
CELLAR
T H E M A G A Z I N E F O R C O M P U T E R A P P L I C A T I O N S

w
w

w
.c

ir
c

u
itc

e
lla

r
.c

o
m

CIRCUIT
®

 # 1 1 1 O C T O B E R 1 9 9 9

EMBEDDED SOFTWARE
Open-Source Home Automation Program

Downloadable Web Server Software

How Does Windows CE Stack Up?

The Roots of Java

2 Issue 111 October 1999 CIRCUIT CELLAR ® www.circuitcellar.com

— COLUMNS —
Considering the Details
I/O for Embedded Controllers—Part 1: Digital I/O
Bob Perrin
I/O, I/O, so off to work…. Designing generic controllers
with only guesstimations of what the end-product I/O
needs might be keeps Bob busy. Save yourself some work
and look at the circuits covered in Part 1 of this series.

Lessons from the Trenches
Powering Your Memory
George Martin
Far too often, especially in programming, you can get away
with what’s less than best. Having personally tried all
the less-than-best methods to write memory management
routines, George invites you to listen in as he shares the
best way to accomplish the task.

Silicon Update Online
Wire Wars
Tom Cantrell
The action’s getting lively on the USB–
versus–IEEE 1394 front as both
sides fortify their legal
defenses and
rally

the troops.
Catch Tom’s latest

report from the front lines (and
the 1394 Developers Conference).

Double your technical pleasure each month. After you read Circuit Cellar magazine, get a
second shot of engineering adrenaline with Circuit Cellar Online, hosted by ChipCenter.

 — FEATURES —
PIC Remote Control with a Twist
Brian Millier
When he got his TV satellite dish, Brian discovered the
freedoms of satellite network programming—and the
limitations of the standard remote control. His ’16F84-
based IR remote puts him back in control.

Self-Help for Bugs in the Field: A Device-
Initiated Upgrade Solution
Peter Gravestock
Upgrading firmware after a product is in the field can
be challenging, especially when traditional methods
can’t be used. With a device-initiated architecture, Peter
shows us how easy remote and automatic fixes can be.

Testing 1, 2
Part 3—Standards: Prepping Your Prototype
George Novacek
Coping with environmental challenges is a walk in the
park in comparison to getting the power right. George
explains the testing requirements as well as the changes
you’ll need to make for your product to succeed.

Ethernet Networking: Desktop to Device
William Peisel and Dick Caro
Afraid to venture into the gloomy tangle of
Ethernet? William and Dick aren’t telling
tales when they say low costs and
Internet integration capa-
bilities will lead to
Ethernet

networks at
all levels of industry

in the near future.

Resource Links
• CAN–Controller Area Network
• Digital Signal Processing
Benjamin Day
• Printed Circuit Board Software and Manufacturers
• Pointers to Nanotech
Bob Paddock

Test Your EQ
8 Additional Questions

Connect Your PIC to the Internet

NOW, GETTING CONNECTED TO THE
INTERNET CAN EARN YOU CASH

www.circuitcellar.com/pic2000

PIC® 2000contest

Internet

Table of Contents for September 1999

WWW.CIRCUITCELLAR.COM/ONLINE

CIRCUIT CELLAR ® Issue 111 October 1999 3www.circuitcellar.com

38 Nouveau PC
edited by Harv Weiner

40 What’s in a Name?
Windows CE vs. a Hard RTOS
Mal Raddalgoda

45 RPC Real-Time PC
Where in the World...
Part 3: Fighting the Wind with GPS
Ingo Cyliax

50 APC Applied PCs
GoAhead for Nothing—Getting the Server Started
Fred Eady

ISSUE
INSIDE

MisterHouse—An Open-Source Home Automation Program
Bruce Winter

The Java Virtual Machine
Dave Lyons

A Versatile Timer/Synchronizer
Brian Millier

Calling on the Standards—Making Sure Your Modem Can Communicate
Arthur J. Carlson

Hands-On PIC Trainer—Programming in Assembly
Jon Varteresian

IrDA Technology—Part 1: An Overview
Hari Ramachandran

I MicroSeries
Rolling Your Own Microprocessor
Part 2: Design Application with the Rabbit-80
Monte Dalrymple

I From the Bench
Get SmartMedia—Part 2: Hands On
Jeff Bachiochi

I Silicon Update
‘Net-in-a-Chip
Tom Cantrell

6

8

11

83

95

 96

12
20
24
30
56
60
66

72

78

111111

Task Manager
Elizabeth Laurençot
Open for Business

New Product News
edited by Harv Weiner

Reader I/O

Test Your EQ

Advertiser’s Index
November Preview

Priority Interrupt
Steve Ciarcia

Spreading the Wealth
of Knowledge

6 Issue 111 October 1999 CIRCUIT CELLAR ® www.circuitcellar.com

THE MAGAZINE FOR COMPUTER APPLICATIONS

TASK MANAGER

EDITORIAL DIRECTOR/PUBLISHER
Steve Ciarcia

MANAGING EDITOR
Elizabeth Laurençot

TECHNICAL EDITORS
Michael Palumbo
Rob Walker

WEST COAST EDITOR
Tom Cantrell

CONTRIBUTING EDITORS
Mike Baptiste George Martin
Ingo Cyliax Bob Perrin
Fred Eady

NEW PRODUCTS EDITOR
Harv Weiner

PROJECT EDITOR
Janice Hughes

ASSOCIATE PUBLISHER
Sue Skolnick

CIRCULATION MANAGER
Rose Mansella

CHIEF FINANCIAL OFFICER
Jeannette Ciarcia

CUSTOMER SERVICE
Elaine Johnston

ART DIRECTOR
KC Zienka

GRAPHIC DESIGNER
Jessica Nutt

ENGINEERING STAFF
Jeff Bachiochi
Ken Davidson

John Gorsky

Cover photograph Ron Meadows—Meadows Marketing
PRINTED IN THE UNITED STATES

For information on authorized reprints of articles,
contact Jeannette Ciarcia (860) 875-2199 or e-mail jciarcia@circuitcellar.com.

Circuit Cellar® makes no warranties and assumes no responsibility or liability of any kind for errors in these programs or schematics
or for the consequences of any such errors. Furthermore, because of possible variation in the quality and condition of materials and
workmanship of reader-assembled projects, Circuit Cellar® disclaims any responsiblity for the safe and proper function of reader-
assembled projects based upon or from plans, descriptions, or information published in Circuit Cellar®.
Entire contents copyright © 1999 by Circuit Cellar Incorporated. All rights reserved. Circuit Cellar and Circuit Cellar INK are registered
trademarks of Circuit Cellar Inc. Reproduction of this publication in whole or in part without written consent from Circuit Cellar Inc.
is prohibited.

CONTACTING CIRCUIT CELLAR
SUBSCRIPTIONS:

INFORMATION: www.circuitcellar.com or subscribe@circuitcellar.com
TO SUBSCRIBE: (800) 269-6301 or via our editorial offices: (860) 875-2199

GENERAL INFORMATION:
TELEPHONE: (860) 875-2199 FAX: (860) 871-0411
INTERNET: info@circuitcellar.com, editor@circuitcellar.com, or www.circuitcellar.com
EDITORIAL OFFICES: Editor, Circuit Cellar, 4 Park St., Vernon, CT 06066

AUTHOR CONTACT:
E-MAIL: Author addresses (when available) included at the end of each article.
ARTICLE FILES: ftp.circuitcellar.com

CIRCUIT CELLAR®, THE COMPUTER APPLICATIONS JOURNAL (ISSN 0896-8985) is published monthly by Circuit Cellar
Incorporated, 4 Park Street, Suite 20, Vernon, CT 06066 (860) 875-2751. Periodical rates paid at Vernon, CT and additional offices.
One-year (12 issues) subscription rate USA and possessions $21.95, Canada/Mexico $31.95, all other countries $49.95.
Two-year (24 issues) subscription rate USA and possessions $39, Canada/Mexico $55, all other countries $85. All
subscription orders payable in U.S. funds only via VISA, MasterCard, international postal money order, or check drawn on U.S. bank.
Direct subscription orders and subscription-related questions to Circuit Cellar Subscriptions, P.O. Box 698, Holmes, PA
19043-9613 or call (800) 269-6301.
Postmaster: Send address changes to Circuit Cellar, Circulation Dept., P.O. Box 698, Holmes, PA 19043-9613.

ADVERTISING
ADVERTISING SALES MANAGER

Bobbi Yush Fax: (860) 871-0411
(860) 872-3064 E-mail: bobbi.yush@circuitcellar.com

ADVERTISING COORDINATOR
Valerie Luster Fax: (860) 871-0411
(860) 875-2199 E-mail: val.luster@circuitcellar.com

ADVERTISING CLERK Sally Collins

elizabeth.laurencot@circuitcellar.com

EDITORIAL ADVISORY BOARD
Ingo Cyliax Norman Jackson David Prutchi

Open for Business

w hen people are asked what they want to be
remembered for, a common response is that

they want to be remembered for having contributed
something. There are countless ways this can happen.

Although you may be a philanthropist who donates a million dollars to a
university so less-advantaged students can obtain a good education, or you
may be a scientist who develops a vaccine that saves thousands of lives,
most of us are going to be remembered for smaller gestures. I’m sure you’ve
heard it said before, but let me repeat it here: it’s the little things that count.
The small kindnesses and efforts in day-to-day life are what truly matters.

It doesn’t have to be entirely altruistic; you can benefit from your efforts
now, whether it’s on a financial or personal-satisfaction scale. And you don’t
have to contribute to everything everywhere. It’s a good idea to choose your
causes wisely and pick something that interests you. This month, I want to
mention a couple options that may appeal to embedded software engineers.

In this issue, Bruce Winter presents an open-source home-automation
program he developed. This Perl-based program can be accessed online,
and Bruce encourages everyone to add to it (one programmer has already
put together a GPS-based module that tracks car location from home) and
to share the results. So, if you’re interested in programming for home auto-
mation, check out www.misterhouse.net.

Speaking of open-source software, we’ve received a lot of great feedback
about Ingo’s Real-Time PC series on RT-Linux. There’s so much interest
these days in this POSIX-based OS! Linux operates under the GNU Public
License, which means that the source code must be made available. Why
would anyone want to give their source code away? Consider what Richard
Stallman wrote in the GNU Manifesto (www.fsf.org/gnu/manifesto.html):

“I consider that the golden rule requires that if I like a program I must
share it with other people who like it. … GNU serves as an example to
inspire and a banner to rally others to join us in sharing. This can give us a
feeling of harmony which is impossible if we use software that is not free.
For about half the programmers I talk to, this is an important happiness that
money cannot replace.”

You may object, “Don’t programmers deserve a reward for their creativ-
ity?” Richard’s response: “If anything deserves a reward, it is social contri-
bution. Creativity can be a social contribution, but only in so far as society
is free to use the results.” So, don’t say, “Oh, that GNU stuff is none of my
business.” Make it your business; find out how you can contribute!

Finally, if you enjoy playing with web technologies, consider helping out
at Linux Online (www.linux.org/about/assist.html). You’ll even earn a coffee
mug for your work! Perhaps you’ll just get a coffee mug out of the
experience, but I bet you’ll get a whole lot more.

8 Issue 111 October 1999 CIRCUIT CELLAR ® www.circuitcellar.com

NEW PRODUCT NEWS
Edited by Harv Weiner

PICmicro EXPERIMENTER/LAB BOARD
The PIC-X1 is a testbed containing a prototyping

area and most of the circuitry commonly used with
PICmicros, including a 5-V power supply, crystal-con-
trolled oscillator (adjustable from 4 to 20 MHz), and
reset circuit. Application circuits include a switch
matrix, potentiometers, LEDs, LCD module, serial
EEPROM, real-time clock, temperature sensors, servo
connectors, RS-232/-485 and IR interfaces, and speaker.

All of the I/O pins are brought out to headers next
to a 40-pin ZIF socket. This allows connection to
offboard circuits as well as allowing onboard circuits to
be connected to other PICmicro pins, if desired. The
PIC-X1 is designed to work with 40-pin PICmicros, but
may be jumpered to work with smaller devices.

Projects such as calculators, LCD clocks, digital
thermometers, LCD backpacks, tone dialers, TV re-
mote controls, and so forth may be created using the
PIC-X1. It includes in-circuit programming connectors
so the resident PICmicro may be reprogrammed on-the-
fly (requires flash device) using programmers that sup-
port this feature, like the EPIC PICmicro Programmer.

The PIC-X1 is priced at $199.95 for an assembled unit,
$139.95 unassembled, or $49.95 for a bare PCB. A parts
list, schematic, and example programs are also included.

microEngineering Labs, Inc.
(719) 520-5323 • Fax: (719) 520-1867
www.melabs.com

EMBEDDED CONTROLLER MODULE
Uni-Micro is a compact, 8051-compatible embedded

controller module featuring a combination of memory,
digital I/O, and analog I/O that is perfect for instru-
mentation, monitoring, and control applications. It
provides enhanced JTAG-based serial programming
that is six times faster than parallel programming. The
module features 128 KB of flash memory, 32-KB boot/
data flash, 256 bytes of RAM, 2-KB battery back-up
scratchpad SRAM, 3000 gates programmable logic, and
54 programmable I/O pins.

The eight I/O ports on the Uni-Micro can function
as microcontroller I/O, CPLD I/O, address out, address
in, latched address out, latched address in, data port,
special function out, alternate function in, peripheral
I/O, or open-drain outputs. Each I/O port is easily
configurable by programming two sets of 8-bit regis-
ters, each bit controlling a single pin in the I/O port.

Serial programmability is required for first-time, in-
system programming. Without it, first-time flash
programming can only be accomplished using a con-
ventional external EPROM programmer or boot code
stored in the MCU ROM. Serial programming of the
Uni-Micro module can be accomplished using a PC
equipped with a JTAG board.

By integrating all the programmable logic, concurrent
flash memory, data flash memory, SRAM, and I/O MCU
core, the Uni-Micro Module has a power consumption
of only 57 mA at 16 MHz.

Uni-Micro sells for $59.

OS Systems Inc.
(908) 979-1885
Fax: (908) 979-3414
www.ossystems.net

www.ossystems.net
www.melabs.com

CIRCUIT CELLAR ® Issue 111 October 1999 9www.circuitcellar.com

NEW PRODUCT NEWS
FIBER-OPTIC MODEM

The Model 232FLST Fiber-Optic Modem provides
the EMI/RFI and transient immunity of fiber optics in
a transparent cable connection between PCs or other
devices. It is ideal for data acquisition and other com-
munication applications that are employed in electri-
cally noisy environments.

A pair of the devices will enable any two
pieces of asynchronous RS-232 equipment to
communicate full or half duplex over two
fibers up to 2.5 mi. RS-232 data signals at up
to 115.2 kbps and RTS/CTS handshake lines
are supported. Port powering allows operation
without external power in most PC applications.
Low-powered ports such as laptops may require an
optional 12-V power supply.

The RS-232 connector is DB-25 female and the
fiber cable connectors are ST style. The modem is
only 4.3″ × 2.3″ × 1″.

The modem sells for $154.95 (two are required to
connect two components). An optional power supply is
available for an additional $14.95.

B&B Electronics
(515) 433-5100
Fax: (815) 433-5105
www.bb-elec.com

www.bb-elec.com

10 Issue 111 October 1999 CIRCUIT CELLAR ® www.circuitcellar.com

NEW PRODUCT NEWS
PHONE LINE SIMULATOR KIT

Ring-It! is a microprocessor-controlled telephone-line
simulator that acts like a phone company central office
and is used to test and
demonstrate telephones,
answering machines, fax
units, voicemail systems,
or modems. It supports E-
911 training and caller-ID.
An external audio jack is
included for call-monitor-
ing applications.

The simulator emulates
an analog telephone line.
For example, a connected
telephone produces an
authentic-sounding dial tone. Dialing a seven- or
eleven-digit phone number with a touch-tone phone
rings the device plugged into the test line. Busy signals
and reorder tones can also be heard.

The caller-ID feature provides number-only or name/
number messages. Five different test modes offer stan-

dard telephone-line emulation or special repetitive-cycle
testing, including automatic ring-up. An LED readout

displays the DTMF digits
that are dialed to verify use
of touch-tone phones.

Ring-It! can be purchased
assembled or as a kit that
includes a PCB, electronic
components, and a techni-
cal manual.

The factory-assembled
unit (RI-001F) sells for $325.
The deluxe kit (RI-001D) is
$205 and includes the
caller-ID option and cus-

tom enclosure. Non-caller-ID kit versions (RI-001) are
available starting at $149.

Digital Products Co.
(916) 985-7219 • Fax: (916) 985-8460
www.digitalproductsco.com

www.digitalproductsco.com

CIRCUIT CELLAR ® Issue 111 October 1999 11www.circuitcellar.com

READER I/O
KEEPING UP TO DATE

John Luo’s article in the June issue (107) “Compact
Optical Image Scanner” discussed a design built around
the Texas Instruments TSL1401 linear photodiode array.

TI no longer supports this device, but Texas Ad-
vanced Optoelectronic Solutions (TAOS) has licensed
the optoelectronic sensor product portfolio (which
includes the TSL1401) from TI. Information can be
found at www.taosinc.com or by calling (972) 673-0759.

Carl Strippoli
cstrippoli@taosinc.com

FINDING THE WAY AROUND SA
I enjoyed the GPS article by Ingo Cyliax in the

August issue (109) and the earlier series by Do-While
Jones (Circuit Cellar 77–78). Both did a great job of
getting right to the meat of the matter. However, both
articles may give readers a misunderstanding with
regards to Selective Availability (SA) and position error.

The DoD implemented SA by diddling with the
timing of the signals, among other things. This trans-
lates into a different range error for each satellite.
These range errors, once crunched through the math,
give the position errors noted in the articles.

Both articles gave the impression that the SA errors
can be “subtracted out” by knowing the position error
of a known fixed site. Here’s the rub—the fixed site’s
error in position will only be the same as the observer’s
if both positions were computed from the same set of
satellites. In the real world, any two GPS receivers may
use different satellites if one particular satellite is
locally obscured. In that case, the position errors are
largely uncorrelated, and fixing the problem, as out-
lined in the articles, can actually make matters worse!

To fix SA, broadcast the range errors, not the position
error, so the corrections can be made before the data is
crunched. That’s what the Coast Guard and other
DGPS providers do. I hope this clarifies things.

John Wilson
Annandale, VA

www.taosinc.com

12 Issue 111 October 1999 CIRCUIT CELLAR ® www.circuitcellar.com

MisterHouse

FEATURE
ARTICLE

Bruce Winter

l
If you thought that
talking houses only
existed in cartoons,
it’s time for you to
meet MisterHouse.
This Perl-based
program can tell you
who’s on the phone,
what room your kids
are in, the latest
weather forecast,
and more.

et’s start with
a quiz. Which of

the following best
matches your philosophy

in home automation?

• Computers are too ornery and difficult
to manage to be meddling in daily
affairs of the house.

• Automating daily house chores with
a computer is a fun and useful thing
to do, but it can only reliably be done
with a dedicated and specialized
microprocessor.

• PCs are destined for more than just
sending e-mail and playing golf;
soon they will rule the world (or at
least parts of your house)!

If you subscribe to the first philoso-
phy, you’re probably reading the wrong
magazine. I bet a good number of you
are members of group two. I used to be
a member of this group when I started
working with home automation (HA)
with Steve’s first Home Run HA sys-
tem from the BYTE magazine days.

Over the years, as PCs got faster
and cheaper, I’ve migrated to the third
group. The nice thing about doing HA
on a PC is that you have a much wider
choice of programs and hardware to
integrate. Every day it seems like there
is some neat new program or device
you can hook into a PC.

At my day job (designing chips at
IBM), I’ve found great productivity in
a programming language called Perl.
About a year ago, I decided to write a
Perl-based, open-source multiplatform
HA program. I call it MisterHouse—
which is easier than calling it a Perl-
based, open-source multiplatform HA
program.

This article gives a little background
on MisterHouse and shows how I use
it to log phone calls and announce who
is calling over our house PA system.

WHY OPEN SOURCE
It used to be that when someone

wrote a program and then made it
available for free, it was called “free
software.” Often, only the binary for
the program would be distributed.

Recently, the term “open source”
has been promoted. There’s an official
definition at www.opensource.org/
osd.html, but the basic idea is that
the source of the software is posted on
the Internet so that anyone can help
work on it.

With new hardware becoming
available daily and the amount of
information on the Internet growing
exponentially, the number of HA
possibilities is growing faster than
any one person can possibly keep up
with. Using the open-source idea, if
the program doesn’t do what you need
done, you can extend it and then share
it for others to use.

In the few months that I have had
MisterHouse (MH) posted online, I
have reaped not only lots of good ideas
from other users, but also bug fixes,
code extensions, and completely new
applications.

THE OS DECISION
Here’s another quiz: Which is the

better OS to do HA on? Windows and
the great wealth of fun software avail-
able on it, or a Unix OS with its im-
proved reliability and multitasking?

Can’t decide? With Perl you can
run on either OS! In fact, Perl is avail-
able on several different OSs, but I’ve
only tested MisterHouse on Windows
95, 98, NT 4.0, Linux, and AIX.

By using the same underlying inter-
face subroutines, you can keep the
higher-level user event code platform-

An Open-Source Home Automation
Program

www.opensource.org/osd.html

 CIRCUIT CELLAR ® Issue 111 October 1999 13www.circuitcellar.com

independent. For example, on Windows,
a serial port item will use the Serial-
Port module to read and write serial
data using Win32 API calls to a serial
port DLL. On a POSIX-compatible Unix
system (Linux and most others), that
call is translated by the SerialPort
module to use POSIX TERMIOS calls.

Here’s another example. When you
ask MH to run a background process
on Windows, the Perl Win32::Pro-
cess module is used; on Unix, the fork
function is used. The user code is the
same, regardless of the platform.

VOICE IN, VOICE OUT
Much of the fun in HA comes when

your computer talks and listens. Perl
doesn’t come with built-in voice soft-
ware, but it talks to programs that do.

On Unix, you can implement text
to speech (TTS) with the Festival speech
synthesis system. Festival provides a
server that MH can talk to via TCP/IP

sockets, and you can plug in different
voices and languages.

On Windows, you can do both TTS
and voice recognition (VR) using freely
downloadable engines from Microsoft.
These engines provide access via OLE
methods, which Perl also supports.
Several different voices are available,
including some digitized voices that
sound amazingly humanlike.

The VR is in a command-and-con-
trol mode (i.e., it will not recognize
any arbitrary set of words; only the
ones from a set of phrases you specify
using the MH Voice_Cmd object).
This mode improves reliability over
what you might get with a dictation
mode, where any word can be expected.

PICK YOUR INTERFACES
All of the voice command objects

you specify will be available with VR,
as well as from the command line, a
GUI Tk interface, and a web interface.

The Tk interface is built using Perl
Tk widgets. These widgets enable us
to create GUI objects with just a few
lines of code. Photo 1 shows the de-
fault Tk interface.

The web interface can be used from
any Internet browser, whether it’s in
your house or not. The interface uses
a web-authentication password to allow
remote control (e.g., go to misterhouse.
net and you can take a look at the one
on my house).

Using HTML templates, the web
interface can be easily changed. The
default web interface is shown in
Photo 2.

Other programs communicate with
MH through TCP/IP sockets or via
commands in a file. The “Hardware
Interfaces” sidebar shows the various
interfaces that MH currently supports.

A QUICK LESSON IN PERL
All HA programs have some sort of

programming language built in for
event programming. Instead of imple-
menting a new event-control language,
I used Perl.

Perl is a powerful language and it
can take quite a while to learn all of
its tricks. But, by using object-ori-
ented programming and extending it
with HA-related functions, MH hides
much of the complexity. Listing 1 is
an event for turning on an X-10-con-
trolled light half an hour after sunset.

Before I go on, I want to cover a
few basic Perl syntax rules. All vari-
ables start with a $. Strings are quoted
with either single or double quotes. Use
double quotes if you want variables
within the string to be substituted.

Commands begin with # and com-
mands end with a semicolon. Do loops
and conditional blocks start and end
with { }. There are two ways to do
if statements—if (test) {ac-
tion} and action if test;. If
tests are == (or !=) for numeric data
and eq (or ne) for string data.

Local variables are declared with
the function called my. Object methods
(e.g., set) can be specified in two ways:

set $dishwasher ON; # Indirect
object form

$dishwasher->set(ON); # Classic
'object oriented' form

Listing 1— This code will turn on an X-10 module set to address O5 and speak the time 30 min. after sunset.
Note how the time_now function can handle time offsets and the $Time_Now variable will get substi-
tuted on-the-fly.

$pedestal_light = new X10_Item("O5");
if (time_now "$Time_Sunset + 0:30")
{
 set $pedestal_light ON;
 speak "I just turned the pedestal light on at $Time_Now";
}

Listing 2— This code shows how incoming caller-ID data and outgoing phone numbers are spoken and logged.

$callerid = new Serial_Item('I');
$phonetone = new Serial_Item('O');

if ($caller_id_data = state_now $callerid)
{
On startup, old caller-id strings might be sent�ignore them
 if (time > ($Time_Startup_time + 15)){
 speak("rooms=all " .
 &Caller_ID::make_speakable($caller_id_data));
 }
 my ($cid_date, $cid_number, $cid_name) = unpack("A13A13A15",
 caller_id_data);
 logit("$Pgm_Path/../data/phone/logs/
 callerid.$Year_Month_Now.log", "$cid_number $cid_name");
 logit_dbm("$Pgm_Path/../data/phone/callerid.dbm", $cid_number,
 "$Time_Now $Date_Now $Year name=$cid_name");
}
Log outgoing phone numbers
if ($phonetone_data = state_now $phonetone)
{
 logit("$Pgm_Path/../data/phone/logs/phone.$Year_Month_Now.log",
 $phonetone_data)
}

14 Issue 111 October 1999 CIRCUIT CELLAR ® www.circuitcellar.com

By looking at the examples supplied
with the MH package, you can learn
what you need to know about Perl for
its use in MH. Another good starting
point is www.perl.com. The reference
book of choice is Programming Perl. If
you want to know how to do something
in particular, The Perl Cookbook is
excellent.

THE TALKING PHONE
Enough background, it’s time for

an example! If you’re going to have
your house talk to you effectively,
you can either give it a really loud
voice or you can use a house PA sys-
tem with a speaker in key rooms.

But what if you want to have a
conversation with your house in the
living room while your spouse is try-
ing to sleep in the bedroom? You can
either get him/her a nice set of earplugs
or you can insert a computer-controlled
relay card between the PA amplifier and
the speakers, as shown in Figure 1.

The digital I/O card is an inexpen-
sive ($30) PIC-based card available
from Weeder Technologies. The relay
card is a Universal Relay Card from
Jameco ($100). By modifying pa_con-
trol.pl, you can define which room
is controlled by which relay.

Now you can direct speech to the
room of your choice, using either of
the following formats:

speak "rooms=bedroom Time to
wake up";

speak(rooms => "all", text =>
"The laundry clothes are
dry");

The other two Weeder cards shown
in Figure 1 let you monitor outgoing and
incoming phone numbers. The DTMF
card detects any pressed phone keys,
and the caller-ID card decodes the name
and number of incoming calls. If you
have a caller-ID-capable modem, you
can use it instead. By sensing when the
modem is not in use, MH can share
this modem with other programs.

The code in Listing 2 monitors the
data coming from these two cards.

The Weeder kits have a simple proto-
col that uses the first character of a
string to indicate which card is send-
ing data: “I” is for the caller-ID card
and “O” is for the DTMF card. The MH
code detects these codes and stores the
incoming data in the $callerid and
$phonetone objects.

The $caller_id_data string is
parsed by the Caller_ID::make_
speakable function, which changes
the phonebook-formatted name into a
more pronounceable name. For example,
it changes “WINTER BRUCE LA” into
“Bruce Winter” by swapping fields and
dropping initials and abbreviations.

If the caller’s area code differs from
yours, this code uses a lookup table to
add the city or state that the call is
from. Optionally, it will use a user-
defined rule to replace the received
name with a more phonetically correct
name or a prerecorded WAV file.

$phonetone_data and $caller_
id_data are logged into monthly log
files that can be retrieved and displayed
by display_calls. The Tk interface
for this feature is shown in Photo 3.

The caller-ID signal is sent between
the first and second rings. In order to
give MH a chance to decode and speak
the caller-ID information before the
phones start ringing, a ring morpher is
inserted between the external phone
line and the other phones in the house.

The ring morpher has the side
effect of delaying the ring by one

Figure 1— The computer’s sound card drives the house
PA speakers through a relay card controlled by a digital
I/O interface. The phone line is monitored with DTMF
and caller-ID cards.

Serial
port

Sound
card

Computer
speakers

DTMF
decoder

Phone
line

Caller ID PA
amplifier

Digital I/O
Relay
card

Speaker
1

Speaker
...

Speaker
8

+12 V

Hardware Interfaces
CM11—The ActiveHome kit ($50) includes a two-

way X-10 CM11 interface, lamp module, and a
couple of remote controllers.

Weeder kits—Weeder Technologies offers the follow-
ing PIC kits, priced from $30 to $50 each:

• two-way X-10 interface
• 12-bit digital I/O (can be input or output, switch

or button)
• 8-port analog I/O, 10-bit resolution
• caller ID: name and number
• outgoing DTMF phone monitor

These kits are good for PCs with a limited number
of serial ports because they can all share the same
serial port.

JDS—Currently, only the two-way X-10 interface has
been tested.

WX200/198 weather stations—These weather stations are
available from Radio Shack and mail-order catalogs,
ranging in price from $200 to $300. They monitor
indoor/outdoor temperature, humidity, barometric
pressure, wind speed and direction, wind chill, and
rainfall amounts.

Modem—Using the is_available method, a caller-ID-
capable modem can be shared with other programs. It
can also be used to send messages to pagers.

Ham radio TNC modem—Using a ham receiver attached
to a radio modem (terminal node controller), MH can
monitor packet radio traffic. This information includes
locations and speed of cars equipped with GPS devices
and weather information from home weather stations.

Other serial devices—The Serial_Item object can read
and write to any serially connect device, such as an IR
controller or robotic interface.

16 Issue 111 October 1999 CIRCUIT CELLAR ® www.circuitcellar.com

cycle. This delay allows us to
hear the caller-ID announce-
ment (e.g., “phone call from Bill
Clinton”) at the same time the
phones start to ring.

OTHER EXAMPLE EVENTS
Here are a few of the events

we use to control our house.
You can find them online (see
the Software section).

I have window quilt curtains
hooked up to pulleys attached
to 24-V DC motors and a set of
relays. Each curtain has two
relays—on/off and up/down.
These relays are driven either
by local switches or by Weeder
DIO outputs. curtains.pl
monitors the outside tempera-
ture and sunlight levels using a
Weeder analog kit, and opens or
closes the south-facing curtains
to maximize solar heat gain in
the winter months.

The deep_thought.pl trivia.pl
modules display and/or speak fun facts
from various databases. It certainly
makes breakfast entertaining!

door_monitor.pl monitors door
openings and closings using magnetic
reed relays connected to Weeder DIO

inputs. Do your kids leave outside doors
open? This code issues a friendly re-
minder to close the door using the
outside PA speaker. It will also close
the garage door at night, but only after
it senses no movement in the garage.

It also monitors movements in
hallways and stairways using X-10

Photo 2— This mirrors the Tk interface, but includes an authorization password to allow secure access over the
Internet.

Photo 1— The bottom two frames are logs of what has been spoken and
logged. The upper left frame is a searchable list of commands.

movement sensors. When doors
open and close or people are
sensed in key areas, I have MH
play short, unobtrusive sounds
so I can tell where people are
going—sort of like a high-tech
squeaky door!

internet_data.pl retrieves
and processes pages off the web
(e.g., Letterman’s top 10 list, local
weather conditions). It also sets
the clock according to an Inter-
net-connected atomic clock.

The internet_mail.pl
event uses a background process
to call the get_email script,
which checks who has sent you
mail in specified e-mail boxes.
After the process has finished,
MH announces what new e-mail
you received and from whom.

Using a user-specified IP
socket port, telnet.pl lets you
use a telnet program to log in,

specify an optional password, and issue
commands.

Like a kitchen timer, timer_sec-
onds timer_minutes timer_hours
periodically tells how many seconds,
minutes, and hours are left on your
timer.

A ham-radio enthusiast wrote the
tracking.pl code. Using a GPS unit,
a pair of radios, and TNCs (terminal
node controllers), this code tracks and
announces his car’s position and speed.
Using an optional position file, it
announces position with respect to
various landmarks (e.g., “Dad’s car
has just left the IBM parking lot” or
“Junior’s car is parked at lover’s lane”).

This code does other nifty things
with packet radio (e.g., monitor current
weather conditions from the nearest
packet radio–connected weather station.

Using the get_tv_grid script in a
background process, tv_grid.pl
collects customized TV programming
from the Internet to local files. It adds
a “program the VCR” button to the
TV grid entry, so you can not only see
what’s on but also instruct MH to create
an event to start and stop the VCR at
a certain time for the specified channel.

weather_monitor.pl weather_
wx200.pl reads data from a WX200
or WM918 weather station. It then logs,
displays, and optionally speaks the data.

 CIRCUIT CELLAR ® Issue 111 October 1999 19www.circuitcellar.com

SOFTWARE
Software for the MisterHouse appli-
cation is available via the Circuit
Cellar web site, misterhouse.net,
and misterhouse.webjump.com.

Bruce Winter designs integrated cir-
cuits as a senior engineer at IBM in
Rochester, MN. This has nothing to
do with home automation, but it
sounds impressive in a bio. You may
reach him at bruce@misterhouse.net.

Photo 3— The display_callers function shows incoming calls, outgoing calls, a list of all past callers, and a
pick list of the logs for each month.

JOIN THE FUN!
Even if you don’t have any of the

hardware currently supported, you can
still run MH and play around with the
web, Tk, VR, and TTS interfaces.

The install.html file has the
installation instructions. mh.html has
documentation on the various objects,
methods, and functions, and updates.
html contains a list of updates.

mh_src_###.zip has all the source
code, support files, and documentation.
If you don’t have Perl installed, you’ll
need mh_win_###.zip or mh_linux_
###.zip, which have the platform-
dependent compiled versions of MH.

Depending on how many events you
load and if you have the Tk interface
turned on or not, MH will use from 5
to 15 MB of memory. At ten passes per
second, it uses about 30% of the CPU
cycles of a 100-MHz Pentium CPU.

So, dust off that old PC, give your
house a little personality, and come
join the open-source movement and
make the world a better place! Or at
least have your house train your kids
to keep the back door closed. I

RESOURCES
T. Christiansen and N. Torkington,

The Perl Cookbook, O’Reilly,
Sebastopol, CA, 1998.

MH events for author’s house,
misterhouse.net/mh/code/Bruce

Mailing list, www.onelist.com/
subscribe.cgi/misterhouse, www.
onelist.com/archives.cgi/
misterhouse

L. Wall, T. Christiansen, and R.
Schwartz, Programming Perl,
O’Reilly, Sebastopol, CA, 1996.

SOURCES
Digital I/O card
Weeder Technologies
(850) 863-5723
www.weedtech.com

Universal Relay Card
Jameco
(800) 536-4316
(415) 592-8097
Fax: (415) 592-2503
www.jameco.com

TTS and VR engines
www.microsoft.com/iit/download/
 speechengines.htm

Text-to-speech with Festival
www.cstr.ed.ac.uk/projects/festival

ActiveHome kit
X10 (USA), Inc.
(800) 675-3044
www.x10.com

Interfaces
JDS Technologies
(858) 486-8787
Fax: (858) 486-8789
www.jdstechnologies.com

www.jameco.com
www.weedtech.com
www.microsoft.com/iit/download/speechengines.htm
www.cstr.ed.ac.uk/projects/festival
www.x10.com
www.jdstechnologies.com
www.onelist.com/subscribe.cgi/misterhouse
www.onelist.com/archives.cgi/misterhouse

20 Issue 111 October 1999 CIRCUIT CELLAR ® www.circuitcellar.com

The Java Virtual Machine

FEATURE
ARTICLE

Dave Lyons

i
Is dependability more
valuable than speed?
When James Gosling
created Java, he
thought so. Dave
agrees and wants to
show us the Java
Virtual Machine and
how easy and how
convenient working
with Java can be.

n 1991, James
Gosling was develop-

ing a new programming
language for use in intelli-

gent consumer devices. He started with
C++ but realized that no number of
extensions to the language would meet
the requirements. Because intelligent
devices need a wide variety of OSs and
processor families, the new language
needed to be machine independent.

Gosling designed a language where
the source code was compiled into
machine code targeted at an abstract
processor. Applications wouldn’t have
to be recoded or even recompiled. Only
the code that implemented the abstract
processor would have to be ported.
Gosling named his new language Oak
after the tree outside his window.

Oak was object oriented and pro-
grams were composed of classes and
interfaces. An interface defines a set
of methods that a class can implement.
This approach allows much of the
functionality of C++’s multiple inher-
itance without the runtime overhead.

The Oak syntax was similar to C
and C++. A handful of basic types
were provided including byte, short,
int, long, char (an unsigned 16-bit
value), float, double, and boolean.

The sizes of these basic types were
explicitly defined so that Oak applica-
tions would behave consistently across

various platforms. Floating-point
functionality was based on the IEEE-
754 standard and was explicitly de-
fined so programmers could precisely
predict behavior.

In developing Oak, Gosling deter-
mined that reliability was more im-
portant than speed. Consumers expect
appliances such as VCRs, telephones,
and toasters to work. They wouldn’t
tolerate a product that needed to be
rebooted. Several aspects of Oak’s
design reflected the reliability issue.

Objects in Oak were allocated
using the new operator but were only
returned to the heap when the garbage
collector determined that there were
no longer any references to the object.

Oak also avoided the problem of
using variables before they were ini-
tialized by rigorously checking to be
sure that all variables inside an Oak
method were set beforehand. A used-
before-set condition resulted in a fatal
compiler error. And, perhaps the most
significant reliability-related change—
there were no pointers in Oak.

OAK BECOMES JAVA
As time passed, Sun’s Green

project (later spun off as FirstPerson,
Inc.) was shut down when no market
could be found for the technology. At
a group meeting, Gosling, along with
other Sun notables such as Bill Joy
and John Gage, recognized that the
Internet had recently been made more
accessible by way of web browsers
and that it was a good fit for the tech-
nology embodied by Oak.

The Internet moved media such as
text, audio, and graphics to various
platforms. With Oak, application code
could be moved in the same way.

The goals Gosling had set out to
accomplish fit perfectly with the way
applications were being written, de-
livered, and used on the Internet.
Although the discovery was quite
accidental, it appeared that the Oak/
Internet combination had potential.

Oak was eventually renamed Java
and a web browser called HotJava was
written in the language. This browser,
besides being able to display standard
web pages containing text and graph-
ics, also permitted small applications
(applets) to be embedded in pages.

 CIRCUIT CELLAR ® Issue 111 October 1999 21www.circuitcellar.com

User
program

class files

Java API
class files

Class loader

The Java
Virtual Machine

Internal class representation
(includes bytecodes)

Execution engine

Java API native methods

Host operating system

Sun decided to make Java and Hot-
Java freely available and in doing so, set
in motion a new style of computing
that seems to be gaining momentum.

ABSTRACT PROCESSOR
From the beginning, a number of

companies licensed the source to Java
and began porting it to their plat-
forms. This effort involved more than
simply porting the abstract processor,
known as the Java Virtual Machine
(JVM). Although the term JVM de-
scribes the Java interpreter, it also
describes the entire platform.

The comprehensive set of APIs
defined as part of Java also needed to
be ported to the new platform. These
APIs defined standard mechanisms for
graphics and windowing, file storage,
and network access.

Figure 1 illustrates the Java run-
time environment. User programs and
the bulk of the Java API reside in class
files which the class loader checks for
correctness before use. The execution
engine (also called the JVM) interprets
the code loaded from the class files.

The JVM is stack-based and defines
four 32-bit-wide registers—the program
counter, top of stack, current stack
frame, and local variables pointer. In-
structions for the JVM consist of a one-
byte opcode followed by zero or more
operands. The instructions vary in
complexity from simply pushing a
constant onto the stack to allocating a
multidimensional array of objects.

The JVM is also able to make calls
to native methods, which are imple-
mented in a native system language,
typically C or C++. Native methods
are used to interface to the underlying
OS, but they can be used in other
situations as well.

For example, native code might be
used by an application for computa-
tionally intense code such as decoding
motion video. Native methods can
also be used to create a Java wrapper
for large, existing code bases.

Although a certain number of native
methods are needed for almost all Java
implementations, they should be used
with discretion. A Java application that
relies directly on the native methods
can no longer be run on all Java plat-
forms without porting the native code.

This portability (or as Sun
calls it, “Write once, run any-
where”) is key to Java’s ap-
peal, so Sun created a program
called 100% Pure Java. To be
certified 100% Pure, an appli-
cation can be made up of
only Java bytecodes.

THE PERFORMANCE KEY
It’s not hard to imagine that

the key to executing Java code
quickly lies in the bytecode
interpreter. There’s a good deal
of supporting code involved in
things like garbage collection,
class loading, and interfacing
with the underlying operating
system, but most of the time
is spent interpreting the byte-
codes. Because of this, most
efforts to improve Java per-
formance have focused on
speeding up the interpreting process.

The simplest way of speeding up
the bytecode interpreter is to hand-
code the interpreter loop in native
assembly language. This approach
often results in a smaller interpreter,
which takes advantage of modern
microprocessor cache as well as in-
struction pipelining. Writing the
bytecode interpreter in assembly lan-
guage can increase the speed twofold.

A larger performance gain can be
achieved by using a just-in-time com-
piler (JIT). A JIT converts the Java
bytecodes to native machine code at
runtime, resulting in speed increases
on the order of 10×, which is helpful
for computationally intense code.

However, a JIT can result in a
speed decrease when there’s a large
amount of code that isn’t executed
frequently. This setback is because of
the overhead of converting the Java
bytecodes to native code.

A refinement on the JIT approach is
Sun’s HotSpot technology. The Hot-
Spot interpreter identifies areas of
code that are frequently used and
focuses its attention there.

Methods that are frequently called
can be inlined and the code inside
methods can be optimized because
much more information about a pro-
gram is available at runtime than at
compile time, which is where optimi-

zations have traditionally been done.
Although no concrete performance
numbers have been published, Sun
hopes HotSpot will enable Java perfor-
mance to approach that of C++.

HARDWARE CONSIDERATIONS
The bytecode interpreter plays a large

role in determining the performance of
Java on a particular platform, but the
underlying hardware also plays a sig-
nificant role. A processor with a high
clock rate may not perform as well as a
slower processor with a larger cache.

Although true in general, executing
Java code magnifies the difference be-
cause so much time is spent in the
relatively small bytecode interpreter.
The effect would not be as pronounced
if a JIT or HotSpot-based interpreter
was used. A bytecode interpreter that
fits entirely into cache could dramati-
cally affect Java performance.

Floating-point support can also be
significant in determining Java perfor-
mance on a platform. Processors with-
out floating-point hardware process the
Java floating-point instructions up to
10× slower than similar processors
with hardware floating-point support.

The problem is compounded by the
fact that processors lacking floating-
point support are typically lower horse-
power chips aimed at consumer devices.
Application programmers should take

Figure 1 —The class loader converts Java code files into a form
usable by the execution engine. The underlying operating system
services such as networking and graphics are accessed through
native methods in the Java API.

 CIRCUIT CELLAR ® Issue 111 October 1999 23www.circuitcellar.com

note of this situation. If a piece of
code is targeted at consumer devices
such as those based on the new Per-
sonalJava platform, floating-point
usage should be kept to a minimum.

ULTIMATE JAVA PLATFORM?
It may seem that the obvious an-

swer to the Java performance question
is to build a JVM in hardware. Sun has
done just that with their picoJava ar-
chitecture, which uses Java bytecodes
as its native language.

The architecture is also designed to
optimize access to the Java stack. Even
though these Java chips may seem like
the obvious choice, many consumer
electronics manufacturers that are
building Java into their devices are
choosing other microprocessor families.

In the consumer electronics busi-
ness, a difference of a few dollars in
the price of a microprocessor can
make a huge impact on the economic
viability of a consumer product. If one
processor includes built-in peripheral
devices such as serial ports or an LCD
driver at a lower price than a compet-
ing chip, a difference in execution
speed may become inconsequential in
comparison to the difference in price.

Java chips may offer the best per-
formance, but when a technology like
HotSpot narrows the gap between hard-
ware and software implementations,
choosing a microprocessor for a Java-
based device becomes complicated. In
the end, the success of Java-based de-
vices may be determined by factors
besides just the technical aspects. I

Dave Lyons is a software architect at
Microware Systems. During his 12
years there, he has worked with file
systems, booting mechanisms, and
development tools. Currently, Dave
is focused on the company’s port of
PersonalJava for OS-9. You may
reach him at davel@microware.com

SOURCE

Java Virtual Machine
Sun Microsystems
(800) 786-7638
(408) 276-5200
Fax: (408) 276-0633
www.java.sun.com

www.java.sun.com

24 Issue 111 October 1999 CIRCUIT CELLAR ® www.circuitcellar.com

A Versatile Timer/
Synchronizer

FEATURE
ARTICLE

Brian Millier

s
You may not be able
to teach an old dog
new tricks, but you
can use Visual Basic
to train a group of
counter/timer devices.
Brian shows us how
to make a freestand-
ing device that can
read, write, load, and
even learn new tricks.

ince the ’50s,
science fiction has

featured robots that
look human or exhibit

human traits. Such devices rarely
existed outside of Disneyland but are
now becoming commonplace on the
factory floor. These specialized robots
can be trained by human operators to
do assigned tasks with little outside
intervention.

This project follows the same phi-
losophy as the industrial robot, just on
a smaller scale. At its heart is a group
of counter/timer devices controlled by
a PIC16F84. Training the device (i.e.,
setting the configuration and timing
parameters of all the timer
modules) is done with a
Windows-based program
running on a PC.

After you choose a con-
figuration, you download
the data via a serial port to
the PIC16F84. The device
is now a freestanding unit,
producing all the timing
signals, synchronized trig-
gers, and everything else
needed for the application.
Only if you needed to

change the timing parameters or con-
figuration must the device be recon-
nected to the PC.

The CTS9513 was designed to
provide a master timing synchronizer
and pulse generator for a laser-based
research instrument. Like most cus-
tom research equipment, the actual
requirements weren’t well-known in
advance. In the past, similar situa-
tions have led to time-consuming
redesigns. This time, I built a general
device using two CTS9513 counter/
timer devices (see Figure 1).

Each CTS9513 contains a five-stage
scaler and five 16-bit timing modules
that can be programmed to handle
divide-by-n, delay, or PWM functions.
Many of the clocking and gating inter-
connections among the timing mod-
ules can be configured in software and
many additional interconnection per-
mutations can be handled by jumpers.

In addition to the two scalable
quartz oscillator clock sources is a
power-line zero-crossing trigger (60 or
120 Hz), as well as provision for an
external clock source. Eight of the 10
timing modules are buffered and rout-
ed to BNC outputs that can be set to
produce either active-high or active-
low outputs (see Photo 1).

Although the CTS9513 is rated at a
maximum count rate of 20 MHz, I
chose a 16-MHz quartz oscillator,
providing 0.0625-µs resolution (ad-
equate for my application). By substi-
tuting an AMD AM9513, you can use
a quartz crystal instead of an oscilla-
tor module, but the maximum clock
frequency is 7 MHz.

In Circuit Cellar 78, I described a
portable pulse generator based on an
AM9513 that generated various user-

Photo 1 —Without all the connectors along the rear panel, the circuit
would fit into something smaller than a 19″ 1U rack cabinet.

www.circuitcellar.com CIRCUIT CELLAR ® Issue 111 October 1999 25

defined pulse trains, but the
timer configuration was
fixed in firmware.

This time, I used the
’16F84 as the controller chip.
This $5 micro has enough I/O
lines to control two CTS-
9513 timers, a serial link to
the host PC, and a status LED.

The PIC’s biggest selling
point has to be its flash
memory, which lets it hold
all the configuration and
timing parameters for two
CTS9513s in nonvolatile
memory. So once pro-
grammed, the unit works as
a freestanding device. Flash memory
lets parameter changes be made quickly.

Developing the program code went
quicker because I didn’t have to wait for
a UV erasure of the device with each
code modification. Although the ’16F84
doesn’t contain a UART function, it’s
fast enough to implement a 9600-bps
serial input function in software.

The CTS9513s go for around $30
and the total chip cost for the circuit
is about $80—quite reasonable consid-
ering the unit’s capabilities.

HARDWARE DESCRIPTION
I broke up the circuit diagram into

two parts. Figure 2 shows the control-
ler, timer ICs, power supply, serial
port, and everything else needed. Note
that I used one AM9513 and one CTS-
9513 to show the different clock cir-
cuit needed for each device. Apart
from that, programming the devices is
the same. Use whatever device you
have available.

Figure 3 shows the input clock/gate
selection circuitry as well as the out-
put buffering and polarity selection
circuits. Depending on your applica-
tion, the circuitry shown in Figure 3
could be different. For example, the
optocoupled inputs and 50-Ω output
drivers (necessary in the noisy envi-
ronment my unit encounters) may not
be necessary in your application.

Q1 and the associated parts convert
the RS-232 serial data from the host
into TTL levels, which is fed into
RA0 of the ’16F84. Software routines
in the micro convert the serial data-
stream into parallel form. Notice that

there’s no hardware handshaking. The
host application paces its transmission
of parameters to match the ’16F84’s
response time, which is limited by
the flash-memory write cycle time.

I tied the Rx and Tx pins of the
DE-9 socket together so all incoming
characters are echoed back to the PC.
This setup made it easier to trouble-
shoot early in the design, when I was
using a terminal program to send the
commands and parameters. My prob-
lem was remembering to send the
upper-case command mnemonics the
PIC firmware expects!

Port pins RA1–RA3 provide the
control signals for the ’9513 devices.
The CTS9513 uses a data-pointer
architecture to access its 30+ regis-
ters, so only a *WR line is needed for
each device (along with a shared com-
mand/*data line). This design never
reads the ’9513’s registers, so the *RD
line is tied high and the RA4 line
drives a status LED, which is de-
scribed later.

Port B is programmed as an output
port to provide the 8-bit data bus for
the ’9513s. Notice that these devices
actually have a 16-bit bus. The upper
eight bits must be tied high and a
command sent to the device to enable
it to operate in the 8-bit mode.

The power supply is conventional
except that the bridge rectifier acts as
both the full-wave rectifier for the
power supply and provides 120-Hz
unfiltered DC to optocoupler U3 for
the zero-crossing detector circuit. A
separate diode, D2, is used if 60-Hz
zero-crossing is needed.

The zero-crossing detector
is a simple MOC5009 opto
device with a Schmitt trigger
on the detection side to re-
ject AC line noise. As config-
ured, this circuit provides a
trigger whose rising edge
leads the AC zero-crossing
by about 0.4 ms (slightly
dependent on the AC line
amplitude). Although a high-
gain comparator can be used
to sense the true AC line
zero-crossing, it would be
susceptible to line noise,
which this circuit isn’t.

By feeding the PIC’s
*MCLR from the *RESET output of a
LM2925T, I delayed the PIC’s startup
by 0.5 s after powerup. This setup
ensures stability when the CTS9513s
are loaded, which is important be-
cause they are only loaded at power-
up. I used the LM2925T, but you can
use a conventional ’7805 and put a
capacitor to ground on the *MCLR
line instead.

The gating and output circuitry in
Figure 3 is pretty straightforward. I
chose ’74128 50-Ω driver devices be-
cause they provide TTL-level signals
with lots of drive for opto-couplers
and are more robust when driving
long cables that pick up inductive
noise. The 74LS86 XOR gate allows
for output polarity selection, as well
as taking care of the inversion that
occurs in the ’74128 buffers.

THE PIC FIRMWARE
The PIC16F84’s sparse instruction

set, although adequate for my project,
makes programming in assembly
quite tedious. I just can’t force myself
to use C with small micros contain-
ing only a few kilobytes of memory

Clock

Clock

PIC
16F84RS-232

C
T

S
95

13
 #

1
C

T
S

95
13

 #
2

B
uf

fe
rs

B
uf

fe
rs

Outputs
1–5

Outputs
6–8

Figure 1 —It doesn’t seem fair that a modest little PIC
chip is telling those two counter/timer chips what to do.

Photo 2 —Configuring each timer section is accomplished from the main screen
of the Visual Basic host program.

www.circuitcellar.com CIRCUIT CELLAR ® Issue 111 October 1999 27

Figure 2 —In my prototype, one each of the CTS9513 and AM9513 chips were used to demon-
strate their compatibility (translation: I had one of each in my parts cabinet).

for apps involving
time-critical bit ma-
nipulation of ports.

The firmware con-
sists of:

• 9600-bps serial data
input routine, using a
software UART

• simple command
mnemonic parsing
routine

• data EEPROM writ-
ing/reading routines

• ’9513 setup and reg-
ister-loading routine

When writing code
for a small device with
few debugging facili-
ties, it makes sense to
develop general soft-
ware routines to assist
in debugging. So, along
with the necessary
program code, the
firmware also contains
routines to write to any data
EEPROM location, read any EEPROM
location by sending it out to Port B,
and manually load any of the ’9513
register(s) via serial port.

Because of limited RAM space in
the ’16F84, the 58 parameter bytes in
the ’9513 that are downloaded to the
PIC must be stored immediately to
the PIC’s 64-byte EEPROM data mem-
ory. The EEPROM write cycle is
around 10 ms, so the host PC applica-
tion must “pace” the download to
allow for this condition. I wanted a
9600-bps routine for other projects,
which explains my choice of 9600 bps
rather than a much slower rate, which
wouldn’t have needed any pacing.

The correct operation of the ’9513
timer modules depends on their re-
ceiving the correct parameters at
powerup, so I wanted to incorporate
some checks to ensure that the
EEPROM data had not been corrupted.

The PIC16F84 has a number of
features built in to prevent EEPROM
data corruption, but I’m a skeptic.
Therefore, the 58 bytes of data that
make up the ’9513’s parameter/con-
figuration data are supplemented by a
single checksum byte, which is calcu-

lated by the host application program
and sent along with the rest of the
downloaded data.

Immediately after a download (and
at each powerup), a checksum calcula-
tion is done on the data EEPROM
array. If an error is found, the check-
sum LED remains lit (it’s turned on
during a download and flickers during
the checksum testing at powerup).

USER INTERFACE
I’m a big fan of Visual Basic and still

find that the professional V.3 handles
my needs without generating huge
program files and loading too many
support files into the end user’s Win-
dows directory like the new versions do.

Photo 2 shows the program in ac-
tion. The first time the program runs, a
prompt appears to specify which COM
port the project is connected to. That’s
about the extent of setup requirements.

When configuring a ’9513, I recom-
mend that you thoroughly study the
datasheet (available on the Celeritous
web site). Although you can still get
the AM9513, it has been discontinued
so its databook is no longer available.
However, the AM9513 is similar to
the CTS part so the CTS datasheet can

be used for configura-
tion purposes.

The first stage of
setup is to initialize the
device by putting it into
8-bit mode and to prepare
the five counter/timers
for loading. Because
this process is done by
the PIC firmware, you
needn’t be concerned
with it. If you’re using a
’9513 and are unfamiliar
with the part, you might
want to look over my
PIC code listing.

Second, configure
the Master Mode regis-
ter (using the frame at
the right in Photo 2) to
select binary/BCD divi-
sion ratios for the scaler,
select an Fout source,
and so on. Because
there are two ’9513
devices in this project,
there are buttons to

switch between the two Master Mode
registers. Press the “save MM configu-
ration” button when you are finished.

Certain bits of the Master Mode
register must be set properly for the PIC
firmware to work. The host PC pro-
gram doesn’t allow access to these bits.

Last, configure as many of the nine
counter/timer modules as necessary.
Even though there are 10 modules in
the two ’9513 devices, there’s only
enough room in the ’16F84’s data
EEPROM for nine module’s worth of
parameters.

The output buffers are in a quad
configuration, but I only wired eight
of the timers to output buffers. Mod-
ule nine can only be used to feed an-
other timer module.

To complete a counter/timer con-
figuration, select a module from the
pull-down menu. Notice that all of the
selections are grayed out until the
selected module’s configuration is
saved by pressing the “save current
configuration” button.

When the proper module is dis-
played, choose the desired mode. There
are 24 modes, but many of them
aren’t applicable in a circuit such as
the one used in this project.

28 Issue 111 October 1999 CIRCUIT CELLAR ® www.circuitcellar.com

 Modes that perform a divide-
by-n, generate a delayed pulse, or
perform PWM functions are
applicable. When selected, a
message box describing that
mode appears. Pick a mode, then
choose the clock source and
active edge for the clock.

If the selected mode requires
gating, a gate frame appears. Not
all gating options apply to all
modes, so only the applicable
ones are enabled.

For all of the modes, a count
must be entered into the Load
Register window. The range is
0–9999 in BCD and 65536 in
Binary mode. Certain modes also
require you to place a count in
the Hold Register window.

Next, choose the output mode.
Only High TC pulse and TC-toggled
are useful in this design. High TC
produces a pulse (width = clock) at
each terminal count. The TC-toggled
mode changes the state of the output
pin at each terminal count, which
produces either a square wave or a

PWM waveform, depending on the
mode you have chosen. At powerup,
all output flip-flops are reset, so the
sense of the PWM waveforms is con-
sistent at each powerup.

The two crystal or oscillator mod-
ules you choose for each ’9513 device,
are entered as the master clock fre-

quency. Setting these is only neces-
sary if you plan on using the figure
displayed in the “Time per single
count” window for timing calcula-
tions.

After the Master Mode registers are
set up, and all necessary counter/timer
modules configured, the data can be

Figure 3 —To work in a noisy
environment with long inter-
connecting cables, I used a
fancier I/O scheme than just
TTL-compatible gates.

Gate 1
Gate 2
Gate 3
Gate 4
Gate 5

Out 1
Out 2
Out 3
Out 4
Out 5
60/120 Hz
EXT Gate 1
EXT Gate 2

Gate 6
Gate 7
Gate 8
Gate 9

Out 6
Out 7
Out 8
Out 9
60/120 Hz
EXT Gate 1
EXT Gate 2

Gate jumper array

www.circuitcellar.com CIRCUIT CELLAR ® Issue 111 October 1999 29

downloaded to the PIC by clicking on
that menu item. This process takes a
few seconds during which the check-
sum LED will light. If this light stays
on after the download, then there was
a problem with the data transfer.

Test the unit by selecting the “Load
9513 Timers” menu item or powering
the unit off and on again. During any
powerup, the checksum light flickers
briefly if all’s well or remains lit if the
data EEPROM is corrupted.

Although the configuration and
timing parameters were loaded into
the PIC’s nonvolatile EEPROM, the
data displayed by the host PC program
is only loaded into RAM and will be
lost when the program is exited.

I recommend saving this setup to a
disk file via the File Save menu. Dif-
ferent file names would enable you to
store various configurations.

WRAP-UP
It occurred to me that other periph-

eral devices may need to be config-
ured in a particular way at powerup to
perform useful functions without

SOFTWARE
The source code for this article is
available for download via the
Circuit Cellar web site The code is
also available for download at
www.bmillier.chem.dal.ca.

Brian Millier has worked as an instru-
mentation engineer for the last 17
years in the chemistry department of
Dalhousie University, Halifax, NS,
Canada. He also operates Computer
Interface Consultants. You may reach
him at brian.millier@dal.ca.

SOURCES
CTS9513-2
Celeritous Technical Services Corp.
(800) 687-6510
(806) 783-0904
Fax: (806) 783-0905
www.celeritous.com

PIC16F84
Microchip Technology, Inc.
(800) 437-2767
(602) 786-7200
Fax: (602) 899-9210
www.microchip.com

Programmed PIC16F84 $15
Brian Millier
31 Three Brooks Dr.
Hubley, NS
Canada B3Z 1A3

further computer control. The flash-
memory–based PIC16F84 would prob-
ably serve this function well.

The 8253/8254 triple timer, which
is quite inexpensive because it was
designed into early IBM PCs and
clones, would be another good option.
CTS also makes a higher-speed ver-
sion of this device for about $7.

Another candidate might be Telco’s
cross-point switch ICs. For example,
the PIC would set up a complex
switching arrangement (which doesn’t
change frequently) PIC at powerup
but easily reconfigured using a serial
data link.

With the various technologies
available today, there’s certainly no
shortage of choices and options for
projects like this one. I

www.microchip.com
www.celeritous.com
www.bmillier.chem.dal.ca
www.circuitcellar.com

30 Issue 111 October 1999 CIRCUIT CELLAR ® www.circuitcellar.com

Calling on the Standards

FEATURE
ARTICLE

Arthur J. Carlson

m
Modem testing may
be about as exciting
as putting up high-
way mile markers in
Nevada, but in the
long run it will be
worth your time. Get
in on this hand as
Arthur deals out infor-
mation on modem
testing standards.

odem testing
can be bewildering

to OEMs whose pri-
mary business doesn’t

include designing modems. Fortu-
nately, modem test standards TSB 37-
A and TSB 38 provide consistent and
uniform criteria to compare the per-
formance of modems. Draft digital
standards PN 3857 and PN 3856 ex-
tend these concepts to PCM modems.

In this article, I describe various
facets of performance testing and
review the role of testing in the mo-
dem design process. I also give infor-
mation on the statistics of the TSB
37-A/PN 3857 network models and an
outline of the role of TSB 38/PN 3856.
The article includes examples of typi-
cal modem performance curves and
describes how they can be interpreted.

Standards tell part of the story, but
ad hoc testing and customer feedback
are important components of a well-
designed modem product. OEMs should
expect their modem vendors to follow
a comprehensive testing program that
includes all three types of testing.

FOR EXAMPLE,
Your latest assignment is to add an

embedded voiceband modem to your
company’s nifty hand-held Personal
Peppy Puppy (PPP) product in order to
leap ahead of the competition.

You study brochures from every
modem vendor in the Thomas Register
looking for the right fit for your unique
requirements. Each vendor heralds
their modem’s advanced technology,
reliable operation, unsurpassed perfor-
mance, low cost, instant availability,
attractive color scheme, and easy pay-
ment plan. They all sound good.

All the demo boards behave about
the same. The so-called 56-kbps mo-
dems connect at speeds between 38,666
and 46,666 bps at different times of the
day, probably depending on unknow-
able random phenomena in the tele-
phone network and your ISP. Besides,
modem speed isn’t important because
the Internet is pretty slow anyway.

You recommend two vendors, pur-
chasing negotiates a deal, and you
start your design. The advertising slo-
gan, “Put more bark in your Peppy
Puppy,” becomes the company’s rally-
ing cry. You enter the beta phase two
weeks ahead of schedule. You’re a hero.

That’s when all hell breaks loose.
Every beta site north of the Rio Alpha
and west of the Chappanoes reports
connection failure rates exceeding
25%. The CEO wants to talk to you.
How did you select those modem
vendors, anyway?

You wake up in a cold sweat. It’s
that same old nightmare.

ROLE OF MODEM TESTING
Modem testing is the activity every-

one loves to hate. But if you’re going
to avoid the Peppy Puppy nightmares,
you’d better do your homework.

Modems are complicated and the
networks they run on have complica-
tions of their own. Even Murphy has
no idea of how many things can go
wrong, but your customers will find
out soon enough if you’re not diligent.

You have no choice but to design
your products as well as you can and
then test the heck out of them.

Boring standards such as V.90 and
V.34 dictate the basic requirements of
a modem design. But conforming to
those standards is only the first rung
of the product design ladder. Design-
ers must subject new V.90 modem
modules to a variety of tests before
they can confirm that the design is
worthy of production.

Making Sure Your Modem Can
Communicate

 CIRCUIT CELLAR ® Issue 111 October 1999 31www.circuitcellar.com

Several levels of re-
quirements must be met.
Your modem must prop-
erly interwork with every
modem already on the
market. Performance
must be as good as the
existing modems. And,
your modem must be
able to operate in various telephone
network environments that can in-
clude PBXs, digital links, analog links,
satellite hops, undersea cables, and hot
coffee spilled on the operator’s lap.

Indeed, the task of testing can be
quite formidable. Additionally, if
Company X tests its modems using
test procedure A and if Company Y
tests its modems using test procedure
B, how will the OEM judge whether
modem X is better than modem Y?

TESTING STANDARDS
Enter testing standards. The Tele-

communications Industry Association
(TIA) has worked for several years to
evolve a rational set of modem test
procedures. The latest official test
documents were published in 1994,
and an update is in the works.

These documents introduced the
concept of network coverage. When
engineers use the models and proce-
dures defined in these documents, the
results are straight-up comparisons of
a given modem against any others.

After the testing in simulated envi-
ronments is finished, there are still
those pesky situations that come up
when a new product ventures into the
field. Of course, there are no standards
for testing at this level, but an OEM
would do well to have assurance from
the vendor that the modem has been
successful in a wide range of real-
world environments.

Once reports of field-related prob-
lems begin to come in, the modem
vendor must have the know-how to
understand them and make the appro-
priate changes in the modem design.
Interesting wrinkles sometimes pop

up. After all not all design decisions
are made for good technical reasons.

Some modems produced by large
modem manufacturers don’t conform
to the mandated standards. When that
happens, smaller vendors have to come
up with workarounds to successfully
interwork with the big-name modems.

I recall the time my company’s
V.32bis modems experienced problems
at a certain ISP. The ISP was using
modems supplied by a Well-Known
Modem Company (WKMC). Our call-
mode modems couldn’t connect with
the answer-mode WKMC modems and
I was assigned to solve the problem.

I discovered that WKMC’s modem
had a subtle but definite mistake in
its training sequence. Usually the
error wouldn’t cause difficulty, but
one of the design choices in our mo-
dem stepped right into the little crack
exposed by WKMC’s error.

I called a senior engineer friend of
mine at WKMC who confirmed that
their modem had a little mistake in
the training sequence. He referred me
to a junior engineer who had written
that section of code. The junior engi-
neer and I agreed that there was a prob-
lem, and it was my understanding
that he would work on it.

This was too simple for manage-
ment to comprehend though, and my
VP soon called me in to ask what was
going on. He had received a phone call
from the VP of engineering at WKMC.
To better explain the situation, we
scheduled a conference call involving
my VP, WKMC’s VP, and myself.

To no one’s surprise, WKMC’s VP
was not impressed and he refused to
acknowledge that there was anything

wrong with his modems.
Certainly he wasn’t anx-
ious to upgrade the thou-
sands of modems that
WKMC had in the field.

After the call, my VP
suggested that I modify
our training sequence to
work around WKMC’s

error. It seemed like a good design
decision under the circumstances.

INTEROPERABILITY
A walk down the aisles of your

favorite electronics superstore will
illustrate that a large number of par-
ticipants have entered the supply side
of the voiceband modem market.

If you design a new modem, one of
your steps in qualifying the design is to
take your company’s credit card, visit
said electronics superstore, and buy one
of every modem on the shelf. Then, set
up interoperability tests of your modem
with each of the competing modems.

Don’t forget to set up connections in
all available modes (V.90, V.34, V.32bis,
V.22bis, Bell 212, Bell 103, V.23, V.21).
And, oh yes, don’t forget the fax modes
(V.34, V.17, V.29, V.27ter, V.21).

PERFORMANCE
The definition of performance has

evolved along with modem technol-
ogy. Traditionally, modem perfor-
mance was expressed as a curve
showing error rate as a function of
received signal-to-noise ratio.

Modem A was better than modem
B if modem A achieved a given error
rate with a lower signal-to-noise ratio
than that required by Modem B. Be-
cause error control has come to be an
integral part of their design, virtually
all modems now perform error free.
So much for error-rate comparison.

Current standards define several
measures of performance, one of which
is throughput. Throughput is the rate
at which user data flows from the inter-
face of the transmitting modem to the
interface of the receiving modem.

Figure 2— There are two
stages of D/A conversion
between the server and the
client, which means that PCM
connection is not possible.

Digital
network

Digital
network

Analog
switch

C
O

D
E

C

Hybrid
Local
loop

Client
modem

Server
modem

C
O

D
E

C

Hybrid

C
O

D
E

C

Hybrid

Digital
network

Digital
network

Digital
switch

C
O

D
E

C

Hybrid
Local
loop

Analog
impairments

Digital
impairments

Client
modem

Server
modem

Figure 1— Only one D/A conversion exists between the server and the client. Each digital
stage may add digital impairments such as RBS or a digital pad.

32 Issue 111 October 1999 CIRCUIT CELLAR ® www.circuitcellar.com

Modems achieve error-free data
transmission by gathering user data
into blocks encoded so an errored
block can be detected by the receiving
modem. The receiving modem then
requests a retransmission.

The detection and retransmission
eliminates most errors, but only by
trading off throughput. All other things

being equal, modem A is better than
modem B if it has higher throughput.

CONNECTIVITY
The meaning of connectivity has

also evolved with advances in modem
technology. Today’s modems nearly
always connect, thanks to their multi-
mode structure. Typical modems can

switch personalities to become V.90,
V.34, or even V.32 or V.22 modems.

Most connections today are over
channels capable of supporting PCM
operation (e.g., V.90) at speeds beyond
40 kbps. The connection between the
server modem at an ISP and a client
modem can go through several stages
of digital networks and switches.

Sometimes, a DLC even extends
the digital network partway from the
central office to the subscriber’s
neighborhood. If the whole conglom-
eration, starting with the server mo-
dem, is digital up to a single CODEC
with analog thereafter to the client
modem, then a PCM connection is
possible. Figure 1 illustrates a PCM-
capable connection.

Some network configurations con-
tain more than one D/A–A/D stage, as
shown in Figure 2. When this occurs,
the conditions that permit PCM op-
erations are lost, and the modems
must fall back to V.34 mode.

During their handshake, modems
determine whether a PCM connection
is possible. If it is possible, the mo-

Table 1—Voice-band modem technology has advanced from 300 bps in the 1960s to modems that approach
56 kbps today (during which time the North American telephone network has evolved from 100% analog to nearly
100% digital). Here you can see how testing standards have kept up with these advances.

Standard title

Interface between data circuit-terminating
equipment (DCE) and the public switch
telephone network (PSTN)

Public switched telephone network trans-
mission simulation for evaluating modem
performance

Telephone network transmission model for
evaluating modem performance

Testing procedure for evaluation of two-
wire 4-kHz voiceband duplex modems

North American telephone network trans-
mission model for evaluating analog client
to digitally connected server modems

[Extension to TSB 38 to cover PCM modems]

Date Standard number

November 1989 EIA/TIA-496-A

February 1992 EIA/TIA TSB-37

October 1994 TIA/EIA TSB37-A

December 1994 TIA/EIA TSB38

February 1999 TIA PN 3857, Draft 10

Currently TIA PN 3856 (Draft)

 CIRCUIT CELLAR ® Issue 111 October 1999 33www.circuitcellar.com

dem determines how to cope with any
RBS and digital/analog pads that may
be present. When in doubt, the mo-
dem falls back to V.34.

Modems that take full advantage of
a PCM link are clearly superior to
those that fall back to V.34 with its
attendant reduction in speed.

HISTORY OF STANDARDS
The TIA/EIA developed several

North American testing standards to
help compare modems. Table 1 pre-
sents a chronology of North American
modem test standards, and the “Glos-
sary” sidebar contains TIA definitions
for some key terms.

Modem testing began to be standard-
ized in 1989 when the EIA/TIA pub-
lished the 496-A standard. This standard
defined a simple telephone network
model that included a set of six test
channels representative of end office–
to–end office telephone connections.

This connection model included
the effects of amplitude, delay distor-
tion, as well as white noise, and was
adequate for testing modems with
speeds up to 2400 bps and modems
such as V.22bis. Equipment based on
the standard was used for testing V.32
modems, but users were often con-
fronted with apples-to-oranges com-
parisons when comparing test results
because there was no standard for
testing echo-canceled modems.

The deficiencies in EIA/TIA-496
were addressed in TSB 37-A, which
was published in 1992. TSB 37-A built

on EIA/TIA-496-A but augmented the
number of test channels from 6 to 16
and added a laundry list of simulated
additional impairments. These im-
pairments included phase jitter, im-
pulse noise, intermodulation distortion,
near-end echo, and far-end echo.

The model also included the effects
of local loops (i.e., the two-wire paths

that connect the user to the telephone
company’s central office) and the
effect of the input impedance of local
loops. This model was good for evalu-
ating the performance of modems
from an error-rate standpoint.

Meanwhile, more and more mo-
dems began to include error control,
so the TSB 37-A model was only use-
ful when error control was disabled.
Disabling error control lightened the
load on the processors that imple-
mented the modem, which reduced
the utility of the test. It was time for
another upgrade in testing standards.

The TIA introduced a new ap-
proach to modem testing in 1994 with
the TSB 37-A and TSB 38 standards.
TSB 37-A defined various telephone-
network subsystems that could be
combined with LOOs to simulate
modem operation over a wide variety
of typical connections.

TSB 37-A brought the recipe for the
telephone network model to the test-
ing party, but TSB 38 provided the
baking instructions. TSB 38, “…pro-
vides a consistent set of repeatable

100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0%

7000

6500

6000

5500

5000

4500

4000

3500

3000

2500

2000

1500

1000

500

0

Modem A
Modem L
Modem 3

Figure 3— From a network standpoint, Modem A performs at 4700 cps over 70% of the network model whereas
Modem L performs at about 3300 cps, and Modem 3 at a throughput of less than 3000 cps. Thus the chart gives the
customer an objective means to compare the throughput of these three modems.

34 Issue 111 October 1999 CIRCUIT CELLAR ® www.circuitcellar.com

test procedures designed to character-
ize the performance of modems. This
is achieved by stating the precise
configuration of all the required test
equipment, then giving step-by-step
instructions for performing each test.
This document also suggests some
formats for analyzing, interpreting,
and presenting the results” [1].

TSB 37-A and TSB 38 defined net-
work coverage. Test results now indi-
cate the percentage of the telephone
network over which a given level of
performance can be expected. These
standards provide a basis for testing
analog modems up to 33.6 kbps (V.34).

The latest (and maybe final) innova-
tion in voiceband modems came when
56-kbps PCM modems were intro-
duced. Besides creating an upheaval in
the national and international stan-

dards bodies, these modems created
another testing dilemma—TSB 37-A
said nothing about digital networks. It
was time for yet another upgrade.

DRAFT PN 3857 AND PN 3856
The simulation model defined in

TSB 37-A and in its update, PN 3857,
employs the concept of network cov-
erage. Defining a model that covers
all possible situations is impossible,
so the model sets up a large number
of possible combinations along with
an approximate likelihood of each
combination. The details get pretty
hairy, but the concept is simple.

PN 5857 is 92 pages long and over
80% of the document contains tables
and appendices of details of the model.
The PN 5857 model defines suites of
combinations of digital/analog network

Glossary
DLC—A digital loop carrier is a system that provides access via a digital

carrier link to a central office for a cluster of subscribers. Individual sub-
scribers are serviced off the remote DLC terminal with higher quality
individual two-wire analog loops.

Digital pad—attenuation introduced into a PCM link by means of digital
code translation

Hybrid—a three-port analog device that connects one duplex port to sepa-
rate transmit and receive ports

LOO—likelihood of occurrence, a weighting factor applied to components
in the PN 5837 network model

PCM—Pulse-coded modulation is a modulation/coding scheme used within
networks for digital transmission of voiceband signals. All PCM systems
in the U.S. today digitally encode a 4-kHz–wide analog signal into a
64-kbps digital bitstream using a sampling rate of 8 kHz. A/D and D/A
converters are commonly implemented in pairs in a CODEC (COder-
DECoder). These CODECs use µ-law companding (compression/expan-
sion) in North America as specified in ITU-T Recommendation G.711 to
effectively provide a dynamic range equivalent to that of a linear 12-bit
coding system, but using a sample word size of only 8 bits, which results
in 256 possible signal levels

PCM link—a digital link employing PCM or ADPCM encoding that termi-
nates in a four-wire analog interface

PCM modem—a modem, as specified in the ITU-T V.90 Recommendation,
whose line signal at the sample rate is one of the levels generated by a
PCM CODEC

RBS—Robbed-bit signaling is a technique that expropriates PCM bits nor-
mally used to carry voice-signal information to convey supervisory and
call control information. RBS is a form of in-band signaling that uses the
least significant bit from every sixth frame of one 64-kbps PCM channel.
The end result is that when the least significant bit is used (i.e., robbed),
the signal is effectively a seven-bit value for that sample, with the least
significant eighth bit effectively becoming a random value. The resulting
output appears as the original signal with a low-level impulse noise hit.
RBS may be used in DLC systems.

36 Issue 111 October 1999 CIRCUIT CELLAR ® www.circuitcellar.com

components and the impairments that
often accompany each component.

Digital impairments include digital
pads and various forms of RBS. Analog
impairments include analog pads, the
effects of various lengths of 22-, 24-,
and 26-AWG twisted wire pairs,
bridged taps, loading coils, Gaussian
noise, echo, power-line induced noise,
and nonlinear distortion. The model
assigns an LOO to each component.

PN 3856 defines many tests that
apply to the PN 3857 model. A typical
test computes the throughput for a
given configuration along with the
LOO for that test case.

Performing tests in a suite yields a
list of throughput values and correspond-
ing LOOs. Displaying throughput as a
function of cumulative LOO defines a
network coverage curve that character-
izes a given modem. The goal is to
achieve the largest throughput over the
maximum percentage of the network.

REPORTING THE RESULTS
Throughput test results are often

presented as a curve displaying the

throughput achieved as a function of
the percentage of coverage given by
the reference network. Figure 3 shows
throughput in characters per second
(cps) for three different modems.

For about 5% of the network, mo-
dems A and 3 achieve throughput in
excess of 5500 cps and modem L
achieves less than 4500 cps. Around the
52% coverage point, modems 3 and L
both operate at about 3750 cps and
modem A operates at about 5400 cps.

At 97%, modem 3 no longer passes
data and modems L and A achieve
about 2800 cps and 3500 cps, respec-
tively. This curve demonstrates that
modem A provides higher throughput
than modems L and 3 in this test.

HANGING UP
Designing voiceband modems has

become quite a process. The sophisti-
cated DSP algorithms coupled with
the power of today’s embedded pro-
cessors can lead to software-based
designs. Testing is a key component
of the design process although testing
itself can never improve a bad design.

Arthur J Carlson holds a Ph.D. in
Electrical Engineering from the Uni-
versity of Iowa. He spent the first 12
years of his career on the faculty of
the University of Missouri, Columbia.
He then relocated to Silicon Valley
where he has worked in high-speed
modem design for 20 years. Art is a
senior scientist at AltoCom in Moun-
tain View, CA. You may reach him at
ajc@altocom.com.

Standardized testing provides OEMs
with consistent and uniform criteria
for comparing modem performance
levels and for avoiding those pesky
Peppy Puppy problems. I

REFERENCE

[1] TIA/EIA TSB38, “Testing Proce-
dure for Evaluation of Two-Wire
4-Kilohertz Voiceband Duplex
Modems,” Introduction.

RESOURCE

TIA standards info,
www.tiaonline.org

www.tiaonline.org

CIRCUIT CELLAR OCTOBER 199938

N
PC

www.circuitcellar.com

PCNouveau
edited by Harv Weiner

UNIVERSAL PC/104
BOARD MOUNTS
A family of components for mounting PC/104

and PC/104-plus boards has been announced by
parvus. Collectively called SnapStik components, the

family consists of a series of snap-together board separa-
tors and other components that create a robust, low-cost,

incremental card cage for PC/104. SnapStik is designed for
embedded applications ranging from industrial equipment panel
installation to high-vibration, high-shock environments.

Basic to the SnapStik PC/104 component family is the Snap-
Slot. SnapSlots are hollow polypropylene card-cage rail seg-
ments with length equal to the spacing required for one PC/104
board. SnapSlots attach to the corners of PC/104 boards using
a threaded 4-40 insert and machine screw. Multiple PC/104
boards with SnapSlots attached to each corner snap together to
form an incremental card cage called a SnapStak.

A SnapGuide is similar to a SnapSlot, except that a SnapGuide
has an extension formed to fit the inside of an extruded enclosure.
A SnapShok is a SnapSlot fitted with a silicone rubber shock-
absorbing tire, designed to fit inside an extruded enclosure.
Other SnapStik components include a selection of specialized
side and end mounts, bolts, nuts, spacers, and disk drive- and fan-
mounting options.

CompactPCI CPU BOARD
The C2P3 CPU board is targeted at compute-intensive

applications such as telecommunications, aerospace, and imag-
ing. It features two Pentium III processors running at 550 MHz,
1 GB of main memory, and 1 MB of L2 cache. It incorporates
Intel’s 82443BX chip set, the Intel 740 Advanced Graphics
Processor (AGP), and is the first CPU board to provide a 100-MHz
implementation of Intel’s FSB (Front Side Bus). The DEC 21554
Draw Bridge Chip is also included to enable multiprocessing.

Networking and I/O features include dual Ethernet interfaces
(twisted pair) operating at either 10 or 100 Mbps, a 40-MBps
ultra-wide SCSI, and a 64-bit AGP graphics engine with 4 MB of
video RAM optimized for 3D rendering. Also available are two
Ultra-DMA 33 IDE interfaces, a pair of USB ports, dual serial I/O
with optional RS-422 drivers, and a parallel port.

The board can support hot swap I/O modules on the Compact-
PCI bus and can accommodate a 2.5″, 9-GB IDE drive. For
applications that must be deployed without a rotating hard disk,
the board also provides up to 340-MB SanDisk 1.5″ flash IDE on
the rear panel. The C2P3 runs a variety of popular desktop and
real-time operating systems and comes equipped with AMI’s
BIOS and onboard diagnostics software and status LEDs.

Pricing for the C2P3 starts at $1995, less processor and
memory. For high performance at low cost, the C2P3 can
accommodate two Celeron PPG370s.

General Micro Systems, Inc.
(909) 980-4863
Fax: (909) 987-4863
www.gms4vme.com

For a limited time, PC/104 developers can order a SnapStik
Starter Set, a $55 value, for an introductory price of $24.95
(limit two per customer).

parvus Corp.
(801) 483-1533
Fax: (801) 483-1523
www.parvus.com

www.gms4vme.com
www.parvus.com

OCTOBER 1999 EMBEDDEDPC 39

N
PC

www.circuitcellar.com

PCNouveau

SINGLE-BOARD COMPUTER
The CoreModule/P5e uses the new Intel

BGA-packaged Mobile Pentium processor with
MMX technology to offer up to 266-MHz perfor-
mance in a PC/104 form factor.

The card contains all the functions of a fully configured
PCI-based PC-compatible system, including disk controllers,
two FIFO-buffered serial ports, an enhanced-capabilities parallel
port, PS/2 keyboard/mouse interfaces, two USB ports, an IrDA
port, and a built-in DiskOnChip2000 solid-state disk drive. An
efficient DC/DC converter, to supply the special voltage require-
ments (3.3 and 1.9 VDC) of the processor and core logic, is built
directly into the CoreModule/P5e, resulting in single-supply
(+5 VDC) system operation and minimal power consumption.

An extended temperature version of the SBC supports –40°C
to +85°C and operation with or without a fan is supported. The
CoreModule/P5e can withstand 50-G shock and 12-G vibration,
under MIL-STD-202F. EMI, EMC, and ESD compliance is in
accordance with the European CE mark standards (EN 55022
Class B and IEC 801-2, -3, and -4). Additional reliability enhance-
ments include a watchdog timer and a power-fail NMI generator.

In addition to DOS and Windows 98, NT, and CE, support for
most leading RTOSs is also available.

Pricing for the CoreModule/P5e starts at $729 in OEM
quantities of 100.

Ampro Computers, Inc. (408) 360-0200
www.ampro.com Fax: (408) 360-0220

HIGH-SPEED PARALLEL DSP MODULE
The CRT-1260 is a high-speed DSP module in a PC/104 form

factor. Designed around the NeuriCam NC3001 Parallel DSP
chip, the module features 32 fixed-point multiply-and-accumulate
processors operating in parallel with a three-stage pipeline. This
design enables the module to achieve 1000 MOPS, making it
ideal for embedded applications such as real-time vision, optical
character recognition, pattern matching, high-speed digital fil-
ters, and speech recognition.

The NC3001 pDSP is specifically designed with artificial
neural networks for fast learning and recognition. Its architecture
is optimized for the implementation of the Reactive Tabu Search
learning algorithm, a competitive alternative to back-propaga-
tion which leads to a very compact implementation. Internal
resources can be assigned either to a single neuron or be partitioned
among several neurons to implement multilayer networks.

The CTR-1260 is available in PC/104 form factor with a 16-bit
interface. It features a 512-KB frame memory and an auxiliary EPP
parallel port for direct connection to digital cameras and other
peripherals. It also includes an intuitive Windows-based software
interface and is available as a 3U CompactPCI with two pDSP
processors.

The CTR-1260 is priced at $995.

EuroTech
+39433-486258
Fax: +39433-486263
www.eurotech.it

www.eurotech.it
www.ampro.com

EP
C

 CIRCUIT CELLAR OCTOBER 199940 www.circuitcellar.com

Mal Raddalgoda

Name recognition is important in today’s software market, but it’s no
substitute for product performance. So, how does Windows CE stack up
against some of the established RTOS technologies? Mal checks it out.

With the Windows cachet (in appear-
ance if not reality) and the Microsoft market-
ing machine, Windows CE has done for the
embedded-systems industry in a few short
months what established RTOS compa-
nies have labored for years to provide—
recognition by the general public.

In this sense, it means that much of the
publicity generated around Windows CE
also benefits the industry through a higher
level of awareness of the underlying soft-
ware platform of new and innovative
embedded devices.

But when the hoopla has died down,
and embedded designers have to produce
a product, they look beyond the hype to
the RTOS details to ask if Windows CE
meets the technical requirements of the
project. No doubt many embedded sys-
tems designers are asking that question
right now. And Microsoft would certainly
have them believe it does.

But to be honest, design engineers don’t
care whether or not a design uses Win-
dows CE. In all likelihood, they’re promot-

ing a network router, a cellular telephone,
a set-top box, or a data-acquisition device.
They’re not out to promote Windows CE,
unless they got an unbeatable deal from
Microsoft, or unless their product needs all
the help it can get.

Microsoft presents Windows CE as
though it were breaking new ground in
embedded systems. But RTOSs and the
devices they control have existed for years.

When it comes down to choosing a
software platform, there are several alter-
natives that were available many years
before Microsoft ever conceived of Win-
dows CE. Comparing Windows CE tech-
nologies with the established RTOSs shows
just how far Microsoft has gone to provide
a serious product for embedded markets.

THE BUSINESS MODEL
For designers looking for a platform

capable of supporting a unique design,
the ability to work with the platform vendor
to devise the optimum RTOS configuration,
performance, and footprint is one of the

most important selection criteria (see Fig-
ure 1). Out of the box, no OS meets most
embedded developers’ needs, so the abil-
ity to develop a close relationship between
platform vendor and customer is critical.

This is a fundamentally different model
than the one Microsoft used to build its PC
operating-system business. On the desk-
top, the platform is a mass-market product
that’s distributed in an identical version to
hundreds of PC vendors, who then build
the hardware around it. Is it any wonder
that all PCs are practically the same?

Microsoft is trying to use a similar
business model for distributing Windows
CE. Rather than selling it directly to design
engineers and working with them to incor-
porate it into a product, Microsoft licenses
a single version to a handful of OEM
distributors who are responsible for imple-
menting board-support packages and
providing software utilities and consulting
services to embedded designers.

Industry analysts have lauded Microsoft
for bringing in experienced embedded-

What’s in a Name?
Windows CE vs. a Hard RTOS

OCTOBER 1999 EMBEDDEDPC

EPC

41www.circuitcellar.com

performance but results in a relatively
large memory footprint).

Rather than using a messaging system
to communicate between user and kernel
objects and between kernel objects, CE
uses an event model that converts interrupt
events to messages, which are then queued
in priority order. The message queue is
polled, so it’s possible for a message to be
sitting in the queue for a relatively long
time before it’s acknowledged and pro-
cessed. Although this is an acceptable
design for a desktop windowing system,
it’s not a real-time activity.

Much of the software available with
Windows CE (e.g., TCP/IP and remote
access, web browser, e-mail) are versions
of the same software found in desktop
Windows. Although this can provide fa-
miliarity to end users, it also means that
the software wasn’t designed for embed-
ded use. The result is software that is
larger and slower than it should be for a
typical embedded system.

On the other hand, traditional RTOSs
were designed for systems where memory

and processing power were limited. Take
the QNX RTOS, for example. The original
QNX microkernel was about 12 KB,
whereas the QNX/Neutrino microkernel
is 34 KB. Within this 34 KB is enough
memory for interprocess communications,
interrupt handling, and thread scheduling—
all the fundamental facilities needed for a
basic OS in a limited-memory environment.

Since its inception, Windows CE has
had broad processor support that includes
MIPS, Hitachi, ARM, Intel, and others. It’s
important to realize, however, that it’s not
Microsoft that provides this support, at
least not directly. Microsoft provides a
single code base to distributors and pro-
cessor vendors, who work together to
produce the port.

The process was designed to put CE on
several different processors in a short period
of time, and it succeeded. But embedded-
systems designers had no input into the
process, so the processors that are sup-
ported may not be the most useful ones.

Other RTOS vendors have long recog-
nized the value of supporting multiple

system vendors as distribution partners
rather than trying to go at an unfamiliar
market alone. Their plan works well, up to
a point.

In general, these OEM distributors do
a credible job of providing tools, sample
code, and consulting services to help get
a design working with CE. Designers may
even consider the distributor a business
and technology partner in their efforts.

But Microsoft is not in this loop. They do
provide some telephone technical support
for Windows CE, although this same sup-
port covers all manner of embedded sys-
tems, handheld PCs, Windows terminals,
and any other market that CE penetrates.
The support covers OS issues like building
a customized platform, scheduling processes,
and setting up networking utilities, but it
doesn’t go far in providing detailed tech-
nical assistance to a specific design.

In contrast, almost all traditional RTOS
vendors sell directly to vendors or engi-
neers engaged in development projects
and provide direct system software and
support services for their customers. When
engineers call for technical support, to
report a problem, or to discuss what
features they’d like to see in future re-
leases, they’re talking directly to the com-
pany (and often the individuals) that
designed and implemented the OS. There’s
no better way to get feedback directly into
the hands of those who can use it.

ARCHITECTURE
AND PROCESSOR
SUPPORT

The architecture of the
OS by itself doesn’t ex-
plain any advantages of
the software, but it helps
define the ability to imple-
ment characteristics like
scalability, performance,
and reliability (see Figure
2). And, it often says
something more accurate
about the intended mar-
ket of the OS than any
position paper.

Windows CE was de-
signed by Windows sys-
tem architects and it
shows. It’s designed as a
large group of OS files,
most running in kernel
space (which improves

Figure 2—As the complexity of embedded systems
increases, the ability to deliver highly reliable prod-
ucts that meet the time-to-market pressures be-
comes a major business imperative. Here you see
three different architectures. The important thing to
keep in mind is that overall system reliability
depends on OS architecture—the less code running
in the kernel, the better.

Hardware

Real-time
executive

kernel

File systems I/O managers

Application Application

Other...
Device
drivers

Network
drivers

Graphics
drivers

Graphics
subsystems

Traditional RTOS architecture

Hardware

Monolithic
kernel

File systems I/O managers

Application Application

Other...
Device
drivers

Network
drivers

Graphics
drivers

Graphics
subsystems

Windows CE architecture

Memory
protected

Hardware

Microkernel

GUI
managers

I/O managers

Application Application

Device
drivers

File
systems

Network
drivers

Graphics
drivers

Other...

Microkernel RTOS architecture

Memory
protected

Memory
protected

a) b)

c)

21.90%

30.70%

0% 20% 40% 60% 80%

Familiar API

Small footprint

Availability and
quality of tools

Real-time
capabilities

49.50%

76.50%

Figure 1—What are
the key criteria for se-
lecting an RTOS? Develop-
ers are looking at real-time
capabilities, development-tool
quality, and footprint size. A fa-
miliar API was considerably less
important (source: Venture Develop-
ment Corp.).

 CIRCUIT CELLAR OCTOBER 199942 www.circuitcellar.com

and the popular Visual Developer Studio
IDE. Microsoft would have you believe
that you can apply the same APIs and
development techniques to write CE appli-
cations that you would use on the desktop.

The reality is more complicated. The
full Windows CE supports only about a
third of the APIs found in Windows 95 and
NT. And they aren’t exactly the same calls.
Microsoft refers to them as being “in compli-
ance” with Win32. In fact, it’s different
enough that Microsoft refers to it as Win32
for Windows CE API and gave it its own
programming references.

For a programming interface, many
established RTOSs use the only platform-
neutral programming standard available
today—POSIX (or some variation thereof).
For the most part, programs are devel-
oped specifically for embedded systems
rather than ported to an embedded de-
vice from a desktop application.

Microsoft’s use of the Win32 API, a
proprietary programming interface specifi-
cally for Windows systems, encourages
programmers to use desktop code and
programming practices for embedded
development, perpetuating slow and bulky
programs that are inappropriate for em-
bedded systems.

POSIX is a true standard with interna-
tional recognition and steering commit-
tees representing broad industry segments.
This arrangement ensures that embedded
code won’t be broken by arbitrary or
unannounced changes made to benefit
one vendor.

Microsoft notes that you can use Visual
Basic or Visual J++ (its own brand of
Java), in addition to Visual C++, to write
Windows CE applications. This sounds
like an impressive array of languages, but
few, if any designers are going to use
Visual Basic for an embedded application
because its run-time support alone re-
quires well over 1 MB. Not to mention that
pure Java development tools for produc-
ing truly portable code are available from
dozens of independent software vendors,
without the confusion generated by Micro-
soft’s own extensions to the language.

But thanks to the extensible nature of
Visual Developer Studio and Visual C++,
it’s possible to use this fine environment
with virtually any other RTOS. In fact,
several embedded vendors use the Visual
Studio with plug-in modules for software
development with their own RTOSs.

processor families. By providing a choice
of processors, RTOSs such as QNX,
Microware’s OS-9, and ISI’s pSOS enable
designers to choose processors by cost,
performance, or other technical consider-
ation, while keeping the same system soft-
ware characteristics and programming tools.

GRAPHICS AND WINDOWING
One of the major misconceptions of

Windows CE is that it is related to the
desktop Windows. Microsoft gives a per-
ception of a strong relationship, both with
the product name and through its offering
of limited versions of traditional desktop
applications (e.g., Excel, Internet Explorer).

In reality, the only feature shared be-
tween Windows CE and desktop Windows
is the Windows API—the programming
interface for Windows platforms. The un-
derlying OS is almost entirely new, but it
borrows technologies from other Win-
dows OSs.

A separate but related issue is that (at
least for embedded systems) most people
believe there is a Windows-like graphical
user shell, like the ones found on CE-
based handheld PC units. But, Microsoft
doesn’t provide a user shell for the embed-
ded version of the OS.

Embedded developers have to build
their own shell or buy a commercially
available one. The supposed advantage
of the Windows-like graphical desktop
simply doesn’t exist.

Embedded-system developers have the
same requirements for a GUI as they do
for the RTOS itself. They don’t care if the
program can be ported from the desktop
because applications on handheld and
embedded devices have different fea-
tures and uses. What is important is size
and performance, both characteristics that
are far better represented by the likes of
QNX’s Photon and Microware’s MAUI.

For example, Photon is small (under
200 KB for a complete implementation),
fast, and easy to use. Also, its memory
footprint is small, so engineers can in-
clude more user features into the same
amount of space required by Windows CE.

DEVELOPMENT TOOLS
The availability of rich and compre-

hensive application development envi-
ronments is supposedly the true strength of
Windows CE. This includes both the Win32
API (the de facto standard on the desktop)

OCTOBER 1999 EMBEDDEDPC

EPC

43www.circuitcellar.com

At least one other programming prod-
uct is a strong competitor to the Microsoft
development tools hegemony. Metro-
werks’ Codewarrior is the same compiler
and IDE that dominated the Macintosh
software industry and is now making its
mark in embedded-systems programming.

Codewarrior is available on many
processors and RTOSs, and it offers a
wide range of programming languages.
In other words, it’s possible for an embed-
ded system to have a first-class set of tools
without depending on Microsoft.

FUTURE SUPPORT, OR LEFT
HANGING?

Technical comparisons are all well
and good because they compare the
characteristics of RTOSs at a particular
point in time, but you also have to con-
sider how these characteristics change
over time. Windows CE is a new RTOS
that has little history in supporting prod-
ucts over a period of time. If history is any
guide, Microsoft has little compunction in
changing software architectures and in-
terfaces every few years and requiring
computer designers, programmers, and
users to change everything to keep up.

Traditional RTOS suppliers are much
more cognizant of how dramatically even
minor changes affect system designers.
Changes that affect how the RTOS is used
in an embedded design are embarked on
quite infrequently and in consultation with
customers on implications to their products.

For example, QNX changed program
architecture only when it became a 32-bit
OS, over ten years ago. Even QNX/
Neutrino, a kernel introduced in 1996,
uses the same basic microkernel structure
as the older implementation (with support
for symmetric multiprocessing and different
processor families). Its strict adherence to
the POSIX interface means that programs
developed years ago still run today.

Microsoft has a canned answer to all of
the technical deficiencies of Windows
CE—wait until the next version. And they
promise that the next version will be a
complete rewrite that improves real-time
characteristics, but at the expense of back-
ward compatibility.

To get real-time response for applica-
tions, Microsoft is supplementing the Win32
API with a new real-time API, negating
one of its biggest selling points—the familiar
programming interface.

Mal Raddalgoda is the senior technology
analyst for QNX Software Systems Ltd.,
concentrating on the North American mar-
ket. Mal has over 10 years of experience

SOURCES
Windows CE, Visual Basic, Visual J++,
 Visual C++
Microsoft Corp.
(206) 882-8080
Fax: (206) 936-7329
www.microsoft.com

QNX/Neutrino, Photon
QNX Software Systems, Ltd.
(613) 591-0931
Fax: (613) 591-3579
www.qnx.com

OS-9, MAUI
Microware Systems Corp.
(515) 223-8000
Fax: (515) 224-1352
www.microware.com

pSOS
Integrated Systems, Inc.
(408) 542-1500
Fax: (408) 542-1956
www.isi.com

Codewarrior
Metrowerks, Inc.
(800) 377-5416
(512) 873-4700
Fax: (512) 873-4901
www.metrowerks.com

in the computer and
telecommunications indus-
try and has held positions in
product development, product
management, and marketing. He is
also a member of the Embedded Soft-
ware Association (ESOFTA). You may
reach him at mal@qnx.com.

Such practices may work on the desktop,
where Microsoft’s dominant market share
and application base mean that users
have little alternative but to wait. But, time
to market has a different meaning in embed-
ded systems. Embedded designers need
specific technical characteristics to imple-
ment their products’ features. They can’t
wait until Microsoft decides that what they
need is worth including in a future version.

Granted, Windows CE has advantages
that traditional RTOSs don’t: automatic
recognition, of course, and Microsoft’s
ability to improve CE over time by allocat-
ing immense resources to the effort.

The question is not whether the Microsoft
developers can improve CE, but whether
they have an architecture that can scale
down from the handheld PC over to more
traditional embedded applications. Or, will
engineers suffer through countless versions
of OS incompatibilities, forced to con-
stantly change their code because Micro-
soft couldn’t get it right the first time? EPC

www.microsoft.com
www.microware.com
www.isi.com
www.metrowerks.com
www.qnx.com

OCTOBER 1999 EMBEDDEDPC

R
P
C

45www.circuitcellar.com

Figure 1—Here’s what an airplane that is
fighting crosswind looks like. The official term
for this is “crabbing” because, in its extreme
form, it looks like a crab walking sideways.

Real-Time PC

Ingo Cyliax

Where in the World...
Part 3: Fighting the Wind with GPS

For the last two months I’ve written
about GPS and some of its applications.
Last time, I wrote about a prototype system
that I developed for Near Earth Observa-
tion Systems (NEOS), a company special-
izing in airborne remote sensing.

This system is a GPS-aided data-acqui-
sition device that also uses GPS to aid in
navigation. The annotated data is inte-
grated in geophysical information systems.

One application for this type of system
is to take infrared imagery and use spec-
tral analysis to determine the quantity and
type of ground cover that exists. Gather-
ing this data is important for land man-
agement such as agriculture and forestry.

The prototype was successful, but I
needed to add more features. In this final
article of this series, I’ll describe one of the
features that we’re adding to the system.

As I described in Part 2, a small aircraft
flies a preplanned grid and takes pictures
of the ground using a downward-facing
camera. Following the grid, the plane

flies north and south tracks covering the
ground in swaths. The width of the swath
depends on the field of view of the camera
and the altitude above ground level.

The north-south tracks make it easy to
integrate the data with existing maps and
data. NEOS primarily uses ultralight air-
craft to fly these missions. If there’s any
significant crosswind, the pilot has to turn
the aircraft into the wind to keep on course
(see Figure 1).

Here’s the clincher. As the aircraft
turns into the wind, the photos it takes will

Even the best GPS technology can’t control the elements of nature, so Ingo had
to compensate his data-acquisition system for the effects of crosswinds to
make sure the ground-mapping camera shoots straight.

be angled with respect to the ground track
the flight was intended to cover. With
severe crosswinds, the angle of adjust-
ment can be quite significant.

Figure 2 shows what a track of the
crosswind pictures looks like. As you can
see, the pictures are not squared up with
the north-south meridian and you have to
rotate them to use the data. Also, because
the edge of the swath is ragged, we have
to overlap the swaths to make sure we
cover all the little nooks. This adjustment
causes us to burn more fuel because the
effective swath width is reduced and we
have to fly more swaths for the same area.

The solution is to mount the camera on
a camera pod that can be turned relative
to the aircraft. This way, the camera can
be pointed to compensate for the cross-
wind. However, it’s yet another thing for
the pilot to manage while flying.

One of the objectives for this system is
to reduce the pilot workload. Less work
makes for less mistakes. A mistake usually

Crosswind

Apparent heading

Course over ground

R
P
C

CIRCUIT CELLAR OCTOBER 199946 www.circuitcellar.com

means reflying the
swath or even the entire

mission. Also, less workload
lets the pilot focus on flying.
Camera-pod rotation is an

obvious thing to automate. We have
the heading the plane is flying over the

ground (north-south track) and also the
direction we want the camera aligned
with. If we can figure out how far off the
plane’s apparent heading is, we can
drive a small actuator to turn the camera.

Of course, there’s already a GPS re-
ceiver in the system as a pilot-navigation

aid and to annotate the data, but it only
gives us the heading over the ground (i.e.,
the heading of the course we are tracking
over the ground). It obtains this informa-
tion by taking position samples and com-
puting the direction between the position
fixes it has made. It doesn’t know which
way the aircraft is turned. Incidentally, the
GPS receiver can’t compute an accurate
heading when it’s not moving.

But we need to figure out what direction
the aircraft is pointed because the camera
is attached to the aircraft’s frame. Once
we know this heading, it’s easy to com-
pute the difference and adjust the angle.

Getting the direction of the aircraft is
actually pretty easy. Often we get caught
up in new technologies and miss obvious
solutions—like using a magnetic compass.

The magnetic compass always gives
the direction of the airframe relative to the
earth’s magnetic flux lines. Before GPS,
this behavior was a nuisance because
you had to know the crosswind error to
calculate the true course heading. For our
purposes, the preadjusted heading is just
what we want. There’s one small gotcha.

Compass headings are magnetic. The
magnetic headings are based on the
magnetic north pole, which is somewhere
in North Canada and nowhere near the
true North Pole used for map datums,
which means there’s a magnetic declina-
tion to consider.

The declination value is usually indi-
cated on maps, to show how much the
magnetic heading differs for the true head-
ing. The GPS receiver finds this information
by computing the heading to the magentic
north pole from our current position.

The angle we have to adjust the cam-
era compared to the airframe is shown by:

ang_camera = (0 – (ang_maghead +
ang_magdecl) mod 180)

The ang_maghead and ang_magdecl
variables are provided by the compass
and GPS receiver, respectively.

PROJECT
This project entails building a heading

compensator that rotates the camper plat-
form to compensate for the crosswind
heading error. For this, we need a com-
pass, a GPS receiver, and an actuator.

We have a GPS receiver in our system
and we’ve looked at the NMEA message

Figure 2—When we try to take pictures as we
are turning into the wind, the pictures are no
longer aligned to the north-south meridian,
which is what we would like to see.

Crosswind Course over ground

Image frames

OCTOBER 1999 EMBEDDEDPC

R
P
C

47www.circuitcellar.com

formats in previous articles. If you remem-
ber, the GPRMC sentence most GPS receiv-
ers generate contains a field that de-
scribes the magnetic declination.

The declination is usually a small angle
that describes the difference between the
magnetic and true heading. Where I live,
this difference is about 2.9° west. That is,
the magnetic north pole is 2.9° west of true
north. Or, a 0° magnetic heading would
be equal to a true heading of 2.9° east.

There are various compass schemes.
Mechanical compasses use a magnetic
needle. To measure the position of the
needle, you need a rotational encoder.
These compasses are easy to build, but
they contain movements that are subject to
vibration damage and oil that can leak.

Electronic compasses use a magnetic
flux sensor to measure the magnetic field
directly. This setup is preferred because
no moving parts means the compasses
are robust. Flux sensors are either solid-
state HAL-effect sensors or coil-based.

There are several techniques used with
coil-based sensors. The trick is to make
them sensitive and small, yet immune from
various noise sources. Electronic com-
passes used to be rather exotic and ex-
pensive, but with advances in micropro-
cessors, it’s possible to implement signal
processing in software, which makes these
compasses less expensive now.

I wrote about Precision Navigation’s
Vector 2D module in “Robot Navigation
Schemes” (Circuit Cellar 81). This module
is inexpensive and available from mail-
order sources such as Jameco.

One of the drawbacks of this module is
that it only uses two coils and can thus only
be used when it is level. A gimbaled
version allows it to be used in nonlevel
applications. However, this module uses
a serial bus interface, which would make
it hard to interface with our system.

Precision Navigation also makes a
NMEA-based compass module—the
TCM2. This module is flexible, has a
temperate sensor, and in addition to the
heading, can measure roll and pitch.

The TCM2 comes in several different
versions, mostly based on how much
inclination they can handle. The low-end
version can handle ±20° and the top-end
version handles ±80°. The TCM2 has low-
power modes, is robust, and was de-
signed to be used in mobile applications
like ours (see Photo 1).

The most important feature for us is that
the modules can speak NMEA protocol
via an RS-232 link. A three-wire interface
(Tx/Rx/ground) is all that’s needed to
interface it to a PC-based system like ours.

Like all NMEA devices, this device
uses a two-letter prefix to indicate what
kind of device it is. In our case, HC is the
prefix for a magnetic compass.

Magnetic compasses only have one
sentence type, the HDM (heading mag-
netic) sentence. HDM has two fields—HD is
the magnetic heading value and M indi-
cates that the heading is magnetic.

An example of an
NMEA message from this
module is:

$HCHDM,182.3,M*21<cr><lf>

This message indicates a heading of
182.3° west. The module can also be pro-
grammed to send nonstandard NMEA
messages with more than just the head-
ing. Also, by making our application use
standard messages, it’s possible to simply
drop in another compass module, pro-
vided it speaks NMEA.

R
P
C

CIRCUIT CELLAR OCTOBER 199948 www.circuitcellar.com

Photo 2—The serial servo controller is used to interface
radio control (RC) servos to any computer with a serial port.

Placement of the
compass module is an

exercise in compromises.
We can place the compass

module on the camera pod itself
or on the aircraft. If we put the

module on the camera pod, we can use
a module with lower inclination tolerance
(cheaper) because the camera pod is
gimbaled and always level. Also, calibra-
tion is simpler because the compass mod-
ule is coupled to the camera platform.

Mounting the compass on the airframe
has the advantage that we can mount it
away from most of the metal and electrical
wiring by putting it at the tip of the wing.
It’s easy to change in the software, so we
can leave this issue open and experiment.

For the actuator, I’ll use radio control
(RC) servos. These servos are simple to
control and come in various sizes with
different torque performances. High-end
servos have metal gears and ball bear-
ings for long life and can withstand quite
a lot of abuse. Also, because they are
mass-manufactured for the RC model in-
dustry, you can’t beat the cost.

The control signal to an RC servo
consists of a single signal that carries a
pulse-width signal. The pulse width varies
from 1 to 2 ms, with 1.5 ms being a center
position. The pulse is repeated between
10 and 20 ms. Most servos have about
±45° of travel, which lets us compensate
to crosswinds of up to:

cross_wind = 80 mph cos(45)

or 56 mph (far more then we’ll be
concerned about).

Interfacing a servo to a
PC-based system could
be tricky because
we would need a
pulse-width generator
that can generate 1- to
2-ms pulses with a step size of
about (1 ms/256) = 4 µs. But luck-
ily, this is a common enough problem
that several servo adapters are available.

One such adapter is the serial servo
controller (SSC) module made by Scott
Edwards Electronics (see Photo 2). This
PIC-based controller receives commands
from an RS-232-based serial interface and
can control up to eight servos per module.

By adding an address jumper on one
of the modules, two modules can be
bused together to expand it up to 16
servos. We only need one servo for now.

The transfer rate is adjusted on the
module with another jumper and can be
set for 2400 or 9600 bps. The word
format is eight bits with no parity and two
stop bits. The protocol is simple and
consists of three bytes—sync, servo num-
ber, and position.

The sync byte is an all ones byte (0xff).
So, to set servo number five to the mid-
point, you would send 0xff 0x05 0x80.
That’s all there is to it.

Take a look at Listing 1 and
you’ll see that the code (Tcl) to
make this subsystem work is
pretty simple. The loop in List-
ing 1 waits for messages on a
file description $magchan.
This is a serial port, on which
the magnetic compass sits.

The compass outputs
NMEA messages. NMEA mes-
sages are line oriented so we
can use the Tcl gets function.
In its default behavior, this
function reads from the input
channel until it encounters an
end of line, in our case
<cr><lf>. The line is returned
in the variable line.

The next function is
nmea_valid. This function
checks to make sure that each
sentence has a start $ and an
end * delimiter and it also

checks the checksum of the message.
Remember that an NMEA checksum is
simply the XOR of all the characters,
excluding the delimiters.

If the NMEA message is valid, we
parse the message into its fields. Tcl has
a function called split for this parsing
process. You specify the separation char-
acter (,) and it returns a list of all the fields.

Now we check the first field to make
sure it’s the message we’re interested in,
$HCHDM. Because a $ is special to Tcl, it
tells it that this is a variable expansion, so
we have to escape it with a backslash (\)
character. The heading is the first field
after the sentence-identifier field.

Next, we can compute the true head-
ing by subtracting the magnetic declina-
tion and converting it to the servo code.
The servo will go from 0 to 90° in 256
steps, so we scale the result.

By taking the modulus, we make sure
the servo will stay within 45° of the north/
south meridian. If we mount the compass
module on the camera pod, we need to
reverse the direction. In this mode, this
loop behaves like a closed-loop system.

After we compute the servo position,
we send it the servo controller. Tcl nor-
mally deals with strings and characters,
so we have to use the binary conversion
routine to convert integer values to a
representation suitable for sending over
the output routing (puts). Here again, the
file descriptor $srvchan is used for the
serial port that has the servo controller
attached to it. Once this is done, we do
the whole thing again.

Integrating this code into the final sys-
tem is straightforward. Get rid of the loop,

Photo 1—The
TCM2 compass

module from Precision
Navigation has it all, in-

cluding NMEA interface and
more interface options than

you’ll ever use.

OCTOBER 1999 EMBEDDEDPC

R
P
C

49www.circuitcellar.com

Listing 1—This simple code to implement the heading compensator is written in Tcl, which
most of the project is based on.

set mag_decl 2.9
#
main loop, wait for new heading and update
#
while {[gets $magchan line] != -1} {

#
check NMEA message format and checksum
#
if {[nmea_valid $line] != 0} {

continue
}
#
split sentence into fields
#
set fields [split $line ',']
if {[lindex $fields 0] != "\$HCHDM"} {

continue
}
set hdg [lindex $fields 1]
set off [expr ($hdg - $mag_decl) + 90]
set pos [expr int (($off * 256) / 90) % 256]
#
output the servo message
#
puts $srvchan [binary format "ccc" 255 0 $pos]

}

Ingo Cyliax has written for Circuit Cellar
on topics such as embedded systems,
FPGA design, and robotics. He is a re-
search engineer at Derivation Systems Inc.,
a San Diego–based formal synthesis com-
pany, where he works on formal-method
design tools for high-assurance systems and
develops embedded-system products. You
may reach him at cyliax@derivation.com.

SOURCES
Compass modules
Precision Navigation
(707) 566-2260
Fax: (707) 566-2261
www.precisionnav.com

Servo controller
Parallax, Inc.
(916) 624-8333
Fax: (916) 624-8003
www.parallaxinc.com

Remote sensors
NEOS, Ltd.
(909) 694-4096
Fax: (909) 677-7081
www.neosltd.com

and make the code segment part of an
event handler that gets called whenever
there is activity on the serial port for the
magnetic compass. Except for simple pro-
grams, using event-driven programming
is the best programming style to use in Tcl.

WHERE I’M HEADED
Well, this article concludes my series

on GPS. But, because I’m knee deep in
this project, GPS is bound to pop up again.
Next month, however, in response to sev-
eral readers’ requests, I want to cover serial

port interfacing and pro-
gramming. Almost every
computing device has a serial
port, making it one of the most
commonly used interfaces. RPC.EPC

www.precisionnav.com
www.parallaxinc.com
www.neosltd.com

A
PC

CIRCUIT CELLAR OCTOBER 199950 www.circuitcellar.com

Applied PCs

Fred Eady

If the words “Free Internet download” make you somewhat skeptical, you’re
not alone. Fred took a magnifying glass to GoAhead’s web server software
and found enough evidence to satisfy even his Internet-freebie skepticism.

Nothing, absolutely nothing, is free.
No free lunch. No free pass. And
especially, no free software.

So, why is this GoAhead WebServer
stuff I found on the Internet given away for
free? There’s tons of “free” stuff on the
Internet and frankly, I’m scared of a lot of
it. What’s the catch? Is this another scam?

As it turns out, there is a “catch.” You
can download the latest version of Go-
Ahead WebServer V.2.0 for absolutely
nothing. But in return, you must grace it
with your application code and share your
new-found knowledge (and modified web
server) with other GoAhead users. Too
good to be true? Let’s go to the phones.

I spoke with the top folks at GoAhead
and, after a nice discussion that covered
automating recreational beverage delivery
from the kitchen fridge as well as some
really deep web-server queuing theory, I
was convinced that the idea behind giving
away the web-server code was sound.

Seems that GoAhead wants to establish
a presence in the embedded control-my-

widget-over-the-web market. They figure
the best way to do that is to provide an
operational embedded web-server
platform that’s easy to port and modify.

Once the “free” web-server code is
ported to an embedded platform, the next
logical step is to incorporate it into an
embedded web product. The more the
merrier. These guys and gals may be
giving away the store, but so far, so good.

The GoAhead WebServer runs out of
the box with various flavors of Unix, QNX,
VxWorks 5.3.1, Windows NT, Windows
95 with Service Pack 2, Windows 98,
Windows CE, LynxOS, and the up and
coming under-penguin, Linux.

GOAHEAD, FRED, TELL ME MORE
GoAhead WebServer is a standards-

based full-featured C-based web-server
application. You can download the
application from www.goahead.com/web-
server/wsregister.htm. GoAhead requires
that you fill in some personal data first. I
figure they want to be the first to say they

knew you before you got famous by using
their web-server code in your device.

Once the code is “yours,” the down-
loaded file should be unzipped into a
directory called webserver. There are
numerous directories under webserver,
including a subdirectory for each of the
publicly ported GoAhead WebServer
operating environments.

A Makefile is included in the
individual OS directories for each OS
compiler. In addition to the Makefile,
there’s also a main program that invokes
and initializes the server.

I pick on Bill, but I also use Bill’s stuff a
bunch, too. This time around I’ll use the
well-known-but-not-so-embedded-oriented
Windows NT. One reason for using NT is
that it’s already running on the Circuit
Cellar Florida Room network.

Windows NT isn’t usually thought of as
embeddable, but it’s on the GoAhead
already-ported list. Thus, Windows NT
workstation 4.0 is a perfect springboard for
embedding the server on another platform.

GoAhead for Nothing
Getting the Server Started

A
PC

OCTOBER 1999 EMBEDDEDPC 51www.circuitcellar.com

Photo 1—This whole GoAhead web
server thing is a sleeper until you get
to this point. You can dig through the
HTML files for answers until you’re
blue. The answer is to just install it!

The current scripting engine is
specified by the language=
specifier at the beginning of the
ASP script. The language last
specified remains the default until
a new language= keyword is
encountered at the start of another
ASP script. If no language is

specified, the default language is
JavaScript.

It’s recommended that the language
be specified in the <HEAD></HEAD>
section of your page, as in:

<% language=javascript %>

JavaScript is easy to learn, and its
syntax resembles models you are already
used to. To create an ASP script field in a
GoAhead WebServer ASP document, use
the <% and %> ASP delimiters. For example:

<h1>You are reading <% write
("Circuit Cellar APC"); %></
h1>

will output “Circuit Cellar APC” in place of
the ASP-delimited field.

I won’t write a dissertation on ASP in
this column, but here’s a quickie on just
how the ASP process executes. When a
user’s browser requests an ASP document,

the default URL handler
determines if the page is
an ASP document by
examining the file extension. If
.asp is the extension, then ASP
processing is invoked.

The document is read from the file
system or ROM store in a one-pass
operation. ROM store? Yep. Along with
the new Embedded JavaScript parser,
V.2.0 supports another new feature called
webcomp. Webcomp is a web-page
compiler that generates ROMable web
pages and source code for systems that
don’t have a file system.

Getting back to the process following
the one-pass read, text before the ASP
delimiters is copied directly to the
requesting browser. Any text found
between ASP delimiters is passed to the
relevant scripting engine (JavaScript here)
for execution. The postscripted text is
immediately passed back to the browser
and the line-by-line process continues until
the end of the document.

If you’re familiar with ASP, you’ve
probably noticed that the process I
described is a bit different from other ASP
implementations you may have encoun-
tered. GoAhead WebServer doesn’t buffer
the entire ASP output and thus doesn’t
permit scripted iteration over HTML tags.

It doesn’t support these methods because
they require the entire ASP document to be
sucked into memory before being processed
and returned to the browser. The docu-
mentation suggests that *.htm files be
used for large amounts of output data.

In addition to those features, this server
includes support for in-memory CGI
processing, security, and URL handlers.
All the details on those goodies can be
found in the API documentation available
from the demo server setup web pages.

SPINNING UP A WEB SERVER
To be honest, before I downloaded the

GoAhead WebServer V.2.0 code, I really
didn’t think I would get this to work. In my
experience, most of the stuff you get for
“free” is worth exactly what you pay for it.
So, I prepared myself for bunches of bit
twiddling and customization.

I was also concerned with the lack of
online documentation the web site kept
alluding to. When I couldn’t find the how-
to stuff I thought I’d need, I checked out the
newsgroup. I found some interesting

I’m using Windows NT here to explore,
not deploy, an embedded version of the
server. In reality, NT and GoAhead Web-
Server would work well together in an Intra-
net- or Internet-application environment.

This server incorporates several
features, including Active Server Pages
(ASP). ASP is another one of Bill’s concoc-
tions developed to serve web pages with
dynamic content. ASP documents are
delimited by an .asp extension and use
embedded scripting to insert dynamic data
before a page is sent to the user’s browser.

The GoAhead WebServer supports an
open-scripting architecture. This enables
scripting engines to be selected at run-
time with the possibility of individual pages
using multiple scripting engines at will.

JavaScript is the only scripting engine
you’ll hear about in this segment because
the GoAhead WebServer V.2.0 supports
Embedded JavaScript natively. The pack-
age even includes an embedded-oriented
JavaScript API set.

Listing 1—An oasis of words. Guess which set of instructions I executed?

To build and run the GoAhead WebServer, change to the relevant
operating system directory and use make to initiate the build.
Some of the make or batch files may need to be modified for the
configuration of your system or the target system. See the "Con-
figuring the GoAhead WebServer" section.

For VxWorks:
 cd VXW486
 make
Load webs.o onto the target system and use standard VxWorks

 procedures to load the program into memory and execute it.

For Windows NT:
 cd WIN
 nmake /f webs.mak
 webs

To stop the web server, right click on the taskbar icon for the
 GoAhead WebServer and select "Close".

A
PC

CIRCUIT CELLAR OCTOBER 199952 www.circuitcellar.com

entries, but nothing I
could use at the time.

One entry even asked,
“Where or how do I start?”

With that, I was determined to
answer that question for myself.
Not knowing what I was getting into,

I prepared a Windows NT 4.0 workstation
with lots of disk and memory space and a
hefty processor. I loaded up every service
I thought I would need.

Just in case I needed access to external
utilities from other machines in the lab, I
added the web-server machine to the lab
domain. This arrangement would also make
it easy to test and troubleshoot my newfound
web server. I assigned the IP address of
10.10.0.1 to the initial test web-server
mothership. Finally, I laid in Bill’s C++ V.5,
Netscape Communicator 4.5, and
downloaded GoAhead Web-Server V.2.0.

Before running the unzip process, I
opened the zip file with WinZip and
looked over the package. I was
overwhelmed with the amount of .htm
files with names that looked like they
might point me in the “get started” direction.

I started looking through them and got
the scent, but I still couldn’t tree anything.
(For those of you consulting your tech
manuals for the “tree” process, that’s a
southern hunting term for the process of
cornering and thus “treeing” your game.
As this term is usually invoked when
hunting squirrels and opossums, “tree” is
a very appropriate term here.) Eventually,
I found a couple of README files and the

Listing 2—This snippet uses the JavaScript API. All JavaScript API members begin with ej.
The definition for aspTest can also be found in the main.c code example.

// Test Javascript binding for ASP. This will be invoked when
// "aspTest" is embedded in an ASP page. See web/asp.asp for
// usage. Set browser to "localhost/asp.asp" to test.

static int aspTest(int eid, webs_t wp, int argc, char_t **argv)
{
char_t *name, *address;

 if (ejArgs(argc, argv, T("%s %s"), &name, &address) < 2)
{
 websError(wp, 400, T("Insufficient args\n"));
 return -1;
}
return websWrite(wp, T("Name: %s, Address %s"), name, address);

}

chase began. (I’ve never done the fox and
horses thing, so let’s move on.)

The README.TXT file was most helpful.
The first paragraph apologized for the
seeming lack of documentation and
reminded me that this was a beta version.
I was assured that full documentation
would be provided with the full release of
V.2.0. I was then instructed to consult the
home page (//localhost/home.asp)
for access to the beta documentation.

As I read further into the README text,
I was also assured that I had everything I
needed to compile and run a GoAhead
WebServer. I was beginning to feel better,
but I still had no clue until I read the blurb
you see in Listing 1. With this discovery,
I decided to GoAhead and unzip the web
server package and attempt the compile.

Everything was unzipped and ended
up in the webserver directory. Just like

the README file said, there was a
subdirectory for every supported
OS and a gaggle of C files and C
header files spattered about the
webserver directory.

It wasn’t difficult to determine
that WIN was the directory I needed.
The README text in Listing 1 pointed
to it, and WIN stood out among
other subdirectories such as Linux
and Qnx4. I was told that I had
everything, so I ran the NT compile
commands in Listing 1.

The linker gave me the hi sign.
The compile and link were successful.
To my surprise, after executing webs,
I had a working GoAhead Web-

Server! Well, at least according to the
System Tray GoAhead WebServer entry.
The only way to know for real was to serve
up a page from 10.10.0.1.

I added an entry to the Host file of
another workstation to map GoAhead to
10.10.0.1. On the same workstation I
started Netscape and entered http://
goahead and the home page shown in
Photo 1 appeared in the browser window.

At this point, everything I was looking
for was now in one place. All of the
documentation could be accessed from
the browser. By following the included
source code, I was able to easily follow
the flow of how the server and its Embedded
JavaScript and API sets worked together.

As it turns out, I got the server to
operate without twiddling bits or special
customization. This isn’t to say that it
cannot or should not be customized. The
idea behind GoAhead WebServer is to
welcome any type of customization.

There’s a section that describes some
basic GoAhead WebServer configuration
switches, but the server is intended to
provide a basic platform for the web
developer to build on. I must agree that
everything needed to assemble a fully
functional web server is included for free.
For that person in the newsgroup who was
pleading for help, just go after it like I did.
You’ll be pleasantly surprised.

main.c and socket.c in the WIN
directory describe how the server is initial-
ized. These files also show how to map
web-server functions to C code and the API
sets. Listing 2 is a code snippet from
main.c that describes how a test JavaScript
applet is coded behind the scenes.

The test applets are included with the
server code and can be accessed from the

Photo 2—This embedded PC is a desk-
top in embedded clothing. You can get
this baby with Pentium power, too.

CIRCUIT CELLAR OCTOBER 199954 www.circuitcellar.com

home.asp page. The whole GoAhead
WebServer package is wide open like
this. Proprietary is a bad word here.
Within this server, there’s enough API
functionality to fill three or four columns.

As I’ve shown, it’s a snap to put this
server up. The key is to install the Web-
Server prototype, which unlocks the soul of
the product. So, download a copy and
install it, and I’ll leave the reading to you.

THE HARD(WARE) PART
Their home page states that GoAhead

WebServer was designed expressly for
the embedded web-server developer. This
means that the footprint must be small and
the functionality must be immense.

Now that I’m over my skepticism of the
software, how does it take to various types
of hardware? My first thought was to find
every piece of embedded hardware in the
Florida Room and attempt to install the
server and serve some pages.

RIDING A SNAKE
The first piece of hardware I came

across was a Teknor VIPer806. This board
is quite broad as far as peripherals are
concerned. My VIPer has a 100-MHz
’486DX2 processor, 16 MB of RAM, an
SMC Ethernet adapter, the usual comple-
ment of parallel and serial ports, IDE and
floppy interfaces, keyboard and mouse
ports, an SVGA adapter, and bunches of
other stuff that you would normally find on
desktop machines.

I figured this little monster would easily
handle a load of NT and the server software.
I see the VIPer as an embedded desktop.

To make things easier, I dug out an ISA-
based Tempustech backplane. Using a
standard passive backplane makes
changing embedded platforms easy. The
power plane is an integral part of the
backplane, and the embedded engines I
will use (or attempt to use) plug right into
the ISA socket strips.

Because NT is being used as the test
platform, a hard disk and a CD-ROM
drive were used here too. Of course in an
actual embedded implementation, I would
employ the flash memory on the VIPer806
and use a smaller or embeddable OS. I’m
sure I could fit NT into an embedded
platform by tossing out some of the fat, but
that’s not why we’re here today.

If you’re familiar with Windows NT, you
know it’s fat and robust, and that there are

many ways to load NT. I configured the
VIPer to use the hard disk, floppy, and CD-
ROM just as a desktop would.

I attempted to load NT Workstation
using the three install diskettes. Everything
went fine until the reboot after the text install
phase. Seems the VIPer couldn’t find the
boot files on the hard disk and just hung up.

After a few hours, I gave up and
decided that I had somehow damaged
the VIPer or the hard disk was loopy. So,
I loaded Bill’s DOS 6.22. I knew I couldn’t
boot from CD-ROM and load NT because
the BIOS in the VIPer wasn’t at the latest
level and didn’t mention CD-ROM support.

I knew I would eventually have to use
the CD-ROM to complete the load of NT.
DOS was loaded and operational, and
the VIPer seemed to be OK. So, why not
load the CD-ROM driver under DOS and
perform the NT install from the CD-ROM?

It took some time, but I finally completed
the install and hooked the VIPer into the
lab domain. Loading software isn’t always
a piece of cake, and I had some trouble
getting the VIPer806 Ethernet drivers to
take, thanks to a signature on the original
VIPer driver diskette that NT didn’t like.

I ended up imaging the diskette to a
directory on the VIPer hard disk, and I got
rid of the offending file by process of
elimination. After getting the SMC 8416
Ethernet card to load, the server code
went on as easily as it did on the mother-
ship, and I was serving pages in no time.

Photo 3—It may be cheap and it may be ugly,
but it runs!

 OCTOBER 1999 EMBEDDEDPC 55www.circuitcellar.com

Fred Eady has over 20 years’ experience as
a systems engineer. He has worked with
computers and communication systems large
and small, simple and complex. His forte is
embedded-systems design and communica-
tions. Fred may be reached at fred@edtp.com.

If you’re going to run NT on the
VIPer806, be sure to use plenty of RAM.
It’s a wet dog in the cold with 16 MB of
RAM. And for you NT gurus, no, I didn’t
check the NT hardware compatibility list
to see if the VIPer or the CD-ROM drive
was tested or accepted.

The way I see it, if I can make it work with
troublesome and problematic hardware,
just think of how big a hero you’ll be by
making it work with approved equipment.
The VIPer setup is shown in Photo 2.

GOAHEAD ON THE CHEAP
I’ve gotten GoAhead WebServer to

load and run on two pretty rich machines
with not-so-uncommon backgrounds. Let’s
step it down a notch. Photo 3 is the
reduced-instruction setup. The “down-
graded” web server is based on an
inexpensive Tempustech VMAX SBC301.

The VMAX board is a ‘486SXLC running
at 66 MHz with only 8 MB of RAM. That
means Windows NT won’t fly. Just for
grins I tried loading Windows 98.

Did you know Win 98 requires a math
coprocessor? Did you know the program
tells you if you don’t have one? OK, I get
it. Windows 95 it is.

In addition to the VMAX CPU board,
the “downgraded server” hardware
includes a $14 SVGA board, an SMC8416
Ethernet adapter, the VIPer spinning disk
set, and the Tempustech ISA backplane.

During the Win 95 WebServer install
I encountered an interesting anomaly. I
used a 2-GB IDE drive for the VIPer
configuration and attempted to do the
same with the VMAX board set. The
VMAX wouldn’t recognize or configure
the 2-GB drive. I couldn’t even manually
enter the cylinder/sector count data in the
setup fields. The VMAX BIOS maxed out
at 2048 cylinders and the 4092-cylinder
2-GB drive hung the system at startup.

The smallest drive I had on the bench
weighed in at 1.7 GB. I figured the VMAX
would choke on that one, too. So, I
resorted to a 250-MB Western Digital I
found in a box in the corner of the lab.

After I installed the little WD drive, the
VMAX went into autoconfiguration mode
on powerup and found the smaller drive,
just like the manual said it would.
Sometimes bigger isn’t better.

The good news is that I have some
clear spinning media looking for some
new code. The bad news is that I’m sure

I’ll have to shoehorn every bit of that new
code including the OS, Bill’s C++ compiler,
and the server onto it.

Only 225 MB later, I was serving web
pages to the domain members from the
VMAX platform. But, I wasn’t able to
successfully compile the server code in the
native VMAX environment (probably
because of the lack of real memory and
environment space).

I copied over the server executable
from the mothership via the LAN. VMAX
didn’t know the difference. The VMAX
“stack” is shown in living color in Photo 3.

GOING AHEAD
I’m a firm believer in the future of

anything that’s embedded and uses the
Internet or Intranet to control and monitor
remote devices. GoAhead WebServer is
a step toward bringing this technology to
all of us faster. With Windows NT, this
server is a good way to start or extend
your understanding of embedded web-
server technology.

As you’ve seen, Windows NT isn’t
necessarily the best (or the only) solutionfor
projects such as this one. The real beauty
of this freeware concept is that you can
use this software with any embedded
platform you can port it to. Not to mention
that having access to the free code gives
you a head start on making a difference in
the embedded control world. APC.EPC

SOURCES
Windows NT
Microsoft Corp.
(206) 882-8080
Fax: (206) 936-7329
www.microsoft.com

GoAhead WebServer
GoAhead Software, Inc.
(425) 453-1900
Fax: (425) 637-1117
www.goahead.com

VIPer806
Teknor Microsystems, Inc.
(514) 437-5682
Fax: (514) 437-8053
www.teknor.com

VMAX
Tempustech
(800) 634-0701
(941) 634-2424
Fax: (941) 643-4981
www.tempustech.com

www.microsoft.com
www.goahead.com
www.teknor.com
www.tempustech.com

56 Issue 111 October 1999 CIRCUIT CELLAR ® www.circuitcellar.com

Figure 1— The start switch (S1) that activates the LEDs is
connected to the microcontroller’s master clear input pin
(*MCLR).

Hands-On PIC Trainer

FEATURE
ARTICLE

Jon Varteresian

i
Sometimes it takes a
simple project to
learn the practical
(and fun) applications
of a basic technology.
That’s the idea be-
hind Jon’s assembly-
coded device that
provides immediate
visual feedback with-
out a simulator.

f I can borrow a
line from Fred

Eady, I’d have to agree,
“It doesn’t have to be

complicated to be embedded.” Some-
times it can be simple. Sometimes it
can just be fun. And I’m sure you al-
ready know that doing something fun
is a great way to learn the basics.

The assembly-language firmware
described in this article demonstrates
basic PWM techniques, timer opera-
tion, and general I/O manipulation.
The information presented here will
enable you to tackle a wide range of
embedded-control problems.

I designed a simple electronic safety
device for nighttime joggers—or even,
given that it’s October, trick-or-treat-
ers. Its high-brightness LEDs alert on-
coming traffic to your presence.

This device is built around
Microchip’s PIC16LC54A. This
microcontroller includes an
8-bit data path, 12-bit instruc-
tions, an 8-bit timer, 512 bytes
of ROM, and 25 bytes of RAM.

As for power, typically, coin
cell battery–operated devices
and LEDs aren’t a good match.
A current-hungry LED can
drain a battery in mere hours.
Having more than one LED on
at any one time drains the bat-
tery even faster. Unless you use

some kind of intelligent power-con-
servation technique, your battery bill
is going to be quite high.

Several power-conservation tech-
niques can be used in this design,
including:

• lowering the LEDs’ forward cur-
rent—this extends battery life but
at the cost of the wearer’s safety

• enabling one LED at a time, cycling
through all eight—this helps pre-
serve the battery, but the visual
pattern of the LEDs is limited, if
not boring

It’s more visually appealing if there
were two (or more) LEDs on at any
given time. This pattern can be ac-
complished by turning on LED A for a
short time while B is off, and then
turning A off and B on.

If the cycle repeats fast enough, the
human eye can’t detect the flashing.
So, it appears that both LEDs are on,
granted at a slightly reduced light-
level output.

That’s the technique employed in
this firmware. It produces an ever-
changing, multi-LED pattern even
though only one LED is conducting at
any given time. This technique ex-
tends the device’s 3-V, 150-mAh bat-
tery life to well over 10 h.

First I’m going to describe the as-
sembly-language programming details,
and then I discuss how to build the
project. Building the device is a piece
of cake—it uses surface-mount and
through-hole components on a single-
sided PCB. All you need is a fine-tipped
soldering iron and, depending on your
eyesight, maybe a magnifying glass.

Programming in Assembly

 CIRCUIT CELLAR ® Issue 111 October 1999 57www.circuitcellar.com

CIRCUIT OVERVIEW
The circuit shown in Figure 1

comprises a microcontroller (U1,
PIC16LC54A), eight LEDs, one
switch, one battery, and a sprin-
kling of resistors and capacitors.

When you press and release
the switch, the PIC’s program
counter is reset to the beginning
of code space and the lighting
sequence begins. To turn the
LEDs off, press and release the
button again.

Power is supplied to the micro-
controller and LEDs through the bat-
tery (B1), which is a standard 20-mm
3-V coin cell. Resistor R10 and capaci-
tor C1 generate an RC clock input for
the PIC. The operating frequency is a
nominal 256 kHz, which means that
the instruction rate inside the PIC is:

1
256 kHz

× 4 = 15.625 µs

The RC operating mode of the PIC
is inherently imprecise and can vary
as much as 20%. However, this appli-
cation is relatively timing-insensitive.
Resistors R1–R8 (36 W) limit the
current through the LEDs to 25 mA.

Note that, besides the LEDs, all of
the components are of the surface-
mount variety. If you decide to get
creative and put artwork on the oppo-
site side of the PCB, through-hole
components would get in the way.

FIRMWARE
This device is a useful educational

tool because when you experiment with
the firmware’s assembly code, you get
immediate feedback. Did you program
it right? You’ll know right away.

Everything begins with a low-to-
high pulse on *MCLR. Once this
pulse is generated, it resets the pro-

gram counter of the PIC to the begin-
ning of code space.

The PIC initializes all software
variables, configures all I/O, and sets
up timer0 for internal clocking and a
prescaler value of 4, so every time the
internal instruction clock increments
four times, the timer increments by 1.
Remember that the PIC is executing
instructions every 15.625 µs.

Next, the PIC inverts Power_cycle.
This variable decides whether to be-
gin flashing the LEDs or put the PIC
into Sleep mode. If Power_cycle is a
1, the PIC begins flashing the LEDs. If
it’s a 0, the PIC goes to sleep.

Remember, software variables
don’t lose their state in Sleep mode.
The only time they lose their state is
when power is removed. By inverting
Power_cycle every time someone
presses the momentary button, the
device effectively turns on and off
with every push.

The PIC loads timer0 with a value
equal to 7 ms. Note that the timer
counts up and is considered to be at
its terminal count when it rolls from
0xFF to 0x00.

Normally when a timer rolls, an
interrupt is generated, causing an
interrupt handler to handle the event.

Because the ’16LC54A doesn’t
have interrupt capability, the
counter must be manually
polled. When it finally rolls, the
PIC reloads the timer to count
another 7 ms, executes the next
section of the code, and then
returns to the tight loop before
the 7 ms are up.

Before we can discuss what
happens when the 7-ms counter
rolls, we need to take a look at
how the LEDs are enabled. First,
let’s define a rule that restricts

how the firmware operates.
Because the battery is small and

can’t provide a lot of instantaneous
current, only one LED can be enabled
at any given time. So, if you want two
LEDs on at once, you’ll have to find
another way to do it.

Let’s assume that you want two
LEDs (A and B) to appear to be on at
the same time. The device does this is
by turning LED A on and LED B off
for a short period of time. Then LED
A is turned off and LED B is turned on
for the same short period of time. The
process is then repeated continuously.

If the LEDs are turned on and off
fast enough (faster than 60 times per
second), human eyes can’t perceive
that the diodes are actually turning on
and off. Although their brightness is
reduced, both LEDs will appear to be
on at the same time.

The LEDs are turned on and off
every 14 ms (71.5-Hz rate). That ex-
plains the reason for the 7-ms counter.
It equals half of the on/off period.

If you only want one of the LEDs
to be lit, you would still need to use
the above steps except that LED B
would be absent. LED A is lit for a
short amount of time and then it is
shut off for the same amount of time.

Table 1— Here’s the
order in which the LEDs
are enabled for each of
the eight patterns.
When Pattern 8 is
completed, the cycle
restarts at Pattern 1.

Pattern Pattern Pattern Pattern Pattern Pattern Pattern Pattern
1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8
8 and 2 1 and 3 2 and 4 3 and 5 4 and 6 5 and 7 6 and 8 7 and 1
7 and 3 8 and 4 1 and 5 2 and 6 3 and 7 4 and 8 5 and 1 6 and 2
6 and 4 7 and 5 8 and 6 1 and 7 2 and 8 3 and 1 4 and 2 5 and 3

5 6 7 8 1 2 3 4
6 and 4 7 and 5 8 and 6 1 and 7 2 and 8 3 and 1 4 and 2 5 and 3
7 and 3 8 and 4 1 and 5 2 and 6 3 and 7 4 and 8 5 and 1 6 and 2
8 and 2 1 and 3 2 and 4 3 and 5 4 and 6 5 and 7 6 and 8 7 and 1

1 2 3 4 5 6 7 8

Figure 2— As this LED enable waveform shows, LED A is enabled while
LED B is disabled, and then the roles are reversed.

LED A

LED B

On

Off

On

Off

7 ms

14 ms

LED A on LED B on

58 Issue 111 October 1999 CIRCUIT CELLAR ® www.circuitcellar.com

Figure 3— Seeing the order in which the LEDs are lit for
the first three patterns makes it easier to extract the
formulas to describe each LED pattern.

the single LED rotates one LED clock-
wise and the pattern repeats.

The eight possible LED patterns
are shown in Table 1. Note that each
subpattern is enabled for 14 ms × 8,
which equals 112 ms.

Now, we need to find a way to
code that pattern without explicitly
coding each step. Although there’s no
reason why a brute-force method of
coding the pattern wouldn’t work, it’s
just not very challenging. There has to
be an overlying pattern that we can
use to generate each subpattern.

To find this overlying pattern, take
an 8-bit register and put an X in the
bit location when you want an LED to
turn on. If you start with Pattern 1,
you’ll end up with Figure 3. The LEDs
are numbered from 1 to 8, and the
registers are numbered 0 to 7.

Figure 3 should help you figure out
the rules for determining which diodes
should light. Note the cells with the
bold blue X in them. This pattern is
nothing more than a circular left shift.

Describing the cells with the non-
bold blue Xs is only a little more com-
plicated. It’s a circular right shift with

a twist. The twist is that every ninth
shift is a left instead of right. Now, by
inclusive-ORing these two shift pat-
terns together, you can generate the
patterns you want.

This circular right shift technique
is much easier than trying to code all
the individual subpattern states. The
two registers that contain the shift
patterns are called Reg_chain1 and
Reg_chain2.

Once the 14-ms cycle time is de-
fined and the patterns described, we
need to determine which LEDs will be
on and off within the subpatterns.
This dilemma is resolved by taking
the first subpattern in each pattern
and defining the A LEDs to be the bold-
X LEDs plus X + 1, X + 2, and X + 3.
Each of the remaining four LEDs plays
the part of the B LED.

If you try to assign a fixed pattern to
the LEDs (e.g., LEDs 1–4 are A, and 5–
8 are B), it will result in some sub-
patterns having both desired LEDs in
either the A or the B group. The vari-
able LED_pattern contains the A or B
desgination information and is used by
logical ANDing LED_pattern with

LEDs

8 7 6 5 4 3 2 1
Pattern X
 1 X X

X X
X X

X
X X

X X
X X

X
Pattern X
 2 X X

X X
X X

X
X X

X X
X X

X
Pattern X
 3 X X

X X
X X

X
X X

X X
X X

X

Figure 2 shows the LED-enable wave-
forms and the on-off periods.

Now, let’s define a pattern. Each
pattern starts as a single lighted LED
and then travels in pairs around the
circuit board until reaching the oppo-
site side where it ends in a single LED
and then travels back. At that point,

 CIRCUIT CELLAR ®
www.circuitcellar.com

the inclusive OR of the Reg_chain1
and Reg_chain2 variables.

By coding the LED pattern in this
manner, substantial code compression
is achieved, which leaves valuable
code space to handle other tasks.

By the way, if you wish to modify
this firmware, you need a suite of
tools available from Microchip. Most
of the PIC tools are free, including the
assembler and simulator, and can be
downloaded the Microchip web site.

ASSEMBLY
Begin by programming the PIC

with the source and programming
files, which are available via the Cir-
cuit Cellar web site. Next, solder the
PIC to the circuit board and note the
location of pin 1.

Attach the switch (S1) and solder
the 10-kΩ resistors (R9 and R10) and
the 300-pF capacitor (C1). Now solder
the eight 36-Ω resistors and the coin
cell battery holder (B1). And that com-
pletes the main circuit assembly ex-
cept for the LEDs.

Of course, you can put a label on
the front of the device. Then, using a
common straight pin, poke 16 holes
for the LEDs and push the leads
through the circuit board. Bend the
leads slightly to hold each LED in
place while you insert the others.

Before you insert each LED, note
the location of pin 1 (or anode). Pin 1,
(identified by the longer of the two
leads) must go to the square pad on
the circuit board. When you’re done,
solder all 16 leads and trim the excess.

Figure 4— If everything has been done right up to this point, probing the
PIC’s clock signal (pin 16 of U1) with an oscilloscope should result in a
waveform like the one shown here.

1/27/99 8:47:32 PI

2 µs/div 0.4 V/div 0.113 VDC 1.73 Vp-p 0.571 Vrms –62.7 dB

dV = 0.0252 V dt = 5 µs f = 200 kHz

Jon Varteresian owns and operates JV
Enterprises, which offers educational
electronic kits and provides con-
sulting services. Jon specializes in
deep embedded control of wireless
transceivers and user interface
management. You may reach him at
jventerprises@worldnett.att.net.

SOURCES
Project components
JV Enterprises
(978) 928-5655
jventerprises.home.att.net

Digi-Key Corp.
(800) 344-4539
(218) 681-6674
Fax: (218) 681-3380
www.digi-key.com

All Electronics
(800) 826-5432
(818) 904-0524
Fax: (818) 781-2653
www.allelectronics.com

Jameco
(800) 536-4316
(415) 592-8097
Fax: (415) 592-2503
www.jameco.com

DID YOU DO IT RIGHT?
The last step is to

insert the coin cell bat-
tery in the battery holder
with the positive termi-
nal positioned up. Now
press and release the
reset button (S1).

If you’ve assembled
everything correctly, the
LEDs will start to flash.
If they don’t, check your
work for solder bridges
(shorts) or faulty solder
joints. If that doesn’t
help, use an oscilliscope
to probe the PIC’s clock
signal (see Figure 4).

And there you have it—a simple
way to learn programming in assem-
bly on a PIC. I

SOFTWARE
Along with a complete parts list,
the source and programming files
for this project can be downloaded
from the Circuit Cellar web site.

jventerprises.home.att.net
www.digi-key.com
www.allelectronics.com
www.jameco.com
www.circuitcellar.com

60 Issue 111 October 1999 CIRCUIT CELLAR ® www.circuitcellar.com

IrDA Technology

FEATURE
ARTICLE

Hari Ramachandran

o
Cameras talking to
PDAs, talking to PCs,
talking over the
Internet, talking to
each other…?
Once you get the
latest word on IR
communication
standards, your
embedded designs
will want to join the
conversation, too.

ur industry is rife
with acronyms. Most

engineers shudder when
an industry association is

formed and yet another set of acronyms
is spawned.

In 1994, the Infrared Data Associa-
tion (IrDA) was formed by a group of
companies, including HP, IBM, and
Sharp. The goal of the association was
to promote the ubiquitous deployment
of infrared appliances that interoperate
with each other.

For this to happen,
both the physical layer
and protocols for com-
munication needed to be
established. Much to the
credit of the companies
in the IrDA, these speci-

Figure 1 —There are three major
layers needed in a basic IrDA
application—physical, protocol, and
application. A basic IrDA link
requires a reliable physical layer and
IrLAP/IrLMP layers. What’s loaded
on top of those layers is up to you.

fications were adopted and ratified in
less than a year.

By 1995, laptop PCs and IrDA PC
adapters that adhered to the standard
made their appearance and Microsoft
released IrDA support for Windows 95.
Since then, in fits and starts, IrDA has
been adopted in almost all laptops and
is being used in consumer devices
(e.g., digital cameras, cell phones, and
pagers). However, the breadth of the
technology and its applications has
left even seasoned industry watchers
and engineers a bit dazed and confused.

My goal here is to dispel some of
the confusion and provide an overview
of IrDA technology. I want to focus
specifically on physical-layer imple-
mentations, which will be the focus
of Part 2 next month.

THE VISION
Before delving into the details, it’s

a good idea to discuss the purpose of
the IrDA. The key concept is ubiquitous
interoperability—the ability to inter-
connect to a variety of devices, exchange
files, electronic business cards, and
images, print documents, and synchro-
nize data between PDAs and desktop
PCs, cell phones, and IR watches.

For the IrDA’s goals to be reached,
a number of key technical hurdles
needed to be overcome. First of all,
the physical-layer specification had to
be ratified. These specifications in-
cluded wavelength, transmission
power, communication speed, and
data-modulation schemes.

Part 1: An Overview

IrDA-SIR 1.0(115.2 kbps)/FIR 1.1 (4.0 Mbps)

IrLAP (Link access protocol)

IrLMP-MUX (Link management protocol)

IrLMP-IAS – Information access services

Tiny TP (flow-control for a multiplexed channel)

IrCOMM – printer, RS-232C emulation

IrOBEX – Object exchange protocol

IrTranP – IR transfer picture protocol

IrMC – IR mobile communications

Physical
layer

Protocol
layer

Application
layer(s)

www.circuitcellar.com CIRCUIT CELLAR ® Issue 111 October 1999 61

Next, a robust reliable data com-
munication protocol had to be estab-
lished. The protocol needed to take
into account the ad hoc nature of a
wireless connection as well as support
point-to-point connectivity and the
ability for devices to negotiate capa-
bilities like data frame size and maxi-
mum communication transfer rate.

And last, in order for devices to
communicate, application layers for
communication between cell phones,
digital cameras, and PDAs needed to
be established.

IrDA LAYERS
The end result of almost three years

of discussions and various levels of
execution is the IrDA architecture.
Each layer is described in the sections
shown in Figure 1.

At the lowest level, the physical
layer specifies the physical character-
istics of the infrared medium, the data-
modulation scheme used, and the
structure of an IrDA frame. Generally,
the physical layer comprises a UART,
a modulator/demodulator ASIC, and
an IrDA-compatible transceiver.
Tables 1–2 describe key characteris-
tics of the IrDA physical layer.

For data rates up to and including
1.152 Mbps, the return to zero inverted
(RZI) modulation scheme is used and a
light pulse represents a 0. For rates up
to and including 115.2 kbps, the optical
pulse duration is 3⁄16 of a bit duration
(or 3⁄16 of a 115.2 kbps-bit duration).

For 0.576 and 1.152 Mbps, the optical
pulse duration is 1⁄4 of a bit duration.
Informally, communication rates up
to 115.2 kbps are termed serial infrared

(SIR). A signaling rate of 1.152 Mbps
is termed MIR, and a 4-Mbps rate, FIR.
Figure 2 illustrates the basic building
blocks for an SIR implementation.

The RZI (SIR) encoding scheme
shown in Figure 3 relies on a clock to
drive the modulation engine. This clock
(16XCLK) is set to 16× the communi-
cation transfer rate.

For example, if communication at
115.2 kbps is required, 16XCLK is set to:

16 × 115200 = 1.8432 MHz

A space or 0 TXD value is encoded
as a single pulse (IRTX) of duration (3⁄16)
of the bit time or:

1
115200

× 3
16

= 1.63 µs

The demodulation scheme
stretches the received pulses (IRRX)
to recreate the original signal (RXD).
A practical implementation of an SIR
physical layer solution is described
in Figure 4, which outlines a practi-
cal microcomputer-based SIR physi-
cal layer solution.

The key building blocks are the
HP HSDL 1001 (an IrDA transceiver

designed to accommodate signaling
rates up to 115.2 kbps), an HP HSDL
7001 or Parallax’s PLX 7001–IrDA
Endec (applies the RZI [SIR] encoding
scheme as described in Figure 3), and
Dallas’ 80C320 (8051 CPU derivate).

If run at 25 MHz, the 80C320 can
easily accommodate communication
up to 115.2 kbps. The UART signals
(TXD and RXD) are tied to the HSDL
7001. Three control lines from the
Dallas chip are used to set the signal-
ing rate of the HSDL 7001.

Table 1—The pulse durations for each signaling rate can be critical in building a reliable physical-layer implementation.
Issues can arise if the pulse duration generated by the IrDA transceiver doesn’t match that supported by the encoder/
decoder.

Rate tolerance Pulse duration Pulse duration Pulse duration
Signaling rate Modulation % of rate minimum nominal maximum

2.4 kbps RZI ±0.87 1.41 µs 78.13 µs 88.55 µs
9.6 kbps RZI ±0.87 1.41 µs 19.53 µs 22.13 µs
19.2 kbps RZI ±0.87 1.41 µs 9.77 µs 11.07 µs
38.4 kbps RZI ±0.87 1.41 µs 4.88 µs 5.96 µs
57.6 kbps RZI ±0.87 1.41 µs 3.26 µs 4.34 µs
115.2 kbps RZI ±0.87 1.41 µs 1.63 µs 2.23 µs
0.576 Mbps RZI ±0.1 295.2 ns 434.0 ns 520.8 ns
1.152 Mbps RZI ±0.1 147.6 ns 217.0 ns 260.4 ns
4.0 Mbps

(single pulse) 4PPM ±0.01 115.0 ns 125.0 ns 135.0 ns
(double pulse) 4PPM ±0.01 240.0 ns 250.0 ns 260.0 ns

Table 2a—To be compliant, IrDA optoelectronics must comply to these physical specifications as well as the
irradiance specifications outlined in (b). b—Matching the transmission/receiver power of an IrDA optoelectronic
pairing is critical. The IrDA protocol allows multiple devices to be “discovered,” so a device that transmits too much
energy can saturate other listeners and drown out other devices.

Specification Data rates Minimum Maximum

Peak wavelength, up, µm All 0.85 0.90
Max. intensity in angular range (mW/Sr) All — 500
Min. intensity in angular range (mW/Sr) <_ 115.2 kbps 40 —
Min. intensity in angular range (mW/Sr) 115.2 kbps 100 —
Half-angle, degrees All ±15 ±30
Signaling rate (i.e., clock accuracy) All See Table 1 See Table 1
Rise rime (Tr) 10–90%, <_ 115.2 kbps — 600
 fall time (Tf) 90–10% (ns)
Rise rime (Tr) 10–90%, 115.2 kbps + — 40
 fall time (Tf) 90–10% (ns)
Pulse duration All See Table 1 See Table 1
Optical overshoot, % All — 25
Edge jitter, % of nominal bit duration <_ 115.2 kbps — ±6.5
Edge jitter relative to reference clock, 0.576 & 1.152 Mbps — ±2.9
 % of nominal bit duration
Edge jitter, % of nominal chip duration 4.0 Mbps — ±4.0

Maximum irradiance All — 500
 in angular range (mW/cm2)
Minimum irradiance <_ 115.2 kbps 4.0 —
 in angular range (µW/cm2)
Minimum irradiance 115.2 kbps + 10.0 —
 in angular range (µW/cm2)
Half-angle, degrees All ±15 —
Receiver latency allowance (ms) All — 10

a)

b)

62 Issue 111 October 1999 CIRCUIT CELLAR ® www.circuitcellar.com

Listing 1, written in 8051 assembly
language, demonstrates how to set up
both the Dallas 80C320 as well as the
HSDL 7001 to send out the character
“h” repeatedly.

Because the HP HSDL 1001 doesn’t
optically isolate the send and receive
channels, you’ll see data coupling back
when you transmit data, causing an
apparently spurious reception of data.
When implementing a half-duplex link,
be sure to accommodate this situation
by clearing the receive buffer after
sending out a frame or byte of data.

One other critical issue to under-
stand when implementing an IrDA
link is latency, which ties into the fact
that there’s no optoisolation between
the send and receive channels. During
transmission, the sender sends out a
byte to the responder device, which
causes the receiver on the sender to
saturate, thereby causing a loss in its
receiver sensitivity.

For the HSDL 1001, the latency is
10 ms. In that 10-ms period, any data
received will most likely be corrupted.
The trick is for the responder to hold
on for 10 ms after receiving before
attempting to send any data to the
sender. In IrDA terminology, this time
lag is known as the minimum turn-
around time and is ordinarily handled
by the infrared link access protocol
(IrLAP) layer.

4PPM MODULATION
For 4.0-Mbps communication, the

modulation scheme is 4PPM. 4PPM
modulation is achieved by defining a
data symbol duration (Dt), ordinarily
set to 500 ns, and dividing this into
four time slices, called chips. The
duration of each chip is 125 ns.

Because the signaling rate is 4 Mbps,
each Dt period works out
to two data bits (Dt = 500 ns
= 2 × 1⁄4 Mbps). During a
specific Dt, only one chip
can be a logical one.

Despite the relative
simplicity of the 4PPM
modulation scheme, build-
ing a practical 4-Mbps
hardware scheme is non-
trivial. Simply put, the
4-Mbps datastream is fast!
In addition to a 4PPM

modulation engine, you need a serial
communication controller that handles
DMA if you’re going to build a practi-
cal 4-Mbps hardware scheme.

Figure 5 outlines a relatively low-
cost 4-Mbps hardware scheme. Let’s
look at the key modules for this solu-
tion. The HP HSDL 1100 FIR trans-
ceiver supports communication all
the way from 9600 bps to 4 Mbps.

The NS 87109 UIR controller en-
compasses the 4PPM and RZI modula-
tion schemes (supports 9600 bps to
4 Mbps). It also functions as a serial
communication controller, and handles
data integrity, bit stuffing, and CRC
calculations (which, at 4 Mbps, are
too complex to do in firmware).

The ’87109 also supports DMA,
which is another critical performance
factor. Though a polled I/O approach
can be used to receive 4-Mbps data, it
requires too much CPU overhead.

Because effective communication
with the ’87109 using regular polled
I/O is usually not workable, I chose the
NEC V850E/MS1 single-chip processor.
It supports up to 128-KB internal flash
memory and up to 4 DMA channels, so
it’s ideal for I/O-intensive applications.

PROTOCOL LAYERS
Once a stable physical-layer imple-

mentation is put in place, the next
step is to build the protocol layers.

First-pass processing of received IR
frames is handled by the IrLAP layer.
The IrLAP layer is a variant of the IBM
HDLC protocol, modified to take into
account the ad hoc nature of wireless
connectivity.

The IrLAP layer controls discovery
of devices within range, uniquely iden-
tifies those devices, and establishes a
reliable, error-free communication chan-
nel. You can think of it as a glorified
wire that’s implemented using infrared.

IrLAP commands are passed up to
the infrared link management protocol
(IrLMP) layer, which allows the single
IrLAP channel to be shared across
multiple logical channels. This way, a
single IrDA device can support multiple
functions (e.g., faxing, printing, and
LAN access) through different logical
channels while using the same physi-
cal layer (a single IrLAP connection).
IrLMP is like a switchbox that routes
data to and from the IrLAP layer.

INFORMATION ACCESS SERVICE
Because the IrDA protocol is in-

tended to be used with a variety of
appliances, we need a way to identify
the features supported by the device.
The information access service (IAS)
accomplishes just that. Think of the
IAS as a Yellow Pages of services and
features supported by the device.

For example, if the device is a cam-
era, it advertises itself by an
entry in the IAS database
that indicates that it is a
camera and includes infor-
mation about an external
device that can connect to
it. The first thing a connect-
ing device does is send a
“query IAS” command to
determine what the device
is and what it can do.

Finally, on the protocol
layer, is the tiny transporta-

Figure 3 —The SIR encoding scheme relies on a clock (CLK16X) set to 16× the trans-
mission bit time. The signal to be encoded is on the falling edge of TXD, an internal
timer “times” seven of the CLK16X pulses before pulling IRTX high for three clock
cycles and low for the remaining six cycles. SIR decoding is the inverse of this process.

CLK16X

TXD

IRTX

16 × CLK16X

3 × CLK16X
or

1.6 µs fixed

7 × CLK16X CLK16X6 ×

Figure 2 —These building blocks
are what’s required for a basic SIR
physical-layer implementation. You’ll
need an IrDA-compliant optoelec-
tronic device, an SIR encoder/
decoder chip, and a microprocessor
with a built-in UART.

SIR
encoder/
decoder
(endec)

IrDA
compliant

optoelectronics
UART/

microprocessor

IRRX RXD

IRTX TXD

CLK16X

www.circuitcellar.com CIRCUIT CELLAR ® Issue 111 October 1999 63

start:
; Do some intialization before proceeding.

lcall Setup_HSDL7001 ; setup HSDL 7001
lcall SetBaud115200 ; set data rate to 115.2 kbps

; Keep looping and sending out h's @ 115.2 kbps

doit: mov a, #68h ; send out an 'h'
lcall PutByte ; call PutByte to send out data
mov a,#ffh

waitsend: djnz a,waitsend ; delay a bit before continuing
ljmp doit ; continue looping

PutByte: ; sends byte out through UART
mov r1,a ; data is stored in the accumulator
mov SBUF,r1 ; send the byte out

waitTI: jnb TI,waitTI ; wait till it's sent out
clr TI

ret

SetBaud115200:
;Program serial control registers & relevant timer registers
; to enable required data rate.

mov SCON, #50h
mov RCAP2H,#0FFh
mov A,#RCAP2L_115200
mov RCAP2L,A ;0DCH -9600 bps- #0FDh 115200 bps
mov T2CON, #34H
clr RI
clr TI
mov IE,#0
setb REN

; Select HSDL-7001 signaling rate - for 115.2 kbps, select:
; A0 = 0 -> tied to P1.0
; A1 = 0 -> tied to P1.1
; A2 = 0 -> tied to P1.2
;

clr P1.0
clr P1.1
clr P1.2
ret

;Setup_HSDL7001 sets HSDL-7001 into the following operational mode:
; CLKSEL -> Internal oscillator
; PULSEMODE -> Set to 1.6-µs mode
; POWERDN -> Set Low (powerdown not active)

Setup_HSDL7001: ;Test hardware has been configured as follows:
; CLKSEL -> P1.3 LOW=> Internal Clock HI=> External 16XCLK
; PULSEMOD -> P1.4 LOW=> 3/16 modulation HI=> 1.6-µs pulse mode
; POWERDN -> P1.5 LOW=> Normal Operation HI=> Powered down
;
; POWERDN mode only deactivates internal analog oscillator block within HSDL-
; 7001. If CLKSEL is set to high and external 16X clk is provided,
; the chip should continue to work.

clr P1.3 ; CLKSEL = Internal oscillator
setb P1.4 ; PULSEMODE = 16 us
clr P1.5 ; POWERDN = normal mode
ret

Listing 1 —The code I used to implement a simple 115.2-kbps communication link uses the hardware
configuration from Figure 4 and programs the UART of the 80C320, sets up the 7001 for 115.2 kbps, and
sends out a character “h.” Don’t confuse this code with a complete IrDA protocol stack implementation.

tion protocol (Tiny TP). Because the
IrLMP layer supports multiple logical
channels, Tiny TP is needed to prevent
a deadlock situation in which one chan-
nel hogs the IrLAP/IrLMP channel. It
uses a credit transaction scheme to
control (or buy) access to the channel.

APPLICATION LAYERS
After the physical and protocol

layers are built up, the next step is to
build application support for the
device(s) you want to communicate
with. I’ll just give a preliminary sum-
mary of the application layers here.

64 Issue 111 October 1999 CIRCUIT CELLAR ® www.circuitcellar.com

The main methods of exchanging data
through an IR connection are IrCOMM,
IrOBEX, and IrTRANP.

IrCOMM is intended for legacy-wired
serial or parallel port applications that
are to be converted to support IrDA.
For instance, if you want to replace
the RS-232 wired connection between
a modem and a PC, you need to con-
nect an IrDA adapter to your PC and
build an IrDA modem adapter.

If the IrDA stack on your PC and
modem adapter contain the IrCOMM
extensions, both your PC and modem
continue to operate as if the RS-232
cable was connected. You can continue
to use the PC modem application as if
you were using a virtual COM port.

If you install the Windows 95 IrDA
drivers, the IrDA protocol is exposed
as virtual COM and LPT ports on your
system. The IrCOMM layer essentially
opens up the IrDA protocol through a
series of communication API look-alike
commands, so changes to the base
application aren’t required.

The infrared object exchange (Ir-
OBEX) standard is intended as an OS-
independent method of transferring
objects. If you want to send a file from
one device to another, IrOBEX estab-
lishes the means of identifying and
converting the file into a universal
object that both devices can under-
stand and interpret. It also specifies a
simplified protocol of putting and
getting objects from devices.

Sony, Sharp, Casio, and a few other
digital camera vendors established the
infrared picture transfer protocol (Ir-
TRANP). IrTRANP enables users to
beam images between cameras, PDAs,
PCs, and even directly onto the Internet.

An application developed by NTT
for the Nagano Olympics enabled users
to beam their images onto a personal
web page via an IrDA kiosk. IrTRANP

Hari Ramachandran is the managing
director and founder of Parallax Re-
search, a design company focused on
providing IrDA solutions. He designed
the HP HSDL 7001 and HP HSDL 7000
IrDA chips, and developed IrDA proto-
col stack software for numerous com-
panies and specific applications. You
may reach him at hari@parallax.com.sg.

Figure 4 —This design uses a Dallas 80C320,
the HP HSDL 7001 (encoder/decoder), and
HP HSDL 1001 (IrDA optoelectronics) and is
all that’s necessary to build a working IrDA
(SIR) hardware implementation. To complete
the full IrDA implementation, you’ll need to
code the IrDA protocol stack, which can be the
most daunting aspect of implementing an IrDA
solution.

HP
HSDL
1001

7001
or

Parallax
PLX 7001

Dallas
80C320

Txd

Crystal
3.6864 MHz

Transfer rate selection

Rxd

IRTXD

IRRXDHP HSDL

Figure 5 —Building a 4-Mbps IrDA solution is a more complex
(and more expensive) undertaking than building a basic SIR
solution. This practical building block uses an NEC V850E/MS1
CPU and NS 87109 universal IR controller chip and the HSDL
1100 IrDA optoelectric assembly.

HSDL
1100

FIR
Xceiver

NS
87109

UIR controller

NEC V850E/MS1
CPU

SRAM

used the IrCOMM layer to open a reli-
able communication medium between
devices, a simple command execution
protocol (SCEP) to manage the com-
munication session, and binary ftp
commands to exchange images.

SAMPLE COMMUNICATION SESSION
Now you’ve been introduced to a

set of incredibly poetic-sounding acro-
nyms and nifty concepts. But how does
the IrLAP layer talk to the IrLMP layer,
and how does IRTRANP come into the
picture? Let’s look at a session between
a PDA and an IrTRANP camera.

The user selects an image from a
IrTRANP camera, points it at the PDA,
and presses Send. All communication
is at the default IrLAP 9600-bps signal-
ing rate. The camera sends an IrLAP
discovery command, attempting to find
IrDA-compliant devices.

After the PDA responds and identi-
fies itself, the camera sends a negotia-
tion request (to determine the PDA’s
maximum communication speed) and
connects at that speed. Once an IrLAP
connection is established, the camera
initiates an IrLMP connection to chan-
nel 0 (IAS channel) and queries whether
the PDA supports IrCOMM services.

The PDA responds, “Yes. I support
IrCOMM, go ahead and connect to chan-
nel x, which is my IrCOMM channel.”
The camera disconnects from the IAS
channel (channel 0), connects to the
IrCOMM channel (channel x), and sends

an IrTRANP connect command
through the IrCOMM channel.

After the PDA acknowledges
the IrTRANP command, the
camera executes an IrTRANP
put command and sends the
image over. Once the image is
transferred, the camera shuts
down the IrTRANP, IrCOMM,
IrLMP, and finally, the IrLAP
session.

NOW YOU KNOW
Although the vision espoused by

the IrDA is simple, understanding the
technical aspects can be somewhat
daunting. Now that you’ve been intro-
duced to the concepts of IrDA, I hope
that you’ll find it easier to implement
your own IrDA solutions. I

SOURCES

80C320
Dallas Semiconductor
(972) 371-4448
Fax: (972) 371-3715
www.dalsemi.com

HSDL7001, ’1001, ’1100
Hewlett-Packard
(408) 435-4303
Fax: (408) 435-4303
www.hp.com

PLX7001
Parallax Research Pte Ltd.
+65 791 7388
Fax: +65 793 0086
www.parallax-research.com

NS87109 UIR
National Semiconductor
(408) 721-5000
Fax: (408) 739-9803
www.national.com

V850/MS1
NEC Electronics
(408) 588-5008
Fax: (408) 588-5017
www.necel.com

www.dalsemi.com
www.hp.com
www.parallax-research.com
www.national.com
www.necel.com

66 Issue 111 October 1999 CIRCUIT CELLAR ® www.circuitcellar.com

2
2

Rolling Your Own
Microprocessor

MICRO
SERIES

Monte Dalrymple

l
Prick up
your ears
as Monte

takes a detailed look
at the ports, timers,
interrupts, and
other features that
make this new
microprocessor
a hair (er, hare?)
better than the Z80.

ast month, I
covered the design

and debug process for
the Rabbit-80 micro.

Now, I’d like to introduce you to the
chip’s features. The Rabbit-80 is built
around an enhanced Z80-compatible
CPU and contains a set of on-chip
peripherals designed to address typical
embedded-control applications.

Note that no on-chip memory is
included. The majority of applications
served by Z-World controllers require
more flash memory and RAM than we
could include on-chip at a reasonable
price, especially given the low prices
of individual 256K × 8 flash memory
and 128K × 8 RAM devices.
Let’s look at each of the
blocks of Figure 1.

THE CPU
For the most part, the

CPU in the Rabbit is Z80-
compatible. We made
changes to the instruction
set to provide a greater

degree of support for the C language.
Several seldom-used instructions (see
Table 1a) were removed in favor of the
new instructions listed in Table 1b.

Many of the new instructions pro-
vide 16-bit operations that weren’t
readily available in the Z80. These
additions provide a big performance
boost in the math libraries, especially
with the new 16 × 16 signed multiply.
The MUL instruction requires just 12
clocks to provide a full 32-bit result.

Operations such as the stack-rela-
tive load and store, and the ability to
directly allocate or deallocate stack
space simplify parameter passing to
the stack. This feature is a must for
C-language support.

The original Z80 architecture had
dedicated I/O instructions that required
specific registers and addressing modes.
Instead, the Rabbit uses two prefix
bytes, which precede an instruction
intended to access I/O.

The prefix bytes identify whether
the desired I/O location is internal or
external, and change the timing and
control signals appropriately to provide
access to the peripheral. This setup
gives greater flexibility when access-
ing peripherals because the prefixes
can be used with any instruction that
accesses memory.

A similar approach provides access
to the Z80 alternate register set. The
ALTD prefix switches the destination
register to the corresponding register
in the alternate register set, which cuts
down on the bank switching necessary
when using the alternate registers.

The final additions support the
large physical address space. Loads

Design Application with the Rabbit-80

Figure 1— This is what the Rabbit-80
looks like on the inside. Only external
memories are required.

RTC

WDT

Clock control Port A

CPU

Port B

Port C

Port D

Port E

Serial port D

Serial port C

Serial port B

Serial port A

Oscillators Slave port

Timer BTimer A

Periodic int.

I/O Control

External bus and control

Internal bus

P
ar

t

of
2
2

 CIRCUIT CELLAR ® Issue 111 October 1999 67www.circuitcellar.com

Instruction type Mnemonics

Conditional call CALL cc
BCD operations DAA, RLD, RRD
Block I/O INI, OUTI, etc.
Byte multiply MLT
Interrupt control DI, EI, IM n, RETN
I/O IN, OUT, TSTIO, etc.
Test TST

Alternate register bank ALTD
 instruction prefix
I/O instruction prefix IOIP, IOEP
16-bit math AND, OR, RL, RR,

 BOOL, MUL
Stack-relative addressing LD (SP + n)
Stack-space allocation ADD SP,d
Long address program flow LCALL, LJP, LRET
Interrupt priority stack IP n, IPRES, PUSH

 IP, POP IP
16-bit load and store LD
Load/store (physical address) LDP

and stores use a direct 20-bit physical
address instead of the usual 16-bit
logical address. The program flow-
control (jump, call, and return) in-
structions load one of the MMU bank
registers in addition to the PC to pro-
vide program access to the full physi-
cal address space.

MEMORY MANAGEMENT
The Z180 provides an MMU with

two bank registers to create the
larger (1 MB) physical address space.
The Rabbit adds another bank regis-
ter and the ability to bank-switch the
memory chips for even more program
and data space. The MMU address
translation algorithm is shown in
Figure 2.

The MMU uses the upper four bits
of the logical address to select one of
the bank registers to use for address
translation. The exact boundary where
one bank ends and another begins is
controlled by another register.

The exception is a newly added
bank register, which is always used
for translation when the logical ad-
dress is between E000h and FFFFh.
This new bank register is accessed by
the new program control instructions.

Translated addresses may be modi-
fied to separate instruction and data
areas in the memory chips. This arrange-
ment only works for accesses using one
of the bank registers and allows execu-
tion out of RAM while accessing data
in flash memory. Address bits 16 or
19 (or both) can be inverted for data
access, so data can be accessed at either
64 or 512 KB above or below the code.

At this point, the address goes to
the chip-select decoder, which uses the
upper two bits of the 20-bit address to
generate three chip-select signals, two
write-enable signals, and two output-
enable signals. Each memory quadrant
can use any combination of a single
chip select, an output enable, and a
write enable. Figure 3 shows a typical
system configuration.

The chip-select signal typically used
for RAM can be forced continually
active to circumvent the delay inherent
in routing the signal through an exter-
nal power controller for battery-backed
applications. Each memory quadrant
can be individually write-protected.

The final address modification allows
the two most significant bits of the
address to be flipped (individually for
each memory quadrant) after the chip-
select decision is made. This arrange-
ment allows a 1M × 8 memory chip to
be bank-switched within a 256-KB
quadrant of the physical memory space.

BUS TIMING
The basic instruction time and bus-

cycle time are both two clock cycles.
Memory-write cycles have one wait
state automatically added. The basic
read cycle is shown in Figure 4a, and
the basic write cycle, in Figure 4b. For
each of the four memory quadrants,
there is a choice of zero, one, two, or
four automatic wait states.

Separate strobes are provided for
I/O transactions and up to eight I/O
chip-select signals can be output on
Port E. The 64-KB external I/O address
space is evenly divided for the eight
I/O chip selects. Each I/O region can
be programmed for 1, 3,
7, or 15 automatic wait
states and can be write-
protected.

Internal I/O addresses
are separate from external
I/O addresses. Of course,
most of the time a Rabbit
system won’t need exter-
nal peripherals because
most of the digital periph-
erals an embedded system
might need are on-chip.

SLAVE PORT
One unique feature of the

Rabbit is the slave port. This
byte-wide port is a bidirec-
tional communications chan-
nel between the code on the
Rabbit and a master system.
To the master, the Rabbit
looks like a combination of

three write registers, three read registers,
and a status register. The Rabbit CPU
has the same view of the slave port.

Figure 5 shows the slave-port hard-
ware interface. Since the chip select is
designed into the slave-port interface, a
number of Rabbit slaves can be simul-
taneously used in a system.

The master writing to the slave
port can generate a Rabbit interrupt,
and a Rabbit writing to the slave port
can activate the interrupt signal to the
master. This setup permits high-speed
interrupt-driven transfers.

A primary use of the slave port is
to offload the intelligence required to
drive peripheral devices onto the Rab-
bit system. Thus a small Rabbit sys-
tem would look like a group of “smart”
peripheral devices to a master system.

SERIAL PORTS
The Rabbit has four independent

serial ports: two are async-only, and two
are combination async/clocked serial.

Table 1a—These Z80 and Z180 instruc-
tions were removed to make room for
new instructions. They can all still be
emulated in software. b—These new
Rabbit-80 instructions provide higher
performance. The main additions are the
16-bit math operations and long address
operations.

Figure 2— The MMU translates logical addresses to physical addresses. It
also provides for instruction/data separation and bank switching.

16-bit logical address

Selected base register

Invert A19 and/or A16 only if data

Binary addition

Physical address for CS decision

Invert A19 and/or A18, by quad

Physical address output to pins

+

+

+

a)

b)

68 Issue 111 October 1999 CIRCUIT CELLAR ® www.circuitcellar.com

Parallel Port C is the primary serial-
port interface, but the combination
serial ports can also be connected
through parallel Port D. This multi-
plexing allows the combination ports
to be used in both modes, with sepa-
rate line drivers, although not both at
the same time.

The async capabilities don’t include
all of the seldom-used options often
found in serial ports, but everything
you need for 99% of the possible ap-
plications is there. The ports require a
16× clock and automatically include
start and stop bits.

They can also be programmed to
send and receive an extra address bit
for multidrop applications. There’s a
single byte of buffering for both the
receiver and the transmitter.

The clocked-serial capabilities
allow communication with SPI and I2C
devices using an internal or external
clock. External A/D and D/A devices
often communicate using these types

of serial transfers. Although it would
require software to do the frame format-
ting, these ports could be used to send
and receive HDLC messages.

TIMERS
The first set of timing resources on

the Rabbit, Timer A, contains five
separate 8-bit counters. Four of these
are used to supply the clocks for the
serial ports. The fifth can be used to
time outputs on the parallel ports.

The counters can be cascaded if slow
transfer rates are necessary. Of course,
a programmable interrupt is available
for the terminal-count condition on
all five counters.

The second set of timing resources,
called Timer B, is significantly more
powerful than Timer A because it was
designed to facilitate PWM outputs on
the parallel ports. Timer B consists of
a 10-bit counter, a pair of 10-bit match
registers, and a pair of 10-bit buffer
registers. Timer B is shown in Figure 6.

The counter is free-running and is
clocked by the system clock divided
by two or eight, or by the output of one
of the counters in Timer A. Each match
register generates an output pulse when
the counter matches its contents. This
pulse can be used by two parallel ports
to precisely time output transitions.

Whenever a match occurs, the corre-
sponding match register is loaded from
the buffer register and an interrupt is
generated so the buffer can be reloaded,
which allows PWM to be accomplished
with little CPU overhead. Using the
two match registers in tandem makes
it easy to create the quadrature signals
necessary to drive a servo.

PARALLEL PORTS
The five parallel ports on the Rabbit

can be used individually or programmed
to provide inputs and outputs for the
other on-chip peripheral devices.

Port A is a byte-wide port that can
be used for simple byte-wide I/O or as
the data bus of the slave port. Port B
consists of two outputs, four inputs,
and two I/O. Port B is mostly used for
the control signals for the slave port,
in addition to the two clocks for the
clocked serial ports. No special timing
options are available in output mode
for these two ports.

Port C consists of four inputs and
four outputs, and serves as the primary
I/O for the four serial ports. Port C
inputs are always reported in the data
register (even when being used as serial
port inputs) to allow the timing of a
received break signal. Port C outputs
can be individually selected as simple
outputs or serial port outputs.

Four bits of Port D provide alternate
I/O for the two dual-function serial
ports, but all eight bits of Port D are

Figure 3— In a typical Rabbit system, only external memory chips are required and they connect without any glue logic.

256K × 8 RAM

From power controller

VDD1RESETB

*CS *WE*OE

1M × 8 FLASH

*CS *WE*OE

1M × 8 FLASH

*CS *WE*OE

D[7:0] D[7:0] D[7:0]A[19:0] A[17:0] A[19:0]

ADDR[19:0]

DATA[7:0]

MEMCS2B

MEMCS1B

MEMCS0B

MEMOE0B

MEMOE1B

MEMWE1B

MEMWE0B

20 MHz 32768 Hz

PORT_A

PORT_B

PORT_C

PORT_D

PORT_E

Slave port interface

Four async ports

Four Interrupt inputs

Four simple inputs

Four PWM outputs

Four LED drive outputs

RTXCI/OXTALI/O

Rabbit-80

DATA

MEMCSxB

MEMOExB

T1 T2

Valid

CLK

ADDR

Valid

Valid

CLK

ADDR

DATA

MEMWExB

T1 TW T2

Valid

MEMCSxB

Valid

Valid

Figure 4a— Memory read
timing fits perfectly with
SRAMs or flash memory.
Access time is two full clock
cycles. b—Memory write
timing looks a little different.
The extra clock cycle allows
for a wider write pulse and
some data hold time.

a) b)

 CIRCUIT CELLAR ® Issue 111 October 1999 69www.circuitcellar.com

individually programmable for data
direction. Each bit can be programmed
to be open-drain as an output, and Port
D has higher drive capability than the
other ports for driving LEDs, optoiso-
lators, solid-state relays, and more.

As outputs, the two nibbles of Port
D can be clocked independently by
Timer A’s output or by either Timer B
output. Any data written to the port’s
data register isn’t clocked to the pin
until the selected signal is active, allow-
ing precise timing of the Port D outputs.

Port E has capabilities similar to
Port D’s but lacks the high drive out-

puts or open-drain capability. Port E
can be programmed to provide the I/O
chip selects and the chip-select input
for the slave port. Four Port E pins can
also be used as CPU interrupt inputs.

INTERRUPTS
The Z80 interrupt mechanism has

been completely revised in the Rabbit.
In the Rabbit interrupt scheme, there
are four interrupt priority levels.

The CPU’s current priority level
determines whether or not an interrupt
is accepted, thereby allowing only inter-
rupt requests with higher priority to
be accepted. As well, the CPU keeps a
stack of the four most recent priority
levels, which allows preemption.

 Every interrupt source can be pro-
grammed to request an interrupt at
one of the four levels. Of course, an
interrupt requested at level 0 would
never be accepted because it isn’t
higher than anything. This is how
individual interrupts are disabled.
Similarly, when the CPU is at level 3,
no interrupts will be accepted, because
there isn’t a higher priority.

A typical priority assignment might
be to have the serial ports and timers
request at level 1, external interrupts
at level 2, and one external interrupt
at level 3, simulating a nonmaskable
interrupt. Then the normal CPU prior-
ity would be level 0, enabling all in-
terrupts. Of course, if there are critical
sections of code that can’t be inter-
rupted, then they should be run while
the priority is temporarily set to level 3.

All accepted interrupts cause an
automatic branch to a fixed location in
memory, as shown in Table 2. Inter-

Figure 5— The Rabbit looks like an I/O device when
using the slave port. This feature allows the Rabbit to
be used as a smart peripheral device.

SLAVE_AD[1:0]

SLAVE_D[7:0]

SLAVE_CSB

SLAVE_WRB

SLAVE_RDB

SLAVE_ATTNB

Rabbit-80

PORT_B[5:4]

PORT_A[7:0]

PORT_E[7]

PORT_B[3]

PORT_B[2]

PORT_B[7]

Figure 6— Timer B takes care of PWM tasks easily. The
double buffering reduces time-critical overhead.

10-bit counter

Buffer register 1

Buffer register 2

Match register 2

Match register 1

Comparator
Match 2
Match 1

70 Issue 111 October 1999 CIRCUIT CELLAR ® www.circuitcellar.com

a battery-backed system can keep time
when the main power fails. Both the
32-kHz oscillator and the RTC are
optimized for power consumption. If
the main power is absent, a 150-mAh
battery powers the RTC, so the Rabbit
can keep time for about a year.

CLOCKING AND POWER OPTIONS
The 32-kHz oscillator is accompa-

nied by a separate high-speed oscillator
for the remainder of the chip, but a
number of clocking options are avail-
able. After reset, everything starts out
running in divide-by-8 mode from the
high-speed oscillator, but you can also
select full speed or 2× full speed.

The 2× option saves some power in
the high-speed oscillator. The Rabbit
can be programmed to use the 32-kHz
clock and the high-speed oscillator can
be turned off during inactive periods.
Or, you can power down everything but
the RTC for the ultimate power savings.

BOOTSTRAP
A primary design goal was to allow

for remote bootstrap (i.e., to make it
possible to have RAM-only systems
using the Rabbit). In this mode, the
CPU fetches instructions from a small
(12 byte) internal ROM containing the
code in Listing 1. At each internal I/O
read instruction, the internal logic holds
the CPU in a wait state until a byte is
available from the selected peripheral.

Two pins control bootstrapping by
selecting normal operation, boot from
the slave port, or boot from serial Port
A in async or clocked serial mode. The
Rabbit samples the pins after reset
(when the PC address is 0000 in the
four least significant bits) to enable
the boot ROM.

Thanks to everyone at Z-World, espe-
cially Norm Rogers for conceiving the
Rabbit-80, and Pedram Abolghasem
for running the project (and doing
much of the work) there.

Monte J. Dalrymple has been design-
ing ICs for more than 20 years. He
currently has his own company, which
develops intellectual property. You may
reach him at monted@systemyde.com.

rupts from internal peripherals use the
R register to set the upper eight bits of
the address of the service routine and
the external interrupts use the I regis-
ter to set the upper eight bits of the
address, which is similar to how these
registers are used in the Z80.

The entry points are separated by
16 bytes in memory. Some interrupts
can be serviced in this amount of code
or enough housekeeping can be done
to share the bulk of a service routine.
For example, the four serial ports can
use identical code, as long as the port
addresses and data-table pointers are
set up in these 16 bytes before branch-
ing to the common routine.

The Rabbit has one other interrupt—
the periodic interrupt, which occurs
at a rate of 2.048 kHz. This interrupt
is useful for time-slicing or low-speed
status monitoring and is generated from
the 32-kHz oscillator, which also clocks
the watchdog timer and real-time clock.

WDT AND RTC
The watchdog timer (WDT) can be

programmed to time out after 250 ms,
500 ms, 1 s, or 2 s. Its control register
recognizes four specific bytes to set the
next timeout period. Any other bytes
written to this register are ignored, and
if one of these four bytes isn’t written
in time, the Rabbit is reset.

The RTC doesn’t keep hours/min-
utes/seconds time; it’s a 48-bit counter
clocked at 32 kHz. It can be set to a
specific count by software before it
starts counting up. If the software starts
counting from zero, that’s 272 years of
timekeeping (yes, it’s Y2K compliant).

The Rabbit contains a completely
separate power plane for the RTC, so

SOURCE
Rabbit-80
Rabbit Semiconductors
(530) 757-8400
www.rabbitmicro.com

The bootstrap mode assumes data
transfers in groups of three bytes. The
first two bytes are the address for the
data, followed by the data itself. This
arrangement allows data to be loaded
anywhere in memory.

To select between external memory
and internal peripheral control regis-
ters, the Rabbit uses the most signifi-
cant bit of the downloaded address.
Once the peripherals are accessible,
the MMU can be programmed, provid-
ing full memory access.

To exit bootstrap mode, write to a
bit in an internal control register or
change the pins back to normal opera-
tion. It’s easy to exit this mode, because
the I/O location that disables it is
accessible during bootstrap.

ROLLING ALONG
Now that you know how the Rabbit

was designed and what it contains, what
can you do with it? Anything a Z80 or
Z180 can do, and more. Plus all the
development software is available. I

ORG 0h
LD L, n ;n = 0C0h for serial, n = 020h for parallel
IOIP
LD D, (HL) ;fetch the address msb
IOIP
LD E, (HL) ;fetch the address lsb
IOIP
LD A, (HL) ;fetch the data
IOIP or NOP ;IOIP if D(7) = 1, NOP if D(7) = 0
LD (DE), A ;store the data
JR 0h ;loop back

Listing 1 —Just 12 bytes are needed for the bootstrap loader. The hardware automatically modifies the
bytes to select the bootstrap source and to select an internal I/O destination.

ISR starting
Interrupt source address

Periodic interrupt {R, 00000000}
Slave port {R, 10000000}
Timer A {R, 10100000}
Timer B {R, 10110000}
Serial port A {R, 11000000}
Serial port B {R, 11010000}
Serial port C {R, 11100000}
Serial port D {R, 11110000}
External interrupt 0 {I, 00000000}
External interrupt 1 {I, 00010000}

Table 2— Interrupt routines start on 16-byte boundaries,
which provides space for some housekeeping before
jumping into the main service routines.

www.rabbitmicro.com

72 Issue 111 October 1999 CIRCUIT CELLAR ® www.circuitcellar.com

FROM THE
BENCH

Jeff Bachiochi

Get
SmartMedia

Your
latest
assign-
ment:
Follow

Jeff as he goes
undercover (under
the embedded-
device cover, that is)
to investigate how to
access the Smart-
Media nonvolatile
flash memory.

ast month, I
went over the

physical makeup of
the SmartMedia flash-

memory device. I’d like to start out
this article by introducing some cir-
cuitry I designed that enables you to
access the SmartMedia.

As you can see from Figure 1, there’s
not much to the interface. A microcon-
troller handles both the SmartMedia
interfacing as well as a serial commu-
nications channel.

One of the important points of this
circuit is that it can run at either 3.3
or 5 V. The SmartMedia device in-
serted into the SmartMedia socket indi-
cates the necessary voltage through
the output pin 17. (If you missed last
month’s column, now might be a good
time to go back and read it because I’m
going to assume that you’re familiar
with the signals of the SmartMedia.)

SmartMedia products cover such a
large range, you must be able to sense
the type and size of the device inserted
into your equipment. If you don’t recog-
nize the SmartMedia, you should make
accommodations to reject or at least
not corrupt the data held in the device.

Therefore, it’s recommended that
you follow certain steps to determine
whether the device is compatible with
your equipment: the detection of inser-
tion, operating voltage, type and size,
physical format, and logical format.

INSERT HERE
 Many SmartMedia sockets have an

internal microswitch which enables
you to determine if a device has been
inserted into the socket by the physi-
cal operation of the switch’s contacts.
This mechanical insertion verification
can also be achieved through the Smart-
Media contacts.

The interface has a pull-up resistor
tied to pin 11 of the SmartMedia
socket. When the device is not fully
inserted into the socket, the pullup
registers a logic high with the inter-
face. When fully inserted, pin 11, which
is physically connected to the VSS (pins
1 and 10) contacts of the SmartMedia
device, grounds the pullup and registers
as a logic low to the interface.

PARAMETER DETERMINATION
Once insertion has been resolved,

the proper operation voltage must be
determined because, certainly, apply-
ing 5 V to a 3.3-V device is just asking
for trouble. Again, mechanical micro-
switches can be used to determine
operating voltage (at the same time as
insertion).

Besides the fact that the operating
voltage is written on the SmartMedia,
the packaging has either a left-clipped
corner, indicating 5-V operation, or a
right-clipped corner, indicating 3.3-V
operation. So, two switches strategically
placed at either corner of the socket
could be used to mechanically iden-
tify the proper operating voltage. The
SmartMedia’s clipped corner would not
engage one of the two switches, thus
indicating which media was inserted.

Determining the proper voltage can
be done electrically as well, via pin
18. This time a pulldown is used. On
5-V devices, pin 18 floats (internally
unconnected), whereas on a 3.3-V device,
pin 18 is connected to VCC.

So, once inserted, a 5-V SmartMedia
device will not affect the logic low
read by the interface, indicating the
need for a 5-V supply. On the other
hand, a 3.3-V device with pin 18 con-
nected to VCC raises the interface to a
logic high, which indicates the need
for a 3.3-V supply.

Personally, I think a pullup makes
more sense here. This way, the inter-
face would see the need for a 3.3-V

l

Part 2: Hands On

CIRCUIT CELLAR ® Issue 111 October 1999 73www.circuitcellar.com

ing PCMCIA memory cards. When a
SmartMedia card is inserted into a
PCMCIA ATA adapter card, the PCM-
CIA slot looks for this information as
if it were a PCMCIA memory card.
Voilà! Instant device recognition based
on a previously designed standard.

The 16-byte redundant area holds
information pertinent to the validity
of the previous 512 bytes of the page
(see Figure 2). This area is broken down
into seven pieces of information. The
first 4 bytes are reserved for extension
information.

The next byte is the page data valid-
ity marker. If the data written is not
correct, a 0 indicates that the user
should not consider this page to be
good and should proceed to the next
page for CIS/IDI information.

The next byte is fixed at FF, which
is normally the bad block marker. The
next two bytes are fixed at 00 and 00
(the physical block number). Follow-
ing those two bytes are three bytes of
error correction code (ECC) data.

The ECC’s 22 bits are calculated from
the first 256 bytes of the page. Finally,
the physical block number, in this case

a fixed 0000, is repeated followed
by an ECC on the second 256 bytes
of the page.

So, not only is the CIS/IDI data
repeated twice within this page,
but separate ECCs are calculated
and saved in the page’s redundant
area. The ECC values enable a

In addition to testing and marking
bad blocks, the manufacturer does some
additional housekeeping to comply with
the physical format specifications. The
first physical page (or first good physi-
cal page) must have card information
structure and/or identify drive infor-
mation (CIS/IDI) data written to it.

You should note that, although early
SmartMedia devices used a 256-byte
page (with an 8-byte redundant area),
the larger devices made today use a
512-byte page (with a 16-byte redun-
dant area). For the remainder of this
discussion, however, I’ll only talk
about the 528-byte (512 + 16) page.

The CIS field is the first 128 bytes.
It identifies the device and determines
if the device has been physically for-
matted. The IDI field is the second
128-byte data area, which can be used
by the ATA-interface-equipped host
system.

As a precautionary measure, the
CIS/IDI data is repeated in the second
half of the page (see Figure 2). The
CIS/IDI format is defined by PCMCIA.

The PCMCIA slots on most laptops
interface to many peripherals, includ-

supply when no device is inserted
and it would prevent the interface
from thinking it should supply 5 V,
which would be a bad thing during
a 3.3-V device insertion. Anyway,
using pin 18 enables the device to
be probed at the lower voltage and
raised only if necessary (and safe).

SHOW SOME ID
At this point, the proper opera-

tional-voltage parameter can be set,
the media type and size identified,
and we can begin to communicate
with the SmartMedia device. A
ReadID command regurgitates both
a maker ID and device code. The
manufacturer’s ID may be 98H
(Toshiba), ECH (Samsung), or another
code registered with the SSFDC.

You’d think that with so few
original players creating the standard,
device type and size codes would be
standardized throughout manufactur-
ers. Although this is true for many
codes, some device types and sizes have
different codes from each manufac-
turer for the same part description.

The device code indicates parameters
like device size, operating voltage, and
memory type. If you find ID and device
codes that you don’t recognize, it only
makes sense to reject the device. A
further operation on an unknown device
runs the risk of damaging the data held
within the device.

PHYSICALLY FIT
SmartMedia manufacturers pretest

every page of flash memory for stuck
(bad) bits. If a bad bit is detected in
any page within the block, every page
in that block is marked as bad.

Remember that this indicator byte
is flash memory and when the block
is erased, so is the bad block byte. So,
when erasing a block, the user must
remark it as bad either from a user-
compiled list of bad blocks or by re-
testing the block for stuck bits.

Size 1 MB 2 MB 4 MB 8 MB 16 MB 32 MB 64 MB 128 MB
Cylinders 125 125 250 250 500 500 500 500
Heads/Track 4 4 4 4 4 8 8 16
Sectors/Head 4 8 8 16 16 16 32 32
Total sectors 2000 4000 8000 16,000 32,000 64,000 128,000 256,000
Sector size 512 512 512 512 512 512 512 512

Table 1—CHS parameters are predefined for present and future SmartMedia devices.

Figure 1 —A PIC processor can be used to create a simple interface to a SmartMedia device socket. A 5-/3.3-V supply is
not shown. However, the PIC can operate at either voltage. The VCNT1 connection is used to control the appropriate
operating voltage, depending on the device inserted into the SmartMedia socket.

CIRCUIT CELLAR ® Issue 111 October 1999 75www.circuitcellar.com

HOW ECC WORKS
The ECC is a string of odd

parity bits representing the
rows and columns of the
256-byte data field. For the
8-bit (23) row parity, six bits
(2 × 3) of ECC data are required.
For the 256-byte (28) column
parity, 16 bits (2 × 8) of ECC
data are required.

Each ECC row bit holds odd
parity data for four different
column bits of all 256 bytes.
Each ECC column bit holds odd
parity data for eight different
row bytes of all eight bits.

The ECC data is written
into the page’s redundant area
along with the page data.
When the page is read from the
device, the ECC data can be
compared to newly calculated
ECC data. A good compare
will ensure good data integrity.

What happens when a bad
bit occurs somewhere? If the
bad bit is in the data area, every
ECC data bit that uses the
bad bit in its calculation will
be affected and will show up
in one of each pair of ECC
bits. From this pattern you
can determine which data bit
is at fault and correct it.

If two data bits are bad, the
ECC data will reflect an error

in both bits of an ECC pair. This pro-
cess identifies an error, but the bits
involved cannot be pinpointed and so
the errors can’t be fixed.

If a bit in the ECC data is bad,
it shows up as a single ECC bit
error. This kind of error cannot be
caused by any combination of bad
data-area bits. So, it can be ignored
and filed in the proverbial bit
bucket.

The 22 bits of ECC data is in
the following format: most signifi-
cant byte of the 16 line-parity
bits, followed by the least signifi-

single bit error in the 256-byte page
area to be repaired. Multiple bit errors
can be identified but not repaired.

Note here that, except for the CIS/
IDI block, the physical block number
stored in the redundant area of each
page is in the range 0–999 (actually 2 ×
(0–999) + 1000h + even parity).

The blocks are kept in groups (or
zones) of 1024. Although larger de-
vices may require the use of several
zones, smaller devices may call for a
partial zone.

Within a zone, not all available
blocks are designated for use. On a
device with 1024 physical blocks,
only 1000 logical blocks are used. The
remaining blocks are spares (or in the
case of blocks with bad bits, unusable).
But, as you will see, the good spare
blocks do get rotated into use within
the zone.

cant byte of the line parity, and finally
the six column-parity bits shifted left
twice with the least significant bits
filled with 1s.

Calculating the ECC data can be
done ahead of time where the parity
equivalent of each data value (0–255)
fills up a look-up table, or it can be
calculated on a byte-by-byte basis.
Figure 3 shows which bits of each
byte value are XOR’d to create the
line parity (LP) and column parity
(CP) data.

ECC calculations can be handled
by hardware or software. The program
listed in the Software section is a
BASIC program that calculates the
22-bit ECC for a half page of data
(256 bytes).

This program runs on a PC under
QBASIC and will respond with the
LPHigh, LPLow, and CP bytes for the
array D(1)–D(256). You can plug values
into the array to see how changes in
the array affect the parity generated.

THAT’S LOGICAL
To make using SmartMedia simpler,

there must be even more complexity.
Huh? Yeah, that’s right—just like most
“user friendly” devices, it often takes
many layers of complexity to simplify
its use.

Although we could stop here and
use the SmartMedia in an application,
the data in the flash-memory device
would be unreadable elsewhere (un-
less you wrote drivers for every piece
of equipment that needed to access the

Figure 2 —With a serial terminal, the SmartMedia interface can be
used to investigate SmartMedia devices. Here’s the boot record of a
device.

1 - Sequential Data In
2 - Read 1
3 - Read 2
4 - Read ID
5 - Reset
6 - Page Program
7 - Block Erase
8 - Read Status
0- Quit

3
Enter the page # to read
A page is 512 bytes of data + 16 spare byte

32
Reading page #32
000 01 03 D9 01 FF 18 02 DF 01 20 04 00 00 00 00 21
010 02 04 01 22 02 01 01 22 03 02 04 07 1A 05 01 03
020 00 02 0F 1B 08 C0 C0 A1 01 55 08 00 20 1B 0A C1
030 41 99 01 55 64 F0 FF FF 20 1B 0C 82 41 18 EA 61
040 F0 01 07 F6 03 01 EE 1B 0C 83 41 18 EA 61 70 01
050 07 76 03 01 EE 15 14 05 00 20 20 20 20 20 20 20
060 00 20 20 20 20 00 30 2E 30 00 FF 14 00 FF 00 00
070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
090 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0A0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0B0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0C0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0D0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0E0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

100 01 03 D9 01 FF 18 02 DF 01 20 04 00 00 00 00 21
110 02 04 01 22 02 01 01 22 03 02 04 07 1A 05 01 03
120 00 02 0F 1B 08 C0 C0 A1 01 55 08 00 20 1B 0A C1
130 41 99 01 55 64 F0 FF FF 20 1B 0C 82 41 18 EA 61
140 F0 01 07 F6 03 01 EE 1B 0C 83 41 18 EA 61 70 01
150 07 76 03 01 EE 15 14 05 00 20 20 20 20 20 20 20
160 00 20 20 20 20 00 30 2E 30 00 FF 14 00 FF 00 00
170 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
180 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
190 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
1A0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
1B0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
1C0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
1D0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
1E0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
1F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

200 FF FF FF FF FF FF 00 00 0C CC C3 00 00 0C CC C3

Figure 3— Line parity and column parity data bits
can indicate and correct for single bit errors. This
figure shows how each half page of data is used
to create the 22 bits of ECC (error correction
code) data.

0 0 0 0 0 0 0 1

1 1 1 1 1 1 1 1

0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 1

1 1 0 1 1 0 0 1

Bit
7

Bit
6

Bit
5

Bit
4

Bit
3

Bit
2

Bit
1

Bit
0

Byte 1

Byte 2

Byte 3

Byte 4

Byte 5

Byte 6

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Byte 252

Byte 253

Byte 254

Byte 255

Byte 256

LP0
LP1

LP14
LP15

CP0
 CP1

CP2
 CP3

CP4
 CP5

76 Issue 111 October 1999 CIRCUIT CELLAR ® www.circuitcellar.com

data). Formatting the physical format
with a DOS file logical format makes
SmartMedia compatible with other
equipment that’s set up to process the
DOS file format. We use floppies, hard
drives, and CDs everyday—all of which
use the DOS FAT file structure.

Three items are necessary for the
proper format. First, there must be a
definition of CHS parameters. Take a
look at Table 1 to see how the cylin-
ders, heads, and sectors are defined
based on the media’s size.

The CHS parameters are based on
the logical blocks set up in the physi-
cal formatting. With a sector size of
512 bytes (a page), and 32 sectors per
head (a block), calculations are easy.

The first logical block consists of
sectors 0–1Fh of cylinder 0, head 0.
The second logical block consists of
sectors 20h–3Fh of cylinder 0 head 1,
and so on.

Second, the media must have a
master boot sector located on the first
good sector of the device. If you re-
member back to the physical format,
the CIS/IDI also resides there. There
is no conflict because the first parti-
tion info starts at offset 1BEh with the
boot ID 80h. Table 2 lists the rest of
the partition parameters.

Offset 1C6h–1C9h indicates where
the partition boot sector is
located (in this case, logical
sector 37h). Given one page
per sector, the PBS is on
cylinder 0, head 1, and
sector 17h.

The final piece is the
partition boot sector. Again,
there are a number of pa-
rameters here, as well as
the FAT and the directory.
Table 3 gives you all the
pertinent information.

The FAT follows the
partition boot sector, which
indicates how many sectors
are required for the FAT and
that there are two copies
(redundancy = security). So,
the offset to the second FAT
and to the first directory
entry can be calculated.

A directory entry is
32 bytes long and contains
the file name, extension,

and attribute, along with
the last edit time/date,
the starting cluster of
the file, and its length.
Instead of speaking in
terms of sectors, the
term “cluster” is used. A
cluster is defined in the
partition boot sector and
is the minimum number of sectors
that can be allocated to a file.

From the starting cluster number,
the starting logical sector of the file’s
data can be determined. If the file’s
length exceeds the cluster size, addi-
tional clusters can be allocated through
the FAT.

SECTOR MANIPULATION
Remember when I mentioned how

not all of the physical blocks were given
logical addresses, and that some extra
blocks were left unallocated? Well, the
first time the block is written with

data, the data merely gets programmed
into the erased logical blocks.

When a block needs to be changed,
the block must be read from the device
(including the redundant area), the
pertinent data changed, and the block
written back to any unused block in
the same zone. The redundant area is
also written, identifying it as the same
logical block that was just read. Now,
the original block is erased, removing
it from service. If you are keeping a table
of which physical block is which logi-
cal block, you must correct the table.

I’ve purposely not mentioned this
logical-to-physical table
until now because it re-
quires 1000 entries and not
all equipment has enough
RAM to keep a table of
this size. It speeds things
up, though, since you don’t
have to search the whole
device, physical sector by
physical sector, looking for
the logical sector you re-
quire. As long as you build
the table and keep it cur-
rent, you won’t have to
continually search the
device.

PROBING SMARTMEDIA
The PIC I used in this

project (’16C63) has less
than 256 bytes of RAM, so
there’s no way I can attempt
to keep track of physical
and logical mapping. Nor
can I buffer 528 bytes of

Data
Offset Parameter (64-MB device)

000h–1BDh Boot command (not used) 00h–00h
Partition 1
1BEh Boot ID 80h
1BFh Start head 01h
1C0h Start sector 18h
1C1h Start cylinder 00h
1C2h System ID 01h
1C3h End head 07h
1C4h End sector 60h
1C5h End cylinder F3h
1C6h–1C9h Start logical sector 00 00 00 37h
1CAh–1CDh Partition size 00 01 F3 C9h
1CEh–1DDh Partition 2 (not used) 00h–00h
1DEh–1Edh Partition 3 (not used) 00h–00h
1EEh–1FDh Partition 4 (not used) 00h–00h
1FEh–1FFh Signature AA 55h

Table 2—Once the device is
formatted, the boot sector provides
information about the device,
including where to find the first
partition.

Data
Offset Parameter (64-MB device)

000h–002h Jump command E9 00 00h
000h–00Ah Manufacturer’s name

 and version (ASCII, 8 bytes)
00Bh–00Ch Bytes/sector 02 00h
00Dh Sectors/cluster 20h
00Eh–00Fh Reserved sectors 00 01h
010h Duplicate FATs 02h
011h–012h Root directories 01 00h
013h–014h Total partition sectors 00 00h
015h ID byte F8h
016h–017h FAT sectors 00 0Ch
018h–019h Sectors/track 00 20h
01Ah–01Bh Heads 00 08h
01Ch–01Fh Hidden sectors 00 00 00 37h
020h–023h Total partition sectors (32 bit) 00 01 F3 C9h
024h Physical drive 00h
025h Reserved 00h
026h Extended boot record signatures 00h
027h–02Ah Volume ID (4 bytes) 00 00 00 00h
02Bh–035h Volume label (ASCII, 11 bytes) 00h–00h
036h–03Dh File system type (ASCII, 8 bytes) FAT12
03Eh–1FDh Reserved (IPL code area) 00h–00h
1FEh–1FFh Signature AA 55h

Table 3—The partition boot sector has more information, including the location of the
directory and FAT.

CIRCUIT CELLAR ® Issue 111 October 1999 77www.circuitcellar.com

data for a single page and its redun-
dant area.

What I can do is enable the user to
use the basic operations available with
SmartMedia by dumping data read from
the device to a serial port. By using a
COMM program like PROCOMM (or
even HyperTerminal) the user can
fully investigate SmartMedia.

But, you’ll be required to prepare
page data manually, including the
redundant area (ECC calculation,
block address, etc.). Figure 3 illus-
trates a dump of the directory area of

000 49 4D 30 31 54 4F 53 48 20 20 20 10 00 00 00 00
010 00 00 00 00 00 00 00 00 00 00 02 00 00 00 00 00
020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
090 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0A0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0B0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0C0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0D0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0E0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Figure 3— After I took a single picture with my digital camera, the
directory holds a single entry. The file name is IM01TOSH.

one of my digital camera’s
SmartMedia cards.

Using a SmartMedia card
takes some work to be able to
fully handle all the necessary
formatting. But, only a few
routines are necessary if all you
wish to do is save some data.
You can get away with a mini-
mum amount of RAM, but
there is a tradeoff of speed if
you need to do any searching.

The only other problem I
see is if you are collecting

data and a page (sector) you have just
written comes up with an error. Cor-
recting the data (reading, correcting,
and rewriting) is impossible without
enough RAM to hold the page. In this
case, you might just keep going. If it’s
only a one-bit error, it can be cor-
rected using the ECC when the data is
read back out of the device.

If you’re designing equipment with
a removable storage media require-
ment, consider using SmartMedia. Its
physical size versus storage capacity
is quite remarkable. I

Jeff Bachiochi (pronounced“BAH-key-
AH-key”) is an electrical engineer on
Circuit Cellar’s engineering staff. His
background includes product design
and manufacturing. He may be reached
at jeff.bachiochi@circuitcellar.com.

Thanks to Doug Wong, Toshiba, for his
SmartMedia expertise and documenta-
tion, and to Jeff Schmoyer, microEngi-
neering Labs, for the PIC BASIC Pro.

SOURCES
SmartMedia
Toshiba
(408) 737-9844
Fax: (408) 737-9905
www.toshiba.com

Samsung Semiconductor, Inc.
(408) 544-4000
Fax: (408) 544-4907
www.usa.samsungsemi.com

SOFTWARE
The BASIC program used to calcu-
late the 22-bit ECC is available via
the Circuit Cellar web site.

www.usa.samsungsemi.com
www.toshiba.com
www.circuitcellar.com

78 Issue 111 October 1999 CIRCUIT CELLAR ® www.circuitcellar.com

w hen it comes to
getting embedded

gadgets onto the I-
way, designers have

quite a few options to choose from,
with more emerging all the time. The
challenge is picking one that best
matches your apps requirements.

If circumstances allow, why not
rely on a standard off-the-shelf PC as
your ’Net gateway? Thanks to the
march of silicon (and some might say,
the death-wish pricing tendencies of
PC suppliers), you can get a perfectly
adequate PC for well under $1000.

And besides, even the cheapest PC
has plenty of horsepower, comes with

the software to accomplish ’Net trans-
actions, and has an unparalleled quiver
of development tools.

More power to you if the PC ap-
proach works for you, but desktop PCs
carry a lot of baggage. They’re big,
consume a bunch of power (consider
going with a laptop), take a long time
to boot, and neither the hardware nor
software is especially robust.

Embedded PCs, whether Compact-
PCI, PC/104, or a stand-alone SBC,
can easily address the packaging and
power concerns raised by their desk-
top brethren. Another option is to use
Linux instead of Windows, exactly the
tack taken by Stanford University’s
Wearable Computing Lab.

They built a tiny, Linux-based web
server using a miniscule EPC [1]. Re-
fer to the lab’s web page or back to
Ingo’s articles on embedding Linux
(Circuit Cellar 100–104) if you’re
interested in this approach.

Note that I didn’t include price in
the list of concerns. The fact is, EPCs
cost hundreds of dollars (the EMJ board
used at Stanford lists for over $400)
and at best are just competitive with
desktop pricing. It would be easy to
spend more putting together an EPC
than buying a clone off the shelf.

A more streamlined solution that
offers PC-class performance without
extra baggage is a 32-bit CPU (’x86 or
RISC) running an RTOS or Windows
CE, fully loaded with protocol stacks,
Java, and all the rest. You still need a
hefty amount of silicon, and cobbling

’Net-in-a-Chip

There are
plenty of
options
when it
comes to

the hardware and
software for getting
an embedded gadget
on the Internet. This
month, Tom considers
using the S-7600A as
an entrance ramp to
the I-way.

SILICON
UPDATE

Tom Cantrell

T06

T05
T04
T03
T02

T16

VDD

T15

T14

T01

T07

T17

R
S

C
S

C
86

R
E

A
D

X
V

S
S

N
T

1

W
R

IT
E

X

N
T

2X

B
U

S
Y

X

P
S

X

T
I3

N
T

C
T

R
L

R
T

S
X

D
T

R
X

D
C

D
R

X
DR
I

C
LK

C
T

S
X

T
E

S
T

R
E

S
E

T
X

D
S

R
X

T
X

D

V
S

S

SD1

SD2
SD3
SD4
SD5

TI2

TI1

NC

SD7

VDD

SD0

SD6

12

2536
37

48

24

13
1

Figure 1 —The Seiko ’7600A is a standard chip based on iReady i1000 protocol processing hardware that handles
all the details of TCP, UDP, IP, and PPP.

PPP

IP

UDP TCP

Serial port

S
er

ia
l p

or
t

CPU
interface

SRAM interface

T
o

C
P

U

SRAM (10 KB)

Network stack

 CIRCUIT CELLAR ® Issue 111 October 1999 79www.circuitcellar.com

together all the pieces isn’t trivial, but
packaging, power consumption, and
price challenges are easier to over-
come without the Wintel baggage.

One of the best of this breed is the
NET+ARM from NETsilicon. It com-
bines a high-integration ARM CPU
with networking hardware (Ethernet,
UART, etc.) under the supervision of
an RTOS that includes all the requi-
site networking software. NET+ARM
pricing ranges from $10 to $40 depend-
ing on version and volume, and in-
cludes a glueless interface to (EP)ROM,
SRAM, DRAM, SDRAM, and so on,
making for a quick and easy minimal
chip count design.

As an interesting aside, NETsilicon
tipped me off to the formation of the
Industrial Automation Open Network-
ing Alliance by several embedded Inter-
net players, including big guns like
GE Fanuc, Siemens, Cutler-Hammer,
Andover Controls, and Sun [2].

It’ll be interesting to see how the
IEEE 1451 standard (Circuit Cellar 103)
and its prime proponent HP fit in.
There’s always been an interest in
bridging the gap between office and
factory automation. Now, the ’Net
provides a way.

’NET UART
Whichever way you cut it, embed-

ded ’Net solutions call for a 32-bit
CPU and a fair amount of memory.
Cutting more fat can get interesting.

Consider Myron Lowen’s approach
in “Internet Appliance Interface”
(Circuit Cellar 108). He got on the

’Net with little more than a PIC and
2400-bps modem by short-circuiting a
bunch of protocol bloatware. Risky?
Indeed, in terms of ISP and tool com-
patibility. Intriguing? Very!

Back in May (“Betting On Web-
ware,” Circuit Cellar 106), I described
a nontraditional solution offered by
iReady. The i1000 protocol engine
offloads a host CPU by handling all
the details of TCP/IP, HTTP, SMTP,
POP, and so on. Because it works with
any CPU, the i1000 is a potentially
easy and inexpensive way to add net-
work capability to existing designs.

I say “potentially” because, as I
lamented then, the i1000 isn’t actu-
ally offered as a chip but as a bunch of
IP (i.e., Verilog) from which you are
supposed to build an ASIC—a fire drill
that’s neither cheap nor easy. What’s
needed is an off-the-shelf IC to sup-
port innovative and specialized apps.

Now, iReady has made a deal with
Seiko to create just such a device, the
S-7600A, also known as the iChip (see
Figure 1). Packed in a tiny 48-pin QFP
and under $10 in volume, the ’7600A
is a networking solution that won’t
bog down efficient embedded designs.

On one side is a generic processor
interface. On the other is a conventional
RS-232 port. In between is the network-
ing know-how and silicon (protocol
engine and SRAM) to handle two sock-
ets worth of IP, TCP, UDP, and PPP.

BOUNTIFUL BUS
Connecting with your favorite

controller is easy, thanks to a versa-

tile interface. At RESETX, the ’7600A
checks the state of PSX and C86 to
determine whether to use a serial or
parallel host interface and, if the lat-
ter, whether Intel or Motorola flavor.
The Intel convention features separate
read and write strobes, but Motorola
uses a read/write status line and a
data strobe. The appropriate functions
are mapped to READX and WRITEX.

SD7–SD0 make up the parallel data
bus. In serial mode, SD7–SD5 become
the serial data in, clock, and out, respec-
tively. Chip select (CS) enables access
when asserted and tristating outputs
when deasserted so the ’7600A can
share the bus with other peripheral ICs.

The ’7600A uses the BUSYX output
to handshake with the host. The ac-
tive-high and active-low interrupt
request outputs (INT1 and INT2X) are
configured as totem-pole or open-
drain by setting INTCTRL high or low.

Inside the ’7600A,
you’ll find dozens of
registers that control
various aspects of the
chip’s operation, as you
see in Table 1. There
aren’t enough address
lines for direct access,
so getting at a specific
register is a multistep
process (see Figure 2).

First, the host writes
the desired address with
the register select (RS)
pin low. Then, it issues
a read or write command
with RS high to initiate
the register access. The

Figure 2 —Whether you’re using the parallel or serial (shown here) interface mode, reading data from the ’7600A is a three-step
process—write the desired register address, start the read operation and, after BUSYX returns high, read the data.

A6 A5 A2A3A4 A0A1A7

A6 A5 A2A3A4 A0A1A7 D6 D5 D2D3D4 D0D1D7

CS

RS

RWX

SCL

SI

BUSYX

SO

tWRB

tEB

tAHtAStSL

tSHtRWE

tERW

tDE

text

tEB

Photo 1 —Exploiting the ’7600A, Mike Johnson fields a
worthy contender for “world’s smallest web server”
bragging rights.

80 Issue 111 October 1999 CIRCUIT CELLAR ® www.circuitcellar.com

Once connected (i.e., two sockets
talking via TCP/IP), the ’7600A han-
dles all the details (e.g., flow control,
and error recovery) and it’s easy to
transfer data, either polling or under
interrupt control at your discretion.

All buffering is handled on-chip
with 10 KB of SRAM. Each socket has
a 1-KB send buffer and 2-KB receive
buffer. The remaining 4 KB is allo-
cated to protocol-specific (e.g., TCP,
IP, PPP) buffers and data structures.

LAYER IT ON ME
As I explained in May, a fully loaded

i1000 could incorporate hardware sup-
port for higher layer protocols such as

ets the ’7600A supports. The value (0
or 1) set in the Index register (0x20)
defines which is accessible.

In Internet-speak, a socket is a full-
duplex port uniquely identified by the
concatenation of IP address and a
socket number. A pair of sockets de-
fine a connection (also unique), though
a single socket can simultaneously
participate in multiple connections.

Per TCP, at this point you’d need a
bunch of software to open a socket
and establish a connection as shown in
Figure 3. Instead, the ’7600A handles
all the grunt work. All you have to do
is set an activate socket bit and wait
for a connection established bit.

0x00

0x01

0x02

0x04

0x08

0x09

0x0A

0x0B

0x0C–0x0D

0x10–0x13

0x1C

0x1D

0x20

0x21

0x22

0x23

0x24

0x26

0x28

0x2A

0x2B

0x2C

0x2D

0x2E

0x30

0x30–0x31

0x32–0x33

0x34–0x35

0x36–0x37

0x38–0x39

0x3A

0x3C–0x3F

0x60

0x61

0x62

0x64

0x6F

Revision Major revision number Minor revision number

General_Control

General_Socket_Location

Master_Interrupt

Serial_Port_Config

Serial_Port_Int
Serial_Port_Int_Mask
Serial_Port_Data Serial port data register

Baud rate divider registersBAUD_Rate_Div

Our_IP_Address Our IP address

Clock_Div_Low

Clock_Div_High

Index

TOS*

Socket_Config_
Status_Low*

Socket_Status_Mid*
Socket_Activate

Socket_Interrupt

Socket_Data_Available
Socket_Interrupt_
Mask_Low*

Socket_Interrupt_
Mask_High*

Socket_Interrupt_Low*

Socket_Interrupt_High*

Socket_Data*
TCP_Data_Send (WO)*
Buffer_Out (RO)*

Buffer_In (RO)*

Urgent_Data_Pointer*

Their_Port*

Our_Port*

Socket_Status_High*
Their_IP_Address*

PPP_Control_Status

PPP_Interrupt_Code
PPP_Max_Retry

PAP_String

PPP Test Control

– – – – ––

– – – – –

–

–– –

––

–

– – ––

––

SW_
RST

0 0 0 0 0 0 1 1

PT_
INT

LINK_
IN_T

SOCK_
INT

S_DAV /

Loop back
mode

Parallel
mode

DCD /
DSR/
HWFC

CTS RI DTR RTS SCTL

PINT DSINT

PINT_EN DSINT_EN

Low byte for 1-kHz clock divider

High byte for 1-kHz clock divider

Socket index

Type of service field

Protocol_TypeData_
Avail/RST

Data_
Avail_En

Buff_
Full

Buff_Full

Buff_
Empty

Buff_
Emp_En

TO

Data_
Avail

Buff_
Full

Buff_
Empty

TO

URG RST Term

Term_En

ConU

URG RST Term ConU

ConU_En

TCP State
– – – – –

–

–
– – –

– – – – – –

– –

–

– –

– – – –

– –

–

–

– – – –

– – – –

– – – –

– – – –

– – –
S1 S0
I1 I0

DAV1 DAV0

TO_
EN

URG_
En

RST_
En

Socket 8-bit data
Any write causes data to be sent

Buffer out length

Buffer in length

Urgent data offset pointer, UDP datagram size
Target port address

Our port address

Snd_Bsy

Target IP address

PPP_Int
PPP_
Int_En

Con_
Val

Use_
PAP

TO_
Dis

Kick
PPP_
En

PPP_
Up / SR

Interrupt code
PPP maximum retry

Pap user name and password

Test Bypass Loop
Back

Register Bit definitionsAdd

Table 1—The host controls the ’7600A operation and transfers data through various registers. A number of the
registers in the range 0x21–0x3F (marked with an asterisk) are duplicated for each socket and selected with the
Index register (0x20).

’7600A asserts BUSYX while it per-
forms the data transfer. For a read, the
host retrieves the data with a third
access after BUSYX is deasserted.

The network connection is a simple
UART. There’s a 16-byte receive FIFO,
optional RTS/CTS handshaking, and
individual interrupt-enable bits for
receive and transmit ready. Format is
fixed at 8N1, and the data rate is de-
rived as a programmable divide ratio
of the chip clock.

Speaking of the clock (CLK), it can
be quite leisurely because the ’7600A
implements protocol processing with
hardware state machines. The mini-
mum clock rate depends on the data
rate demands of the physical channel,
but it’s only on the order 1 Hz per bps
of physical channel bandwidth, so a
mere 100 kHz could handle any mo-
dem. The low-speed clock and opti-
mized hardware also make for low
power consumption (i.e., milliamps in
operation and microamps in standby).

PROTOCOL POWER
In Figure 2, after RESET, the host

initializes the ’7600A and does house-
keeping via registers 0–1D. For ex-
ample, it sets the serial port data rate
divider (and a similar divider respon-
sible for generating a 1-kHz timebase),
enables interrupts, and so on.

Here, your software controls the
serial port and is responsible for estab-
lishing communication. The likely
scenario is to issue the ATD command
to a connected modem and dial an
ISP. Here’s where it gets interesting.

After the modems establish com-
munication, your software flips the
serial control (SCTL) bit in the con-
figuration register (0x08) and the
onchip PPP logic (registers 0x60–0x6F)
takes control of the serial port and
starts yacking with the ISP’s software.
The ’7600A handles the back-and-
forth of options, passwords, and such
that otherwise call for a lot of code.

Once PPP does its thing, including
assigning Our_IP_Address (i.e., negoti-
ated or floating assignment) if you
didn’t set it explicitly, you’re on the
’Net and action shifts to registers
0x20–0x3F, which front the TCP/IP
service. Note that this set of registers
is duplicated for each of the two sock-

82 Issue 111 October 1999 CIRCUIT CELLAR ® www.circuitcellar.com

e-mail (i.e., SMTP and POP3), web
(i.e., HTTP and HTML), and file (FTP).
But, the ’7600A incorporates none of
these protocols. Is this a problem?

Not really. Remember, the i1000
isn’t an actual chip but rather a col-
lection of know-how to enable you to
design your own ASIC. Thus, each
i1000-based chip should only include
the functions required by an applica-
tion (e.g., a chip designed to handle e-
mail doesn’t need web support).

By contrast, the ’7600A (like all
standard chips) has to strike a com-
promise. It needs enough features to
meet the requirements of a broad
range of applications; add too many
extras, and customers will object to
paying for features they don’t need.
The ’7600A designers say TCP/IP and
PPP are the sweet spot.

First, of the alphabet soup of proto-
cols that abound, TCP/IP and PPP are
among the most complex. A quick
way to illustrate the situation is to
check the file sizes of the various
RFCs (Request for Comments; i.e., the
seminal I-way specs from the DARPA
days). TCP/IP and PPP comprise about
300 KB (that’s just the main RFCs, not
all the embellishments and add-ons)
compared to 150 KB for FTP, 120 KB
for SMTP, and a mere 35 KB for POP3.

Furthermore, TCP/IP and PPP are
the common denominator for all the
other protocols. By contrast, higher

level functions such as e-
mail, web, and file are de-
signed to function
independently. If you just
need FTP, there’s no need to
bother with HTTP, SMTP,
POP3, and so on. Whichever
protocol(s) you choose, you’ll
need TCP/IP and PPP under
the hood.

Finally, many embedded
Internet apps, such as secu-
rity, data logging, mainte-
nance, and inventory, require

minimal ability to communicate. So,
it’s likely that a particular app won’t
require all the frills of a full-blown
server. In fact, if you strip away a
bunch of the fat you’ll find that the

software to handle simple web, e-mail,
and file duties isn’t that hard at all.

However, if the ’7600A put these
higher layer protocols in silicon,
there’d be little choice but to offer a
rather complete implementation—
probably overkill (and overpriced) for
high-volume, cost-sensitive apps.

SILICON SERVER
Mike Johnson at iReady combined

the ’7600A with a PIC to create a
minimalist web server (see Photo 1).
Add a modem and you’re on the air.

Don’t believe that such a measly
amount of silicon can push your big
bad browser around? See for yourself
at http://xsmall.mycal.net.

Mike was kind enough to send me
a copy of his code, which demonstra-
tes the ’7600A’s power to turn a lowly
micro into a web warrior. Remember,
the PIC (’16F84) has a 1024-instruc-
tion (14 bits each) code memory that
leaves little room for bloat.

Even the limited 1-KB instruction
capacity overstates the software’s

00133 look_table
00134 web_page1

 343C 3468 3474 00135 DT "<html>"
 346D 346C 343E
 343C 3474 3469 00136 DT "<title>Worlds Smallest Webserver</title>"
 3474 346C 3465
 343E 3457 346F
 �

 ; Open a socket to listen on port 80
 writex SOCKET_OUR_PORT,.80
0297 3038 M movlw 0x38
0298 008D M movwf address
0299 3050 M movlw .80
029A 008E M movwf dbyte
029B 219F M call writeb
 writex SOCKET_OUR_PORT+1,0x00
029C 3039 M movlw 0x38+1
029D 008D M movwf address
029E 3000 M movlw 0x00
029F 008E M movwf dbyte
02A0 219F M call writeb
 writex SOCKET_CONFIGURATION,SOCKET_TCP_SERVER_MODE
02A1 3022 M movlw 0x22
02A2 008D M movwf address
02A3 3006 M movlw 0x06
02A4 008E M movwf dbyte
02A5 219F M call writeb
 writex SOCKET_ACTIVATE_REG,1
02A6 3024 M movlw 0x24
02A7 008D M movwf address
02A8 3001 M movlw 1
02A9 008E M movwf dbyte
02AA 219F M call writeb

Listing 1 —When it comes to web service, it’s much easier to give than receive. To create the page, the PIC
just spits out hardwired HTML (a). Otherwise, the software mainly just talks to the ’7600A with register access
macros (b), leaving the chip to handle all the details.

a)

b)

CLOSED

LISTEN

rcv SYN

snd ACK

ESTAB

CLOSING

TIME WAIT

passive OPEN

create TCB

CLOSE

delete TCB

rcv SYN

snd SYN, ACK

CLOSE

delete TCBSEND

snd SYN

rvc ACK of SYN

x

rcv SYN, ACK

snd ACK

SYN
RCVD

SYN
SENT

CLOSE

snd FIN

CLOSE

snd FIN
rcv FIN

snd ACK
FIN

WAIT-1

CLOSE
WAIT

rcv ACK of FIN

x

rcv FIN

snd ACK

CLOSE

snd FIN

FIN
WAIT-2

rcv FIN

snd ACK

rcv ACK of FIN

x Timeout=2MSL

delete TCB

rcv ACK of FIN

x

CLOSED

LAST-ACK

active
OPEN
create
TCB
snd
SYN

Figure 3 —As this diagram, duplicated from
the original 1981 Request For Comment
(RFC793) shows, babysitting TCP isn’t
easy. Don’t worry, the ’7600A handles all
the details. If you’re curious, find out what
state you’re currently in by checking the
TCP State field in register 0x23.

 CIRCUIT CELLAR ® Issue 111 October 1999 83www.circuitcellar.com

CIRCUIT CELLAR Test Your EQ
Problem 1—The circuit shown in the figure is built
on a standard FR-4 PCB. It is mounted in a NEMA
enclosure on a factory floor. The temperature in
the NEMA enclosure is 30oC. The thermocouple,
an E-type, is mounted on the housing of a three-
phase synchronous motor. The motor housing is
75oC.

The IA’s offset voltage is a +125 µV. The IA’s
intended gain is 1000 V/V, but there is a 2% gain
error that produces an actual gain of 1020. Assume
the E-type thermocouple is linear and has tempera-
ture coefficient of 60 µV/oC. What is the output
voltage of the IA?

Problem 3—Can you rewrite this function to significantly increase
its speed, without changing the basic algorithm?

Problem 2—Given the same pressure and
temperature conditions, is a cubic meter of
humid air more or less dense than a cubic
meter of dry air?

Have you forgotten the basics since getting that management job? Did your university ignore real circuits and tell you that HTML was the only path to fortune? Each month, Test
Your EQ presents some basic engineering problems for you to test your engineering quotient. What’s your EQ? The answers are posted at www.circuitcellar.com along with past
quizzes and corrections. Questions and answers are provided by Ray Payne of Under Control, Benjamin Day of Schweitzer Engineering Laboratories, and Bob Perrin of Z-World.
You may contact the quizmasters at eq@circuitcellar.com.

complexity. The HTML for the home
page (stored in the PIC’s code memory)
chews up nearly half the space as
shown in Listing 1a, and a significant
portion of the code handles routine
tasks such as macros to bit-bang read
and write ’7600A registers.

The guts of the server is less than
100 lines of real code, not counting
macro expansions (see Listing 1b) that
take five PIC instructions for each
’7600A register access. The process
boils down to: open a socket, listen
for a request, increment the hit
counter, and then dump the page.

RAY OF HOPE
The ’7600A is an exciting develop-

ment on the embedded Internet
front—partly because it’s available off
the shelf, which opens the door for
specialized applications and garage
shops that would never be able to
justify an ASIC.

Also, I like the idea of sticking
with PPP and TCP/IP and leaving the
decisions about higher level services
to be determined by the needs of spe-

cific applications. I suspect time will
show this to be the right decision.
Few customers need all the protocols
with all the trimmings, and most will
be glad they don’t have to pay for
features they don’t need.

I expect the ’7600A to spawn an
explosion of embedded ’Net gadgets
because it makes networking simple
and inexpensive, which it really
wasn’t before.

So, if you’ve been contemplating
putting your embedded app on the
Internet but couldn’t justify the cost
or complexity, you’d better think
again. And if you weren’t contemplat-
ing putting it on the ’Net, better think
again anyway because the ’7600A
makes it real easy for you, and for
your competitors. I

Tom Cantrell has been working on
chip, board, and systems design and
marketing in Silicon Valley for more
than ten years. You may reach him by
e-mail at tom.cantrell@circuitcellar.
com, by telephone at (510) 657-0264,
or by fax at (510) 657-5441.

REFERENCES
[1] Stanford University Wearable

Computing Lab, Information on
embedding Linux, www.wear
ables.stanford.edu

[2] Information about IA Open
Networking Alliance, www.
iaopennetworking.com

SOURCES
iChip
iReady Corp.
(408) 330-9450
Fax: (408) 330-9451
www.ireadyco.com

Seiko Instruments, Inc.
Semiconductor Products Group
(408) 433-3208
Fax: (408) 433-3214
www.seiko-usa-ecd.com/intcir/

html/whatsnew

NET+ARM
NETsilicon, Inc.
(781) 647-1234
Fax: (781) 893-1338
www.netsilicon.com

void bbs (int *numbers, int count)
{

int i, j, temp;

for /9i=o; i<count; i++)
{

for (j=count-1; j>0; j--)
{

if (numbers[j-1] > numbers[j])
{

temp = numbers[j-1];
numbers[j-1] = numbers[j];
numbers[j] = temp;

}
}

}
}

Problem 4—What does this circuit do?

Cold Junction

x1000

+

_
Ref

AD620

Vout

+5 V

–5 V NEMA Enclosure

+

_

12 feet

Motor
Housing

Rg

10 kΩ
500-Hz sine wave +

–

+

–

IC23

IC22 R58
10 kΩ

R51
1 MΩ

D2

D1

C13
100 nF

R52 1 MΩ

Output

R57
1 MΩ

Probe

www.wearables.stanford.edu
www.iaopennetworking.com
www.ireadyco.com
www.seiko-usa-ecd.com/intcir/html/whatsnew
www.netsilicon.com

96 Issue 111 October 1999 CIRCUIT CELLAR ®

PRIORITY INTERRUPT

steve.ciarcia@circuitcellar.com

Spreading the Wealth of Knowledge

i ’d like to say Circuit Cellar exists because I’ve always had a grand scheme for the perpetuation of technical
knowledge, but I’m afraid it’s a little simpler than that. I’ve just been doing things that seem worthwhile (and pretty

much being on target). At times I’ve made silly gadgets and told funny stories, but I don’t think anyone misunderstood
that underneath all the amusing rhetoric and ridiculous contraptions, there was always a real engineering message.

Credibility is something we’ve always maintained even though our methods of presentation have frequently bordered on the
extreme. Our engineering message is clear. The important thing around Circuit Cellar is application, application, application.

I’ve done a lot of things over the years to promote this ideal, and I get a lot of mail from the people who have been influenced by
it. One of the inspirations that I look back on with great pride is our College Engineering Program. In this program, college professors
register the students in their engineering classes and we give them free copies of Circuit Cellar for the semester. I learned at an early
age that there were only two ways to learn things: trial and error, or somebody tells you. Our College Engineering Program is my way
of giving our educational process a little “somebody tells you” boost.

I get a lot of positive correspondence from the program, but a recent letter from Jack Dillon of Analog Devices summed it up quite
nicely. I thought I’d share some of the salient points in it with all of you.

Circuit Cellar has been a tremendous influence in my work and I cannot imagine where I would be today without it. Where I
work, we bring in engineering students from a local university and develop them. Actually, it is a two-way learning experience. I
am in awe of some of their skills and totally baffled by their lack in other areas. They typically know C and maybe some
assembly, but when we get to running an app on an 8051 or other small micro, they really come up short. The look on their face,
when you tell them that using printf will use up all of the available code space, is priceless. The good news is that their
engineering (math, physics, etc.) and general computer skills are superb.

All of the engineering students we have hired have at least seen a copy of Circuit Cellar. The students that looked forward to
every issue were a step above the rest. I needed to let you know how much influence your magazine has had with myself and the
engineering students we work with.

Circuit Cellar has done a tremendous job of presenting the entire picture–lots of hardware and plenty of software, but most
importantly, how the two are brought together to make the system work. That, from my perspective is what embedded systems
are all about.

Our college program is just one aspect of the continuing Circuit Cellar message. Students, regular subscribers, and Internet
techies can now enjoy even more applications each month through Circuit Cellar Online. We have lots of editorial coming from the
winners of our Motorola Design99 contest who will be announced in the December issue and our recently announced Internet
PIC2000 contest (running on Circuit Cellar Online).

This month we’re extending our application goals even further as we inaugurate our regular print magazine contest—Design 2K.
This year I am especially proud to announce that it is an 8051-based competition sponsored by Philips. Quite surprising, considering
that we’ve published many 8051-family articles over the years, is that we’ve never had an 8051-exclusive contest before. The wide
range of 8051-core products offered by Philips will no doubt result in some truly esoteric and ingenious entries.

Finally, our motto says this is a magazine by engineers, for engineers. I contend that engineers aren’t just born. They are created
through a process of technical understanding. The really smart ones typically choose a route around all that trial and error and tend to
hang out at Circuit Cellar where we like to be the somebody who just “tells you.”

