
CELLAR
T H E M A G A Z I N E F O R C O M P U T E R A P P L I C A T I O N S

w
w

w
.c

ir
c

u
itc

e
lla

r
.c

o
m

CIRCUIT
®

 # 1 1 0 S E P T E M B E R 1 9 9 9

EMBEDDED APPLICATIONS
Implementing Voice Recognition

Sprucing Up HCS-II

PIC18Cxxx—
A New Micro Poised for Action

Inside SmartMedia,
the Latest in Memory Cards

2 Issue 110 September 1999 CIRCUIT CELLAR ® www.circuitcellar.com

— COLUMNS —
Considering the Details
Mixed-Logic Notation—A Tool for Concise Expression
Bob Perrin
In these days of VHDL and Verilog, universities may
be short-changing students by not teaching them how
to schematically communicate digital logic. Get out
your notebooks as Bob explains how important mixed-
logic notation is and how easy it is to learn and use.

Lessons from the Trenches
Working With a Little EE
George Martin
When it comes to data-logging projects, it’s impor-
tant to be able to store data and settings, even when
the power cycles off. Electrically erasable memory
offers a solution. This month, George shows how to
interface with an electrically erasable device to
support your data logger’s requirements.

Silicon Update Online
Expo Musings
Tom Cantrell
With the embedded PC market changing so rapidly,
it’s tough to keep on top of it. Tom gives us a
hand by highlighting some of the
notable advancements on display
at the PC Developer’s
Conference and
Expo.

Table of Contents for August 1999

Double your technical pleasure each month. After you read Circuit Cellar magazine, get a
second shot of engineering adrenaline with Circuit Cellar Online, hosted by ChipCenter.

WWW.CIRCUITCELLAR.COM/ONLINE

 — FEATURES —
Looking Through the Internet—A Prototype
Security System
Skylar Lei, Jim Haslett, and Michael Smith
If you’ve ever arrived somewhere and wondered,
“What happened here?” you might want to look
into this design team’s low-cost remote video
system. Whether it’s your company’s remote site
or your cabin by the lake, their Internet-based
system can help you keep an eye on things.

Testing 1, 2
Part 2—Standards: Prepping Your Prototype
George Novacek
Just when you think your prototype is ready to
take on anything, it’s thrown into the environ-
mental chamber and exposed to more conditions
than you ever imagined. George walks you through
the standards that help equip you for the test.

Out of Your Hands—A PC Interface for
Hand-held Devices
Kock Kin Ko
Data in a hand-held device can be better pro-
cessed once uploaded to a PC, so Ko takes some
of the information from “Electric Vehicle Perfor-
mance Analyzer” (Circuit Cellar 110) and shows
us how easy it is to use C Virtual Instrument to
build a PC interface for hand-held products.

Resource Links

• IrDA
• TCP/IP for Embedded Systems
Benjamin Day

• Noise/Linear Feedback Shift Register/Chaos
• Pointers to Standards and Like Organizations
Bob Paddock

Test Your EQ
8 Additional Questions

Connect Your PIC to the Internet

NOW, GETTING CONNECTED TO THE
INTERNET CAN EARN YOU CASH

www.circuitcellar.com/pic2000

PIC® 2000contest

Internet

CIRCUIT CELLAR ® Issue 110 September 1999 3www.circuitcellar.com

48 Nouveau PC
edited by Harv Weiner

50 RPC Real-Time PC
Where in the World...
Part 2: Data Collection in Flight
Ingo Cyliax

57 APC Applied PCs
Data Serving via the Internet
Part 2: Forms
Fred Eady

ISSUE
INSIDE

Talking Back—Adding Speech to Embedded Applications
Rodger Richey

Electric Vehicle Performance Analyzer
Kock Kin Ko

Embedded Living
Expanding the HCS-II—Making Network Modules
Mike Baptiste

Internet Control
Jacob Apkarian

Taking Orders—A Speech-Recognition Module
John Iovine

Induction Motors
Part 2: Working with Output
Gordon Dick

I MicroSeries
Rolling Your Own Microprocessor
The Design and Debug Process
Monte Dalrymple

I From the Bench
Get SmartMedia—What’s It All About?
Jeff Bachiochi

I Silicon Update
PIC Up the Pace
Tom Cantrell

6

8

11

89

103

 104

E
M

BE
DD

ED
P
C

12
18
28

36
62

68

76

80

84

110110

Task Manager
Elizabeth Laurençot

On the Home
(Automation) Front

New Product News
edited by Harv Weiner

Reader I/O

Test Your EQ

Advertiser’s Index
October Preview

Priority Interrupt
Steve Ciarcia

A Heavy Experience
in List Management

6 Issue 110 September 1999 CIRCUIT CELLAR ® www.circuitcellar.com

THE MAGAZINE FOR COMPUTER APPLICATIONS

TASK MANAGER

EDITORIAL DIRECTOR/PUBLISHER
Steve Ciarcia

MANAGING EDITOR
Elizabeth Laurençot

TECHNICAL EDITORS
Michael Palumbo
Rob Walker

WEST COAST EDITOR
Tom Cantrell

CONTRIBUTING EDITORS
Mike Baptiste George Martin
Ingo Cyliax Bob Perrin
Fred Eady

NEW PRODUCTS EDITOR
Harv Weiner

PROJECT EDITOR
Janice Hughes

ASSOCIATE PUBLISHER
Sue Skolnick

CIRCULATION MANAGER
Rose Mansella

CHIEF FINANCIAL OFFICER
Jeannette Ciarcia

CUSTOMER SERVICE
Elaine Johnston

ART DIRECTOR
KC Zienka

GRAPHIC DESIGNER
Jessica Nutt

ENGINEERING STAFF
Jeff Bachiochi
Ken Davidson

John Gorsky

Cover photograph Ron Meadows—Meadows Marketing
PRINTED IN THE UNITED STATES

For information on authorized reprints of articles,
contact Jeannette Ciarcia (860) 875-2199 or e-mail jciarcia@circuitcellar.com.

Circuit Cellar® makes no warranties and assumes no responsibility or liability of any kind for errors in these programs or schematics
or for the consequences of any such errors. Furthermore, because of possible variation in the quality and condition of materials and
workmanship of reader-assembled projects, Circuit Cellar® disclaims any responsiblity for the safe and proper function of reader-
assembled projects based upon or from plans, descriptions, or information published in Circuit Cellar®.
Entire contents copyright © 1999 by Circuit Cellar Incorporated. All rights reserved. Circuit Cellar and Circuit Cellar INK are registered
trademarks of Circuit Cellar Inc. Reproduction of this publication in whole or in part without written consent from Circuit Cellar Inc.
is prohibited.

CONTACTING CIRCUIT CELLAR
SUBSCRIPTIONS:

INFORMATION: www.circuitcellar.com or subscribe@circuitcellar.com
TO SUBSCRIBE: (800) 269-6301 or via our editorial offices: (860) 875-2199

GENERAL INFORMATION:
TELEPHONE: (860) 875-2199 FAX: (860) 871-0411
INTERNET: info@circuitcellar.com, editor@circuitcellar.com, or www.circuitcellar.com
EDITORIAL OFFICES: Editor, Circuit Cellar, 4 Park St., Vernon, CT 06066

AUTHOR CONTACT:
E-MAIL: Author addresses (when available) included at the end of each article.
ARTICLE FILES: ftp.circuitcellar.com

CIRCUIT CELLAR®, THE COMPUTER APPLICATIONS JOURNAL (ISSN 0896-8985) is published monthly by Circuit Cellar
Incorporated, 4 Park Street, Suite 20, Vernon, CT 06066 (860) 875-2751. Periodical rates paid at Vernon, CT and additional offices.
One-year (12 issues) subscription rate USA and possessions $21.95, Canada/Mexico $31.95, all other countries $49.95.
Two-year (24 issues) subscription rate USA and possessions $39, Canada/Mexico $55, all other countries $85. All
subscription orders payable in U.S. funds only via VISA, MasterCard, international postal money order, or check drawn on U.S. bank.
Direct subscription orders and subscription-related questions to Circuit Cellar Subscriptions, P.O. Box 698, Holmes, PA
19043-9613 or call (800) 269-6301.
Postmaster: Send address changes to Circuit Cellar, Circulation Dept., P.O. Box 698, Holmes, PA 19043-9613.

ADVERTISING
ADVERTISING SALES MANAGER

Bobbi Yush Fax: (860) 871-0411
(860) 872-3064 E-mail: bobbi.yush@circuitcellar.com

ADVERTISING COORDINATOR
Valerie Luster Fax: (860) 871-0411
(860) 875-2199 E-mail: val.luster@circuitcellar.com

ADVERTISING CLERK Sally Collins

elizabeth.laurencot@circuitcellar.com

EDITORIAL ADVISORY BOARD
Ingo Cyliax Norman Jackson David Prutchi

On the Home (Automation) Front

i t’s easily one of the most popular Circuit
Cellar newsgroups. Focused on the HCS-II, the

home automation system developed by Steve, Ken

Davidson & Co. in the early ’90s, the cci.hcs2 news-
group is a hotbed of advice and information on this popular system.

I wonder what the draw is. Is it the ability to get advice from people in

the know? Is it the atmosphere of online camaraderie? Or is it just that
people like to relate their own experiences?

For years, the HCS and HCS-II have served as a source of Circuit
Cellar articles because people have wanted to share their stories. For
example, one author, John Morley, has told us about his solid-state barom-
eter, a wind direction and speed monitor, as well as an automatic lawn

sprinkler controller (check your bookshelves [or back-issues CD-ROMs] for
Circuit Cellar 63, 68 & 80).

It’s been more than features, though. In fact, HCS introduced our first

MicroSeries column in 1996 (“Applying the HCS II,” Circuit Cellar 77 & 78),
when two of its creators described how they’d taken the system further. Ken
started us off in Part 1 with a look at simulated activity (e.g., “smart” auto-

matic lighting), and the following month, Steve got us interested in how he
built a weather station using Micromint’s Answer MAN network module.

More specifically, Steve got Mike Baptiste interested. According to Mike,

he has always enjoyed learning about electronics and home automation, but
Steve’s article tipped the scales. Now he just had to do something about it.

Although he has been a significant contributor to the discussions on the

cci.hcs2 newsgroup for a long time now, and although we’ve been able to
hear about how things have gone in Mike’s own HCS-II installation, we
haven’t been privy to all the in-depth stories. There just isn’t the opportunity

or inclination to type everything out in a newsgroup situation. As you may
know, it’s more of a back-and-forth Q&A experience.

In other words, what hasn’t been seen on the cci.hcs2 newsgroup yet is

the kind of in-depth information presented in Mike’s new Embedded Living
column. Every other month, he will be bringing us the whats, the whys, and
more importantly, the hows of implementing home automation. To begin the

column, this month, Mike relates how he made his own network modules.
Mike’s column reaffirms Circuit Cellar’s commitment to home-automa-

tion coverage. As you probably well know, Circuit Cellar is by engineers, for

engineers—in other words, by the readers, for the readers. If you decide to
implement some new part of your home automation system and want to tell
us how you did it, do get in touch (editor@circuitcellar.com). The welcome

mat is always out.

8 Issue 110 September 1999 CIRCUIT CELLAR ® www.circuitcellar.com

NEW PRODUCT NEWS
Edited by Harv Weiner

WIRELESS RADIO MODEMS
The MT and MS Radio Modems are designed for data

transmission in a local environment (e.g., a factory).
Their range is typically ¾ mi. (line of sight) with a
standard stubby antenna. Real-time, commercial, and
industrial applications include data collection, indus-
trial scales, crane control, computer cable replacement,
and manufacturing systems (PLCs).

The modems operate in point-to-point, network, or
multidrop (RS-422/-485) mode. Point-to-point mode
replicates the use of an RS-232 “extension cord,” and
network mode allows the connection of up to 99 remote
radios with a single network controller. Multidrop is a
drop-in replacement for the dual twisted pair used with
many manufacturers’ multidrop protocols.

MT and MS radios operate in the UHF narrow band
(450–470 MHz). FCC site licensing enforces interference-
free use. Transmit/receive frequency stability is better
than ±5 ppm. Transmitter output power is typically
120 mW. Receiver sensitivity is 0.5-µVdB/12-dB SINAD
or better. Operating temperature range is from –30°C
to +60°C.

Modems are available in portable and fixed mounted
radios. The portable version’s built-in batteries provide
over 8 h operating time. Higher gain antennas are avail-
able to extend range or overcome unusual obstructions.

Pricing starts at $895 for a point-to-point radio.

Monicor Electronic Corp.
(954) 979-1907 • Fax: (954) 979-2611
www.monicor.com

SPEECH-RECOGNITION CHIP
The RSC-364 is a complete speech-recognition sys-

tem-on-a-chip for consumer electronic products and
telephony applications. The system uses Sensory Speech
5.0 technology. With the RSC-364, a complete high-
accuracy speech-recognition system can be built for
less than $5.

Sensory Speech 5.0 technology, as implemented in
the RSC-364, includes new noise-immune algorithms,
new speech technologies, and significantly improved
recognition accuracy. Current algorithms deliver accu-
racy rates of greater than 97% for speaker-independent
recognition and greater than 99% for speaker-dependent
recognition in various noise environments.

Sensory Speech 5.0 features Fast Digit Recognition,
providing speaker-adaptive recognition for consecutive-
digit dialing applications, where accuracy requirements
per digit must be above 99.5%. Sensory’s 5.0 algorithms
reduce response time to under 290 ms with a 32-word
speaker-dependent vocabulary.

The RSC-364 has a 4-MIPS microcontroller, audio
preamplifier, ADCs and DACs, watchdog timer, 64 KB
of ROM, and 2.5 KB of RAM. The 8-bit microcontroller
provides programming flexibility while supporting a
complete suite of speech and audio technologies includ-
ing speech recognition, speech and music synthesis,
speaker verification, and audio record and playback.
The RSC-364 permits on-chip storage of speaker-depen-
dent or -independent vocabularies.

The device sells for under $5 in quantities of 100,000.

Sensory, Inc.
(408) 744-9000
Fax: (408) 744-1299
www.sensoryinc.com

http://www.sensoryinc.com
www.monicor.com

CIRCUIT CELLAR ® Issue 110 September 1999 9www.circuitcellar.com

NEW PRODUCT NEWS
GPS ANTENNA

The Skymaster permanent-mount
GPS antenna integrates a high-per-
formance (26-dB gain) GPS patch
antenna with a state-of-the-art, low-
noise amplifier. It is packaged into a
low-profile, extremely compact,
fully sealed enclosure that is avail-
able in either black or white.

With its universal FME connector,
Skymaster can easily attach to one
of seven popular connectors: SMA,
SMB, TNC, BNC, MCX, right-angle
TNC, or right-angle BNC. A bulk-
head mount with threaded nut, as
well as an ample 5-m detachable
cable, allows for quick and easy
mounting.

Skymaster is 100% waterproof
and designed to perform in hostile environments. This
antenna features an operating temperature range of –30°C
to +85°C in addition to strong bulkhead mounting.

Skymaster is priced at $99.

Tri-M Systems,Inc.
(604) 527-1100
Fax: (604) 527-1110
www.tri-m.com

http://www.tri-m.com

10 Issue 110 September 1999 CIRCUIT CELLAR ® www.circuitcellar.com

NEW PRODUCT NEWS
DIGITAL SOUND BOARD

The DM3000A Digital Sound Board is Windows WAV
compatible and can play back up to 32 sound segments
stored in its onboard EPROM chip. Sound files can be
created by using any digital audio authoring system, as
long as they are in the WAV format. As well, 8-bit
mono PCM sampling at 11, 22.05, and 44.1 kHz is
supported.

The board provides the cleanest sound possible because
the sound file is used directly for programming,
without going through any extra digitization
steps. Applications for the sound board include
message repeaters, talking displays/exhibits, and
amusement game sound effects.

Sound playback is activated by either a dry con-
tact closure (e.g., a push-button switch or a relay) or
a logic pulse from a microcontroller. The built-in
power amplifier can deliver 5-W output directly to a
speaker, or a line-level output can be obtained to drive
an external power amplifier. The unit is totally self-
contained on a 3.7″ × 5.6″ circuit board and requires
only a single 12–24-VDC power supply.

The DM3000A is priced at $78 in single quantity.

Eletech Electronics, Inc.
(626) 333-6394
Fax: (626) 333-6494
www.eletech.com

http://www.eletech.com

CIRCUIT CELLAR ® Issue 110 September 1999 11www.circuitcellar.com

READER I/O
BULLS-EYE

Now you’ve gone and done it! The July issue
takes the cake! I love robotics and you have
ensured that I will keep subscribing to Circuit
Cellar. The magazine is interesting and provides a
variety of real-world projects and covers areas that
other magazines rarely touch. I subscribe to all the
major electronics magazines and all of them serve
a useful purpose, but Circuit Cellar piques my
interest every month.

Promise me (and the rest of us) more articles
on robotics and the circuits used to interface them
with the real world. “Electronic Odor Perception”
by Silvio Tresoldi (Circuit Cellar 108) is outstand-
ing and really helped me in my efforts to learn,
develop, and have fun with mobile robots.

Would it be too much to ask for some articles
dealing with software that controls robots? For
example, some information on using encoders and
how to actually make them work or how to use
compilers and C/C++ to create hex files to be
downloaded to microcontrollers.

If I continue to see issues like this, you will
have a reader for life! Thank you for not forgetting
the robotics crowd. Keep up the fine articles.

David Jackson
Pomona, California

FORGOT ONE
“Embedded OSs for Internet Appliances” by

David Brooks in Circuit Cellar 107 was an ex-
tremely informative analysis of the Internet-
appliance market. However, the discussion of
available operating systems for embedded devices
excluded one.

A company called e.Digital has developed a
flash-memory file management system called the
MicroOS. This file management system imple-
ments a small footprint in a digital device and it
provides scalable functionality for editing and file
management. The MicroOS is particularly suitable
for applications involving dictation, voice, image,
video and CD quality music.

MicroOS manages voice/video/data by means of
compression. The maximum effectiveness of the OS
is most noticeable when functioning with flash
memory. Its architecture uses optimizable C code to
manipulate the compressed data in flash memory.

The MicroOS is an architecture-independent
OS, which means it can recognize and play a range
of secure audio formats while reducing product
development time. The MicroOS features a reduced
chip count resulting in lower cost and power
requirements for digital-device OEMs. For more
information, visit www.edig.com.

James LaBoda
jimee11@hotmail.com

SETTING THINGS STRAIGHT
Editor’s note: A special thanks to Richard

Johnson and Dale Yarker who pointed out some
errors in Figure 2 of the “Low-Cost Software Bell-
202 Modem” article (Circuit Cellar 107).

[1] The TX signal is shorted to the RING
signal. [2] In the “RS-232 Transceiver” section, Q2
has its emitter and collector reversed. The emitter
should connect to +5V. [3] Pin 2 of P1 connects to
Q2’s collector (after Q2 is corrected) and not at the
diode as shown.

Richard also suggested hooking up a large cap
(22 µF) from the junction of R29 and D5 to ground
to help the circuit’s performance.

Dale commented that if the device won’t go
off-hook, the polarity of the line probably reversed
somewhere between the telco and J3. To correct the
problem, simply reverse the green and red wires.
Other ways of making the hook switch insensitive
to polarity would increase the parts count too
much.

The updated code, an app note that includes a
corrected schematic, and some information about
licensing the DTMF code is now posted on the
Circuit Cellar web site.

Editor’s note: Although there was no mention
in the “Turn the Page” article (Circuit Cellar 108)
that code would be made available, the software
for Ingo’s pager project is now available for down-
load via the Circuit Cellar web site.

Editor’s note: In “Astronomical Issues”
(Circuit Cellar 108), Ingo mentioned a “freely
available PCB layout program,” but the URL was
left out of the Sources section at the end of the
article. Go to ftp.linuxppc.org/linuxppc/users/
harry/PCB/ to download the software.

12 Issue 110 September 1999 CIRCUIT CELLAR ® www.circuitcellar.com

Talking
Back

FEATURE
ARTICLE

Rodger Richey

t
Training embedded
apps to process
speech may be as
easy as finding the
right 8-bit micro.
Don’t let what Rodger
has to say about
using an ADPCM
algorithm and PWM
output to generate
speech go in one ear
and out the other.

he ultimate form
of feedback from a

product is through
speech. A product that

reacts to stimuli with a verbal response
is more likely to grab your attention
than one without the capability.

In most cases, adding speech re-
cording and playback requires extra
processor bandwidth or an additional
device such as a DSP or specialized
audio processor. The cost, complexity,
or lack of additional bandwidth, how-
ever, can prevent the speech features
from being integrated into the product.

Now, if the words “8-bit microcon-
troller” were mentioned with respect
to speech, some might chuckle to them-
selves, others might break into a fit of
uncontrollable laughter, but certainly
all would read on. Yes, it’s true: a
simplified Adaptive Differential Pulse
Code Modulation (ADPCM) algorithm
can be implemented on an 8-bit micro.

In this article, I explain the trade-
offs between bit rate and quality that
are important in determining if you can
use an 8-bit controller in the product.
I also present the details of the origin
as well as features of the ADPCM
algorithm. Finally, I cover methods of
integrating the microcontroller into
the application as a speech encoder/
decoder peripheral or as a complete
speech-processing subsystem.

BIT RATE VS. QUALITY
When choosing a speech processor,

you must first determine the desired
quality of the speech reproduction. A
speech-processing system attempts to
balance the quality of the reconstructed
speech with the bit rate of the encod-
ing/decoding. In most cases, speech
quality degrades as the bit rate drops.

The search for a happy medium
between bit rate and quality has filled
volumes. A high bit rate, high-quality
speech processor implies a sophisticated
algorithm that is computationally
intensive with long encoding/decoding
delays (i.e., requires the use of a DSP
or special audio processor device).

This would also imply that an 8-bit
microcontroller is not a solution for all
applications but can provide reasonably
good quality at medium-to-low bit
rates. These tradeoffs between bit rate,
quality, and system complexity can be
summarized by the following questions:

• What level of speech degradation
can be tolerated?

• What is the highest bit rate a system
can tolerate (in terms of bandwidth)?

• What are the limitations on operat-
ing frequency, printed circuit board
area, and power consumption?

• How much can you afford to spend
on the speech subsystem?

Unfortunately, one answer can’t
satisfy all these questions. However,
cost seems to drive most decisions.

Cost is the main factor behind bit
rate. Lower bit rates are desirable
because they lower operating band-
width as well as memory storage
requirements. It also means less mem-

Figure 1— A designer must make tradeoffs between bit
rate and quality of reconstructed speech. After defining
these two parameters, the selection of a speech coding
algorithm can be made.

Adding Speech to
Embedded Applications

1 2 84 16 32 64

Bad

Poor

Fair

Good

Excellent Hybrid
CODECs

Waveform
CODECs

Vocoders

Bit rate (kbps)

Speech
quality

 CIRCUIT CELLAR ® Issue 110 September 1999 13www.circuitcellar.com

ory to store, a fixed amount
of speech, and lower cost.
Figure 1 shows a graph of
speech quality versus bit rate.

A typical system might
sample speech with a 12-bit
ADC at a rate of 8 kHz, which
is more than sufficient to
preserve signal quality. At
this rate (i.e., 96 kbps), 1 min.
of storage requires 720 KB.

To transmit the informa-
tion over a communications
channel requires something
higher than 96 kbps to permit
supplemental information (e.g., start-
of-frame indicators, channel number).
These requirements are beyond the
scope of most applications and can be
reduced by using speech coding.

Speech-coding techniques for reduc-
ing the bit rate fall into two categories.
The first method is waveform coding.

There is a higher probability of a
speech signal taking a small value
rather than a large value. So, a speech
processor can reduce the bit rate by
quantizing the smaller samples with
finer step sizes and the large samples
with coarse step sizes.

The bit rate can be reduced further
by using an inherent characteristic of
speech—there is a high correlation
between consecutive speech samples.
Rather than encode the speech signal
itself, the difference between consecu-
tive samples can be encoded. This rela-
tively simple method is repeated on
each sample with little overhead from
one sample to the next. An example
of a waveform algorithm is ADPCM.

The other way to reduce bit rate is
to analyze the speech signal according
to a model of the vocal tract. The speech
remains relatively constant over short
intervals, and a set of parameters (e.g.,
pitch and amplitude) can define that
interval of speech. These parameters
are then stored or transferred over the
communication channel.

This technique requires significant
processing on the incoming signal as
well as memory to store and analyze
the speech interval. Examples of this
type of processor (called a vocoder or
hybrid coder) are linear predictive
coding (LPC) or code-excited linear
predictive coding (CELP).

Quality is difficult to define or even
measure. The goal of a measurement
is to completely describe the quality
of a speech processor in a single num-
ber. This measurement should be
reliable across all measurement plat-
forms as well as speech algorithms.

Unfortunately, however, measure-
ments are broken up into subjective
and objective. Subjective tests measure
how a listener perceives the speech.
Objective tests compare the original
speech against the reconstructed out-
put and make measurements based on
signal-to-noise ratio (SNR).

The goal of a subjective test is to
represent a listener’s personal opinions
about the reconstructed speech in a
single number. The listener evaluates
speech segments based on the intelli-
gibility or signal degradations (e.g.,
nasal, muffled, hissing, buzzing). Sev-
eral subjective tests exist such as
diagnostic rhyme test (DRT), mean
opinion score (MOS), and diagnostic
acceptability measure. Table 1 shows
the MOS score and bit
rate for some common
speech processors.

As I said, objective
testing usually involves
SNR measurements.

SNR is a measurement of
how closely the recon-
structed speech follows
the original signal. The
signal is broken up into
smaller segments, and the
SNR is measured. All the
SNR measurements are
averaged together to get
an overall SNR measure-
ment for the speech signal.

Although this measure-
ment is sensitive to varia-
tions in gain and delay, it
can’t account for the prop-

erties of the human ear. The input to
the speech processor is usually a sine
wave or narrow-band noise waveform
to maintain a repeatable test for all
systems.

Because determining the quality of
the speech processor is not as easy as
picking the best number, both kinds
of tests should be used to identify the
best processor for your application.
The best method may be to sit and
listen to the outputs of the speech
processor and simply select the one
you like the best. After all, quality is
not a measured parameter but rather a
listener-perceived parameter.

WHAT IS ADPCM?
ADPCM is a waveform coding

technique that attempts to code sig-
nals without any knowledge about
how the signal was created. This im-
plies that a waveform coder can be
applied to other forms of data besides
speech (e.g., video). In general, these
coders are simple, with bit rates above

Figure 2 —Because the decoder
block is embedded in the encoder,
the ADPCM algorithm does not
need to send or store any addi-
tional side information with the
compressed data.

Table 1—To help reduce the decision-making process, designers should rely on
speech coder test results such as MOS, DAM, or SNR. Typically, the lower bit rate
algorithms are significantly more complex than the higher bit rate ones.

Speech
input

Compressed
speech Quantized

difference

Predicted
sample

Predicted
sample

Quantization step size

Inverse
quantizer

Quantizer

Adaptive
predictor

Step size
adapter

++

Compressed
speech

Quantized
difference

Quantization
step size

Inverse
quantizer

Adaptive
predictor

Step size
adapter

+

–

Recontructed
speech

Coder Algorithm
name type Bit rate MOS

G.711 log PCM 64 4.3
G.721 ADPCM 32 4.1
G.723 CELP 5.6 & 6.4 3.9
G.726 ADPCM 16, 24, 32, 40 –, 3.7, 3.9, 3.9
G.727 ADPCM 16, 24, 32, 40 –, 3.7, 3.9, 3.9
G.728 Low delay CELP 16 4.0

FS 1015 LPC-10 2.4 2.3
FS 1016 CELP/MELP 4.8/3.2 2.4/3.5

GSM RPE-LTP 13 3.5
— MBE 4.8 3.7

14 Issue 110 September 1999 CIRCUIT CELLAR ® www.circuitcellar.com

16 kbps. Anything lower degrades the
reconstructed speech.

ADPCM is based on two principles
of speech. Because there is a high cor-
relation between consecutive speech
samples, a relatively simple algorithm
could be used to predict what the next
sample might be, based on previous
samples.

When the predicted sample was
compared to the real sample, it was
found that the resulting error signal
had a lower variance than the original
speech samples and could therefore be
quantized with fewer bits. It was also
found that no side information about
the predictor would have to be sent if
the prediction was based on the quan-
tized samples rather than on the in-
coming speech signal.

The result was differential pulse-
code modulation, formerly named
ITU-T G.721. Further studies showed
that if the predictor and quantizer were
made to be adaptive (i.e., that smaller
samples are quantized using smaller
steps and larger samples with larger
steps), the reconstructed speech more
closely matched the original speech.

This adaptation helps the speech
processor handle changes in the in-
coming speech signal more effectively.
Thus the creation of ADPCM standard-
ized to be ITU-T G.726 and G.727.
Figure 2 shows a diagram of the encoder
and decoder portions of ADPCM. Note
that both the encoder and decoder
share the same quantizer and predictor.

Most DSP manufacturers can show
some type of speech algorithm that
has been implemented for their archi-
tecture. Very few 8-bit microcontroller
manufacturers can say the same, due
to the horsepower required to imple-
ment the speech coding algorithms.

The ADPCM algorithm discussed
in this article was developed by the

now defunct Interactive Multimedia
Association (IMA) based on an Intel
DVI variation of the standard G.726.
Normally, this algorithm is quite rigor-
ous in the computation category, but
the IMA version reduces the floating-
point math and complex mathematical
functions to simple arithmetic and
table lookups.

A 16-bit 2’s complement speech
sample is converted into a 4-bit AD-
PCM code. The algorithm uses about
600 words of program memory and
13 bytes of data memory. Almost any
8-bit microcontroller can implement
this algorithm, thanks to the small
amount of resources required.

The code available for this article
gives the complete ADPCM encode
and decode routines written for use in
Microchip’s assembler (MPASM). The
missing piece to the source code is
that before each message is recorded or
played, all the registers (PrevSampleL,
PrevSampleH, and PrevIndex) must
be cleared.

PERIPHERAL SPEECH CODER
A simple encoder/decoder periph-

eral can be implemented around a
PIC12C672 or a ’16C556A. The first
thing to consider is the communica-
tion interface between the PIC and
the main processor.

Lower end micros don’t have any
type of serial or parallel peripherals
but they can be easily implemented in
firmware. The complete code shows
routines that can perform I2C, SPI,
and RS-232 communications with a
host processor, and Figure 3 shows a

Figure 4 —The PIC16C556A provides a cost-effective
parallel-interface solution to a speech coder peripheral.
In addition to the standard parallel interface signals, it
provides an interrupt and encode/decode select signals.

17

18

1

2

3

6

7

8

9

10

11

12

13

RA0

RA1

RA2

RA3

RA4

RB0

RB1

RB2

RB3

RB4

RB5

RB6

RB7

INT

E/D

OE

RW

CS

Data

lines

OSC1

OSC2

MCLR

VDD VDD

VSS

15

16

PIC16C556A

4

14

5

7

6

5

4

GP0

GP1

GP2

GP3

INT

SDA

SCL

E/D

OSC1

OSC2

VDD VDD

VSS

2

3

PIC12C672

1

8

Figure 3— The PIC12C672 provides the smallest
solution for a serial coder peripheral. In addition to the
I2C signals SDA and SCL, this device features an
interrupt and encode/decode select signals.

 CIRCUIT CELLAR ® Issue 110 September 1999 15www.circuitcellar.com

block diagram for an I2C implementa-
tion on a PIC12C672.

Because the microcontroller imple-
ments the serial interface in firmware,
the application must ensure a good
handshaking method to keep the mi-
cro from overflowing. A parallel inter-
face routine is much easier to develop
than the serial protocols, and Figure 4
shows an example of the parallel in-
terface to a PIC16C556A.

The master I2C routine uses approxi-
mately 77 words of program memory
and 5 bytes of data memory. MPASM
must be used to assemble this file.

One consideration when designing
a system based around this routine is
the transfer rate. If the PIC is the mas-
ter of the interface, then the transfer
rate is solely determined by the clock
source to the microcontroller. If the
PIC is a slave on the interface, then
the transfer rate depends on the clock
source as well as the firmware over-
head to sample the incoming data.

The SPI slave routine uses approxi-
mately 16 words of program memory
and 2 bytes of data memory. The same
consideration concerning clock rate
applies to this routine as well. Because
of the overhead of sampling the SDI
pin, the maximum clock frequency for
the SPI slave is at least 18 instruction
cycles, where one instruction cycle is
the oscillator frequency divided by four.

The RS-232 routine uses approxi-
mately 54 words of program memory
and 3 bytes of data memory. Although
you should check to make sure that
the micro has plenty of overhead, the
transfer rate of RS-232 is usually much
less than the PIC’s oscillator frequency.

This routine only requires the user
to define the oscillator frequency and
the transfer rate. Several equations
allow MPASM to calculate the neces-
sary delays for bit times.

After the communication protocol
is chosen, you have to put all the pieces
together. First, you need to implement
some type of data request from the
main processor to the micro (for mas-
ter) or from the PIC to the main pro-
cessor (for slave).

The micro must control the flow of
data to/from the main processor be-
cause the communication interface is
implemented in firmware, not hard-
ware. Otherwise, data may be lost.
For a slave implementation, a single
I/O line from the PIC connected to an
external interrupt pin on the host
processor easily accomplishes this.

The other important piece of infor-
mation is the type of operation to be
performed: encode or decode. This
step can be accomplished two ways.
First, a unique command from the
host processor to the microcontroller
can set the operation to follow. The
host processor then initiates an encode
or decode sequence by sending the
command for encode or decode.

For an encode sequence, the host
sends two 16-bit, 2’s complement
samples to the PIC. The PIC then
responds with two 4-bit ADPCM
codes packed into one byte. A decode
sequence reverses the order. One byte
of ADPCM codes is sent to the PIC,
which responds with two 16-bit, 2’s
complement samples.

The second method is to use an I/O
line from the host to the PIC to indi-
cate an encode operation (I/O pin pulled
low) or a decode operation (I/O pin
pulled high). Note that encode and
decode operations should not be mixed
together.

All of the data to encode or decode
should be sent consecutively to the
micro. Once all of the data is pro-
cessed, the host processor can change
the type of operation to be performed.

Figure 5 —For those applications
requiring a complete speech-
processing subsystem, the
PIC16C774 with integrated 12-bit
ADC, SPI, and 10-bit PWM
provides the most integrated
solution.

PIC16C774

ADC

PWM

SPI

I/O

I/O

I/O

SCK

SDO

SDI

CS

Low-pass

filter
Amplifier

Speaker

amplifier
Low-pass

filter

TC58A040F

4M × 1-bit

flash

memory

16 Issue 110 September 1999 CIRCUIT CELLAR ® www.circuitcellar.com

SOURCES
PIC12C672, ’16C556A, ’16C774
Microchip Technology, Inc.
(480) 786-7200
Fax: (480) 899-9210
www.microchip.com

Amplifiers
National Semiconductor
(800) 272-9959
(408) 721-5000
Fax: (408) 739-9803
www.national.com

Texas Instruments, Inc.
(508) 236-3800
www.ti.com

This requirement is due to the fact
that the ADPCM algorithm processes
the next data based on previous data.
Anytime the operation is switched,
the encoder or decoder is initialized to
a cleared state.

One other consideration is the
selection of clock source to drive the
PIC. The PIC’s oscillator structure is
flexible so either an external clock
from the host processor or a local
oscillator can be connected to it.

If your application has one system
clock that drives all devices on the
board, this same signal can be driven
into the oscillator input on the PIC.
Otherwise, a standard oscillator circuit
can be used to provide the clock signal.

SPEECH SUBSYTEM
You can also use a PIC as a com-

plete speech-processing subsystem.
The PIC16C77x devices are ideal for
this because of the 12-bit ADC and
10-bit PWM peripherals. The new PIC-
18Cxxx architecture can implement
stereo record and playback at an 8-kHz
sample rate because of its optimized
instruction set, architecture, and
40-MHz operation.

The PIC can communicate to the
host processor via any serial interface
or even a simple keypad that imple-
ments play, record, next message, and
previous message. Figure 5 shows a
simplified block diagram of the speech
subsystem based on a PIC16C77x.

The microphone input must be
both filtered and amplified before
entering the microcontroller. This
input might be designed in two stages.

First, an amplifier stage with some
limited automatic gain control provides
between 40 and 60 dB of gain. The filter
stage might be a fourth-order filter
centered at 4 kHz for an 8-kHz sample
rate. The PIC samples the incoming
signal at 8 kHz and compresses the
12-bit sample down to four bits.

The memory size is determined by
the amount of record time desired. At
8 kHz, the system requires 4 kbps of
storage (8000 samples/s × 4 bits/sample).
Therefore, 1 min. of record time re-
quires 240 KB.

An ideal match for this type of
system is the Toshiba TC58A040F
4M × 1 NAND flash-memory device.

REFERENCES

N.S. Jayant and P. Noll, Digital
Coding of Waveforms, Principles
and Applications to Speech and
Video, Prentice Hall, Englewood
Cliffs, NJ, 1984.

P.E. Papamichalis, Practical Ap-
proaches to Speech Coding, Prentice
Hall, Englewood Cliffs, NJ, 1987.

IMA Compatibility Project, Recom-
mended Practices for Enhancing
Digital Audio Compatibility in
Multimedia Systems, V.3.00, Oct.
1992.

R. Richey, Adaptive Differential
Pulse Code Modulation using PIC-
16/17 Microcontrollers, AN643,
Embedded Control Handbook,
Microchip Technology, 1996.

J.D. Tardelli, E.W. Kreamer, P.A.
La Follette, and P.D. Gatewood,
A Systematic Investigation of the
Mean Opinion Score (MOS) and
the Diagnostic Acceptability
Measure (DAM) for Use in the
Selection of Digital Speech Com-
pression Algorithms, ARCON,
www.arcon.com/dsl/sl24a.html.

RESOURCES

Comp.speech FAQ, www.speech.
cs.cmu.edu/comp.speech

Dynastat Inc., Subjective Testing
and Evaluation of Voice Commu-
nications Systems, www.bga.com/
dynastat/index.html

T. Robinson, Speech Analysis,
Cambridge University Engineer-
ing Dept., Speech Vision Robotics
Group, www-svr.eng.cam.ac.uk/
~ajr/SA95/SpeechAnalysis/
SpeechAnalysis.html

J. Woodard, Speech Coding, Dept.
of Electronics and Computer
Science, University of South-
ampton, rice.ecs.soton.ac.uk/
speech_codecs/index.html

It stores approximately 131 s of speech
at an 8-kHz sample rate and uses SPI
as the communications interface.

You now have a choice to make on
the speech output circuit. Although a
DAC makes sense in some applica-
tions, the PIC’s onboard 10-bit PWM
peripheral can also be used to lower
cost without giving up quality.

Admittedly, the DAC has better
quality, but with the right filtering,
the PWM module can provide good
results. This filter can be a fourth-
order filter centered at 4 kHz (and can
be a copy of the input filter).

The final circuit—the speaker am-
plifier—is extremely application de-
pendent. You may want to drive a
speaker or a set of headphones. Many
companies, like National Semiconduc-
tor and TI, make amplifiers specifically
for driving speakers or headphones.

TALK ABOUT POTENTIAL
Although some applications need

high bit rate and high-quality speech
algorithms, most can use one like mine.
Don’t underestimate the power of an
8-bit micro. Given the right device, the
medium bit-rate algorithms can be
implemented successfully without a
DSP or specialized audio device.

Improvements to the 8-bit architec-
ture, operating speed, instruction set,
and memory sizes have allowed the
migration of low-end DSP applications
to the 8-bit world. If you’ve never used
a PWM module to generate speech,
try it. You might be surprised. I

Rodger Richey has worked for Micro-
chip for more than four years in prin-
cipal engineer and senior applications
engineer positions. You may reach
him at rodger.richey@microchip.com.

SOFTWARE

The software for this article may
be downloaded via the Circuit
Cellar web site.

http://www.circuitcellar.com
http://www.circuitcellar.com
http://www-svr.eng.cam.ac.uk/~ajr/SA95/SpeechAnalysis/SpeechAnalysis.html
rice.ecs.soton.ac.uk/speech_codecs/index.html
www.microchip.com
www.national.com
www.ti.com
www.arcon.com/dsl/sl24a.html
www.bga.com/dynastat/index.html

18 Issue 110 September 1999 CIRCUIT CELLAR ® www.circuitcellar.com

Electric Vehicle
Performance Analyzer

FEATURE
ARTICLE

Kock Kin Ko

w
Ko takes us through
the design steps of a
Hitachi-based device
that measures and
analyzes electric-
car speed, distance,
fuel consumption,
and travel time.
All this information
is available to the
driver at the touch
of a button.

henever I dropped
in to see the staff in

the electric car work-
shop at the Electrical

Engineering Department of Ngee Ann
Polytechnic, I left with an urge to get
involved. I fancied the vehicle, and the
principal lecturer was a good friend.

Although I didn’t know much
about the hardware stuff, our gurus
knew every single electrical part of
the vehicle and had even publicized
the vehicle hardware a couple years
ago in the Straits Times of Singapore.
The hardware publicity was good, but
no one ever wrote any embedded code
to optimize the vehicle’s performance.

Having driven a Ford Telstar for
years, I looked at the bank
of batteries packed on the
electrical vehicle and had
to ask myself if it was
really economical to drive

an electric vehicle. How could its
performance be optimized?

Before figuring out how to optimize
performance, I’d need a system ana-
lyzer to monitor or calculate its per-
formance. This was my chance to get
involved with the electric car project,
and that’s how I got started designing
the performance analyzer.

The analyzer was developed using a
Hitachi microcontroller. Three sets of
performance data are collected in real
time—fuel consumption (in amp-hours
from the car battery) versus speed (in
kilometers per hour), distance (in
kilometers) versus speed, and time
traveled (in hours and minutes, or
minutes and seconds) versus speed.

Keys on the analyzer enable the
driver to scroll through the recorded
performance data. Any driver who
starts a new trip can erase the perfor-
mance data record or let the data
accumulate over time and then down-
load it to a PC at the end of the trip.

A graphical display of the perfor-
mance data is shown on the PC screen.
Indirectly, this display helps drivers
convert their thinking from miles-per-
gallon of gasoline to hours-per-amp of
battery power. It also helps them
estimate how many amp-hours are
required to travel to a destination, or
the optimum speed with the least
amp-hours spent.

In this article, I present the soft-
ware design of the analyzer and cover
both the microcontroller and PC soft-
ware (both in C). The micro’s software
was developed with a Hitachi C com-
piler, and the software for the PC was

Photo 1 —Here’s the prototype
(courtesy of Hitachi Micro Systems
Asia) that I used for software develop-
ment. CPU H3644 is located at the
center, the seven-segment display
and LEDs at the top, button keys at
the bottom, RS-232 cable at the upper
right corner, and DIP switch in the
lower left corner.

 CIRCUIT CELLAR ® Issue 110 September 1999 19www.circuitcellar.com

developed with CVI (C for Virtual In-
strument) from National Instrument.

The Hitachi H8/3644 8-bit micro
used in this project is a dream machine
for an embedded C programmer like
me. It consists of 32-KB flash memory
and a 1-KB RAM that’s big enough for
a C program. Sure, C is big, but I like its
readability, portability, and reusability.

The H8/3644 has a number of spe-
cial functions that I took advantage of.
The Timer A interrupt provides real-
time ticks in milliseconds. Timer B
captures pulses generated from a roll-
ing wheel, and analog channel 1 mea-
sures fuel consumption. Five external
interrupts are used for sensing five
keys, and the on-chip UART is used
to download data to PC.

SYSTEM DESIGN
The four basic system measure-

ments are real-time ticks in seconds
(for measuring time), wheel pulses (for

measuring distance), pulses per second
(for measuring speed), and milliamps
per second (for measuring fuel consump-
tion). The Timer A interrupt schedules
these four system measurements.

The real-time clock accumulates
travel-time duration from seconds to
hours. Distance is calculated by con-
verting the total number of wheel
pulses into kilometers. Speed calcula-
tion converts pulses per second into
kilometers per hour. To calculate fuel
consumption, milliamps per second
are converted to amps per hour.

These conversions are done only on
user request. When requested, the
conversion results are displayed on a
seven-segment display with four digits.

The raw speed data is accumulated
to form statistical records. Speeds are
divided into 13 ranges: <20 km/h, 20–
30 km/h, 30–40 km/h, and so on up to
>130 km/h. Timer A also schedules
these accumulations.

The driver selects one of the three
states available with the system—
Record, Send, or Normal. Figure 1
shows the state transition diagram.

In the Record state, drivers can
scroll through and view all records. In
the Send state, the micro waits for the
password to be sent from the PC be-
fore dumping the records to the PC. In
the Normal state, drivers can view

Figure 2 —Here’s the schematic for the electric vehicle performance analyzer. Shown on the right-hand side of the CPU is the circuitry designed for the RS-232 connection, the
LEDs, the car pulse input, and the button keys. The circuitry on the left-hand side includes the analog input, the seven-segment display, and the current measurement.

Figure 1 —The driver selects one of the three states
available with the system. Data records are shown on
the seven-segment display in the Record state and are
sent to the PC in the Send state.

Power
up

Normal
state

User
select

Send
state

Record
state

Ti
m

e
ou

t
S

en
t

User
select

20 Issue 110 September 1999 CIRCUIT CELLAR ® www.circuitcellar.com

current speed, total distance and time
traveled, total fuel consumption, and
energy left in the battery. Regardless
of what state the system is in, data
measurement is done in real time.

HARDWARE DESIGN
Each of the five keys of the user

interface are connected to external
interrupt pins (see Figure 2). The five
external interrupts for sensing keypress
are INT1–INT5. They sense driver
selection of data for fuel consumption,
distance traveled, speed, time traveled,
and system states, respectively.

A four-digit seven-segment display
is connected to a data bus (port 6) and
a control bus (port 9 pins 1–4). Four
8-bit data latches (74LS273) are used
for latching data for the display’s four
digits. To latch data into the data latch,
set the control line high, place the data
on the data bus and reset the control
line to low.

A differential op-amp measures the
current drawn from the battery by the
motor system. The differential gain is
scaled to provide a 5-V output at maxi-
mum system current.

With its input across a 0.05-Ω re-
sistor, the op-amp output AN1 is
connected to analog channel 1. The
op-amp circuitry also provides a digi-
tal output (DIPSW1) to signal whether
current is charging into or discharging
from the battery.

 An eight-way DIP switch provides
the system configuration. The switch
is connected to the data and control
buses as a parallel input port. Bits 2–3 of

the DIP switch indicate four possible
maximum system-current loads, and
bits 4–5 indicate four possible battery
sizes. CPU software reads these 4 bits
at powerup to determine the conversion
gain factor for calculating system cur-
rent and a new battery’s original energy.

Some hardware aids make software
debugging easier. For example, a 5-V

variable source (VR3) is used during
software debugging rather than the
op-amp voltage output. Through a
jumper (TR1), VR3 is connected to
analog channel 1.

The DIP switch also provides debug-
ging features. Bit 0 simulates current
direction (charging or discharging). To
simulate the change in speed during
software debugging, bits 6–8 simulate
eight possible speeds while Timer A
output is jumpered through TR3 to
the Timer B input. CPU software
reads these bits in every timer tick to
determine the number of pulses trans-
mitted at the Timer A output.

Three LEDs (LD1, LD2, and LD4)
are used for burn-in testing. Their
continuous flashing indicates that the
main program, the Timer A interrupt
routine, and the ADC interrupt rou-
tine are alive.

SOFTWARE DESIGN
To maintain modularity and port-

ability, I wrote 11 files. Table 1 lists
the purposes of each. On powerup, the

Table 1—Listed here are the 11 software modules and their purposes. Modules that are CPU-dependent are also
indicated.

#pragma interrupt INT
void INT(void)
{
 if(IRR3.BIT.B1) /*if interrupt flag set?*/
 {
 IRR3.BIT.B1=0; /*clear interrupt flag*/
 INT1_menu_change = 1; /*set semaphore*/
 new_menu = INT_1;
 }
 if(IRR3.BIT.B5) /*similarly for INT2, INT3,and INT4*/
 {
 IRR3.BIT.B5=0;
 INT5_menu_change=1; /*set semaphore*/
 new_menu = INT_5;
 }
}

Listing 1a —INT() sets INTx_menu_change to indicate that a specific key was pressed. b—The
main program main() calls the routine user_change_menu to determine user selection op_menu.

CPUCPUCPUCPUCPU
S/NS/NS/NS/NS/N File nameFile nameFile nameFile nameFile name PurposePurposePurposePurposePurpose dependentdependentdependentdependentdependent

1 Adlpfc.c No
2 Car. c No
3 DispMesg.c No
4 Elecpara.c No

5 Fourdigi.c No

6 Hardware.c Yes

7 INTR.c Yes

8 Math.c No
9 Serial.c Yes
10 Statdata.c No
11 UserIF.c No

main()
{
 system_engine_start_up_sequence();
 do {
 user_change_menu(); /*determine op_menu*/
 switch (op_menu)
 {
 case INT1_MENU_ADC_VOLTAGE:
 adc_main();
 break;
 case INT1_MENU_CURRENT:
 current_main();
 break;
 �
 }
 }while(1);
}

Low-pass filter to average 32 samples
Main program
Routines for showing all messages on four-digit display
Gets electrical system configuration and calculates
 conversion gain factor
Algorithm for fitting any four-byte variable onto a
 four-digit display
All hardware-specific codes including CPU initializa-
 tion, driver for seven-segment display
All interrupt routines including Timer A interrupt,
 ADC interrupt, and INT external interrupts
Converts short integer into five BCD digits
Routines for serial communication with PC
Routines for defining and updating statistical records
Routines for scrolling through menu for user selection

b)

a)

22 Issue 110 September 1999 CIRCUIT CELLAR ® www.circuitcellar.com

main program, car.c, calls routines
in hardware.c to initialize the CPU,
routines in elecpara.c to determine
system hardware parameters, and rou-
tines in statdata.c to initialize sys-
tem variables (e.g., statistical records).

After interrupts are enabled, routines
in INTR.c are called to handle the
Timer A, ADC, and external interrupts.
INTR.c also includes routines for
updating the raw data for distance and
speed. The lowpass filter routine in
Adlpfc.c is called to get the average
raw data for fuel consumption.

Besides scheduling data updates,
Timer A also schedules when to up-
date statistical records (done by call-
ing routines in statdata.c). After
initialization, the main program en-
ters a forever do-loop. First, it calls
routines in UserIF.c to determine
what menu the user selected. Then,
the main program executes routines
in car.c to serve the user.

Routines in UserIF.c scroll through
all the menus. These routines then
call routines in DispMesg.c to dump
menu messages on seven segments.

To best serve the user, three things
need to be done. Conversion routines
in car.c convert raw data into distance,
speed, and fuel consumption. The auto-
scaling algorithm in Fourdigi.c scales
large numbers (four-bytes long integer)
into two-byte short integer. BCD con-
version routines in math.c convert
the short integer into five BCD digits.

Finally, the auto-scaling algorithm
puts the five BCD digits on a four-digit
display with the decimal point auto-
matically shifting across the display
to indicate the scale of the data. If the
user sends the data to a PC, serial.c
handles the serial communication.

USER MENU
Each key has a menu that consists

of a sequence of selection choices. Press-
ing and holding a key enables the user
to scroll through the selection choices.

The INT1 menu offers these options:
A (analog voltage from the ADC), Curr
(current drawn from the battery by the
motor system), AH-d (total amount of
amp-hour discharging from battery),
AH-C (total amount of amp-hour
charging to battery), and Engy (re-
maining energy stored in the battery).

void display_INT1_menu(void)
{
 switch (INT1_op_menu) {
 case INT1_MENU_ADC_VOLTAGE :
 show_A(); /*display A*/
 break;
 case INT1_MENU_CURRENT :
 show_Curr(); /*display curr*/
 break;
 case INT1_MENU_AMP_HR_DISCHARGE:
 switch (record_data_display_on){
 case RECORD_MODE_ON: /*Record State on*/
 if (INT1_down) /*if key is held down*/
 {
 INT3_speed_index = inc_INT3_speed_index(INT3_speed_index);
 amp_hr_discharge_record_on(INT3_speed_index);
 INT1_down = 0;
 }
 else show_AH_d(); /*key is pressed but not yet held down*/
 break;
 case RECORD_MODE_OFF: /*Normal State*/
 show_AH_d(); /*display AH-d*/
 break;
 }
 break;
 case INT1_MENU_AMP_HR_CHARGING :
 show_AH_C(); /*display AH-c*/
 break;
 case INT1_MENU_ENERGY:
 show_Engy(); /*display Engy*/
 break;
 }
 display(dispdat); /*to display on 7 segments*/
}

void change_INT1_menu(void)
{
 do{
 switch (record_data_display_on) {
 case RECORD_MODE_OFF: /*in Normal State*/
 /* if 1st time to switch back to this menu, do not increase
 /* INT1_op_menu. So that when switching between keys, user
 /* menu preference is kept */
 if (new_menu ==old_menu)INT1_op_menu += 1;
 else old_menu = new_menu; /*update menu choice*/
 if (INT1_op_menu > INT1_MAXMENU) INT1_op_menu = 0;
 break;

case RECORD_MODE_ON: /*in Record State*/
 INT1_op_menu = INT1_MENU_AMP_HR_DISCHARGE;
 break;

}
INT1_menu_change = 0;
display_INT1_menu();
wait_and_see_display();
INT1_down = test_INT1_button_down();
}

 while (INT1_down); /*while mode button being held down*/
 op_menu = INT1_op_menu;
}

Listing 2 —user_change_menu calls change_INTx_menu() to scroll through the choices of
INTx menu. The latter calls display_INTx_menu to display the menu choices.

The INT2 choices are Cout (num-
ber of pulses accumulated for 1 km),
onE (1 km dial, accumulated distance
up to 1 km), and diSt (total distance
traveled). The INT3 menu offers CPS
(number of pulses per second gener-
ated by the rolling wheel) and SPEd
(speed in kilometers per hour).

INT4 provides five choices—tinE
(time in HH.MM or MM.SS), StAr (to

start or continue to accumulate raw
data), StoP (temporarily stops accu-
mulating raw data), CLEA (clears all
raw data and records), and oFF (off
display and stop accumulating raw data).
The three system states for the INT5
menu are rECd (enters record state),
send (for sending records to the PC),
and roFF (to turn the record state off
and return to the normal state).

24 Issue 110 September 1999 CIRCUIT CELLAR ® www.circuitcellar.com

In the Record state, the user holds
key INT1 to scroll through records of
fuel consumption for different speed
ranges. Key INT2 gives records of
distance versus speed, and key INT3
scrolls through different speed ranges.
Pressing key INT4 shows the user
records of time traveled versus speed.

DETECTING USER SELECTION
The external interrupt routine

INT() sets semaphore INTx_menu_
change to indicate that a specific key
was pressed (see Listing 1a). The main
program main() calls routine user_
change_menu() to determine the user
selection op_menu (see Listing 1b).

When a key is held, user_change_
menu() calls change_INTx_menu()
to scroll through the choices of INTx
menu (which then calls display_
INTx_menu() to show the menu
choices) (see Listing 2).

op_menu is set to a numerical
value when the user releases the key.
According to op_menu value xyz,
main() executes xyz_main() as
shown in Listing 1b.

Notice three things in Listing 2.
First, in routine change_INT1_menu(),
new_menu and old_menu are used to
keep the user preferences by not in-
creasing the INTx_op_menu value
when the user switches back to an old
key. This way, when switching be-
tween keys, the driver can keep his
preference choice for each key.

 Second, display_INT1_menu()
puts up a display depending on the
state the system in. In the Normal state,
AH-d (for fuel consumption) is shown
on seven segments. If the system is in
Record state, the user can scroll through
the records of fuel consumption versus
speed by holding the INT1 key down.
amp_hr_discharge_record_on
(INT3_speed_index)is called to
show the fuel-consumption records.

Note that INT3_speed_index
increases as the user holds down the
INT1 key to look at the fuel-consump-
tion records. Should the user switch
to INT2, the record of distance traveled
at the latest speed index set before the
key was switched is displayed. That’s
how the four keys (INT1–INT4) coor-
dinate to show recorded data with
respect to the same speed range.

#pragma interrupt TIMA
void TIMA(void)
{
 IRR1.BIT.B6=0; /*clear Timer A Interrupt hardware flag */
 if (adc_on ==1)
 ADSR.BIT.B7=1; /*start ADC every 31.25 ms */
 real_time_tick++; /*accumulate 31.25 ms into ticks */
 switch (real_time_tick) {
 case 16 :

quad_second = HALF_SEC;
if ((start_flag ==1)&&(sending ==0)) {
update_statitics (); /*update records only if not sending to PC */

 } /*to avoid sending half-updated data to PC*/
 break;
 case 32 :

quad_second = ONE_SEC;
real_time_tick = 0;
if (start_flag ==1) { /*INT4 key StAr menu sets start flag*/
adc_average = lpf(adc_buf_ch0);/*moving average lowpass filer*/
milli_amp_average = (unsigned long int) adc_average * max_elect_load;
milli_amp_sec += milli_amp_average;/*raw data for fuel consumption */
milli_amp_hour = milli_amp_sec / 3600;
test_if_over_current(&adc_average);
update_energy(); /*energy remained in battery */
elapse_time[2]++; /*seconds*/
update_time(elapse_time); /*raw data for time traveled */
update_1sec_TMB_counts(); /*raw data for speed and distance */

 }
 break;
 }
 wk_PDR[8] ^= SET1; /*toggle LED1 to indicate TMA alive */
 PDR8.BYTE = wk_PDR[8];
}

Listing 3 —The Timer A real-time scheduler schedules all events. Updating statistical records is done at real-
time "quad_sec" = HALF_SEC, whereas raw data is done at real-time "quad_sec" = SEC.

26 Issue 110 September 1999 CIRCUIT CELLAR ® www.circuitcellar.com

REAL-TIME SCHEDULER
The Timer A interrupt schedules all

events. Two main events are scheduled
to take place at different time slots.
Updating statistical records is done at
real time "quad_sec" = HALF_SEC
and updating the raw data is done at
"quad_sec" = ONE_SEC, as shown
in Listing 3.

Scheduled in real time, for every
31.25 ms, one ADC sample is saved in
ring buffer adc_buf_ch0[32] by the
ADC() routine in Listing 4a. At real time
"quad_sec" = ONE_SEC, a low-pass
filter routine is called to get the aver-
age of 32 ADC samples. This is done
by adc_average = lpf(adc_buf_
ch0);. This value is added into raw
data milli_amp_sec (see Listing 3).

void update_1sec_TMB_counts(void)
{

new_count = TCB1.BYTE; /*read Timer B*/
inc_count = new_count - old_count;
/*get difference for counts per second*/
old_count = new_count;
sum_inc_count += inc_count; /*add into 1-km count*/
if (sum_inc_count > COUNT_PER_1KM){ /*check if more than 1 km*/

sum_inc_count -= COUNT_PER_1KM;
total_distance++; /*total distance in kilometers*/

}
}

Timer B counts the pulses generated
from the rolling wheel. At real time
"quad_sec" = ONE_SEC, update_
1sec_TMB_counts()reads the counts
in Timer B and calculates the counts in
1 s (inc_count). The routine also accu-
mulates inc_count into sum_inc_
count. When sum_inc_count exceeds
COUNT_PER_1KM, total_distance
increases by 1 km (see Listing 4b).

At "quad_sec" = ONE_SEC,
update_time() updates the time
traveled from seconds into minutes
and from minutes into hours. At
"quad_sec" = HALF_SEC, the func-
tion update_statistics() is called
to update statistical records. Raw data
versus speed is calculated into a data
structure called struct statistic_

#pragma interrupt ADC
void ADC(void)
{
 IRR2.BIT.B6=0; /* clear Interrupt hardware flag*/
 adc_cur_result=ADRR.BYTE; /*read ADC result*/
 bptr++ = adc_cur_result; /*put inside ring buffer*/
 if (bptr == (unsigned char)tail) { /*pointer wraps around*/
 bptr = (unsigned char *)head;
 first_round_adc = 1;
 }
 wk_PDR[8] ^= SET2; /*toggle LED2 to indicate ADC alive*/
 PDR8.BYTE = wk_PDR[8];
}

Listing 4a —ADC() stores an analog sample in a ring buffer. b—Updating wheel pulses per second is done
by update_1sec_TMB_counts(). c—Record format is defined by the data structure statistic_
form. d—Statistics are updated with respect to speed index in update_statistic().

struct statistic_form {
char elapse_time[3];
unsigned long int milli_amp_sec;
unsigned int total_distance;
unsigned int sum_inc_count;

};

c)

void update_statitics (void)
{

speed_index = get_speed_index(inc_count,speed_index);
update_stat_distance_travelled(speed_index);
update_stat_energy_consumpt (speed_index);
update_stat_time_travelled(speed_index);

}

d)

a)

b)

 CIRCUIT CELLAR ® Issue 110 September 1999 27www.circuitcellar.com

form car_data[13]. The structure
tag is shown in Listing 4c.

The index of structure array car_
data[] is the speed index. It refers to
different ranges of speed. get_speed_
index() calculates the speed range
(see Listing 4d).

CONVERSION ROUTINES
Main() calls amp_hr_discharge_

main() to convert milli_amp_sec
into amp_hour, one_KM_main() to
convert sum_ inc_count into distance
within 1 km, total_KM_main() to
calculate total distance, and speed_
main() to convert counts per second
into kilometers per hour.

Each xyz_main() does different
things for different system states. For
example, total_KM_main() calls
total_KM_record_off() in the
Normal state to display the total dis-
tance travelled. In the Record state,
total_KM_record_on() displays
distance traveled versus a speed range
(see Listing 5a).

xxx_main() calls standard_
display(¤t_data,scale)
to do auto ranging. This routine first
calls auto_scale_find(unsigned
long int *data, char previous_
scale) to find out the scale order of
current data. Then it calls scale_

down(unsigned long int *data_
long, char auto_scale) to scale
down the number according to the
scale, so that the long-integer data can
be fitted into a short integer.

Next, binary_BCD(¤t_int,
five_digit_BCD) converts the short
integer into five BCD digits. four_
digit_BCD_display_auto(five_
digit_BCD,scale) puts the them on
a four-digit display with the decimal
point automatically shifting across
the display to indicate the scale of the
data. This code also blanks out leading
zeroes on the display (see Listing 5b).

Autoranging for time is done by
display_time(). The difference be-
tween the two time displays (HH.MM
or MM.SS) is that the dot flashes four
times per second in the HH.MM format
and not at all in the MM.SS format.

In the Send state, the system counts
down 6 s in rx_byte() while waiting
for the password to be sent from the
PC. rx_sync() checks the password
*idn?. If the password is not received,
the routine displays tOut (timeout);
otherwise send_val() sends the
entire structure car_data[] to the
PC and displays Sent.

While waiting for my hardware
prototype, I used a target board for
debugging. I varied the 5-V voltage

void total_KM_main(void)
{
 if (quad_second == ONE_SEC)
 {
 switch (record_data_display_on) {
 case RECORD_MODE_OFF:
 total_KM_record_off (sum_inc_count,total_distance);
 break;
 case RECORD_MODE_ON:
 total_KM_record_on (INT3_speed_index);
 break;
 }
 quad_second = 0;
 }
}

Listing 5a— total_KM_main() calculates the total distance. b—Data auto ranging is done by
standard_display() to fit a BCD number onto a four-digit display.

char standard_display(unsigned long int *current_data, char scale)
{
 unsigned int current_int;
 scale = auto_scale_find (current_data, scale);
 current_int = scale_down(current_data,scale); /*scale down to integer*/
 binary_BCD(¤t_int, five_digit_BCD);
 four_digit_BCD_display_auto(five_digit_BCD,scale);
 return (scale);
}

b)

Before joining Ngee Ann Polytechnic,
Kock Kin Ko worked as a principal
engineer in Singapore’s defense indus-
tries as an embedded designer. He was
also an official CVI instructor appointed
by National Instruments (Singapore).
He is a software technology manager
at Philips Singapore. You may reach
him at koxiaozq@cyberway.com.sg.

SOFTWARE
Executable code is available via the
Circuit Cellar web site.

SOURCES
H8/3644
Hitachi America, Ltd.
(800) 448-2244
(415) 589-4207
Fax: (415) 583-4207
www.hitachi.com

CVI
National Instruments (Singapore)
+65 226-5886
Fax: +65 226-5887
www.natinst.com.

I wish to thank Hitachi Singapore for
their contribution to the project. Spe-
cial thanks to Danny Wong, senior
technical supporting engineer. Lim-
ited free samples of the flash H8/3644
can be obtained from Danny. He can
also help burn car.mot into your free
sample. You may reach him at
dwong@has.hitachi.com.sg.

a)

source to simulate changes in current
consumption. I also changed the DIP
switch setting to simulate changes in
speed. The program runs on a Hitachi
target board ALE TDS H8/3644 V.2.0
with an onboard flash H8/3644.

READY TO GO
Future improvements are definitely

possible. I still haven’t added the soft-
ware to calibrate distance versus pulse
count generated from the rolling wheels.
And, data sent to the PC is not ap-
pended with crc.

I’ve finished debugging the proto-
type software and have permission to
mount the analyzer on one of the ve-
hicles, so system integration tests will
begin soon. Now when I visit the work-
shop, I leave with a feeling of satisfac-
tion—now I’m a part of the team. I

www.circuitcellar.com
www.hitachi.com
www.natinst.com

28 Issue 110 September 1999 CIRCUIT CELLAR ® www.circuitcellar.com

Expanding the HCS-II

EMBEDDED
LIVING

Mike Baptiste

i
To improve his new
house, Mike added a
home automation
system. Then he
started improving his
home automation
system. Fasten your
toolbelt as he nails
down the details in
this new column,
Embedded Living.

’ve tinkered with
electronics since I

was a kid, but some-
how I ended up working

with software for a living. However,
my heart has always been in hardware,
so I decided to use home automation
to satisfy my need to build stuff.

I started receiving Circuit Cellar
when I was still in high school and
have followed the progress of the
HCS-II Home Automation System
with much interest. Not much oppor-
tunity to automate a dorm room, but
after college, I moved down south and
bought a townhouse. Plenty to auto-
mate there, but a new job can take up
lots of free time. If I was going to get
an HCS-II, I had to buy a nice big house!

My wife would chuckle to hear that
she’s partly responsible for my home
automation “hobby.” After the wed-
ding, we bought a large house in the
country that we planned to gut and
renovate. A home automator’s dream!

About the same time, Steve wrote
his Answer MAN Jr. weather station
article (Circuit Cellar 78) and I was
hooked. Of course, that was three
years ago and the renovations have
just begun, but that’s another story.

One of my favorite things about
the HCS-II is the simple yet powerful
network protocol. It can carry lots of
information but it’s still easy to under-

stand. Given the size of our house, I
needed small HCS network nodes that
I could locate almost anywhere. Al-
though the Answer MAN Jr. fit the
bill, in some applications it was over-
kill. And that’s how the idea of design-
ing my own HCS-II modules was born.

STARTING SIMPLE
One of the first things I wanted to

add to the system was a printer to keep
a log of events from my HCS-II, and
Steve’s idea of printing a daily weather
report made it even more appealing. I
decided to start my adventure with a
tiny version of the DIO-Link.

An HCS-II network node interacts
with the HCS-II while simultaneously
dealing with the real world. The HCS-
II constantly polls network modules
for status information and sends com-
mands when XPRESS needs something
done. If a module does not respond to
a query, the HCS flags it as offline.

What seemed like a simple under-
taking was suddenly getting more
complex. My network node had to
handle a constant stream of network
traffic and print text to the printer.

However, during the printing, the
node still had to respond to queries
from the HCS-II. Even though the HCS-
II tries to be nice and not send two con-
secutive network packets to a specific
module, it sometimes queries a module
right after it sends a string to print.

SELECTING THE HARDWARE
Memory requirements were modest

because the incoming packets would
be no more than 96 bytes. The I/O
requirements were 10 bits for the
printer (8 data, STROBE, and BUSY), 3
bits for the serial interface, and 3 bits
to set the node address (0–7).

To keep costs low, I was determined
to implement this project with two
chips: a processor and the 75176 RS-485
IC. Thanks to the wide variety of Micro-
chip PICs, finding a suitable processor
was easy.

I settled on the ’16C63A because it
had plenty of RAM for the serial buffer
and 22 bits of I/O, which easily handled
the I/O requirements. I even had extra
bits to add blinky lights for network and
I/O activity. My DIO-Link had become
the PIC-DIO shown in Photo 1.

Making Network Modules

 CIRCUIT CELLAR ® Issue 110 September 1999 29www.circuitcellar.com

The great thing about the
’16C63A is the built-in serial
UART, which made interfac-
ing with the HCS-II RS-485
network even easier. The
UART can store two incom-
ing bytes and most of a third
in its receive register before it
overflows. Thus, my software
can spend a lot less time wor-
rying about incoming serial data.

TALKING WITH THE HCS-II
Figure 1 shows the general structure

of an HCS-II network packet. Although
the bit-level work is handled in hard-
ware, the serial routine still has a lot
to do. It has to manage the receive
buffer, calculate and verify the check-
sum, compare the node address, and
signal the main code when a packet is
ready for processing.

Because the packet bytes are asyn-
chronous, the serial routine is called
via interrupt anytime a new byte is
received from the network. This setup
enables the module to concentrate on
real-world interfacing between network
bytes without using a multitasking OS.

Although I’m no stranger to assem-
bler, I decided to use C for this project.
I chose the CCS C compiler for PICs
because it was inexpensive and had
many powerful commands tailored to
the PIC architecture. I have to admit,
the final program was more complex
than I thought it would be, so using C
probably saved my sanity.

Listing 1 shows the serial routine
that handles incoming HCS-II network
traffic. It uses a simple 128-byte buffer
implemented with the PIC’s FSR regis-
ter for indirect memory addressing.

The C compiler has an array capa-
bility that V.1.0 of my code used for
the buffer. However, the overhead
required to manage a 128-byte array
and the cycles needed to reference an
array record caused me to manage the
bank of RAM myself. The final code
is quite efficient, thanks to the indirect
address register.

The serial routine ignores incoming
data until a packet-start character
arrives. This character indicates
whether a checksum is used. Check-
sums are optional for my module,
although the HCS-II always uses them.

The serial routine switches to receive
mode and any subsequent characters
are stored in the buffer, overwriting
any old data.

The first version of this code stored
all incoming packets in the buffer,
regardless of the intended destination.
Checksum and node address verifica-
tion occurred after every packet was
received, which wasted a lot of cycles.

In a simple digital I/O module like
this, it wasn’t a big deal. But, for some-
thing like an LCD interface where a lot
of processing can be required for each
packet, these extra cycles were valuable.

When I rewrote the routine, I moved
the address matching and most of the
checksum calculating into the serial
routine. The PIC-DIO now compares
the address before the entire packet is
received so it can stop storing data it
will never process. The checksum cal-
culations require quite a few cycles over
an entire packet, so limiting it to pack-
ets that the module actually processes
leaves more cycles for the main code.

The buffer setup is simple. Packets
are stored in the buffer as they are
received. Any data already in the buffer

is overwritten. The effect is
that the new data “chases”
the unprocessed old data.

The PIC-DIO tracks the
processing of the old data
as new data is received
behind it, and if the new
data catches up, the packet
is ignored. During normal
operation, this shouldn’t

happen because the PIC-DIO processes
the parallel data much faster than the
HCS-II sends data out.

Buffer overflows are handled as well.
Because the checksum match fails on
a partial packet, a buffer overflow
causes the entire packet to be dumped.

This serial routine is used in many
of my HCS-II projects. If I develop a
module that takes a long time to pro-
cess incoming data, I can improve the
serial routine by moving to a circular
buffer so that new data is stored after
the old data. This provides more time
before the new data can catch up with
the old data.

IS IT VALID?
Once the whole packet is received,

the checksum must be verified. HCS-
II checksums are straightforward to
validate. The two checksum charac-
ters are converted into a hex value and
stored.

The checksum characters are re-
placed by zeros and all of the ASCII
values in the packet up to, but not
including, the carriage return are added
together. Finally, the checksum value

Figure 2— The PIC-DIO hardware is quite simple. The node address is set using J2 while J5 enables network
termination. J1 is wired for connection to a Centronics printer, but you can use the PIC-DIO for all types of I/O.
Remember to add buffers if necessary!

Figure 1 —The HCS-II uses a simple and flexible network packet structure. The
checksum is optional based on the start character.

#cc NODEX Command [Data]

Packet start character. # for checksum, ! for no
 checksum

cc One byte checksum value in ASCII
NODEX Module network address (i.e., DIO3)
Command Module command (i.e., S DP= which sets the I/O port)
Data This is optional, depending on the command

30 Issue 110 September 1999 CIRCUIT CELLAR ® www.circuitcellar.com

is added to the ASCII total. If the result
is zero, the data is valid.

As you look at the code, you’ll
notice I took a shortcut. When you
add up the first 10 bytes, they are
always the same because the check-
sum bytes are always reset to zero.

I calculate the sum of the first 10
ASCII bytes during initialization, which
enables the serial routine to only per-
form checksum calculations on data
beyond the node address. Thus, the
PIC-DIO only uses cycles to sum up
the ASCII bytes if the packet is in-
tended for it.

THE REST IS SIMPLE?
Now that we can receive HCS

data, we have to do something with
it. Considering all that the serial rou-
tine does, the command handling code
is simple by comparison.

The processor sits in a while loop
waiting for the serial routine to receive
a complete, valid packet. When it does,
the code breaks out and moves the
processing buffer pointer up to the
network command letter.

This process adds breathing room in
the buffer as additional network data
arrives. The code then uses a switch
statement to execute the appropriate
code based on the command letter.

The PIC-DIO recognizes four differ-
ent commands from the HCS-II. The
simplest one, R, initiates a module
reset by timing out the PIC watchdog
timer in an endless loop. The remaining
three commands manipulate the I/O
ports and are slightly more involved.

Although I designed the PIC-DIO
with a printer interface in mind, I
really wanted to design a tiny DIO-
Link that would understand all of the
DIO-Link commands. The HCS-II
DIO-Link protocol enables you to set
and query the I/O port bit by bit or as
a complete byte. There’s also a string
command so a string of data can be
output to the I/O port.

There is no command to set the
direction of the I/O bits. By using pull-
ups built into the PIC, you can set data
and direction with one command (see
Figure 2).

The PIC-DIO never outputs a high
state. Instead, the PIC switches the
port to an input and the pullup out-

void serial_in() {
char data_in;
int tidx;
// Read buffer until empty in case we have more than one char here
while (bit_test(PIR1, 5)) {
// Don't use getc; it does needless bit check to see if data is available

restart_wdt();
data_in = RCREG;
// Use HW UART here for the sake of simplicity.
// Let's act on the data... We are looking for start of a packet.
// Otherwise stay in this state; ignore incoming char
if (s_idle) {

if ((data_in == '!') || (data_in == '#')) {
// New Packet - Go to the front of the buffer
LAN_IN = 0;
serial_idx = 0;
check_val = node_total;
// Clear checksum buffer using default beginning
write_buffer(0x00, data_in);
s_idle = FALSE;
S_ERR = 1;
// Get correct offset for the address/node name
if (data_in == '#') {

tidx = 4;
checksum = TRUE;

} else {
tidx = 2;
checksum = FALSE;

}
}

} else {
// Check for buffer overflow or if we caught up to a previous packet
if ((++serial_idx == BUFFER_SIZE) || (!p_idle && (serial_idx ==
 process_idx))) {

// Buffer Overflow - dump it; checksum won't validate anyway
s_idle = TRUE;
S_ERR = 0;
LAN_IN = 1;

} else {
// Check for end of packet
if ((data_in == '\r') || (data_in == '\n')) {

// Check checksum if we are supposed to
if (checksum) {

check_val += ((gethexbyte(read_buffer(1)) << 4) |
 gethexbyte(read_buffer(2)));
if (check_val == 0) {

go_data = TRUE; // Tell main program to process buffer
} else {

// Bad checksum
S_ERR = 0;

}
} else {

go_data = TRUE;
}
s_idle = TRUE; // If invalid checksum, we already have reset
LAN_IN = 1;

} else {
// Save data

write_buffer(serial_idx, data_in);
// Check character against node address if necessary

if ((serial_idx >= tidx) && (serial_idx < (tidx + 4))) {
// It's an address character - check it
if (thisnode[(serial_idx-tidx)] != data_in) {
// Not our packet - break out and wait for next one

s_idle = TRUE;
LAN_IN = 1;

}
}
if (checksum) { // Add this into checksum value

if (serial_idx >= 9) { // Add char to checksum value if needed
check_val += data_in;

}
} } } } } } }

Listing 1 —Even though the PIC-DIO uses a hardware UART, the serial input routine has a lot to do. It
handles buffer management, checksum calculation, address matching, and error handling. The serial_
in routine is called via interrupt when the PIC-DIO senses a start bit.

32 Issue 110 September 1999 CIRCUIT CELLAR ® www.circuitcellar.com

scratch = read_buffer(process_idx); // Get command
switch(scratch) {
case('R'):
[Timeout Watchdog & reset PIC-DIO]
break;

case('S'):
// Its a set command, bit or byte
P_OUT = 0;
process_idx += 2; // skip to = or bit number

if (read_buffer(process_idx) == '=') {
// A byte set; easy! Convert ASCII hex into real hex value
last_hcs_data = (gethexbyte(read_buffer(++process_idx)) *
 16) + gethexbyte(read_buffer(++process_idx));
// Because we need open collector ports, use Tris command
// to set highs and normal port output for lows
SET_TRIS_B(last_hcs_data); // Highs are high impedence
portb = last_hcs_data;
// Assert lows; highs already there due to pullups
} else {
// A bit set - little more complicated
// Use last data sent by HCS to maintain proper tristate
// settings
// We need this; a low input would reassert and flip tri
// causing possible short if we read port, flipped bit,
// and sent it back to port
idx = 1; // Prevent bogus bit numbers

scratch = read_buffer(++process_idx);
if ((scratch > '7') || (scratch < '0')) { break; }
// Quick and dirty way to get 2^x

for (scratch = (scratch & 0x0F); scratch != 0; scratch--) {
idx <<= 1; // Shift bit once

}

process_idx += 2; // Shift to bit value
if (read_buffer(process_idx) == '0') {
// Twiddle bit using last HCS data so we won't grab
// inputs and reassert them
last_hcs_data &= (idx ^ 0xFF);
// Twiddle bit from HCS data, maintain inputs
portb = last_hcs_data;
// Set latches BEFORE changing TRIS
SET_TRIS_B(last_hcs_data); // Assert low set in latches
} else {
last_hcs_data |= idx; // Set specific bit
SET_TRIS_B(last_hcs_data);
// Pullups take care of setting port

}
}
p_idle = TRUE; // Release old buffer. We are done with it.
// Pulse strobe on a port change in case user needs it
delay_cycles(1); // Let data stabilize
strobe = 0;
delay_us(250); // Pulse strobe low in case they need it
strobe = 1;
break;

case('Q'):
[Read port data and return to HCS-II]
break;

case('T'):
[Loop through string and output to parallel port]
break;

}

Listing 2 —Incoming network data is processed in an endless while() loop using a switch statement.
This listing shows all the code necessary to set bits on the I/O point using the S command.

34 Issue 110 September 1999 CIRCUIT CELLAR ® www.circuitcellar.com

puts a weak high. But if some-
thing external drives the pin,
it can be read. Thus, if you set
the port to 0xFF, you’ve done
two things.

All pins go high unless
driven externally and all pins
can also be read as inputs.
The only danger with this
setup is if a pin is driven high
externally and the HCS tells
the PIC to drive the pin low.

The PIC-DIO bits can be
set at the same time by send-
ing the module a hex byte
using S DP=xx, where xx is the hex
byte to output on the I/O port. The
HCS-II can also tell the PIC-DIO to
manipulate a specific bit by sending
the S DP.#=x command, where # is
the bit number to manipulate and x is
either a 0 or 1.

In this case, the PIC-DIO simply
changes the appropriate bit and sets
the whole port just like it does for a
byte set command. Listing 2 outlines
the code needed to set the I/O port
pins based on the received data.

Photo 1 —The simple PIC-DIO hardware allows for quite a small circuit board.
Imagine if you used surface-mount devices!

READING THE PORT
The HCS-II constantly polls the PIC-

DIO for the current state of the I/O
port. The PIC-DIO returns the current
state of each I/O pin as a single byte.

The HCS-II uses this reply as a way
to tell whether a module is responding.
If a module fails to reply to a query in
a timely manner, the module is shown
offline in the HCS-II host display.

When a query command comes in,
the PIC-DIO reads the port and con-
verts the byte into a two-character

ASCII string to represent the
hex value. The packet is con-
structed and the checksum is
calculated as if the query
packet had one. After a 50-ms
delay to give the HCS-II a
chance to switch to receive
mode, the response packet is
sent out via the UART.

Though the HCS-II doesn’t
use it, the PIC-DIO also ac-
cepts a bit query command so
you can query the given state
of a bit without getting the
rest of the port data.

PRINTING TEXT
The final command enables the HCS-

II to send a string to the PIC-DIO,
which is sent to the I/O port. The
PIC-DIO jumps to the first character
of the string (after the T DP= command)
and loops until the end of the string.

The HCS-II supports some escape
sequences that must be checked for
(see Table 1). Once the preprocessing
is complete, the resulting data is sent
to the printer.

 CIRCUIT CELLAR ® Issue 110 September 1999 35www.circuitcellar.com

SOFTWARE
The PIC-DIO firmware is available
via the Circuit Cellar web site.

Mike Baptiste works for Nortel Net-
work’s R&D facility in North Caro-
lina’s Research Triangle Park where
he manages the Desktop and Intranet
Services Support Groups. You may
reach him at baptiste@cc-concepts.com.

REFERENCES
DIO-Link manual, ftp.circuitcellar.

com/CCINK/1992/Issue_28
Microchip PIC16C63A datasheet,

www.microchip.com/10/Lit/
PICmicro/16C6X/30605/
index.htm

SOURCES
PIC16C63A
Microchip Technology, Inc.
(480) 786-7200
Fax: (480) 899-9210
www.microchip.com

PIC-DIO kits, HCS-II
Creative Control Concepts
(919) 304-3107
Fax: (919) 304-3107
www.cc-concepts.com

CCS PIC C compiler
Custom Computer Services, Inc.
(414) 797-0455 x35
Fax: (414) 797-0459
www.ccsinfo.com/picc.html

Table 1—The PIC-DIO understands the following escape
commands when sending a string to the I/O port.

Command Definition

\n New line (carriage return and line
 feed – ASCII 13, ASCII 10)

\r Carriage return only (ASCII 13)
\xHH Output ASCII code sent as hex byte

\f Form feed (ASCII 12)
\e Escape code (ASCII 27)
\t Tab (ASCII 9)

\cX Sent control code X (Ctrl-M =
 ASCII 13)

\\ Send \ character

If the BUSY line shows that the
printer is busy, the PIC-DIO waits
25 ms for it to clear. If it doesn’t clear,
the current packet is dumped and the
PIC-DIO waits for the next packet.

The PIC’s RTCC timer is used to
time the 25 ms. If the BUSY flag is
clear, the data is sent to the I/O port.
The STROBE line is pulsed for 25 µs
and then the next character is processed.
Although this setup was intended for
a parallel printer, the STROBE line
allows the PIC-DIO to be used as an
interface to other circuits.

THE NEXT STEP
Once I got the code running, I

went through the opcode listing
manually to see how well some
concepts were implemented. I
didn’t have to code any sections in
raw assembler, but altering the C-
code structure or changing the
way some variables were refer-
enced saved valuable resources.

The PIC-DIO provides a great
platform for interfacing devices to
the HCS-II RS-485 network. I hope
you see now that interfacing to the

HCS-II is a fairly easy task. Given the
flexibility of the HCS-II serial proto-
col, the possibilities are endless. I

HCS and HCS-II are trademarks of
Circuit Cellar, Inc.

www.circuitcellar.com
ftp.circuitcellar.com/CCINK/1992/Issue_28
www.microchip.com/10/Lit/PICmicro/16C6X/30605/index.htm
www.microchip.com
www.cc-concepts.com
www.ccsinfo.com/picc.html

36 Issue 110 September 1999 CIRCUIT CELLAR ® www.circuitcellar.com

Internet Control

FEATURE
ARTICLE

Jacob Apkarian

t
If you’re looking for a
systematic approach
to designing and
evaluating control
system performance,
check out these CAD
tools. They take Jacob
from making a math-
ematical model of his
system right down
to generating and
implementing code.

he development
of the fast PC,

design software, and
the affiliated Internet

technology have significantly improved
the design cycles in control system
design and implementation.

In this article, I describe the vari-
ous tools available that can take you
from concept to real-time remote
controller implementation, tuning,
and monitoring within a few hours.

The example I use here is the 3DOF
(degree of freedom) helicopter experi-
ment shown in Figure 1. The 3DOF
helicopter consists of a base on which
a long arm is mounted. The arm carries
the helicopter body on one end and a
counterweight on the other.

The arm can tilt on an elevation
axis as well as swivel on a vertical
(travel) axis. Quadrature optical en-
coders mounted on these axes meas-
ure the elevation and travel of the arm.
The helicopter body is mounted at the
end of the arm.

The helicopter body is free to pitch
about the pitch axis. The pitch angle
is measured via a third encoder.

Two motors with propellers mounted
on the helicopter body can generate a
force proportional to the voltage ap-
plied to the motors. The force gener-
ated by the propellers causes the
helicopter body to lift off the ground.

The purpose of the counterweight
is to reduce the power requirements
on the motors. The counterweight is
adjusted such that the effective mass
of the body is approximately 70 g.

All electrical signals to and from
the arm are transmitted via a slipring
with eight contacts. This setup elimi-
nates the possibility of tangled wires
and reduces the amount of friction
and loading about the moving axes.

The purpose of the exercise is to
design a controller that enables you to
command the helicopter body to a
desired elevation and a desired travel
position. So, I want to describe a sys-
tematic approach to designing and
evaluating control-system perform-
ance using available CAD tools.

MODEL DERIVATION
The first step in the process is to

develop a mathematical model of the
system. The equations that I reference
in the text are displayed in the sidebar
on pages 39–40 (they are also available
for download in a pdf file).

The tool used here is the Maple
symbolic processing language. The
differential equations of the system
are highly nonlinear and coupled, and
are difficult to solve by hand. The
process is described below and is
implemented in a Maple script file.

Let’s start by defining coordinate
transformation frames embedded in
the moving bodies of the system. The
transformation matrices between the
base frame and travel frame are shown
in equation 1. These coordinate frames
have the same origin.

Equation 2 shows the transforma-
tion matrices from the travel frame to
the helicopter body. To go from the
travel frame to the counterweight, the
matrices are shown in equation 3. The
last two sets of matrices are for the
helicopter body to front motor (equa-
tion 4) and from the helicopter body
to the back motor (equation 5).

The transformations from the base
to the moving bodies are obtained via
equation 6. Those transformations are
used to obtain the potential energies of
the bodies (equation 7) and the kinetic
energy of each body (equation 8).

The total kinetic and potential ener-
gies are obtained and the Lagrangian

CIRCUIT CELLAR ® Issue 110 September 1999 37www.circuitcellar.com

is computed in equation 9. Once the
Lagrangians for the three axes are
derived, you can write the Lagrange
equations for each axis.

Each motor exerts a force normal
to the body given by F = KfV, where Kf

is the force constant for the motor/
propeller pair. If the body is horizon-
tal, the two forces result in a torque
about the elevation axis equal to La
Kf(Vf + Vb), resulting in the generalized
Lagrange equation given in equation 10.

The system rotates around the
travel axis only if the body is pitched
and hovering. The torque around the
travel axis resulting from a given pitch
is equal to that component of the total
force of the two motors projected onto
the travel axis:

(Vf + Vb) KmLa sin (pitch(t))

resulting in equation 11.
The body pitches because of a dif-

ference in the voltage applied to the
motors, which results in a difference
in the two forces generated by the two
motors. The difference results in a
torque around the pitch axis given by:

Kf (Vf – Vb)Lh

Equation 12 results in a set of non-
linear differential equations of the form
given in equation 13. These are solved
to obtain the accelerations around the
three axes (equation 14), where ε ≡
elevation, p ≡ pitch, and λ ≡ travel.

LINEARIZATION
These equations are then linearized

around the operating point (equation
15). To derive the quiescent voltage,

assume that the body is hovering so
the force generated by the motors and
the body weight should exactly coun-
terbalance the counterweight. This
equation can be written:

Lw mc g = La (g (mf + mb) + (Vf + Vb) Kf)

Assuming that both motors are exert-
ing equal forces (Vf = Vb) and that both
motors have the same mass (mf = mb),
the body does not pitch, and we obtain
equation 16.

Linearizing the acceleration equa-
tions around the quiescent point (Q)
gives a set of equations of the form
shown in equation 17. The elements
of the A and B matrices are automati-
cally derived and written into a MAT-
LAB script from Maple.

CONTROL-SYSTEM DESIGN
Next, you can write a MATLAB

script file that reads in the output file
of the Maple program and
calculates the values of
the state space model A
and B matrices for a given
set of system parameters
(equation 18).

In this design, I used a
linear quadratic regulator
(LQR) controller. The LQR
method is essentially a
multi-input/multioutput
PID controller with an
optimization index.

The optimization index
requires two matrices, Q
and R, which are used to
compute a performance
index to be minimized.
The process is automatic.

You supply the Q and R matrices
(which are selected intuitively), and
the software computes the feedback
gains. After several iterations using
the simulation block (described next),
we select a set of Q and R matrices
that result in equation 19.

As you examine the feedback gains
obtained from the LQR design, note
that the second row gains have the
exact magnitudes of the first row (see
equation 20)! The state feedback equa-
tion is shown in equation 21. Further
examination reveals that the sum of
the two rows results in equation 22,
which can be rewritten as equation 23.

Equation 23 is a PID controller
around the elevation axis, which means
that the gains we obtain from LQR
design can be used in an elevation
control loop (equation 24). Examining
the difference between the gains (i.e.,
Vf – Vb) yields equation 25, which
consists of two loops—one for pitch
and one for travel.

This equation can be rewritten as
equation 26, which is a PID loop to
command the pitch to track the de-
sired pitch (Pc). The desired pitch is
defined in equation 27, which is an-
other PID loop that controls the travel
position. You now have the control
equations shown in equation 28, and
solving for Vf and Vb, you get the re-
sults in equation 29.

SIMULATION
Figure 2 shows the Simulink model

used to simulate the system. It consists

Figure 2 —The Simulink diagram consists of three main blocks: the
command generation block, the open-loop model, and the controller.

In1

In2

Travel deg

Travel deg/s

Pitch deg

Pitch deg/s

Elevation deg

Elevation deg/s

Model

Travel

Travel Cmd

Travel rate

Pitch

Pitch rate

Elevation

Elev Cmd

Elev rate

Out1

Out2

Control

Travel deg

Elevation deg

Cmd

Figure 1 —The helicopter model
consists of two motors driving
two propellers mounted on a
frame that can freely pitch. The
frame is mounted on a long arm
with a counterbalance. The
entire arm can pivot and elevate,
resulting in three degrees of
freedom of movement.

CIRCUIT CELLAR ® Issue 110 September 1999 39www.circuitcellar.com

Equations

(continued)

[2]

[3]

[4]

[5]

[6]

Tmc =T0
1T1

mc

Thb =T0
1T1

hb

Tf =ThbThb
f

Tb =ThbThb
b

[7]

pemc = mc g pz
mc

pef = mf g pz
f

peb =mf g pz
b

[8]

[9]

T1
mc =

1 0 0 0
0 cos (elev(t)) sin (elev(t)) Lw cos (elev(t))
0 sin (elev(t)) cos (elev(t)) Lw sin (elev(t))
0 0 0 1

T1
hb =

1 0 0 0
0 cos (elev(t)) sin (elev(t)) La cos (elev(t))
0 sin (elev(t)) cos (elev(t)) La sin (elev(t))
0 0 0 1

Thb
f =

cos (pitch(t)) 0 sin (pitch(t)) Lh cos (pitch(t))
0 1 0 0

sin (pitch(t)) 0 cos (pitch(t)) Lh sin (pitch(t))
0 0 0 1

Thb
b =

cos (pitch(t)) 0 sin (pitch(t)) Lh cos (pitch(t))
0 1 0 0

sin (pitch(t)) 0 cos (pitch(t)) Lh sin (pitch(t))
0 0 0 1

kemc =0.5mc vx
mc2 + vy

mc2 + vz
mc2

kef = 0.5mf vx
f 2

+ vy
f 2

+ vz
f 2

keb = 0.5mb vx
b2

+ vy
b2

+ vz
b2

ke = kemc + kef + keb

pe = pemc + pef + peb

L = ke – pe

T0
1 =

cos (travel(t)) sin (travel(t) 0 0
sin (travel(t) cos (travel(t)) 0 0

0 0 1 0
0 0 0 1

[1]

40 Issue 110 September 1999 CIRCUIT CELLAR ® www.circuitcellar.com

Equations (continued)

[10]

∂ ∂L
∂t∂ elev

– ∂L
∂ elev

= La Kf Vf + Vb

[11]

∂ ∂L
∂t ∂ travel

– ∂L
∂ travel

= Vf + Vb Kf L asin pitch t

[12]

∂ ∂L

∂t ∂ pitch
– ∂L

∂ pitch
= Kf Vf – Vb L h

[13]

F1 elev, pitch, travel = G1 Vf, Vb

F2 elev, pitch, travel = G2 Vf, Vb

F3 elev, pitch, travel = G3 Vf, Vb

[14]

ε = R(ε, p, λ,Vf,Vb)
p = R(ε, p, λ, Vf, Vb)
λ = R(ε, p, λ, Vf, Vb)

[15]

Q = ε = 0, p = 0, λ = 0, ε = 0, p = 0, λ = 0, Vf = Vq, Vb = Vq

[16]

Vq =
g(Lwmc – 2Lamf)

2Kf

[17]

ε
p
λ
ε
p
λ
ζ
γ

= A

ε
p
λ
ε
p
λ
ζ
γ

+ B
Vf

Vb

[18]

A =

0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.60 0.00 0.00 0.00 0.00 0.00 0.00
1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

B =

0.00 0.00
0.00 0.00
0.00 0.00
0.15 0.15
1.02 1.02
0.00 0.00
0.00 0.00
0.00 0.00

[19]

[20]

K = k 11 k 12 –k13 k 14 k15 –k16 k 17 –k18
k 11 –k12 k 13 k 14 –k15 k16 k 17 k

[21]

 Vf

Vb
= – k 11 k12 –k13 k 14 k 15 –k16 k 17 –k18

k 11 –k12 k13 k 14 –k15 k 16 k 17 k 18

ε
p
λ
ε
p
λ
ζ
γ

[22]

 Vf + Vb = Vs = – 2k 11 ε – εc + 2k 14ε + 2k 17ζ

[23]

Vs = Kep ε – εc + Kedε + Kei ε – εc

[24]

Ks = 2k11 0 0 2k14 0 0 2k17 0

with
Kep = –Ks1

Ked = –Ks4

Kei = –Ks7

[25]

Vf – Vb = Vd = – –2k 12p – 2k 15p – 2k 13 λ – λc + 2k 6λ + 2k 18ζ

[26]

[27]

[28]

[29]

K = 18.30 10.14 –17.55 12.02 3.52 –26.00 3.54 –1.12
18.30 –10.14 17.55 12.02 –3.52 26.00 3.54 1.12

pc = –
2k13 λ – λc + 2k 16λ + 2k 18ζ

2k12

Vf = 0.5 Vs + Vd

Vb = 0.5 Vs – Vd

Vd = –2k 12 p –
2k 13 λ – λc + 2k 16λ + 2k 18ζ

– 2k 12
– 2k 15p

= –2k 12 p – 2k 13 λ – λc + 2k 16λ + 2k 18ζ – 2k 15p

= – 2k 12 p – pc – 2k 15p

pc = Ktp λ – λc + Ktdλ + Ktiζ

Vs = Kep ε – εc + Kedε + Kei ε – εc

Vd = Kpp p – pc + Kpdp

42 Issue 110 September 1999 CIRCUIT CELLAR ® www.circuitcellar.com

of the open-loop model, command
generation, and the controller.

Figure 3 shows the open-loop model,
where system dynamics and measure-
ment are simulated. The A and B
matrices are reduced to a set of inte-
grators and gains and the elevation

integrator is limited to positive values
to simulate the helicopter landing on
the ground.

The gravitational bias is simulated
by augmenting the motor voltages by
the constants minus Vq. Encoder mea-
surements are simulated by multiply-

ing by a calibration constant that
converts from radians to degrees. The
quantization effect is simulated using
a quantizer set to the resolution of the
encoders.

The three displacement states are
differentiated using high-pass filters,
as they would be in the actual system.
Numerical differentiation is not rec-
ommended, and high-pass filters func-
tion as differentiators at a frequency
below the passband.

To evaluate the response of the
system, you need to generate the com-
mands to the elevation and travel axes.
The command is for the elevation to
rise to various levels and the travel to
go +60° and return to zero.

Both commands are rate limited,
using rate-limiting blocks. This block
can, of course, be replaced by another
input block (e.g., a joystick that lets
the user command the system directly).

CODING
The controller is implemented using

WinCon. This real-time Windows 95
application runs Simulink-generated
code using Realtime Workshop to
achieve digital real-time control on a
PC equipped with a data acquisition
and control board (DACB).

WinCon 3.0 consists of a client and
a server. Each server can communi-
cate with several clients. A PC can
have a client as well as a server oper-
ating on it at the same time.

The WinCon server can convert a
Simulink diagram to PC executable
real-time code and run it in real time
on a remote WinCon client PC. It also
starts and stops this client remotely,
as well as maintaining TCP/IP com-
munications with several clients.

This server can also change param-
eters remotely, in real time and on-
the-fly. These tasks are accomplished
by using the Simulink diagram on the
WinCon server PC or by using custom
designed control panels on the Win-
Con server PC (without Simulink).

It also plots the data streamed back
from the clients in real time on the
server PC, saves collected data on a
disk on the server PC, and runs script
operations from the MATLAB envi-
ronment to perform automated data
collection, offline line adaptation,

6
Elevation deg/s

5
Elevation deg

4
Pitch deg/s

3
Pitch deg

2

Travel deg/s

1
Travel, deg

-K-

b52

-K-

b51

-K-

b42

-K-

b41_2

-K-

b41

-K-

a62

50

s+50
Travel low pass

1/s

Travel

1/s

T rate

180/

T Rad to deg

20s
s+20

TD

T

Sum1

Sum

Quantizer2

Quantizer1

Quantizer

1/s

Pitch

1/s

P rate

180/

P rad to deg 100s

s+100
PD

P

s

1

Elev

1/s

E rate

180/

E rad to deg
50s

s+50
ED

E

–2*V_q

Constant

2
In2

1
In1

+

+

+

+

+

Figure 3 —In this open-loop model of the helicopter, the A and B matrices are reduced to a set of integrators.
Quantizers simulate the quantization effect of the encoders. High-pass filters are used to obtain the derivative.

CIRCUIT CELLAR ® Issue 110 September 1999 45www.circuitcellar.com

automated design and parameter tun-
ing, and so on.

WinCon Client is the real-time
software component that runs the code
generated from the Simulink diagram
at the sampling rate you specify. It
receives controller code from the server,
runs the controller code in real time,
maintains communications with a
WinCon server and updates parameters
in real time, and streams real-time data
to the WinCon server requesting it.

The performance of this real-time
component depends on several factors
including the processor speed, con-
troller complexity, and the number of
other processes simultaneously run-
ning on the same PC. Testing revealed
a maximum latency of 50 µs when the
controller was run on a P200 with no
other programs running.

CONFIGURATIONS
The simplest configuration is a

single PC equipped with the appropri-
ate software and hardware but with
no network. In this configuration, the
PC runs both the server and the client
and can be used to perform real-time

control, tuning, and monitoring in the
same location.

The second configuration consists
of two PCs—one running the server
and another running the client. In this
case, the two PCs must be connected
via Ethernet.

The advantage of this configuration
is that the client is running on a PC
that’s usually not running any software
other than Windows 95 and WinCon
W95Client. This setup gives you the
fastest possible sampling rates because
the control PC isn’t burdened with
other tasks.

The third configuration consists of
two PCs communicating via the Inter-
net. Each PC is connected to a server,
and they can each be located anywhere
in the world. Essentially, this configu-
ration the same as the second one, but
the connection between the PCs is via
the Internet (see Figure 4).

The last configuration is one server
and many clients running as nodes on
the Internet. The server can download
code to several clients and can main-
tain communications with all clients
simultaneously.

WinCon
server

Internet or
Intranet

Asynchronous Synchronous

WinCon
client

MultiQ
board

Plant

Data streaming
real-time control

Design, simulation
code generation

download to client
remote tuning

monitoring

Figure 4 —In the WinCon Internet/Intranet
configuration, the client runs in real time to
control the plant via a data-acquisition board.
The server, which runs remotely, enables the
user to download the controller, tune it in real
time, and monitor real-time data via the ’Net.

6
Elevation deg/s

5
Elevation deg

4
Pitch deg/s

3
Pitch deg

2
Travel deg/s

1
Travel deg

50

s+50
Travel

Sat B

Sat

.0879

Pitch

MQ3 ENC

Encoder input 2

MQ3 ENC

Encoder input 1

MQ3 ENC

Encoder input 0

.0879

Elev

20s

s+20
D Travel

100s

s+100

D Pitch

50s
s+50

D Elev

–.0879

Cal-Travel

MQ3 DAC

Analog output 1

MQ3 DAC

Analog output 0

2
Back V in

1
Front V in

Figure 5 —In this actual-system inputs and outputs subsystem, the data-acquisition blocks represent measurements
from encoders and outputs to D/A channels.

46 Issue 110 September 1999 CIRCUIT CELLAR ® www.circuitcellar.com

0 10 20 30 40 50 60
0

20

40

IMPLEMENTATION
To run the controller in real time,

simply replace the simulation block
in the simulation with the block in
Figure 5. The difference between the
simulation block in Figure 4 and the
actual system block illustrated in
Figure 5 is that the voltages coming
back from the controller are connected
to two analog output blocks.

The analog output blocks output
the desired voltage to the MultiQ
analog output channels 0 and 1. Fur-
thermore, the three variables are not
simulated. They are measured directly
using the MultiQ Encoder input blocks.

Next, you generate C code from
the diagram and compile the diagram
using Realtime Workshop and the Visual
C++ compiler. This step generates a
library file that can be downloaded
into the client.

TUNING AND RESULTS
My system is implemented as de-

scribed in the third configuration. The
server is located in the engineer’s
office, and the client computer and
helicopter are in the laboratory, one
floor above.

Note that the operator of the server
can’t even see the helicopter while
running the controller. He has to rely
solely on the server’s real-time plotting
capabilities to monitor the system’s
performance.

I augmented the block diagram to
include the simulation of the system

here. Therefore, I needed to generate
code that runs in real time and per-
forms two tasks—running the system
and simulating it at the same time.

Using this technique, I can simul-
taneously monitor the simulation and
the actual response, which is not usually
done because it consumes processor
power. However, I’m sampling only at
100 Hz, and the computations required
for the simulation won’t lengthen the
computation time significantly.

Figure 6a shows the results. The
simulation and actual results match
quite closely, indicating that the linear
model is a good representation of the
system under these conditions.

But note that the pitch command is
limited to 15° and that I limited the
travel rate command to 15°/s, operating
close to the linear region. What happens
if you let the helicopter pitch to 45° and
tell the system to travel at 100°/s?

This question is easily answered by
changing the associated parameters in
the relevant block and running the
simulation and real-time controller
again. The results are shown in Figure
6b. Note that although the simulation
and the actual system match rela-
tively closely this time, they diverge
when the helicopter pitches to 45°.

They diverge because the simulation
doesn’t take into account the fact that
a pitch reduces the effective vertical
thrust. This behavior shows that care
must be taken when simulating com-
plex systems with nonlinearities.

Real-time tuning can be performed
by changing the values right off the
diagram or by implementing a Win-
Con control panel. This panel enables
you to associate controller parameters
with sliders, knobs, or switches and
gives you access to these parameters
independent of the Simulink diagram.

READY FOR TAKEOFF
In this article, I described a system-

atic approach to computer-aided design
and rapid prototyping of digital feed-
back controllers. As you’ve seen, it’s
possible to quickly develop nonlinear
and linear models using Maple and
design controllers using MATLAB.

Simulations are implemented using
Simulink and real-time controllers are
implemented using Realtime Workshop
and WinCon. WinCon’s Internet capa-
bilities facilitate the remote control
and monitoring capabilities, enabling
the user to test designs remotely, from
across the room or across the globe. I

0 10 20 30 40 50 60
–50

0

50

0 10 20 30 40 50 60

0
20
40
60

0 10 20 30 40 50 60
0

20

40

Figure 6a— This graph shows the results with the pitch limit set to 15° and the travel rate limit set to 15°/s. The top
plot is desired (blue), actual (red), and simulated (green) elevation. The second graph is actual pitch in degrees. The
third graph is desired (blue), actual (red), and simulated (green) travel. Note how close the actual and simulation
results are. b—This graph shows the results with pitch limit set to 45° and travel rate limit set to 100°/s. The top plot
is desired (blue), actual (red), and simulated (green) elevation. The second graph is actual pitch in degrees, and the
third graph is desired (blue), actual (red), and simulated (green) travel.

SOFTWARE

Source code for this article is avail-
able via the Circuit Cellar web
site. Also, all equations mentioned
by number are available for down-
load in a pdf file.

SOURCES

WinCon, MultiQ
Quanser Consulting, Inc.
(905) 527-5208
Fax: (905) 570-1906
www.quanser.com

MATLAB, Simulink
The Mathworks, Inc.
(508) 647-7000
www.mathworks.com

MAPLE
Waterloo-Maple, Inc.
(800) 267-6583
(519) 747-2373
Fax: (519) 747-5284
www.maplesoft.com

Jacob Apkarian is the president of
Quanser Consulting, which designs
and manufactures advanced control
system experiments to teach control
systems. You may reach Jacob at
jacob@quanser.com.

a) b)

0 10 20 30 40 50 60
–50

0

50

0 10 20 30 40 50 60

0
20
40
60

CIRCUIT CELLAR SEPTEMBER 199948

N
PC

www.circuitcellar.com

PCNouveau
edited by Harv Weiner

RECONFIGURABLE SBC
MiroTech has introduced ARIX, the industry’s first single-

board reconfigurable computer (SBRC). The full-size scalable PCI
board supports a TMS320C44 DSP coupled to a Xilinx Virtex 300,

800, or 1000 FPGA and outranks multiprocessor architectures of more
than 50 DSPs from the same family.
The architecture is expandable through mezzanine sites that support its

TIM standard, as well as the IndustryPac standard. Additionally, the ARIX
architecture has an onboard topology of virtual processing elements that
can support up to the equivalent of one million reconfigurable gates.
They can be linked to other SBRCs through a series of external
connectors, enabling the user to create a cluster of reconfigurable
computers. High-speed (100 MHz) SBSRAM banks of 32 ×
128 Kwords provide ample memory for the networked
VPEs as well as for the DSP.

Because it supports Windows, ARIX allows
end users to develop and partition their C
application in hardware and software threads.

ARIX sells for $7350. The package includes
a platform, the run-time environment, development
and debugging tools, and compiler and libraries of
hardware cores.

MiroTech Microsystems, Inc.
(514) 744-6476
Fax: (514) 744-6018
www.mirotech.com

Y2K BOARD
The parvus Y2K Board is

a low-cost add-in with a sec-
ondary real-time system clock
that correctly handles the cen-
tury changeover in hardware.
By reading this secondary
clock directly from an applica-
tion, Y2K-related errors are
eliminated.

The Y2K Board works on
any ‘x86 platform, regardless
of the operating system, other
software, or any drivers that
may be installed. It is avail-
able in standard ISA-bus or
PC/104 format.

The board is fully compat-
ible with the industry-standard
real-time clock at address 70-
71. It features I/O address
selection, optional EPROM

select, a periodic interrupt,
and a socket for 27C256
EPROM. A hardware switch
is included to eliminate the
possibility of a rogue piece of
software changing the date
and time.

Software routines are pro-
vided to detect the board, set
date and time directly, copy
date and time from system,
and read date and time string.

The Y2K Board includes a
manual and diskette contain-
ing software drivers and source
code examples. It is priced at
$99 for the ISA-bus and $129
for the PC/104 version. A
Y2K Board Development Kit,
with disk and source code, is
also available.

parvus Corp.
(801) 483-1533
Fax: (801) 483-1523
www.parvus.com

www.mirotech.com
www.parvus.com

SEPTEMBER 1999 EMBEDDEDPC 49

N
PC

www.circuitcellar.com

PCNouveau

100-Mbps PCI ETHERNET
The MiniModule/ESB provides a PCI

Ethernet interface, two serial ports, and a solid-
state disk (SSD) expansion socket on a PC/104-plus–
compliant module. The Ethernet subsystem is based on
a PCI-interfaced AM79C972 controller, and it supports
both 10- and 100-Mbps full-duplex data transfer.

As well, 10BaseT or 100BaseT twisted-pair media connection
is achieved through an onboard industry-standard RJ-45 connector.
The Ethernet controller is supported by a wide range of operating
systems including DOS, Windows 98, Windows NT, Windows
CE, QNX, VxWorks, and other leading RTOSs.

The PC-compatible serial ports are implemented with 16C550-
type UARTs that have 16-byte FIFO buffers for fast throughput.
One serial port can be configured to support either RS-232 or RS-
485 operation; the other serial port is configurable for RS-232C
or TTL-level signaling.

A bytewide socket allows plug-in addition of an M-Systems
DiskOnChip2000 solid-state disk. And, it too supports a wide
range of operating systems.

The MiniModule/ESB module is priced at $169 in OEM
quantities of 100.

Ampro Computers, Inc.
(408) 360-0200
Fax: (408) 360-0222
www.ampro.com

INFRARED UTILITY SOFTWARE
IrDirector is a software utility that enables computer users to

quickly and easily configure and manage infrared cordless data
connections. It automatically sets up connections for cordless
connectivity, such as between an IR-enabled notebook computer
and an IR-enabled electronic organizer, and provides users with
a display that shows the connection status. Applications include
IR-enabled notebooks and desktop computers, PDAs, digital
cameras, cell phones, scanners, and other electronic systems.

IrDirector initially configures the user’s PC for IR connectivity
and addresses port conflict problems. It then loads drivers for
newly discovered IR-enabled appliances. IrDirector simplifies
infrared connectivity by displaying which applications are asso-
ciated with each IR-enabled device and automatically launches it
on connection. IrDirector’s various components can be updated
via the Internet, and an icon in the Windows “tray” alerts users
to the status of the IR communications subsystem.

IrDirector sells for $19.95 with significant discounts for OEM
quantities.

Calibre, Inc.
(408) 573-3890
Fax: (408) 573-3899
www.calibre-inc.com

www.ampro.com
www.calibre-inc.com

R
PC

CIRCUIT CELLAR SEPTEMBER 199950 www.circuitcellar.com

Photo 1—Here’s the engineer in back (EIB) verifying the operational
requirements for the data acquisition system. The round thing behind
me in the fuselage is the ballistic parachute used to land the plane in
case the wing falls off.

Real-Time PC

Ingo Cyliax

Where in the World...
Part 2: Data Collection in Flight

As you probably figured out, I didn’t
just decide to write about GPS for no
reason at all. I’m actually working on a
neat GPS application. The mission: build
a data-collection device for use in an
ultralight aircraft.

The device I’m building has to perform
several functions. Its primary function is to
collect images from a downward-pointing
camera that are correlated with GPS
data. The device also helps the pilot by
performing navigation functions
that keep the ultralight on-course
for the data runs. It may also be
called on to collect ancillary
analog data, also correlated with
the GPS positional data.

After the images and data
are collected, they are down-
loaded to a laptop computer
when the plane is on the ground
for refueling. Finally, the raw
data is later processed to make
maps. For example, by using

infrared images, vegetation can be clas-
sified (weeds vs. crops).

Of course, there’s much to write about
here. Besides the GPS subsystem, which I
cover this month, there is a touch-panel
display and a video frame grabber. Also,
because this system rides in an airplane,
there are a number of environmental de-
mands. Be on the lookout for future articles.

But first let’s recap some of last month’s
ideas.

Ingo’s ready to get his application off the ground. No kidding, he really is
headed for the wild blue yonder as he uses a PC/104 module to build a data-
collection device so an ultralight aircraft can record topographical images.

GPS REVIEW AND APPLICATIONS
The Global Positioning System (GPS) is

used to compute positions and time any-
where in the world. Currently, there is no
licensing fee for end users. You simply
buy a GPS receiver, plug it in, turn on the
power, and it works.

Basically, the GPS is a precise time-
measuring system. It is so accurate that we
can compute the time-of-flight delays. It’s
only natural that we can use the system to

synchronize time. Imagine this;
you can synchronize clocks any-
where in the world (or in space)
to better than 100 µs. With spe-
cial time receivers, even accura-
cies of under 100 ns are possible.

One application for such ac-
curacy is to synchronize networks.
In fact, many organizations on
the Internet use GPS receivers to
synchronize the real-time clock
on computers and servers. Hav-
ing synchronized time is impor-

SEPTEMBER 1999 EMBEDDEDPC

R
PC

51www.circuitcellar.com

flies a grid pattern and takes pictures with
regular and infrared cameras. The im-
ages are tagged and stored on a (big)
hard disk along with the GPS data that
was computed when the image was taken.
Besides this, I want the GPS to provide
basic navigation functions to the pilot.

Let’s look at the system hardware first.
Then I’ll tell you about the user interface
and its issues.

The system consists of an EBX form-
factor CPU module and a PC/104 stack
for I/O. PC/104 enables us to build
rugged systems, and many PC/104 mod-
ules are available in extended tempera-
ture specifications.

Ultralight cockpits are not environmen-
tally controlled. The system goes from
whatever temperature and humidity con-
ditions are on the ground, to conditions at
operating altitude in a fairly short time
(tens of minutes). The extended tempera-
ture specifications are a requirement here.

Ultralights also vibrate a lot, and the
system has to withstand an occasional
hard bump during landing. The PC/104
form factor gives me some assurance that
the boards won’t fall out.

Besides, all of the connectors used
internally and externally must have a
locking mechanism so they don’t slip off.

If it’s not possible to lock them with a clip or
screw, they have to be tie-wrapped together.

The hard disk I use is a 2.5″ laptop
drive. These drives are designed to with-
stand quite a bit of shock while operating,
but they still need to be mounted in a way
that mechanically isolates them from the
outside as much as possible.

This setup can be achieved with spe-
cial shock-absorbing mounts or by wrap-
ping the drive in shock-absorbing foam. If
you wrap it in foam, make sure enough
surface area on the hard disk enclosure is
exposed so that it does not overheat.

Hard disks are the weakest link in this
kind of system. Solid-state disks are the
media of choice in this application. How-
ever, because we have to collect images,
the costs of a sufficiently large solid-state
disk would be astronomical.

Consider this: A typical flight lasts
about 2 h. Each video image of 640 ×
480 × 24 bits is about 900 KB. Compres-
sion depends on the image’s complexity
and the compression algorithm used.

Assume we get about 50% compres-
sion without image quality loss. A typical
frame (f) rate might be as quick as 10 s/f.

space = 500 KB/f × 2 h × 3600 s/h × 0.1 f/s
= 351 MB

tant for applications such as key
exchanges for encryption algorithms
and keeping the data of distributed
databases and file servers consistent.

Another application is to synchro-
nize radio communication systems.
This reduces the channel band-
width because you don’t have to
send clocking information over the
communication channel.

Both the transmitter and receiver
can receive and decode GPS signals to
arrive at a clock to time the data. You can
think of the GPS as a big global synchro-
nous clock. Many time-division multiplex-
ing systems, such as those used in the
satellite and telecom industries, rely on
accurate system-wide timing.

Radio astronomers use radio telescope
arrays with long baselines to map radio
sources in the sky with high accuracy.
They point radio telescopes at the same
region in the sky and record the signal to
a tape along with an accurate time signal.
The tapes from different telescopes are
then correlated.

Before GPS, radio telescopes required
expensive atomic clocks at each site that
were painstakingly synchronized. With
GPS, it’s possible to use less accurate
clocks and synchronize them with GPS.

Radio telescopes are one example
where we use GPS to aid in data collection.
Other data-acquisition applications can
use GPS to annotate data with positional
information.

For example, GPS can be used by an
engine controller in a commercial truck to
collect data about fuel consumption. You’d
expect fuel consumption to be higher in
mountainous areas, so when you analyze
the data, you can consult a database to
see whether the fuel consumption is nor-
mal for the terrain the truck was driving in.

GPS can also be used to control auto-
matic machinery. In large mines, big dump-
trucks transport dirt and ore in difficult and
dangerous terrain. Differential GPS enables
trucks and other machinery to traverse the
area more consistently than human opera-
tors, much like an autopilot. Although this
might seem pretty futuristic, some compa-
nies are already testing this concept.

BUILDING A GPS DATA LOGGER
As I mentioned earlier, I’m building an

airborne data logger. The airplane—really
the ultralight aircraft shown in Photo 1—

Photo 2—Here
you see the compu-
ter box, the battery,
display, and external
GPS receiver. The compu-
ter is a ruggedized EBX
module with a PC/104 stack.
The display is a daylight-readable
8.4″″″″″ LCD flat-panel with touch-
sensitive screen.

Photo 3—To the left in this
GUI is pertinent naviga-
tion information (e.g.,
heading, speed and bear-
ing, distance to the next
waypoint). At the top is
the course deviation indi-
cator. The needle indicates
the direction to turn, and
the horizontal mark is the
cross-track error. Keep
the needle straight and in
the middle, and you’ll fly
right over the destination
waypoint.

R
PC

CIRCUIT CELLAR SEPTEMBER 199952 www.circuitcellar.com

All of the compo-
nents are mounted into

a case (see Photo 2). For
the user interface, an 8.4″

daylight-readable LCD with re-
sistive touch panel can be mounted

in the front, either on the instrument
panel or the control yoke. It can also be
operated on the lap. The computer with
all of its I/O and batteries is placed out of
the way, behind the pilot.

To make interfacing the panel easy, I
use standard analog VGA from the com-
puter. The panel has a VGA–to–flat-panel
adapter that converts the analog VGA
signal to the digital signals necessary to
drive the LCD panel. The touch panel uses
an RS-232 serial interface, much like a
mouse to communicate with the computer.

Ultralights generally don’t have an
alternator, so for power I use a 12-V
sealed lead-acid battery. You can find
12-V batteries everywhere, and compared
to NiCd or more advanced batteries,
they’re easy to charge and deal with.
They’re also inexpensive.

The computer uses a 25-W DC/DC
converter which operates from 9- to

Track

North

North

HDG

Plane

BRG

XTE

WP1
Course

WP2

Figure 1—In the basic navigation model, the
track is the path that the plane is flying, and
the course describes the great circle route
from the active “from” waypoint to the active
“to” waypoint. The heading (HDG) is the
direction the plane is currently traveling, and
the bearing (BRG) is the direction from the
plane to the “to” waypoint. The cross-track
error (XTE) is the distance between the current
location on the track and the course. The
object is to make the HDG equal to the BRG
and minimize the XTE.

18-VDC input and provides both 5- and
12-V outputs. The panel is powered di-
rectly from the 12-V battery because it has
its own voltage regulators and inverter for
the backlight. The video camera and GPS

receiver also operate directly from the
12-V battery.

The system is designed to use an exter-
nal GPS receiver that plugs into one of the
serial boards on the CPU module. The
simple serial interface consists of transmit,
receive, and ground. Ready-made serial
cables can be bought from the GPS manu-
facturer and plugged directly into a PC-
compatible serial port.

As I mentioned in Part 1, most GPS
receivers output information using a stan-
dard protocol called NMEA-0183. The
communication rate is usually 4800N2 but
can be configured to most GPS receivers.
Let’s move on to look at the software.

This system runs Linux. I chose Linux
because it’s relatively easy to obtain and
install. It is also multiprocessing and multi-
threaded, and it provides memory protec-
tion for processes.

Linux has a real-time extension in case
I need tighter control over latency and
interrupt response. My prototype doesn’t
need to be very tight in terms of latency,
but it may be in the future if I need to add
support for high-speed data acquisition
and/or using high-tolerance timing signals.

 CIRCUIT CELLAR SEPTEMBER 199954 www.circuitcellar.com

rootmenu Display
source

Navigation

Map scale

Data

Frame rate

Power off

Video 1
Video 2
Video 3

GIS screen

Goto waypoint Waypoints...

1, 2, ...,
 2000 nM

1, 2, 5, 10,
20, 50 s/f

Power off
Cancel

Start
Stop

dler vwait. Writing event-driven code is
a nice practice, since programs that are
written in the graphics dialect of Tcl (Tcl/
Tk) are also event driven. For the sample
code, however, we can live with a non-
GUI-based program.

As I mentioned, the gpsread proce-
dure is called whenever data is available
on the file description. The default behav-
ior of this file interface is to buffer up all the
data until an end-of-line occurs.

That’s fine for this application because
NMEA sentences are formatted as lines of
data. This way, when gpsread is called,
an NMEA sentence is available to read.

while { [gets $gpsfd line] !=
-1 } { ... }

The while loop reads NMEA sentences
until the buffer is exhausted and then
returns to the event handler.

After a sentence buffer is collected, we
strip off all the leading characters. That’s
all the characters until we see a beginning
of an NMEA sentence $.

Tcl has some nice text-processing fea-
tures. For example, the call to split in
gpsread parses the comma-separated
NMEA sentence into individual fields.

Because we’re only interested in posi-
tion and the fix time, we look for NMEA
sentences that have this information in
them—here, the GPRMC sentence. As you
recall from last month, GP stands for GPS
source, and RMC for recommended mini-
mum specific to GPS/transit data. We
simply test for the string $GPRMC in the first
field of the sentence and write it to the gps

Linux also supports almost all of the
typical hardware found in Intel platforms,
like IDE drives, CD-ROMs, and some
types of flash-memory disks. Also, I can
include the sources to everything on the
disk, if I needed to make fixes in the field.

It’s easier to send someone a patch to
a source file than it is to get a binary
upgrade or patch to them. You can always
send a source-level patch as a printout
over a fax or talk someone through mak-
ing the changes on the phone. This capa-
bility is particularly important in remote
locations where most of the remote sens-
ing takes place and where downloading
a binary file is just not that easy.

Check some of my earlier articles on
embedding Linux to see what it’s all about
(“Embedded RT-Linux,” Circuit Cellar 100–
104). I want to concentrate here on making
GPS work under Linux for my application.

I use Tcl (Task Control Language) for
much of the code. Follow along by looking
at Listing 1, which is code that collects
GPS information.

To access the GPS receiver under Linux,
open the special file /dev/gps, which I
linked to the serial port device (typically
/dev/ttyS0 for the first serial port [COM1
in DOSese]). By making symbolic links to
the actual physical device entries, it’s easy
to switch the function to different ports.

In any case, under Linux we open the
serial port on the line that looks like:

set gpsfds [open "/dev/gps" "r"]

Tcl programs can be written in event-
driven style. For this, use the fileevent
call register and the file de-
scriptor gpsfd to call gpsread
whenever it is readable.

fileevent $gpsfd read-
able gpsread

At the end of the initializa-
tion code, call the event han-

Figure 2—This menu system is
designed to be easy to use. The
pilot simply taps the display and
the root menu appears. Most
commonly used functions are
accessible from there.

 SEPTEMBER 1999 EMBEDDEDPC 55www.circuitcellar.com

Listing 1—This is the code for basic GPS interface on a serial port.
The code is written in Tcl (Task Control Language).

#! /usr/bin/tclsh

set picrate 10
set done ""

set gpsfd [open /dev/gps "r+"]
set logfd [open gps.dat "w"]
fconfigure $gpsfd -mode 4800,n,8,2
exec stty 4800 < /dev/gps

proc readgps { } {
 global gpsfd logfd
 while {[gets $gpsfd line] != -1} {
 if {$line == "ASTRAL"} {
 puts "Sync"
 puts $gpsfd "ASTRAL" ; flush $gpsfd
 }
 while { [string length $line] > 0 } {
 set time [clock seconds]
 if { [string index $line 0] == "\$" } {
 set fields [split $line ","]
 if { [lindex $fields 0] == "\$GPRMC" } {
 puts "$time $fields" ; flush stdout
 puts $logfd "$time $fields" ; flush $logfd
 }
 break;
 }
 set line [string range $line 1 end]
 }
 }
}
fileevent $gpsfd readable readgps
vwait done

data file indicated with the gpsfd file descriptor. This file descriptor
was opened to write to the ASCII file gps.dat.

The Tcl routine clock seconds is called to get a unique marker
that makes it easy to associate data collected in different parts of the
system with the GPS data. The reason behind this is simple: the GPS
fix time is obviously the most accurate, but it was calculated in the GPS
receiver before the NMEA string was sent. By the time our system gets
the string and passes it to the software’s upper layer, time has passed.

Other code sections collect data as well, but they don’t have
access to the GPS data we just collected. The key enables us to
associate the data in postprocessing. If we can determine the
latency from when the fix was taken to when the key was generated,
we can later correct the position. The best place for timestamping
the GPS data is in the interrupt service routine for the serial port;
probably the time that the first character of the sentence is received.

Timestamping is important if we collect data in a fast moving
aircraft. At 500 knots, we cover about 825 ft./s (250m/s), so our
position will be off quite a bit unless we can calculate the exact time
the fix was obtained.

NAVIGATION
I talked to pilots who do this kind of work to find out some of their

user-interface requirements. I also rode in one of the planes to get
a firsthand view of the cockpit environment. Well, someone has to
do all the dirty work….

R
PC

CIRCUIT CELLAR SEPTEMBER 199956 www.circuitcellar.com

Ingo Cyliax has written for Circuit Cellar
on topics such as embedded systems,
FPGA design, and robotics. He is a re-
search engineer at Derivation Systems Inc.,
a San Diego–based formal synthesis com-
pany, where he works on formal-method
design tools for high-assurance systems and
develops embedded-system products. You
may reach him at cyliax@derivation.com.

SOURCES
Flat-panel displays
Earth Computer Technologies, Inc.
(949) 361-2333
Fax: (949) 361-2121
www.flat-panel.com

PC/104 system
VersaLogic Corp.
(800) 824-31163
Fax: (541) 485-5712
www.versalogic.com

GPS receivers
Garmin Corp.
(800) 800-1020
(913) 397-8200
www.garmin.com

The interface should provide infor-
mation in an uncluttered way and have
the most common functions available
quickly. Also, the navigation information
needs to be in a format pilots are used to.
Keep in mind that audible alarms and feed-
back are useless, due to the noise levels.

Because cockpits are crowded, pilots
want one display that provides the func-
tionality of their aircraft GPS receiver in
addition to the data-collection function.
Fortunately, we have all the necessary data.

Pilots need to know where the plane is
headed (heading), the speed over the
ground, and the elevation. They also
want the computer to figure the distance
and bearing to waypoints (i.e., naviga-
tional landmarks that the pilot wants to fly
to for each leg of a flight).

Our pilot programs in waypoints for a
grid pattern he wants to fly to collect data.
Figure 1 shows the navigational model.
Photo 3 shows a typical navigation dis-
play, including a moving map display.

A course deviation indicator (CDI) com-
bines several pieces of information graphi-
cally. It is a needle that shows which
direction the pilot must turn to get to the
next waypoint (see top of Photo 3). The
needle moves on a horizontal scale, which
indicates how far off the desired course
the pilot is. The error is called XTE (cross-
track error) and is labeled in Figure 1.

The moving map display shows a situ-
ational display of the surrounding area. The

center of the map is the location of the plane,
while the map moves in a layer below.

At a minimum, this display shows the
nearest waypoints and the airplane’s track.
Normally, north (magnetic or true) is at the
top of the map. Some maps can be config-
ured to rotate, so the top of the map is the
current heading. A future version of this
user interface will let you superimpose
scanned maps on the moving map display.

A thermometer display shows the current
state of the data recorder, disk space, and
estimated battery capacity. If we’re record-
ing, a red “REC” legend is also shown.

In flight, the pilot wants to control the
selection of waypoints and the frame rate
of the imaging system. The frame rate
depends on the altitude above ground,
the speed, and the camera’s field of view.
The best frame rate allows some overlap
of the picture, to give continuity, but not too
much overlap, which wastes disk space.

The controls are done with pop-up menus.
This way, all of the screen area is usable,
unless the pilot wants to interact with the
system. I organized the pop-up menu by
functional groups (see Figure 2).

To activate the menus, the pilot taps the
screen and the root menu appears. He then
selects the submenus and functions or makes
the menu go away by tapping outside the
menu area. Photo 4 shows the screen after
the “Goto Waypoint” submenu is selected.

Oops, out of room already! Next month,
I’ll point the way toward more GPS appli-
cation information. RPC.EPC

Photo 4—This
menu on the GUI lets

the pilot choose the
next waypoint to travel

to. I made sure that some of
my favorite coffee shops were

included so I can find them in fog
or rain.

www.flat-panel.com
www.versalogic.com
www.garmin.com

A
PC

SEPTEMBER 1999 EMBEDDEDPC 57www.circuitcellar.com

Applied PCs

Fred Eady

Forms are the key to making the Internet interface, but designing good forms
can be the key to frustration. With EmWeb archives and HTML, Fred shows
us how we too can create simple and effective web forms.

R emember when I was grumbling
about having to use Bill’s year-named
products to get screen captures from a
third-party graphics program? I finally got
so tired of making excuses, I asked the
Circuit Cellar readership for help. Ask
and you shall receive.

Thanks to all of you that took the time to
clue me in on using Bill’s non-year-named
OS to get my screenshots out to the masses.
In my eyes, it’s just another example of the
caliber of Circuit Cellar’s readers.

Now that I have almost six months
before my no-year-named OS gives way
to a year-named OS, I will provide yet
another glimmer of light that may help free
you from the dark side of embedded
Internet. I’ll use this newfound knowledge
(for which I’m forever grateful) to continue
our discussion about Agranat’s EmWeb.

My non-year-named-laden, TCP/IP-
addressed, Netscape-browser-loaded host
PC is connected to a Net186 demo board
that is serving an LED control page. So,
let’s move before my six months are up.

FORM AND STRUCTURE
Last time, I spouted off about EmWeb

archives, HTML, and similar things that
make EmWeb unique. This time, I spout off
about EmWeb archives, HTML, and simi-
lar things with one minor difference—the
addition of some 80186 hardware and
HTML-based forms.

Forms make the web interface. Every-
one knows how to use controls on today’s
web forms. It’s an intuitive process that’s
easy to use and understand.

The problem with web forms doesn’t lie
in the user community, but in the develop-
ment community. Writing a good form is
like writing a foolproof piece of code.
Every input must be checked for validity,
every error condition must be taken into
consideration. You know the drill.

The designers of EmWeb feel your
pain. One of its strengths is its ability to
use the web form paradigm. The EmWeb
form-u-la is to relieve the form-designer/
content engineer from the duties of being
a data cop.

Writing code to control the application
with that input data is time better spent.
Many an engineer will tell you that throw-
ing money at a troublesome project may
help, but often it doesn’t.

Throwing code energy and logic at
that same project is a more reliable way
to get the job done. Agranat engineers

Data Serving

via the Internet
Part 2: Forms

Photo 1—Thanks to the readers, here are the
results of the HTML we will be examining.

A
PC

CIRCUIT CELLAR SEPTEMBER 199958 www.circuitcellar.com

Photo 2—Here's
a shot of the

Net186 board for
those of you that missed

it the first time around.

structure. There are two substructures in
each FORM data structure.

An example is better than a bunch of
words, so consider the HTML statement
<FORM METHOD=POST EMWEB_NAME=
CCINK>. Let’s take this statement apart
from left to right.

Obviously, this is a <FORM> tag that
would be parsed and acted upon by the
EmWeb compiler. The METHOD attribute

determines how the client’s HTTP request
will be formatted. Note that the prescribed
method is POST. If the METHOD attribute is
omitted, GET is the default method.

A GET instructs the browser to append
query information to the request URL. This
is how your everyday Internet search
engine requests are constructed. Using
GET enables the request to be cached for
reuse without having to tell the user it’s not
live, it’s Memorex.

On the other hand, POST tells the
browser to include form submission data
in the body of the HTTP request. Ella
Fitzgerald is really singing here and the
server is expected to respond. The re-
sponse cannot be taped for later rebroad-
casting or cached by one of those Intel
guys in the funny suits.

EmWeb uses both methods, POST and
GET, but POST is generally used in EmWeb
applications. The reason behind this is
that you are writing the form submission
functions that ultimately return values for
your routines to interpret and pass to the
browser as visuals.

You are responsible for writing the
function prototypes and the code. You’re
not out snipe hunting on the Internet.
Things had better be where you put them
(or left them) so you can go back and get
them without fail.

That’s what the EmWeb mechanism is
looking for. As shown in Listing 1, its
compiler concatenates EwaForm_ with
the EMWEB_NAME to create a name for the
form data structure.

HARDENING OF THE FORM
At the beginning of this article I men-

tioned hardware and it’s time to whip it
out. You already know about the Net186
demo board because you read about it
here, in Circuit Cellar 97. You remember,
I was walking like an Egyptian in that one.

Anyway, if you missed it, the Net186
under the covers consists of a 40-MHz
Am186ES microcontroller surrounded by
an onboard Ethernet controller complex
and a megabyte of memory divided
equally as SRAM and flash memory.

The Am186ES integrates the functions
of the CPU, nonmultiplexed address bus,
three timers, a watchdog timer, chip selects,
interrupt controller, two DMA controllers,
PSRAM controller, asynchronous serial
ports, programmable bus sizing, and pro-
grammable I/O (PIO) pins on one chip.

must feel the same way. To ease the
development and use of web forms
and web form data, EmWeb throws
C code and a couple major functions
at the web form development task.

You already know that EmWeb
uses regular HTML source laced
with EmWeb tags to form part of the
input module for the EmWeb com-
piler. And, since we’re on the sub-
ject of forms, what tag could be better to
begin a web form than <FORM>?

Adhering to a precise and logical form
of programming, the EmWeb designers
(like many others, including the TCP/IP
inventors) placed their form data into a
structure. As a matter of fact, its compiler
creates a data structure every time a
<FORM> tag is encountered in the HTML
source file. But, this is no ordinary C

A
PC

SEPTEMBER 1999 EMBEDDEDPC 59www.circuitcellar.com

That’s all good, but what really makes
the demo board perfect for embedded
applications is the onboard Am79C961A
PCnet-ISA II Ethernet controller and the
serial ports. As for cost, the Net186 won’t
put you in the bread line, and that’s also
a favorable factor for embedded projects.

The Am79C961A is a single-chip Ether-
net controller with a built-in ISA bus and
PHY layer (Manchester encoder/decoder
and 10Base-T transceiver). This remark-
able IC can also be configured for Ethernet
full-duplex operation.

The Net186 also supports Magic Packet
Technology. Magic Packet isn’t a top hat
and rabbit, but it is a neat box of tricks. It
enables remote wakeup of a sleeping
system on an Ethernet node.

The Net186 can be introduced to your
special peripherals through a set of semi-
PC/104 pins. It’s amazing that all of this
processing power is tied together with a
single PAL. There’s plenty of interest in the
Net186 these days, and you can find this
demo board in many other embedded
application areas.

I’m a pushover for Ethernet, but the real
thing that attracted me to the Net186
demo board was the LED array. Those
eight side-by-side beacons really light up
the bench at night!

Although I’m just kidding about the LED
attraction, the LEDs will play a larger-than-
normal part here because they’ll help me
describe how a real EmWeb application
is put together. But you know I’m not
kidding about Ethernet. Moving on….

I like LEDs and apparently someone at
Agranat does, too. So, let’s control the
LED array on the Net186 board the EmWeb
way. Photo 1 is our browser’s view of the
eight LEDs located on the Net186 board.

Photo 2 is for those of you that came in
late. (Remember when your instructor used
to use that line on you? Some professor is
probably still using it on the younger of
you out there today.) The idea here is to
build a simple application to darken, lighten,
or blink any or all of the LEDs in the
Net186 LED array.

HTML is HTML in any other situation,
but for our purposes, each line is impor-
tant. Photo 3 shows the HTML for the LED
status display. The CRX entries correspond
to the LEDs on the Net186 assembly. Note
here that each LED is off as denoted by the
color of the .gif descriptions directly
following the CRX entries.

Listing 1—In this skeleton, boolean led1 represents a checkbox on the
browser. The status bits that describe the state of the checkbox are kept in
the uint8 value.

typedef struct EwaForm_CCINK_s
{
 struct
 {
 boolean led1; /* data values go here */
 } value;

 struct
 {
 uint8 led1; /* status flags go here */
 } status;
}
EwaForm_CCINK;

A
PC

A
PC

CIRCUIT CELLAR SEPTEMBER 199960 www.circuitcellar.com

Photo 4a builds the
On checkbox table and

Photo 4b does the same for
the Blink checkbox.
You may be wondering about

the <FORM> tag syntax at the bottom
of Photo 3: <FORM METHOD=POST

ACTION="/ledurl">. Everything has
been covered left to right up until the word
ACTION. Here’s the scoop on that.

Normally, the ACTION attribute identi-
fies the URL of the program to be invoked
after the submission of a form. It usually
redirects the submission to another web
site via an absolute URL entry (http://
something.com) or in our case to a pro-
gram or local host file via a host-relative
URL that begins with a slash.

The inclusion of the ACTION attribute
enables multiple forms to be used in a
single EmWeb document. This attribute is
also used extensively in EmWeb applica-
tions to absolutely identify a form within a
document and assure the form a unique
place in the URL tree.

Although we’re not privy to the content
of /ledurl, we can deduce that it is
located within the URL structure of the
EmWeb Archive we will be using, and it
contains code snippets and/or defini-
tions. There is no form name because
we’re looking at the page served in re-
turn, not the original page that was served.

Wouldn’t it be nice for the initial form
to come up with some default values that
are programmer specified and not junk
characters that happen to inhabit that
particular field’s chunk of memory? This is
where the first of the two functions that
complement the form data struc-
ture come into play.

One of serve’s tasks is to
provide these default values,
writing them into the EwaForm_
EMBED_NAME data structure.
Remember, EMBED_NAME is the
name of the form that is joined
with the EwaForm_text string.

Structures of data out there in
memory land are nice to look at
in source listings, but they need
to be addressed and accessed to
be useful. In the case of EmWeb,
the corresponding form points to
each data structure. Any default
values outlined in the HTML source
are used to initialize the Ewa-
Form_EMBED_NAME structure

prior to its release to the serve
function. serve can use the
defaults as if they were its own
or override them.

Earlier, I mentioned a set
of field-shadowing flags found
within the data structure. I was
referring to status flags, and
you can see them in Listing 1.
If a default value is changed
or initialized by serve, the
EW_FORM_INITIALIZED bit
in the field’s status flag must
be set by the programmer to
indicate to EmWeb that an
initialization or change to that
field’s value took place. Other flags are
set to indicate error conditions. Table 1
lays out all of the status flag options.

Once all of the decisions are made
and the correct buttons or checkboxes are
selected, the form’s data must be submitted.
Just like serve, the owning form points
to the data structure that contains the field
data entered and submitted by the user
and passed to the submit function. This is
where the field status bits earn their living.

When a user alters the specifics of a
particular field (checking a box or enter-
ing text), the field’s corresponding status
flag has the EW_FORM_RETURNED bit set.
In some cases, EmWeb provides some
error checking of the syntax of input data.

If an error is detected, submit could
be notified by the setting of the EW_
FORM_PARSE_ERROR bit in the corre-
sponding field’s status flag. In our example,
the submit declaration looks like <INPUT
TYPE=SUBMIT VALUE="Configure">.

The VALUE attribute is actually the
submit button’s caption. This feature al-
lows the submit button to be reused or
relabeled dynamically, depending on
what form is loaded and the message that
needs to be conveyed.

OK. This is where the form hits the table.
Selecting a checkbox alters the data field
and as a result sets the EW_FORM_RETURNED
bit in the associated data field’s status flag.

For example, suppose the left-most
checkbox was selected in the LED Con-
figuration panel and Configure was
clicked. The data (i.e., our check in the
checkbox) would be submitted. In effect,
by clicking on Configure in the browser,
a request is entered for an HTML docu-
ment and our checkbox data is submitted.

As a result of this request or submis-
sion, the EmWeb Server sends as much
regular HTML content as it can until it
encounters an EMWEB_STRING tag. This
tag is associated with a piece of execut-

able C code.
The EMWEB_STRING tag is

not parsed. Instead, EmWeb ex-
ecutes code represented by the
tag. In our example, the C code
called by the submission checks
the status flags for each data field
or checkbox.

The benefit of browser check-
boxes as they pertain to EmWeb
is that instead of having to test
various flags, the code only has
to test the EW_FORM_RETURNED
bit for that checkbox. If the EW_
FORM_RETURNED flag is set, then
the browser checkbox is checked.

In our case, the left-most
checkbox is checked and it corre-
sponds to LED CR5 in the LED

Photo 3—Here’s how Photo 1 looks on the HTML side.
Remember, this HTML is a response, not an original.

a) b)

Photo 4a—None of the checkboxes are CHECKED here and thus none of
the LEDs are On. The CHECKED attribute is returned with the served page
to put a check in the browser boxes. b—Basically, this is the same logic
and HTML that applies in (a). The names have been changed to protect
the innocent.

 SEPTEMBER 1999 EMBEDDEDPC 61www.circuitcellar.com

Fred Eady has over 20 years’ experience as
a systems engineer. He has worked with
computers and communication systems large
and small, simple and complex. His forte is
embedded-systems design and communica-
tions. Fred may be reached at fred@edtp.com.

Photo 5—CR5 is blinking. What
are the odds of me catching it
off versus on? Note too, that
this page was served from the
Net186 and includes plenty of
additional HTML stuff.

SOURCES
EmWeb
Agranat Systems, Inc.
(978) 461-0888
Fax: (978) 462-1080
www.agranat.com

Net186 Eval kit
Advanced Micro Devices, Inc.
(818) 878-9988
Fax: (818) 878-9081
www.amd.com

Constant Value

EW_FORM_INITIALIZED 0x01
EW_FORM_DYNAMIC 0x02
EW_FORM_RETURNED 0x10
EW_FORM_PARSE_ERROR 0x20
EW_FORM_FILE_ERROR 0x20

Table 1—It’s not a misprint. EW_FORM_
PARSE_ERROR and EW_FORM_FILE_ERROR share
the same flag bits.

Status panel. The EW_FORM_
RETURNED status bit is set for
the data field representing
LED CR5.

The program snippet in
control here transfers control to the code
that inserts the correct GIF (green for on,
gray for off, green and gray toggle for
blink) into an HTML page that will be
served to the browser in response to the
form’s data submission. If any other boxes
were checked, this process of GIF insertion
would be done for all checked boxes.

Also, the CHECKED attribute is added
to each checkbox HTML statement to indi-
cate to the user that the box was indeed
checked. The next step: perform the op-
eration to set the Net186 LED, CR5, to the
state selected via the browser. This is
done via a code snippet embedded in the
HTML source with the EmWeb tags.

Now, the HTML page that was built
from the checkbox status routines is ready
to be served to the browser. All of the
values that should be returned are passed
to the server where they’re included in the
document and served to the browser.
Photo 5 plus a little Agranat HTML on the
side is the result of the whole operation.

FORMING A PERSPECTIVE
We began with the need to control

hardware via the Internet. The tools at
hand were HTML, TCP/IP, HTTP, and the
web. There was a single web-bound HTML
document stranded without a ride. Enter
the web-vehicle, EmWeb.

Suddenly, our everyday standard HTML
document became a smarter everyday

standard HTML document. EmWeb added
the capability to include executable C
code into that simple but smart everyday
standard HTML document.

In an instant, the ghosts of scripting
processes that lurked within our HTML
remote control code disappeared. An
archive containing all types of C-code-
executing web content could be achieved
by compiling our C-laden HTML source
with the EmWeb compiler.

By the way, EmWeb also offers built-in
TCP/IP and HTTP capabilities that can
function without an operating system.

FORMING AN OPINION
I hope that this series on Internet control

will help you get started in generating
your own Internet appliance. In future
columns, I’ll continue to explore this in-
creasingly popular area of embedded
hardware and software.

I’ll leave you with this thought: I was
just reading a piece about children learn-
ing basic electronics, programming, and
web concepts using Barney as the teach-
ing vehicle. As far as I’m concerned, that
proves it once and for all: It doesn’t have
to be complicated to be embedded. APC.EPC

www.agranat.com
www.amd.com

62 Issue 110 September 1999 CIRCUIT CELLAR ® www.circuitcellar.com

Taking Orders

FEATURE
ARTICLE

John Iovine

t
This versatile
speech-recognition
module has many
uses, ranging from
video game controls
to home control for
the disabled. Listen
up as John explains
how easy it is to train
the module and
implement it in an
application.

he VoiceDirect
module from Sen-

sory is a great intro-
duction into the world of

speech recognition. The module, shown
in Photo 1, is inexpensive and flexible.

VoiceDirect is stand-alone capable,
ready to be embedded into your project.
Or, it can be made to function as a slave
under a host processor with enhanced
speech-recognition capabilities.

In stand-alone mode, the module can
recognize up to 15 words or phrases
lasting up to 3.2 s each. Working as a
slave under a host CPU, the module
can recognize up to 60 words. Com-
munication between the master CPU
and the speech-recognition
module takes place over a
three-wire serial interface.

When a trained word is
recognized, the module
outputs a digital signal
corresponding to the word
recognized. The output

line(s) associated with the word is
brought high for 1 s. This signal may
be used to control external devices
with minimal external hardware.

The module is designed to be em-
bedded into electrical switches, appli-
ances, and consumer electronics.
Before I delve into the features of this
particular module, let me first define
a few speech-recognition terms.

SPEAKER DEPENDENCE
Speech recognition is classified into

two processing categories—speaker
dependent and speaker independent.
Speaker-dependent speech-recognition
systems are trained by the person who
will be using the system. These systems
achieve a high command count and
better than 99% accuracy for word
recognition.

One drawback, however, is that the
system responds accurately only to the
individual who trained the system.
But, an important advantage is that the
circuit may be trained in any language.

Actually, language isn’t even nec-
essary. A series of grunts and whistles
(as long as they can be repeated accu-
rately) can be used in place of words.
This is helpful to people who, through
accident or illness, have lost the abil-
ity to verbalize words.

The VoiceDirect module is speaker-
dependent, which is the most com-
mon approach employed in software
for PCs. Sensory also offers other chips
for use in speaker-independent modes.

A speaker-independent system is
trained to respond to a word regard-

Photo 1 —This view of the VoiceDirect
module circuit board shows the con-
nection headers, which enable easy
integration into your next project.

A Speech-Recognition Module

 CIRCUIT CELLAR ® Issue 110 September 1999 63www.circuitcellar.com

less of the speaker. This system must
respond accurately to a large variety
of speech patterns, inflections, and
enunciations of each command word.

The command-word count is typi-
cally much lower than the speaker-
dependent systems, but high accuracy
can be maintained when system de-
mands are constrained by a limited
number of commands. Industrial ap-
plications more often require speaker-
independent voice recognition systems,
such as the systems used by AT&T
and other telephone companies.

RECOGNITION STYLE
Speech-recognition systems deal

with another factor concerning the
style of speech they can recognize.
There are three distinct styles of
speech recognition—isolated, con-
nected, and continuous.

Isolated speech-recognition systems
only handle words that are spoken
separately (i.e., the user must pause
between each word spoken). Ideally,
the word is isolated by a moment of
silence before and after it is spoken.
This is the most common speech-
recognition system available today.

Connected systems are a halfway
point between isolated word and con-
tinuous speech recognition that per-
mit users to speak multiple words.
The VoiceDirect module recognizes
verbalizations up to 3.2 s long. How-
ever, there shouldn’t be a pause or
period of silence longer than 0.5 s
during the verbalization.

Continuous speech is the natural
conversational speech we use every-
day. It’s extremely difficult for a rec-

ognizer to sift through speech because
the words tend to merge together (a
string like “Hi, how are you doing”
sounds more like “Hiowryudoin”).
Continuous speech-recognition sys-
tems are on the market and are under
continual development.

VoiceDirect PROCESSOR
The heart of this module is the

VoiceDirect speech recognition pro-
cessor. The processor is available in a
QFP-64 package for anyone who needs
or wants to build a circuit from scratch.

This module has a lot of the pre-
liminary work already provided, in-
cluding an AGC audio amplifier, serial
EEPROM, and clock. It also contains
extensive socket headers (JP1, JP2, and
JP3), which make it easy to connect
an external circuit to the module.
Table 1 shows you the pinout.

We can best explore the capabilities
of the module by getting it up and
running. The VoiceDirect speech-
recognition kit contains the module
(assembled), microphone, speaker, three
microswitches, two 100-kΩ resistors,
and a quick setup guide (see Photo 2).

The module’s schematic is shown
in Figure 1. The few external compo-
nents that are supplied with the kit
are all it takes to get the module func-
tioning. The PCB measures 2″ × 2″
and has 0.1″ header sockets soldered
to one side of the board, which makes
it easy to connect to the circuit. To
experiment with the module, I placed
my external components on a solder-
less breadboard (see Figure 2).

To connect components on the
breadboard to the socket headers, I

used 22-AWG stranded wire. I mounted
the microswitches, resistors, micro-
phone, and LEDs on the breadboard.

One note here: the schematics in the
manual detail the board shown from
the top, but the header sockets are
mounted on the bottom side of the PCB.
This is in contrast to Figure 2, which
shows the board with the header sock-
ets on top. Be careful when comparing
Figure 2 to the drawing in the manual.

The VoiceDirect module recognizes
15 words in stand-alone mode and has
only eight outputs (connector JP2 pins
12–19). For simplicity, I’m only using
eight outputs (eight words) so I don’t
need to add a decoding circuit. The
8-pin output for the 15-word recogni-
tion doesn’t follow the standard bi-
nary numbering (see Table 2).

Photo 2 —The kit includes the module, resistors, three
push-button switches, microphone, speaker, and
manual—all the external components you need to
implement stand-alone recognition.

Name Module Pin Description

JP1 1–17 Unused
JP2 9 Unused
JP3 1–9 Unused

Preamp in JP2 1 Microphone input connection
Mic Bias JP2 2 Mic bias (electret microphone)
AGND JP2 3,5 Analog ground—do not connect to

 digital ground because of noise
+5V JP2 4 VCC

PWM1 JP2 6 Pulse width modulator—Output 1,
 connects to 8–32-Ω speaker

PWM0 JP2 7 Pulse width modulator—Output 0,
 connects to 8–32-Ω speaker

Table 1—Here you see the pinout for the module. The schematic is given in Figure 1.

Name Module Pin Description

DACOUT JP2 8 Analog audio output—Provides
 better quality sound than PWM
 output, requires amplifier

RECOG JP2 10 Recognition sensitivity selection
 and activates recognition

TRAIN JP2 11 Training sensitivity selection and
 activates training

Out1–Out7 JP2 12–18 Stand-alone mode output lines 1–7
High/Out8 JP2 19 Stand-alone mode output line 8 / or high
ERROR JP3 10 Stand-alone mode error signal
GND JP3 11,12 Digital ground, CPU core (pins 1, 33)
Mode JP3 13 Stand alone or slave
Reset JP3 14 VCC

64 Issue 110 September 1999 CIRCUIT CELLAR ® www.circuitcellar.com

TRAINING THE MODULE
Training begins when the Train pin

is pulled to ground for at least 100 ms.
When you press the momentary contact
switch marked Train, you are prompted
to say the first word to be trained.

Speak the word or phrase you want
the circuit to recognize into the micro-
phone. It may be up to 3.2 s long but
may not contain silences longer than
0.5 s. For example, “Circuit Cellar” is
acceptable as long as the two words
are not separated by a long pause.

Next, the module prompts you to
repeat the word or phrase. Each time a

Figure 1a —As you can see from this schematic, the designers put everything on the board. b—This section shows
you the input amplifier with automatic gain control.

a)

b)

Table 2—This table shows the digital
output for 15 words when the device is in
stand-alone mode.

Word 1 : Output 1
Word 2 : Output 2
Word 3 : Output 3
Word 4 : Output 4
Word 5 : Output 5
Word 6 : Output 6
Word 7 : Output 7
Word 8 : Output 8

Word 9 : Output 8 and 1
Word 10 : Output 8 and 2
Word 11 : Output 8 and 3
Word 12 : Output 8 and 4
Word 13 : Output 8 and 5
Word 14 : Output 8 and 6
Word 15 : Output 8 and 7word is entered, the module

creates a template. The two
templates for each target
word are compared and, if similar
enough, are averaged together and
stored in memory. If the templates are
too different, an error is generated,
and the module asks you to repeat the
word starting with the initial template.

Before storing a word template, the
new template is compared to the word
templates already in memory. If the
new template is too close to an exist-
ing template, the word is not accepted.

The VoiceDirect module has an
automatic gain control over the audio
amplifier to provide optimum signal
strength. It also monitors the back-
ground noise and gives a warning if
the noise is too high. A steady back-
ground noise (like a fan) has less impact
on recognition than a fluctuating one
(like a radio). Of course, best recogni-
tion occurs in low-noise environments.

Once a word is accepted, the mod-
ule continues training by asking for
more words. Training can be inter-
rupted or stopped at any time by not
speaking into the microphone at the
prompt or by pressing either the Train
or Recognize button.

Training is resumed by pressing the
Train button. The module automati-
cally starts training new words at the
end of the previously trained words.
For instance, if you trained six words
and then stopped, when you resume
training, the module automatically
begins training at word seven.

Individual words and phrases can-
not be erased or overwritten. But, the
entire set of words can be deleted by
simultaneously pressing the Train and
Recognize buttons for at least 100 ms.

RECOGNITION ERRORS
There are two common errors asso-

ciated with speech recognition—rejec-
tion (failure to recognize a target word)
and substitution (recognition of a non-
target word or confusion between two
target words).

When the module detects errors, it
pulses the error pin high for 1 s. The
LED connected to pin 10 on JP3 signals
this condition. Errors also initiate a
verbal response like “Spoke too soon,”
“Please talk louder,” “Please talk

66 Issue 110 September 1999 CIRCUIT CELLAR ® www.circuitcellar.com

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

14
13
12
11
10
9
8
7
6
5
4
3
2
1

D4 R4

D5 R5

D3 R3

D2 R2

D1 R1

D7 R7

D9 R9

D8 R8

D6 R6

Reset

Recognize

Train

Error

JP1

JP3

JP2

VoiceDirect module

G
N

D
+

5
V

Microphone

Speaker

softer,” and so on as the
ERROR line is pulse
high for 1 s.

The message “Word
not recognized” is not
handled as an error. If the
module isn’t trained on
the word that initiated
this message, it’s not
really an error.

The module has the
ability to increase its
selectivity. Figure 2 is
configured for Relaxed
Training and Relaxed
Recognition. On power-
up (or reset) the Train
and Recognize pins
control the selectivity.

If a 100-kΩ resistor is
bridged across the Train
switch, which essentially
pulls the Train pin to
ground with a 100-kΩ
resistor, the module
enters Strict Training
mode. In this mode, the
module rejects more

similar-sounding words, resulting in
better recognition of the words accepted.

Pulling the Recognize pin to
ground with a 100-kΩ resistor places
the module in Strict Recognition
mode. The module recognizes fewer
words and may reject trained words
(fewer substitutions).

In the schematic, both the Train
and Recognize pins are left floating
(open circuit), which places the mod-
ule in the Relaxed mode.

IMPROVING RECOGNITION
There are a number of ways to opti-

mize recognition. Word selection is
one primary technique—avoid hom-
onyms such as red, bed, said and so on.
In most cases, a synonym or approxi-
mate synonym can be used. For ex-
ample, use “crimson” or “scarlet” in
place of “red.”

Another way to improve recogni-
tion is to match the equipment to the
environment. The type of microphone
you use to train should be the same type
used for recognition. The distance
from the microphone to the speaker’s

Figure 2 —This test circuit schematic demonstrates how simple it is to get
the VoiceDirect module up and running.

 CIRCUIT CELLAR ® Issue 110 September 1999 67www.circuitcellar.com

mouth should be approximately the
same for training and recognition.

Keep in mind that your voice
changes under stress or excitement.
Imagine you’re creating a voice-con-
trolled joystick to fly your favorite
military flight simulator. Your voice
will sound quite different when you’re
sitting at your desk calmly program-
ming your voice into the chip versus
when you’re engaged in a dogfight yell-
ing, “Fire! Fire! Bank left!” You have
to emulate the stress and excitement
you feel while playing the game when
you’re programming the commands.

INTERFACING CIRCUIT
Depending on the application, you

can design various interfacing circuits
as well as a generic circuit. Because the
output lines (OUT1–OUT8) only re-
main high for 1 s, some type of latch-
ing circuit is needed. For mine, I used
one half of a 4013 dual D flip-flop.

The flip-flop, shown in Figure 3,
turns the transistor on and off each
time a command is given (e.g., if you
connect the OUT1 [JP2–12] from the
module to pin 3 of the flip-flop).

The first time the command asso-
ciated with word one is given, the flip-
flop turns on the TIP120 transistor
that lights the LED. The LED remains
lit until the command associated with
word one is given a second time, turn-
ing off the transistor. This way, the
same word can turn appliances on and
off, and other commands given won’t
affect existing commands.

KEEP TALKING
The VoiceDirect module provides a

good introduction to the world of

Figure 3 —The 4013 flip-flop latch helps control multiple
appliances connected to the VoiceDirect module for
speech recognition.

SOURCES

VoiceDirect module
Sensory, Inc.
(408) 744-9000
Fax: (408) 744-1299
www.sensoryinc.com

VCC

VCC

220

1 k

TIP120

Signal in 4013

142

3

2

5 6 7

4

0

47 k

All Electronics Corp.
(888) 826-5432
(818) 904-0524
Fax: (818) 781-2653
www.allcorp.com

Images Company
(718) 698-8305
Fax: (718) 982-6145
www.imagesco.com

Jameco Electronics
(650) 592-8097
Fax: (800) 237-6948
www.jameco.com

John Iovine is the research director at
Images Co. You may reach him at
john@imagesco.com.

speech recognition. It’s easy to imple-
ment, easy to train, easy to use—what
else is there to say? I

www.sensoryinc.com
www.allcorp.com
www.imagesco.com
www.jameco.com

68 Issue 110 September 1999 CIRCUIT CELLAR ® www.circuitcellar.com

Induction Motors

FEATURE
ARTICLE

Gordon Dick

w
Put on your running
shoes and take off
with Gordon as he
reduces noise, dis-
plays the frequency,
and adds an analog
isolation amp before
finishing this VFD
exercise he intro-
duced last month.
Talk about going the
distance!

hen I embarked
on this project, I

had no intention of
taking it this far. I did the

work described in Part 1 because I was
interested and because I felt a small
need to redeem myself for not finishing
the original project so many years ago.

When I got ready to do the work I
discuss this month, I thought it would
go quickly because I had the parts on
hand and had already checked out the
application circuits and knew they
were simple. How many times have I
started out this way and then discov-
ered how wrong I was because I hadn’t
anticipated this or that? This project
was no exception.

The project described here is a prime
example of how electronic engineering
has changed with the inclusion of
intelligence in so many parts. The
circuitry added to the VFD is rather
simple—on the exterior anyway. The
time needed to do the wiring is mini-
mal. The major effort is producing
code to configure and customize the
VFD board.

THE ISOLATED 15-BIT ADC
The scheme used to measure motor

current involves the HCPL-7860 iso-
lated modulator and the HCPL-7870
digital interface IC. This method is
appealing because of the high resolu-

tion and the three-wire serial interface
to the controller.

Of course, the set provides isolation
which, in this application, is essential
rather than nice to have. Because I
hadn’t played with anything like this
before, I worked with this chipset first.

Before getting into the details, it’s
appropriate to spend some time exam-
ining what’s contained in this chipset
and talking about the operation. The
technical data document from HP
explains things well (as does Figure 1),
so here’s a small part of it (with some
minor changes and omissions):

The Isolated Modulator converts a
low bandwidth input signal into a
high-speed one-bit data stream by
means of a sigma-delta oversampling
modulator. This modulation provides
for high noise margins.

The modulator data and on-chip
sampling clock are encoded and
transmitted across the isolation
boundary where they are recovered
and decoded into separate high-speed
clock and data channels. The Digital
Interface IC converts the single-bit
data stream from the Isolated Modu-
lator into 15-bit output words and
provides a serial output interface that
is compatible with SPI, QSPI, and
Microwire allowing direct connection
to a microcontroller.

Now that you know a little about
how this chipset works, let’s build
something that uses it. The circuit
board for the basic VFD of Part 1 has
no space for expansion.

I had extra space until I decided to
include an EPROM and run the ’HC11
in expanded mode. Now I’m glad the
EPROM is there, but more on that later.

I considered building a new board
with space for the additional circuitry,
but not for long. The thought of redo-
ing all that wirewrapping and the
troubleshooting wasn’t pleasant. It
turned out to be practical to mount a
daughterboard on top of the basic VFD
board. Signals could be connected via
a short ribbon cable and the header on
the VFD board that was used for initial
testing would be useful again.

After playing puzzle with the items
needed on the daughterboard, a reason-

Part 2: Working with Output

 CIRCUIT CELLAR ® Issue 110 September 1999 69www.circuitcellar.com

able layout emerged and parts
were mounted. A hole was
necessary to provide access
to the speed-control pot.

Wiring the circuit shown
in Figure 2 didn’t take long.
Two small changes from
HP’s application circuit are:
the elimination of the cur-
rent-sampling resistor be-
cause it was already present
in the IRPT1059C, and the
addition of pullups on the
three-wire serial link.

Now it’s time to create some code
and do some testing. I’m using my
trusty ’HC11 prototyping board. The
daughterboard is connected to it via
ribbon cable and we’re ready to go. I’m
trying to slow-step my way through
the timing diagram shown in Figure 3.

Yes, the SDAT line goes low when
CS goes low, but after that it looks
like data is being transmitted. This is
puzzling! The SDAT line should wait
for clock pulses to be applied to the
SCLK before it starts sending data.

I pondered over this for a good
while and almost called applications
support, thinking that they must have
left something significant out of the
datasheet. Finally, I decided that the
device was designed not to wait for
me to do things slowly and would go
ahead on its own. They could’ve said
so in the datasheet.

With this incorrect assumption, I
went ahead and constructed code to
configure the SPI and initiate data
transfers. As I soon found out, this
was a serious mistake.

To test this code, I made the input
to the 7860 zero to see if it converted
correctly. The datasheet indicates that
zero should convert to 4000h and when
the most-significant bit (which is used
as a start bit) is taken into account,
the reading should be C000h (the con-
verter code is 0000h for negative full
scale, 4000h for zero, and 3FFFh for
positive full scale).

When the code was run, I got data
from the 7870 but it was erratic. With
some imagination I can see the read-
ing C0C0h coming up a lot among all
the other readings. The first part looks
correct but why another C0h? To make
things worse, when I connect the

scope to look at what’s happening,
conversions stop.

When I added tags to the code to
indicate where it might be hanging, the
added instructions change the way the
system behaves. Now it runs most of
the time the scope is connected.

Now that I can use the scope, some
things are starting to make sense.
First off, I can see that the SPI is not
getting two data transfers during the
time CS is low. My code doesn’t dis-
play a value until two SPI transfers
have taken place, which currently
requires two CS low times. No won-
der the data is appearing as C0C0h.

After studying my code, I found a
couple of serious logic errors which,
when corrected, allow two SPI trans-
fers to happen when they are supposed
to. Things have improved now to the
point where the reading from the con-
verter is now C0xxh where x indicates
that it could be anything.

During a discussion with a colleague
about this project, my earlier assump-
tion about the 7870 not waiting was
challenged. My colleague maintained
that after a conversion is done, noth-
ing should happen on the SDAT line

until clock pulses are pro-
vided on the SCLK line.

To test this idea, the
SCLK line was removed
from the ’HC11 and shorted
to ground at the 7870.
When CS was asserted, the
SDAT line went low then
high and stayed high, just
as the timing diagram
shows. Then it all started
to make sense.

The reason the 7870
appeared not to wait for a

clock must have been because of
noise. Now that I’m thinking about it,
yes, the signal lines are noisy.

The wires between the 7870 and
the ’HC11 are quite long. The ribbon
cable between the ’HC11 board and
the daughterboard is 17″ and there’s
nearly another 9″ of wire from the
header to the ’HC11. I figured it was
likely that these long wires were al-
lowing noise to be picked up.

I moved the daughterboard as close
to the ’HC11 as possible and hard-
wired to it. What an improvement!
The data being read is now C00xh.
Quite a lesson to be learned here.

I was fairly confident that I had the
ADC working properly, but there was
still more noise in the reading than I
wanted. It was more than just the lower
four bits being uncertain—more like
the lower six bits—but I decided that
would be sufficient for the moment.
When the daughterboard was mounted
to the VFD board, it would be even
closer to the ’HC11 and that should
reduce the noise further.

As a final test, I connected a variable
voltage to the converter input and it
responded as expected. Moving on….

Figure 1 —These functional diagrams of the HCPL-7860 (a) and the HCPL-7870 (b)
show a chipset with serious applications flexibility. Many of the features of the HCPL-
7870 were not used here.

Photo 1 —The daughter-
board piggybacks on the
VFD board. Motor current
and voltage signals enter
via a pair of three-pin
headers on the left, and
micro signals connect via
the ribbon cable on the
right.

Isolation
boundary

VDD1
VDD2

VIN +

VIN –

GND1 GND2

MCLK

MDAT

S
ig

m
a-

D
el

ta
M

O
D

/e
nc

od
e

Shield

1

2

3

4

5

6

7

8

D
ec

od
e

VDD

CLAT

CDAT

GND

MCLK1

MCLK2

MDAT1

MDAT2

CHAN

SCLK

RESET

SDAT

THR1

CS

OVR1

CCLK 1

2

3

4

16

15

14
13

5

6

7

8

12

11

10

9

Configure
interface

CH1

CH2

Conversion
interface

Threshold
detect
and
reset

a) b)

70 Issue 110 September 1999 CIRCUIT CELLAR ® www.circuitcellar.com

Figure 3 —The sequence of events on the SPI bus is illustrated with these waveforms.
Observe that only 15 bits of data are obtained. The most significant bit is always high and will
be discarded later.

COUNTS TO CURRENT
The LCD had been wired to the

daughterboard some time ago (see
Figure 4) and I’d been using it to test
the 7870, but the display was raw. I
was just sending hex data to it for test-
ing; nothing pretty. Time to change that.

Displaying the voltage and frequency
would be easy. The frequency was
already available from the ’HC11 ADC
and would require little manipulation.
The voltage portion wasn’t done yet
but when it was, the voltage number
would also be available from the ’HC11
ADC system and it too wouldn’t need
much massaging. But it appeared to be
a different story with the current.

Whenever I’m confronted with a
new problem, I almost never get to
solve it the easy way. It seems that I
have to do it the hard way before an
easier solution surfaces. Such was the
case with the current display.

My calculation showed that this
converter produces a conversion num-
ber of 2250 counts/A. If I wished to
display the current in amps I needed
to do a division of 2250. But a plain
old integer divide (idiv) wouldn’t do. I
needed the fractional part.

I had never used fractional divide
(fdiv) before, but as I read about it, I
decided it was just what I needed.
Doing an idiv leaves a remainder, and
following that with an fdiv gives me a
suitable fractional part which, after
converting to decimal, completes the
almost floating-point division. I ran a
little test code just to be safe.

The only down side to my method
was that I didn’t have a routine to con-
vert fractional hex numbers to decimal.
Fortunately, the routine I used to
convert hex integers to
decimal could be easily
modified to do fractions. It
wasn’t long before I had a
reasonably attractive dis-
play showing amps with a
fraction and a place for
frequency and current to
be displayed next.

REDUCING THE NOISE
I’m starting to think

that I have this project
complete so maybe I
should try to get rid of

that noise in the displayed value of
the current. Earlier I set up a circular
buffer and was averaging it in an at-
tempt to reduce the noise. At only
four elements, it was too small. There
wasn’t much of an improvement with
or without it. Looks like more values
needed to be averaged.

This averaging process gets cumber-
some rather quickly. Values produced
by the 7870 in this application are
always positive, so I did away with that
sign bit and had numbers ranging from
0000h to 3FFFh after masking off the
start bit.

When averaging only four numbers
(which can never be larger than 3FFFh),
the sum prior to division still fits in
16 bits. Two left shifts and the average
is obtained. But, averaging more num-
bers introduces sums larger than 16 bits
and shifts that span more than 16 bits
if the division remains a power of 2.

For this second version of averaging,
I could use a 16-element circular buffer
that required 24-bit addition, which I
already had a routine for. The only new
code needed was a 24-bit left shift.

After some testing, I was confident
my new averaging code was working
properly. So, I inserted it into the
routine that reads the 7870 and dis-
plays the result.

Would you believe that the program
to read the 7870 crashes now? It crashes
every time it’s run and in a different
way each time. It was almost like a
subroutine wasn’t returning properly.
Every subroutine was checked for a
missing rts, but they were all in place.
I had no success until I begin watching
the data being written into the circu-
lar buffer.

Data was getting written beyond
the reserved buffer space and over the
top of executable code. This explained
why the crash was different each
time. Although it took some time to
find, fixing the problem was quick.
The loop that gathers the readings
was testing for 0x15 values being read
in rather than just plain 15 values.

The good news is that the code is
working once more. The bad news is
that there isn’t much improvement in
the displayed noise. Looks like the
displayed current needs to be trun-
cated to two digits after the decimal.
There is enough noise that keeping
four digits after the decimal doesn’t
make sense.

It wasn’t until some time later,
during another discussion with a col-
league, that the subject of converting
this count value to current came up. I
explained what I’d done, thinking I’d

been fairly clever in how
I handled the problem.

He suggested a multi-
plication of 1000 followed
by a division by 2250
and then an artificial
shift of the decimal
point three places to the
left. At first I thought this
method was far simpler,
and suddenly I didn’t
feel so clever. Later, how-
ever, I realized it wasn’t
that much simpler. I’ll
use it next time.

CHAN

CS

SDAT

SCLK

B14 B13 B12 B11 B10 B1 B0

1 2 3 4 5 6 15 16

Figure 2 —This is HP’s suggested circuit with only minor changes. Note that the ground symbol with the N adjacent
to it is the common for the IRPT1059C, which needs to be isolated from the other grounds.

72 Issue 110 September 1999 CIRCUIT CELLAR ® www.circuitcellar.com

ANALOG ISOLATION
AMPLIFIER

The last of the new cir-
cuitry is the analog isolation
amplifier. The IRPT1059C
provides an output signal
proportional to the inverter
bus voltage that will be the
input for the analog isola-
tion amplifier.

Because HP was kind
enough to send me an eval board, I
saved some time here (the eval board
uses a HCPL-7820 isolation amplifier,
which has some similarity to the
HCPL-7860; a sigma-delta ADC is
optically coupled to a DAC).

A single 5-V supply could have been
used with the 7820 and its support
circuitry. But, there are some differ-
ences between that circuit and the
eval board, and because the eval board
uses mostly surface-mount components,
I was reluctant to attempt modifica-
tions. This meant that ±15 V had to
be wired into the daughterboard.

Certainly if you’re building a pro-
duction prototype, the extra supplies

can be avoided. The circuit I used is
shown in Figure 5.

There’s another aspect of this cir-
cuit that deserves some discussion.
The gain of the eval board by itself is
too high for this application. The 7820
is designed for a full-scale input of
200 mV and provides a typical gain of
8 (7.5 for my device) and the diff amp
U3 provides an additional gain of 5.

The signal from the IRPT1059C
can be as high as 5.52 V if the bus is
at 240 V. Scaling this voltage down to
200 mV is not sufficient, because
200 mV × 7.5 × 5 = 7.5 V, which is too
large for the ADC input of the ’HC11.
Hence the input to the 7820 had to be

further attenuated to pro-
duce a signal with a suit-
able range for the ’HC11
shown in Figure 5.

Again, this is something
that would be avoided on a
production prototype. It
would be better to allow
the 7820 to use more of its
available range and reduce
the gain of U3.

Earlier I had cut some excess off
the eval board and mounted it to the
daughterboard without wiring it. Now
I wired it and added the necessary
attenuator. After a few tests I decided
it was working as it should. Just a little
more code and I’d be finished with it.

Although the remaining code
didn’t have to do anything new in
principle, it turned out to be some-
what clumsy to use routines designed
for words on a byte to convert it to
decimal, then to ASCII, and display it.
I wrote a few routines here just to
improve that, and I also improved the
look of the display by eliminating
leading zeros.

Figure 4 —In LCD wiring is straightforward. A two-line device allows for a pleasing
display of frequency, voltage, and current.

 CIRCUIT CELLAR ® Issue 110 September 1999 73www.circuitcellar.com

DISPLAYING THE FREQUENCY
The SA828 is a write-only device

(i.e., it can’t be read to see what fre-
quency it’s running at). To display the
frequency of the motor voltage, I sim-
ply needed to display the command
frequency, which is convenient be-
cause the same routines that display
the voltage can display the frequency.

At this point, the project is electri-
cally complete, as shown in Photo 1.
The code still needs tweaking though.
The code was created as two separate

modules—one for the VFD portion and
one for the display portion.

The two modules now need to be
integrated. Fortunately, there are only
two conflicts to resolve between the
modules (or so I think). The first is the
way the ’HC11 ADC is initialized.

Instead of converting a single channel
continuously, the integrated module
converts a four-channel group con-
tinuously. That way, a conversion is
always available and just needs to be
read from the correct result register.

Figure 5 —Here you see HP’s eval board schematic with a minor addition. A front-end attenuator (R11 and R12) was
added because the signal from the IRPT1059C was too large.

The other conflict is that the origi-
nal VFD code used Port D signals PD4
and PD5 to reset the IRPT1059C and
the SA828, respectively. Because the
SPI is being used, PD4 and PD5 are now
SCK and *SS. Luckily, the timer sys-
tem is not being used here, so other
I/O pins (OC2 and OC3) are available.

Other issues (particular to my
development environment) had to be
resolved before I got the integrated
code to work. With these changes made,
the system runs quite happily out of
RAM on my development board.

Now it needs to be made ROMable.
Because of what I’d already been through
(see Part 1), it shouldn’t take long to
get the integrated code EPROMed and
running. Once again, it wasn’t quite
that simple. This code uses RAM
variables (in the 256 bytes internal to
the ’HC11) that, in a few cases, had to
be initialized. Neglecting to do that the
first time produced a scrambled LCD.

Many times I looked back on the
decision to include an EPROM as a
fortunate one. The code for the first part
fits into the EPROM at 282 bytes. But,

74 Issue 110 September 1999 CIRCUIT CELLAR ® www.circuitcellar.com

SOFTWARE

Source code for this article may be
downloaded via the Circuit Cellar
web site.

Thanks to Bernd Kohler, a colleague
and friend, for his helpful discussions
regarding some aspects of this project.

Gordon Dick is an instructor in elec-
tronic technology at the Northern
Alberta Institute of Technology,
Edmonton, Alberta, Canada. He oc-
casionally consults in the area of
intelligent motion control and is an
avid hunting retriever trainer. You may
reach him at gordond@nait.ab.ca.

SOURCE

HCPL-7820, -7860, -7870
Hewlett Packard
US Electronic Components Div.
(408) 654-8675
Fax: (408) 654-8575
www.hp.com

the code for the second part needs
another 1064 bytes. It’s unlikely that it
can be streamlined to fit into 512 bytes.

MORE IMPROVEMENTS, ANYONE?
One possible improvement is that

the display portion would perform
better if it were done on a PCB. The
layout suggestions offered by HP in
the app note could be followed, and
the signals produced by the 7820 and
7860 would contain less noise.

Or, I could add another serial link
between the 7870 and the ’HC11. At
first glance, using this second serial
port wouldn’t be as simple as the SPI
link. In my case, the ’HC11’s SCI is
used to communicate with the PC so
another serial link would need to be
created in software.

The third possibility is to leave the
serial link in place so the 7870’s con-
version mode could be changed (there
are five modes) to improve the SNR
hence the number of useful A/D bits.

By using the serial link, the input
threshold could be programmed and
an interrupt produced when some

level of sampled current is reached.
This signal would appear at THR1 on
U6. Threshold detection time is also
software controlled.

Again, using the serial link, the
overload level could be programmed
and another interrupt produced, likely
to indicate some fault condition. This
signal would appear at OVR1 on U6.
Or, I could use the serial link to make
the 7870 execute an internal offset
calibration routine.

Lastly, the pretrigger mode can be
changed by using the serial link. This
one’s a bit complicated so I’ll let the
HP literature explain that option. I

REFERENCES

Hewlett-Packard, Isolated 15-bit
A/D Converter, Technical data,
1996.

Hewlett-Packard, High CMR Ana-
log Isolation Amplifiers, Tech-
nical data, 1996.

Hewlett-Packard, Evaluation Board
for HCPL-7820/HCPL-7840,
Technical information, 1995.

Hewlett-Packard, Designing with
Hewlett-Packard Isolation Am-
plifiers, App note 1078, 1995.

www.circuitcellar.com
www.hp.com

76 Issue 110 September 1999 CIRCUIT CELLAR ® www.circuitcellar.com

MICRO
SERIES

Monte Dalrymple

w

Rolling Your Own
Microprocessor

P
ar

t

of2
1

hat do you do
when your micro-

processor vendor isn’t
providing the features

you need and you have many man-years
invested in your software? These days,
it’s not unrealistic to think about
designing your own processor.

Rabbit Semiconductor had already
decided to do this when they asked
me to help them with the design of a
new processor. In this series, I discuss
the steps I took and the features I
incorporated into the project. Part 1
goes through the design and debug
process, and next month I’ll talk
about the actual features of the chip.

USING VERILOG HDL
I don’t mean to imply that design-

ing a microprocessor from scratch is a
trivial task, but the tools available
today certainly make it easier than it
was 15 years ago when I did my first
processor. Back then, I drew every
transistor, by hand, on D-size sheets
of vellum. Today, I sit at my PC and
type in a text file that describes the
design using a hardware description
language (HDL).

Two standard HDLs are available:
VHDL and Verilog. I won’t start a
religious argument by saying that one
is better than the other, but I prefer

1

The Design and Debug Process

With all the
options
available in

the world of micropro-
cessors, you might
think it would be easy
to find a micro to meet
any need. Monte begs
to differ. A custom
processor designed
with Verilog turned out
to be the best solution.

2

Verilog. It’s a lot like C, whereas VHDL
is more like C++. I use Verilog in this
article, but everything I say here also
applies to designing with VHDL.

Listing 1 shows an example of Veri-
log code that describes a byte-wide
register. It has a clock, a reset input, a
load enable signal, and input and output
buses. Listing 2 shows an 8-bit counter.
Describing a circuit is that easy.

You can either place these modules
in your design like subroutines, or you
can just place the four lines that describe
its operation (the four lines starting
with always @) as inline code. Of
course, you have to give each register
a different name with each placement.

Verilog also has all the logical, arith-
metic, and shift operators to enable
you to describe what you want done
without worrying about the details of
how to connect the gates. The Verilog
description of the design is then fed
into a logic synthesis tool, which
automatically translates the Verilog
into the necessary logic gates which
are targeted to the technology speci-
fied by the designer.

This simplicity is another advan-
tage of designing with Verilog. If
you’ve done it right, you can easily
retarget your design to a different
technology. Later in the article, you’ll
see how I took advantage of this.

SPECIFICATION
The most important step in any

design is to decide what you’re going
to design. You’re probably thinking,
“Duh…,” but a poor job at this stage
will lead to delays or even failure.

Like every other project, there were
some specific requirements. For ex-
ample, the processor had to be com-
patible with the Z80 instruction set
(remember the man-years invested in
developing the software). It also had
to execute instructions faster than the
Z180. That meant a two-clock-cycle
basic instruction execution time.

Because it was for embedded appli-
cations, it needed a full suite of periph-
erals and a glueless interface to memory
chips. The man-years of software had
also exposed several areas for improve-
ment in the instruction set, which
would give significant performance
gains, so those had to be included.

www.circuitcellar.com CIRCUIT CELLAR ® Issue 110 September 1999 77

All of this was specified, in detail,
before a single line of Verilog code was
written. For example, I had to work out
the number of clocks for every instruc-
tion and the memory access operation
for every clock. This information was
then refined and expanded to include
the internal data movement timing.

Once this step was complete, I did
the Verilog coding. In many ways this
is the easiest step of the process, espe-
cially if the specification has been done
properly. At the end of the coding phase,
the project was roughly half done.

Yes, half done, and now the fun
begins. You have to check everything,
preferably by two people working inde-
pendently. I checked it all using a Veri-
log simulator, and my client checked
everything using a breadboard.

SIMULATION
Another advantage of Verilog is

that you can model a whole system
and simulate it using any of a number
of low-cost simulators. To debug and
verify the processor, I placed it (still
in Verilog format) into a test bench
that was also written in Verilog.

The test bench contains a model of
a memory to hold program code and
data, but this model also checks all of
the memory control signals out of the
microprocessor on every read. If the
processor tries to read from an undefined
memory location, it gets undefined data,
which shows up immediately in the
simulator. This memory is read-only.

A separate memory that holds the
expected data is used for writes from
the processor. If the processor writes
the wrong data to a memory location, or
data to a wrong location, this memory
model raises an error flag. This mem-
ory is also read-only, because it just
looks at the memory write operations.

This arrangement means that I
have to manage the memory carefully,
so that each write is to a different
location. By doing this, the test bench
automatically checks for proper opera-
tion for both reads and writes.

Somehow I have to place the appro-
priate data in these memories. This
step requires assembly-language code
that contains every opcode, every special
boundary condition between instruc-
tions, flag results, and so on.

The write memory must contain
the expected data, which is usually
dumped after every instruction. The
task of creating, assembling, and debug-
ging this piece of code is in fact larger
than the task of designing the processor.

The one advantage here is that I can
see every node inside the processor, so
if it does something unexpected, it’s
easy to track down. Usually, I trace a
set of about 200 nodes when I’m debug-
ging (things like the PC, the machine
state register, ALU control signals,
and all the processor pin signals), so I
have a pretty good idea of where to
look when something goes wrong.

When a problem arises, it’s easy to
add signals in the area of the problem
to the trace list. Then it’s a matter of
rerunning the simulation, figuring out
what went wrong, and fixing the prob-
lem in the Verilog source code. This
process usually takes a couple iterations.

You might be tempted to just trace
everything all the time. Don’t do it.
Simulation time increases significantly
with the number of nodes traced.

I think that 100–200 critical signals
is a reasonable compromise. Half the
time, the problem is in the assembly-
language software of the test pattern
anyway.

The other thing to consider is the
length of the simulation. The full test
pattern for the CPU portion of our
processor takes a little over 50k clock
cycles. Rather than doing it all at once,
I divided the test into a number of
individual patterns, each concentrat-
ing on one class of instructions.

Once the CPU is debugged, it’s
time to start on the peripherals. This
processor has a full complement of
parallel ports, serial ports, timers,
counters, and so on. But because these
peripherals aren’t programmable ex-
cept by the CPU, they require more
assembly code to debug them.

The one thing that complicates
debugging the peripherals is the fact
that they respond to more external
stimuli than the CPU does. That
means a lot more Verilog code in the
test bench. And the stimuli need to
somehow be synchronized with the
code that the CPU is running.

I accomplish this synchronization
by having the test bench recognize an

Listing 1 —This code is all it takes to do a byte-wide register in Verilog HDL.

module reg_byte (clk, resetb, ld_byte, data_in, data_out);

 input clk, ld_byte, resetb;
 input [7:0] data_in;
 output [7:0] data_out;
 reg [7:0] data_out;
 always @ (posedge clk or negedge resetb) begin
 if (!resetb) data_out <= 8'h00;
 else if (ld_byte) data_out <= data_in;
 end

endmodule

Listing 2 —Making an 8-bit counter is a simple modification.

module cnt_byte (clk, resetb, inc_byte, data_out);

 input clk, inc_byte, resetb;
 output [7:0] data_out;
 reg [7:0] data_out;
 always @ (posedge clk or negedge resetb) begin
 if (!resetb) data_out <= 8'h00;
 else if (inc_byte) data_out <= data_out + 1'b1;
 end

endmodule

78 Issue 110 September 1999 CIRCUIT CELLAR ® www.circuitcellar.com

Monte J. Dalrymple has been design-
ing integrated circuits for more than
20 years. He currently has his own
company which develops intellectual
property. You may reach him at
monted@systemyde.com.

the processor was working correctly.
So we didn’t even power up the bread-
board until I had most of the CPU work-
ing in simulation. Even then, every
time something came up on the bread-
board, I had to go back to the simula-
tion to make sure the circumstance
had been tested.

The breadboard debugging first
concentrated on the peripherals, using
them just as they would be used in
finished systems. Again, this required
a lot of time with assembly language
and a logic analyzer. Even though I was
concurrently doing the same thing in
simulation, the two tasks were kept
separate to assure independent checking.

The breadboard permits more ex-
haustive testing because it runs closer
to real time. The FPGA clock is limited
to 8 MHz, but it’s still many orders of
magnitude faster than the simulation.
My simulations run at the equivalent
of about 8 Hz, even on a fast PC.

We never needed to take advantage
of it, but an FPGA breadboard enables
you to bring internal signals out of the
FPGA. These chips have over 400 pins,
but our design only has 88 signal pins,
which leaves a lot of pins available for
probing the inside of the design.

SOFTWARE DEBUGGING
As well, the software engi-

neers used breadboards to port
the development software and
C compiler over to the proces-
sor. They realized that a minor
change to a couple of instruc-
tions would help with some of
the housekeeping necessary
when dealing with the MMU.

Verilog enabled me to make
these changes with the addi-
tion of just two lines of code.
Of course, verifying the change,
which dealt with sampling
interrupts, took much longer.

An exhaustive instruction
set test was assembled once
the bulk of the development
software and C compiler was
completed. It checked every
instruction with every flag
combination and nearly every
data value. Such a test wasn’t
practical in simulation, and it
did find a problem with two
instructions that were setting

a flag when they were not supposed to.
Having the FPGA allowed most of

the library routines, interrupt service
routines, and communications handlers
to be written and debugged before the
processor went to the fab.

WRAPPING IT UP
Designing with Verilog and a synthe-

sis tool is the only way to do a project
of this scope. Next month, I’ll detail
exactly what our processor does. I

I/O write to a particular ad-
dress as a sync signal. Then a
separate Verilog drive file can
keep track of program execution
and provide stimuli and sample
outputs at known times.

Because everything is rela-
tive to this sync signal, I don’t
have to count clock cycles from
the beginning of the pattern—
only from the nearest sync
signal. Counting clock cycles
is still the most tedious part of
debugging though, because
everything has to be correct
down to the clock cycle. Such
precision is necessary because
these programs will later be-
come the test vectors to test
the final chips.

When the test patterns were
complete, the design was ready
for release to the semiconduc-
tor fab. However, because this
was my client’s first ASIC, we
wanted independent verifica-
tion that it was going to work.
Hence the breadboard.

BREADBOARDING
The breadboard’s design and fabri-

cation started at the same time as the
Verilog coding. The breadboard is a full
system based on our processor, but it
uses a large FPGA in place of the
finished processor (see Photo 1).

Designing in Verilog enabled us to
use an FPGA quite easily. The only
difference between the Verilog code for
the released version of the processor
and the FPGA version is the connec-
tion of the clock drivers in the FPGA,
which is required only because our
FPGA has dedicated clock driver pins.
Any change required only a couple hours
to recompile and reroute the design.

The full design of the processor
requires slightly less than 25k gates,
but it took a 130k-gate FPGA to hold
the design. A large portion of a CPU is
combinatorial in nature and the logic
cells of an FPGA are balanced between
combinatorial and sequential. Keep this
factor in mind when you use an FPGA.

Debugging this system was a little
more work than debugging a normal
embedded system because there was
always a question of whether or not

Photo 1 —Here you see my FPGA breadboard with the debugging equipment
connected.

REFERENCES
M. Keating and P. Bricaud, Reuse

Methodology Manual, Kluwer,
Dordrecht, 1998.

E. Sternheim, R. Singh, and Y.
Trivedi, Digital Design With
Verilog HDL, Automata Publish-
ing Co., Cupertino, CA, 1991.

Verilog information, www.ieee.org,
www.ovi.org, news:comp.lang.
verilog

www.ieee.org
www.ovi.org
news:comp.lang.verilog

80 Issue 110 September 1999 CIRCUIT CELLAR ® www.circuitcellar.com

FROM THE
BENCH

Jeff Bachiochi

Get
SmartMedia

Pull a
chair up
to the
bench as
Jeff dis-

cusses the makeup of
SmartMedia—one of
the newest forms of
nonvolatile storage.
Who uses it? What
makes it so different?
With Jeff, we’ll see the
whole picture.

ocumenting
family life has been

a popular pastime for
decades. Still photogra-

phy progressed through 8-mm home
movies and camcorders, and now the
circle is complete. The digital still
camera has developed to the point where
it can begin to compete with film.

But high-resolution picture files
easily top a megabyte in size. I don’t
know about you, but the nonvolatile
memory I’m familiar with is expen-
sive and bulky. What happened?

Except for some Sony digital cam-
eras that use 3½″ floppy disks for file
storage, the format of choice is Smart-
Media. Even if you’ve seen SmartMedia,
you probably haven’t given it much
thought (and that’s how it should be).

Although I balk at taking a screw-
driver to my Toshiba PDR-M1, I’m
curious about this new media—or
rather, about its format. Lots of distribu-
tors are selling it, but there doesn’t
seem to be much information available.

SSFDC FORUM
The Solid State Floppy Disk Card

Forum is one organization promoting
SmartMedia. SmartMedia consists of
a removable NAND flash-memory card
that claims to be the lightest, thinnest,
and cheapest of its kind in the world.

Weighing in at 2 g (less than 0.1 oz),
SmartMedia is about the size of a

matchbook but only 0.76 mm (less
than 0.03″) thick. Compared to a PCM-
CIA memory card of the same capacity,
SmartMedia costs about a third less.

Probably the most curious thing
about SmartMedia is the contact con-
figuration (see Photo 1). The 22 contacts
are arranged in two rows of 11, embed-
ded into the top surface of the device.

When you see that power and ground
use up four contacts, you start won-
dering how any kind of meaningful
storage can be accomplished via the
remaining ones. They are shared by
the I/O and control signals.

Treating the physical interface as
an I/O device simplifies and standard-
izes the interface, but does make it a
bit more difficult to use. Connections
remain identical for any capacity of
SmartMedia card.

Although SmartMedia’s largest
application is presently with digital
cameras, that’s only the tip of the
iceberg. Others include PDAs, electronic
musical instruments, voice recorders,
and portable terminals. Practically any
equipment that uses removable mem-
ory is a good candidate for SmartMedia.

FACE TO FACE
Let’s take a closer look at the inter-

face of these bite-sized storage devices
(see Figure 1). The NAND flash array
is set up in columns of 528 bytes, each
column called a “page.” Notice that
this is a wee bit larger than an even
512 bytes. The 16 extra bytes in each
page are not meant for data storage.

A page is the smallest portion of
memory that can be programmed (i.e.,
written to). To allow this to happen
smoothly, a page buffer holds data to be
written to or read from any flash page.

Stack up 32 pages and you have a
block (512 × 32 + [16 × 32] = 16K +
512 bytes). A block is the smallest
portion of memory that can be erased.

SmartMedia is not considered byte-
writable. To change 1 byte (or all 528
bytes) in a page requires that a whole
block be read or erased and that any
pages of data be replaced with the
updated data.

The smallest SmartMedia devices
are 2 MB, which gives 128 blocks. The
64-MB SmartMedia now in development
requires 4096 blocks of flash memory.

d

Part 1: What’s It All About?

CIRCUIT CELLAR ® Issue 110 September 1999 81www.circuitcellar.com

sibility of having a defective cell in
one or more pages. A cell may also
deteriorate during its life of over a
quarter million programming cycles.

The extra 16 cells are a way to keep
track of bad pages, like bad sectors on
magnetic media. When the SmartMedia
is tested after manufacturing, if a bad
page is found, a 00H is written to the
sixth extra byte of the last 16 bytes of
the page (the other 15 bytes are erased
to FFH). Be advised that when a block
is erased, so are the bad page identifiers,
so you must keep track externally and
rewrite the indicators after erasing.

The status register can be read by
issuing a command 70H and reading
back the status byte (after 60 µs). Three
of the eight bits are significant. Bit 0
indicates a program/erase success with
0 and a failure with 1. An erase failure
indicates that all bits within the block
could not be erased to an FFH state.

A program failure means at least
one byte’s bit within the page could
not be programmed to a 0. Now, you
can update that page’s invalid page indi-
cator so it won’t be used in the future.

Bit 6 is a software indication of the
hardware ready/busy output—0 when
busy and 1 when ready. Bit 7 indicates
the protect status (0 is protected and 1
means not protected).

The protection status is an input
pin to the SmartMedia. A low on this
pin protects the flash memory from
being erased or programmed. You may
place an adhesive conductive dot on
the SmartMedia to indicate that the
device is read-only. This conductive

cause they indicate the type and ca-
pacity of the storage medium.

SmartMedia devices with up to
32 MB require three address bytes.
Larger devices (up to 8 GB) need four.
Read the ID to determine how many
address bytes are required.

In addition to the ID, SmartMedia
has two read commands. The read
command transfers a complete page
from the flash memory to the data
registers. The first address byte (A0–
A7) is a pointer to within the data
register. The second, third, and poten-
tially fourth address bytes indicate
which page to transfer (A9–Axx).

You may have noticed that A8 is
mysteriously absent from the address
bytes. But, recall when I described the
page size as 528 bytes; A8 isn’t needed
unless you wish to point to a starting
address within the upper 256 bytes.

The read1 command holds A8.
Use the command 00H for pointing to
within the lower 256 bytes and 01H
to point to within the upper 256 bytes.

Prior to getting the page data from
the SmartMedia, you must wait 10 µs.
This can be accomplished by watching
the ready/busy output.

After receiving the last address byte,
the ready/busy output goes low until
the page is transferred from flash mem-
ory. When the ready/busy output goes
high, you may read bytes bringing the
RE input low for each byte you wish

to read.
Access to the data

registers begins at the
address A0–A7 + A8 in
the command byte and
may continue up to the
end of the page. You can
continue reading up to
the end of the block, but
remember to wait for
each page to be trans-
ferred before continuing
to read.

528 – 512 = 16
Here’s where we learn

about those 16 extra
bytes in each page. Be-
cause manufacturing
these large-scale NAND
flash memory arrays is
difficult, there’s the pos-

GETTING AT ’EM
Having a data path of only 8 bits

requires that the large addresses pos-
sible with SmartMedia be broken up
into byte-sized pieces, transferred, and
reassembled internally. For the Smart-
Media to know what’s coming through
the pipe, the user must use the format
of a small, predetermined command set.

The SmartMedia commands are read
(flash memory), write (to data buffers),
program (data buffers to flash memory),
erase (flash memory), reset, and status
(see Figure 2). All commands require
one or two bytes of command data.
Most require address data to follow.

Command bytes are written with
the command latch enable (CLE) high
and the address latch enable (ALE) low,
whereas address bytes require the
opposite states. The SmartMedia cir-
cuitry grabs the data presented on the
8-bit I/O bus on the rising edge of the
write enable (WE).

When the first byte sent is command
90H with a following address byte of
00H, the SmartMedia retrieves two
bytes from a special ID area. These
bytes can be read from the SmartMedia
device by lowering CLE and ALE and
bringing the read enable (RE) line low
once for each byte. The data is stable
35 ns after the falling edge of RE.

The first byte is a manufacturer’s
code and the second byte is a device
code. These bytes are important be-

Photo 1 —The SmartMedia shown here on top of the
3½″ and 5¼″ diskettes look like toys, but each one
holds many times the capacity of their predecessors.

Figure 1 —Unlike conventional memory, each page of data has its own
spare area associated with it.

SmartMedia NAND flash array
(Axx)

(A14)

x blocks = device
(A9–Axx)

32 pages = block
(A9–A13)

I/O 8 bits wide

256
bytes

(A0–A7)
(A8 = 0)

256
bytes

(A0–A7)
(A8 = 1)

16 spare
bytes

Page

CIRCUIT CELLAR ® Issue 110 September 1999 83www.circuitcellar.com

Figure 2— This chart
shows how the control
lines are used for each
of the SmartMedia
commands.

has completed and whether or not any
program errors were discovered.

PHYSICAL VS. LOGIC FORMAT
The physical format is all you need

to write data to and read data from
SmartMedia. All SmartMedia is pre-
formatted; all pages are erased to FFH,
with any invalid pages marked at loca-
tion 517 (6 bytes into the spare 16-byte
array) with a 00H. To help standardize
SmartMedia and ensure compatibility,
the devices should be logically format-
ted in a familiar file structure.

Although SmartMedia is not byte
writeable and the I/O structure makes
it slow for random access, it’s ideal for
applications requiring lots of storage.
In Part 2, we’ll look more at the SSFDC
Forum and I’ll demonstrate how you
can interface to SmartMedia in a
project of your own. I

CLE

H

L

H

L

L

L

L

X

X

X

X

ALE

L

H

L

H

L

L

L

X

X

H/L

X

*CE

L

L

L

L

L

L

L

X

X

X

H

*WE

H

H

X

X

X

X

*RE

H

H

H

H

H

H

X

X

X

X

*WP

X

X

H

H

H

X

X

H

H

L

H/L

Mode

Read mode
Command input

Address input 3 bytes (or 4)

Command input

Address input 3 bytes (or 4)

Data input

Sequential read and data output

During read (busy)

During program (busy)

During erase (busy)

Write protect

Stand-by

Write mode

dot is read by a pair of contacts on the
SmartMedia socket and must be inter-
preted by your hardware.

FILL’N IT UP
I don’t know about you, but to me,

erasing something means getting rid of
everything. But with memory devices,
erasing is filling each memory cell
with 1’s. This is more like charging
than like erasing memory.

And when it comes to program-
ming, you need only worry about cells
that have to be 0. Merely poke a hole
in the bottom of each appropriate cell
and let the unwanted 1 drain out.

A block (16K) is the smallest por-
tion that can be erased at once, so
only addresses A14–Axx are needed.
Following the command byte 60H,
only two address bytes (or three for 32+
MB SmartMedia) need to be passed.

But erasing will not commence
automatically unless the command
D0H follows the previous command
and address bytes. This prevents unin-
tentional erases. You can read the
status to determine when the erasure
has completed and whether or not any
erasure errors were discovered.

Writing to the SmartMedia is simi-
lar to erasing a block, but it’s handled
on a page basis. Like reading, you may
start anywhere within the page. The
pointer is A0–A7 (the first address byte),
with A8 being the least significant bit
of the command (here, 80H or 81H).

Following the rest of the address,
A9–Axx (which selects the page and
block), there is an “are you sure”
command necessary as with erasing.
This command byte, 10H, begins the
page programming process. And, as
with erasing, you can read the status
to determine when the programming

Jeff Bachiochi (pronounced“BAH-key-
AH-key”) is an electrical engineer on
Circuit Cellar’s engineering staff. His
background includes product design
and manufacturing. He may be reached
at jeff.bachiochi@circuitcellar.com.

REFERENCE

SSFDC Forum, www.ssfdc.or.jp/
english/index.htm

SOURCES

SmartMedia
Toshiba
(408) 737-9844
Fax: (408) 737-9905
www.toshiba.com

Samsung Semiconductor, Inc.
(408) 544-4000
Fax: (408) 544-4907
www.usa.samsungsemi.com

www.sfdc.or.jp/english/index.htm
www.toshiba.com
www.samsungsemi.com

84 Issue 110 September 1999 CIRCUIT CELLAR ® www.circuitcellar.com

w hat a rags to
riches story, eh?

Who would have
thought that a lowly

’70s-vintage controller would be such
a hit? Resurrection of the PIC has
rocketed Microchip from obscurity to
number two in the 8-bit MCU biz,
breathing down longtime leader
Motorola’s neck.

Microchip continues to expand and
freshen the PIC lineup—a wise move
since the MCUs account for 80% of
their sales. Competition is intense, and
no one can afford to rest on their laurels.

Say hello to the new PIC18Cxxx
shown in Photo 1. If the original
PIC16C5xx I wrote about back in ’92
was the mini-pickup of MCUs, then
the ’18Cxxx can be considered a Land
Rover. With lots more luxo-features
and options, it’s still able to get the
job done when the going gets tough.

MICRO MAKEOVER
Of course, an MCU with upscale

pretensions needs a strong motor,
which is why the ’18Cxxx offers sig-
nificant improvement in performance,
instruction set, memory capacity, and
organization (see Figure 1).

Speed has always been a relative
advantage for the PIC over most other
8-bit MCUs. PICs might not be able
to do everything, but what they can
do they do rather quickly. Back in ’92,

the 5 MIPS (four clocks for most in-
structions at 20 MHz) on tap were a
notable advantage over the 1–2 MIPS
of other popular chips.

However, the years since have seen
the PIC speed advantage slowly but
surely eroding compared to both his-
toric competitors (i.e., turbo-51’s from
Dallas and Philips) and new contend-
ers (Atmel AVR, Scenix SX, etc.).

To stay near the front of the pack, the
’18Cxxx boosts performance to
10 MIPS by jacking the clock rate to
40 MHz. Along with the traditional
clock options (crystal/resonator, oscil-
lator, external RC), the ’18Cxxx incor-
porates a clock that quadruples the
PLL.

It works with a commodity 4–
10-MHz crystal (i.e., 16–40-MHz CPU
clock) while reducing EMI concerns
and leaving headroom for future
speedups. Another new addition is an
extra on-chip oscillator that can be
selected as an alternate CPU and pe-
ripheral clock under software control.

Memory addressing and organiza-
tion were, to put it politely, never the
PIC’s strong suit. Designed back when
memory cost more than peanuts, the
original PIC architecture didn’t foresee,
nor deal particularly well with, the
integration of more than a few kilo-
bytes of memory.

The ’18Cxxx takes advantage of the
new instruction set to expand program
space to 2 MB (i.e., one million 16-bit
instructions) and data space to 4 KB
by adding a two-word instruction
format for handling extended branch
offsets and RAM addresses. And to
make life easier for both ASM and C
programmers, three dedicated index
registers with autoincrement and
-decrement support a software stack.

Although a bit ironic, it’s a fact that
RISCs are becoming more CISCy all the
time—and the ’18Cxxx, with more than
twice the instructions of the original PIC
(75 vs. 33), is no exception. Some may
chafe at the fact that the ’18Cxxx is only
source-code-compatible with earlier
parts, but the need to execute old binaries
is mainly a problem for PCs, not MCUs.
And it’s not as though the extra instruc-
tions, including stalwarts such as bit
manipulation and single-cycle multiply,
aren’t welcome.

PIC Up the Pace

It’s a
close
race on
the fast
track of

the MCU industry,
and Microchip’s latest
entry is looking to the
inside on the leader.
Join Tom as he
shows us how this
new PIC can tune up
our applications.

SILICON
UPDATE

Tom Cantrell

 CIRCUIT CELLAR ® Issue 110 September 1999 85www.circuitcellar.com

Power-up

Oscillator
start-up timer

timer

Power-on

Watchdog
timer

Instruction
decode and

control

OSCA1/CLKAI
OSCA2/CLKAO

*MCLR VDD, VSS

RA4/T0CKI
RA5/AN4/*SS/LVDIN

RB0/INT0

RB7:RB4

RC0/OSCB2/CLKBI
RC1/OSCB1/CCP2(1)

RC2/CCP1
RC3/SCK/SCL
RC4/SDI/SDA
RC5/SDO
RC6/TX/CK
RC7/RX/DT

Brown-out
reset

reset

Addressable
CCP1

Master

Timer0 Timer1 Timer2

serial port

RA3/AN3/VREF+

RA2/AN2/VREF–

RA1/AN1
RA0/AN0

Parallel slave port

Timing
generation

 PLL

A/D converter

RB1/INT1

Data latch

Data RAM
(up to 4 KB

Address latch

Address<12>

12
(2)

BSR FSR0
FSR1
FSR2

logic

4 12 4

PCH PCL

8

31 Level stack

Program counter

PRODLPRODH

8 8 Multiply

WREG

8

BIT OP
88

ALU<8>

8

Test mode
select

Address
latch

Program
memory
(up to
2MB
Data
latch

20

21

21

16

8

8

8

inc/dec logic

21

8

Data bus<8>

8

 Instruction

12

3

Timer3

RD7/PSP7:RD0/PSP0

RE0/AN5/*RD

RE1/AN6/*WR

RE2/AN7/*CS

CCP2

RB2/INT2
RB3/CCP2(1)

OSCB1
OSCB2

PCU

RA6

Precision
bandgap

synchronous
USART

register

8

Table pointer<21>

PCLATU PCLATH

Decode inc/dec

Bank0, F

reference

Table latch

ROM latch

×

4×

address reach)

Port A

Port B

Port C

Port D

Port E

For example, handling table look-
ups on the original PIC posed a prob-
lem faced by Harvard architectures
with physically separate program
(ROM/OTP/flash memory) and data
(RAM) memories. It’s easy enough to
store a table or string constant in
nonvolatile program memory—just
include it in the .HEX file when you
burn the chip. But getting at it is an-
other story, because the program mem-
ory can’t be accessed as data.

Some clever PIC guru of yore figured
out a jump-table hack that exploits a
variant of the RETURN instruction
(RETLW) that specifies a byte literal to
be loaded into the W regis-
ter. To find the nth byte in
a table, you do a computed
CALL to TABLE+n where a
RETLW instruction with the
desired value resides. Very
clever, but also very ugly
(and wasteful, consuming a
16-bit RETLW opcode for
each 8 bits of data).

While purists may argue
that the new ’18Cxxx table-
lookup instructions (using a
21-bit pointer register for
individual-byte access to
the entire 2-MB code space
as shown in Figure 2) are
counter to RISC theology,
long-suffering PIC program-
mers will no doubt breathe
a sigh of relief.

INTERRUPT DRIVEN
I still remember being

bemused by the fact that
the original PIC didn’t have
an interrupt input. By con-
trast, the ’18Cxxx includes a
total of 17 interrupt sources,
including on-chip peripher-
als and three dedicated pins
(INT0–2). There’s a Port B
change interrupt that detects
activity on four pins of Port
B (RB7–4), which is useful
for keypads and buttons.

A two-level (high and
low) priority scheme sup-
ports nested interrupts (i.e.,
a high-priority request can
interrupt a low-priority
service routine).

Interrupt response is fast and pre-
dictable at 3–4 instruction cycles (i.e.,
300–400 ns at 40 MHz). The response
time is the same whether single- or
double-word/cycle instructions are
underway when the interrupt occurs.

However, vectoring to the interrupt
routine is only part of the story. Besides
stacking the return PC, other critical
registers (i.e., the W and STATUS
registers) typically must be saved. To
expedite matters, the ’18Cxxx incor-
porates a one-level-deep fast interrupt
stack for the PC, W, and STATUS. If
not needed for interrupts, the stack is
exploited by new fast CALL and RETURN

instructions for speedy subroutine
entry and exit.

The longest journey starts with reset
and the ’18Cxxx includes everything
you’d find in an external supervisor
chip, including low-voltage detection
and power-on reset, oscillator startup,
and watchdog timers (see Figure 3).

The watchdog timer has its own
RC oscillator (18-ms timeout, with
1:1, 1:2...1:128 postscaler), so it can
run even when the chip is in Sleep
mode, which shuts off both the pri-
mary and alternate oscillators. Reset
and an interrupt or watchdog timeout
will wake up a sleeping ’18Cxxx.

Figure 1 —Initially, versions of the ’18Cxxx are available with 16/0.5 KB or 32/1.5 KB OTP/RAM, in regular (4.2–5.5 V) or low-voltage
(2.5–5.5 V) versions and in 28- or 40+ pin DIP and surface-mount packages (the 40+ pin parts include Ports D and E).

86 Issue 110 September 1999 CIRCUIT CELLAR ® www.circuitcellar.com

Table 1—Running at
40 MHz, Timer 2 and the
CCP (compare/capture/
PWM) module work
together to maximize
PWM frequency and
resolution.

Figure 2 —The TBLRD instruction,
using a 21-bit pointer register, makes
it easy to read data (such as strings
and lookup tables) stored in program
memory. There’s also a TBLWT
instruction that, for future versions of
the chip that support it (i.e., flash
memory) could modify the program
memory under software control.

’18Cxxx comes with a full quiver of I/O,
including timer/counters with capture,
compare, and PWM; serial ports; A/D
inputs; and a parallel slave interface.

The 28-pin ’18Cxxxs include three
8-bit ports (A, B, and C) while 40- and
44-pin chips add ports D and E (the
parallel slave interface). To accommo-
date all the I/O functions, practically
every pin has a multiplexed special
function. Note that ’18Cxxx devices

are pin-compatible with their like-
packaged ’17Cxxx counterparts.

TIMER ZONE
The ’18Cxxx has a total of four

timer/counters with a variety of fea-
tures and operating modes.

Timer 0 is a holdover for compat-
ibility with the good old days. It’s a
simple 8-bit timer/counter with 8-bit
prescaler. In timer mode, it increments
every instruction cycle (i.e., 100 ns at
40 MHz). In counter mode, it incre-
ments every rising or falling edge
(selectable) on a pin (RA4).

Compatibility with the past includes
warts and all. Be advised, as legions of
PIC programmers have learned the hard
way, that writing the Timer 0 data
register automatically clears the pre-
scaler, which by the way can neither

be read or written directly.
I suggest that Timer 0 is

best assigned to simple set-it-
and-forget-it-tasks. Save the
fancy stuff for the other tim-
ers that are of much more
recent vintage.

PERIPHERAL INTERFACE
CONTROLLER

That’s what General Instrument, a
company subsequently scattered to the
wind, had in mind when they came up
with the PIC way back when. It was
designed to handle I/O for their high-
hopes-at-the-time minicomputer chips.

Because the PIC’s original purpose
was to interface peripherals, it didn’t
need any of its own. By contrast, the

Table pointer (1)

TBLPTRH TBLPTRU TBLPTRL

Instruction: TBLRD*

Program memory

Program memory
(TBLPTR)

TABLAT

Table latch (8-bit)

Table pointer points to a byte in
program memory

PWM Frequency (kHz) 2.44 9.74 19.53 39.06 78.12 208.3

Timer prescaler (1, 4, 16) 16 4 1 1 1 1
PR2 Value 0xFF 0xFF 0xFF 0x3F 0x1F 0x17

Maximum resolution (bits) 10 10 10 8 7 5.5

 CIRCUIT CELLAR ® Issue 110 September 1999 87www.circuitcellar.com

Timers 1 and 3 are 16-bit units (all
16 bits readable and writable) that, like
Timer 0, count instruction cycles or pin
edges. In addition, both can optionally
select the alternate oscillator (OSCB,
typically 32 kHz) as a clock source.

Timer 2 is an 8-bit unit with pro-
grammable pre- and postscalers, clocked
each instruction cycle. It includes a
comparator that clears the timer when-
ever the count reaches a programmed
value (i.e., essentially an auto-reload).

Timers 1, 2, and 3 work in conjunc-
tion with a pair of capture/compare/
PWM (CCP) modules, each of which
includes a 16-bit register, program-
mable prescaler (1:1, 1:4, and 1:16),
and dedicated pin.

In capture mode, the value of the
timer (1 or 3) data register is written
to the CCP register whenever the
capture condition (i.e., every rising
edge, every fourth falling edge, etc., on
the CCP input pin) is detected.

In compare mode, the CCP pin is
an output that’s updated (set high, low,
toggled, or unchanged) whenever the
timer (1 or 3) data register matches

Figure 3 —The ’18Cxxx reset circuit eliminates the need for external discrete components or supervisor ICs.

S

R *Q

*MCLR

VDD

OS CA1

WD T
module

VDD rise
de tect

OS T/PWR T

On-chip
RC OSC(1)

WD T

Time-out

OS T

10-bit ripple counter

PW RT

*C
hip_R

eset

10 -bit

Brown-out
BOREN

Stack Stack full /underflow reset

Reset

reset

Power-on reset
reset

External reset

instruction

pointer

*SLEEP

 ripple counter

Note 1: This is a separate oscillator from the
RC oscillator of the CLKIN pin.

Enable PWRT
Enable OST

the compare value programmed into
the CCP register.

Meanwhile, Timer 2 and the CCP
work in concert for PWM. In this case,
one CCP register defines the PWM
period and another the duty cycle.
Table 1 shows examples of PWM

frequency/resolution tradeoffs. Note
that the PWM registers are double-
buffered, so a change in the period or
duty cycle won’t take effect until the
current cycle completes, which avoids
the possibility of glitches during the
transition.

88 Issue 110 September 1999 CIRCUIT CELLAR ® www.circuitcellar.com

SERIAL SOLUTIONS
Although PIC programmers

have honed bit-banging to a fine
art, there’s no doubt that many
applications have better use for
their MCU than babysitting a
serial port in software.

To that end, the ’18Cxxx has
both a clocked serial port
(known as a Master Synchro-
nous Serial Port [MSSP]) and an
async port (called an Address-
able USART [AUSART]).

The clocked serial port is
versatile, able to handle both of
the popular standard protocols,
I2C and SPI. In particular, it fully sup-
ports the more complicated protocol
features in hardware.

For instance, I2C multimaster mode
requires that each master perform
arbitration to make sure another mas-
ter isn’t trying to butt in. Each master
must confirm that the bus in fact
reflects what they are trying to send
(i.e., a master has to listen at the same
time it is talking). Without the specific
support that the ’18Cxxx provides (i.e.,

hardware-collision detection), I2C
multimaster mode would be quite a
challenge using software alone.

The “A” (Addressable) in AUSART
refers to the fact that the async port
supports the ninth-data-bit mode,
suitable for implementing a multidrop
bus (e.g., RS-485). Typically, the ninth
data bit is used to distinguish between
address and data packets such that
devices on the bus can ignore mes-
sages that aren’t addressed to them.

Though the AUSART has over-
run and framing error detection,
parity is left as an exercise for
the programmer.

The serial ports, both sync
and async, incorporate their
own data-rate generators, so
one of the more valuable timers
(0–3) doesn’t have to be devoted
to the cause (note: TMR2 can
optionally serve as the MSSP
clock source).

At higher MCU clock rates,
practically any required transfer
rate from fast (10 Mbps) to slow
(300 bps) is possible, though top

speed and breadth of selection is re-
duced at lower clock rates.

For in-box host connections, the
larger (40+) pin ’18Cxxxs include
Ports D and E which, in addition to
straight parallel I/O, can be configured
as a bytewide parallel slave interface
(see Figure 4). Port D is the 8-bit data
while three lines of Port E function as
*RD, *WR, and *CS handshake con-
nections with the host.

BEYOND 1S AND 0S
To top it off, the ’18Cxxx includes

a multichannel (five inputs for 28-pin
parts, eight for 40+ pin parts) multi-
plexed input 10-bit ADC. Either the
positive or negative rail can be speci-
fied as a reference or an external refer-
ence can be used as well.

The source of the A/D conversion
clock is programmable as a multiple
of the MCU clock. The conversion
clock should be programmed such that
the minimum allowed conversion
time (1.6 µs per bit) isn’t violated.

In addition to running off the main
MCU clock, the ADC also incorporates
its own RC oscillator that can be called
on to clock the conversion. Although
the conversion timing isn’t especially
accurate (typically 4–6 µs per bit, but
can vary between 2 and 9 µs per bit),
the independent RC oscillator uniquely
allows A/D conversion to proceed
while the MCU is sleeping (i.e., MCU
clock shut off).

That’s great for high-speed designs,
especially those running on batteries.
Lots of power can be saved by sleeping
during conversions instead of execut-
ing hundreds of instructions that may

Photo 1 —The new PIC18Cxxx family surrounds an enhanced CPU core
with plenty of memory and I/O.

CIRCUIT CELLAR Test Your EQ

SOURCE
PIC18Cxxx
Microchip Technology, Inc.
(888) 628-6247
(480) 786-7200
Fax: (480) 899-9210
www.microchip.com

Tom Cantrell has been working on
chip, board, and systems design and
marketing in Silicon Valley for more
than ten years. You may reach him by
e-mail at tom.cantrell@circuitcellar.
com, by telephone at (510) 657-0264,
or by fax at (510) 657-5441.

Problem 1—You have just encountered some code that was
written to time the execution speed of a function. The
resulting speed measurement varies widely from one ex-
ecution to the next. What is the problem?

Problem 3—Your coworker builds the thermocouple interface
shown in the figure. The INA118 is an instrumentation ampli-
fier suitable for amplifying small signals, such as those from a
thermocouple. A typical input
impedance on the INA118 is
about 10 GΩ.

When power is first applied to
the circuit, the output is
proportional to temperature
differential between the hot and
cold junctions of the thermo-
couple. However, after a few
minutes, the output saturates to one of the rails. If left alone,
sometimes the circuit seems to begin to function again;
sometimes, it remains saturated until power is disconnected
and then reapplied. What’s going on?

Problem 2—You have been assigned the task of pro-
gramming a robotic mouse to escape a maze. The maze
is guaranteed not to have any islands. Can you describe
a general algorithm that will determine which route to
take without keeping track of where you have been so
far?

Have you forgotten the basics since getting that management job? Did your university ignore real circuits and tell you that HTML was the only path to fortune? Each month, Test
Your EQ presents some basic engineering problems for you to test your engineering quotient. What’s your EQ? The answers are posted at www.circuitcellar.com along with past
quizzes and corrections. Questions and answers are provided by Ray Payne of Under Control, Benjamin Day of Schweitzer Engineering Laboratories, and Bob Perrin of Z-World.
You may contact the quizmasters at eq@circuitcellar.com.

void func_under_test(void);

speedtest()
{
 clock_t start, stop, total;
 int i;

 total = 0;
 for (i=0; i<1000; i++)
 {
 start = clock();
 func_under_test();
 stop = clock();
 total += stop - start;
 }
printf("execution time = %f\n", total / (float)1000);
}

Problem 4—Given the circuit in the figure, and assuming ideal
diodes, what is the voltage imposed across the resistor? (An ideal
diode has 0 Ω of resistance when forward biased and an infinite
impedance when reverse biased.)

do little more than wait for the con-
version to complete. In fact, if the
MCU is running faster than 1 MHz,
the datasheet indicates it should be
put to sleep during conversions using
the RC oscillator, lest accuracy suffer.

Finally, there’s an option
to configure Timer 2 and the
CCP module to trigger repeated
A/D conversions. The house-
keeping is handled in hardware
and the A/D result register can
be read at your convenience.

ONWARD & UPWARD
What’s next? Be watching

for ’18Cxxxs with more mem-
ory, flash memory (Microchip
has adopted a migratable
memory strategy that makes

all chips available in ROM, OTP, and
flash), and bigger packages with more and
fancier I/O such as USB and CAN bus.

With plenty of speed, memory, and
peripherals, the ’18Cxxx is a far cry from
the minimalist PIC of the past. The

Figure 4 —Echoing its original Peripheral
Interface Controller roots, the parallel slave
interface offers an easy way to connect to,
and offload I/O drudgery from, a host CPU.

WR LATD RDx

QD

CK

EN

Q

EN

Pin

PSPIF (PIR1<7>)

Read
*RD

*CS

*WR

TTL

TTL

TTL

TTL

or

RD LATD

Data bus

Data latch

D

Set interrupt flag

Chip select

Write

Port D

RD Port D

One bit of Port D

features, along with $5+ pricing, expand
Microchip beyond its low-cost niche and
into the high end of the 8-bit MCU biz.

Lest you fear that Microchip is
abandoning its roots, don’t forget that
when it comes to silicon, today’s high
end is tomorrow’s low end. By the way,
for those of you who want to be part
of “tomorrow,” Microchip is sponsoring
the Internet PIC 2000 design contest
(www.circuitcellar.com/online). I

+

–

x200 Ref

–5 V

+5 V

INA118

Rg

Cold junction

Vout

V1

D2

D1

k

www.microchip.com

104 Issue 110 September 1999 CIRCUIT CELLAR ® www.circuitcellar.com

PRIORITY INTERRUPT

steve.ciarcia@circuitcellar.com

A Heavy Experience in List Management

i ’ve spent the last few editorials describing my visions for Circuit Cellar’s future. If nothing else, you
should recognize that I’m a pretty conservative guy when it comes to the magazine. And I’m not just

conservative with regard to content, I’m also rather conservative when it comes to management—especially
when it comes to our subscriber list. The nightmare for all publishers is that something inadvertently happens to

that list.
Regardless of my in-house management policies, publishing a print magazine involves precisely coordinating a

number of subcontracted services. The magazine address is Vernon, CT. That’s where the entire contents of the
magazine, things like editorial and advertising, are put together as digital files.

Once a month these files are sent to Dartmouth Press in New Hampshire where they physically print Circuit Cellar
along with 40 or 50 other magazines. (If you’ve never seen a 100′ four-color web press in action, it’s worth a trip to a
printer.) Before they roll the presses, they look at a physical print order from us that says how many issues to print and
where to mail them after they are printed. The magnetic tape containing all the subscriber names for the issue comes
from our subscription fulfillment house in Philadelphia.

Contrary to what you might have thought, and in spite of the personal care you get on subscription questions from
Rose Mansella here in our office, only the largest (or smallest) magazines can afford to handle their own subscriber
lists. The fulfillment service has the people who open the envelopes with your renewals and key in all the information
and address changes. Like the printer, a fulfillment service handles multiple magazines. When it works, it’s a great
system.

According to the fulfillment service, they screwed it up for the first time in 35 years in July (and I was the lucky
winner). The person shipping the magnetic tapes put the subscriber tape for Heavy Metal magazine in the box to
Dartmouth and sent our list to Heavy Metal’s printer. Consequently, at least 15,000 Circuit Cellar subscribers received
the latest issue of Heavy Metal!

I found out about all this just like most of you did. I went home and my wife said, “You’ll never guess what I got in
the mail today.” Needless to say, I was horrified when I finally traced it back to our own list!

The saga didn’t end there. Just as Dartmouth was about to mail August’s Circuit Cellar to the list of subscribers on
the fulfillment tape they had be given, a smart lady up there looked at our print order and noticed that something didn’t
add up. They had printed a lot more magazines than there were names on the tape. Dartmouth called the fulfillment
house and asked for another tape. The second time around, the right tape got to New Hampshire. If Dartmouth hadn’t
been on the ball, a good portion of our August issue would have ended up in the hands of Heavy Metal readers. (I
wonder if they would view Circuit Cellar with a similar horror?)

The fact that we didn’t lose our August issue alleviates some of the pain in this fiasco. Still, I feel the need to
apologize to all of you. It was not a case of misappropriating our subscriber list, but it was a mistake (big). I just wish it
had been a magazine like US News or Scientific American instead of Heavy Metal.

The primary reason for my talking about the exact details of this screw-up is because I don’t want anyone to think
that I would ever rent our list to such an inappropriate and tasteless magazine as Heavy Metal.

Yes, I occasionally rent the subscriber list. However, I assure you that I always personally review what they want
to mail to you and I have my home address on that list (as a hidden seed) to verify it. I value my relationship with all of
you, and I respect that subscribing to the magazine also involves a certain level of propriety with your name and
address. I appreciate that in your responses to this situation no one accused me of making a fast buck with the list.
The events in question were a mistake. We will endeavor to prevent it from happening again.

