum 10-ms delay to let flash internally save
DCT DEY ;the buffer of data just written to it (~14 ms)
CPY #$0000 ;at 1.5-MHz ECLOCK rate
BGT DCT ;end of timeout
LDAA #PAGE3
STAA PORTA ;set memory back to page 3, where the loader is
JMP EPRJSR ;jump back into EPROM

EPRJSR NOP ;this code is  back in EPROM
RTS ;end of routine SECLD

* LDSECLD routine to load SRAM portion of SAPRHM
* ENTRY: N/A
* EXIT: contents of subroutine SECLD from RAMJSR to EPRJSR stored
* in MCU SRAM starting at location SRAMSP

SRAMSP EQU $1040 ;start of SRAM program space for part of SECLD

LDSECLD
LDX #RAMJSR;point to beginning of code (in EPROM) to be transferred
LDY #SRAMSP ;point to beginning of SRAM space

RTRANS LDAA 0,X
STAA 0,Y ;transfer bytes
INX
INY
CPX #EPRJSR ;are we finished transferring?
BLT RTRANS ;no, continue transferring

RTS ;yes, we're finished

Listing 1 —The subroutine SECLD saves a sector of data to flash memory. SECLD is loaded into SRAM by
the subroutine LDSECLD before being called.
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enable users to create multiple files of
front-panel settings that they can restore
when desired. It also lets them share
these settings with other system users.

DOUBLE YOUR PLEASURE
Many 8-bit microcontroller systems

can benefit from the ability to save
acquired data, user configuration pa-
rameters, front-panel settings, and
other information that changes as these
systems work in the real world. They
can also benefit from the ability to have
their operating software changed with-
out being taken apart and having their
stored program memory replaced.

Small-sectored flash memories enable
system designers to use a single device
for storing changing parameters and
updating system software. The addi-
tional software required to accomplish
these functions is straightforward. I
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[Run loader program to
download software into
SRAM]

[Jump into MCU SRAM]

[Program continues]

[Change to flash memory
page that contains sector to
be loaded.]

[Transfer bytes from SRAM
to flash memory.]

[Wait 14 ms]

[Change back to previous
flash memory page. ]

[Jump back to flash memory]

Flash
memory

MCU
SRAM

Figure 6— Storing
front-panel settings
requires putting the
storage software in
microcontroller SRAM,
and then reading the
front-panel control
values and putting them
into flash memory.

Figure 7— S1 records are for two-byte addresses,
whereas S2 records are for three-byte addresses.

ous experience with 68HC11 evalua-
tion boards suggested that this was
possible at rates up to 9600 bps.

Because of the 10-ms time period
required to program the flash-memory
sector, it was necessary to set a delay
time between the transmission of each
line of the S-record file. Fortunately,
both Procomm and HyperTerminal
have a way to do this.

The loader software receives one
line of an S-record file and calculates
the checksum of the line contents. If
it matches the checksum sent as the
last two characters of the S-record, the
S-record’s data portion is programmed
into the appropriate sector. Otherwise,
an error message is sent back to the
PC, and loading stops.

A couple tricky issues had to be
resolved to make this software loader
work smoothly. For one, the flash mem-
ory had to be programmed on 128-byte
sector boundaries, but S-record addresses
aren’t predictably aligned on any par-
ticular address boundaries. Because of
the limited SRAM buffer, I decided the
sector alignment needed to be done
before the data was sent to the micro.

Neither Procomm nor HyperTerm-
inal knows how to align the data, so I
wrote a preprocessor in Visual Basic 1.0.
This solution also solved the second
issue—the fact that S-record files often
have variable-length record (line) lengths
with no defined length limit. Prefor-
matting the S-record file into a conve-
nient record length answers the need
for a limited-size S-record.

DUMPING SYSTEM SOFTWARE
Dumping the complete system

software to a file on a PC is the reverse
of loading it. Here, the microcontroller
must create the S1, S2, or S9 string
that starts each line of an S-record.

It arbitrarily sets the length of the
S-record, which consists of the number
of character pairs comprising the ad-
dress, code/data, and checksum fields.
It must also calculate the checksum,
which is the one’s complement of the
sum of the values of the length, address
and code/data fields (see Figure 7).

The resulting S-record file has the
same record lengths and format as the
file that loads the system software. This
common format allows for dumping
software, examining and modifying it,
and loading it back into the system.

SAVING TO AN EXTERNAL PC
Saving the front-panel settings is

similar to dumping the system soft-
ware, except there’s less information
to transfer. The design originally called
for 36 front-panel settings to be saved,
although this was later increased to 100.

I decided to use the S-record format
for the front-panel settings so they
could be included as part of future
software releases. This arrangement
lets users change the system software
but keep their front-panel settings.

Restoring the front-panel settings
to the system is similar to reloading
the system software, but again, there’s
less data to transfer. My goal was to

SOURCES

AT29C010A, AT29C256
Atmel Corp.
(408) 441-0311
Fax: (408) 487-2600
www.atmel.com

68HC11ED0
Motorola Semiconductor Products
(512) 502-2130
Fax: (512) 502-2123
www.mot-sps.com

S_ LL AAAA DD..DD CC

S_   = S-Record identifier.  S1 is for 2-byte
          addresses, S2 is for 3-byte addresses
LL = Length of record = number of character
        pairs (AAAA + DD..DD + CC)
AAAA = Starting address of first character
             pair of code/data fields
DD..DD = Code/data character pairs

CC = Checksum = one’s complement of
         sum (LL + AAAA + DD..DD)
Examples:

S1 LL AAAA DD..DD CC

S2 LL AAAAAA DD..DD CC

www.atmel.com
www.mot.sps.com
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CPU BOARD WITH PENTIUM PROCESSOR
hard drive, and floppy drive support are available in various
combinations.

This single-board computer includes Ziatech’s industrial Em-
bedded BIOS and flash disk. Additionally, it can be configured
with the user’s choice of MS-DOS, Windows NT, or VxWorks.
Optional development toolkits are available to support the
implementation of these operating systems on CompactPCI.

Pricing for the ZT 5531 starts at $2625.

Ziatech Corp.
(805) 541-0488
Fax: (805) 541-5088
www.ziatech.com

DSP COPROCESSOR BOARD
analog-level triggering from an onboard 12-bit, 200-kHz DAC.
The DAC may also be used as a general-purpose analog output.

The PCI-431 family of boards is fully integratable with the
Hyperception RIDE advanced signal processing software for

Windows 95 and NT. RIDE offers
graphical (nontext) “connect the
blocks” programming and lists sev-
eral hundred functions including
FFTs, digital filters, matrix process-
ing, and such.

Datel also offers a low-level Win-
dows C code library for program-
mers (model PCI-431 WINS, comes
with full source code, $1295).
The binary executable version of
this library (no sources) is included
free with the board. The product
includes a one-year warranty.

The PCI-431E is priced from
$3995.

Datel, Inc.
(508) 339-3000
Fax: (508) 339-6356
www.datel.com

The PCI-431E is a high-performance,
16-bit, four-channel analog I/O DSP coprocessor

board for the PCI bus that offers true multilevel
concurrent coprocessing. Applications include fast Fou-

rier transform (FFT) ap-
plications, spectral analy-

sis, simulation, digital filtering,
communications systems, receiv-
ers, analytical instruments, vibra-
tion testers, robotics, and mod-
eling/simulation.

The PCI-431E includes sev-
eral subcontrollers so that the
DSP is not constantly burdened
servicing each A/D sample.
Instead, the DSP is free to pro-
cess blocks of math while the
A/D section continues automatic
sampling and storage. A fully
programmable frequency syn-
thesizer provides high-resolution A/D clocking or the user may
supply external clocking.

Frame triggering uses either an internal programmable timebase
or external signals. The board’s architecture offers modes such as
ring-buffered pretriggering for transient analysis applications or

The Ziatech ZT 5531 is a 6U CompactPCI processor board
designed for telecom, datacom, and industrial control applica-
tions. The board features a Pentium II Processor Mobile Module
at speeds up to 300 MHz.

It supports the hot-swap standard adopted by the PCI Industrial
Computer Manufacturers Group (PICMG) and drives up to 14
CompactPCI peripherals.

Its single-slot, onboard feature set includes L2 cache, ECC
synchronous DRAM sup-
port, and flash memory. It
also offers dual Ethernet,
dual serial ports, system
monitoring and alarming
functions, optional AGP
video, USB, and rear I/O
connections.

Optionally, PCM-
CIA, dual PMC
modules, IDE

www.datel.com
www.ziatech.com
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HIGH-RESOLUTION VIDEO MODULE
DaVinci is a rugged, high-resolution video display and

graphics module designed for embedded systems equipped with
PMC (PCI mezzanine card) expansion slots. It supports display
resolutions of up to 1280 × 1024 with 16M colors and features
a 64-bit BitBLT graphics engine equipped with either 2 or 4 MB
of RAM. The module is ideal for embedded applications such as
factory automation, imaging, and telecommunications.

DaVinci can add high-resolution video to baseboards or add
a second video port to baseboards already equipped with video.
This option is ideal for applications that require two monitors. For
example, in a CAD application, designers typically use one
monitor to work on their drawing and one to display the CAD tool
menus. Similarly, in a video-editing application, one screen can
be used to display the editing toolbox and the other used to
display the source footage and output.

DaVinci features a 32-bit PCI bus interface with bus master
capability and meets all IEEE-P1386 specifications for single-slot
operation. It also provides a standard 15-pin DIN video connec-
tor, which eliminates the need for custom cable assemblies. The
module comes ready to run with an onboard video BIOS and
drivers for the Windows NT, VxWorks, QNX, and the Real I/X
OSs. It complies fully with the VESA standard for monitor timing
and operates from a single +5-V supply.

The module costs $295 in single-piece quantities.

General Micro Systems, Inc.
(909) 980-4863
Fax: (909) 987-4863

PROGRAMMABLE CON-
TROLLER/TOUCHSCREEN

 Z-World has introduced a C-programmable
controller with a built-in touchscreen display. The
PK2600 includes a 320 × 240 (1⁄4 VGA) graphics LCD
with adjustable contrast and CCFL backlighting. It’s ideal
for control systems that require an interactive graphic interface.

The PK2600 features 16 protected digital inputs and 16 high-
current sinking outputs, eight 12-bit analog input channels, and
three serial ports for RS-232/-485. The unit can support up to
512 KB of flash memory or 1 MB of SRAM and includes 32 KB
of VRAM. A PLCBus expansion port enables the addition of
extra I/O such as relays or DAC channels. The hardware- and
software-controlled contrast permits easy viewing from all angles.

Both the controller and display are C-programmable using
Dynamic C. A DIP switch on the enclosure allows selection of the
component to program.

The PK2600 developer’s kit contains all the hardware tools
necessary for rapid development: manual, schematics, program-
ming cables, AC adapter, sourcing high-current driver, and
mounting hardware.

The PK2600 sells for $696 in quantities 100.

Z-World, Inc.
(888) 362-3387
(530) 757-3737
Fax: (530) 753-5141
www.zworld.com

www.zworld.com
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Stewart Christie

Pushing the code envelope is part of the job, and usually you can cram it all
in. Still, if you really need that extra room (but not badly enough to justify using
the latest Pentium), grab Stewart’s keys to fly past the 8086/186 limits.

The ’x86 architecture is prevalent
throughout the electronics industry. Although
you may have a Pentium III processor in your
home or office desktop PC, the latest and
greatest chipset is often not economical
for an embedded system. Many designers
have cost or size limitations that preclude
the use of even the cooling fan, never
mind the PCI chipset. Others just don’t
need the bandwidth.

This article shows how to get
that little bit more out of an
8086/186 design. I’ll discuss
a novel method of breaking the
1-MB address limitation of these
processors. Originally developed
to work with CAD-UL’s real-mode
compiler, it has been enhanced
to use Microsoft’s real-mode C
compiler, which ships with Vi-
sual Studio V.1.52. This flex-
ible memory-management
method uses multiple memory
banks to add extra code space
for your application.

MEMORY BANKING BASICS
Traditionally, a user of banked memory

systems needed to know the location of
functions in a bank before it was time to
compile. Moving a function from one bank
to another forced a major redesign of the
source code to enable the new bank. The
memory banking method presented here
removes this concern from the programmer.

No changes to the source code are needed
to implement this procedure.

I also present a banking-aware debug-
ger that has been enhanced to give trans-
parent source-level debugging of these
banking applications. If you read Fred
Eady’s series on the SuperTAP emulator
(Circuit Cellar 104–105), you’ll recognize
it. This is a ROM monitor version of the same

debugger used by Applied Micro-
systems on their ’x86 emulators.

Because there are many ways
to implement the hardware bank-
switching, the code to switch the
banks must be supplied by you, the
hardware designer. But that’s not
needed here. Although my ex-
amples simulate the bankswitching
with a write to the PC diagnostic
Port 80H, you can use any method
(e.g., setting a peripheral port bit).

GETTING STARTED
To run this example, you need

an 8086 or ’186 as a target system.

Beyond the ’x86 1-MB

Memory Address Limit

Photo 1a—The Workbench Project seen here is fully expanded. Note the
different source directories for bank1.omf and bank2.omf. b—The Work-
bench Project file here shows the path to the Microsoft Compiler
Executable and the compile command-line settings in the option window.

a) b)
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tools. All the other tools, including compiler,
assembler, and linker, can also be run from
the DOS command line. The IDE’s architec-
ture is open so you can add your own tools,
if necessary; this capability was used to
add the Microsoft compiler and its options.

Photos 1a–b show the source files in
the bank1.omf and bank2.omf folders.
To add your own source files, select either
bank and right click. Choose the Insert File
to Project selection and use the browser to
identify the source files. I recommend
using the existing source files until you’re
more familiar with the tools.

LINK PROCESS EXPOSED!
Now, I’ll take you step-by-step through

the process of building a banked example.
Figure 1 shows the steps in a somewhat
easier-to-understand format.

Because the tools are compiler- and
source-independent, I skipped the compile
step. When you link a regular program with
multiple source files and several libraries,
the linker itself hides all the iterations it
takes to resolve backward and forward
references. But for this banking project, all
the iterations are exposed.

There’s not enough space here to fully
explain the steps and multitude of linker
commands needed to derive the final
output. Suffice it to say that for n banks,
you need 2n+1 linker runs and n runs
through the assembler to generate one
final output OMF file.

In step one, for all banks, generate
banking symbol information: one set for
the assembler and one as an input to step
two. The file for the assembler run contains
all the CODE symbols available for other
banks to call (i.e., all functions defined in
test.c and test1.c).

Step two generates an OMF file for the
final linker run and an assembly file

Photo 2—This
upper source
window in the
debugger shows the
original source file and
the central window shows
the wrapper function with the
bankswitch parameters. Note
the extended address information
for CS:IP in the bottom center panel.

If you find yourself saying, “Where do I find
one of these?”, take heart; there are options.

You could dig out your old IBM XT, but
it might not work because it probably only
has a 5¼″  floppy drive. The good news is
that masquerading underneath that Pentium
III, with a full 128-MB of RAM, is an 8086.
OK, so it’s a 450-MHz 8086, but it’ll do
the job. Any PC will do fine as long as it
has a floppy drive for the monitor boot disk.

You also need a null modem serial cable
to connect the host PC to your target system.
I used an Elan SC400 eval board from
AMD with an external floppy drive and an
old VGA card to run all of my examples.

You also need the programs, which
you can download from the Circuit Cellar
ftp site. There you’ll find a complete evalu-
ation toolset with the examples, not only
for the PC, but also preconfigured for the
AM186ES evaluation board. If you have
the tools, just download the examples.

Because the tools are supplied as share-
ware, the compiled modules are limited to
1000 lines. The linker will only link 10
modules and the debugger has a symbol
limit of 1000 symbols, which is sufficient
to run all of these examples. If you need to
evaluate a larger program, you can obtain
a time-limited license via CAD-UL.

PSEUDO-BANKING
Many developers use the ’186 for embed-

ded applications, and constant “upgrading”
of features will bring you closer to the 1-MB
memory limit. Your options are then to select
a new 32-bit processor and go back and
streamline your code and hope that it fits.

Typically, 32-bit processors cost a lot
more than their 16-bit cousins. A quick
price check at my local semiconductor
distributor’s web site showed a 2:1 ratio
between an Am186ER and the lowest
grade Elan SC310. Obviously, the Elan
device has a lot more on-chip peripherals
than the ’186, but if all you need is just one
extra address line, then it might be cost-
prohibitive to redesign a complete system.

This article addresses that need by
showing how to transparently address this
extra code space. You can insulate the
programmers from the need to manually
determine which bank their code is in.

Previous implementations required you
to manually address a routine from one
bank to the other and then figure out how
and where to return. This method puts all
these smarts into the linker and a set of

command files. These automatically parse
the code in each bank and determine whether
a direct in-bank call can be made or whether
an interbank call, with its associated bank
switch routine, needs to be made. You don’t
need to change your source code at all.

Before I describe how it works, you
need some background on the application
itself. You also need to know this to help
you port the example to your hardware.

This example uses two memory banks,
but at different physical locations under
the 1-MB address. That’s what I mean by
pseudo-banking. There are two banks,
defined as bank1 and bank2: bank 1 is at
28000–2BFFF and bank 2 is at 2C000–
2FFFF.

No ’x86 processors I know of support
banking hardware directly so I’m using a
standard PC as the target. Writing to the
diagnostic Port 0x80 on the PC simulates
the banking hardware. This has the added
advantage, at least on my target, of having
LEDs that show the value written to the
port. As well, a direct memory write to a
VGA card is performed whenever a bank-
switch is made, so a regular PC will show
the effective bank number onscreen.

There is a common unbanked area of
memory, here defined as bank0. It is
located at 20000 and contains the wrap-
per functions for the interbank calls and a
small routine (in the file BSWITCH. ASM
in Listing 1) that drives the simulated
bankswitch hardware.

THE WORKBENCH IDE
The CAD-UL tools are presented to the

user in an IDE. I remember the good old
days when you were glad to get a REM
statement in a batch file, but thankfully,
those days are gone.

However, the Workbench IDE and the
XDB debugger are the only truly graphical



EP
C

CIRCUIT CELLAR AUGUST 199942 www.circuitcellar.com

name bswitch
; bankswitch data stack
SWITCH_DATA    segment 'switch_data'
switch_stack  dd 10*256 dup (?)
switch_ptr    dw offset switch_stack
SWITCH_DATA    ends
SWITCH_CODE    segment    public    'code'
  assume cs: SWITCH_CODE
  assume es: SWITCH_DATA
; DX:AX   Function Address
; CL      destination bank
; CH      return bank

public bank_function
bank_function    proc far
;  08H[BP]  : Return segment call-function
;  06H[BP]  : Return offset call-function
;  04H[BP]  : Return segment Bankfunk
;  02H[BP]  : Return offset Bankfunk
;  00H[BP]  : old BP
  PUSH   BP
  MOV    BP,SP
  PUSH   ES
  PUSH   DI
  PUSH   AX
  MOV    DI,switch_data
  MOV    ES,DI
  MOV    DI,switch_ptr
  MOV    AX, SS:06H[BP]
  MOV    ES:0[DI], AX
  MOV    AX, SS:08H[BP]
  MOV    ES:2[DI], AX ; save original return address
  MOV    ES:8[DI], CX ; save return bank
  MOV    AX,SS:02H[BP]
  MOV    ES:4[DI],AX
  MOV    AX,SS:04H[BP]
  MOV    ES:6[DI],AX
  ADD    DI,10
  MOV    ES:switch_ptr, DI

;;;  add your specific bank code below here
; simulate bank switching
; no real bank switch occurs, current bank is written to VGA
; display memory to show which "virtual" bank is active
; Current active bank is stored at the diagnostic port 0x80
; and is written to the VGA RAM
  MOV    AL,CL ; load destination bank into AL
  OUT    080H, AL ; switch bank
  ;; write bankid to VGA
  call   write_bank_vga

;;; add your specific bank code above here
  MOV    SS:8[BP], CS
  MOV    WORD PTR SS:6[BP], OFFSET ret_off ; "push" return address
  POP    AX
  MOV    SS:4[BP], DX
  MOV    SS:2[BP], AX ; "push" call address
  POP    DI
  POP    ES

bank2.as that maps
the calls from bank2 into

any other bank.
Step three is where the

remapping of function from bank-
to-bank takes place. This includes

bankcode.inc, a CAD-UL–supplied
macro file that has the definition for the
GEN_CALL macro. The -INCLUDE_LIST
=� command line parameters assign bank
numbers to the .cod files.

From this example, it’s obvious that
bank1.cod is number 1 and bank2.cod
is number 2, but nothing stops you from
assigning bank2.cod to number 3.

The output of this assembler run is
bank2.obj. An assembler listing is in-
cluded in Listing 2. Note that the bankcode.
inc macros add context-sensitive comments.

The essential function of this run is to
add a wrapper around the call, to get_
bank1_data(). Now the call is replaced
with a call to FROM2_get_bank1_data().
This routine fetches the “real” address of
get_bank1_data and the destination and
source bank number. It then performs a
call to the user-supplied bank_function.

A similar section of code (with different
parameters) is created for every interbank-
called function and is placed in the un-
banked section of memory. Whenever a
program makes a call to, say,  get_
bank1_data(), then FROM2_get_
bank1_data() is called instead of the
“real function” in the other bank.

Step four is the final linker pass where
all the different banks and the common
code are linked together. The bank_
function is stored in the bswitch.obj
module, and that’s the only common bank
routine for this example.

In step five, you must now extract a
symbol file and a hex file for each bank.
They are loaded into the debugger sepa-
rately. For production use, the hex files
can be loaded into separate EEPROMs.

Annotated linker command files are
included in the example with explana-
tions of how to add, for example, a third
memory bank, or how to move the memory
allocation of the banks.

BUILDING THE PROJECT
If you wish to build the project with the

CAD-UL CC86 compiler, then all the options
are already set. Just select Project/Rebuild
All from the menu or press Ctrl-A. If you
want to use the Microsoft compiler from

Visual C 1.52, then you need to check a
few things first.

If your compiler is installed in the default
location of c:\msvc\bin, everything is
fine. Otherwise, select the ToolManager and
correct the path for the Microsoft Compiler
Tool. Photo 1b shows my settings in high-

lighted text. I ran the compiler from the CD-
ROM with a minimal install configuration.

Once you confirm the settings, you can
rebuild the project. The progress is shown
in the output window.

You’re almost finished with the Work-
bench, but before you start the debugger,

(continued)

Listing 1—This code for the bankswitch routine bswitch.asm defines a stack for the banking
routine and implements a pseudo-banking switch and a VGA screen write confirmation.
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Listing 1—continued

  POP    BP
  RET                   ; call DX:AX
ret_off:
; restore call stack
  SUB    SP,8
  PUSH   BP
  MOV    BP,SP
  PUSH   ES
  PUSH   DI
  PUSH   AX
  PUSH   DX
  MOV    DI,switch_data
  MOV    ES,DI
  MOV    DI,switch_ptr
  SUB    DI, 10
  MOV    switch_ptr, DI   ; restore new 'stack' pointer
  MOV    AL, ES:9[DI]

;;; add your specific bank code below here
; simulate bank switching no real bank switch occurs,
; This is the reverse action as the bank switch above.
; The code returns to the caller bank (in AL)
  OUT    080H, AL       ; do the switch
  ;; write bankid to VGA
  call   write_bank_vga
  ;;; add your specific bank code above here
  MOV    AX, ES:0[DI]
  MOV    SS:6[BP],AX
  MOV    AX, ES:2[DI]
  MOV    SS:8[BP],AX ; return address (to origin bank)
  MOV    AX, ES:4[DI]
  MOV    SS:2[BP],AX
  MOV    AX, ES:6[DI]
  MOV    SS:4[BP],AX    ; return to caller address
  POP    DX
  POP    AX
  POP    DI
  POP    ES
  POP    BP
  RET
bank_function    endp
vga_seg    dw    0b800H

;; Write BANK <NR> to upper right corner of VGA
;; screen to show BANK-ID on PC if no Port 80
;; diagnostic card is present.
write_bank_vga proc near
  PUSH   ES
  PUSH   AX
  MOV    ES, vga_seg ; display bankid on VGA screen
  MOV    AH, 04fh    ; attribute "INVERS RED"
  ADD    AL, '0'
  MOV    WORD PTR ES:[158], AX ; write "BANK "
  MOV    AL, ' '
  MOV    WORD PTR ES:[156], AX
  MOV    AL, 'K'
  MOV    WORD PTR ES:[154], AX
  MOV    AL, 'N'
  MOV    WORD PTR ES:[152], AX
  MOV    AL, 'A'
  MOV    WORD PTR ES:[150], AX
  MOV    AL, 'B'
  MOV    WORD PTR ES:[148], AX
  POP    AX
  POP    ES
  RET
write_bank_vga endp
SWITCH_CODE    ends
end
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we should look at its settings. The easiest one
to check is the communication parameters.
The default port for connecting to your
target is com1; if you need to use com2 or
3, select the ToolManager again. Click on
the hammer icon, select the XDB tool, and
just type in the new com port.

Now let’s look at the section from the
debugger batch file bank.xbd, a section
of which is shown in Listing 2. If you
haven’t changed any of the linker com-
mands, then it will work as is, but if you
modify any of the memory mapping in the
bank.cmd file, then you need to make the
corresponding changes for the debugger.

WE’RE DEBUGGING—ALMOST
Before you can debug the program,

you need a way to load it into your target
PC. The board support package for the PC
contains a prebuilt image that needs to be
copied onto a blank formatted disk.

Open a DOS box and navigate to the
c:\cadul\mon86\bsps\pc\bootdisk
and run make.bat. This disk boots the
ROM monitor and supports a null modem

connection between target PC COM:1
and the host PC.

The initial connection speed of  19.2 kbps
is a bit slow for any decent-sized develop-
ment project. The communication speed
can be changed by a command prompt,
and you can see an example of the syntax
in the bank.xbd debugger batch file.

Start the debugger by typing Ctrl-D in
the Workbench or via the Tools/Debugger
selection. The default invocation method
displays a window with source and work-
ing directories: the initial batch file and the
com port settings. You can override these
temporarily, which is handy for trying out
different options. If you want to make
permanent changes, you need to edit the
options in the Workbench ToolManager.

NAVIGATING THE DEBUGGER
When you start the debugger, it con-

nects to your target before you can do
anything, so make sure you have the serial
cable inserted and the target powered up
and waiting. After a successful sign-on,
the batch file bank.xdb is loaded. This

Listing 2—Here you see the bank2.as assembly file (a), a section from bankcode.inc macro
file with the definiton of the gen_call macro (b), and the resulting assembly listing created
from bank2.obj (c).

name bank2
%gen_call(_get_bank1_data)
end

%*define(gen_call(name))
(extrn %name : far
%BANK_ID%()code segment public 'switch_code'
public %gen_name(%name)
%gen_name(%name) proc far
  mov  ax,offset %name
  mov  dx,seg %name           ; load far function pointer
  mov  cl,%get_bank_id(%toupper(%name)); load destination bank id
  mov  ch,%actual_bank        ; load source bank id
  call bank_function
  ret                         ; return to call
%gen_name(%name) endp
%BANK_ID%()code ends

33 extrn _get_bank1_data : far
34 FROM2_code segment public 'switch_code'
35
36 public FROM2__get_bank1_data
37 FROM2__get_bank1_data proc far
38  mov   ax,offset _get_bank1_data
39  mov   dx,seg _get_bank1_data
40  mov   cl,1 ; load destination bank id
41  mov   ch,2 ; load source bank id
42  call  bank_function
43  ret        ; return to call
44 FROM2__get_bank1_data endp
45 FROM2_code ends

a)

b)

c)
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file runs through the commands in Listing 3.
These commands enable the banking mode
and download the separate hex files for
each bank.

The center panel in the lower status line
shows the extended addressing method used
for banking addresses. Instead of the usual
segment:offset address, there’s an extra
field for the bank. The address of main()
in crm.c is displayed in BANKID ##CS:IP
format as 0x01##0x2800:0x0000.

Because there is nothing like the pro-
tected mode descriptors available in real
mode, each of the 20 bits of address
information is mapped directly onto the
original 1-MB address space with no
translation. So, when bank1 is enabled,
the code for main() is located at physi-
cal address 0x28000.

In Photo 2, you see the extended ad-
dressing method used for banking ad-
dresses in the center panel. I opened up the
register and assembler windows to show the
wrapper function for get_bank1_data.

DEBUGGING AT C LEVEL
At the C source level, you have to look

hard to know you’re running a banked
application. You can set breakpoints any-
where in the source files by selecting the
file from the module window and double-
clicking on the blue dot at the source file
line. A stop sign is inserted to indicate a
breakpoint. Right-clicking in a window
brings up a context-sensitive window.

The major differences between this
version of XDB and the SuperTAP emulator
version is the lack of trace information and

Listing 3—An annotated section from the XDB startup script file shows the extra commands
defined to enable the debugging of banked applications.

!Enable banking extensions and define bank0 as common bank
SET OPTION /BANK=ON
SET OPT /COMBANK=0

!Load common code with symbols for bank 0
LOAD /DEB=1 OF "BANK0.BD"

!Enable bank 1 and load code and symbols
SET BANK 1
LOAD /DEB=1 OF "BANK1.BD"

!Enable bank 2 and load code and symbols
SET BANK 2
LOAD /DEB=1 OF "BANK2.BD"

!Define region that contains the bankswitch code
SET MAP/TYPE=BANK 0X20000 UNTIL 0X200FF

! Define unbanked memory region
SET MAP/ACC=SYSTEM 0X0 UNTIL 0X27FFF

!now initialize the Registers and Stack�

Listing 4—Here’s some code from an Am186ER banking example. Debugging the bank-
switching code in assembly mode requires you to understand how XDB searches for a source
code line using the execution address. If no match is found, no source is displayed. You also
see this phenomenon if you break into a running program and end up in a library routine.

  bank 0 ;this assumes two banks selected by pcs6
" ;this also assumes that previously pcs6 is set up
" ;as an output�see applic3 for example code
" PUSH  DX ;used for call later
" MOV   DX,BANK_REG;
" IN    AX,DX
" AND   AX,NOT BANK_OR_MAP ; clear bank bit
" SAL   CL,BANK_BIT ; MOV 1 OR ZERO INTO POSITION
" OR    AL,CL
" OUT   DX,AX ; CHANGE BANK

;any code after here is located in bank 1
;therefore any breakpoints here must be defined in  bank 1

   bank 1 POP   DX
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there’s no event system avail-
able for setting multilevel con-
ditional breakpoints.

There is a breakpoint dialog
to add or modify an existing
breakpoint, with options to check
variables and stop or continue,
depending on the value. Because
there’s no hardware support, all
of these functions are emulated in software.

A unique feature of the monitor is the
ability to use Protected-Mode Debug reg-
isters. If your target is a real-mode ’386 or
better processor, you can set breakpoints
in ROM code. Known as hard breakpoints,
these can be selected by default, either in
the ToolManager or via the Options dia-
log when starting the debugger.

NO BUGS IN THE BANKS
When you port this example to your

hardware, you must check out your own
bankswitch routines. If you want to single-
step through the anatomy of a bankswitch,
there are certain things to be aware of.

The strangest concept is the duality of the
bankswitch code. When you link it, you
choose bank 0, the common code section—
but this is the starting bank only. Halfway
through the routine, the bank is switched.

If you are single-stepping, the debugger
detects the bankswitch. It tries to find a source
file with the new bank address, but can’t.

The second part of the bankswitch
routine, beyond the actual switch which
was also linked to bank0, is now being
executed in whatever bank has been
enabled. For this example, that’s either
bank1 or 2. For your development situa-
tion, however, you could have a lot more
memory banks available. Listing 4 shows
an example from the AMD board.

Looking for symbols in the wrong bank
occurs with breakpoints, too. If you set an

Many thanks to John Hansen, Norbert
Schulz, and Robert Wiesner for their hard
work, generosity and patience.

Stewart Christie is manager of engineering
at CAD-UL in Scottsdale, AZ. His work has
ranged from military test equipment and
avionics power controllers to highly
automated burn-in equipment for HC11’s
and Transputers, to the research department
of a major home appliance manufacturer.
Stewart has experience in proprietary
and commercial RTOSs, 4-bit Micro, Space
Station ASICs, and most things in between.
You may reach him at schristie@cadul.com.

SOFTWARE
Software discussed in this article is available for
download via the Circuit Cellar ftp site.

SOURCES
Am186ES eval board, Am486CDP eval board
Advanced Micro Devices, Inc.
(408) 732-2400
Fax: 408-894-0547
www.amd.com

SuperTAP ’186 emulator
Applied Microsystems Corp.
(800) 426-3925
(425) 882-2000
Fax: (425) 883-3049
www.amc.com

Real-Mode Evaluation Suite Ro40s1xe
CAD-UL, Inc.
(480) 945-8188
Fax: (480) 945-8177
www.cadul.com/ccink

assembly-language breakpoint in the
bankswitch code while executing in bank2
and then run the code, the debugger
displays an error—unless that breakpoint
occurs while still in bank2. It will search
the active breakpoint list and find nothing
valid at that address because the valid
address is qualified by the bank2 bankID.

To get around this feature, there are
commands to change the banks manually.
But be careful! The quickest way to crash a
program is to stop in bank1, then manually
change the bank to, say, 2 and forget to
change it back. When you next type RUN,
it’s an accident waiting to happen.

REAL-WORLD APPLICATIONS
If you intend to use banking in a real-

world application, I have a few recom-
mendations for you.

Remember not to place any interrupt
handling routines in a banked memory
area. The first 400H locations in the ’x86
are used for vectors and they should point
to routines in the common area. You can
jump from there to a banked function, if
you wish. Some error handlers don’t re-
quire the quick response associated with
an interrupt routine, so it might make sense
to place those routines in a switched bank.

A separate stack setup for the bank-
switch routine is set to 2560 bytes, but no
overflow checks are made. Each bank-
switch takes 10 bytes of stack space. Before
implementing a production release, I recom-

mend adding a check or confirm that you
never nest more than 256 bankswitches.

The current implementation passes the
bank number in an 8-bit register; that’s
sufficient for most applications. For more than
256 memory banks, consider upgrading to
a ’386 or a ’486 with a numeric processor.

The banking function uses the system
stack for temporary variables, which works
fine for a simple example like this. If you’re
using a multitasking OS, you need to extend
the Task Control Block to add functionality
for the memory banking. This is left as an
exercise for the reader!

TAKING IT TO THE BANK
Of course, this project has been through

several revisions. This latest incarnation is
the result of much work by John Hansen,
Norbert Schulz, and Robert Wiesner—not
to mention a new linker revision that sup-
ports Microsoft and Borland 16-bit compil-
ers. And it won’t stop here. Banking support
for a ’186 emulator has been proposed,
and C++ support won’t be far off. So keep
your eye out for additional supported
hardware and new features. EPC

Figure 1—
To generate a

banking appli-
cation, these steps

are necessary for all
banks. This example

application consists of an
unbanked area and two

banks, but only the steps for
bank 2 are shown.

1. For all banks,
generate banking
symbol information

link86 -OMF -BANKINGOUPUT 
bank2.cod-o bank2.pre test.obj 
test1.obj

link86-c ibank2.cmd -o
bank2.omf bank2.pre

Bankcode.inc
as86 -INCLUDE_LIST=bank1cod, 1,
bank2.cod, 2-DFILENAME=bank2
-INCLUDE=bankcode.inc bank2.as

Other bank objects and the 
common bankswitch object

link86 -VDB -o banking.omf -c
bank.cmd bank1.obj bank2.obj
bank1.omf bank2.omf bswitch.obj

5. For all banks,
generate download files
and debug info

4. Only one final link
step necessary

3. Create a module with
wrapper functions for 
interbanks calls

2. For all banks, generate
interbank calls

omf3bnd -186 -
BANKID=2

banking.omf 
bank2.bd

bank2.cod bank2.pre

bank2.as bank2.omf

bank2.obj

banking.omf

bank2.bd bank2.hx

www.amd.com
www.amc.com
www.cadul.com/ccink
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Real-Time PC

Ingo Cyliax

Where in the World...
Part 1: GPS Introduction

Recently, a friend of mine was describ-
ing how the local police station was
upgrading their communication system.
With the new system, each police cruiser
has a GPS receiver that locates the cruiser
and periodically sends its location and ID
to the dispatcher. A computer then pro-
cesses the messages and updates a map
with the locations of all the cruisers.

My friend’s comment was
that they could save a lot of
money by just putting a bunch
of LEDs on a map to indicate
the location of the local donut
shops. Well, there are many other
uses for GPS besides tracking
police cars. Besides being used
for navigation, GPS is useful in
surveying, remote sensing, data
collection, geology, archeology,
and other applications that
haven’t been thought of yet.

Let’s do a brief review of
GPS and how it works. For a

more detailed description, check out Do-
While Jones’ series (“The Global Position-
ing System,” Circuit Cellar 77–78).

In a nutshell, the global positioning
system (GPS) is a satellite navigation
system with 24 satellites orbiting the earth
in 12-h orbits. The satellites are distrib-
uted such that, on average, there are 12
satellites visible in each hemisphere.

Whether you’re dispatching emergency personnel or just trying to find your
way home, affordable and easy-to-access technology is making GPS appli-
cations more popular. Ingo sets the course for future projects right here.

Photo 1—To interface a typical hand-held GPS receiver to a
computer, you have to add an external power and commu-
nication adapter module. With those additions, the unit  is
capable of transmitting NMEA sentences to a computer.

The satellites are time synchronized
using an onboard atomic clock. They con-
tinuously transmit the time and other infor-
mation using a spread-spectrum carrier.
Each satellite has its own pseudo random
number sequence, which makes it pos-
sible to share the same carrier frequency.

There are two carriers, one is encrypted
and only usable by the military if you have
the “super-secret GPS password.” Data on
the civilian carrier is not encrypted and
can be used by anyone with a GPS receiver.

A GPS receiver is a satellite receiver
that listens for the signals and measures
the time of arrival, comparing it to the GPS
time that is sent in the data. This informa-
tion provides a pseudo-range to each
satellite that is received, and that range is
used to compute the position. You need to
be able to receive three satellite signals to
get a two-dimensional fix and four signals
to get a three-dimensional fix.

GPS receivers typically listen for all 12
satellites that should be in the hemisphere
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Portable and hand-held receivers are
available practically everywhere (e.g.,
sporting goods stores, department stores).
Photo 1 shows a hand-held GPS receiver
with an optional communications and power
adapter that enables me to connect it to my
computer via an RS-232 port and receive
NMEA messages from it.

Another kind of portable GPS receiver,
such as the one shown in Photo 2, attaches
to your serial port or PCMCIA slot of your
notebook and has no user interface. These
receivers can only be used under computer
control.

A common use for these portable/
hand-held GPS receivers is to attach them
to a laptop and use software like Delorme
Street Atlas for car navigation. This is pretty
fun and a good way to get comfortable
with the technology. You can even use
them on airplanes, provided you have a
window seat for the antenna and it’s OK
with the flight crew. See the Navigation 101
sidebar for more details on navigating.

Besides hand-held GPS receivers, there
are GPS-receiver modules. Motorola, Rock-
well, and several other companies make
these small PCB boards that contain all of
the analog/RF section and a small micro-
processor to perform the computation
necessary to find satellites and get fixes.
One of these modules, made by SiGEM,
comes in a 32-pin SIMM module format.

GPS modules have an antenna con-
nection, power, and one or more serial
ports. The serial ports are typically TTL-
level asynchronous serial protocol and

can be connected di-
rectly to a USART in your
project. If you want to connect
these to an RS-232 port, you need
a TTL-level–to–RS-232 converter line
driver.

Both GPS modules and portable/hand-
held receivers usually speak NMEA-0183
protocol, which I’ll get to in a bit. Some
modules also speak proprietary protocols
that offer more functionality then NMEA-
0183 but are specific to a module manu-
facturer (check the specs). I listed some
places that carry GPS modules in the
Sources section.

Several companies make ISA- and
PC/104-bus GPS boards, which are inter-
nal GPS receivers. These typically use one
of the GPS-receiver modules in a carrier
board. The carrier board also contains a
serial USART so the receiver looks just like
a serial-port–based external GPS receiver
to the computer.

If you want your GPS receiver module
to actually receive signals, you need an
antenna. Portable and hand-held receivers
usually have an integral antenna.

Antennae come in two basic types—
passive and active. An active antenna has
a small preamplifier built into it, which is
powered via the coax cable that connects
it to the GPS receiver module. Active anten-
nae are preferable because they provide
a much better SNR than passive antennae.

Active antennae do cost more, and the
GPS receiver needs to be able to support
sending DC power to the antenna. An
active antenna without DC power on the
coaxial cable won’t work at all. The
impedance for coax used in GPS is 50 Ω
and needs to be low loss and high quality.

NMEA-0183 PROTOCOL BASICS
NMEA protocols NMEA-0180/182

differ in the types of messages that are sent
and are much more limited than NMEA-
0183. NMEA-0183 is the most general
and supports many different kinds of navi-
gation equipment including GPS, which is
why I’m going to talk about this protocol.

Its basic structure consists of sentences
that are generated by a “talker.” There is
one talker and one or more listeners on a
“bus.” The standard doesn’t dictate what
the physical and electrical specs of the
bus are, but typically, it’s RS-232 or RS-
422. It could also be optical or whatever
fits your application.

Photo 2—A low-cost GPS receiver without a
user interface has to be controlled by a
computer. This receiver plugs into a laptop
(or other computer) but contains its own
battery pack.

where the receiver is located. The receiver
uses the strongest signals for its fix. The more
satellites it uses, the better the accuracy.

How does it know which satellites are
where and when to expect to listen for
them? Each satellite transmits a database
that contains the orbital data for all of the
satellites. It takes some time to transmit this
database, so receivers store the data in
nonvolatile memory (along with the last
known location) to preserve this informa-
tion between power cycles.

When a GPS receiver is first turned on,
it does a cold start, which involves cycling
through all of the possible satellite codes
until it receives a satellite with sufficient
signal-to-noise ratio to download the or-
bital information and the current time.
Because the receiver doesn’t know if the
satellite is approaching or receding, it also
has to guess at the satellite’s Doppler shift.

When it finds a satellite, the receiver
downloads the orbital data and current
time. It can then can compute the current
constellation (another word for position of
satellites in the sky) and tune in to the satellites
that should be visible. If the receiver is
then power cycled, it can use the data from
the NVRAM and the current time from a
battery-backed real-time clock to make a
good guess at the initial constellation.

If the receiver has been off for a while
or has moved a great distance, it may need
to perform a warm start. In a warm start,
the orbital information is accurate enough
for the receiver to receive at least one
satellite and start downloading more ac-
curate orbital data immediately instead of
having to seek for a satellite first.

GPS-receiver manufacturers make
specification claims for the different kinds
of starts. Cold starts can take up to 15 min.
in some receivers. Warm starts typically
take less then 2 min., depending on how
good a signal the receiver has. Remember
that these specifications are under ideal
conditions, with a good antenna, and a
clear sky. The boot times vary so you need
to make sure they are acceptable for your
application.

For embedded-system work, there are
several GPS-receiver solutions available.
Many hand-held and portable GPS re-
ceivers have serial interfaces that can be
also used in embedded systems. They also
have front panels and displays for user
interfaces and many features you wouldn’t
need for a computer interfacing project.
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The first field of the sentence identifies
what kind of sentence you have and en-
codes what kind of talker sent the message.
NMEA assigns several talker IDs, which
are the first two characters of this field.

For GPS, the talker ID is GP. Other
examples of talker IDs are:

• LC—Loran C Receiver
• OM—Omega Receiver
• HC—Magnetic Compass
• P—Proprietary (typically PG if it’s GPS)

without parity. The checksum is computed
by performing an 8-bit XOR over the text
of the sentence, not including the start ($)
and end (*) markers.

The sentence inside the markers con-
sists of a list of comma-separated fields.
The number of fields is predefined for a
particular message type. If there isn’t any
data for a particular field, a two-comma
“null” field can be sent. In other words,
you leave out the data, but keep the field
separator.

A sentence is a
CR/LF-terminated line

that is encoded in stan-
dard ASCII. I like protocols

that are human readable. It
makes it easy to use a terminal or

terminal emulator to monitor the proto-
col during debugging.

Each sentence starts with a $ and ends
with a * and an optional 8-bit checksum
expressed as two hexadecimal characters.
The characters themselves are transmitted

Navigation 101
Common wisdom and geometry tell us that the shortest

distance between two points is a straight line. Well, that’s if you
live in a flat world. On a spherical surface (the world we live
on), the shortest distance is an arc.

Imagine going from Indianapolis to San Diego. Now, take
a circle that has a center at the center of the earth and passes
through both cities at the same time. The arc of this circle is
called the great-circle route and is the shortest distance.

To find our way around, we adopted a polar coordinate
system that uses angles to denote positions. Our coordinate
system uses one angle (latitude) to describe how high we are
above or below the equator. Latitudes go from 0° (the equator)
to 90°S (the South Pole) and 90°N (the North Pole).

The longitude is the angle between a position and the
longitude that goes through Greenwich, England. It’s usually
expressed as east and west, where 180° is the same longitude.

When dealing with navigation, it’s easiest to deal with
nautical miles (nM) and knots (nM/h). One nM is defined as the
great-circle distance of one minute (′), and there are 60′ to a
degree. So, the circumference of the equator is:

360° × 60 min × 1 nM
(deg)(min)

= 21,600 nM

Incidentally, the circumference in kilometers is 40,000 km.
The conversion from kilometers to nautical miles is:

40,000 km
21,600 nM

= 1.8518 km/nM

To compute a distance between any two points, simply find
the angle of the great-circle route. This step is easy if the points
are on the same latitude or longitude: just subtract the nonconstant
angles. I’ve shown you how to do that for finding the distance
to circumnavigate the world at the equator (from 0°N latitude,
180°E longitude to 0°N latitude, 180°W longitude).

To compute the distance for nontrivial routes (i.e., the
distance angle between any two points on a sphere), you do
some coordinate transformations of your polar coordinate
system and arrive at the following formula:

dist = acos(sin[lat1] × sin[lat2] + cos[lat1] × cos[lat2] ×
           cos[lon1 – lon2])

Directions are a bit more difficult on a great circle route. They
change at any given point on the route so you have to recompute
the angle as you go along. This is where modern navigation
equipment really shines.

It used to be that a pilot would precompute headings for great
circle routes ahead of time and then have to keep track of how
long to fly at a particular heading. Thus, the route was just a
collection of segments. Modern navigation equipment continu-
ally adjusts the heading based on the location and that
information is fed directly into the autopilot.

To compute the heading at a given position relative to
another position, we use:

course = atan2(sin[lon1 – on2] × cos[lat2] cos[lat1] × sin[lat2]
             – sin[lat1] × cos[lat2] × cos[lon1 – lon2])

The course headings are considered true headings because
they are referenced to the true North Pole (the pole of rotation)
as opposed to magnetic headings, which are relative to the
magnetic pole. Conversion between the true and magnetic
heading depends on your location.

Well, these are the basics and will work limited by the
precision of the operations you use to perform these computa-
tions. For example, if you use a 16-bit number to represent the
angle, then the most accuracy you can expect is:

21,600 nM
216 = 0.33 nM

0.33 nM × 1852 m
nM

= 611 m

which is good enough to get you to a city, but not good enough
to find a house. Any practical computation would require 32-bit
operations.

For high-accuracy work, you also need to account for the
ellipsoidal nature of the earth and convert spherical coordinates
(geocentric) to ellipsoidal coordinates (geodetic). For example,
I computed the conversion factor from nautical miles to meters
to be 1.8518. The earth is actually a bit fatter at the equator,
so the correct constant is 1.8520 (exactly).  Do-While Jones
gives a good introduction about the transformation and models
used for this in Part 2 of his series on GPS (Circuit Cellar 78).
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<GPS quality[012]>,
<num satellites>,
<HDOP>,<sea level>,
<units[M]>, <geoidal separa-
tion>, <units[M]>,<null>,<null>

•GPGSA,A,<fix mode[0123]>,<sat. PRN>,
<PDOP>,<HDOP>,<VDOP>

• GPGSV,<num of msgs>,<msg num>,
<sats in view>,<sat PRN>,<elev.>,
<asim.>,<signal strength>,<sat PRN>,
<elev.>,<asim.>,<signal strength>, <sat
PRN>,<elev.>,<asim.>,<signal strength>

With respect to the GPS quality and fix
mode information in the GGA and GSA
formats, the messages are 0 for invalid, 1
for GPS, 2 for DGPS and 0 for none, 2 for
2D, and 3 for 3D, respectively. In the
GSA format, PRN stands for pseudo ran-
dom number for satellite, PDOP stands for
3D dilution of precision, HDOP is horizon-
tal dilution of precision, and VDOP means
vertical dilution of precision.

An NMEA talker will send a group of
messages at a time. Different receivers send
different kinds of messages and the rate of

Listing 1—This Tcl code for computing the NMEA checksum is simply the XOR of all the ASCII
characters between the start ($) and end (*) tokens (exclusive).

proc nmea_checksum {sent} {
  set len [string length $sent]
  set sum 0
  set val 0
  for {set i 0} {$i < $len} {incr i} {
    set char [string index $sent $i]
    if {$char == "\$"} continue
    if {$char == "\*"} break
    binary scan "$char" c val
    set sum [ expr $sum ^ ($val % 128)]
  }
  return [format "%02X" [expr $sum % 256]]
}

Table 1—Take a look at the positioning errors
for the civilian standard position service (SPS).

CEP DRMS 2 DRMS

hpos 40 m 50 m 100 m
vpos 47 m 70 m 70 m
spherical 76 m 86 m 172 m
velocity – 0.1 mps 0.2 mps
time gps 95 ns 140 ns 280 ns
time utc 115 ns 170 ns 340 ns

Following the talker ID, there is a
sentence-type ID, which is a three-charac-
ter ID that tells what kind of information is
encoded in the remaining fields. The types
are defined by the NMEA standard.

At this point, it’s probably best to show
you an example. Here’s a typical message
sent by one of my GPS receivers:

$GPRMC,132515,A,3908.8652,N,08625.
1367,W,0.387,4.6,290499,2.9,W*7V

You can see the start and end markers as
well as a checksum. Listing 1 shows the
routine I used to compute the checksum.

The first field, “GPRMC”, means that
the sentence originated from a GPS re-
ceiver (GP) and is a recommended mini-
mum specific-to-GPS/transmit data (RMC)
sentence. The generic RMC format is:

RMC,<time of fix>,<status>,<latitude>,
<latitude sense>,<longitude>, <longitude
sense>,<speed over gound>, <course>,
<date of fix>,<magnetic deviation>

So, the sample message was a fix on
April 29, 1999, at 13:25:15 UTC, and
the location is 39°08.8652′ north and
86°25.1367′ west. The current course is
4.6° true, and we are traveling at a speed
of 0.387 knots. The magnetic deviation is
2.9° west. The “A” for status means the

data is good. The “V” means that the
receiver is not locked in.

Note that although the message has a
speed and heading indication, the receiver
was actually stationary. I’ll get to that in a bit.

Other common messages sent by GPS
receivers are the GGA (global position-
ing fix data), GSA (GPS DOP and number
of satellites), and GSV (satellites in view).

The formats for these are:

• GPGGA,<fix time>,<latitude>,<latitude
sense>,<longitude>,<longitude sense>,
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Figure 1—Here’s a graphical representation of CEP and the
various degrees of RMS distances. The CEP (50%) has half
of the fixes, DRMS (63%), 2 DRMS (90%), and 3 DRMS (100%).

the messages varies,
typically from 0.5 to

8 s. In some GPS receivers,
rate and message types can

be adjusted either with a propri-
etary message or through the user

interface, if it has one.

ERROR AND PRECISION
Although GPS is extremely precise when

it comes to navigation equipment, it has
some limitations. But first, let me explain
the quality measurements that describe
the accuracy of location fixes statistically.

The first term, the circle error of prob-
ability (CEP), is defined as the size of the
circle that encompasses 50% of all the
location fixes. So, if you collect 100 posi-
tion fixes and select the 50 closest ones,
the circle that includes these is how certain
you can be of your location. A CEP of 100 m
means that 50% of all position fixes are
within 100 m.

Similar to the CEP, the distance root
mean square (DRMS) describes 63% of
all the fixes, 2 DRMS describes 97% of the
fixes, and 3 DRMS describes 100% of the
fixes. Figure 1 illustrates this pattern.

For military use, the figures in Table 1 are
much better. For security reasons, the mili-
tary has turned on selective availability
(SA) to purposely introduce uncertainty into
the position signal. There’s much discussion
in GPS mailing lists and usenet newsgroups
about whether the SA error gets better or
worse during times of conflict, but all we
need to know is that SA exists and has
some peculiarities to be aware of.

In the RMC message I showed you, you
saw that there was a speed and heading

in the stationary fix. This happens
because of SA. The SA dither
changes over time, so the position
fix seems like it’s slowly drifting.
The speed that the GPS receiver
measures is actually the rate at
which the time is changing.

If you average a stationary
position over a long time (two
or more days), you can achieve
high accuracy because the ran-
dom-number generator used to
dither the signal for SA has a zero
mean over several days. Figure
2 shows a plot of SA for 1 h.

Besides the long-term mean
of the SA dither, there’s another
effect we can use. The SA dither
is the same for locations within
a locality (i.e., the error of the position is
the same for positions that are apart). If you
use a base station with a known accurate
location, you can measure the current error
of another measurement of which you do
not know the location.

For example, if you know the current
location (A[lat,lon]), and the location that
a GPS receiver reports to you (B[lat,lon]),
you can compute the current error with:

err(lat,lon) = B(lat,lon) – A(lat,lon)

If you take a GPS reading somewhere in
the field at C(lat,lon), you can compute an
accurate position, by adding in the offset:

real(lat,lon) = C(lat,lon) – err(lat,lon)

Systems use this technique and broad-
cast the current error information via radio

signals. The US Coast Guard uses such a
system near coastal waterways via long-
wave radio stations, and their system is
free to use. In many cities, differential GPS
may be available via FM broadcast station
subcarrier. These services usually require
a subscription and are not standardized.

In future articles, I’ll show you how to
use a stationary GPS receiver and a
roving GPS receiver and do differential
GPS using postprocessing. Basically, I’ll
show you how to map out donut shops
with fairly high accuracy, in case you ever
need to put some LEDs on a map. RPC.EPC
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Applied PCs

Fred Eady

You know it’s true: Fred loves embedded Internet appliances. Once you see
the basics of the EmWeb server, you’ll understand why Fred is using it with
a Net186 board to get data over the wires—perhaps even into your fridge!

It’s been said that the next real war will
be fought on the Internet. Well, last week
I was reading a tidbit about an Internet
refrigerator. No kidding, this thing keeps
its own food inventory and is even ca-
pable of going shopping online when you
run out of hotdogs.

To add credence to the Internet war
theory, a foreign hacker recently decided
to take some U.S. government web pages
hostage. Well, that only proves that the
next war will indeed be Internet based
and the first thing the en-
emy will do is wreak havoc
with the opponent’s chat
rooms and cut off all oppos-
ing refrigerators.

All my life, I thought that
the first thing invaders
would go for would be com-
mand and control. You
know, power, telephones….
I’ll keep my hands out of
politics and diplomacy and
stick to embedded stuff.

Maybe Martians will invade us and I
won’t have to worry about my refrigerator
or the Internet.

You probably know I’m on an embed-
ded-Internet-web-client/server-TCP/IP-
Ethernet mission, and this sortie will fly us
over familiar territory. The equipment will
be standard issue with the addition of
some special tactical electronics and soft-
ware. We’ll be flying with AMD’s Net-
186 demo board loaded with Agranat’s
EmWeb and EmStack.

The nature of the mission is to move
electrons through the Internet and get you to
devise your own Internet widget. It’s nice
to know your equipment before takeoff, so
let’s take a walkaround of EmWeb.

EmWeb, SOUNDS LIKE…
Embedded. Agranat’s EmWeb is built

around two main components—the EmWeb
compiler and the EmWeb server. All you
have to do is add C code and the right
amount of html source in the right places.

The EmWeb server is a
C code component, and
the source html can be
generated using standard
web-authoring tools. To
use the functionality of the
EmWeb server, the appli-
cation programmer adds
some custom embedded
software. A fully compliant
http/1.1 protocol engine
that sports plenty of soft-
ware knobs for user

Data Serving

via the Internet
Part 1: Setting Up

C Code
Cross

compiler
Object
code

Executable
image

Web
content

HTML, GIF, Java

EmWeb
complier

EmWeb
server

Your 
application

Figure 1—As you can C, EmWeb crunches everything into a tidy and compact
embedded image.
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html is html. Standard html source is
processed within EmWeb by adding spe-
cial EmWeb tags that can include C or

C++ code to define an interface between
dynamically generated data on web pages,
the system software, and web content.

Once the programmer defines and
codes the web content, the EmWeb com-
piler is invoked to process the web content
files, strip out and interpret the special
EmWeb tags, and generate C code. The
compiled C code becomes the web con-
tent that is compiled and linked with
EmWeb server and custom user code. The
result: a dynamic and interactive GUI that
can be accessed with any web browser.

The compiler also generates a binary
image that may be directly loaded into an
embedded platform’s memory area. The
EmWeb concept is depicted in Figure 1.

PLAYING TAG
The whole idea here is to dynamically

serve pages and documents that contain
particular real-time data. By particular, I
mean things like current time, temperature,
or machine status.

In the EmWeb environment, this is done
via special tags that are integrated into
the html source content. These tags contain
C source code that enables the dynamics
of the served web pages.

Chances are, if you read Circuit Cellar,
logical thought processes come easy for
you. After contemplating this dynamic server
concept, you could probably write code
to effect it. But if that were so, I could (and
would) stop writing this piece right now.
There would be no need for the EmWeb
server or the words in this article.

My point is, EmWeb server relieves
you, the embedded web programmer, of
the figure-out-and-program effort by pro-
viding extension tags that don’t require
you to write extra or supporting routines to
make them work.

Besides, the embedded web-server mar-
ket is fast moving and, frankly, unless you
develop embedded web servers (and that’s
all you do), you don’t have time to roll your

customization powers
the EmWeb server.
This server is built using

only the components you need
to do the job at hand. In addition

to providing a foundation to help
build this server, the EmWeb compiler is

capable of compressing the web content.
This arrangement makes the server right at
home in most any embedded environment.

No OS is needed to put the EmWeb
server online. All you need is good ol’
TCP/IP and some embedded network
hardware.

Listing 1—Notice the apostrophes that delineate the actual C code.  This example returns
"NetFax is Idle", "NetFax is Sending", or "NetFax is Receiving".

NetFax is <b>
<EMWEB_STRING C='
   static const char* NetFaxStatusDisplay[3] =
     { "Idle", "Sending", "Receiving" };
   static int RotatingFaxStatus;
   RotatingFaxStatus = ( RotatingFaxStatus + 1 ) % 3;
   return (char*)NetFaxStatusDisplay[ RotatingFaxStatus ];
'>
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Listing 2—Before compilation, both 10s would show. After compilation the EMWEB_PROTO-
surrounded 10 would disappear.

The EmWeb server lets
you specify a type for the
data as an attribute of the
EMWEB_STRING tag. Again, you
write no special code for this con-
version as the EmWeb server performs
the type-to-html translation automagically.

There are a variety of value types
including signed and unsigned integers,
IP addresses, MAC addresses, and hex
integers. While I’m on the TCP/IP band-
wagon here, Listing 3 shows the code that
performs the unsigned-integer–to–dotted-
IP–to–html trick.

to a NULL-terminated character string.
Typical C stuff.

What if the requested data is an integer
or, better yet, an IP address? No problem.

own server code and stay competitive. Let’s
examine some of the server tags, begin-
ning with EMWEB_STRING.

EMWEB_STRING enables you to insert
C or C++ code into your html source to
return a value to be displayed by way of
the browser GUI. The only code you write
is a function to access the resources needed
to compute the return value. Your function
must end with a return statement that
points to the value. If no value is to be
inserted, a NULL return is required.

The function is usually a C code frag-
ment placed within the confines of the
EmWeb server tag. Listing 1 shows how
EMWEB_STRING is typically used.

Remember that EmWeb html web con-
tent is created the normal way using your
favorite html editor. This is good and bad.
The good side is that your web content can
be easily created. The bad side is that if
you will be displaying dynamic values,
you can’t see them when you static test the
html-based page.

EmWeb server provides a prototype
tag, EMWEB_PROTO, which enables you
to insert the expected value on the page
where it would normally appear. This tag
takes advantage of the fact that browsers
ignore tags they don’t understand. It gets
better. The EmWeb compiler strips out the
EMWEB_PROTO tag and content and
doesn’t add this comment or test content to
your final product.

If you work by committee, you can send
EmWeb-server-tagged html to everyone
and they can see it just as it would be if an
application were behind it. Most often, it’s
easier to write code than please an end
user. With the prototype tags, you can
propagate your ideas to the user commu-
nity for critique before you pour the final
source-code concrete. An example of
EMWEB_PROTO usage is shown in Listing 2.

What if the dynamic value you need to
display is not a string? Our look at EMWEB_
STRING revealed an internal C code
fragment that ultimately returned a pointer

<blockquote>
The count is: <b>10</b>
<br>
The count is: <b><EMWEB_PROTO>10</EMWEB_PROTO></b>
</blockquote>
<p>
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EMWEB_ITERATE
and EMWEB_INCLUDE

are two more tags that make
the EmWeb server embedded-

friendly. EMWEB_ITERATE is sim-
ply another attribute of EMWEB_

STRING. EMWEB_ITERATE allows dy-
namic code snippets to be repeated as
long as the return value is not NULL. The
beauty of this is that repetitive operations
such as table building can be invoked
with a single reference to one iteration-
equipped EMWEB_STRING statement.

Sometimes it’s necessary to assemble
an html page using pieces from other
documents. Assembling this type of page
is done by the server without help or
influence from the browser. This process is
called Server Side Include.

To the browser, the page it receives is
the “single” document it received by issuing
a single request. The advantage of using
Server Side Include is that a document can
be created once and used many times on
multiple pages without having to be re-
written from scratch each time it is used.

The downside of Server Side Include is
that some servers have to examine the

documents in the document pool for spe-
cial extensions so that the selected content
will be placed in the correct areas of the
final document. If the server has the re-
sources to provide this service, it’s a small
price to pay for the flexibility.

In the embedded world, those types of
resources (in the quantity needed) are
normally not around when you need them.
EMWEB_INCLUDE is the EmWeb server
tag that implements Server Side Inclusion
the frugal embedded way.

The EMWEB_INCLUDE tag comes in
three flavors. You can include a document
with <EMWEB_INCLUDE COMPONENT=
"document">.

In this context, the COMPONENT attribute
implies that the "document" is actually
a URL that represents the name of another
document located on the same embedded
platform. Or, if a dynamic document inclu-
sion is required, you can use <EMWEB_
INCLUDE C="C Code">.

The C= attribute determines the URL to
be included at runtime. The "C Code" is
actual C code that has been embedded
into the html content and is executed during
runtime when the document is served.

A string containing the URL to include
is returned. If a NULL pointer is returned,
no document is included. This concept
could be used to interrogate a system and
serve pages that relate to just that particu-
lar system from the document pool.

The final flavor uses iteration to invoke
actual C code multiple times until a NULL
pointer is returned. Each time a non-NULL
pointer to a URL string is returned, the
contents of that document are served. This
line of code behaves somewhat like the
EMWEB_ITERATE variant of the EMWEB_
STRING tag:

<EMWEB_INCLUDE EMWEB_ITERATE C=
"C Code">

So far we’ve looked at some tags and
code that could be assembled to form some
pretty good web server content. You’ve
heard me say it many times: to be success-
fully embedded, the hardware and soft-
ware must be efficient.

As you progress through the design
and buildup of web page content, you
may come to the conclusion that some of
the content must be duplicated in different
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areas of the design. Rather than embed
the source multiple times in the web content,
there should be a mechanism that allows
the code to be reused rather then rewritten.

The EmWeb server solves this problem
by employing the EMWEB_MACRO tag.
The reuse property of the EMWEB_MACRO
tag is applied in both the EMWEB_STRING
and EMWEB_INCLUDE tags. An ID= at-
tribute in the place of the C= attribute
enables the programmer to name dynamic
EMWEB_STRING or EMWEB_INCLUDE tags.

The named tag is considered global
and can then be accessed from anywhere
in the web content. Normally, a macro
inserts itself fully into the code at each
instance in which it is called. Here, instead,
the EmWeb server macro is referenced.
Thus, the macro takes up only the space in
which it is originally written.

Listing 3—Just in case you’re wondering, 10.1.2.3.

Default Gateway Address:
<EMWEB_STRING EMWEB_TYPE=DOTTED_IP
  C='static uint32 example = 0x0a010203;
  return &example;
'>

For example, if you replace the C= in
Listing 1 with ID="faxStatus", you
could reference the code in Listing 1 from
anywhere in the content with <EMWEB_
MACRO ID="faxStatus">. An added
benefit of the EmWeb macro implementa-
tion is that the macros can be used without
having to recompile the web source content.

One last tag before I move on and add
more logs to this fire. The tags I’ve dis-
cussed—EMWEB_STRING and EMWEB_
INCLUDE—enable us to insert C and C++
code into homegrown html files to gener-
ate dynamic content.

As you well know, html and C weren’t
initially designed to be mixed. C code
most always includes an #include file.
There will be times when code in the
EMWEB_STRING constructs will need to
reference information from that infamous

#include file. Thus,
the last tag I’ll discuss is
the EMWEB_HEAD tag.

Just like its cousins, the pur-
pose of the EMWEB_HEAD tag is to
enable the web programmer to insert C
code into the html source code. Although
you can put anything you want in the
EMWEB_HEAD area, the code within the
EMWEB_HEAD tag is usually C declarations
or #include files that are needed by
supporting EMWEB_STRING and EMWEB_
INCLUDE routines. An EMWEB_HEAD tag
looks like <EMWEB_HEAD C="C Code">.

You don’t know what an EmWeb archive
is yet, but when the EmWeb compiler is
run, the code specified in all the EMWEB_
HEAD tags in the archive is gathered up,
combined, and placed into the start of the
generated C code output. C code specified
in an EMWEB_HEAD tag appears before
any code specified in the EMWEB_STRING
and EMWEB_INCLUDE tags.

It is recommended that all #include,
#define, and globals be placed in one
EMWEB_HEAD structure in the index.html
file. That way all EMWEB_HEAD code
throughout an entire archive is combined,
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Listing 4—Some folks like chocolate. I like switch statements. myFunction is a utility function
that can be used by any embedded C/C++ code in the html archive.

<EMWEB_HEAD C='
static const char * myFunction(int value){
  switch (value) {
      case 0:
        return "Zero";
      case 1:
        return "One";
      case 2:
        return "Two";
      default:
        return "some other number";
    }
}'>
<p>
<ul>
<li>myFunction called with <EMWEB_STRING C="return myFunction(0);">
<li>myFunction called with <EMWEB_STRING C="return myFunction(1);">
<li>myFunction called with <EMWEB_STRING C="return myFunction(2);">
</ul>

SOURCES
EmWeb
Agranat Systems, Inc.
(978) 461-0888
Fax: (978) 462-1080
www.agranat.com

Net186 eval kit
Advanced Micro Devices, Inc.
(818) 878-9988
Fax: (818) 878-9081
www.amd.com

Fred Eady has over 20 years’ experience as
a systems engineer. He has worked with
computers and communication systems large
and small, simple and complex. His forte is
embedded-systems design and communica-
tions. Fred may be reached at fred@edtp.com.

which avoids multiple
includes of the includes,

if you get my drift. Listing 4
shows how EMWEB_HEAD and

EMWEB_STRING work together.

WHAT’S AN ARCHIVE?
While we’re discussing archives, let’s

define a full EmWeb application. There
are four major components. The first is one
or more archives (html documents and C
source code that you compile to produce
web pages).

In effect, an archive is a repository for
html and C code that becomes your dy-
namic web content. Documents within the
archive can be html files, Java programs,
graphical images, or any resource that can
be identified by a URL. The archive is really
acting as a run-time database for the
EmWeb server.

Archives can be loaded dynamically,
produced as binary images for separate
loading, created as distributed archives,
and partitioned to accommodate the cre-
ation of derived archives. A derived
archive enables the static portions of a
“host” archive to be modified and subse-
quently reloaded without having to re-
build the entire system.

The second major component is the
customized EmWeb server. Basically, the
default EmWeb Server serves static docu-
ments only. Well, you’ve read this far, so
you know that EmWeb server can also deal
dynamic pages, too.

Because EmWeb is targeted for em-
bedded apps, it’s designed to be as small
or as large as the application requires it to
be. Being an embedded chameleon re-
quires the ability to switch certain attributes
on and off, depending on the environment.
The EmWeb server does this by enabling
the programmer to pick and choose the
final server’s capabilities.

The EmWeb server capabilities fall
into these functional areas:

• archive and document maintenance
• authorization and security
• distributed processing
• file access
• network
• request context access
• system

Archive and document maintenance
involves permissions for:

• allowing compression of the archive
• URL redirection ability
• dynamic loading of archives
• demand loading of archives
• document cloning

Archive compression can be a big
advantage in embedded systems with small
memory footprints like the Net186. URL
redirection allows redirection of URLs within
the archive and provides a way to handle
http requests for external resources.

I mentioned how being an embedded
chameleon can be a good thing. Well, the
EmWeb server can load archives according
to circumstances. That’s embedded chame-
leon! Demand loading involves only loading
an archive if it contains a requested resource.

The final, most interesting feature is docu-
ment cloning. A document may have sepa-
rate clones, each with its own URL, but store
only a single copy of the original document.

Let’s take a quick look at the remaining
items in the list. EmWeb security is basic
http authentication and is used to restrict
access to documents and archive resources.

Distributed processing enables EmWeb
to be implemented as a network of servers
presenting the face of a single URL hierarchy
to browsers. Access to the local embed-
ded file system is also supported so http
requests that require file access outside the
EmWeb archive can be accommodated.

As for the network, TCP/IP is the major
player. Request context access is a set of
functions provided by EmWeb that permit
user code to get information about the
current http request.

“System” refers to basic functions like
time and date, provided by the EmWeb
server, and namespaces are used to define
an interface between EmWeb and an exter-
nal database. The final two components
are application code and network support.

In a nutshell, EmWeb server is a TCP/IP
network-based, self-contained http-compliant,
static and dynamic document web server
that’s capable of being compressed with its
C-laden web content and placed on a lim-
ited-resource embedded platform. Whew!

DON’T CHANGE THAT URL
Well, I still have to declare the hardware

and show how I got the bytes from the
EmWeb compiler to the Net186. I also need
to tell you about the compiler and walk
some info through the system.

In the meantime, keep an eye on your
web sites and stock up on hotdogs because
it doesn’t have to be complicated to be
embedded. APC.EPC

www.agranat.com
www.amd.com
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ast month, I
introduced my

host controller. Now,
I want to show you how

it all came together.
First, a note on the choice of parts

that went into it. I chose the TI TUSB-
2040 four-port USB HUB for the core
of the µSIE because it’s a stand-alone
part that requires no programming
and is available in a DIP package.

HUB support chips were chosen
based on the application examples in
the TUSB2040 datasheet. CPLDs, which
support in-circuit programmability,
are a must for the initial prototyping
of your host controller.

As we go through the process, you
may want to have these files (available
on the Circuit Cellar web site) handy:

• HUB01C.PLD—programming for low-
and full-speed clock generation, the
DPLL, and bus time-out detect logic

• HUB04C.PLD—dual-port RAM address
control logic

• HUB02C.PLD—µSIE functions

To make signal tracing easier, the net
names used in Figures 1 and 2 match the
variable names used in the .PLD files.

A simple way to implement sub-
routines within state-machine logic is
to use a multiphase clock. One level
of state machine controls the clock
signals to the next level down.

4

Building a USB Host Controller

If you’re
looking for
detail, you

have no excuses left:
USB is a mystery no
longer. By describing
the step-by-step con-
struction of his low-
speed USB host con-
troller, Glen reveals
the inner workings of
USB hardware.

4

The top-level state machine con-
trols the idle, start of frame, and send/
receive states. At the next level down
are the state machines that generate
send and receive transactions. The third
and fourth levels are responsible for
bit and byte manipulation.

Although the complete µSIE (in-
cluding the dual-port RAM) can be put
into a single, large CPLD, it’s less
expensive to implement a design us-
ing several smaller devices. But al-
ways pick a bigger part than you think
you need. To help debugging, leave a
few extra pins on your CPLD for test
points.

GETTING STARTED
Start with a development card or

prototyping system for your favorite
8-/16-bit microcontroller. A debugger
for downloading and running code is
essential. And be prepared to generate
a number of different test routines.

Set aside some memory space for a
dual-port RAM; 1 or 2 KB is enough.
This RAM will be the main driving
engine for your host controller. A good
storage oscilloscope or logic analyzer is
a must for debugging the hardware.

CLOCKING THE µSIE
Several system clock signals must be

generated for the µSIE [3]: a four-phase
full-speed 12-MHz clock, a four-phase
1.5-MHz low-speed clock, and the
1-ms frame period clock. The µSIE uses
a 48-MHz crystal oscillator as the
primary source for all timing, so gen-
erating the 12- and 1.5-MHz four-phase
clock signals becomes straightforward.

The USB Specifications call for the
1-ms frame clock to be adjustable [1,
p. 124], but this is from the perspective
of a USB slave device. Many USB slave
devices use ceramic resonators instead
of crystals for their clock so some
provision was included to compensate
for their lower accuracy and stability.

The 1-ms frame clock is imple-
mented as a divide-by-n counter, with
n giving the adjustability called for [4].
Because the host controller is the bus
master and sets the 1-ms frame period,
it doesn’t need to be software adjust-
able. So n is fixed equal to 48,000.

Regarding the 1-ms frame clock as
implemented in HUB01C.PLD, the
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more switching the CPLD does, the
more power it dissipates. At 48 MHz,
the Lattice part gets quite warm, so the
divide-by-n counter was broken up into
several stages, each being clocked by a
slower signal from the stage before.

FEEDING THE µSIE BABY
The first test routine to run on your

8-/16-bit micro is one that, upon a
hardware interrupt generated by the
host’s 1-ms frame clock, writes a few
bytes of data out to a starting location
in the dual-port RAM. Make the first
byte (i.e., ByteCount) the number of
bytes in your test packet.

The first HDL state machine to
download to the CPLD is one that,
when initiated by the 1-ms frame
clock, starts by reading the number of
bytes to transfer and loads the data se-
quentially from the dual-port RAM into
a shift register [5] and clocks it out as a
serial stream. Output clocking is a shift-
right least-significant-bit-first operation.

Exactly how the data is read from
or written to the dual-port RAM de-
pends on what stage of the build-and-
test process you’re at. Understanding
the final form of the dual-port RAM’s
read/write logic must wait until after
the inner workings of the µSIE have
been explained.

Using the serial bitstream generated
by the first test routine, start imple-
menting in HDL code the bit-stuffing
and NRZI-encoding functions [1, pp.
121–122]. Bit stuffing is accomplished
by counting the number of 1s (in a row)
sent and, when that count hits six,
clocking a 0 into the NRZI encoding
section without clocking the serial-
out shift register [6].

USB is a two-wire medium, so there
can be up to four signal states. Data
information is encoded as a differential
signal; control information is encoded
as a DC-level signal [1, p.115].

The USB uses three of the four pos-
sible states—J logic state, K logic states,
and the single-ended zero (SE0) state
used for sending control information
[7]. Also, the NRZI state machine needs
a disconnect or floating-output state.

 The Sync Pattern determines the
initial state and initial transition for the
NRZI state machine. When the host
controller initiates a transaction, it
takes the bus from a floating state to
the Idle state.

The first Sync Pattern transition is
from Idle to K. So, the NRZI state ma-
chine must start in the disconnect state,
go to the J state for one bus-clock period,
then transition to the K state. After this
startup, the NRZI encoder runs itself.

In NRZI encoding, data is encoded
as transitions, not levels. A 0 gives a
transition; no transition indicates a 1.
When viewing the USB signal on your
logic analyzer, don’t look at it as a
sequence of 1s and 0s. The transitions
between 1s and 0s represent the bits
in the USB serial signal.

DIFFERENTIAL LOGIC LEVELS
The differential logic levels for low-

speed USB communication are the
reverse of those of the full speed, but
the SE0 control signal is still the same.
Reversing prevents full-speed devices
from responding to low-speed signals.

But, this reversing is only from the
perspective of the slave controller. The
host still sends out all transactions in
full-speed differential logic levels.

The last hub device before the
receiving low-speed device is respon-
sible for reversing the sense of the
differential signal levels [1, p. 224].
So, the µSIE doesn’t need to imple-
ment or support the full-/low-speed
signal-level reversal.

Now that your prototype host con-
troller can generate a serial bitstream
of the right form, issues of USB proto-
col must be dealt with (i.e., what bytes
of data and in what order must they
be written to the dual-port RAM).

Due to definition overload,
the information in chapter 8 of
the USB Specification, “Proto-
col Layer,” can be difficult to
interpret. Unfortunately, this
chapter is essential for USB
hardware design.

Figure 3, which shows a Start
Of Frame (SOF) packet and a
complete USB hub Control Read
sequence, may help elucidate
the hardware-level details of the
USB transaction protocol. It’s
an expanded version of the Con-
trol Read sequence in Figures 8–
12 of the Specification [1, p. 154].

The Control Read sequence
shown here is the GET DESCRIP-
TOR device request. Because the
USB uses the duration of the SE0
state to encode control signals,
time-delay information is critical.

The next USB test signal the
host controller needs to generate
is the SOF packet [1, p. 149]. So,

Figure 1— This schematic shows the wiring diagram for the TUSB2040 four-port USB hub. The TUSB2040 is a +3.3-V
device, so a buffer (U14) was included to translate between +3.3- and +5-V logic levels.
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action starts with the host controller
sending a Token packet, or, in the case
of low-speed transactions, a Special
packet followed by the Token packet.

The Token packet initiates commu-
nications, but after the initial Token
packet is sent, there may or may not
be any further packets sent or received.
For example, the SOF transaction con-
sists of only the SOF Token packet.

Here’s a classic example of the defini-
tion overloading that makes reading
the USB specification difficult for the
uninitiated. Depending on the context,
“SOF” can refer to a transaction type,
a packet type, or a Token PID.

Building the SOF packet starts with
the microcontroller placing the Byte-
Count byte, then the sync byte, the PID
byte, and two bytes for the frame count
and CRC5 into the dual-port RAM.
For example, with a frame count of
54h, the SOF packet passed to your
µSIE is [04h,80h,A5h,54h,90h].

The µSIE input state machine reads
in and shifts out these four bytes of data,
then goes to the SE0 state for two bus
clock periods, then to the Idle or J state
for one period, and then disconnects [9].

Congratulations! You’ve just com-
pleted your first USB transaction.

THE USB HUB
The next step is a full-speed USB hub

Control Read sequence. The ’2040
hub controller chip was enlisted to do
all of the bus housekeeping functions,
including line driving, slew rate control,
hot-swap power management functions,
and low-/full-speed device detect. This
is a nonstandard use for this part, but
it does the job and saves work in re-
creating (as separate circuitry) all of
the functions it performs.

The ’2040 is a USB slave controller
and, before its functions can be ac-
cessed, it must be initialized just as
any other USB device. All USB hubs
are full-speed devices, so the clock-
generating section contains logic for a
12-MHz full-speed clock signal.

Fortunately, it’s only necessary to
talk to the ’2040 hub to initialize it.
Listening isn’t required at this stage, so
the first USB communication that the
host controller will initiate is a full-
speed Control Read sequence with its
own ’2040 hub.

Note that in wiring the ’2040 device,
because control information is sent as
a DC-level signal, it’s crucial that you
pay attention to the correct pull-up and
pull-down resistors in your design.

The Control Read sequence consists
of a number of transactions, each con-
sisting of the exchange of two or three
packets. For example, the setup trans-
action consists of a SETUP token packet
followed by a DATA0 data packet and
ending with an ACK handshake packet.

At this point, a logic analyzer or
storage oscilloscope becomes a necessity
to monitor the serial signals going to
and coming from the ’2040. Monitor-
ing ensures you’re getting the right
signals out to it, in the right order, and
with the right timing, and lets you
verify that the Control Read sequence
is completing correctly.

The first packet in the first transac-
tion of the Control Read sequence is a
SETUP packet. The SETUP token is
interpreted by the hub the same as an
OUT token.

On powerup, all USB devices default
to address 00h and endpoint 00h. These
will be the initial ADDR and ENDP
values for the TUSB2040 part.

To get the CRC5 value for this or any
SETUP, IN, or OUT packet, combine
the ADDR and ENDP values to form an
11-bit address. Then use this value to
offset into the CRC5 look-up table [10].

As with the SOF packet, building
the SETUP packet starts with the micro-
controller placing the ByteCount byte,
then the sync and PID bytes, and two
bytes for the ADDR, ENDP, and CRC5
into the dual-port RAM. Your result
should be [04h,80h,2Dh,00h,10h].

The purpose of this SETUP packet
is to send a message to endpoint 0 of
the device at address 0 to expect incom-
ing data on the next packet out. But
after getting this message packet, the
receiving device will only listen for so
long before timing out, which brings
up the issue of bus turnaround time.

The bus turnaround time is basically
the time period (after the end of a
packet’s transmission) that any USB
device still expecting to receive another
packet will wait before “hanging up.”
The USB Specification calls for at least
16 (but no more than 18) bus clock
periods for this interval [1, p. 161].

the second test routine to download and
run on your 8-/16-bit controller is one
that, upon a hardware interrupt gener-
ated by the host’s 1-ms frame clock,
increments an 11-bit frame counter,
constructs the next SOF packet, and
writes that packet to your starting
location in the dual-port RAM.

I let the microcontroller generate
all data fields and the µSIE generate all
control signals. My controller does Sync
Pattern, PID, Frame Count, CRC5,
CRC16, and ACK; the µSIE generates
the Idle and End of Packet (EOP) states.

Sync Pattern is seven 0s followed by
a 1—that is, the byte 80h shifts out least
significant bit first [1, p. 123]. When
this byte is run through bit stuffing and
NRZI encoding, it becomes [Floating,
Idle,K,J,K,J,K,J,K,K] in USB form or
[HiZ,1,0,1,0,1,0,1,0,0] as logic levels.

The 5-bit CRC is easily generated via
a 2-KB look-up table, with the 11-bit
frame count as the address offset [8].

In addition to the bytes fed to it via
the dual-port RAM, the host needs to
append the final EOP and Idle control
states. The EOP is a SE0 state, and the
Idle is a J state. After these are sent, the
USB signal lines are floated in antici-
pation of a possible return signal.

The EOP and Idle control states are
specified as time durations, which are
different for low and full speeds [1, p.
125]. It’s easier to think of them in
terms of bus clock periods, the EOP
being two and the Idle state being one
bus clock period, respectively.

For USB, the word “transaction”
refers to the process of data transfer
between the host controller and the
slave USB device. It’s not a hardware-
level concept but a protocol- or software-
level concept. At the hardware level, the
basic communication unit is the packet.

A transaction consists of a sequence
of packets (initiated by the host) being
sent back and forth between the host
controller and a USB slave device. The
host’s µSIE sends and receives individual
packets. Completing a full transaction
is a software issue for the 8-/16-bit
microcontroller.

The USB Specification calls for ten
different packet types, each one being
identified by its PID and representing
a different handshake message or data
message type [1, p. 146]. A USB trans-
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The second packet in the Setup
transaction is a DATA0 packet. DATA0
and DATA1 are the two packet identi-
fiers used to distinguish data packets.
The first data packet in any transaction
is always labeled with the DATA0 PID.

The second data packet begins with
the DATA1 PID, and the third with the
DATA0 PID. They then alternate be-
tween DATA1 and DATA0, except for
Control sequences, which end with the
exchange of an empty DATA1 packet.

BACK TO THE µSIE
So far, the dual-port RAM read/write

logic has only had to output one packet
at a time. Because of the short bus turn-
around time allowed for full-speed USB
devices, your DATA0 packet must be
ready to go right after the SETUP packet
is sent, which means it must already
be in the dual-port RAM along with
its associated SETUP token packet.

That’s just one example of the
general case, that, given the short bus
turnaround time, the host controller
must be able to complete a full trans-
action all at one time.

On the microcontroller side of the
dual-port RAM, transactions are stored
in a semi-linked-list fashion (i.e., the

ByteCount byte, which starts each
data sequence, is used as an offset to
the next ByteCount byte). If this count
is zero, the SIE knows that no more
data is to be sent and goes to an idle
state until the beginning of the next
1-ms frame clock.

To keep the 8-/16-bit microcontrol-
ler from causing conflicts by trying to
access the same segment of the dual-
port RAM at the same time as the µSIE,
its memory is divided up into four
256-byte pages [11]. Each page is in
turn divided into 128-byte output and
128-byte input segments [12].

The four memory pages form a
cyclic queue, with the micro (via its
I/O pins) keeping track of the current
page the µSIE is on. While the µSIE is
accessing the current page, the micro
is writing to the output segment of
the next page and reading from the
input segment of the previous page.

Along with these modifications to
the dual-port RAM address control
logic, changes have to be made to the
µSIE programming. Two changes are
the additions of an “expect return flag”
and a “data ready flag” [13]. Because
the value of ByteCount for low-speed
transactions never exceeds 16, the lower

four bits of this byte are used for
ByteCount and the upper four
bits are used for control flag
information [14].

With this modification, your
µSIE will know from the Byte-
Count byte that the SETUP
packet expects no return hand-
shake and that there’s a second
packet waiting in the dual-port
RAM to be sent out before the
bus turnaround time expires.
This is probably the biggest
single leap in your HDL code
development, so expect to spend
some time working through it.

INITIALIZING THE USB HUB
This DATA0 packet con-

tains the USB device request
information necessary to start
the hub initialization process
[1, chap. 9]. All USB devices
must be initialized by the
following minimum exchange
of information.

On startup, all USB devices
default to ADDR 0 so the host issues
a GET DESCRIPTOR device request to
the default control endpoint, ENDP 0,
at ADDR 0. The device address is set to
a new value and the device descriptor
is requested again at the new address.

The GET DESCRIPTOR request
consists of [1, p. 176]:

• byte 1—bmRequestType, 80h, device
request

• byte 2—bRequest, 06h, request code
• byte 3—wValue, 00h, descriptor index
• byte 4—wValue, 01h, descriptor type
• byte 5—wIndex, 00h, not used
• byte 6—wIndex, 00h
• byte 7—wLength, 12h, 18 bytes is

standard descriptor length
• byte 8—wLength, 00h

As was the case for the 5-bit CRC,
the microcontroller is responsible for
generating the CRC data. A 16-bit CRC
is generated using a simple algorithm
combined with a look-up table [15].
Make sure that the two CRC16 bytes
are placed in the right order in the
dual-port RAM to ensure that the
resultant serial data clocks out correctly.

The Setup transaction expects a
handshake after the DATA0 packet is

Figure 2 —This schematic shows the host-controller support logic. The nets ADDR[00:15] and DB[00:07], left side of the
dual-port RAM, connect to your 8-/16-bit microcontroller. Programming for the three CPLD devices is available via ftp.
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sent. When sending this packet, the
expect return flag bit (bit 4 of my Byte-
Count byte) must be set. If all has gone
correctly, the DATA0 packet passed
to your µSIE should be [1ch,80h,C3h,
80h,06h,00h,01h,00h,00h,12h,00,E0h,F4h].

The third and final packet in the
Setup transaction is the return of an
ACK handshake. If you see the ’2040
hub return this packet (D2h), then
your µSIE is probably working cor-
rectly, and you’ve completed your
first two-way USB transaction.

The complete Control Read sequence
consists of three more In transactions
and an Out transaction. The next step
is to write a test routine for your 8-/
16-bit micro to complete each trans-
action (one per 1-ms frame period).

THE FIRST IN TRANSACTION
The first In transaction consists of

an IN packet sent by the host controller,
followed by a DATA1 packet from the
hub. It ends with the host controller
returning an ACK handshake packet.

 So far, the µSIE can only send
packets; it can’t receive them. Because

we can’t read the returning DATA1
packet, the µSIE can’t issue an ACK
response. But, this returning DATA1
packet makes a great test signal to
start the development of the input
section of the µSIE.

The first section of the host con-
troller’s input to implement is the
digital phase lock loop (DPLL). The
implementation I chose is basically a
copy of the DPLL state machine out-
lined in the USB white paper [2, p. 2].

There is one known bug in my
implementation of this DPLL [16].
Occasionally, when syncing to a faster
clock, the DPLL skips the fourth
phase clock state. This could pose a
problem for any µSIE implementation
that, like mine, uses this fourth phase
clock signal.

There are ways around this bug,
but I haven’t spent the time to fix it
yet. So far, it hasn’t presented any
problems because the hub runs off the
same 48-MHz clock as the µSIE, and
low-speed transactions don’t last long
enough (in bit times) for this skipping
of clock states to occur.

The bus turnaround time detect is
a counter clocked at the bus cycle
period [17]. The counter is turned on
while the DPLL state machine is in
its Sync Pattern detect phase. If the
DPLL doesn’t get beyond its first two
states, no Sync Pattern is detected. If
this condition persists for 18 bus clock
periods, the counter sets a timeout
flag [18].

Once a receive clock is established,
the NRZI decoding can be done. Recall
that the NRZI encodes data as transi-
tions in the serial signal stream. So, to
pull the signal back out, the transitions
need to be detected.

A two-bit shift register helps ac-
complish this detection. As the USB
signal is clocked in, a comparison is
made between the current and previ-
ous signal states. If they are equal, a 1
is clocked out; if not, a 0 [19].

Bit unstuffing is just the reverse of
bit stuffing. If the number of 1s in a
row equals six, the input NRZI decod-
ing state machine is clocked once
without clocking the input shift regis-
ter [20]. This, in effect, throws away
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the stuffed bit. Just a reminder here:
input clocking is a shift-right least-
significant-bit-first operation.

After you have a decoded signal,
you need to start looking for the Sync
Pattern. Separating it from the data
signal and detecting its end will enable
the µSIE to lock to the correct timing
for reading data bytes out of the serial
input shift register.

The scheme I decided upon was to
look for the value 8h in the upper four
bits of the input shift register [21].
But, you can’t start looking too soon
because the first few bits to come
through the decoding process may be
interpreted as a 1 preceded by 0s.

The first segment of the hub’s
descriptor comes as the following
DATA1 packet of Sync Pattern, PID,
data and crc16: [80h,4Bh,12h,01h,00h,
01h,09h,00h,00h,08h,10h,7Bh]. If this
is the data output you see from the
’2040 (via your µSIE), then your input
section is working correctly.

The EOP SE0 state is detected
using a counter clocked in the 4×
domain. For example, with 12-MHz
full-speed transactions, the counter is
clocked at 48 MHz [22].

The counter is gated by the detection
of a SE0 state. If the counter detects
two full bus clock periods, the EOP_
flag is set [23]. In my implementation,
the ending Idle state is not detected.

Because a host controller isn’t
allowed to return either a NACK or
STALL handshake, the µSIE doesn’t
have to implement these functions [1,
p. 151]. The only transaction responses
the host controller can return are an
ACK handshake for transactions that
are completed correctly and a no-
handshake return for transactions that
don’t complete correctly.

The simplest choice is for the host
controller to acknowledge everything
and let the microcontroller take care of
error checking and repeating a trans-
action if and when errors occur. Since I
chose this option, the handshake packet
need not originate with the µSIE but
can be generated by the 8-/16-bit micro
and loaded into the dual-port RAM
with all the other packets in a trans-
action. An ACK packet is just the
SYNC and PID bytes: [02h,80h,D2h].

To finish the In transaction, the host
controller must issue an ACK hand-
shake. If the EOP for the DATA1 packet

has been detected successfully, the µSIE
reads in the next packet to send from the
dual-port RAM (i.e., the ACK packet.

The final transaction of any Control
Transfer is the Status Stage, which is
nothing more than the exchange of an
empty DATA1 packet. Basically, it
gives the sending party a chance to send
a parting ACK or NACK response back
to the receiving end [1, p. 155].

BURPING THE µSIE BABY
If all has gone right so far, you now

have a µSIE correctly locking on to
the incoming USB signal and output-
ting data bytes in a coherent fashion
from its serial-in parallel-out shift
register. The next step is to get this data
into the dual-port RAM in a way that
is readable by the 8-/16-bit micro.

There are two address counters in
the dual-port RAM address logic—one
for reading output data, one for writing
input data. When the µSIE goes into
receive mode, it captures the current
write address but doesn’t write to it. It
then clocks the write address counter.

As the µSIE inputs data and writes
it out to the dual-port RAM, it keeps
a count of the total number of bytes
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Figure 3— Here you see an SOF packet for frame count 054h, followed by the Control Read sequence for the TUSB2040’s GET DESCRIPTOR device request. The actual
USB signal is formed by shifting out, least significant bit first, in the order they appear and in NRZI fashion, the bytes shown in this diagram.
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SOFTWARE
Programming for the three CPLDs
was done using the hardware descrip-
tion language CUPL. Source code is
on the Circuit Cellar web site.

received. When the EOP is detected,
the µSIE writes that byte count out to
the address it saved at the beginning,
thus creating a semi-linked list with
the same structure as the input data.

CONFIGURING THE USB HUB
The Control Read sequence simply

wakes the ’2040 up. It still has to be
configured before it can be used for
downstream communications [1, p. 167].
Configuration is done by issuing the SET
CONFIGURATION device request and
setting the configuration value to 01h.

In general, SET X device requests
are Control No-Data transactions.
Setting this configuration value to the
nonzero constant corresponding to its
hub configuration gives the host access
the ’2040’s hub controller functions.

Once these functions are accessed,
the host controller, using an Interrupt
In transaction, can read the Port Status
Change bit map at the ’2040 hub’s end-
point 1 to see if any devices are attached
[1, p. 262]. A GET PORT STATUS request
returns specific information about a
port’s attached device.

The SET PORT FEATURE request is
then issued several times with different
wValues until the hub and device are
ready. For example, wValue 04h is reset,
wValue 01h is port enable, wValue 08h
is power on, and so on [1, p. 254].

Configuring the USB hub is an
example of bus enumeration [1, p. 169].
At startup, all USB devices require the
same initialization and configuration
sequences and share almost all of the
same standard device requests.

When it detects the presence of a new
device on the USB, the host controller
enables an initial 100 mA of current to
bus-powered devices. Next, there is a
wait period for the attached device to
power up and be ready to accept com-
munications [1, p. 242]. This period is
specified by bPwrOn2PwrGood, which
is returned as part of a hub’s Hub
Descriptor [1, p. 250].

A RESET device request is sent to
the hub controller the device is attached
to. The hub then issues a standard USB
RESET control signal, which is at least
10 ms of the SE0 state [1, p. 119].

Following a reset, the first device
request issued is always GET DESCRIP-
TOR at ADDR 0 and ENDP 0. Then,

the SET ADDRESS request is sent,
changing the default ADDR to a new
unique nonzero value. GET DESCRIP-
TOR is issued again at the new address.

Configuring the attached device
starts with the host controller issuing
a GET CONFIGURATION request. If this
value is zero, the device is not config-
ured and a GET DESCRIPTOR:CON-
FIGURATION request is sent [1, p. 184].

The returned variable, bConfigu-
rationValue, is used for the subse-
quent SET CONFIGURATION request.
Once the configuration value is set,
you have access to all device requests
specific to that configuration class. USB
devices may support more than one
configuration, so you must specify a
particular configuration value during
device initialization.

The final step is to enable full power
to those devices requiring more than
the initial 100 mA of current.

BACK TO USB SCHOOL
Not every device supports every USB

device request. There’s a lot of infor-
mation in chapters 8, 9, and 11 of the
USB Specification that may be essen-
tial for communications with your
USB device: for example, variables like
bInterval (the interval period, in
frame counts, between device accesses)
or bPwrOn2PwrGood (the time for a
device’s power supply to ramp up).

Experiment with the standard de-
vice requests by issuing them to the
’2040. Having feedback from an actual
USB device and comparing its responses
to the Specification’s text will help you
make sense of the material.

Low-speed transactions are prefaced
by a special PID (PRE) sent at full speed.
The µSIE doesn’t append the usual EOP
and Idle states when sending this low-
speed preamble, but (after a pause of
four bus cycle periods to give down-
stream hubs time to reconfigure) goes
from the PRE PID to the Sync Pattern
of the next low-speed packet [1, p. 160].

ON YOUR OWN
Now, plug a low-speed USB device

into the host controller, power up,
enable the device’s features, and start
teaching the attached micro to speak
USB. Once the host controller is up and
running, read the ’2040’s Port Status

Change bit map. A NACK response
indicates no change on the input ports.

Next, plug a low-speed USB device
into the host controller. Doing a second
read of the Port Status Change bit map
should get a byte of data back with
the bit set corresponding to the port
you plugged into.

Check the port’s status to see what
has changed, power on the device, do
a reset, wait 10 ms, then start the bus
enumeration process. If necessary, get
configuration values and do a set con-
figuration to enable the device’s features.

What those features are and how you
talk to the USB device after configura-
tion is device-specific [1, p. 34]. So,
from here on out, you’re on your own.

I hope you’ll take up the USB
mantle, create your own embeddable
low-speed USB host controller, and
make your work available as HDL
shareware. Happy USB’ing. I

www.usb.org
www.usb.org
www.latticesemi.com
www.ti.com
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FROM THE
BENCH

Jeff Bachiochi

A Familiar
Face

As the
I2C bus
rolls into
its third
decade,

Jeff puts the Philips
technology to use in
an eight-character
LCD. Get onboard to
see how to cascade a
couple I2Cs to get the
right number of seg-
ments for this display.

lthough the I2C
bus has almost

reached drinking age,
it’s far from the peak of

product maturity. This fact is reinforced
by the number of manufacturers adding
an I2C port as a standard peripheral
device to their micros.

It’s not that you can’t create a soft-
ware I2C port on practically any micro;
it’s been done that way for years. But,
by having hardware support built in,
communications no longer requires
gobs of processor overhead.

Philips’ Inter-Integrated Circuit
(I2C) concept has blossomed into more
than 500 compatible devices developed
by more than a dozen manufacturers.
Even so, Philips remains the number-one
I2C manufacturer, and their peripherals
include memories, data converters,
I/O ports, real-time clock/calenders,
DTMF generators, and LCD drivers.

This month, I use cascaded drivers
to create an I2C interface to an eight-
character LCD. This display is similar
to those found at many gasoline pumps
and consists of 18 segmented characters.
As you can see in Figure 1, each char-
acter includes a decimal point and an
apostrophe.

The glass is constructed using three
backplanes (common to all characters)
as well as six frontplane inputs for
each character. Each frontplane input
consists of three character segments.

That’s a total of three segments × six
FP inputs × eight characters, which
equals 144 character segments.

The Philips PCF8566 can drive up
to 96 segments (using four backplane
commons). Because my display uses
only three backplanes, the segment
capacity of the PCF8566 in 1:3 mode
is 3⁄4 of 96 (i.e., 72 segments). By using
two ’8566s, I can get just the right
fit—72 × 2 = 144 segments.

Ordinarily, this would cause all
kinds of synchronicity problems. But
as you will see, these problems have
all been dealt with quite nicely.

THE CIRCUIT
After power has been applied to the

’8566s, all segments are initialized to
the off state and the 1:4 drive mode is
selected, the I2C is initialized, and the
internal data pointers are all reset. The
’8566 has a built-in oscillator that is
enabled by tying the OSC pin to ground.

In this configuration, the clock is
output via the CLK pin. If OSC is tied
to VCC, the CLK pin becomes a clock
input pin. Thus a second device can
slave off of the clock outputted by the
first device.

A power-savings mode reduces the
clock by a factor of six but retains the
same minimal frame rate of 64 Hz.
The lower clock speed means that I2C
communications will suffer a loss in
speed, but this low-power mode can
be changed at will.

Just because both devices are being
clocked from the same oscillator does
not mean that all timing will necessarily
be in sync. A SYNC pin assures that all
devices stay synchronous. Each device
monitors this pin as an input until the
beginning of the last active backplane
signal, at which time it outputs a fall-
ing sync pulse.

While in the input mode, if a device
sees the SYNC signal go low, it syn-
chronizes its frame with that SYNC
pulse. This arrangement ensures that
segment data will not be out of step
with any other device (especially im-
portant to the master, which supplies
the backplane signals to the glass).

The ’8566 has an internal LCD bias
generator consisting of a resistor divider
(and voltage follower/buffers) between
Vdd and the Vlcd input pin. The Vlcd can

a

Driving 144 LCD Segments I2C Style
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counter must be reset to zero on send-
ing the last piece of data. Otherwise,
the following data will go into the bit
bucket, as the subaddress will no longer
match any devices in the circuit.

REGISTERS
Many I2C peripherals have multiple

registers. Usually these registers are
accessed using a three-byte sequence.
The first byte holds the device address
(to whom), the second byte is the regis-
ter number (where the data goes to/
comes from), and the last byte is the
data (what it is).

The five registers in the ’8566 can be
addressed and have data written to them
all within the second byte. Although
doing this requires only a two-byte

pointer and the subaddress counter.
The data pointer keeps track of the
bits received and, based on the con-
figuration, bumps the subaddress
counter when 24, 48, 72, or 96 bits
overflow.

Each device has three subaddress
input bits, A0–A2. The user sets all
three address input bits low on the
master (subaddress = 0). The second
device is assigned subaddress = 1
(001b), and so on.

As devices receive data (because
SA0 is the same), only the device with
the matching subaddress will store
the data. Up to eight devices can be
cascaded in this fashion.

When fewer than eight devices are
used, the data pointer and subaddress

be driven from some external tempera-
ture-compensation circuitry if neces-
sary. For nominal environments, only
a contrast pot is necessary.

ADDRESSING
Most I2C devices have a predeter-

mined address consisting of most sig-
nificant fixed address bits and three
user-addressable lesser significant bits.
Usually A0–A2 are tied high or low to
give each device one of eight possible
addresses.

The ’8566 has only a single address
bit, SA0. When cascaded, each device
in the cascade uses the same address
(logic input on SA0) so each device will
receive every command. Remember
that these are all on the same bus, not
daisy-chained.

Depending on how the device is
configured, it may require from 24
data bits (for a 1:1 or static display) to
96 data bits (for a 1:4 display) to fill
the display RAM. The next bit will
want to go to the second device.

So, how does a device know if the
data is meant for it? There are actually
two counters in each device—the data

Photo 1 —Two I 2C PCF8566 LCD
segment drivers can drive all 144
segments on this eight-character
display. The driver ICs can be seen
behind the LCD’s glass.



72        Issue 109 August 1999       CIRCUIT CELLAR ® www.circuitcellar.com

Table 1—Only five registers are needed to completely control each PCF8566. Notice that the first bit of each
command can indicate that additional commands will follow in the same I 2C string. The control word, which appears
on the first line of each register description, is shown so that the most significant bit is leftmost and the least signifi-
cant bit is rightmost.

Mode Set: C 1 0 LP E B M1 M0
where C = 0 last command

1 commands continue
LP = 0 normal speed

1 power saving slow speed
E 0 display off

1 display on
B 0 1/3 bias

1 1/2 bias
M1 M0 00 1:4 backplanes

01 1:1 static
10 1:2 backplanes
11 1:3 backplanes

Load Data Pointer: C 0 0 P4 P3 P2 P1 P0
where C = 0 last command

1 commands continue
P4–P0 5-bit binary value 0–23 display RAM address

Device Select: C 1 1 0 0 A2 A1 A0
where C = 0 last command

1 commands continue
A2–A0 3-bit binary value 0–7 subaddress counter (device address)

Bank Select: C 1 1 1 1 0 I O
where C = 0 last command

1 commands continue
when MODE=1:1 static

I = 0 to RAM address bit0
1 to RAM address bit2

O = 0 from RAM address bit0
1 from RAM address bit2

when MODE=1:2 backplanes
I = 0 to RAM address bit0&1

1 to RAM address bit2&3
O = 0 from RAM address bit0&1

1 from RAM address bit2&3
when MODE=1:3 backplanes

not used
when MODE=1:4 backplanes

not used

Blink: C 1 1 1 0 A BF1 BF2
where C = 0 last command

1 commands continue
A = 0 normal blink

1 alternation blinking (see Bank Select register)
BF1 BF0 = 00 off

01 2 Hz
10 1 Hz
11 0.5 Hz

sequence, multiple commands can be
contained in the same sequence, as
well as data.

Table 1 for the functions of the five
command registers. By setting the C
bit to a 1, multiple register commands
can be sent in the same transmission
sequence. Also, note that a transmission
sequence must have at least a single
register command before any data is
sent. On receiving any data bytes, the

data pointer and device select registers
are automatically incremented.

SHOW ME
One of the nice points of developing

with I2C is the flexibility of combining
a number of small circuits that may
have been developed independently into
unrelated configurations. It’s like
writing modular code that can be used
repeatedly, thus saving precious time.
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To get a quick feeling of success, I
grabbed a PicStic-1 (although any PIC
could have been used) and wrote a short
program with PicBasic’s built-in I2C
routines. PicBasic’s routines don’t rely
on hardware, so any of the I/O pins
can be used to create an I2C bus.

Under normal circumstances, I’d
create lookup tables for a complete
character set, but because I just wanted
to get something up on the display, I
opted for a shortcut. I blew off the
table in favor of a few constants for
those characters I wanted to display.

After computing the constants based
on the segment positions in the RAM
registers, I compiled, downloaded, and
ran the program. Yes, I had a display,
but there were gaping holes among
the characters (missing segments).

ANALYZE THIS
The LCD is an 8540M3-RPH-0.25,

a standard product of Excel Technolo-
gies. Refer again to Figure 1 to see how
each character is divided into six
three-segment connections. Connec-
tions to these frontplane segments

Listing 1— Very little BASIC code was needed in order to see to some results from the circuit shown in
Figure 1, thanks to the PicBasic compiler.

' I2WRITE to 8566 LCD driver
' Write a command followed followed by optional data
'
symbol ADDR=$3E 'actual address byte (shifted right once)

START: B0=$48 ' MODE register value
B1=B0+128 ' same w/high bit set
I2COUT ADDR,B1,(B0) ' Write only command (required syntax)

LOOP: FOR B2 = 0 TO 23
LOOKUP B2, ($80,$AC,$8,$20,$8,$A8,$64,$AC,$4A,$20,$0,$0,

$0,$0,$A0,$4E,$A8,$8,$A,$8C,$C,$80,$0,$0),B3
I2COUT ADDR,B0,(B3) ' Write data
NEXT B2
END

determine the order of the input data
to the ’8566.

The display RAM for a 1:3 mode
(three backplanes) is three bits deep.
Each character requires six data RAM
addresses (three bits each). The char-
acter data is of the format: AP DP D2
B C D1 A2 J G2 I L K A1 H G1 F E M.
Notice that it takes 18 bytes of data
for a full eight characters.

I pored over the constants; they
seemed to be correct. I looked back at
the datasheet and found a snag. My
display had three backplanes. The ’8566
driver’s example showed a seven-seg-
ment display with decimal points
connected using three backplanes.
This setup required eight bits going
into three 3-bit RAM registers. That’s
nine bits of storage.
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Jeff Bachiochi (pronounced“BAH-key-
AH-key”) is an electrical engineer on

SOURCES

PCF8566
Philips Semiconductors
(408) 991-5207
Fax: (408) 991-3773
www.semiconductors.philips.com

PicBasic
microEngineering Labs, Inc.
(719) 520-5323
Fax: (719) 520-1867
www.melabs.com

PicStic-1
Micromint, Inc.
(800) 635-3355
(407) 262-0066
Fax: (407) 262-0069
www.micromint.com

8540M3-RPH-0.25
Excel Technologies Int’l Corp.
(908) 874-4747
Fax: (908) 874-3278

To make it easy to use, the design-
ers decided to skip the last bit. In other
words, in the 1:3 mode, the next data
didn’t start where the last left off but
skipped the ninth location. Unfortu-
nately, that ninth bit has a segment
on my display associated with it. Not
only did I get some blank segments, but
my data was shifted one bit for each
byte of data. Whoa.

Fortunately, I was able to save the
day by using the 1:4 (four backplane)
mode. When the ’8566 is initialized for
1:4 mode, the RAM registers become
four bits deep. In the 1:4 mode, the
eight bits of the seven-segment display
(with decimal points) fit exactly into
the RAM registers without any need
to toss out any bits, so I can pad my
data to put don’t cares every fourth bit.

Now the character data format is
AP DP D2 x B C D1 x A2 J G2 x I L K
x A1 H G1 x F E M x. Notice that it
now requires 24 bits for each character.

You can see from BASIC Listing 1
how easy it was to get some test code
written. This padding maneuver cleaned
up the display quite nicely (see Photo

1). The error in misunderstanding the
datasheet could have been disastrous
if I hadn’t been able to fix it in software
and if the prototyping stage had been
skipped. Designing straight to fab can
be costly.

I think I’ll add a few lines of code so
the message can be scrolled. There are
many possibilities now that I have a
simple platform to work with. By add-
ing a serial EEPROM to the PicStic I
can prepare some canned messages and
swap them in and out just by replacing
the eight-pin DIP.

The PicStic has plenty of I/O pins
left, so I can connect a PC serial port
to a couple of pins used as a software
serial port. Then the same BASIC
program can program an external serial
EEPROM with a message and display
it as well.

Someday I’d like to design a project
using some custom glass, but until the
quantities make that practical, I’ll
stick with standard LCDs. I

Circuit Cellar’s engineering staff. His
background includes product design
and manufacturing. He may be reached
at jeff.bachiochi@circuitcellar.com.

www.semiconductors.philips.com
www.melabs.com
www.micromint.com
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i t’s easy to under-
estimate the role of

DSPs. They are so
deeply embedded that

their presence often goes unnoticed.
But, that’s not to say the market for
DSPs isn’t thriving.

Just tally up all the gadgets we rely
on, such as modems, cellular phones,
audio/video, disk drives, and motors.
You’ll soon realize that with volume
rapidly approaching a billion units a
year, the DSP biz is nothing to sneeze
at. Of course, as usual, the silicon
wizards are serving up more MACs
(multiply-accumulate operations, at
the core of most DSP routines) than
McDonalds.

Outside the lab, there are a lot of
machinations taking place in the board-
rooms of the major players, not surpris-
ing given the high stakes on the table.
Top suppliers TI, Lucent, Motorola,
and Analog Devices (together compos-
ing almost 80% of the DSP market,
according to Dataquest) are all making
strategic alliances and acquisitions to
position for the next wave of growth.

TI MARCHES ON
With a third of the market share, TI

remains the leader in DSP, as they have
for years. Judging by the barrage of new
parts, they have no intention of coasting.

TI’s offerings span a broad spectrum
from the low-cost MCU-like ’C2x

family to the rocket-science VLIWs of
the ’C6x line. In between are the ’C3x
entry-level floating-point models and
the midrange (100+ MIPS these days)
’C5x. There’s action all across the board.

Each family covers a range of price
and performance. For instance, the ’C6x
lineup is best known for superchips like
the ’C6202, featuring megabits of on-
chip memory, hundreds of pins and
megahertz, and $100+ price tags.

Yet now, with the introduction of
the ’C6211 and ’C6711 (fixed and
floating point, respectively) you can
get on the VLIW bandwagon for as
little as $20 or so in volume.

These chips contain the same big
V8 motor (i.e., execute up to eight
instructions at once) as the upscale
models (see Figure 1). But instead of
the multimegabits of on-chip SRAM
that the luxo-models include, the
’C6x11s rely on external memory.

Of course, this raises the small
matter of memory bottleneck. Hmm,
need to feed up to 256-bit long instruc-
tions at 150 MHz through a 32-bit
data bus? Sounds like a problem, un-
less you’ve got a good source of <1-ns
memory chips.

The tried and true answer is cache,
and the TI chips adopt the two-level
scheme that’s so popular with the
desktop CPU crowd. Separate 32-Kb
L1 program and data caches (the former
direct-mapped and the latter two-way
set associative) talk to a 512-Kb L2
unified program and data cache.

According to TI, the cache hierarchy
delivers up to 80% of the performance
of a traditional on-chip memory solu-
tion. However, designers need to be
aware of the determinism issues asso-
ciated with cache (e.g., the possibility
of sample timing jitter). The chip does
permit all or a portion of the L2 cache
to work as RAM, which is one way to
avoid any unwanted cache side effects.

Although ’C6x grand-challenge
designs are exciting, DSPs are also
compelling when it comes to worka-
day world apps like motor control. In
fact, TI predicts that of the billions of
motors that ship every year, fully 10%
are candidates for digital controls.

Hey, motors have worked fine for
years without DSPs, so what’s the big
deal? Turns out, the precision and

DSP Doings

Quick!
Think of
the latest
in silicon!
Did you

think of DSPs? If not,
you’re not alone, but
the suppliers are
already forging ahead
in this high-stakes
market. Check out
how the competition
is heating up.

SILICON
UPDATE

Tom Cantrell
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high-speed control capabil-
ity of a DSP can directly
translate into major sys-
tem-cost reductions.

For example, many
motor subsystems need
big, and expensive, capaci-
tors to deal with mains
ripple. A DSP and a clever
designer can cut capacitor
cost by compensating in
software.

Similarly, the PWM
outputs can use spread-
spectrum techniques to
reduce EMI and the cost of
suppressing it. According
to TI, a DSP-based design
can cut the cost and size of
a washing machine drive-
train by one third.

Needless to say, a part intended for
washing machines has to be lean and
mean on all fronts. Unlike high-end
designs, the DSP can’t just live in the
clouds contemplating inner loops and
expect other worker-bee chips to pick
up the control slack. It has to combine
the number crunching of a DSP with
the practical functions and peripherals
of an MCU.

As far as TI’s concerned, the result
is something like the TMS320F241 in
Figure 2. Like other highly integrated
16-bit fixed-point DSPs, the ’241 wraps
the DSP core (multiplier, shifters, and
various RAMs) in a collection of MCU-
like peripherals including 10-bit ADC,
clocked serial port, UART, timers
(including unique deadband and quad-
rature encoder features), and even a
CAN module.

Carrying the MCU mimicry to its
logical conclusion, the ’241 even in-
corporates 8K × 16 flash memory. Don’t
worry about fancy packages and fussy
specs, the ’241 comes in a plain 68-pin
PLCC or 64-pin QFP and extended
temperature (–40° to +85° and even
–40° to +125°C) versions are available.

All together, TI offers about a dozen
variants in the ’24x family. Also, one
of their partners, Technosoft, offers
the MotionChip, which is a ’24x DSP
preprogrammed with complete library
of motion-control software that
handles all manner of motors (DC
brush and brushless, AC, induction,

stepping, etc.) and feedback and control
algorithms. Setup and tuning are per-
formed with easy-to-use visual software
(e.g., tweak accel/decel ramp onscreen)
running on a PC.

DSP INSIDE?
Analog Devices is extending the

lineup of their popular ADSP-21xx
16-bit fixed-point parts with three new
pin- and code-compatible ’218x parts

known as the M-Series.
They include the ADSP-
2185M, ’2188M, and
’2189M with 0.66, 1.5,
and 2.0 Mb of on-chip
RAM, respectively. At
only $7.50 (25k quantity),
the ’2185M seems like
quite a bargain, consider-
ing the on-chip SRAM
and 75-MIPS performance.

The ’218x parts are
well-suited for portable
apps, with low-voltage
operation (2.5-V core, 2.5-
or 3.3-V I/O), multiple
power-reduction modes,
and optional 144-pin ball
grid array (BGA) packag-
ing that cuts board space
to 1 cm².

As popular as it is (Analog Devices
claims 30,000 programmers have signed
up over the years), the 10-year old ’21xx
family is getting a bit long in the tooth.
Enter the new ’219x family (see Figure
3), which is expected to debut later
this year. Upward code compatible
with the ’218x, the ’219x incorporates
a number of features designed with C
in mind, including bigger address space
and extra addressing modes.

Figure 1— In 1997, the TI ’C6x eight-instruction/clock VLIW set the standard for performance-
at-any-price DSPs. Now, you can get one for $20.
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Figure 3 —The Analog
Devices ’219x upgrade
will keep longtime ’218x
customers happy while
they (and everyone else)
wait anxiously for a look
at the forthcoming joint
ADI/Intel design.
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Thanks to Analog’s acquisition of
Edinburgh Portable Compilers, a new
C compiler is in the works that opti-
mizes register usage to reduce pressure
on the local stack and includes intrin-
sic support for fractional and complex
data. Also, the purchase of White Moun-
tain DSP ensures timely emulator sup-
port, made easier by the incorporation
of a JTAG-based test and debug port.

For the performance-at-any-price
crowd, the Analog Devices SHARC
was the chip that kicked off the subse-
quent wave of SuperDSPs when it was
introduced five years ago (“When the
SHARC Bites,” Circuit Cellar 45). Now,
like TI, Analog Devices is making
moves at the low end of the high end
with the announcement of the $10
’21065XL, notable for packing a lot of
punch in a tiny package (see Photo 1a).

Meanwhile, at the highest of high
ends, the DSP story is all about multi-
processing. Consider Bittware’s Goblin,
which packs up to seven SHARCs (each
with its own 64 MB of DRAM for a
total of 448 MB!) onto the Compact-
PCI board you see in Photo 1b.

Another intriguing development at
Analog is the announcement of a joint
development deal for a new 16-bit fixed-
point design with, of all people, Intel.
After all, it was Intel who first promul-
gated the controversial native signal-
processing pitch that boils down to
“we don’t need no stinking DSP.”

Maybe Intel plans to combine the
new DSP with a CPU core (’x86 or
StrongARM). After all, TI is apparently
doing well in the cellular-phone biz
with the hybrid ARM7 CPU + ’C5x
DSP chip. Or, is Intel thinking it might
be good to take some of their eggs out
of the PC basket?

A STAR IS BORN
Let’s make a deal is also the name

of the game at Lucent and Motorola.
The number-two and -three players
(respectively), whose combined share
matches that of number-one TI, are
joining forces.

Their Star*Core joint development
initiative intends to deliver a new
high-end architecture and requisite
tools (especially C compiler) that both
companies can incorporate into their
individual product lines. Of course,
neither company will abandon their
currently popular architectures.

In fact, the agreement includes
cross-licensing between Lucent and
Motorola of each company’s existing
DSP cores (’16x and ’56k, respectively).
And, Lucent picks up Motorola’s
M•Core embedded RISC.

Although the initial SC140 parts
(see Figure 4) won’t be available until
next year, the released information
indicates that the Star*Core designers
have been paying close attention to
technical and market trends (er, not to
mention TI’s ’C6x). Able to execute
six instructions per clock (including
four MACs) and running at up to
300 MHz, the SC140 is capable of
crunching numbers at a formidable
rate, up to 1.2G MAC/s with on-chip
data bandwidth of up to 4.8 GBps.

Interestingly, the SC140 designers
are sensitive to the pragmatic design
constraints. For instance, all hand-held
communications gear suffers from
battery-itis (i.e., battery life is never
long enough, even though the battery
always seems too big from a packag-
ing and cost point of view).

Star*Core attacks power consump-
tion on both electrical and architectural
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The compiler can peruse the entire
program at leisure (at least up to the
point where compile times get pain-
fully long). But, on-chip logic is limited
to a small window and can’t be overly
sophisticated, lest critical paths and
overall clock rate suffer.

Relying on the compiler to parallel-
ize the program is the way to go, but
nobody said it’s easy. The fancy opti-
mizations (e.g., software pipelining
that overlaps execution of multiple
iterations of the same loop) call for
some real headscratching.

As the Star*Core designers point
out, their complement of full-featured
and autonomous function units makes
the compiler’s job easier by avoiding
the resource bottlenecks and schedul-
ing restrictions that characterize more
specialized designs.

The problem with the classic VLIW
approach is the 80% of non-DSP control
code that offers little opportunity for
parallelism, nor especially misses it (i.e.,
handling buttons, screen, and power-
up self-test usually aren’t a bottleneck).

Figure 4 —Two plus three equals one? That’s the new DSP-market math lesson that the number-two and number-
three suppliers, Lucent and Motorola, want to teach number-one TI with their new Star*Core joint venture.
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Figure 5 —The Star*Core
variable length execution
set (VLES) further refines
the VLIW concept. The
compiler schedules from
one to six 16-bit instruc-
tions, with one or two
optional prefixes, for
parallel execution.

fronts. The easiest way to brute-force
chip power consumption is to reduce
the operating voltage, so Star*Core is
specified for 1.5-V operation. It even
works with a measly 0.9 V for apps that
can get by with a “slow” (120 MHz!)
clock. Standby life is extended with low-
power modes and circuit design that
minimize static power consumption.

VLES IS MORE
The performance versus efficiency

tradeoff revolves around the fact that
performance is largely driven by highly
parallel execution of the 20% of code
composed of inner loops, yet overall
code size is dominated by the remain-
ing 80% of serial control code.

The VLIW approach, as exemplified
by TI’s ’C6x (and Intel’s forthcoming
Merced, if you peer behind the ’x86
CISC curtain), has emerged as the best
way to achieve top performance. VLIWs
rely on the compiler to extract maxi-
mal parallelism from a program, rather
than relying on complicated and ex-
pensive on-chip superscalar logic.
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Star*Core uses a hybrid RISC/
VLIW approach called variable
length execution set (VLES). VLES
starts with minimalist 16-bit
instructions packed in groups of
one to six, with one or two op-
tional 16-bit prefixes, as you can
see in Figure 5. That arrangement
makes the longest possible instruc-
tion word 128 bits (compare to
the TI ’C6x approach of 8 × 32 =
256-bit instructions).

Its designers claim that Star*
Core not only achieves better code
density than other high-end DSPs,
but it also matches the code density
of popular embedded RISCs like ARM.

WORLD BEYOND DSP?
At the DSP Expo there was a panel

session called “The Future of DSP:
Separate or Merging Architectures.”

My opinion is they’re already (and
have always been) more merged than
you might think. “Regular” computers
were doing digital signal processing
long before the first DSP hit the street.
As far as I’m concerned, any system
with an ADC or DAC is doing signal
processing, regardless of what the big
chip has stamped on it.

The Star*Core folks claim the SC140
is higher performance than the ’C6x,
but guess what: Motorola makes the
same claims for the PowerPC with
AltiVec DSP extensions. Much like
GM uses the same underpinnings for a
Chevy, Olds, and Buick, the difference
between CPUs and DSPs increasingly
boils down to little more than chrome
and tailfins.

Talk about convergence, now you
can even put a DSP on the web. Precise
Software Technologies just introduced
a TCP/IP stack with all the trimmings
(PPP, SNMP, HTTP, SMTP, and POP3)
for the TI ’C54x, and have announced
plans to port to a variety of other DSPs.

Although the difference between a
RISC with MAC and a DSP with a C
compiler may be more a matter of
marketing than anything else, one
approach to DSPs is quite different—
doing it with FPGAs. The interesting
thing about using FPGAs for signal
processing is that it inspires novel tech-
niques, rather than just throwing multi-
pliers and megahertz at the problem.

The IEEE Field-Programmable Cus-
tom Computing Machines (FCCM)
conference, which covers architectures,
tools, and applications (including DSP),
is an exciting and fun place for FPGA
aficionados. One paper, “Field Program-
mable Gate Array Based Radar Front-
End Digital Signal Processing” by T.
Moeller and D. Martinez of MIT, related
the authors’ experiences evaluating
various FPGA implementation tech-
niques for a 512-tap FIR application
currently served by an ASIC.

Photo 1 —The $10 SHARCs (a)
from Analog Devices won’t take a
big bite out of your budget, or your
board space, but watch out for a
school of SHARCs from Bittware.
With 840 MFLOPS and 448 MB of
RAM, the Goblin CompactPCI board
(b) has a big appetite for numbers.

a) b)

Duplicating their ASIC parallel
multiplier-based design wouldn’t work,
even with the largest FPGA. But in the
authors’ words (and a valuable lesson
for would-be FPGA users), “By more
carefully examining the FPGA structure
and optimizing an architecture for that
structure, a more optimal design was
produced.” To wit, a distributed arith-
metic approach that exploits the FPGA
look-up tables in Figure 6 and copious
local interconnect resources can cut
the required FPGA’s size in half!
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table (LUT) in a Xilinx FPGA to divide and conquer the
MAC (multiply-accumulate) function at the core of DSP
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Xilinx knows a good thing (a DSP
market growing 25% per year) when
they see it and offers an ever-growing
list of DSP functions via the LogiCORE
program (see “FPGA Tool Time,” Cir-
cuit Cellar 94), including distributed
and conventional arithmetic filters,
constant coefficient and conventional
multipliers, correlators, FFT/DFT,
Viterbi decoders, and all the rest. They
make a pretty strong case that their

few cents per megaMAC compares
quite favorably to hardwired DSPs.

What will be the next clever design
trick to come out of the lab? As long as
there’s no shortage of signals to process,
you can count on the silicon wizards
to deliver something—CPU, DSP, or
FPGA—to help get the job done. I

Problem 1—Why is this code nonportable? Problem 3—For this circuit,
select standard 1% resistors
for R1 and R2 to allow a 0–5-V
input range. Assume an ideal
op-amp, and a 0–2.5-V input
range for the ADC. Hint: the
amplifier is inverting, so full
scale (5 V) at the input must map to 0 V at the ADC input,
and 0 V at the amp input must map to 2.5 V at the ADC input.

Problem 2—You’re the senior engineer in your company’s
R&D group. Johnny, a junior engineer, was told to design an
infrared emitter circuit to drive four separate IR LEDs. The
emitter will be installed in a weather station, and the four IR
emitters will provide a wider “data beam” than a single emitter,
thereby relaxing alignment tolerance between the weather
station and the receiver. The receiver is located inside a
nearby instrumentation shack behind a window isolated from
the temperature extremes experienced by the weather station.

Johnny designed the circuit shown here. Assume a nominal
forward voltage drop of 2 V across the IR LEDs and an in-
tended forward current of 20 mA (give or take a bit).

As the senior engineer,
you’re ultimately respon-
sible for all designs that
come out of your group, so
you decide to reject
Johnny’s design. Why?

Have you forgotten the basics since getting that management job? Did your university ignore real circuits and tell you that HTML was the only path to fortune?  Each month, Test
Your EQ presents some basic engineering problems for you to test your engineering quotient. What’s your EQ? The answers are posted at www.circuitcellar.com along with past
quizzes and corrections. Questions and answers are provided by Ray Payne of Under Control, Benjamin Day of Schweitzer Engineering Laboratories, and Bob Perrin of Z-World.

#define MOTOR_SWITCH 0x10
int status_word;
status_word |= MOTOR_SWITCH; /* motor on*/
status_word &= 0xffff ̂  MOTOR_SWITCH; /* motor off */
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Problem 4—You’re responsible for sustaining an existing
microprocessor-based controller. A customer calls to complain
that your boards are failing with a high degree of regularity.
The part failing most often is the RS-232 transceiver.

The application is fully self-contained, except for two RS-
232 cables running into the box. You determine the cables are
being subjected to 4–8-kV ESD events and replace the RS-232
transceivers with ±15-kV ESD-hardened transceivers from Maxim.

You use a commercial ESD generator and the human body
model to discharge energy into the RS-232 lines of the test
unit. Discharging ESD (up to ±15 kV) into one channel has no
adverse effects on the system, but discharging 6 kV into the
second channel consistently blows the CPU, RTC, and SRAM.

What’s going on?

74VHC04 +5
1K

2N2907A

IR LEDs

www.starcore-dsp.com
www.analog.com
www.xilinx.com
www.ti.com
www.technosoft.ch
www.psti.com
www.bittware.com
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All in the Family

t he theme of the first issue of Circuit Cellar INK was “Inside the Box Still Counts.” The words sound
pretty straightforward today, but at the time it meant a lot for me to say it on the cover of my own magazine.

Back then, I was winding up my writing career at BYTE. I was also looking to set the record straight. After
11 years, I had been given the “opportunity” to continue Ciarcia’s Circuit Cellar if I would refocus my BYTE column

from general engineering applications to IBM PC and advertiser hardware reviews (my response was something to the

effect of standing in front of the editor-in-chief and pointing my finger down my throat).
My real response was this magazine. I believed that there were thousands of us out there who respected the

appliance value of PCs but who were logical enough to know that somewhere down the food chain there still had to be

people bright enough to design these appliances. Someone has to know what’s inside the box!
I only bring this up now because putting together an Internet publication has made me think a lot about our

direction and the pitfalls of the past. BYTE showed us a concrete example of how to screw up a good thing by

abandoning everything they were doing right and jumping on a fantasy vision for the future. Today, Yahoo, AOL,
Amazon.com, and ChipCenter are successful examples of this kind of focused direction, but keep in mind that they
were all new ventures without any history to abandon.

The problems arise in managing the gray area between tradition and expansion. We certainly have a successful

history and I don’t want to compromise it while I seek to expand our goals. I have to select the things that we’ve
always done successfully and enhance them, not replace them, with new technology. In other words, I’m trying not to
do the BYTE thing.

I have to be honest and say that I don’t know what an online magazine is supposed to look like. I haven’t read a
lot of them (I’m still a paper kind of guy) so it may take a while to settle on an agreeable look and feel. Ultimately, my
primary objective is to expand editorial coverage to areas that had to be neglected because of the sheer economics of

print space. New people and new projects are on the way.
Speaking of new projects, it’s that time of the year again: next month we will be announcing the Circuit Cellar

Design2000 contest for the print magazine. Having Circuit Cellar Online enabled us to consider having an Internet-

specific contest as well. Seems we weren’t the only ones who liked the idea, so the Microchip Internet PIC 2000
contest, conducted by Circuit Cellar and hosted by ChipCenter, will be officially announced in Circuit Cellar Online on
September 1st. As the name implies, this design contest will focus on innovative uses of PIC processors connected to

the Internet. Internet PIC 2000 is the perfect complement to the launch of Circuit Cellar Online. What better way to
demonstrate the uniqueness of online embedded control?

I’m trying to be careful how I do all of this. Yes, Circuit Cellar Online has enough substance and uniqueness to

stand as an independent magazine, but that’s not my intention. In the greater scheme of things, Circuit Cellar in print
and Circuit Cellar Online are one magazine. Together they share the responsibility of providing the editorial excellence
that educates a core group of technologists. And, I’m absolutely convinced of one thing: there are still plenty of you

who live by “inside the box still counts.”


