
CELLAR
T H E M A G A Z I N E F O R C O M P U T E R A P P L I C A T I O N S

w
w

w
.c

ir
c

u
itc

e
lla

r
.c

o
m

CIRCUIT
®

 # 1 1 2 N O V E M B E R 1 9 9 9

ANALOG TECHNIQUES
Dual-Slope ADC Techniques

Build an Autoranging Frequency Counter

HDTV—HD Formats and
Signal Transportation

Protocol Implementation
Using IrDA Solutions

2 Issue 112 November 1999 CIRCUIT CELLAR ® www.circuitcellar.com

— COLUMNS —
Considering the Details
I/O for Embedded Controllers—Part 2: Analog I/O
Bob Perrin
Embedded systems are used in so many different applications,
it’s impossible to cover all possible analog I/O requirements.
In Part 2 of this series on I/O, Bob offers a few circuits and
components that have proven adequate for many applications
in the past.

Lessons from the Trenches
Timing is Everything
George Martin
If you’ve ever wanted to choke the person who made up a
project design schedule, or if you are the one responsible for
making the schedules, you might want to listen to what
George has to say about the importance and benefits of mak-
ing a realistic, achievable, and practical plan for bringing
your design to completion.

Silicon Update Online
16-Bits or Bust
Tom Cantrell
If 8-bit chips are the compact pickup truck and 32-bit
chips are the Corvettes, what does that make the
16-bit chips? Tom does some homework
and hopes to find out exactly
where 16-bit chips fit
in the MCU
market.

Double your technical pleasure each month. After you read Circuit Cellar magazine, get a
second shot of engineering adrenaline with Circuit Cellar Online, hosted by ChipCenter.

 — FEATURES —
A Switcher for Many Reasons
Lawrence Foltzer
Need a quick solution for a variable high-voltage applica-
tion? Lawrence shows us that the answer may be as
simple as making a variable burst length, fixed duty-
cycle switching power supply driven by an RC-clocked
PIC microcontroller.

Embedded Systems n-Formation
Implementing an n-Tiered Client-Server Architecture
Mark Taylor
In corporate environments, who knows what depends on
who knows who, and who knows who depends on who who
is. As Mark shows us, the n-tiered architecture was de-
signed to make sure the right people have access to the
information they need.

Testing 1, 2
Part 4: Immunity—Not for Circuitry
George Novacek
Your design needs to be rock solid regardless of what
frequency is thrown at it—and that’s a lot these days with
the proliferation of cellular phones, radar, and microwave
technology. And, your design needs to keep its radiation of
frequency to itself as well. Check in with George to find
out what tests the lab will throw at your design to make
sure it’s ready for the real world.

 Resource Links
• The 80186
• RS-485 Multidrop Networking
Benjamin Day

• Fuel Cells and Radioisotope Heater Units
• Joint Test Action Group (JTAG) IEEE 1149.1 and IEEE 1149.4
Bob Paddock

Test Your EQ
8 Additional Questions

Connect Your PIC to the Internet

NOW, GETTING CONNECTED TO THE
INTERNET CAN EARN YOU CASH

www.circuitcellar.com/pic2000

Table of Contents for October 1999

WWW.CIRCUITCELLAR.COM/ONLINE

PIC® 2000contest

Internet

www.circuitcellar.com/pic2000

CIRCUIT CELLAR ® Issue 112 November 1999 3www.circuitcellar.com

44 Nouveau PC
edited by Harv Weiner

46 RPC Real-Time PC
Serial Port Interfacing
Ingo Cyliax

52 APC Applied PCs
Sending a DOS Stamp Airmail
Fred Eady

ISSUE
INSIDE

Build a MIDI Sustain Pedal
Bill Dudley

Working with a Dual-Slope ADC
Richard Lao

Embedded Living
Tuning into the HA Channel
Mike Baptiste

What’s the Count?
Build an AVR-Controlled Frequency Counter
Stuart Ball

IrDA Technology
Part 2: Protocol Layers
Hari Ramachandran

I MicroSeries
High-Definition TV
Part 1: Video Formats and Transport
Mark Balch

I From the Bench
Without Acceleration
Part 1: All We Have Left is Velocity
Jeff Bachiochi

I Silicon Update
LPC—The Little Processor that Could
Tom Cantrell

6

8

83

95

 96

12
20
26

36

60

66

74

78

112112

Task Manager
Elizabeth Laurençot

Household Variable =
Steady Work

New Product News
edited by Harv Weiner

Test Your EQ

Advertiser’s Index
December Preview

Priority Interrupt
Steve Ciarcia

Another Typical Trip

6 Issue 112 November 1999 CIRCUIT CELLAR ® www.circuitcellar.com

THE MAGAZINE FOR COMPUTER APPLICATIONS

TASK MANAGER

EDITORIAL DIRECTOR/PUBLISHER
Steve Ciarcia

MANAGING EDITOR
Elizabeth Laurençot

SENIOR TECHNICAL EDITORS
Steve Meyst

TECHNICAL EDITORS
Michael Palumbo Rob Walker

WEST COAST EDITOR
Tom Cantrell

CONTRIBUTING EDITORS
Mike Baptiste Ingo Cyliax Fred Eady
George Martin Bob Perrin

NEW PRODUCTS EDITOR
Harv Weiner

PROJECT EDITOR
Janice Hughes

ASSOCIATE PUBLISHER
Sue Skolnick

CIRCULATION MANAGER
Rose Mansella

CHIEF FINANCIAL OFFICER
Jeannette Ciarcia

CUSTOMER SERVICE
Elaine Johnston

ART DIRECTOR
KC Zienka

GRAPHIC DESIGNER
Jessica Nutt

ENGINEERING STAFF
Jeff Bachiochi
Steve Bedford
Ken Davidson

John Gorsky

Cover photograph Ron Meadows—Meadows Marketing
PRINTED IN THE UNITED STATES

For information on authorized reprints of articles,
contact Jeannette Ciarcia (860) 875-2199 or e-mail jciarcia@circuitcellar.com.

Circuit Cellar® makes no warranties and assumes no responsibility or liability of any kind for errors in these programs or schematics
or for the consequences of any such errors. Furthermore, because of possible variation in the quality and condition of materials and
workmanship of reader-assembled projects, Circuit Cellar® disclaims any responsiblity for the safe and proper function of reader-
assembled projects based upon or from plans, descriptions, or information published in Circuit Cellar®.
Entire contents copyright © 1999 by Circuit Cellar Incorporated. All rights reserved. Circuit Cellar and Circuit Cellar INK are registered
trademarks of Circuit Cellar Inc. Reproduction of this publication in whole or in part without written consent from Circuit Cellar Inc.
is prohibited.

CONTACTING CIRCUIT CELLAR
SUBSCRIPTIONS:

INFORMATION: www.circuitcellar.com or subscribe@circuitcellar.com
TO SUBSCRIBE: (800) 269-6301 or via our editorial offices: (860) 875-2199

GENERAL INFORMATION:
TELEPHONE: (860) 875-2199 FAX: (860) 871-0411
INTERNET: info@circuitcellar.com, editor@circuitcellar.com, or www.circuitcellar.com
EDITORIAL OFFICES: Editor, Circuit Cellar, 4 Park St., Vernon, CT 06066

AUTHOR CONTACT:
E-MAIL: Author addresses (when available) included at the end of each article.
ARTICLE FILES: ftp.circuitcellar.com

CIRCUIT CELLAR®, THE COMPUTER APPLICATIONS JOURNAL (ISSN 0896-8985) is published monthly by Circuit Cellar
Incorporated, 4 Park Street, Suite 20, Vernon, CT 06066 (860) 875-2751. Periodical rates paid at Vernon, CT and additional offices.
One-year (12 issues) subscription rate USA and possessions $21.95, Canada/Mexico $31.95, all other countries $49.95.
Two-year (24 issues) subscription rate USA and possessions $39, Canada/Mexico $55, all other countries $85. All
subscription orders payable in U.S. funds only via VISA, MasterCard, international postal money order, or check drawn on U.S. bank.
Direct subscription orders and subscription-related questions to Circuit Cellar Subscriptions, P.O. Box 698, Holmes, PA
19043-9613 or call (800) 269-6301.
Postmaster: Send address changes to Circuit Cellar, Circulation Dept., P.O. Box 698, Holmes, PA 19043-9613.

ADVERTISING
ADVERTISING SALES MANAGER

Bobbi Yush Fax: (860) 871-0411
(860) 872-3064 E-mail: bobbi.yush@circuitcellar.com

ADVERTISING COORDINATOR
Valerie Luster Fax: (860) 871-0411
(860) 875-2199 E-mail: val.luster@circuitcellar.com

ADVERTISING CLERK Sally Collins

elizabeth.laurencot@circuitcellar.com

EDITORIAL ADVISORY BOARD
Ingo Cyliax Norman Jackson David Prutchi

Household Variable = Steady Work

t he theme of this issue—analog techniques—
should bring to mind projects that have to do

with measuring a continuous physical variable.
Think voltage. Think pressure. Think TV.

Huh? One “continuous physical variable,” in my household at least, is
the television—although as far as we’re concerned, the primary variable
concerns who has control of the remote and which channel is currently
being broadcast into our living room.

And as for how this variable may change over time, I imagine that a
decade from now, we’ll still spend some of our time watching the tube. But
of course, now we’re being told that it’s not going to be the same old TV
after all. As our MicroSeries columnist this month, Mark Balch, tells us,
there’s no doubt that high-definition television is coming to stay.

There’s a bit of time before the FCC-mandated curtain falls in 2006, and
to tell the truth, I haven’t been all that interested in high-definition technol-
ogy so far. In fact, I’ve been wondering, what’s all the fuss? So we get a
wider view of the TV—so what? Just what my family needs: more screen to
stare at, right?

However, I decided to investigate a bit further what else HDTV has in
store for us. After reviewing some of the information in one of the online
newsletters devoted to HDTV, I’m starting to get a clearer picture of the
benefits of the technology. I visited http://web-star.com/hdtv, but a quick
Internet search will show you how many of these newsletters are out there!

One exciting area is the high-quality imaging necessary for flight simula-
tors. Apparently, top-end flight simulators have to deal with compatibility of
line rates and aspect ratio, the overlaying/compositing of multiple images to
obtain realistic effects, and splitting the output of image generators to feed
several display devices simultaneously.

On the educational and cultural fronts, you’ll find high-definition devices
at museums and schools as well. For example, museums will offer wall-size
video displays and kiosks showing slide-quality images of various artworks.

As might concern you more personally, if you have a health issue to
resolve, consider the impact of high-resolution systems on medical imaging.
According to Dr. Robert Brecht at the University of Texas Department of
Biomedical Communications, “Subjects that make NTSC an insufficient
visual medium are pathology, radiology (they don’t like anything under 1000
lines), microanatomy, telediagnosis, and CAD-CAM.”

It sure looks like a lot of these high-definition imaging systems are part
of various embedded systems. So, after you get more HDTV info from
Mark’s series, I hope you’ll be motivated to hit the power-off switch on your
own remote control and spend your time designing some cost-effective,
viable, high-resolution devices for our everyday lives.

8 Issue 112 November 1999 CIRCUIT CELLAR ® www.circuitcellar.com

NEW PRODUCT NEWS
Edited by Harv Weiner

EVALUATION KIT FOR GPS RECEIVER MODULES
The SGM5600EK is a kit for evaluating GPS

receiver modules. It includes the SiGEM SGM3900
low-noise GPS active antenna, 9-V AC adapter,
automobile power plug, 7.5′ serial cable, CD mapping
software, and SiGEM’s SGM5606PS GPS receiver.
There is an NMEA serial port, a DGPS serial port, a
satellite lock indicator (LED), and a hardware reset
button on the front panel. A switchable 3.3- or 5-V
DC feed to an active antenna is also included. The
antenna has a noise figure of less than 1 dB and
consumes less than 20 mW.

DGPS corrections can also be provided to the GPS
receiver internally, by mounting a suitable DGPS
card, or externally, by connecting to the serial port
through an RS-232 interface. Extra internal board
space permits customization. An 8–15-V input
supply range is available.

The GPS receiver module communicates with
computers via NMEA 0183-formatted messages.
MapSite software is bundled with the evaluation kit
and provides an accurate picture of GPS position,
track, waypoints, and the route between them. It can
also create maps from compatible scanned maps and
works well with commercially available digital raster
maps. The software can be used to record real-time
position information and track from the SiGEM GPS
receiver. Sentences are in GCA, GSA, GSV, and VTG
NMEA formats. The SiGEM modules also support
RTCA-SC159, WAAS, and EGNOS DGPS data
formats. ToolKit software is also provided for inte-
grating GPS functions into Visual Basic applications.

The SGM5600EK evaluation kit sells for $299, or
for $379 including MapSite and ToolKit.

SiGEM, Inc.
(613) 271-1601 • Fax: (613) 271-1896
www.sigem.ca

DIFFERENTIAL AMPLIFIER
The DFA 5 is a low-voltage differential amplifier

for test and measurement applications. Gain settings
from 1 to 1000 are switch selectable and have an ac-
curacy of 1%. The unit may be used as either a differ-
ential mode or a single-ended mode amplifier. With
common-mode noise rejection that exceeds 100 dB,
the DFA 5 makes low-voltage measurements straight-
forward. The unit is suitable for use with oscillo-
scopes and other common test equipment.

The DFA 5 is designed to amplify differential sig-
nals ranging from several volts down to microvolts.
Maximum frequency depends on the gain setting, and
ranges from 20 kHz at a gain of 1000 to over 1 MHz at
unity gain. The unit allows for both AC and DC cou-
pling, with an AC mode low-frequency cutoff of
10 Hz using nonattenuating probes.

The unit is small, lightweight, and low in cost. It
can run for days on its internal battery or be powered
by an external power source.

The DFA 5 sells for $129.

Allison Technology Corp.
(281) 239-8500
Fax: (281) 239-8006
www.atcweb.com

www.atcweb.com
www.sigem.ca

CIRCUIT CELLAR ® Issue 112 November 1999 9www.circuitcellar.com

NEW PRODUCT NEWS
68HC908-BASED SINGLE-BOARD COMPUTER

The CP-908 is a single-board computer based on
the 68HC908 microcontroller. The 68HC908 has
20 KB of on-chip flash memory for program storage
and a variety of control-related resources. These
include an eight-channel, 8-bit A/D converter, eight
keyboard interrupt inputs, eight general-purpose I/O
lines, built-in monitor ROM, SCI (asynchronous)
serial port, SPI (synchronous) serial port, timer inter-
face module, and 512 bytes of RAM.

A unique feature of the 68HC908 is that its flash
memory is in-system programmable. Because user
software can erase, write, and read the flash memory,
it can be programmed in the standard user mode.
However, a special Monitor mode, which enables the
user to perform various low-level operations on the
68HC908 without executing user code, is also avail-
able. The CP-908 supports both User mode and
Monitor mode in-system programming by manual
switch selection.

The CP-908 has onboard voltage regulation, power
up reset logic with manual reset switch, two 26-pin

header connectors bringing out all 68HC908 lines, a
10-pin header for connecting to the host PC, and A/D
input buffering circuitry. The board measures 4″ × 2.5″.

The CP-908 sells for $149.

Allen Systems
(614) 488-7122
Fax: (614) 488-7122
members.aol.com/allensys

members.aol.com/allensys

10 Issue 112 November 1999 CIRCUIT CELLAR ® www.circuitcellar.com

NEW PRODUCT NEWS
ADAPTABLE OPERATOR INTERFACE

The OP6100, an operator interface designed for con-
trol-system communications, provides a functional,
easy-to-use unit for entering commands, sending or
receiving messages, or monitoring system functions. A
4 × 6 keypad with 24 tactile buttons enables quick and
efficient data entry. The 4 × 20 LCD is easy to read
from any angle. A backlit version is also available.

When the interface is connected to compatible Z-
World controllers, programming is simplified with Z-
World’s integrated Dynamic C software. Dynamic C
provides all software drivers necessary to scan key-
pads, display messages, and create graphics. A keypad
overlay provides the capability to easily create custom
keypad legends. This development system has device-
specific libraries that provide powerful and easy-to-
learn programs that reduce design efforts and costs.

The OP6100 can be customized for specific applica-
tions and interfaces easily with components such as
other LCDs, keypads, and board controllers. A mount-
ing kit, including NEMA-4 bezel and gasket, for flush-
panel mounting is available for $60. An optional
enclosure (5.30″ × 6.83″ × 2.32″) is also available.

The OP6100 sells for $159. Units with LED back-
lighting are priced at $209.

Z-World
(530) 757-3737
Fax: (530) 753-5141
www.zworld.com

www.zworld.com

12 Issue 112 November 1999 CIRCUIT CELLAR ® www.circuitcellar.com

Build a MIDI
Sustain Pedal

FEATURE
ARTICLE

Bill Dudley

t
Bill set out to take
care of the shortcom-
ings of his wife’s
electronic keyboard
by building a MIDI
sustain pedal using a
68HC11 and C. Sit
back and enjoy the
performance as he
gets the hardware
and software in tune.

his was one of
those projects that

sounds like a good
idea then quickly turns

into spending so much time building
the widget that you could buy ten
commercially manufactured widgets
for the money you didn’t make while
building the project. But, it was more
fun than breaking rocks for a living.

My wife is a musician, a keyboard
player. One of her recent acquisitions
was a small, lightweight keyboard.
This keyboard was cheap so it didn’t
provide for a sustain pedal.

Initially, Kate thought it would be
OK, but after a while, she de-
cided that a sustain pedal would
be nice. That’s when I spoke up.

“Sure honey, I can build you
a sustain pedal. (pause) What’s
a sustain pedal, anyway?” And
that’s how this project started.

A sustain pedal, when
pressed, removes the damping
mechanism from the sound-
producing mechanism, so a
note will play until it decays
away naturally. In a piano, the
felt damping pads are lifted so
the strings do not stop oscillat-
ing when the key is released.

MIDI has been the subject
of several articles (“Digital
Attenuators,” Circuit Cellar

95; Jeff’s MIDI series in Circuit Cellar
99–100), so I won’t spend time de-
scribing it, except to say that MIDI
stands for Musical Instrument Digital
Interface and defines a protocol and
physical medium for interconnecting
musical input devices (keyboards,
mostly) and musical output devices
(namely, synthesizers).

MIDI uses current loop as the
physical medium, the bit rate is
31,250 bps, and the messages consist
of packets of (typically) 1–3 bytes.

I designed and built this project
using some fairly high-powered tools
and hardware to minimize develop-
ment time. Obviously, if this design
was going to be mass produced, you
could spend more time in the design
phase and cram the design into a tiny
little microprocessor (e.g., a PIC).

Because I was making only one
unit, I optimized for short design
time. In this article, I describe the
development process to show how
designs are done in larger companies
with reasonable tool budgets.

HARDWARE
First, I chose a microprocessor. I

toyed with the idea of using an 8048
or a PIC, but since they have no inter-
nal serial port, I rejected them.

The MIDI data rate of 31,250 bps is
high enough so the timing would be
tight without a serial port to divide
the interrupt rate by eight. I also had
to deal with simultaneous input and
output streams, so a bit-banging serial

Figure 1 —This is all the custom I/O you need to convert the
68HC11’s serial port to MIDI. Because the MIDI interface is a
current loop, the MAX232 supplied on the Axion SBC is removed
when the MIDI interface is used.

 CIRCUIT CELLAR ® Issue 112 November 1999 13www.circuitcellar.com

port would have to handle interrupts
at a 62-kHz rate.

I’ve had a lot of experience with
the 6811 [1] and a little experience
with the 8051, so I went with what I
know. The only argument against the
6811 is that it’s probably overkill for
this project, but remember, I’m opti-
mizing for development time, not cost.

I’ve used the 68HC11 C0 and K4
variants on professional jobs, but they
have too much I/O capability for this
project. Besides, mail-order 68HC11
SBCs always use the A or the E part.
Good enough, we’ll use the 68HC11A.

After searching the ’Net and look-
ing through the ads in Circuit Cellar,
I decided on Axiom’s CME11A SBC.
It has a 68HC11A microprocessor,
with a MAX232 and DE-9 hung off
the serial port, sockets for RAM/
ROM/EEPROM, onboard power-sup-
ply regulator, plus an I/O decoder and
header pins to connect an LCD mod-
ule and keyboard.

Axiom also sells a development
package that includes a wall-wart power
supply, serial-port cable to connect to a
PC, and software to compile and down-
load programs to the onboard EEPROM.

This package is handy for quick
demonstrations or prototypes. There’s
even a wire-wrap area on the CME-
11A so you can add some custom I/O.

The Axiom board’s built-in LCD
port makes it convenient to attach an
LCD module [2] that uses the Hitachi
44780 or equivalent LCD controller.
This setup allows a convenient debug
message display from your embedded
system, which is useful if the target’s
only serial port is otherwise occupied.

TOOLS
When I’m building an embedded

system, I always start in C. If I run
out of room or real time, I’ll drop back
into assembler, but generally that isn’t
necessary. ROM is just too cheap.

(Whenever I’ve started an embed-
ded project in industry, I’ve always
designed in the current “popular”
ROM size, with a way to expand to
the “cutting edge” size ROMs. Every
time, without exception, by the time
the project hits production, the ROM
I designed in is almost obsolete, and
the “big” ROM is the default size,

Listing 1 —The midi() task reads incoming MIDI messages and copies them out again, locking the
MIDI-out resources when a MIDI message is partially processed. The header files whose names begin
with a “c” (cclock.h, etc.) are generated by the RTXCGEN tool supplied with the RTXC kernel.

#include "hardware.h"
#if K4
#include <iok4.h>
#else
#include <io.h>
#endif

#include "rtxcapi.h"

#include "cclock.h" /* CLKTICK */
#include "cres.h" /* SCIRES */
#include "cqueue.h"
#include "csema.h"
#include "lcd.h"

#define SELFTASK ((TASK)0)
#define TMINT ((TICKS)5000/CLKTICK)

static const char hex[] =
{ '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
 'A', 'B', 'C', 'D', 'E', 'F' };

void xtoa(unsigned int x, int len, char *s) {
 s[len--] = '\0';
 while(len >= 0) {
 s[len--] = hex[x & 0x000f];
 x >>= 4;
 }
}

char buf[4];
extern char unsigned minbuf[], ihead, itail;
extern unsigned char porta;
static unsigned int inseq;

void midi(void)
{
unsigned char true, ichar, havelock;
 true = 1;
 havelock = inseq = 0;
 init_lcd();
 gotoxy_lcd(1, 1);
 cputs_lcd("ON ");
 gotoxy_lcd(1, 3);
 cputs_lcd("OFF ");
 gotoxy_lcd(1, 1);
 while(true) {
 KS_wait(SCIISEMA); /* wait on input char */
 while (itail != ihead) {
 ichar = minbuf[itail++];
 switch (ichar & 0xf0) {
 case 0x90 :
 buf[0] = '\0';
 inseq = 3;
 gotoxy_lcd(4, 1);
 break;
 case 0x80 :
 buf[0] = '\0';
 inseq = 3;
 gotoxy_lcd(5, 3);
 break;
 case 0xa0 :
 case 0xb0 :
 case 0xe0 :
 inseq = 3;
 gotoxy_lcd(1, 2);
 goto Print;
 case 0xc0 :
 case 0xd0 :
 inseq = 2;
 gotoxy_lcd(1, 2);
 goto Print;
 case 0xf0 :
 switch(ichar) {
 case 0xf0 : /* system exclusive */
 inseq = 0xffff;

(continued)

14 Issue 112 November 1999 CIRCUIT CELLAR ® www.circuitcellar.com

and there’s a much bigger one avail-
able that won’t fit in the socket I
designed. You’d think I’d have learned
Moore’s law by now.)

The C compiler I use is from Cos-
mic Software. It generates excellent
code and comes with a reasonable
subset of the standard C library.

There’s a command-line version and
a GUI version. I’m strictly a command-
line kind of person. I just want to type in
my C code, type make, and go get a Jolt.

Make is portable across all the
systems I use (Berkeley Unix, Linux,
DOS). So, I don’t have to change the
way I work even as I move from com-
puter to computer during the day.

The next wonderful tool is an emu-
lator. The crash-and-burn develop-
ment cycle can get tedious, especially
when nothing’s running so you can’t
even run a debugger on the target.

An emulator lets you quickly see
that your stack pointer is pointing to
nowhere. Then, once you get the little
sucker running, the emulator provides
a profiler, instruction trace, complex
breakpoints, and the ability to exam-
ine or change the registers or memory.

My Nohau emulator lives in a box
the size of a toaster, communicates
with a PC running DOS/Windows,
and has a cable ending in a pod which
plugs into the target in place of the
microprocessor chip. Nohau-supplied
software runs under Windows and lets
you control the emulator. You can
load code, set breakpoints, examine or
change registers, and run your code.

This emulator has real-time full-
speed trace of the target’s execution and
a performance analyzer to help figure
out where the code is spending its time.

SOFTWARE
I decided this project needed an

RTOS so I could have multiple tasks
running independently without writ-
ing this complexity myself. I went
with RTXC from Embedded Systems
Products. It comes with complete
source code and is customized for the
particular microprocessor you’re using.

The RTXC kernel supplies all
needed (and even imagined) kernel
services—that is, manipulation of
mailboxes, semaphores, resource locks,
queues, dynamic tasks, and so on.

 gotoxy_lcd(1, 4);
 goto Print;
 case 0xf2 : /* song pos */
 inseq = 2;
 gotoxy_lcd(1, 4);
 goto Print;
 case 0xf3 : /* song sel */
 case 0xf6 : /* tune req */
 case 0xf7 : /* end of sys excl */
 case 0xf8 : /* timing clock */
 case 0xfa : /* start */
 case 0xfb : /* continue */
 case 0xfc : /* stop */
 case 0xfe : /* active sensing */
 case 0xff : /* reset */
 default : /* undefined: f1 f4 f5 f9 fd */
 inseq = 1;
 gotoxy_lcd(1, 4);
 goto Print;
 }
 default :
Print:
 xtoa((unsigned int)ichar, 2, buf);
 buf[2] = ' ';
 buf[3] = '\0';
 break;

 }
 cputs_lcd(buf);
 if(!havelock) {
 KS_lockw(SCIRES);
 havelock = 1;
 }
 porta |= SCIRESBIT;
 PORTA = porta;
 KS_enqueuew(SCIOQ, &ichar);
 if(inseq) inseq--;
 if(inseq == 0) {
 porta &= ~SCIRESBIT;
 PORTA = porta;
 KS_unlock(SCIRES);
 havelock = 0;
 }
 }
 }
}

Listing 1 —continued

One of the nice parts about this
tool set is that the three vendors—
Cosmic, Nohau, and Embedded Sys-
tems Products—communicate with
each other. For example, the emulator
knows about the symbol table output
by the compiler. The compiler works
correctly with the kernel. And the
kernel’s internal tables and variables
are understood by the emulator.

THE TASKS
This project needs at least two tasks.

The midi() reads the incoming MIDI
stream from the keyboard and copies it
out to the next device in the chain (typi-
cally, a synthesizer). The pdlpoll()
task polls the state of the I/O pin con-
nected to the sustain pedal and trans-
mits a pedal-state message when it
detects a change of the pedal’s state.

The midi() task listens to the
MIDI input from the keyboard and
copies whatever it sees to the MIDI
output (serial output queue). More
importantly, when midi()copies a
MIDI message this way, it acquires a
resource lock on the serial port queue,
so it has exclusive access to this queue.

The midi() task in Listing 1 consists
of an event loop that waits for a sema-
phore from the serial port interrupt
handler, indicating that a character
was received. A while loop empties
the queue of received characters and
feeds them into a switch statement,
which classifies the MIDI messages by
length, based on the first character and
controls the display on the LCD module.

The integer variable inseq moni-
tors the length of the MIDI messages.
It is set to the length of the message

 CIRCUIT CELLAR ® Issue 112 November 1999 15www.circuitcellar.com

INTERRUPT HANDLERS
As I mentioned, one of the inter-

rupt handlers is devoted to the serial
port interrupt. The 68HC11 has a
whole slew of vectored interrupts, so
it’s easy to set up a different handler
for every peripheral device that can
generate an interrupt. When the built-
in serial port of the 68HC11 receives
or transmits a character, an interrupt
is generated.

Photo 1 —The DE-9 connector
is only used for programming
the flash memory and so is not
accessible when the cover is in
place. All my custom MIDI I/O
circuitry is on the tan perfboard
in the back right corner. Power is
supplied via a wall wart.

to become garbled, and the synthe-
sizer will throw away one (or both) of
the messages as corrupt.

So, the purpose of
the midi() task is
to read and under-
stand the MIDI
stream from the key-
board. That way, it
knows when it’s safe
for pedalpoll() to
send a pedal state
message without inter-
rupting a keyboard message.

midi() uses the resource
lock on the serial-port queue to
let pdlpoll() know what times it
is safe to send pedal state messages.

A third task—a device driver for
the serial (MIDI) output—empties the
serial port queue and sends the char-
acters to the serial port transmit
buffer register when an interrupt from
the serial port transmitter indicates
that the transmit buffer is empty and
ready for another character. By using a
semaphore, RTXC enables interrupt
handlers to notify tasks of events.

at the start of each MIDI message, and
it is decremented for each subsequent
character in that message.

When midi() sees the last byte of
a MIDI message (signified by inseq
reaching 0), it releases the resource
lock on the serial-port queue so other
tasks may use the serial port.

pdlpoll(), shown in Listing 2,
regularly polls a pin on the 68HC-
11A’s parallel port A. When that bit
changes state, it means the pedal was
pressed or released.

The pdlpoll() task then waits for
the resource lock to be free, grabs the
lock, stuffs the appropriate message
into the serial port output queue (pedal
up or down), and releases the lock.

If you’re wondering why there
needs to be a task to read MIDI in and
copy it to the output, the answer lies
in the fact that MIDI messages are
multibyte packets. If the pedalpoll()
task just blindly shoots out pedal-
state messages, it will eventually send
one in the middle of a MIDI “note on”
or “note off” message from the key-
board. This will cause both messages

18 Issue 112 November 1999 CIRCUIT CELLAR ® www.circuitcellar.com

The handler reads the status regis-
ter then responds to each of the pos-
sible interrupt sources. If a character
is received, it is read and stored in a
(global) buffer. And, a semaphore is

#define SELFTASK ((TASK)0)
#include "hardware.h"

#if K4
#include <iok4.h>
#else
#include <io.h>
#endif

#include "rtxcapi.h"
#include "scidrv.h"
#include "csema.h" /* COMISEM, COMOSEM */
#include "cqueue.h" /* COMIQ, COMOQ */
#include "cres.h"
#include "serial.h"

#define POLLED 0

static const char downmsg[] = { 0xb0, 0x40, 0x7f };
static const char upmsg[] = { 0xb0, 0x40, 0x00 };
static unsigned char ped, lastped;
unsigned char porta;

/* poll for pedal change of state, when detected, send pedal message
 * (with resource lock to prevent message scrambling). */
void pdlpoll(void)
{
unsigned char i;
unsigned char pedalsex;
#if K4
 DDRA = 0x78; /* make it look like the port on a non-K4 */
#endif
 porta = 0x60; /* guess if switch is N.C. or N.O. */
 lastped = PORTA & PEDALBIT;
 pedalsex = PEDALBIT & lastped; /* look at initial state of pedal */
 if(lastped) porta &= ~PLEDBIT;
 else porta |= PLEDBIT;
 PORTA = porta;
 for (;;) {
 KS_delay (SELFTASK, 2);
 porta ^= PDLPOLLBIT;
 PORTA = porta;
 ped = PORTA & PEDALBIT;
#if POLLED
 monitor();
#endif
 if(lastped != ped) {
 if(ped) porta &= ~PLEDBIT;
 else porta |= PLEDBIT;
 lastped = ped;
 ped ^= pedalsex; /* correct for N.C. or N.O. pedal */
 KS_lockw(SCIRES);
 porta |= SCIRESBIT;
 PORTA = porta;
 for(i = 0 ; i < 3 ; i++) {
 KS_enqueuew(OQ, (ped) ? &downmsg[i] : &upmsg[i]);
 }
 porta &= ~SCIRESBIT;
 KS_unlock(SCIRES);
 PORTA = porta;
 }
 }
}

Listing 2 —The pdlpoll() task polls the pedal switch, and when it detects a change in pedal state,
waits for the MIDI output resource lock before sending the appropriate MIDI pedal message.

set to notify midi() that a new char-
acter is available to be read.

If the transmit buffer-empty inter-
rupt has fired, a different semaphore is
set to notify the serial output device

 CIRCUIT CELLAR ® Issue 112 November 1999 19www.circuitcellar.com

SOURCES
68HC11A SBC
Axiom Manufacturing
(972) 994-9676
Fax (972) 994-9170
www.axman.com

68HC11 emulator
Nohau Corp.
(408) 866-1820
Fax (408) 378-7869
www.nohau.com

68HC11 C compiler
Cosmic Software
(781) 932-2556
Fax: (781) 932-2557
www.cosmic-software.com

RTXC kernel
Embedded Systems Products, Inc.
(800) 525-4302
(281) 561-9990
Fax: (281) 561-9980
www.rtxc.com

driver task that the serial port hard-
ware is ready for another character.

The second interrupt handler runs
on the real-time clock interrupt of the
68HC11. This interrupt is scheduled
to fire every 5 ms or so, and is used as
a heartbeat by the RTXC kernel.

The kernel gets control at every real-
time clock interrupt, when it checks to
see if any task with a higher priority
than the currently running task has
become available. If so, a task switch is
performed. Otherwise, the kernel re-
turns control to the current task.

RAMPANT FEATURE-ITIS
Because a pedal is just a momentary

switch, some keyboard manufacturers
use normally closed switches and
others use normally open switches.

My MIDI sustain pedal box would be
ambidextrous. So, pdlpoll() checks
the initial state of the pedal when the
software starts up. If the pedal pin is at
a high logic level, the pedal is assumed
to be normally open. Otherwise, it is
assumed normally closed.

This information is then used
when generating the pedal state mes-
sages, to generate the correct (pedal up
or down) message regardless of which
pedal you plug into the device.

Besides the two five-pin DIN con-
nectors for MIDI in and out, and the ¼
phone jack for the pedal connection,
four LEDs are mounted on the front
panel. These are driven by software
events so I can monitor the unit’s
health. They started out as debugging
aids, but they looked so pretty when
running that I left them on the front
panel of the finished device.

One LED toggles when the real-
time clock interrupt fires. Another
one shows the state of the pedal con-
tact. A third shows the resource lock
activity on the serial output queue.
The fourth toggles at the frequency of
the pdlpoll() polling loop.

INTERESTING COINCIDENCE
I had the project just about done

when a friend showed me an article
entitled “PIC MIDI Sustain Pedal” [3].
Naturally, I was intrigued.

This article solves the easier prob-
lem by generating MIDI pedal state
messages. However, it assumes the

Bill Dudley is a programmer for
Monmouth Internet. He has designed
embedded systems for the likes of
AT&T Bell Labs and a whole assort-
ment of much smaller companies.
When not hacking around on comput-
ers he can sometimes be found riding
one of his motorcycles. You may
reach him at dud@casano.com.

REFERENCES
[1] Motorola, M68HC11 Reference

Manual M68HC11RM/A, Rev. 3,
1991.

[2] Optrex, LCD module, Datasheet.
[3] R. Penfold, “PIC MIDI Sustain

Pedal,” Everyday Practical Elec-
tronics, Feb. 1999.

keyboard and synthesizer are in one
unit so they don’t need to insert the
pedal messages into the keyboard’s
MIDI output stream.

This application is simple enough
for a PIC. It only has to poll the pedal
contact bit and grind out serial mes-
sages—not read any MIDI stream so it
can coordinate with it.

Although my MIDI box wasn’t a
cost-effective project to build, it cer-
tainly was entertaining and allowed
me to showcase some fine tools. I

www.axman.com
www.nohau.com
www.cosmic-software.com
www.rtxc.com

20 Issue 112 November 1999 CIRCUIT CELLAR ® www.circuitcellar.com

Working with a
Dual-Slope ADC

FEATURE
ARTICLE

Richard Lao

w
With its good noise
immunity and notable
filtering action over
the digitization interval,
a dual-slope ADC
was Richard’s first
choice when design-
ing a prototype of a
system to measure
stresses in a beam.
And there’s more to
the story than that….

orking in the
R&D lab and being

involved in product
development means

wearing many hats in the process of
producing a concept prototype. In such
an environment, the prototype must be
developed rapidly to demonstrate the
feasibility of the design concept.

Sensors must be interfaced to analog
signal-conditioning circuitry. Those
circuits must be designed, and often
the sensors have to be designed as well.
The analog signals must be multiplexed,
digitized, and processed, and ultimately
some useful information must be
displayed on, say, an LCD. It’s the
digitization that interests us here.

For example, consider strain gauges
arrayed in a Wheatstone bridge configu-
ration to measure stresses in a beam.
The bridge voltage must be amplified,
filtered, and then sent to an ADC.

For good noise immunity with such
DC or slowly varying voltage signals,
you can use a dual-slope or sigma-delta
ADC. Here, I consider the dual-slope
ADC, which is noted for its filtering
action over the digitization interval.

PLAYING WITH PROTOTYPES
A prototype represents a product to

be manufactured, and so, must have
the same features—inexpensive parts,
and as few of them as possible. Like

most products, this one needed an
embedded microcontroller. In that
sense, I already had part of the ADC. I
merely needed to design a front end.

Because I was using a Microchip
PIC16F84 (actually a Micromint Pic-
Stic-1) to handle houskeeping in the
prototype and needed to rapidly proto-
type my design, I picked up my Micro-
chip apps manual to search for some
dual-slope ADC circuit and software
boilerplate. Why reinvent the wheel?

Surprise! There were no adequate
app notes for what I needed—a 13-bit
dual-slope ADC. So, I resurrected
some of my old designs and started
the process of laying down a flowchart
and coding. I didn’t even have to use
interrupts. By polling twice in each
ADC loop, I could minimize errors
resulting from polling down to 1 bit.

I elected to use a PicStic-1 for good
reason. Although the PicStic-1 is rela-
tively expensive compared to a “bare”
’16F84, the price is offset by the con-
venience of its package (a 14-pin SIP).

My PC sits on my desk with my
EEPROM programmer, and my bench
is in the lab. The prototype circuit on
the bench was a solderless breadboard.
I could rapidly insert or remove the
PicStic-1 for another programming
iteration, which was easier than plug-
ging in or popping out an 18-pin DIP.

The EEPROM programmer was an
Epic Plus Pocket PICmicro Programmer
from microEngineering Labs. This and
their Epic PicStic adapter socket (ZIF)
were convenient for burning-in and
erasing PicStics for repeated program
changes. (Of course, there was more
to the program than the ADC routine.)

CIRCUIT DESCRIPTION
The ADC circuit in Figure 1 consists

of a power supply, the PicStic-1, a
CMOS 4051 mux, an (inverting) inte-
grator, comparator, input buffer op-
amps, LCD, as well as a few resistors,
capacitors, and diodes. The power
supply consists of two 9-V batteries
with linear voltage regulators (LM78-
L05ACZ and 79L05ACP) providing +5
and –5 V respectively for the ICs.

The circuit can be modified to work
on a single supply. But for my applica-
tion, I needed the negative voltage for
other purposes. The ’4051 mux (U3)

 CIRCUIT CELLAR ® Issue 112 November 1999 21www.circuitcellar.com

CH1 = 500 mV
DC 10:1

CH2 = 2 V
DC 1:1

20 ms/div
(20 ms/div)
Norm:50 kS/s

+4.4 V

One
diode

Voltage
drop

Trace 1 = Max. 400.0 mV
 Min. –1.140 V

Trace 2 = Max. 4.480 V
 Min. –3.600 V

Phase 1:
signal integration

Comparator
output Integrator

output

Time

40.9 ms
integration time
(213 = 8192 counts)

t2
(n output
counts)

Phase 2:
(Negative) reference
voltage integration
(deintegration)

Vmeas

Vref

= n
N

where Vmeas is the (positive) input
voltage being measured, n is its corre-
sponding digital count, Vref is the ref-
erence voltage (–3 V in this device),
and N = 8192 (i.e., 213) is the digital
count corresponding to |Vref|.

What’s more, Vmeas is the average
value of the voltage over the part of
the conversion cycle during which it
is being measured. That’s why this
kind of ADC is noise tolerant.

Random fluctuations of the input
voltage during the measurement cycle
are filtered out. The dual-slope ADCs
in commercially available voltmeters
are basically the same, except they
have a network of internal switches to
accommodate bipolar voltages.

There are three phases in the A/D
conversion cycle. The first phase is zero
phase (initialization). The integrator is
connected to the –3-V reference voltage,
which, in the absence of D1, causes
the integrator’s output to ramp up and
ultimately reach positive saturation.

The integrator’s output voltage is
maintained (clamped) by diode D1 to
one diode drop above zero for 40.96 ms,
the time it takes the microcontroller
to count to 213 = 8192. The time inter-
val isn’t critical and can be shorter.

I used the 8192 count because this
count is used in the next phase. Elimi-
nating D1 wouldn’t defeat the ADC’s
operation but would consume a lot more
time with no added benefit ramping up
to and down from positive saturation.

The next phase is Phase 1 (signal
integration). Pins 8 (PORTB1) and 9
(PORTB2) of the PicStic then address
the ’4051 mux (CMOS analog switch)

functions both as a mul-
tiplexer for input signals
and as an integral part of
the ADC front end.

The ’4051 is an eight-
channel multiplexer. One
channel is used for the
ADC reference voltage,
leaving seven to measure
various input voltages.

In Figure 1, only two
input channels (x6 and
x7) and the reference (x5)
are used. The other inputs
are grounded and the ’4051 control line
C (pin 9) is tied high. To use all of the
channels to measure input voltages,
control line C would have to be routed
to the PicStic, as control lines A and B
currently are, and the program would
have to be slightly modified.

The PicStic-1 has a 4-MHz clock
frequency, requiring four clock cycles
per instruction (i.e., 1 µs/inst). The
counting loop in the assembly-language
program is polled every five instructions
(5 µs). Thus, counting to 8192 requires
8192 × 5 µs, or 40.96 ms.

I chose an LF412CN dual op-amp
for the integrator (U4A) and compara-
tor (U4B) by default. I keep this op-amp
around the bench for R&D purposes
and use it like other folks use ’741s.
Until I settle the op-amp specs “in
concrete,” the ’412 serves nicely. But,
feel free to use another chip.

For a quick room-temperature
benchtop setup in R&D, a 1N4148
signal diode is satisfactory for D1,
which is the limitor diode on the
integrator. However, the 1N4148 has
a relatively large reverse current over
temperature, and for permanent de-
sign as an integrator limitor, it isn’t a
good choice. A low-leakage diode, like
Digi-Key’s FLLD258CT-ND would be
just what the doctor ordered (IR max.
= 3 nA, IR typ. < 25 pA)

Other circuit variations for dual-slope
ADCs may include an analog switch
to discharge the integrating capacitor
during part of the measurement cycle.

DUAL-SLOPE REVIEW
A dual-slope ADC produces a digital

count that’s proportional to the positive
voltage being measured once every
conversion cycle. For example:

Figure 2 —Integration count begins when the falling voltage ramp passes through zero and ends after 8192 counts.
The deintegration count then begins, ending only when the rising voltage ramp again passes through zero.

Figure 1 —A PicStic and serial LCD
offer the rapid prototyper a convenient
resource. Add a few extra components
to implement a dual-slope ADC.

22 Issue 112 November 1999 CIRCUIT CELLAR ® www.circuitcellar.com

CLRF Counter1
MOVLW 0x20
MOVWF Counter2
(For a count of 213 = 8192 dec.)

Turn on port bits to select
negative REF volatage

BCF PORTB,2
BSF PORTB.1

Zerotime
NOP
NOP

DECR LOBYTE

DECFSZ Counter1,1

Able

No
Yes

LOBYTE = 0?

NOP
NOP DECFSZ Counter2,1

DECR HIBYTE

HIBYTE = 0?

No
Yes

Zero phase
Initialization

Enter

LOBYTE 0
HIBYTE 20 h

A

Phase 1
Integration of input signal

CLRF Counter1
MOVLW 0x20
MOVWF Counter2
(For a count of 213 = 8192 dec.)

Turn on port bits to select
input signal volatage

BSF PORTB,2
BSF PORTB,1

Waiting

NOP
NOP

DECR LOBYTE

DECFSZ Counter1,1

BTFSZ PORTB,0

Baker

No

No

Yes

Yes

LOBYTE = 0?

NOP
NOP DECFSZ Counter2,1

DECR HIBYTE

HIBYTE = 0?

No
Yes

LOBYTE 0
HIBYTE 20 h

COMP Low?

B

A

Integtime

B

CLRF Counter2
CLRF Counter1

Turn on port bits to select
negative REF volatage

BSF PORTB,2
BSF PORTB,1

Reflnttime

INCR LOBYTE

INCFSZ Counter1,1

BTFSZ PORTB,0

Charlie

No

No

Yes

Yes

LOBYTE = 0?

INCFSZ Counter1,1

INCR HIBYTE

HIBYTE = 0?

No
Yes

Phase 2
Integration of negative reference voltage

LOBYTE
0HIBYTE
0

COMP LOW?

INCR HIBYTE

BTFSZ PORTB,0

No

Yes
COMP Low?

Display0

Display1

(Counter) (HIBYTE<<8) + (LOBYTE)
(For high-level

language
environment only)

to connect the (inverting) integrator to
the positive input signal, causing the
output to ramp down. When the ramp
reaches 0 V and trips the comparator,
the PicStic senses the zero crossing
and starts counting.

The signal continues to be integrated
for N = 8192 counts, the full count set
in the program. Because the integration
time is fixed for various input voltages,
the slope of the ramp is not constant.

The third phase is Phase 2 (reference
signal integration). The microcontroller
switches the mux to the –3-V reference
voltage, resets the counter to zero,
and begins a new count.

For the positive voltages this ADC
measures, the reference signal is of
opposite polarity—a negative voltage.
When the negative reference signal is
(negatively) integrated, it ramps up-
ward and essentially undoes the inte-
gration of the positive input signal
(hence the alternate name for this
phase, deintegration).

When the positive-going integrator
ramp reaches 0 V, the comparator is
tripped and the count (n) is stopped
and stored. Figure 2 shows waveforms
of integrator output voltage and com-
parator output voltage over time.

The total time for one conversion
is about 46 + 40.96 + 40.96 = 128 ms.

TRACKING AND RANGE
Suppose an input voltage to be

measured is derived from a sensor
operating from the circuit’s 5-V sup-
ply (e.g., from a pot). Fluctuations on
the 5-V supply are mirrored in fluctua-
tions of the sensor output voltage and
the ADC reference voltage. Given:

Vmeas
Vref

= n
N

the ADC count will have immunity
to power-supply fluctuations.

The voltage reference in this ADC is
–3 V. In the measure() function in
Cellar1.c, I could have written:

*adn = 256 × Counter2 +
 Counter1;

Instead, I used some bit shifting:

*adn = Counter2;
*adn = (*adn << 8) + Counter1;

This shift-and-add strategem is
used to compact the code, but either
way, the ADC will do its job. Note,
however, that the Cellar1.c code
formats the LCD to read counts up to
four digits, then the LCD overflows.
This can be changed to five digits by a
minor change in the source code.

By contrast, in Cellar2.bas, I used
W2 = 256 × B5 + B4. Voltages above
+3 V can be measured, limited only by
the power-supply voltage headroom.

DISPLAY
This project was conceived for a

rapid prototyping scenario where
development speed is essential. So, I

Figure 3 —This flowchart is typical of microcontroller programming routines for dual-slope ADCs. The assembly-language mnemonics are for the PIC16F84. Interrupts are not
used; rather, polling is employed in a loop.

 CIRCUIT CELLAR ® Issue 112 November 1999 25www.circuitcellar.com

used a Scott Edwards 2 × 16 bit-serial
LCD (BPK-216N), which contains a
Hitachi HD44780 LCD controller.

These LCDs are a boon to develop-
ment engineers fighting the clock.
Because they require only three wires
(+5V, GND, SERIN) for interfacing to
the PicStic-1, I could concentrate on
other matters besides LCD interfacing.

THE CONVERSION ALGORITHM
Figure 3 is a flowchart for the con-

version routine. I wrote it in assembly
language and embedded it, first in a
BASIC program (Cellar2.bas) using
microEngineering Lab’s PicBasic Pro
Compiler, and then in a C program
(Cellar1.c) using Custom Computer
Services’ C cross-compiler, PCW.

PCW is a professional programming
package that has a Windows IDE and
includes two compilers, the PCB and
PCM (for 12- and 14-bit opcodes, respec-
tively). For the PicStic-1, I used PCM.

DISPLAY FORMAT
The LCD has different displays

depending on which program is down-

loaded to the PicStic. With the BASIC
program, the voltage on one channel
(mux pin 2) will be measured. The
count is shown on the first line. On
the second line the voltage is com-
puted using somewhat coarse (but
satisfactory) integer arithmetic.

With the C program, the counts are
displayed for two channels, with two
samples averaged per channel—mux
pin 4 on the first line, mux pin 2 on
second line. A different number of
samples may be averaged by changing
the code in the appropriate places. I

Richard Lao has over 20 years’ experi-
ence as a scientist and research engi-
neer. He has developed electronic
instruments, sensors, and systems,
ranging from magnetometers and
gyroscopes for oceanography and
bore-hole navigation, to bio-tech. You
may reach him at riclao@juno.com.

SOFTWARE
Source and hex code for this article
in Basic and C are available via the
Circuit Cellar web site.

SOURCES
BPK-216N
Scott Edwards Electronics, Inc.
(520) 459-4802
Fax: (520) 459-0623
www.seetron.com

PicStic-1
Micromint, Inc.
(407) 262-0066
Fax: (407) 262-0069
www.micromint.com

Epic Plus programmer, PicBasic Pro
 Compiler, Epic PicStic adapter
microEngineering Labs, Inc.
(719) 520-5323
Fax: (719) 520-1867
www.melabs.com

C Compiler PCW
Custom Computer Services, Inc.
(414) 781-2794
Fax: (414) 781-3241
www.ccsinfo.com

Integrating capacitor
TAW Electronics, Inc.
(818) 846-3911
Fax: (818) 846-1194
www.tawelectronics.com

www.circuitcellar.com
www.tawelectronics.com
www.ccsinfo.com
www.melabs.com
www.micromint.com
www.seetron.com

26 Issue 112 November 1999 CIRCUIT CELLAR ® www.circuitcellar.com

Tuning into
the HA Channel

EMBEDDED
LIVING

Mike Baptiste

s
A channel devoted to
Home Automation
may be a stretch, but
in this month’s col-
umn Mike shows us
how to display HCS-II
information via televi-
sion with a little help
from a PIC16C63A
and an onscreen
display module
named BOB-II.

ome people say
the ultimate home

automation system is
one you never need to

interact with. It should run the day-
to-day functions of your home on its
own using sensors and programming.

I agree to a point. However, a good
home automation system should also
provide homeowners with information
about their home, the status of its sys-
tems, or any urgent events or messages.

Getting this information usually
means bringing up an application on a
PC. People are spending more time in
front of their PCs, but the television
is used more often in most households.

Therefore, I think the TV is an
ideal device for presenting vital home
automation information. By adding an
infrared interface, your home automa-
tion system can be controlled like any
other A/V device.

I’ve always wanted
to connect my HCS-II
to my televisions (but
I wasn’t excited about
designing the video
section of the circuit).
LCDs are nice for
some places, but they
usually aren’t conve-
niently located and
you can’t see them
from across a room.

I admit it—I’m a bit-head. I can hold
my own when it comes to analog cir-
cuitry, but tinkering with NTSC video
was a bit intimidating. Besides, I
wanted it to be easy to build and I had
pictures in my head of dozens of dis-
crete parts making up the video portion.

I started looking around for chips
that would handle onscreen displays
without much external circuitry. I
finally found a few, but they were
surface mount and the spec sheets
showed that controlling these OSD
chips took a bit of register manipula-
tion. The amount of code I needed to
write was growing.

It became apparent that designing the
NTSC circuitry wouldn’t be the hardest
part; sourcing the parts would. It was
time to look for something off the shelf.

THIRD PARTY TO THE RESCUE
Recently, several companies have

started selling complete onscreen
display (OSD) modules that enable
users to display text on a television.
Communications are handled via a
simple serial interface.

Because many are self-contained
devices, I’d have one box with a cus-
tom controller connected to the third-
party box. Not ideal, but if it worked,
I’d be happy. But, I couldn’t find one
that met all of my requirements.

Since the HCS-II network runs at
9600 bps, I needed an OSD device that
operated at 9600 bps or I’d have to
buffer outgoing data as well as the
incoming packets. Many OSD devices
only operate at 1200 bps so HCS data
arriving eight times faster would eas-
ily overwhelm the TV interface.

Video generation was another draw-
back of some OSD devices. Many
require external video signals and can
only generate text in monochrome;

Photo 1 —The SIMM format of the BOB-II enables compact board design.

 CIRCUIT CELLAR ® Issue 112 November 1999 27www.circuitcellar.com

others don’t allow direct cursor ma-
nipulation. One required sending the
row and column at the beginning of
each line displayed.

Given how most HCS-II LCD in-
terfaces allow moving the cursor
around at will, I needed to be able to
move the cursor on demand when
sending one line of text. I began to
wonder if I’d have to brush up on my
NTSC and search for obscure parts
after all.

I had just about given up when I
discovered a module called the BOB-II
from Decade Engineering. The BOB-II
is a self-contained OSD device on a
30-pin SIMM. It has a 9600-bps serial
port and supports color text—two of
my main requirements.

It also displays monochrome text
over an existing video signal, gener-
ates its own video signal with mul-
tiple color backgrounds, overlays
color text on internally generated
backgrounds, and allows direct ma-
nipulation of the cursor position.

GETTING TO KNOW BOB
The BOB-II module packs a lot of

functionality on a tiny SIMM circuit
board. Photo 1 shows the BOB-II in-
stalled in the PIC-TV circuit board.
The bulk of the video work is done by
the SGS-Thomson STV5730A chip.

Using internal registers, the chip is
controlled by an external microcon-
troller. The STV5730A also allows
various configurations to be used for
whatever application you have. Give
the datasheet a read to see how this
thing ticks. It’s quite impressive.

On the BOB-II, an Atmel processor
handles all the STV5730A control and
external system communications. By
using a 9600-bps serial interface, you
can send various control commands
(as well as normal text) to the BOB-II.

To make the BOB-II appealing to a
wide market, the command set is
RISC-like, simple, and straightfor-
ward. However, you can combine
commands to make a more powerful
interface. Table 1 shows the BOB-II
command set. As you can see, it en-
ables you to control most of the STV-
5730A functionality.

Most commands are preceded by a
{ and consist of a command letter and

sometimes a setting number or row,
column pair. The compact command
set ensures that you don’t waste time
sending long command names over
the 9600-bps communications link
and makes it easy to implement a
more detailed command set on the
HCS interface processor.

A number of normal characters
like &, (,), %, and ! are absent from
the BOB-II character set. Instead, many
foreign-language characters are used,
which makes the system more versatile.

It’s clear why certain symbols were
left off. The STV5730A chip is intended
for use in self-contained devices like
VCRs which don’t use % and the like.

However, there are some neat sym-
bols for use in a home automation
system. There are arrows, blocks for
graphing absolute values, and other
video-related symbols.

Notice the character codes don’t
correspond to ASCII codes. If you send
normal text in ASCII, the BOB-II con-
verts it to the proper character code.
However, if you want to use the spe-
cial character function to select char-
acters by byte codes, you must use the
BOB-II character code.

IF ONLY IT WAS THAT EASY
With all the BOB-II can do, it

might seem like adding it to the HCS-
II would be a snap. Well, not quite.

I wanted the HCS-II TV interface
to understand the same commands
used for LCDs connected to LCD-
Links or Answer MAN Jrs. This ar-
rangement would make it easy to
convert over to a TV display. It also
means that people familiar with the
LCD commands could use the TV
interface without learning different
commands.

Besides the command set, the TV
interface had to handle RS-485 packet
checksums, the HCS-II network pro-
tocol, ANSI cursor control, respond-
ing to HCS-II queries, and so on. It
soon became clear that I would have
to use an embedded processor to inter-
face the BOB-II with the HCS-II.

The code I wrote for the PIC-DIO
already handled the HCS-II network-
ing, so it made sense to build the
BOB-II interface on this platform. I
could even use the ’16C63A, which
provides plenty of RAM for serial
buffering, has a UART for serial inter-
facing, and enough ROM to handle

Table 1—The BOB-II command set is compact making it ideal for machine to machine communication. There are no
cursor control commands except for moving to a specific set of coordinates. Any other cursor control must be
handled by a host processor (i.e., the PIC-TV).

Command Description

{A Clears screen and moves cursor to home positions at x = 0, y = 0. Requires a
5-ms pause before sending more data.

{BE Turn on display. Any text in display RAM is displayed.
{BD Turn off text display. Existing text is maintained in display RAM and will reappear

with a {BE command. Characters can be written to display RAM with display
disabled.

{Cxxyy Move cursor to xx,yy where xx and yy are two-digit numbers. No range check.
{Dn Set character cell background color (0–7). Depends on {Kx command for

background enable/disable. Local mode only.
{En Set character color (0–7). Local mode only.
{Fn Set screen color (0–7). Local mode only.
{GE Blink enable. Subsequent characters blink.
{GD Blink disable. Subsequent characters won’t blink.
{HN Use internal video levels.
{HX Use external video levels set with potentiometers. (Not used on PIC-TV)
{In Set character outline color (0–7). Local mode only.
{JE Only cell backgrounds are colored with color set by {Dn. Note {KE must be sent

to enable backgrounds.
{JD Entire character grid is colored with {Dn background color. Noncharacter area is

set to screen color. Makes a nice two-color screen.
{KE Enable character backgrounds.
{KD Disable character backgrounds
{MF Local mode select. Forces BOB-II to generate video signal internally using

current color settings.
{MM Genlock/Overlay mode select. Monochrome text is overlaid on any existing video

signal. If no video signal is present, the BOB-II remains in local mode.
{T..<ESC> Used to output special characters by their byte code. The codes are not ASCII!

28 Issue 112 November 1999 CIRCUIT CELLAR ® www.circuitcellar.com

the numerous commands
I planned to recognize.
The HCS-II TV interface
was now the PIC-TV.

Figure 1 shows the
PIC-TV circuit. Most of
the work is done in
software. All the PIC-
TV needed was an RS-
485 interface, the main
PIC controller, and a
way to set the network
address.

The network status
LEDs do more than sat-
isfy my love of blinky
lights. You can tell in-
stantly if you’re getting
HCS-II network data
when you install it. And
if you have network
problems, you’ll see
network errors indicated by the flash-
ing red LED.

Note that there is no voltage regu-
lator in the circuit. The BOB-II uses a
78M05 regulator, which provides more
than enough power for itself.

Figure 1 —The PIC-TV hardware is fairly routine because most of the work is done in software. Note the lack of a voltage regulator—the
BOB-II has one built-in.

The BOB-II brings the +5-V supply
out to a SIMM pin for use by external
circuitry, which is ideal for the PIC-
TV’s minimal power requirements.

The total current draw of the parts
adds up to ~150 mA, but most of the

devices aren’t on at the same time.
Only one LED (15–20 mA) will ever
be on at any given time.

The RS-485 chip draws ~40 mA
during transmits, but that’s not a
problem because the LEDs are off

 CIRCUIT CELLAR ® Issue 112 November 1999 29www.circuitcellar.com

during transmissions. The beeper
draws 30 mA, but it’s rarely on.

The 78M05 can supply up to 0.5 A,
but the surface-mount device doesn’t
dissipate heat well. So, the BOB-II
specification states external current
should be limited to 65 mA.

The PIC-TV exceeds this on a rare
occasion, but in short bursts for LED
blinks and packet transmits when the
beeper is on. Testing revealed that the
78M05 gets warm at worst, so it al-
lows me to drop voltage regulation
from the circuit. Even in the case of
an RS-485 network failure or a short
on the +5-V supply, the 78M05 has an
internal thermal shutdown.

One of the tricky parts of this in-
terface is dealing with two asynchro-
nous serial ports at the same time.
The PIC-TV has to handle packets
from the HCS-II whenever they’re
sent, yet be able to send data to the
BOB-II at the same time.

I was having nightmares of a multi-
tasking OS to handle both asynchro-
nous ports, but then I cheated. The
’16C63A has one hardware UART,
which I planned to use for the HCS-II
network. I really needed two so I can
send characters to the UART buffer
for the PIC-TV and let it worry about
the timing and bit-banging while the
receive buffer grabs HCS packets.

But since the HCS-II network is
half-duplex, whenever the PIC-TV has
to return data to the HCS-II, there’s
no incoming data to worry about. The
BOB-II doesn’t send any data we care
about, so we can easily bit-bang the
HCS responses without missing any
incoming data or screwing up the bit
timing with an interrupt. So, I split
the UART in half.

The receive side receives HCS-II
data and the transmit side sends data
to the PIC-TV. This way, the PIC-TV
can send data to the BOB-II without
causing timing problems when it
receives data from the HCS-II.

The HCS-II data is received via
interrupt, while the PIC-TV sends
data to the BOB-II in a loop. The
’16C63A UART has a small buffer,
allowing three characters to be re-
ceived before it overflows. So, the
PIC-TV could even preempt the inter-
rupt for a little while if it needed to.

30 Issue 112 November 1999 CIRCUIT CELLAR ® www.circuitcellar.com

Although the PIC-TV doesn’t re-
turn any usable data to the HCS-II, it
appears to the HCS-II as an LCD-Link
and must respond when queried to
indicate that it’s online. The PIC-TV
has no keypad, so it just returns 00 to
let the HCS-II know that the module
is online. This status is indicated by
an asterisk on the HCS-II host screen.

COMMAND PARSING
The PIC-TV uses the same serial

routines outlined in my PIC-DIO
article (Circuit Cellar 110). Even
though the PIC-TV screen size is 308
characters, the buffer size is still
128 bytes because the HCS-II can’t
send more than 96 characters in a
single network packet.

The code architecture is similar to
the PIC-DIO. Packets are received and
processed during serial interrupts and
network packets are processed in a
main() loop with case statements.

Because the PIC-TV’s main func-
tion is to display text on a TV, most
of the processing code revolves around
handling string packets from the

Listing 1 —Much of the PIC-TV code is dedicated to processing escape commands embedded in strings
sent from the HCS-II. Functions such as module mode, cursor movement, and color commands are handled
here. Some similar commands have been removed for brevity.

(continued)

byte get_ansi_number() {
 int tval1, tval2;

 // Routine grabs numbers for ANSI commands out of current buffer
 // Used for both row & column numbers, which may be one or two digits
 tval1 = read_buffer(process_idx) & 0x0F;
 // Quick & dirty ASCII conversion
 tval2 = read_buffer(++process_idx);
 if ((tval2 > '/') && (tval2 < ':')) {// Add together and skip the ;
 tval1 *= 10; // Move first digit to tens position
 tval1 += (tval2 & 0x0F); // Grab ones digit & point to next char
 process_idx++;
 }
 return tval1;
}

>> The code below is called when a \e is found in a string
case 'e': // Escape char! Could be lots of things!
 // ESC[(idx);(scratch)(command letter)
 process_idx += 2; // Skip [sign
 scratch = 0; // Default if not specified (idx is set below)
 idx = read_buffer(process_idx); // Figure out what digits we have
 if (idx > '/' && idx < ':') { // We have a number � let�s get it
 idx = get_ansi_number();
 if (read_buffer(process_idx) == ';') { // We have a second number
 process_idx++; // Point to next number
 scratch = get_ansi_number();
 }
 } else {
 idx = 0; // Command with no number�set to default value
 }

32 Issue 112 November 1999 CIRCUIT CELLAR ® www.circuitcellar.com

HCS-II. All control commands are
embedded inside a string command.

The PIC-TV understands about 35
commands that are sent inside an
output-string command (S=). Table 2
lists the PIC-TV display command
set. Compared to the BOB-II com-
mand set, you’ll notice some com-
mands are just reformatted and sent
directly to the BOB-II.

However, many of the commands
require more processing before being
sent to the BOB-II. Many commands
are preceded by an optional row/col-
umn pair, making the command pars-
er a little involved.

Listing 1 outlines the routine used
to parse escape commands (\e[). As
you can see, it is a big case statement
with sections for each command. This
technique means the code is easy to
read and didn’t waste much ROM
space for the jump table.

The tricky part is pulling out the
optional row and column numbers.
They may or may not be there, and if
they are, they can be one or two dig-
its. If they aren’t there, they must
default to 0.

Once the numbers are scanned for
and stored in the idx and scratch
variables, the command letter is
checked. Based on this command
letter, snippets of code are called to
perform the requested function.

idx and scratch may seem like
odd variable names, but this code was
originally done for an LCD interface
project squeezed into a smaller PIC.
RAM space was at a premium so I
reused variables whenever possible.

Once I moved up to a bigger PIC
with more RAM, I never switched to
unique variable names. Why waste
resources just because they’re available?

CURSOR CONTROL
The BOB-II’s cursor control com-

mand is limited to moving the cursor
to a specific x,y location. This pro-
vides plenty of flexibility, but only if
you know your position at all times.
Tracking a cursor position in XPRESS
would be next to impossible.

To use these ANSI cursor com-
mands, the PIC-TV chip tracks the
cursor position. When a cursor move-
ment command is received, the cursor

Listing 1 —continued.

// Execute routine based on command letter, Some will set this true
// to skip moving cursor
skipgoto = FALSE;
switch (read_buffer(process_idx)) {
 case 'A': // Cursor up
 if (y > idx) {
 y -= idx;
 } else {
 y = 0;
 }
 break;

 case 'B': // Cursor down
 y += idx;
 if (y > rows) { y = rows; }
 break;

 [other similar cursor movement commands]

 case 'f': // Move cursor to x,y
 y = idx; x = scratch;
 break;

 case 'g': // Beep for a given period of time
 if (idx > 10) idx = 10;
 beepout = 1;
 b_time = idx * 10;
 set_rtcc(0x00);
 timeok = TRUE;
 break;

 [other similar cursor movement commands]

 case 'K': // Clear to end of line
 for(idx = x; idx <= cols; idx++) {
 restart_wdt();
 putc(' ');
 }
 break;

 case 'J': // ANSI clear screen
 if (idx == 2) { // Clear Screen
 printf(send_uart_serial, "{A");
 delay_ms(5);
 x = 0; y = 0;
 }
 skipgoto = TRUE;
 break;

 // Color commands
 case 'M': // Set screen color in local mode only
 if (local_mode && (idx < 8)) {
 printf(send_uart_serial, "{F%u", idx);
 }
 skipgoto = TRUE; // No need to move the cursor
 break;

 [Other similar color set commands]

 case 's': // Save current cursor position
 sx = x; sy = y;
 skipgoto = TRUE;
 break;

 case 'u': // Restore saved cursor position
 x = sx; y = sy;
 break;

 default:
 skipgoto = TRUE;
 break;
}
if (!skipgoto) { move_cursor(x, y); } // A few commands don't

 // require cursor to move
break;

 CIRCUIT CELLAR ® Issue 112 November 1999 33www.circuitcellar.com

variables are altered and the BOB-II is
sent the cursor’s new x,y position.

This way, the PIC-TV can move
the cursor using relative (up x, down
y) or absolute values (go to row y).
Another feature is the ability to save
and restore the current cursor position.

Some commands check the bound-
ary limits, while others do not. This
was done from a usefulness versus
extra-cycles-needed viewpoint.

With the cursor commands using
relative movements, it made sense to
check the boundaries because you
wouldn’t always know exactly where
you are in your XPRESS code.

However, with the absolute posi-
tion commands, it didn’t seem worth
the cycles needed to check the bound-
aries. The BOB-II ignores cursor posi-
tions that are out of bounds. When
coding your XPRESS program, knowing
that the limits are 11,27 is sufficient.

COLOR MADE EASY AND MORE
Changing character or background

colors is simple. The PIC-TV grabs
the color number from the HCS-II
command and converts it to a BOB-II
color command, which is sent out via
the hardware UART. Reformatting
color commands is simple, but using
them can be a bit more involved.

Color can only be used when the
PIC-TV is in local mode. When you
set the screen color, the entire screen
changes color. However, you can use a
background color to paint the entire
character grid. When you do this, you

Photo 2 shows a screen display using
internally generated color backgrounds.

You can change the color of the
characters and character outlines.
However, the characters are some-
what pale compared to the background.

During development, I used a cheap
modulator and TV for testing. The
characters all looked white no matter

Command Description

\b Turn display on
\c Turn display off
\e Escape character for cursor/color commands
\f Clear screen
\g Sound beeper
\h Enable character backgrounds
\i Disable character backgrounds
\j Switch to local video mode
\k Switch to Genlock/Overlay video mode
\l Color entire character grid with background color
\m Color only character cell with background
\n New line
\o Blink on
\p Blink off
\r Carriage return
\t Tab (4, 8, 12, 16, 20, etc.)

\x## Output special character using byte code
\e[#A Move cursor up # rows
\e[#B Move cursor down # rows

Command Description

\e[#C Move cursor right # columns
\e[#D Move cursor left # columns
\e[H Home cursor to 0,0 (#;# optional)

\e[#;#f Move cursor to row,col #;#
\e[#j Move cursor to row # (;# col optional)
\e[s Save current cursor position
\e[u Restore saved cursor position
\e[2J Clear screen
\e[K Clear line to end of row
\e[7h Set wrap mode. Lines wrap to beginning

 of same line at end of row.
\e[7l Set CR/LF mode. Lines wrap to beginning

 of next line at end of row.
\e[#g Beep for # seconds (0–10)
\e[#M Set screen color (0–7)
\e[#N Set character color (0–7)
\e[#O Set character cell background color (0–7)
\e[#P Set character outline color (0–7)

can create a two-color screen with the
character grid set to the cell back-
ground color and the border set to the
original screen color.

In two-color mode, you can still
change the character cell background
color by using the outline color com-
mand. The background color will
remain the same for all characters.

Table 2—The PIC-TV
command set is based on
the original LCD-Link
command set. Commmands
are sent embedded in
strings from an HCS-II
XPRESS program.

34 Issue 112 November 1999 CIRCUIT CELLAR ® www.circuitcellar.com

SOURCES
PIC16C63A
Microchip
(888) 628-6247
(480) 786-7200
Fax: (480) 899-9210
www.microchip.com

BOB-II
Decade Engineering
(503) 743-3194
Fax: (503) 743-2095
www.decadenet.com

PIC-TV chips and kits, BOB-II
Creative Control Concepts
(919) 304-3107
Fax: (919) 304-3107
www.cc-concepts.com

PIC C Compiler
Custom Computer Services, Inc.
(414) 797-0455 x35
Fax: (414) 797-0459
ccsinfo.com/picc.html

Mike Baptiste graduated from
Rensselaer in 1992 and currently
works for Nortel Network’s R&D
Facility in North Carolina’s Research
Triangle Park where he manages the
Desktop and Intranet Services Sup-
port Groups. You may reach him at
baptiste@cc-concepts.com.

REFERENCES
HCS-II LCD-Link Manual,

ftp.circuitcellar.com/CCINK/
1992/Issue_27/LCDLink.zip

HCS-II, www.cc-concepts.com/
products/hcs/

BOB-II Technical Data,
www.decadenet.com/bob2/
bob2.html

Microchip PIC16C63A datasheet,
www.microchip.com/10/Lit/
PICmicro/16C6X/30605/
index.htm

78M05 datasheet,
www.national.com/ds/LM/
LM341.pdf

STV5730A datasheet, us.st.com/
stonline/books/pdf/docs/4434.pdf

Photo 3 —The BOB-II can generate its own back-
grounds if no external video signal is used. All text is
monochrome when overlaid on an existing video signal.
An ideal application of this mode is to use a security
camera image as a background.

what color I set them to. I spent hours
trying to find the “bug” that was
breaking the color commands.

Turns out, it wasn’t the code after
all. When I used my 32″ Sony TV and
fed the video into it or my DISH re-
ceiver, the character colors were
much more defined.

Some combinations of character
and outline colors cause instability in
the display or make the characters
look jagged. But who wants a blue
character with a magenta outline
anyway? Leaving the outline black
gives the best character definition.

One feature of the BOB-II is the ability
to change character background colors
on-the-fly. If you set the PIC-TV to only
color the character cell background (\m),
you can have different characters with
different color backgrounds.

One trick is to use cell backgrounds
to display different color blocks. Send
a space with a specific color background
and you can display status levels with a
tiny bargraph as in Photo 2.

One of the nicest features of the
BOB-II is its ability to overlay mono-
chrome text onto an existing video
signal (see Photo 3).

But why stop there? When the
motion detectors outside detect move-
ment at night, the HCS-II turns on
the IR illuminators and the video
camera. Using an MCIR-Link, your
TV jumps to a dedicated channel with
the feed from the camera and PIC-TV.

Chimes alert you if you’re not
sitting in front of the TV. The HCS-II
then displays all relevant security and
alarm info on the screen and the video
camera displays a picture of…your dog.

OK, that’s a bit extreme, but how
about having the PIC-TV let you

Photo 2 —The PIC-TV can generate detailed color
backgrounds at the screen, grid, or character cell level.
This allows it to draw attention to urgent information.

know when a car comes in the drive-
way? You can easily insert the PIC-
TV between your cable box and TV.
Because the PIC-TV display can be
turned on and off by the HCS-II, you
can decide when text is displayed on
top of your favorite sitcom.

When the HCS-II senses a car in
the driveway, it flashes a message in
the corner of the screen. Pressing a
specific button on the remote switches
the TV to the security camera.

If you connect a caller-ID modem
to your HCS-II, you can use the PIC-
TV to show the caller’s number when
the phone rings.

LOOKING AHEAD
Most of the I/O in the PIC-TV is

serial so there were many unused I/O
pins. With an eye towards the future,
I brought them out to a 14-pin header.

The PIC-TV only uses about 45%
of the ’16C63A ROM, so there’s
plenty of room to add code for what-
ever add-ons anyone comes up with.
Swap the ’16C63A for a ’16C73A and
it could read analog values. Add more
code to the 16C63A and allow 8 bits
on the expansion header to be acces-
sible like a DIO-Link port.

Using an off-the-shelf OSD module
saved me development time and ag-
gravation, and enabled me to concen-
trate on features instead of core
operations of the character display.

Although it increased the cost, I
think it made for a more stable de-
sign. And because the HCS-II network
protocol is so straightforward, the
PIC-TV can be used in just about any
system with an RS-485 network.

Next time, I’ll cover how to use
the PIC-TV in your HCS-II system in
more detail. The PIC-TV can do some
neat tricks, so stay tuned…. I

ftp.circuitcellar.com/CCINK/1992/Issue_27/LCDLink.zip
www.cc-concepts.com/products/bcs
www.decadenet.com/bob2/bob2.html
www.microchip.com/10/Lit/PICmicro/16C6X/30605/index.htm
www.national.com/ds/LM/LM341.pdf
us.st.com/stonline/books/pdf/docs/4434.pdf
www.microchip.com
www.decadenet.com
www.cc-concepts.com
ccsinfo.com/pic.html

36 Issue 112 November 1999 CIRCUIT CELLAR ® www.circuitcellar.com

What’s the Count?

FEATURE
ARTICLE

Stuart Ball

d
If you’ve ever needed
a simple, inexpensive
frequency counter,
the Count-4 may be
just what you’re
looking for. Pay
attention as Stuart
recounts building this
microprocessor-
controlled
autoranging
frequency counter.

o you ever need
a simple, inexpen-

sive frequency
counter? If so, you can

build the Count-4—a microprocessor-
controlled, autoranging frequency
counter that can operate to 60 MHz.

The frequency counter in Figure 1
shows the basic concept starting with
a string of cascaded counters that
count cycles from the input you’re
trying to measure. This count is cap-
tured at regular intervals (1 Hz,
0.1 Hz, etc.) in a set of latches.

The counters are simultaneously
reset at the end of the sample inter-
val, after the count is captured. The
captured count is displayed on an
LCD or an LED display. The display
shows the number of counts accumu-
lated in each sample interval, a direct
measurement of frequency.

Suppose we measure a 5-MHz sig-
nal using a 0.01-s sample interval.
The counters, starting at zero, will
accumulate 50,000 counts in 0.01 s.
At the end of the 0.01-s interval, the
count will be captured in latches and
the counters will be reset for the next
sample interval.

Early frequency counters needed a
lot of counter digits to get both accu-
racy and range. In the example just
described, the frequency counter
would display 5.0000 MHz. If we

wanted more accuracy than five dig-
its, we’d need more counters.

And there is a tradeoff between
accuracy and time. For instance, if we
wanted to measure a 5-kHz signal
with five-digit accuracy, it would take
10 s to accumulate that many counts.

In addition to the counters that
measure the input frequency, a fre-
quency counter needs a crystal-con-
trolled timebase that must be divided
down to get the reference clock. If we
start with a 1-MHz timebase, we need
six decade counters to get a reference
frequency of 1 Hz. The accuracy of
the measurement is directly related to
the accuracy of the timebase crystal.

Finally, a frequency counter has to
display the result, which means run-
ning the captured count (in BCD)
through a display decoder circuit to
drive a seven-segment display.

As a result, a five-digit frequency
counter built with TTL logic typically
uses more than 20 ICs. Modern fre-
quency counters use the same tech-
niques but use a microprocessor to
read, convert, and display the count,
which reduces the number of compo-
nents and provides more flexibility.

I developed the Count-4 because I
needed a simple frequency counter. I
rarely need more than four digits of
accuracy, so the Count-4 uses a four-
digit LED display. Three additional
LEDs indicate whether the measured
frequency is in hertz, kilohertz, or
megahertz. Also, I didn’t want switches
for selecting the sampling timebase, so
the Count-4 is autoranging.

HOW THE CIRCUIT WORKS
Figure 2 shows the heart of the

Count-4 to be an Atmel AVR 90S4414
microcontroller (U1). The ’90S4414
manipulates the counter ICs, per-
forms autoranging functions, and
displays the result on the LED dis-
play. For more information on AVR
parts, take a look at the Atmel AVR
Series sidebar on page 38.

The ’90S4414 is connected to four
74ACT161 counters (U2–U5). The
74ACT161 is a four-bit synchronous
binary counter, capable of operation
to around 100 MHz. The 74ACT161
inputs include count enables, which
synchronize multiple counters.

Build an AVR-Controlled
Frequency Counter

 CIRCUIT CELLAR ® Issue 112 November 1999 37www.circuitcellar.com

level input signal to logic levels, and
do it over a frequency range that goes
from hertz to tens of megahertz.

The input amplifier for the
Count-4 consists of a feedback-biased
2N2222 transistor (Q5). The 1-mH
inductor in the collector circuit of Q5
provides additional gain at higher
frequencies, where the transistor gain
may fall off. The circuit works past
the 60-MHz limit of the Count-4.

Power to the counter is supplied by
an external 9-VDC transformer and
regulated with a 7805 (U6) to produce
the 5 V needed by the logic.

THE FIRMWARE
The 90S4414 firmware is written

in assembler, using the Atmel cross-
assembler, available on their web site.
The ’90S4414 has two internal count-
ers, T0 and T1.

Timer T1 generates the measure-
ment timebase. To generate a 1-s gate
time, the 4.096 crystal must be di-
vided by 4,096,000, which is beyond
the range of the 16-bit T1 timer.

The reason a 4.096-MHz crystal
was chosen is because the ’90S4414
timers include a prescaler that can
divide the crystal frequency by 8, 64,
256, or 1024. Starting with 4.096-MHz,
these divisors will all result in an inter-
mediate frequency that can be divided
by an integer to get the needed gate
frequencies.

To generate the gate signal, the
prescaler is programmed to divide the
crystal frequency by 256, producing a
16,000-Hz intermediate frequency.
This frequency is then divided by

Figure 1 —Here is a block diagram of a typical fre-
quency counter implemented with discrete logic. A
circuit to implement this may have more than 20 ICs.

Decade
counters

CLR

CLR

CLR

4

4

4

CLR
4

Input

8-bit
latches

4

4

4

4

Display
drivers

8

8

8

8

7-segment
displays

Timebase

1 s
0.1 s
0.01 s

CLR
4 4

8

The counters count up when both
enables (pins 7 and 10) are high, and
stop counting when either enable is
low. The enable input to the least sig-
nificant counter (U5) is connected to the
OC1B output from the ’90S4414.

The ’90S4414 can read the counter
contents on ports A and C, and can
reset the counters. Most importantly,
the OC1B output of the ’90S4414 can
be programmed to toggle every time
an internal counter rolls over.

To measure a frequency, the
’90S4414 resets the counters and
forces the OC1B output low. Then the
OC1B output is driven high for 1 ms
and the count is read. If the value in
the counter is greater than 4095 (1000
hex), the count is assumed to be
scaled properly.

If the count is less than 4095, the
process is repeated for 0.01-, 0.1-, and
1-s count periods. Because 1 s is the
longest gate time, whatever count is
captured will then be displayed, even
if it is zero. Starting with the shortest
gate time permits autoranging be-
cause the processor always finds the
gate interval that provides the proper
scaling.

The 16-bit counter can count up to
FFFF hex, or 65535 decimal. This num-
ber corresponds to 65.5 MHz with a
1-ms gate time, and determines the
upper frequency limit.

After the count is captured, it must
be displayed. The 74ACT161 counters
are binary, but we want our display to
be in decimal, so the firmware converts
the 16-bit binary to five BCD digits.

After conversion to BCD, the most
significant digit of the count is exam-
ined. If it is nonzero, then the upper
four digits of the five-digit count are
displayed. If the high digit is zero,
then the lowest four digits are dis-
played. The correct position for the
decimal point is also calculated.

The LED display is also driven by
the ’90S4414. The display is a four-
digit module with common anodes,
which means the cathodes of the
sames segment on each display digit
are connected together. So, all the “a”
segment cathodes are common, as are all
the “b” segment cathodes, and so on.

Although the cathodes are com-
mon across the digits, the anodes for
each digit are tied together. So, to
display a “0” in digit 1, all the cath-
odes are driven low except the “g”
segment, and the anode of digit 1 is
driven high. Because digit 1 is the only
digit with current supplied to the anode,
the other three digits remain dark.

All four digits are cycled on and off
one at a time and rapidly enough to
appear as a continuous display to the
eye. A 200-Hz interrupt causes each
digit of the display to be activated for
5 ms, giving a total display scan time
of 20 ms. No display driver IC is
needed to convert the BCD count to
seven-segment format, because this
conversion is done in firmware.

The Port B outputs of the ’90S4414
are capable of sinking 20 mA, so they
can directly drive the LED cathodes
(with 330-Ω current-limiting resis-
tors). The display anodes are driven to
+5 V using 2N4403 PNP transistors to
individually enable each digit.

The transistors are needed because
the current into the anodes is the sum
of the individual segment currents,
and can reach 90 mA. This current is
well beyond the source current avail-
able from the ’90S4414 outputs.

The frequency range (hertz, kilo-
hertz, or megahertz) is displayed by
three individual LEDs. These three
LEDs use a common current-limiting
resistor because only one LED at a
time will be turned on. A fourth LED
indicates when the gate (enable) signal
is active.

The input amplifier for a frequency
counter is tricky. It has to take a low-Capture for 1 ms

Result = 64 hex (100 decimal)
Result < 1000 (hex), so capture for 0.01 s
Result = 3E8 hex (1000 decimal)
Result < 1000 (hex), so capture for 0.1 s
Result = 2710 hex (10,000 decimal)
Result >1000 hex, so convert to BCD
BCD result = 10000
MS digit is nonzero, so display 100.0 and
turn on kHz LED

Table 1— Scaling is accomplished by capturing for
increasing time periods until the count rises to a level
high enough for accurate display. This example
captures 1 ms, 0.01 s, and 0.1 s before the count is
large enough to display.

38 Issue 112 November 1999 CIRCUIT CELLAR ® www.circuitcellar.com

timer T1 to produce the 0.001-, 0.01-,
0.1-, and 1-s gate intervals on OC1B.

A measurement cycle starts by
resetting the counter (by toggling Port
D, bit 7) and resetting the OC1B out-
puts. The OC1B output can either
toggle, set, or reset when T1 rolls over.

To guarantee that OC1B starts in
the right state, the timer is programmed
to reset OC1B and a short timing
cycle is run. Then the timer is pro-
grammed to toggle OC1B and set to
roll over at 16 counts, producing a
1-ms toggle rate. The timer is allowed
to count for two rollovers.

The first T1 rollover takes 1 ms
and leaves the OC1B output in the
high state, enabling the counters. The
second rollover toggles OC1B low,
stopping the counters without resetting
them. T1 is then stopped and the count
is read on ports A and C, converted to
BCD, and sent to the display locations.

If the count is too small to be dis-
played, the sequence is repeated with
longer gate times up to 1 s. Because a
new count is acquired as soon as the
previous count is captured and dis-
played, higher frequencies will have a

faster update rate than slower fre-
quencies.

To illustrate how autoranging
works, the sequence for measuring a
100-kHz signal is shown in Table 1.
Although the T1 timer can generate an
interrupt on rollover, the firmware isn’t
doing anything else when waiting for
the rollover to occur, so it polls the
timer for the rollover condition.

The firmware continuously ex-
ecutes a loop, collecting and display-
ing frequencies. Common subroutines
clear the counter, acquire a new
count, and convert the result to BCD.

Timer T0 is an 8-bit counter and
generates the 200-Hz LED refresh
clock. Again, an internal prescaler
divides the 4.096-MHz crystal fre-
quency by 256 to get 16,000 Hz. T0
then divides this by 80 for a 200-Hz
interrupt.

The LED display interrupt service
routine (ISR) turns off all the displays,
selects the next display digit, converts
the BCD digit value to a seven-seg-
ment value, and writes the result to
Port B. The decimal point is ANDed
into the value on Port B if the current

Atmel AVR Microcontrollers
The Atmel AVR-series of microcontrollers includes the 20-pin AT90S-

1200 and AT90S2313, and the 40-pin AT90S4414 and AT90S8515 devices.
The AVR processors are 8-bit RISC-based machines, and all execute the
same instruction set (except the ’2313, which executes a subset of those
instructions).

AVR processors execute about one instruction per clock cycle, which
lets the processor run at slower clock rates (for a given level of perfor-
mance) than processors that use a higher frequency clock and divide it
internally to produce the instruction clock. The Microchip PIC processors,
for example, require a 20-MHz input (internally divided by 4) to achieve
the same instruction execution time as a 5-MHz AVR processor.

The AT90S4414 used in the Count-4 project includes 4 KB of flash
program memory, 32 registers, 256 bytes of SRAM, 256 bytes of EEPROM,
and 32 I/O lines. There are two flexible timers, one 8-bit and one 16-bit,
that support several modes of operation.

The most important feature of the device for this project is the ability
to toggle an output pin when a timer rolls over. Other features include
synchronous and asynchronous serial interfaces, an analog comparator, a
watchdog timer, and in-circuit programming capability.

The 32 general-purpose registers are divided into two groups of 16 regis-
ters. One group, registers 16–32, can execute immediate instructions such
as Load Immediate, Compare Immediate, and so on. Other than this, all
the registers are exactly the same, making the instruction set quite flex-
ible. Some of the registers have dual uses, such as pointers for table
lookup instructions.

40 Issue 112 November 1999 CIRCUIT CELLAR ® www.circuitcellar.com

I built a short (6″) input cable with
alligator clip leads that let me con-
nect an antenna or a pickup coil or
connect the counter input directly to
the circuit I want to test.

CHECKOUT
First, check the wiring of the +5-V

circuit. Before installing the ICs, plug
in the 9-V transformer and check for
5 V at the IC pins. If the voltage is
wrong, check the wiring of the ’7805
regulator.

After verifying that the power sup-
ply is working, install the ICs and
plug in the transformer again. You
should see the LED display 0000, and
the hertz LED should be illuminated.
If you installed the gate LED, it
should be blinking.

Finally, apply an input signal to the
counter and verify that it displays the
correct frequency. I built the proto-
type with an extra socket that lets me
plug in a TTL oscillator to verify that
everything works (see Photo 1).

The Count-4 is easy to use because
there are no knobs, buttons, or
switches. Just hook it up and look at
the resulting display (see Photo 2).

The input amplifier is designed to
produce a logic-level output from
fairly low (50 mV) inputs, so it’s pos-
sible to saturate it. If you need to
measure high-amplitude (>1 V) signals
at frequencies over about 100 kHz,

the counters will be
operating at high
frequencies, I recom-
mend that they be
grounded by running
strips of adhesive-
backed copper tape
under the ICs and
along the edges of the
perfboard to provide a
fairly low-impedance
ground path. This is
my normal method
of making ground
connections in any
digital prototype. It
isn’t quite as good as
a ground plane, but
it’s close.

The LED display
is a four-digit, green,
common-anode dis-
play (Lumex LDQ-M282RI). Any com-
mon-anode display will work, and you
can even take individual common-
anode, seven-segment LED digits and
wire all the cathodes in parallel to
make a four-digit display if you want.
Of course, if you use a different dis-
play, it will probably have a different
pinout from that seen in Figure 2.

The prototype was constructed
with the LEDs and four-digit display
on the back of the board. This will
provide access to the components once

the board is mounted in
the case.

Power on the proto-
type comes from a
2.1-mm coaxial power
connector, but you
should use whatever
matches your 9-VDC
power transformer. If
you have a power supply
that puts out regulated
5 VDC, you won’t need
the ’7805 regulator (U6).

Because the circuit
has to operate at fairly
high frequencies, the
wiring of the counter
clocks (pin 2) needs to
be fairly short, and the
input amplifier wiring
needs to be very short.
The Gate LED (D4) is
optional.

Figure 2 — The counter outputs are read by the microprocessor at the end of
each sample interval.

Figure 3 —The microprocessor reads the counter outputs and drives the 4-
digit, 7-segment display. Display anodes are driven by transistors Q1–Q4.
The OC1B output of the microprocessor enables the counters.

digit requires a decimal point to display.
Then the appropriate transistor is turned
on to enable that display digit. Last, the
correct band LED is turned on.

Although the AT90S4414 includes
256 bytes of SRAM, the counter is
implemented entirely using the 32
general-purpose registers. Which band
LED (hertz, kilohertz, megahertz) to
turn on is determined when the count
is examined and the decimal point
position is calculated.

For instance, the algorithm for the
1-s gate interval looks like this: if the
upper digit (fifth position) is nonzero
(meaning the count is >10,000 Hz),
then display the upper five digits, turn
on the kilohertz LED, and place the
decimal point after the LED hundreds
digit. If the upper digit (fifth position)
is zero (count is <10,000), then display
the lower four digits, turn on the
hertz LED, and so on.

CONSTRUCTING THE CIRCUIT
The prototype was constructed on

perfboard using point-to-point wiring
and was mounted in a plastic Radio
Shack enclosure. A hole was cut in
the enclosure and covered with
smoked plastic to provide a viewing
window for the display and LEDs.

Be sure to include the bypass ca-
pacitors, one near the ’90S4414 and
the rest near the counters. Because

 CIRCUIT CELLAR ®

www.circuitcellar.com

put a 1-kΩ resistor in series with the
counter input. This will also limit the
loading effect of the input amplifier
on whatever you’re measuring.

As with any piece of test equip-
ment, it’s possible to apply a signal
that will damage the input amplifier.
Unless you’re measuring the fre-
quency of the high-voltage stage in a
television or trying to directly mea-
sure the output of an amateur trans-
mitter, this is not likely to be a
problem. Protection diodes (D5 and
D6) may distort the measured wave-
form under some conditions, though.

My experience with frequency
counters, even expensive ones, is that
the input circuit tends to affect the
frequency of whatever you’re measur-
ing when you connect to RF circuits.
I usually use a pickup coil to measure
RF, to help reduce this effect. If the

signal is too strong and overloads the
input amplifier, move the pickup coil
away. If the measured signal is stable
and the display is unstable, you may
be overloading the input stage.

GOING FURTHER
The Count-4 isn’t designed for any

frequency higher than 60 MHz, but
the upper limit can be extended. The
primary limitation on the upper fre-
quency of the Count-4 is the 16-bit
counter; with a 1-ms gate, the maxi-
mum count corresponds to 65 MHz.

Unfortunately, the next logical
step up to a 100-µs gate is not possible
using a 4.096-MHz crystal. The divi-
sor would be 409.6, which is not an
integer.

Frequencies up to about 100 MHz
could be measured by using a 500-µs
gate and doubling the result (in firm-

ware) prior to the BCD
conversion. You’ll need
to shift the binary
count left one position,
with an additional
register to hold the
potential overflow.
This essentially creates
a 17-bit result and you
can discard the lower
four bits.

Once you get past
the limit of the 16-bit
counter, you’ll reach
another limit, which is
the maximum count
frequency of the
74AC161 counters

Photo 1 —Here’s a look at the interior of the Count-4. The LED display and the band LEDs mount on the back of the
board. The empty 14-pin socket is for a DIP-style crystal oscillator, used to test and debug the circuit.

Photo 2 —There are no knobs or switches on the Count-4. Just plug in
the power supply and hook up the input.

42 Issue 112 November 1999 CIRCUIT CELLAR ® www.circuitcellar.com

SOURCES
AVR90S4414
Atmel Corp.
(408) 441-0311
Fax: (408) 436-4200
www.atmel.com

Marshall Industries
(800) 833-9910
(626) 307-6000
Fax: (626) 307-6173
www.marshall.com

Arrow CMS Distribution Group
(888) 263-7720
www.arrow.com

Insight Enterprises, Inc.
(800) INSIGHT
(480) 902-1001
Fax: (480) 902-1180
www.insight.com

LDQ-M282RI
Lumex, Inc.
(847) 359-2790
Fax: (847) 359-8904
www.lumex.com

Stuart Ball works at Organon
Teknika, a manufacturer of medical
instruments. He has been a design
engineer for 19 years, working on
projects as diverse as GPS and single-
chip microcontroller designs. He has
also written two books on embedded-
system design. You may reach him at
sball85964@aol.com.

SOFTWARE
The software for the Count-4 may
be downloaded via the Circuit
Cellar web site.

(around 100 MHz). You can improve
this by adding a Schmitt-trigger buffer
(such as a 74AC14) between the input
amplifier and the counters to reduce
the capacitive loading on the ampli-
fier output.

The upper frequency limit can be
further extended by using an ECL
divide-by-10 prescaler between the
amplifier and the counters. Devices
such as the Motorola MC10E136 can
operate up to 500 MHz, with the
proper input amplifier design. The
output has to be converted to CMOS
levels and the resulting display will
be one-tenth of the actual frequency.

Finally, the Count-4 could be
modified to display more than four
digits. Four more digits can be driven
by using two four-digit displays and
controlling the anode drive transistors
through a 74AC138 decoder.

By far the simplest way, though, is
to switch to an LCD, which would let
you do away with the band LEDs,
displaying that information on the
LCD instead. In either case, you have
to change the firmware to match.

One word of caution: if you at-
tempt to increase accuracy by adding
more digits, you will eventually run
into the tolerance limitations of the
4.096-MHz crystal and the propaga-
tion delays inside the AT90S4414.
There is a practical limit to the mea-
surement accuracy with this circuit.

And that’s all there is to it. As you
can see, the Count-4 is easy to build
and provides a simple, direct way to
measure frequency. I

www.circuitcellar.com
www.atmel.com
www.marshall.com
www.arrow.com
www.insight.com
www.lumex.com

CIRCUIT CELLAR NOVEMBER 199944

N
PC

www.circuitcellar.com

32-CHANNEL PCI DIGITAL I/O CARD
The PIO-32.PCI uses four I/O ports to provide 32 channels

of configurable digital I/O. Port status is user-selectable as input
or output by writing a control word to the port register. Any of the
ports can be set to generate an interrupt for status monitoring.
Applications include PC-based control and automation of equip-
ment such as sensors, switches, satellite antenna control systems,
video and audio studio automation, and security control systems.

Included with the card is the Seal/O suite of Windows 95/98/
NT drivers. Seal/O provides a straightforward API. A utility for
configuring the driver parameters under Windows 95/98 and
Windows NT is also included. Popular development environ-
ments, including Visual C++, Visual Basic, and Delphi, support
application development.

Seal/O TST, a Windows 95/98/NT console application is
included to enable the user to exercise the inputs and relays.
Source code is included to aid software development. Seal/O VB, a
32-bit Visual Basic sample with GUI allows control of individual
or groups of relays, timed relay activation, and input monitoring.

An optional terminal block kit, KT-101, can be used to
interface to the card’s DC-37 connector. The kit consists of a 6″
male/female cable and positive tension screw terminal block to
provide a simple means to connect field wiring.

PCNouveau
edited by Harv Weiner

PC/104-BASED WINDOWS CE DEVELOPMENT KIT

Arcom Control Systems
(888) 941-2224 • (816) 941-7025
Fax: (816) 941-7807
www.arcomcontrols.com

The Élan-104 development kit for
Windows CE combines the Arcom Elan-104

processor board with Microsoft’s Windows CE 2.11
to offer true fast-track applications development capa-

bility. The Élan-104 is a high-performance, PC/104-
compatible embedded PC that features a 100-MHz AMD Élan

SC400 ’486SX microcontroller with 4-, 8-, or 16-MB EDO DRAM
and a 4 or 8-MB flash memory preinstalled with Datalight ROM-
DOS and Flash FX. The compact, single-height Eurocard format
(100 × 160 mm) board includes full power management and all
standard PC peripherals, including flat-panel interface.

The development kit includes the Élan-104 with 16-MB DRAM,
8-MB flash memory, and a preconfigured build of Windows CE
2.11 (tailored specifically for the Élan-104) preloaded into an
onboard flash-based drive. Also included are a 5-V power
supply, mouse, serial, and floppy disk/VGA interface cables. An
optional 6.5″, 640 × 480 color flat-panel display is available.
Software in the kit includes the Windows CE Platform SDK for
Elan-104, sample code, and demo applications, full documenta-
tion, and backup copies of the Windows CE image on a floppy
disk.

The ÉLAN-104 Windows CE development kit sells for $995.

The PIO-32.PCI sells for $199. The KT-101 is priced at $49.

Sealevel Systems, Inc.
(864) 843-4343 • Fax: (864) 843-3067
www.sealevel.com

www.arcomcontrols.com
www.sealevel.com

NOVEMBER 1999 EMBEDDEDPC 45

N
PC

www.circuitcellar.com

PCNouveau

web server along with other TCP/IP services is
included in the development kit. Also available is

a toolkit that adds real-time
multitasking extensions and
many examples to the Borland
C/C++ development environment.

The µFlashTCP sells for $169 in
quantities of 100. The µFlashTCP devel-
opment kit is priced at $399, and the
TCP/IP multitasking software toolkit is
$799. An inexpensive I/O expansion
board with ADC, DAC, relay drivers,
and protected inputs is also available.

COMPACT WEB-SERVER TCP/IP CONTROLLER
The µFlashTCP is a low-cost web-server TCP/IP controller in

a package slightly larger than a credit card. It features a 25-MHz
Intel ’386EX processor with 512 KB of
SRAM, 512 KB of flash memory, a
watchdog timer, and 10 DIO lines.
Two PC-compatible serial RS-232 ports
are provided, along with the ability to
configure one of the ports as RS-485.
Ethernet support is provided by an NE-
2000-compatible controller with 16
KB of on-chip buffer memory and
10BaseT interface. The µFlashTCP also
supports M-Systems’ DiskOnChip, pro-
viding nonvolatile mass storage from 2
to 144 MB.

The µFlashTCP includes pre-installed
DOS, utilities, and web-server software.
WATTCP TCP/IP stack libraries are integrated into the
Borland C/C++ development environment. Source code for the

JK microsystems, Inc.
(530) 297-6073
Fax: (530) 297-6074
www.jkmicro.com

www.jkmicro.com

R
PC

 CIRCUIT CELLAR NOVEMBER 199946 www.circuitcellar.com

Figure 1—In the basic structure of an asyn-
chronous serial word, the start bit is followed
by 5–8 data bits, an optional parity bit, and
1–2 stop bits.

Real-Time PC

Ingo Cyliax

Serial Port Interfacing

Serial ports are probably the most
commonly found interface on computers
in general, and specifically on PCs. In the
past, I’ve written about projects that inter-
face with serial ports—for example, the
series on the global positioning system
(GPS) that I completed last month.

GPS receivers use serial ports to com-
municate with the host. Some of you have
written to me that you’d like to know how
to write software to talk to serial ports, in
particular under Linux. So here we go….

The PC serial port has been part of the
system since early on. At first, the serial
port was an add-on card based on the
Intel 8250 UART chip. This serial interface
card had a programmable data-rate gen-
erator, which, for its time, was pretty
advanced. Many serial interface cards
for other microcomputer systems had to be
programmed via jumpers.

Although serial ports are now usually
included on the motherboard, and in
some cases even on the chip itself (e.g.,

the Intel ’386EX or other embedded pro-
cessors), the programmer’s model hasn’t
changed much. In fact, if you really wanted
to, you could plug an original IBM serial
adapter card into your new P2 600-MHz
computer. Well, you might have to adjust
the AT bus clock down to 5 MHz, since
these old cards can’t run at 8 MHz.

However, the software, Windows, and
most embedded operating systems would
still work with this card. This compatibility
is what makes serial ports a popular
choice when it comes to choosing a stan-
dard interface.

The downside, at least as perceived, is
that serial ports are slow. But this of course
depends on the application. Most PCs can
run at 115 kbps with newer UARTs, while

Having worked on plenty of projects that use this common interface, sure, Ingo
can give us the full scoop on serial port interfacing in general. But he’ll also
focus on the software required to talk to the serial port under (surprise!) Linux.

some can even run at 230 kbps. As we’ll
see later, that equates to about 11.5 and
23 KBps. You can’t run CD-quality digital
audio without compression, but telephone-
quality sound is possible.

PC SERIAL HARDWARE
As I mentioned, the UART used on PCs

is based on the i8250. Several variants of
this chip are now in use. These are the
16x50 series UARTs—the 16450, 16550,
and 16650. They differ mostly by their
performance and can be thought of as an
extension of the basic i8250.

The UART’s primary function is to convert
parallel data to serial in the transmitter and
convert received serial data to parallel in
the receiver. The serial data rate is deter-
mined by the bit-rate clock, which is derived
from a crystal oscillator with a program-
mable prescaler. In the PC, this clock is
based on a 1.8432-MHz crystal.

Internally, the receiver and transmitter
module is clocked at 16 times the desired

0 1 2 3 4 5 . . n p s1 s2

NOVEMBER 1999 EMBEDDEDPC

R
PC

47www.circuitcellar.com

bit rate. So a 1.8432-MHz crystal gives a
maximum data rate of 115.2 kbps, when
the divisor of the prescaler is set to 1.

The transmitter and receiver are also
programmable to the number of data bits
in the serial word and the number of stop
bits, as well as type of parity used. A
generic serial word is shown in Figure 1.

As you see, it begins with a start bit.
This low bit on the serial line indicates the
start of a word. Next, we have 5–8 data
bits, depending on how the UART is
programmed, and following the data bits
is the optional parity bit. The parity bit can
be missing (none), set to one (space), set
to zero (mark), or even/odd parity.

Finally, there are 1–2 stop bits. But, stop
bits aren’t really bits; they’re just a guar-
anteed guard space between serial words
to make sure that there will be a high-to-
low transition at the start of the word.

When the software wants to transmit
data, it deposits a word into a transmit hold
register (THR). The UART wakes up, seri-
alizes this data word, and adds the start/
stop and possibly the parity bit. The UART
consumes this character, sets a flag (transmit
hold buffer empty), and interrupts the host.

In CPU time, transmitting a character
takes forever. Consider that if we transmit
the most common word format (8N1) at
9600 bps, we have to transmit 10 bits per
word. This means it takes:

time = 10 bits
9600 bps

= 1.04ms

At 100 MIPS, that’s 100,000 instructions….
Although you could sit in a loop waiting
for the transmit-done flag, you really want
to use interrupt-driven I/O for serial ports.

One special bit in
this register is the data
latch address bit (DLAB),
which programs the behavior of
the lower two registers on all UARTs
and the extended functions registers
on 16650 on up.

Note that in Table 2, there are two
columns in the first two locations (0x00,
0x01, 0x02). We can access the divisor
register when the DLAB bit in the DFR is set
to one; otherwise, the UART’s data regis-
ters (THR, RBR) and the IER are accessible.

The modem control register (MCR) is a
plain parallel port that lets you program
the state of the modem control signals
(DTR, RTS). It has two general-purpose
output bits (OUT1, OUT2), which are not
used for anything on a PC, and the loop-
back bit.

The loop back lets you put the UART in
internal loop-back mode. In this mode, all
of the transmitted data is echoed back in to
the receiver. This mode is useful for testing
software and isolating hardware errors.

The line status register (LSR) contains
transmitter empty and transmit holding
buffer empty flags, the receiver data ready
flag, and receiver error flags (break, fram-
ing, overrun, parity). The transmit holding
buffer empty flag tells us when the UART
is ready to consume the next character,
and the transmitter empty flag tells us
when the last character was sent out.

The modem status register (MSR) lets
you monitor the state of the modem status
lines (DSR, DCD, RI, CTS). It’s a simple
input register that also latches if there is a
transition of any of the lines.

Finally, the scratchpad register (SPR) is
just a general-purpose register that can
store a byte of data. You can use it in your
software to store flags or status informa-
tion about this particular serial port. The
SPR is only available in 16450 and newer
UARTs—not the 8250.

That brings me to a quick summary of
the 8250 variants that are used in PCs.
Table 3 lists the differences. Starting with

Table 1—This table lists the standard base
address for UARTs on a PC. Each UART takes
8 bytes of I/O space, starting at the base
address.

COM1 0x3f8
COM2 0x2f8
COM3 0x3e8
COM4 0x2f8

On the receiving end, things are more
automatic. The receiver just waits for a
start bit and deserializes the data into the
receive buffer. Once that’s done, it asserts
a flag (receive buffer full) and interrupts.
The host software then reads the charac-
ter from the receive buffer register (RBR).

Receive errors occur when the parity
does not match (parity error) or when
there aren’t any stop bits at the end of the
word (framing error). If a new serial word
is decoded before the CPU had a chance
to read the old one, we can get an overrun

error. Overrun errors were com-
mon at high data rates in the ear-
lier UARTs and prompted the design
of UARTs with larger receive buff-
ers (16550, 16650, etc.).

In addition to the basic functions
of the UART, the i8250 also handles
some of the modem control sig-
nals—DTR, DSR, RTS, CTS, RI, and
DCD. These signal the state of the
serial connection, especially when
used with a modem.

Let’s look at the registers in the
8250. The 8250 uses 8 bytes of
I/O space. Typically, the UART is
at one of the addresses in Table 1.

The registers can be read- or write-only
as well as read and write. Some registers
are overlapped. The register layout is
shown in Table 2.

I mentioned the RBR and THR already.
A bit in the interrupt enable register (IER)
tells the UART which events on the UART
can cause an interrupt request. Possible
sources are changes in the modem status
signals (DSR, RI, CTS, DCD), receive
errors (parity, overrun, framing error, or
break conditions), and transmitter buffer
empty or receiver buffer full. Once an
interrupt occurs, the software can check
the interrupt identification register (IIR) to
find out the cause.

The data framing register (DFR) is used
to program the serial data word format
(word size, stop bits, parity type). It can
also be used to program a break condi-
tion on the transmit line.

DLAB = 0 DLAB = 1
Offset Read Write Read Write

0x00 RBR THR DLRl DLRl
0x01 IER IER DLRh DLRh
0x02 IIR FCR EFC EFC
0x03 DFR DFR DFR DFR
0x04 MCR MCR MCR MCR
0x05 LSR LSR LSR LSR
0x06 MSR MSR MSR MSR
0x07 SPR SPR SPR SPR

Table 2—In this register layout of a UART, the left
column indicates the registers that are available with
DLAB = 0, whereas the right column reflects the layout
for DLAB = 1.

i8250 9600 bps single char
ns16450 115,000 bps single char
ns16550 115,000 bps 16-byte FIFO
ns16660 115,000 bps 20-byte FIFO
ns16760 230,000 bps 64-byte FIFO

Table 3—There are different types of UARTs
available for the PC. If you plan on doing any
kind of high-speed serial I/O, you should
make sure to use a 16550 or better.

R
PC

 CIRCUIT CELLAR NOVEMBER 199948 www.circuitcellar.com

the ns16550, the buf-
fer size was increased

from a single-byte to mul-
tiple-byte FIFOs.
On these UARTs, the FIFO

control register (FCR) enables the
receiver and transmitter FIFO and sets

the receive FIFO threshold level. The thresh-
old level is the number of bytes that must be
received before the UART causes an inter-
rupt. This requirement reduces the interrupt
rate in the system, so the interrupt handler
can read multiple bytes at each interrupt.

Ready to do some programming? Un-
der most circumstances, you’ll be running
in an operating system environment and
chances are that this OS already imple-
ments the device drivers necessary to let
your application access serial devices.
This is true under Windows, Linux, and
many RTOSs. These drivers work well for
general-purpose applications and are easy
to use in your software.

Listing 1 shows how to open a serial
device and start using it under Unix-like
operating systems. This example opens a
serial device, which is identified with a
symbolic name (e.g., /dev/ttyS0), sets

struct termio svbuf;
 fd = open("/dev/ttyS0",0_RDWR|O_NDELAY);
 ioctl(fd, TCGETA, &svbuf);
 svbuf.c_iflag = 0;
 svbuf.c_oflag = 0;
 svbuf.c_lflag = 0;
 svbuf.c_cflag = B38400 | CS8 | 2 | 0 | CLOCAL | CREAD;
 ioctl(fd, TCSETA, &svbuf);

Listing 1—This code opens and programs a serial port under Linux (and most Unix
systems). The device name is usually something like /dev/tty00. You use the ioctl system
call to set the data rate, word size, as well as the operating modes of the serial driver.

/* basic send command to send string to SX Blitz */
sx_send(fd,cmd,len)
int fd;
unsigned char cmd[];
int len;
{
 int i,n,r,try;
 unsigned char c;

 for(i=0;i<len;i++){
 n = 1;
 try = 10;
 while(n != 0 && try != 0){

Listing 2—This listing handles I/O with a serial port under Linux. You use the read and write
system call to access the serial port, once it has been opened. If you are operating in
nonblocking mode, the read and write can return only partially satisfying the request.

(continued)

 NOVEMBER 1999 EMBEDDEDPC 49www.circuitcellar.com

Listing 3—As you see in this RT-Linux interrupt mode serial driver
example, there are no generic serial drivers under RT-Linux, since it’s
hard to write a general serial driver that will work for all real-time
applications. This driver echoes characters that it receives.

#define MODULE
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/version.h>

/*#include <linux/rt_sched.h> */
/*#include <linux/rtf.h> */
/*#include <asm/rt_irq.h> */

#include <linux/mc146818rtc.h>
#include <linux/serial_reg.h>

/*#include <linux/cons.h> */

char buf[16]; /* circular buffer */
int pi,po;

#define PORT(x) (0x3f8+x)
/* set these for your hardware */
#define IRQ 4
#define MOD_8N2 (UART_LCR_WLEN8|UART_LCR_STOP)

void intr_handler(void)
/* handle interrupts from UART */

 r = write(fd,&cmd[i],1);
 if(r > 0){
 n -= r;
 }else{
 usleep(10);
 try--;
 fprintf(stderr,".");
 }
 }
 if(!try){
 fprintf(stderr,"Timeout!\n");
 return(-1);
 }
 n = 1;
 try = 10;
 while(n != 0 && try != 0){
 r = read(fd,&c,1);
 if(r > 0){
 n -= r;
 }else{
 usleep(10);
 try--;
 fprintf(stderr,".");
 }
 }
 if(!try){
 fprintf(stderr,"Timeout!\n");
 return(-1);
 }
 if(c != cmd[i]){
 fprintf(stderr,"Cmd/resp mismatch!
 %02x %02x\n",c,cmd[i]);
 return(-1);
 }
 }
 return(0);
}

Listing 2—continued

(continued)

R
PC

 CIRCUIT CELLAR NOVEMBER 199950 www.circuitcellar.com

{
int irqsrc;
int msk;
 msk = UART_IER_RDI;
 while(1){
 irqsrc = inb(PORT(UART_IIR));
 if(irqsrc & UART_IIR_NO_INT) /* nothing pending */
 break;
 switch(irqsrc & 0x06){
 case UART_IIR_RDI:
 /* receive data interrupt loop while there are */
 /* chars to process */
 while(inb(PORT(UART_LSR))&UART_LSR_DR){
 if(((pi+1)%16) != po){
 buf[pi] = inb(PORT(UART_RX));
 pi = (pi++)%16;
 }else{ /* no room, pitch */
 inb(PORT(UART_RX));
 }
 }
 /* fall through to xmit */
 case UART_IIR_THRI:
 /* transmit hold register empty interrupt */
 if(po == pi)
 break; /* buffer empty */

 /* keep stuffing character, while there's room */
 while(po != pi &&
 inb(PORT(UART_LSR))&UART_LSR_THRE){
 outb(buf[po],PORT(UART_TX));
 po = (po++)%16;
 }
 msk |= UART_IER_THRI; /* add xmit interrupt */
 break;
 default:
 break;
 }
 }
 outb(msk,PORT(UART_IER)); /* go on */
}

/* set up UART */
int init_module(void)
{
 int div;
 div = 115000/9600; /* we want 9600 */
 request_RTirq(4, intr_handler); /* interrupt */
 pi = po = 0; /* buffer reset */

 outb(0x00,PORT(UART_IER)); /* clear interrupt enables */
 outb(0x00,PORT(UART_FCR)); /* NO FIFO Control */
 outb(UART_LCR_DLAB,PORT(UART_LCR)); /* set divisor address latch */
 /* set data rate */
 outb(div&0xff,PORT(UART_DLL)); /* low byte */
 outb(div>>8,PORT(UART_DLM)); /* high byte */
 outb(UART_MCR_DTR|UART_MCR_RTS,PORT(UART_MCR));/* DTR/RTS = 1 */
 outb(MOD_8N2,PORT(UART_LCR)); /* 8 bit, 2 stop, no parity */
 outb(UART_IER_RDI,PORT(UART_IER)); /* let'er rip */

 return 0;
}
/* remove handle and turn off interrupt when done */
void cleanup_module(void)
{
 outb(0x00,PORT(UART_MCR)); /* DTR/RTS = 0 */
 outb(0x00,PORT(UART_IER)); /* stop */
 free_RTirq(4);
}

Listing 3—continued
the transfer rate, the

number of data bits,
stop bits, and parity.
The serial device driver

under Unix does many great
things—line buffering, it implements

line-based editing, and more. All the
stuff you need to hook up a terminal to it.

However, in most embedded applica-
tions we don’t need that. We just want to
send and receive characters. Listing 1
tells the serial port driver to just act dumb
and let the application handle it.

You may have noticed that I opened
the device with the O_NDELAY flag, which
tells the OS that I want to use nonblocking
I/O. In nonblocking I/O, a read or write
operation will not block when the read
buffer is empty or the transmit buffer is full.

Once the device is open and pro-
grammed, we can start using it. This is
done by using the read and write calls.
Listing 2 shows a typical example.

The functions read and write take
three arguments—a file descriptor, a
pointer to a buffer, and the number of
bytes requested in the operation. In this
example, I implement the low-level proto-
col for a device programmer. The protocol
is simple: the programmer echoes all the
bytes sent to it.

Let’s start by trying to send all of the
bytes requested by the calling program.
Here we send each byte with a write
function and look at the return value. If the
return value is greater than 0, the serial
driver had enough buffer space to accept
the byte. Since we are using nonblocking
I/O, we poll if we’re not successful in
sending the byte.

Once the buffer is sent, we try to read
the data back using the read function,
which we also poll. Once all of the data
is read back and compared to the trans-
mitted data, we return. If we timeout (i.e.,
reach the “try” count before completing),
then we return an error value (–1) to the
caller to indicate that we couldn’t send the
command to the programmer.

My programmer is a SX Blitz from
Parallax that will program an SX CPU from
Scenix. You can download the complete
program from the Circuit Cellar web site.

Like anything else, using the OS drivers
for serial I/O has advantages and disad-
vantages. Of course, it’s easy to use
because the OS has abstracted the serial
port into a nice file-oriented object. But the

 NOVEMBER 1999 EMBEDDEDPC 51www.circuitcellar.com

Ingo Cyliax has written for Circuit Cellar
on topics such as embedded systems,
FPGA design, and robotics. He is a re-
search engineer at Derivation Systems Inc.,
a San Diego–based formal synthesis com-
pany, where he works on formal-method
design tools for high-assurance systems and
develops embedded-system products. You
may reach him at cyliax@derivation.com.

SOFTWARE
Software for this article may be downloaded from the
Circuit Cellar web site.

REFERENCES
Linux serial how-to, http://sunsite.unc.edu/LDP/

HOWTO/Serial-Programming-HOWTO.html
Serial-port resources, www.lvr.com/serport.htm

SOURCES
UART cores
Xilinx
(510) 600-8750
Fax: (408) 559-7114
www.xilinx.com/products/logicore/tbl_base_

lvl.htm#uart

Altera
(408) 544-7144
Fax: (408) 544-6403
www.altera.com/html/tools/megacore.html

BitScope
BitScope Designs
info@bitscope.com
www.bitscope.com

SX Blitz
Basic Stamp
Parallax, Inc.
(916) 624-8333
Fax: (916) 624-8003
www.parallaxinc.com

PicStic
Micromint
(407) 262-0066
Fax: (407) 262-0069
www.micromint.com

cost of this abstraction is that it might not
always be the best interface for your
application. In particular, you have no
control over the latency from the time the
character was received until your appli-
cation gets to use it.

RT-Linux, the real-time extension to Linux,
does not have a serial port driver. If you
want to talk to serial ports within RT-Linux
and you want exact control over your
serial port, you need to write a driver for it.

Listing 3 shows a simple RT-Linux driver.
The routine init_module installs an
interrupt handler (intr_handler) and
initializes the UART. The interrupt handler
does all the work. It looks at the IIR and
dispatches based on the interrupt source.

In this example, I only consider the
receive and transmit interrupts. On receive,
we store the character into a small circular
buffer, and the transmit interrupt drains
this buffer by transmitting the characters.
It’s a simple echo program.

One gotcha that you’ll have to deal
with in a serial-based interrupt handler is
the following: when you want to transmit
for the first time, the transmit interrupt will
be off. So, you need some way to prime
the transmit handler.

Typically, this situation is handled by
pretending we just had a transmit inter-
rupt and calling the handler. In our case,
if the receiver gets a character, it drops
through to the transmit handler to see if it
needs to transmit anything, which it will
the first time it’s called.

This generic example would be easy to
port to different environments. It only needs
a routine from the environment to install an
interrupt handler. Most RTOSs have that.

SCOPING OUT
What can we hook up to this? I men-

tioned the SX Blitz programmer from Par-
allax, or you could hook up a GPS receiver.

One interesting implementation is Bit-
Scope. BitScope is a digital oscilloscope
module based on a PIC chip. In fact, it was
one of the Design98 contest winners. Bit-
Scope uses a protocol similar to the one
for the SX Blitz. You send commands to it
and retrieve data via serial ports.

Building your own peripheral isn’t as
hard as you may think. One of the easiest
ways to interface something to your PC is
to use a Basic Stamp or a PicStic.

These devices (both based on PICs)
are programmed in BASIC and have

serial routines for transmitting and receiving
serial data. You simply hook up the hard-
ware you want to control and write a
small BASIC program.

For higher performance and lower cost,
you can also use a PIC/Scenix or other
8-bit micro. There are libraries and plenty
of examples for doing serial communica-
tions with these. A rate of 115 kbps is
nothing for a little $3 PIC processor.

You can also build hardware-based
UARTs with discrete components (about
ten chips) or with FPGAs and CPLDs. In
fact, you can get predesigned cores for
FPGAs from a variety of vendors.

Many times, building a serial-based
peripheral is much less trouble than build-
ing a custom ISA- or PCI-bus card. It’s also
easier to write host software for serial
ports and then write a device driver for a
custom board. That’s especially true for
OSs like Windows NT. RPC.EPC

www.circuitcellar.com
http://sunsite.unc.edu/LDP/HOWTO/Serial-Programming-HOWTO.html
www.lvr.com/serport.htm
www.xilinx.com/products/logicore/tbl_base_lvl.htm#uart
www.altera.com/html/tools/megacore.html
www.bitscope.com
www.parallaxinc.com
www.micromint.com

A
PC

CIRCUIT CELLAR NOVEMBER 199952 www.circuitcellar.com

Applied PCs

Fred Eady

Ever wonder why the air inside airplanes is so dry? Neither did Fred, until he
was asked to design a system to increase the humidity in the cockpit of a 737.
Fortunately, a DOS Stamp gets this embedded system off the ground.

Being a Florida boy, humidity is not
one of the things I’m short on. But did you
know that many of today’s (and
yesterday’s) sophisticated commercial jet
aircraft don’t humidify the cockpit or pas-
senger cabin air during flight? I didn’t
know that either until I was chosen to put
the brains behind a humidity system
for a privately owned Boeing 737.

The reason for this lack of high-
altitude “wet” air stems from re-
search on aircraft-cabin humidity
indicating that high cabin humidity
levels shorten the life of the aircraft’s
interior components. This particular
study also found that uncontrolled
humidity systems within the cabin
cause water to collect in parts of the
plane that could lead to airframe
and avionics failures over time.

In fact, this report is flat against
installing any kind of in-flight humid-
ity system. But, further on, the report
states that if you feel you must do this,
the recommendation is that the

aircraft’s humidity system should be con-
trolled and monitored by an intelligent
electronic device.

Hmm…an “intelligent electronic de-
vice.” Sounds like “embedded PC” to me.

Of course, this job has to be finished
and ready to install in two weeks. Again,

the law of embedded-PC physics as ap-
plied to job deadlines is upheld. For the
uninitiated, this law states that “The time
allotted for an embedded design is in-
versely proportional to the complexity of
the task.”

Obviously, there’s no time to lollygag
around. I know I’ll be controlling
valves and motors. I also know I’ll
be interfacing with humidity and
temperature sensors.

Although the FAA still has to
bless the hardware, this system
isn’t a critical flight component and
the job of the embedded PC isn’t
numerically intensive or time con-
strained. Therefore, I won’t need a
high-end multitasking embedded
OS or a fancy high-priced piece of
embedded hardware.

Honestly, this is a great job for
a PIC. The only problem is that I’m
probably going to have to fly with
this thing and do some real-time in-
flight tweaking. I have no problem

Sending a DOS

Stamp Airmail

Photo 1—The DOS Stamp…. Just when you thought you
couldn’t afford to do an embedded DOS project.

NOVEMBER 1999 EMBEDDEDPC

A
PC

53www.circuitcellar.com

make acceptable .EXE bit patterns for the
DOS Stamp.

You can stuff those executable bit pat-
terns into its 512 KB of SRAM and 128 KB
of flash memory. If that’s not enough
storage, it also has a socket for mounting
up to 144 MB of DiskOnChip2000.

If you plan to use Bill’s or Bob’s BASIC,
there’s a gotcha you should note. It seems
that the Am188ES peripherals want to see
word-length I/O reads and writes. Both
Bob and Bill’s BASICs employ byte-length
I/O operations.

Not to worry. A tight little TSR program
called QBHELPER.EXE is included with
the DOS Stamp software suite.

QBHELPER.EXE is called through INT
0xF4 to perform the word-long Am188ES
I/O reads and writes. You only need to
run QBHELPER.EXE before executing a
compiled BASIC application that needs to
do digital I/O operations.

There’s no Ethernet port (yet?), but the
DOS Stamp sports a couple of async
COM ports that can handle RS-232 and
RS-485. DOS Stamp has a real-time clock
with timed powerup for time-critical applica-
tions that need it.

One additional timer/counter is avail-
able to the programmer for use as de-
sired. A watchdog timer and a power
monitor provide crash protection. Note:
the word “crash” here refers solely to the
DOS Stamp software, not the aircraft.

The DOS Stamp
comes with disks contain-
ing embedded DOS-ROM,
utilities, library code, and ex-
ample code. Paper documentation
with color pictures is also part of the
standard package.

If you’re not familiar with the Am188ES,
download the user’s manual and datasheet
from the AMD web site. Although Ivan did
most of the up-front processor register
definition work in the example code, having
the Am188ES reference data helps you
understand where all this stuff came from.

The DOS Stamp starter kit comes with
everything an engineer needs to develop
an embedded application. All I need to
provide is a PC with a working serial port
and my DOS compiler of choice.

This is my first experience with a DOS
Stamp. So, before we jump into how to
add moisture to airplane air, let’s lick the
stamp and get it on its way.

LICKING THE DOS STAMP
I bet some of you will find a use for the

DOS Stamp in your projects, so I’m going
to take you through the process of setting
it up out of the box. That way, you don’t
have to repeat my errors.

Photo 1 shows my DOS Stamp. Initial
hookup was a snap. I simply connected
the included SBI (simple bus interface)/
ADC/power ribbon-cable assembly to

the DOS Stamp, attached the
serial crossover cable between
the PC and DOS Stamp nine-
pin connectors, and applied
+5 VDC.

The pictures in the docu-
mentation were excellent, so
it was easy to see what was
what. All of the hardware
and cables for the DOS Stamp
came with the starter kit.

Now that I know how to
get screenshots from NT, I
decided to host this applica-
tion development process on
a Windows NT workstation
platform. I used Bob Zale’s
super-efficient space-stingy
PowerBASIC to produce the
jet plane’s .EXE images.

The DOS Stamp code ex-
amples include a terminal
emulator called XLTERM,
which was designed specifi-

with flying my laptop and a PIC program-
mer, but it’s certainly easier to fly my
laptop and download minor code changes
to some sort of embedded target that only
needs a quick reboot to effect the changes.

For this project, I needed a tricky little
embedded widget that’s cheap and low
on the learning curve. At the time, I still
had PIC on the brain and I was consider-
ing using one of the many Stamp products
I saw advertised in Circuit Cellar. Scan-
ning the ads for the keyword “Stamp,” I
found the most peculiar Stamp I’d ever seen.

It runs DOS! A DOS Stamp! Whoa,
Nelly! “This has potential,” I said to my-
self. Moments later, I was on and off the
phone with Ivan at Bagotronix, arranging
to have a DOS Stamp airlifted to me.

STAMP OF APPROVAL
As its name implies, DOS

Stamp is a 2.6″ × 2.0″ × 0.625″
Am188ES-based embedded
briquette. In addition to a built-
in General Software BIOS and
DOS operating system, the
DOS Stamp has its own ex-
pandable I/O subsystem. Mine
came with the optional 12-bit,
8-channel Maxim Max197
ADC. My application needs to
access sensors, so the ADC is
a nice feature. On the digital
side, there are 16 general-
purpose I/O lines.

You can get as tricky as
DOS will let you when it comes
to programming the DOS
Stamp. Borland’s C/C++, Bill’s
C/Visual C++, Bill’s Quick-
BASIC (compiled only, please),
Bob Zale’s PowerBASIC, and
just about anybody else’s DOS
assemblers and compilers will

Table 1—Here’s a look at the SBI signals. It
can’t get much simpler than this.

Memory Map
00000–7FFFF SRAM
80000–BFFFF Flash disk socket
C0000–FFFFF Boot flash

I/O Map
0800–08FF *PCS0
0900–09FF *PCS1
0B00–0BFF *PCS3
0D00–0DFF Real-time clock
0E00–0EFF ADC
FF00–FFFF AM188ES periph-

 eral control block

a)

b)

Table 2—A 40-pin interface/header assembly is supplied with the DOS
Stamp starter kit to bring these signals out to the real world.

Pin JP2 Description

1 AD0 Address/Data bit 0 (tristate)
2 ALE Address latch enable (output)
3 AD1 Address/Data bit 1 (tristate)
4 *RD Read (active low)
5 AD2 Address/Data bit 2 (tristate)
6 *WR Write (active low)
7 AD3 Address/Data bit 3 (tristate)
8 A0 Address bit 0 (output)
9 AD4 Address/Data bit 4 (tristate)
10 A1 Address bit 1 (output)
11 AD5 Address/Data bit 5 (tristate)
12 A2 Address bit 2 (output)
13 AD6 Address/Data bit 6 (tristate)
14 INT0 Interrupt 0 (input, rising edge, or high- level trigger)
15 AD7 Address/Data bit 7 (tristate)
16 INT1 Interrupt 1 (input, rising edge, or high- level trigger)
17 *RESET Reset (output, active low)
20 *PCS0/GPIO9 Peripheral chip select 0 (output, active low,

 multiplexed with general-purpose I/O 9)
21 *PCS1/GPIO10 Peripheral chip select 1 (output, active low,

 multiplexed with general-purpose I/O 10)
29 GND Ground (0 V)
30 VCC System power (+5 V)

CIRCUIT CELLAR NOVEMBER 199954 www.circuitcellar.com

cally for the DOS Stamp, though other
async terminal emulators like Hyper-
Terminal are OK to use, too. I initially fired
up my DOS Stamp with XLTERM, and it
quickly took me through the init screens
beyond the point I wanted to show you.

So, Photo 2 is the HyperTerminal view
of the DOS Stamp power-up banner screen.
I’ll use the XLTERM terminal emulator for
development as it includes a convenient
upload/download capability. Instead of
having to start a program called TRANS-
FER. EXE manually at both ends, XLTERM

kicks off the transfer at the DOS Stamp
and PC end automatically.

FLY EMBEDDED JETS
At this point, the software is installed

and the DOS Stamp is operational. The
next step is to survey the Am188ES memory
map and get a grip on where to put things.

The Am188ES is instruction-set com-
patible with the 80186 and has a memory
address range of 1 MB. Table 1a shows
the hexadecimal lay of the land. The boot
flash contains the General Software BIOS

Listing 1—This listing is in QuickBASIC format. Note that the % follows the constant in
QuickBASIC and precedes it in PowerBASIC.

' Constants for bit patterns and I/O addresses
CONST PIO12% = &H1000
CONST PIOMODE0% = &HFF70
CONST PDIR0% = &HFF72
CONST PDATA0% = &HFF74
CONST PDATA1% = &HFF7A
' Interrupt # for QBHELPER.EXE
CONST QBHELPER% = &HF4
' ADC operations
CONST ADCBASE% = &HE00
CONST ADC0TO5% = 0

Listing 2—QuickBASIC needs an explicit structure to handle register operations. PowerBASIC
handles register operations natively. For instance, REG %BX is PowerBASIC for REG.BX.

' Constants for bit patterns and I/O addresses
%PIO13 = &H2000
%PIOMODE0 = &HFF70
%PDIR0 = &HFF72
%PDATA0 = &HFF74

DECLARE SUB outw (outaddr AS INTEGER, outval AS INTEGER)
DECLARE FUNCTION inpw% (inaddr AS INTEGER)

'set the PIOMODE bit
x% = inpw%(%PIOMODE0)
x% = x% OR %PIO13
CALL outw(%PIOMODE0, x%)
x% = inpw(%PDIR0)
x% = x% AND (NOT %PIO13)
CALL outw(%PDIR0, x%)
' clear the PIO13 data bit
x% = inpw(%PDATA0)
x% = x% AND (NOT %PIO13)
CALL outw(%PDATA0, x%)

FUNCTION inpw% (inaddr AS INTEGER)
 REG %BX , 0
 REG %DX , inaddr
 CALL INTERRUPT %QBHELPER
 inpw% = REG(%AX)
END FUNCTION

SUB outw (outaddr AS INTEGER, outval AS INTEGER)
 REG %BX , 1
 REG %DX , outaddr
 REG %AX , outval
 CALL INTERRUPT %QBHELPER
END SUB

A
PC

CIRCUIT CELLAR NOVEMBER 199956 www.circuitcellar.com

The DOS Stamp’s real-time clock (RTC)
is really a Dallas Semiconductor DS1689.
Table 2 is the complete SBI header pinout.
Note that in addition to the SBI address
and data stuff, there are other pins like
*KICKSTART and *PWRUP.

The DOS Stamp RTC can power up
itself and anything attached to the *PWRUP
pin on an RTC alarm time match. Because
the DS1689 keeps time regardless of

applied power, the DOS Stamp can wake
up, shower and shave, set the alarm for
the next wakeup call, and turn out the
lights. A simple push-button switch is at-
tached to the *KICKSTART line to manu-
ally power up the load and, in a battery-
powered situation, the DOS Stamp too.

There’s nothing special about the
MAX197. It’s just a great part with lots of
ADC bells and whistles included as stan-
dard equipment. Ivan thoughtfully included
the MAX197 datasheet.

The Am188ES’s Peripheral Control
Block register map is shown in Table 4.
Here’s why you should download the
Am188ES user’s manual and datasheet.

Listing 1 is a snippet of some of the
DOS Stamp example code. Note the I/O
addresses in Listing 1 and their counter-
parts in the AMD data document repre-
sented in Table 4. You need to know this
stuff to successfully deploy the DOS Stamp.

It’s time to toggle bits and read sen-
sors. The first order of business is to
establish that PowerBASIC is indeed com-
patible with the QBHELPER.EXE module.

Since I’m in the dark without a lantern
here, I’m going to start with a known.
There shouldn’t be any problems, but this
is my first experience with this module.

The DOS Stamp starter kit contains a
file set called DSHELLO. DSHELLO is
shipped in QuickBASIC source format
and comes ready to roll as an executable.
I ran the QBHELPER first and then
DSHELLO.EXE to establish a baseline for
my conversion.

Basically, DSHELLO checks some envi-
ronment settings, turns on COM ports,
does A/D conversions, and toggles bits
on the Am188ES’s I/O port. DSHELLO.
EXE ran flawlessly.

Time to start the QuickBASIC to Power-
BASIC conversion. As far as source files
are concerned, QuickBASIC and Power-
BASIC don’t always agree. So, I ran the
QB2PB (QuickBASIC to PowerBASIC) mod-
ule that ships with PowerBASIC.

I was hoping to have the QuickBASIC
source code magically altered and served
as PowerBASIC source, but the only good
thing the “conversion” program did for
me was point out what I needed to
change.

The DSHELLO program begins by at-
tempting to discover if the hardware is a
PC or the DOS Stamp. Following several
iterations of conversion and code substitu-

and DOS and about 106 KB of
usable user flash memory. Address
range 80000–BFFFF is the DiskOnChip
area. The Am188ES I/O range is 64
KB wide. Table 1b shows you how it looks
on the DOS Stamp.

PCSX signals are active-low Am188ES
chip selects. PCS0 and PCS1 are pinned
out to the DOS Stamp’s SBI connector. As
you can see in Table 2, the SBI consists of
data and address lines along with some
read/write, address decoding, and inter-
rupt signals. Using the SBI signals to
expand I/O is clarified in Figure 1.

Photo 2—This BIOS
start-up screen is much

like the ones found on
desktops except for the

“DOS Stamp” banner entry!

Pin JP2 Description

1 AD0 Address/Data bit 0
2 ALE Address Latch Enable
3 AD1 Address/Data bit 1
4 *RD Read Strobe
5 AD2 Address/Data bit 2
6 *WR Write Strobe
7 AD3 Address/Data bit 3
8 A0 Address bit 0
9 AD4 Address/Data bit 4
10 A1 Address bit 1
11 AD5 Address/Data bit 5
12 A2 Address bit 2
13 AD6 Address/Data bit 6
14 INT0 Interrupt Request input 0
15 AD7 Address/Data bit 7
16 INT1 Interrupt request input 1
17 *RESET Reset output, active low
18 *EXTRESET External reset input, active low
19 *KICKSTART external startup signal, active low
20 *PCS0 Peripheral Chip Select 0 output, active low
21 *PCS1 Peripheral Chip Select 1 output, active low
22 *PWRUP Powerup output, active low, open drain
23 TXRX1+ COM2 RS-485 transmit/receive +, input/output
24 TXRX1– COM2 RS-485 transmit/receive –, input/output
25 RX0 COM1 RS-232 receive input
26 RTS0/TX1 COM1 RS-232 request to send output / COM2 RS-232 transmit

output, function depends on JP3 jumper selection
27 TX0 COM1 RS-232 transmit output
28 CTS0/RX1 COM1 RS-232 clear to send input / COM2 RS-232 receive input,

function depends on JP3 jumper selection
29 Ground
30 +5 V
31 Ground
32 VREF ADC voltage reference output, 4.095 V
33 AI0 ADC Input 0
34 AI1 ADC Input 1
35 AI2 ADC Input 2
36 AI3 ADC Input 3
37 AI4 ADC Input 4
38 AI5 ADC Input 5
39 AI6 ADC Input 6
40 AI7 ADC Input 7

Table 3—This register set is the parallel of the TRIS register set in the PIC world.

NOVEMBER 1999 EMBEDDEDPC

A
PC

57www.circuitcellar.com

Figure 1—A picture is worth 0x3E8 words.

tion, I never got PowerBASIC to execute
this module correctly.

After a few hours, I decided that I knew
which machine my program was execut-
ing on and that was good enough. I
moved on to higher priority tasks. I de-
cided to attack the bit I/O area first.

Listing 2 is PowerBASIC source code
that implements bit-oriented I/O opera-
tions. The heart of the bit I/O transfer is
contained within a couple of functions,
inpw and outw.

Judging by what the inpw and outw
functions are asking for, I think it’s safe to
assume that some very low-level activity
involving loading registers and calling
BIOS services is taking place here.

This whole I/O process makes a bit
more sense if you identify the players up
front. The Am 188ES datasheet spells out
how the PIOMODE0 and PDIR0 values
play into the I/O mix.

The constant PIOMODE0 references
the physical Am188ES PIO Mode 0 reg-
ister. Each bit position in the PIO Mode 0
register corresponds to one of the Am188-
ES’s 16 GPIO (general-purpose I/O) lines.
The PIO Direction registers correspond bit
by bit with the PIO Mode registers.

There are four settings for each GPIO
bit depending on how you set the PIO
Mode and PIO Direction bits. My code in
Listing 2 is interested in PIO bit 13, which
equates to GPIO 2.

Another register set, PIO Data, shad-
ows the PIO Mode and PIO Direction bits.
If an I/O pin is enabled as an output, the

value in the corresponding bit of the PIO
Data register is driven to the GPIO pin. For
pins selected as inputs, the value of the pin
is represented by the value in the corre-
sponding PIO Data register bit.

Now that all of the registers and values
involved have been defined and identi-

fied, the next step is to twiddle the bits. To
configure PIO13 (GPIO 2) as an output,
we simply set the PIO Mode bit and clear
the PIO Direction bit for GPIO 2. You can’t
see the state of GPIO 2 or the LED I tied to
the GPIO 2 pin because you’re not here.
So, I’ll take GPIO 2 low and print the hex

Photo 3—By
the way, the
LED tied across
+5 V and GPIO 2
did illuminate.

CIRCUIT CELLAR NOVEMBER 199958 www.circuitcellar.com

value so you can see the correlation of the
bits between the PIO Mode, Direction,
and Data registers. Photo 3 is the output
data captured from the DOS Stamp’s
registers.

That takes care of any valves, pumps,
compressors, or switches I’ll have to diddle
with. Let’s attach a sensor to the DOS Stamp.

The sensor of choice here is HyCal
Engineering’s Survivor II relative-humidity
active sensor. The Survivor II is a CMOS
integrated circuit with a thin-film RH sen-
sor imbedded into its monolithic structure.

The beauty of this device is that it only
needs a standard +5-VDC supply and it
outputs a voltage that is proportional to
the surrounding relative humidity. It is fully
calibrated and comes with factory-pro-
vided reference-voltage readings for 0%
and 75.3% relative humidity.

The Survivor is linear so it’s easy to
convert the voltages to humidity. My sen-
sor reads 0.669 V at 0% and 2.922 V at
75.3%.

The Survivor II is aptly named, as it is
enclosed in a TO-5 can with a hydropho-
bic filter. I misplaced the sensor on my
bench and found it unharmed, jammed
under a keyboard. There’s also a 100-kΩ
platinum thermistor inside the TO-5 case
that is pinned out for temperature mea-
surement.

I kind of pooh-poohed the MAX197 as
just one of the boys earlier. Sorry. Actually
the MAX197 is a dream to work with. As
with the digital I/O code, again, player
identification is the key.

The DOS Stamp’s base address for the
MAX197 is defined as 0xE00. A conver-
sion is initiated by simply writing a byte
containing the desired analog input chan-
nel, the range and polarity, and clock
mode to the base address.

End of conversion is sensed as a logi-
cal low at GPIO 11 (PIO18). The digital
representation of the sensor analog output
is then read into the DOS Stamp using the
MAX197’s base address data lines.

That’s it. the acquired voltage (humid-
ity in our case) is calculated and dis-
played. It’s all laid out in Listing 3.

AIRMAIL STAMP
The high-flying humidity system that

this Stamp will stick to is basically a
closed-loop system consisting of a water
tank, a mist engine (compressor and mist
nozzles), temperature and humidity sensors,

ronments and be able to control them.
I’ve shown you how those two humidity
control goals can be easily achieved
using simple programming, some simple
logic, simple programming algorithms,
off-the-shelf hardware, and a DOS Stamp.

DECLARE SUB outw (outaddr AS INTEGER, outval AS INTEGER)
DECLARE FUNCTION inpw% (inaddr AS INTEGER)
DECLARE SUB ADCput (channel AS INTEGER, range AS INTEGER)
DECLARE FUNCTION ADCready% ()
DECLARE FUNCTION ADCget% ()

$include "C:\PB35\PB35.INC"

%ADCBASE = &HE00
%ADC0TO5 = 0

I% = 0
DO WHILE INKEY$ = ""
 CALL ADCput(I%, %ADC0TO5)
 DO WHILE NOT ADCready%
 LOOP
 j% = ADCget%
' .669 V is relative 0% for sensor
' .0012207 is 1 digital step
' .029 V is 1% of humidity on a 5-V scale
 PRINT #1, "HUMIDITY IS ";((j% * .0012207)-.669) / .029;"%"
 ' delay
 FOR f = 0 TO 10000 STEP .5
 NEXT f
LOOP
system

FUNCTION ADCget%
 I% = inpw%(%ADCBASE)
 ADCget% = I%
END FUNCTION

SUB ADCput (channel AS INTEGER, range AS INTEGER)
 j% = channel OR range OR &H40
 OUT %ADCBASE, j%
END SUB

FUNCTION ADCready%
' returns 0 if ADC not ready, non-zero if ADC is ready
' check status of PIO18 pin
' if low, data is ready
 I% = inpw%(%PDATA1) AND &H4
 IF I% <> 0 THEN
 I% = 0
 ELSE
 I% = -1
 END IF
 ADCready% = I%
END FUNCTION

FUNCTION inpw% (inaddr AS INTEGER)
 REG %BX , 0
 REG %DX , inaddr
 CALL INTERRUPT %QBHELPER
 inpw% = REG(%AX)
END FUNCTION

SUB outw (outaddr AS INTEGER, outval AS INTEGER)
 REG %BX , 1
 REG %DX , outaddr
 REG %AX , outval
 CALL INTERRUPT %QBHELPER
END SUB

Listing 3—The Circuit Cellar Florida Room came in at 1630 steps or 1.99 V of humidity,
which equates to about 44%.

solid-state relays, valves, and a cockpit con-
trol panel.

To effect the 737 humidifier system, the
DOS Stamp must perform two basic func-
tions. It must sense both the cabin and
passenger compartment humidity envi-

 NOVEMBER 1999 EMBEDDEDPC 59www.circuitcellar.com

Fred Eady has over 20 years’ experience as
a systems engineer. He has worked with
computers and communication systems large
and small, simple and complex. His forte is
embedded-systems design and communica-
tions. Fred may be reached at fred@edtp.com.

SOURCES
DOS Stamp
Bagotronix, Inc.
(850) 942-7905
Fax: (850) 942-7905
www.bagotronix.com

Am188ES
Advanced Micro Devices, Inc.
(408) 732-2400
Fax: (408) 732-7216
www.amd.com

MAX197
Maxim Integrated Products
(408) 737-7600
Fax: (408) 737-7194
www.maxim-ic.com

PowerBASIC
PowerBASIC, Inc.
(800) 780-7707
(831) 659-8000
Fax: (831) 659-8008
www.powerbasic.com

QuickBASIC
Microsoft Corp.
(206) 882-8080
Fax: (206) 936-7329
www.microsoft.com

Survivor II
HyCal Engineering
(818) 444-4000
Fax: (818) 444-1314
www.hycalnet.com

PIO data 1 register 7Ah 11-5
PIO direction 1 register 78h 11-4
PIO mode 1 register 76h 11-3
PIO data 0 register 74h 11-5
PIO direction 0 register 72h 11-4
PIO mode 0 register 70h 11-3

Table 4—The Am188ES’s Peripheral Control
Block register map. Get the Am188ES
datasheet for the full meaning.

I’m out of paper and my mouth is kinda
dry. If you see a DOS Stamp in your future
and need to know more about it, all of the
DOS Stamp manuals and reference mate-
rial I mentioned can be had as Acrobat
PDF files on the Bagotronix web site.
There are plenty of detailed photos there,
too. Ivan is available via e-mail or phone
for any technical question you may have.

So, the next time you’re offered that
complimentary beverage at 30-odd thou-
sand feet, you’ll know that on top of being
nice, the airline doesn’t want you to dry
up! Thanks to Ivan at Bagotronix as he
and the DOS Stamp have again proven
that it doesn’t have to be complicated (or
dry) to be embedded. APC.EPC

www.bagotronix.com
www.amd.com
www.maxim-ic.com
www.powerbasic.com
www.microsoft.com
www.hycalnet.com

60 Issue 112 November 1999 CIRCUIT CELLAR ® www.circuitcellar.com

IrDA Technology

FEATURE
ARTICLE

Hari Ramachandran

i
In the second half of
this series, Hari ex-
plains, what he feels,
is the most daunting
step of working with
Infared Data Asso-
ciation (IrDA) solu-
tions—implementing
the protocols. Pack
your bags, you’re on
your way to under-
standing IrDA.

n Part 1, I pre-
sented an over-

view of putting
together an IrDA solu-

tion, focusing mainly on the IrDA
hardware. Once the basic hardware is
running, your next step is probably
the most daunting—getting the IrDA
protocols implemented.

My experience over the last couple
of years has been that developers shy
away from integrating IrDA solutions
into products because of the perceived
complexity of the IrDA protocol. But
once you understand the concepts,
you’ll be in a better position to evalu-
ate the options open to you—either
developing the stack from scratch or
purchasing a commercial IrDA proto-
col stack.

In this article, I want to guide you
along the whole process, explain key
concepts, and introduce you to the
IrDA documentation as well as a
utility that will get you started with a
hands-on evaluation of the protocol.

WHAT YOU’LL NEED
The first thing you need to do is

download these documents from the
IrDA web site:

• Serial Infrared Link Access Protocol
(IrLAP) V.1.1, June 16, 1996

• Infrared Link Management Protocol
(IrLMP) V.1.1, January 23, 1996

To get hands-on experience, also
download the Parallax Research
IrLAMP software from the Circuit
Cellar web site. This software is a
minimal implementation of the IrLAP
and IrLMP software with some diag-
nostics and logging capabilities that
will enable you to experiment and
understand key aspects of the IrLAP
and IrLMP stacks.

GETTING THE MACRO VIEW
You may want to review the proto-

col stacks and layers (see Figure 1,
Circuit Cellar 111, p. 60). I discussed
the physical layer last month.

To cover all aspects of the protocol
and application layers would be a bit
much for a magazine article. So, here I
want to focus instead on the IrLAP,
IrLMP, and IrLMP-IAS protocols.

These protocols constitute the
minimal functionality required to
build a working IrDA link. To do any-
thing useful, you need to add the other
protocols on top of this set, but I’ll
leave that as an exercise for the reader.

We can either dive straight in,
analyzing every line of the protocol
documentation (not!); or we can take
a narrative approach. To keep you
from nodding off, I’ll discuss the rel-
evant points briefly here. I’ll also tell
you which document to look at for
further information.

I’ll start at the lower level, discuss
the software required at the framer
level, and then move up to the IrLAP
and IrLMP protocols. After the over-
view, you can get your hands into the
IrLAMP software.

FRAMERS AND WRAPPERS
The physical layer is a combination

of hardware and firmware/software

Part 2: Protocol Layers

XBOFs BOF IrLAP payload FCS EOF

A C I

Figure 1— The IrLap Frame Structure calls for the
payload to be preceded by at least one BOF

 CIRCUIT CELLAR ® Issue 112 November 1999 61www.circuitcellar.com

that receives and sends and checks the
integrity of a received IrLAP frame.

“Framer” is the unofficial term for
describing the firmware or software
that parses the received frame and
builds up a frame to be sent out.

“Wrapper” describes the envelope
into which the IrLAP frame is dropped.
There are different wrappers and fram-
ers for each speed range of operation:

SIR: 9600–115,200 bps
MIR: 576 kbps and 1.152 Mbps
FIR: 4 Mbps

If your hardware only supports
SIR, you only need to support
an SIR framer. I’ll focus on the
SIR framer for now.

(Bear in mind, that even
though there are different algo-
rithms and framers for extract-
ing the IrLAP frame for each
speed range, the IrLAP payload
is the same for all three fram-
ers). Detailed information about
the framers is in Appendix D of
the IrLAP documentation.

An SIR frame is shown in
Figure 1. XBOFs (extended
beginning of frames) is a series
of 0xFF or 0xC0 characters
preceding the IrLAP payload.
The IrLAP payload must be
preceded with at least a single
BOF (0xC0).

The number of XBOFs is
dictated by the IrDA protocol.
Generally, for slower devices,
more XBOFs are generated to
prepare the UART or micro-
controller for the actual payload.

The IrLAP payload consists
of the address (A), control (C),
and information (I) fields.
These fields are described in
the IrLAP documentation.

To ensure the integrity of the sent
data, a two-byte FCS (Frame Check
Sequence) field is generated and trans-
mitted along with the data. IrLAP
uses the CRC-CCITT check method.
The algorithm/code for generating
this checksum is in Appendix D of
the IrLAP documentation.

When a frame is sent, the FCS is
computed. And when the frame is
received, the FCS is calculated and
compared against the transmitted

FCS. If there’s a discrepancy, the
frame is corrupt and should be aban-
doned. Finally, the EOF character deter-
mines the end of the frame (0xC1).

Generally, the SIR framer operates
on a byte-by-byte basis, receiving each
byte and determining if a complete
frame was received. Because the algo-
rithm for detecting the whole frame
relies on BOFs and EOFs to ascertain
the payload and FCS, these characters
can’t appear in the payload or the FCS.

A simple set of “transparency”
rules takes care of this condition,
during transmission as well as recep-
tion. Appendix D of the IrLAP docu-
mentation has the details.

IR LINK ACCESS PROTOCOL
Once a valid IrLAP frame is re-

ceived by the framer, it’s handed to
IrLAP. IrLAP is a robust, frame-based
protocol for connecting and exchang-

ing data between IrDA devices.
IrLAP began as a variant of

IBM’s HDLC protocol, with
modifications made to take
into account the ad hoc nature
of IR connections. Unlike wired
connections, the configuration
of an IrDA link is dynamic.

Devices can be brought
within range and just as easily
moved out of range. Multiple
devices can be within range
and must be correctly identi-
fied and managed.

IrLAP is responsible for:

• discovering all devices
within range

• reporting possible connection
devices to higher layers

• establishing connections
between one devicesr

• connecting and maintaining a
communication session,
which includes ensuring data
integrity and proper process
for clean disconnects of inter-
rupted sessions and timeouts

• support for disconnecting
from devices once data trans-
fer has terminated

So how does IrLAP work?
The first step in the IrLAP
connection process is for one

Table 1—These basic IrLAP commands handle transmissions between IrDA devices.

Command Description

SNRM Set Normal Response Mode—Once a device is identified, the primary sends this
command to establish a point-to-point connection with the device. At this
stage, parameters such as speed of communication are negotiated between
two devices

DISC Disconnect—terminates a connection
XID Discovery—sent by the primary to discover all devices within range and is sent

back by the secondary device as a response to XID
UA Affirmative response to SNRM or DISC

Photo 1a— The IrLAMP software is a simple way to start experimenting with
the IrDA protocol. b—The software has discovered an HP Deskjet 340 IrDA
printer within range. c—IrLAP protocol is a point to point protocol, so you can
discover multiple devices, but you can only connect to one at a time.

a)

b)

c)

62 Issue 112 November 1999 CIRCUIT CELLAR ® www.circuitcellar.com

device—the primary—to ini-
tiate a discovery operation.

The discovery process in-
volves sending commands to all
IrDA devices within range. This
operation is usually initiated by
the user or by the device when
it’s ready to transfer data.

To initiate the discovery
operation, the primary sends
out the XID command frame.
Any devices in range respond
with an indication and identify
themselves to the primary.

Multiple devices can be dis-
covered so IrLAP forces each
device to respond with a unique
timeslot number. The IrLAP
specs outline methodologies
and algorithms to resolve con-
tention situations.

Once a discovery operation
is completed, the primary has a
list of devices it can connect to
either under user intervention
or through some logic within
the primary. The primary ini-
tiates a connection to a device
by sending the SNRM (Set Nor-
mal Response Mode) command.

Once a successful connec-
tion is established, the device
that was connected is called the
secondary. Even though there
may be multiple devices out
there, SNRM forces a connect to
a specific device.

Only that connection is
active (i.e., a unique data link is
established between the primary
and the secondary). Other dis-
covered devices remain dormant.

Once connected, the primary
and secondary exchange infor-
mation. When the primary
finishes, it initiates a discon-
nect message.

Because the IR link is ad hoc
in nature (a device can be moved
away during the transmission),
various timeout procedures and
checks for connection integrity
(time based) are constantly exer-
cised during the connection.

Some relevant IrLAP com-
mands are given in Table 1.
Please refer to the IrLAP docu-
mentation for further details.

IR LINK MANAGEMENT
PROTOCOL

Think of IrLAP as a glori-
fied wire. Once an IrLAP con-
nection is established, data
needs to be routed to specific
endpoints. What’s an endpoint?

If you built a multifunction
IrDA device that supports IR
connectivity to a printer, fax,
or LAN connection, then each
application can be thought of
as a distinct endpoint.

The IrLAP layer receives data
for endpoints but can’t differen-
tiate between applications. It
hands the responsibility of rout-
ing the data to IrLMP.

IrLMP allows for multiple
channels of information
through a single IrLAP channel
so more than one channel of
information can be open at any
time. This way, multiple apps
within two communicating
IrDA devices can be active,
each with its own channel.

IrLMP permits routing of
information from one applica-
tion to another. It’s kind of
like a mailman, routing mes-
sages to the correct addressee.

Figure 2 shows how routing
is handled? The address and
control fields are IrLAP-spe-
cific fields. The I-frame, how-
ever, contains actual data or
commands that encapsulate
IrLMP commands and/or data.

The IrLMP command/data
frame is called an LmPDU
(link management protocol
data unit). The channels of
connectivity are called logical
selection access points (Lsaps).

The first two fields of the
LmPDU contain the destina-
tion and source Lsap address.
The DlsapSel field (destination
Lsap) is the channel number of
the endpoint that is to receive
the PDU. The SlsapSel field
(source Lsap) is the channel
number of the endpoint that’s
sending the PDU.

Routines in the IrLMP mod-
ule receive IrLAP frames and
route the PDU to the appropri-

Photo 2a— You can see a successful LM connection between LSAP1 (IrLAMP’s
channel) and LSAP2 (on the Deskjet 340). Most printers support printing
services on LSAP 2. b—Once a channel connection is established, you can
send a file across the channel. In this case, select LSAP1 (which is connected
to LSAP2 on the printer), specify a file and away you go! c—The IrLMP1
window displays the progress of the data transmission. d—IrLAMP supports a
simple log file that enables you to trace the progress of the IrDA session. To
activate this, select Log->Display. e—You can trace what happens from the
Discovery procedure all the way to the connect, data tranasfer, and disconnect.

a)

b)

c)

d)

e)

64 Issue 112 November 1999 CIRCUIT CELLAR ® www.circuitcellar.com

ate endpoint. The LmPDU can consist
of commands or data.

Before all these intricate links can
be formed, there must be a way a
device can query another device to
find out what services it provides and
which Lsaps provide those services.

For example, if a Windows CE
machine wants to connect to an IrDA
printer, it needs to query the printer
to determine which Lsap it should
connect to (i.e., which Lsap provides
the print services?).

This mechanism is provided by the
IAS (information access service),
which is part of the IrLMP specifica-
tion. As I mentioned in Part 1, the
IAS is like a Yellow Pages of services
provided by an IrDA device.

Lsap 0 is the IAS Lsap. So, a device
wanting to initiate an IAS query needs
to connect to Lsap 0, query the device,
and disconnect from Lsap 0 before
establishing another connection.

The IAS is controlled and managed
through the IAP (information access
protocol). Figure 3 outlines the struc-
ture of the IAP frame, which is simi-
lar to the IrLMP frame but subdivided.

GET YOUR FEET WET
If you’re anything like me, all this

talk has probably put you in a state of
near catatonia. I bet you’re itching to
see some of these concepts in action.

The IrLAMP software is a good way
of getting started and understanding key
IrDA concepts. It mostly focuses on
the IrLAP, IrLMP, and IAS concepts.

Using IrLAMP, you can initiate an
IrLAP discovery, identify devices
within range, do an IAS query, and
transfer data to a specific LSAP.

The setup instructions are in the
PDF file. Ideally, you should use two
PCs running IrLAMP, but you can use
an IrDA printer (e.g., an HP Laserjet
5P or Deskjet 340) with the software
to initiate an IrDA print session.

USING IrLAMP
On startup, you should see the

screen in Photo 1a. The key features
of the user interface are the Channel
windows, comprising the IrLAP chan-
nel and two IrLMP channels.

Note that the term “IrLMP chan-
nel” is the same as LsapSel (link ser-
vice access point selector) term used
in the IrLMP document. Any activi-
ties related to these channels are re-
flected in this window.

The Parameters window reflects
the quality of service (QOS) settings
for the link. These parameters can be
modified by the user.

The Devices Found window is
updated during a Discovery operation.
Any responding devices that can con-
nect are displayed here. The next step
is to discover devices within range.

Before proceeding, ensure that
another PC running IrLAMP (or as in
this example, a Deskjet 340 or HP
Laserjet 5P IrDA printer) is in range.

Selecting IrLAP→Discover causes
DiscoverXID to be sent out, which
requests any devices in range to iden-
tify themselves. IrLAMP displays the
device ID in the timeslot that the
IrDA device chose to respond in.

Photo 1b shows a positive response
to the IrLAP→Discover sequence. The
IrLAP Channel window describes the
activity in the IrLAP channel. It indi-
cates that a device has responded to

Figure 2— LmPDUs are
embedded in IrLAP
frames and contain actual
data or commands.

BOF Addr

DLsapSel SLsapSel LmPDU

Destination Source

Cmd Info EOFFCS

Opcode

LmPDU

IAP Frame

DLsapSel SLsapSel

Parameters/Results
Figure 3— Link manage-
ment frames are routed to
specific logical channels.

 CIRCUIT CELLAR ® Issue 112 November 1999 65www.circuitcellar.com

Hari Ramachandran is the managing
director and founder of Parallax Re-
search, a design company focused on
providing IrDA solutions. He de-
signed the HP HSDL 7001 and HP
HSDL 7000 IrDA chips, and devel-
oped IrDA protocol stack software for
numerous companies and specific
applications. You may reach him at
hari@parallax.com.sg.

DiscoverXID (the Discovery Con-
firm message is displayed).

In the Devices Found window, the
device that responded is displayed. In
this case, it’s a Deskjet 340 IrDA
printer.

Slot 4 was allocated for communi-
cations to this device. The next step
is to establish an IrLAP connection.

Photo 1c shows this sequence of
events. Select IrlAp→Connect, and
you’ll be prompted for which device
slot you’d like to connect to.

The IrLAP window displays a con-
firmation of the request. The next step
is to establish an IrLMP connection.

The IrLAMP software supports two
channels—Lsap1 and Lsap2. Select
IrlMp→ Connect→LsapSel 1 to 2. The
IrLMP window updates with the re-
sults of this request (see Photo 2a).

You’ve now established an IrLMP
connection between Lsap1 and Lsap2.
To send some data across, follow the
steps shown in Photo 2b.

Enter the file name you want to
transfer. You’ll see data-transfer activ-
ity in the IrLMP Channel 1 window.
On successfully transferring data, a
message appears in the IrLMP Chan-
nel 1 window (see Photo 2c).

If you connected to a IrDA printer,
you’d see the printed output. Keep in
mind that both the LaserJet 5P and
Deskjet 340 accept output through
Lsap2, so connect to that channel to
print the file.

If you connected to another PC
running IrLAMP, you can view the
contents of the transferred text file by
selecting View (on the second test
PC). If you sent a binary file, use
Dump to view the contents of the file.

You can always view the series of
IrDA events by viewing the log. Just
follow the sequence in Photos 2d and 2e.

The logfile describes the series of
events/commands exchanged during
the IrDA session. In conjunction with
the IrLAP and IrLMP documentation,
this log gives you a good feel for the
series of events involved in establish-
ing and maintaining an IrDA link.

WHERE TO NEXT
Well, now that you have some

level of theoretical knowledge of the
IrDA protocol stack, you’re in a better

position to decide whether you’re
interested in developing the IrDA
protocol stack yourself or just pur-
chasing it. If you’re looking to buy,
CounterPoint Systems Foundry has a
robust stack and add-on modules that
is currently used in a number of com-
mercial applications.

IrDA is supported under Linux as
well. You can log onto the Linux web
site to find out more about this.

And if you are interested in learn-
ing how to write IrDA applications
under Windows 95, 98,or 2000, head
over to Microsoft’s web site and do a
search on IrDA. You’ll find some
interesting articles on building IrDA
applications. I

SOURCES
IrLAMP
Parallax Research
+65 791-7388
Fax: +65 793-0086
www.parallax-research.com

CounterPoint Systems Foundry
(541) 758-6123
Fax: (541) 758-6120
www.countersys.com

IrDA
(925) 943-6546
Fax: (925) 943-5600
www.irda.org

Linux
(301) 490-7245
Fax: (301) 490-7162
www.linux.org

Microsoft
(206) 881-8080
Fax: (206) 936-7326
www.microsoft.com

SOFTWARE

The IrLAMP software may be
downloaded via the Circuit Cellar
web site.

www.circuitcellar.com
www.parallax-research.com
www.countersys.com
www.irda.org
www.linux.org
www.microsoft.com

66 Issue 112 November 1999 CIRCUIT CELLAR ® www.circuitcellar.com

3
1

High-Definition TV

MICRO
SERIES

Mark Balch

i
You may
still be
watching

“Seinfeld” reruns in
2006, but according
to the FCC, you won’t
be watching them via
analog NTSC signals.
Stay tuned as Mark
kicks off this series
on HDTV formats and
signal transportation.

n recent years,
high-definition

television (HDTV)
has been attracting lots

of attention and money—and for good
reason. The Federal Communications
Commission has mandated that all
U.S. terrestrial television stations
begin broadcasting digital television
(DTV) by 2002. If all goes according to
plan, the broadcast of our familiar,
decades-old analog NTSC signals will
cease at the end of 2006.

Already, affiliates of the four major
TV networks in the nation’s ten largest
population centers began broadcasting
DTV on May 1, 1999, in accordance
with the FCC’s phased roll-out plan.
These stations will be joined by their
colleagues in the top 30 markets by
November 1, 1999—a requirement
also mandated by the FCC.

Various other stations across the
U.S. have voluntarily decided to begin
DTV broadcast within this initial time-
frame. All other commercial stations
throughout the country are to begin
their DTV broadcasts by May 1, 2002.

Between now and 2006, the U.S.
television industry will undergo an
immense transition, the likes of which
it has never experienced. Unlike the
move from black and white to color

TV, DTV will not be backward-com-
patible with the analog NTSC equip-
ment that has become ubiquitous.
DTV requires a completely new infra-
structure at all levels—studios, trans-
mitters, and people’s homes (see the
sidebar “Managing the Transition”).

In the context of terrestrial TV
broadcast, the term “DTV” does not
directly equate with high definition
(HD) but simply refers to the MPEG-2
compressed digital transport and for-
matting of television pictures and
their associated data.

DTV is extremely flexible because
it gives broadcasters a fixed chunk of
bandwidth to organize in almost any
way they wish. There are stations
today conducting multichannel DTV
broadcasts of both HD and standard
definition (SD) material.

The format of terrestrial DTV broad-
cast in the U.S. is largely defined by the
Advanced Television Systems Com-
mittee (ATSC), an industry standards
group whose membership includes
broadcasters and equipment manufac-
turers. Many of the ATSC’s recommen-
dations have been adopted by the FCC
and are therefore mandatory in the U.S.

In a feature article a couple years
ago (Circuit Cellar 86), Do-While Jones
presented a thorough primer on the
differences between HD and SD signals
and provided a description of how
MPEG-2 compression works.

In this article, I provide an over-
view of the various HD formats avail-
able and explain how uncompressed
HDTV is transported along with audio
and data prior to MPEG-2 encoding.

Video Formats and Transport

Figure 1 —Interlaced scanning (used in NTSC signals)
draws one field at a time on the screen, leaving room
between its lines for a line from the other field. This
results in the fields being temporally spaced (time
shifted). In a 60-Hz field rate video format (30-Hz frame
rate, assuming two fields per frame), each field repre-
sents a snapshot of the picture that is 16.67 ms after
the preceding field and 16.67 ms before the next field.
In contrast, progressive scanning draws the whole
frame in one pass representing one snapshot in time.

P
ar

t

of
1
3

Interlaced
scanning

Progressive
scanning

Field 1
scan lines

Field 2
scan lines

Frame scan lines

 CIRCUIT CELLAR ® Issue 112 November 1999 67www.circuitcellar.com

The remainder of this
series examines DTV on
the other side of the
encoder and explains
how all the pieces fit
together to deliver ser-
vice to people’s TV sets.

HD VIDEO FORMATS
The Society of Mo-

tion Picture and Televi-
sion Engineers (SMPTE)
has defined standard
HD video scanning
formats, commonly
referred to as rasters.
These standard rasters
specify the number of
pixels per horizontal
scan line, the number of scan lines per
frame (or field), whether the frame is
interlaced or progressively scanned, the
number of frames (or fields) displayed
per second, and other information
required to implement a given format.

The interlaced or progressive scan-
ning attribute refers to how the image
is assembled on a TV screen. This
concept is illustrated in Figure 1.

SMPTE defined two basic HD ras-
ters: 1080 and 720 active vertical lines
of video. The 1080-line format takes
either an interlaced (1080I) or progres-
sive (1080P) form. The 720-line format
is defined for progressive scanning
only (720P).

These HD formats use square pixels
and have an overall frame aspect ratio
of 16:9. Similar to movie screens, this
wider image is more like the human
field of vision.

In contrast, NTSC has the familiar
4:3 aspect ratio. The 1080- and 720-line
formats contain 1920 and 1280 pixels,
respectively, per line that are sampled
at approximately 74 MHz.

Each basic raster is available in
several frame rates that can be divided
into two categories: normal and 1/M

rates. Table 1 lists the different frame
rates.

The normal rates are frame rates
like 60, 30, 25, and 24 Hz and have
associated sampling frequencies of
74.25 MHz. The 1/M rates are the nor-
mal rates divided by M = 1.001, giving
them an associated sampling frequency
of 74.1758 MHz.

The 1/M rates exist so that legacy
material can be more easily supported.
NTSC has a frame rate of 30/M Hz, which
is approximately equal to 29.97 Hz.

Table 1 also lists the corresponding
samples per total line for each frame
rate and raster combination. These
numbers were chosen mathematically
to maintain a constant sampling fre-
quency and raw bandwidth for all HD
frame-rate and raster combinations of
either the normal or 1/M rates.

Each pixel (sample) consists of a
chrominance (color) and a luminance
(brightness) value. Therefore, there are
twice as many data words as there are
samples in a line.

Because each raster has a constant
number of active pixels per line, the
duration of the horizontal blanking
interval (HBI) changes to make the
bandwidth relationship calculate
correctly. The HBI is the portion of a
line that is not visible onscreen. It is
the dead time in the signal that allows
the electron beam within
the CRT to return to the
beginning of the next line.

HD SERIAL DIGITAL
INTERFACE

TV signals are inher-
ently analog, yet are often
transmitted and stored
digitally in studios. Digital
transmission and storage
provides the same signal-
quality benefits to TV that
it provides to all other data.

SMPTE standardized
both serial and parallel
digital interfaces for SD,
and these have been in
use for quite some time.
The obvious benefit of
serial over parallel is the
ability to use a single
coaxial cable to carry a
TV signal. When SMPTE
created the HD rasters,
they realized the corre-
sponding need for an
HD digital interface.
The 292M standard was
the result.

SMPTE 292M is a
1.485-Gbps serial digital
interface (SDI) that is

similar to the SD version, 259M, which
most commonly runs at 270 Mbps.
Most of 259M’s basic structure is
reused, and some new and useful
features have been added. 292M is
specified at 1.485 Gbps to allow the
carriage of pixels sampled at 74.25 MHz
with 10-bit resolution.

Recall that each pixel consists of
chroma and luma sample (S):

7.425 × 107 pixels
s × 2 S

pixel × 10 bpS
= 1.485 × 109 bps

But what about the 1/M rates, you
ask? I’m warning you: Don’t ask a
question if you don’t want to hear the
answer! SMPTE decided to change the
clock rate for the interface as well.

Therefore, for the 1/M rates, every-
thing about 292M SDI is the same
except the data rate is now divided by
M and equals roughly 1.4835 Gbps.
Therefore, either the clocks in an HD

Table 1—Each of the three high-definition scanning formats as defined by SMPTE is denoted by
a different vertical and horizontal resolution as well as interlaced or progressive scanning mode.
Multiple frame rates are specified for each raster. Countries with 60-Hz AC power lines generally
choose the 60- or 30-Hz basic rates, while those with 50-Hz power generally choose the 50- or
25-Hz rates. ([1] Double bandwidth formats (FS = 148.5/148.35 MHz)).

Figure 2 —SMPTE provides sample implementations for serial scram-
bling/descrambling that meet the 259M and 292M requirements. These
schematics contain two stages (each representing one of the two speci-
fied polynomials) that are cascaded. Parallel implementations can be
derived by analyzing the data flow through these serial shift registers.

Common Samples per T otal Lines Frame Samples per
 Format Name Active Line per Frame Rate (Hz) Total Line

1080I 1920 1125 30 2200
1080I 1920 1125 29.97 2200
1080I 1920 1125 25 2640
1080P 1920 1125 60 1 2200
1080P 1920 1125 59.94 1 2200
1080P 1920 1125 50 1 2640
1080P 1920 1125 30 2200
1080P 1920 1125 29.97 2200
1080P 1920 1125 25 2640
1080P 1920 1125 24 2750
1080P 1920 1125 23.97 2750
720P 1280 750 60 1650
720P 1280 750 59.94 1650

D D D DDxor

xor

D D D D xor D

Serial
data in

Scrambled
data out

D xor D D D DD

xor

D D D D xor

Scrambled
data in

Serial
data out

Scrambler

Descrambler

68 Issue 112 November 1999 CIRCUIT CELLAR ® www.circuitcellar.com

platform must be capable of function-
ing with a 1000-ppm deviation or two
different clock circuits need to be
implemented and selected according
to the desired mode.

292M ELECTRICAL BASICS
Both coaxial and fiber-optic physi-

cal layers are supported by 292M.
Although cable length is not a stan-
dardized parameter, semiconductor
vendors can implement high-perfor-
mance receivers that allow real-world
coaxial cable lengths of 100 m or
more. Compare this to the 300 m that
has become expected by the TV indus-
try when dealing with the lower speed
270-Mbps 259M SD interface.

Fiber-optic cable permits greater
distances, but you have to accept the
added complexity and cost that high-
bandwidth fiber optics brings with it.
For in-studio applications, coaxial
cable is an adequate and relatively
inexpensive interconnect medium.

The 292M coaxial interface drives a
75-Ω cable that is terminated in its
characteristic impedance. As in many
communications circuits, it is desir-
able to minimize the DC level on the

coax, and hence neces-
sary to minimize the DC
content of the serial
bitstream itself. You
accomplish this by
scrambling the data bits
as they are transmitted
by passing them through
two separate polynomials:

G1(x) = x9 + x4 + 1

G2(x) = x + 1

These polynomials randomize the
datastream and force frequent logic
transitions on the wire. Regular data
patterns containing long strings of
ones and zeros are converted into
seemingly random bits. When the
same polynomials are applied in re-
verse to the received signal, the origi-
nal regular data patterns emerge.

Figure 2 shows one possible shift-
register implementation of the primary
scrambling and descrambling step as
illustrated in the 259M standard. As
you see, the scrambling operation is
simple when done in the serial data
domain—just a series of shift registers
with XOR gates placed at the bit posi-
tions specified by the polynomial. In
the parallel domain, the logic circuit is
slightly more complex but quite feasible.

292M DATA LINK STRUCTURE
Complete lines of video are com-

posed of an HBI followed by an active
region. The active region may or may
not be visible onscreen, depending on
whether the line is active or part of
the vertical blanking interval (VBI).

Like the HBI, the VBI is dead time
that gives the electron beam in the
CRT time to return to the top of the
screen to begin drawing the next video
frame. Within the HBI portion of the
292M transmission are sample words
that are reserved for synchronization
and descriptive codes.

Figure 3 shows the organization of
each line of video. The unused center
portion of the HBI may be used to
carry generic data—more on this later.

As shown in Figure 3, each line
begins with an end-of-line (EAV) code
that marks the beginning of the HBI.
A corresponding start-of-line (SAV)
code at the end of the HBI immediately
precedes the active region. Collectively,
these two basic types of codes are
called timing reference signals (TRS).

The horizontal, vertical, and field
sync pulses are encoded in the TRS
codes and are extracted by the receiv-
ing equipment. Each TRS is marked
by a three-word header (0x3FF, 0x000,
0x000) followed by the code word.
The special values 0x000–0x003 and
0x3FC–0x3FF are excluded as valid
video samples to allow their use as
reserved signaling words.

This range is excluded to increase
the compatibility of 292M with purely
8-bit processing systems. So, an 8-bit
system won’t see all ones or all zeros
in the eight most significant bits of a
sample.

The TRS code word contains the
state of the three previously mentioned
sync signals: H, V, and F along with
error correction code (ECC) bits. As
Figure 4 shows, the four ECC bits are
the XOR of the three sync bits. This

Figure 3 —Digital video lines begin with the horizontal blanking interval
rather than with active video. The TRS codes, line numbers, CRCs, and the
rest of the blanking interval occupy the exact amount of time that is allowed
for the electron guns in a CRT to return to the start of the next line. While
SMPTE 292M sends the TRS, line number, and CRC information twice
(once per chrominance and luminance channel), the aggregate time
occupied by both channels must still conform to the CRT’s blanking time.

Managing the Transition
Between now and the end of 2006, both DTV and

legacy NTSC will be broadcast to our homes. Individual
TV stations have the choice as to what programming
will be broadcast in digital and analog. It is likely that a
station’s main programming will be simulcast on both
media so that neither segment of the consumer mar-
ket—those who adopt DTV earlier and those who wait
until the last possible day—is left without coverage.

Advertising revenue, the lifeblood of a commercial
television station, is based on a program’s population
coverage, so TV stations will ensure that they don’t
artificially reduce the numbers of potential viewers.

However, new business models and programming
choices will emerge in the broadcasting industry as a
result of the multichannel flexibility afforded by DTV.

Despite the new digital signal, people at home don’t
have to rush out and purchase expensive HDTV monitors.
External receivers in TV set-top boxes let people view
downconverted HDTV on their existing TV sets. PC
plug-in cards enable others to watch HDTV on their
computer screens and provide access to any broadcast
data applications offered by a particular station. These
consumer electronics products will allow a gradual adop-
tion of HDTV at whatever pace an individual chooses.

0x
3F

F

0x
00

0

0x
00

0

E
A

V

Li
ne

 (
2)

C
R

C
 (

2)

Horizontal
blanking 0x

3F
F

0x
00

0

0x
00

0

S
A

V Active
video

 CIRCUIT CELLAR ® Issue 112 November 1999 69www.circuitcellar.com

ECC scheme allows for the imple-
mentation of a fairly robust and fault-
tolerant point-to-point interface capable
of correcting any single-bit error and
detecting many multibit errors.

Following the TRS code is the
current line number and a line CRC.
The CRC is calculated over the previ-
ous line’s active region, the following
EAV code, and the line number. An
18-bit CRC value is calculated using:

CRC(x) = x18 + x5 + x4 + 1

The CRC is 18 bits long because
only 9 of the 10 bits in each CRC
word carry unique information. With
the exception of TRS codes, link sta-
tus samples such as line number and
CRC have their most significant bits
set to the logical inversion of the next
most significant bit. This guarantees
that one of the excluded values will
never be forced into the datastream.

There’s one more thing to know
about the 292M data structure—all of
the TRS codes and status words de-
scribed above are sent twice per line!
The 292M data link is divided into
chroma and luma halves that are in-
terleaved one sample at a time.

The result: separate TRS codes, line
numbers, and CRCs for each chroma
and luma channel. So, each CRC is
calculated only for its channel.

If you’re familiar with 259M—the
SD interface—you wouldn’t notice
this just by looking at the active video
pixels because they are interleaved
chroma and luma just like in 259M.
But when you observed the HBI, you’d
see two 0x3FF samples followed by
four 0x000 samples followed by two
identical EAV code words.

It’s worth mentioning here that one
of the new video standards referred to
is 480P. This 483-active-line progres-
sive raster has 720 pixels per line.

Although the true terminology
should be 483P, MPEG-2 requires the
number of vertical lines to be evenly
divisible by 16. Therefore, DTV broad-
cast considers only the bottom 480 lines.
It is the same resolution as the digital
version of NTSC (often referred to as
480I) but progressively scanned.

Although it’s new, 480P isn’t really
HDTV. SMPTE 292M defines 480P at

59.94 frames per second (fps) although
there are some implementations at
29.97 Hz, making it extremely close
to 480I in terms of quality.

There is currently no standardized
method of transporting 480P over the
292M interface. This fact complicates
studio cabling by requiring yet another
set of wires and equipment just for
this format. SMPTE is in the process
of standardizing a mapping that will
overlay the 480P raster on top of the
292M HD signal.

CHIPSETS FOR 292M
Now you know about the basic

structure of the 292M data link, but
you may wonder how one goes about
handling a nearly 1.5-Gbps serial data-
stream. Two basic types of equipment
operate on 292M: those that process the
individual bits and those that simply
pass through what was received.

The latter types are generally video
routers that merely steer the incoming
signal to one or more output ports. In
that case, receivers, transmitters, and
reclocking ICs are required. A receiver
that can filter and amplify a 750-MHz
data signal after it has traveled through
100 m of cable is not a trivial item.

Gennum, a video IC manufacturer
based in Ontario, Canada, sells the
GS1504 HD adaptive equalizing re-
ceiver as well as its companion trans-
mitter, the GS1508 HD cable driver.

After traveling through 100 m of
cable and being reconstructed by a
receiver, a signal has had some amount
of jitter introduced into it. Some edges
are slightly shifted in time relative to
others. At lower frequencies, this may
not be a problem.

However, at edge-to-edge spacings
of just over 1 ns, it doesn’t take much

jitter to wipe out whatever timing
margins are left in the system. Enter
reclocking.

The reclocking process passes the
serial datastream through a flip-flop
such that the flip-flop’s output is a
clean version of the input with mini-
mal jitter. The clock for this flip-flop
is derived from the original datastream
using a PLL. Gennum offers the GS1515
reclocker IC. AMCC, a well-known
manufacturer of communications ICs,
sells the S8301 HD reclocker.

But what if your product needs to
process and manipulate the data con-
tained within the 292M stream? It’s
impractical to expect to operate on
the data serially at nearly 1.5 Gbps.

Each of the manufacturers I men-
tioned offers deserializer and serializer
ICs that allow the data to be accessed
in 20-bit-wide chunks at 74 MHz.
AMCC has the S8501 HD deserializer
and S8401 HD serializer, and Gennum
has similar offerings—the GS1522 and
GS1545, respectively.

These ICs provide access to the raw
bits on the coaxial cable—scrambled,
in other words. If your product contains
sufficient additional logic resources,
perhaps in an FPGA, to perform the
scrambling and descrambling functions,
either of these chipsets may suit your
needs. Or if you need ICs that handle
these low-level functions for you, you
may want to consider Gennum’s
GS1501 and GS1500 companion ICs.

HD silicon, like the HDTV indus-
try itself, is in a fairly early stage and
there are always new developments.
Be sure to check on the Internet for
the most up-to-date offerings from
these and other companies.

Figure 4 —The built-in error detection and correction
capability of TRS codes allows for sync recovery from
low bit error rates and improves the integrity of the end-
to-end data link. TRS correction circuits can be imple-
mented with relatively few logic gates, making this
feature practical and easy to build.

Figure 5— Ancillary data packets are carried in the
blanking portions of the digital video signal that would
be otherwise unused for carrying useful information.
The packet format is relatively simple, enabling real-
time parsing in hardware.

1 0F V H P3 P2 P1 P0 0

9 (MSB) (LSB) 0

P3 = V xor H
P2 = H xor H
P1 = F xor V
P0 = F xor V xor H

0x000

0x3FF

0x3FF

DID 0x00–0x7F
DBN

DC

Checksum

Data payload

Type 1 packet

ADF

0x000

0x3FF

0x3FF

DID 0x80–0xFF
SDID

DC

Checksum

Data payload

Type 2 packet

70 Issue 112 November 1999 CIRCUIT CELLAR ® www.circuitcellar.com

place of the SDID. The DBN forms a
continuity counter for successive
packets with a given DID.

An application may or may not take
advantage of this field. A data count
(DC) word follows that provides the
number of data words in the packet’s
payload. The DC is an 8-bit quantity
and therefore allows for a maximum
of 255 payload words. A zero-length
payload is legal.

The two most significant bits of
the SDID/DBN and DC are treated in
the same way as in the DID. The last
word in a packet is a nine-bit check-
sum value that covers the nine least
significant bits of every word in the
packet from the DID to the last pay-
load word. The ADF is not included
in this calculation. The checksum
word’s most significant bit is the
logical inversion of bit eight.

An ancillary data packet contains
fairly low overhead and is easy to parse
in both hardware and software. Given
the dual-channel nature of 292M
(chroma and luma), a single ancillary
data packet must be properly format-
ted into either channel and may not
straddle both at the same time.

Common ancillary data types have
DIDs that are reserved by SMPTE for
specific functions. Embedded digital
audio, for example, has a total of eight
DIDs assigned to it—four for SD and
four for HD formats.

The HD ancillary data standard,
still in process, reserves DIDs and
SDIDs (Type 2 packets) for closed
captioning and content advisory infor-
mation. Additional DIDs are reserved
for a variety of other functions.

ANCILLARY DATA IN HD VIDEO
In considering the horizontal and

vertical blanking portions of the SMPTE
292M datastream, you’ll quickly no-
tice the unused bandwidth and won-
der whether it could be filled with
useful data. Enter ancillary data!

From the days of SDTV and 259M,
SMPTE created a standard dubbed
291M that sets forth an ancillary data
packet structure that can be inserted
into the video signal’s blanking inter-
vals. SMPTE is finalizing a similar
standard for 292M that’s based on the
291M packet structure.

Digital audio samples are the most
common use for ancillary data, but
there are many other applications. Any
video-related datastream that benefits
from being transported along with the
video is a candidate for ancillary data.
Closed-captioning information and
video source/tracking IDs are two
more examples.

Figure 5 illustrates the ancillary
data packet structure. Note that there
are two similar variations, denoted as
Type 1 and Type 2.

Each packet begins with a three-word
header (0x000, 0x3FF, 0x3FF) referred
to as an ancillary data flag (ADF). An
8-bit data ID (DID) follows: only eight
of the ten sample bits have
unique DID information.

Bit eight of the DID con-
tains even parity for the
eight least significant bits.
Bit nine, the most signifi-
cant bit, is the logical inver-
sion of bit eight.

DIDs between 0x00 and
0x7F signify Type 2 packets
that contain a secondary
DID (SDID) following the
DID. DIDs between 0x80
and 0xFF signify Type 1
packets that contain a data
block number (DBN) in

Attempts were made to facilitate the
processing of ancillary data packets by
8-bit-only systems—an 8-bit DID and
DBN. However, this is not uniform
because of the 9-bit checksum and the
allowance for 10-bit data words in the
payload. To fully process ancillary data,
especially in the case of audio, a mini-
mum 10-bit data path is required.

HD EMBEDDED AUDIO
It is highly desirable to embed digi-

tal audio samples within the digital
video signal; every video program has
accompanying audio. Doing so guar-
antees that a program’s audio will not
get lost or out of sync. It also simpli-
fies the infrastructure of a studio by
enabling a complete uncompressed
program to be carried on one wire.

SMPTE defined the 272M standard
for embedding audio in the 259M SD
SDI signal. Likewise, SMPTE 299M
addresses embedded audio for HDTV
applications.

299M is a significant improvement
over its SD predecessor, owing to its
easy support of 24-bit samples and
more coherent structure. Designing
logic to handle 299M is easier than
doing the same job in the SD world.

All audio samples are expressed as
24-bit quantities. If an ADC samples
at a lower resolution, the smaller
sample is placed into the most signifi-
cant bits of the 24-bit data space and
the least significant bit is zero-filled.

Audio sampling rates that are both
synchronous and asynchronous with
respect to the video clock are sup-
ported. The audio sampling rate is
synchronous with the video clock if

the frequency relation-
ship between the two can
be expressed as a ratio of
integers. Three synchro-
nous rates are supported:
48, 44.1, and 32 kHz. The
preferred mode of opera-
tion is 48-kHz synchro-
nous sampling.

As in the SD context,
299M defines four groups
of audio, each containing
four channels. In most
scenarios, the four chan-
nels are organized as two
stereo pairs.

Group 299M DID

1 0x2E7
2 0x1E6
3 0x1E5
4 0x2E4

Table 2—Each audio group, consisting of two digitized
stereo pairs (or four mono channels), is marked by a
unique DID to identify it in the ancillary data space.

 Sample Word
Bit 1 2 3 4

9 (MSB) not bit 8
8 even parity for each word, bits 0–7
7 audio [3] audio [11] audio [19] P 1

6 audio [2] audio [10] audio [18] C 1

5 audio [1] audio [9] audio [17] U 1

4 audio [0] 2 audio [8] audio [16] V 1

3 Z 1 audio [7] audio [15] audio [23] 3

2 0 audio [6] audio [14] audio [22]
1 0 audio [5] audio [13] audio [21]

0 (LSB) 0 audio [4] audio [12] audio [20]

Table 3—A 24-bit resolution sample of a single audio channel spans four data words along
with AES flag bits and parity information. Samples with lower resolution (e.g., 20 bits) are
aligned with the most significant bit (bit 23), and the least significant bits are padded with
zeros. ([1] AES flag bits; [2] LSB; [3] MSB).

72 Issue 112 November 1999 CIRCUIT CELLAR ® www.circuitcellar.com

SOURCES
GS1504, GS1508, GS1515
Gennum Corp.
(905) 632-2996
Fax: (905) 632-2055
www.gennum.com

S8301, S8401, S8501
AMCC
(858) 450-9333
Fax: (858) 450-9885
www.amcc.com

Mark Balch is a senior hardware design
engineer at DiviCom and has partici-
pated in a variety of MPEG-2 product
designs, including an HDTV MPEG-2
encoder. Mark actively attends meet-
ings of the ATSC and SMPTE industry
standards groups. You may reach him
at mark_balch@hotmail.com.

REFERENCES
SMPTE 259M, 10-Bit 4:2:2 Com-
ponent and 4fSC Composite Digital
Signals–Serial Digital Interface,
1993.

SMPTE 274M, 1920 × 1080 Scan-
ning and Analog and Parallel
Digital Interfaces for Multiple
Picture Rates, 1997.

SMPTE 291M, Ancillary Data
Packet and Space Formatting, 1996.

SMPTE 292M, Bit-Serial Digital
Interface for High Definition
Television Systems, 1996.

SMPTE 296M, 1290 × 720 Scanning,
Analog and Digital Representa-
tion and Analog Interface, 1997.

SMPTE 299M, 24-Bit Digital Au-
dio Format for HDTV Bit-Serial
Interface, 1996.

www.atsc.org
www.fcc.gov
www.mpeg.org
www.smpte.org

Up to eight stereo pairs may be
embedded within a single 292M
videostream. The format for the audio
samples is derived from the Audio
Engineering Society (AES) audio-frame
format that most professional digital
audio is first put into after sampling.

Each complete audio group is as-
signed its own ancillary data packet
with a reserved DID that indicates its
group number. These packets are placed
into the chroma channel of the 292M
videostream. Table 2 lists the reserved
DID for each HD audio group. Note
that there are four separate DIDs
reserved for the four SD audio groups.

The audio group data structure in
the packet’s payload is fixed length,
regardless of the number of audio
channels in use. Figure 6 depicts the
format of a 299M audio group packet.
This is a Type 1 ancillary data packet,
so it contains a DBN that may option-
ally be used as a continuity indicator.

The DC is a fixed value, 0x218,
indicating a 24-word payload length.
Following the DC is a two-word clock-
phase indicator that’s used to regener-
ate the audio sampling clock for the
group at the receiving end.

All channels in a group must be
sampled with the same timebase, but
different groups may use different time-
bases. This restriction is most useful
in asynchronous sampling modes. In
synchronous modes, the audio sampling
clock may be obtained from the video
block by means of a PLL if the sam-
pling frequency is known beforehand.

Sample data for each of the four
channels follows with each sample
occupying four words. Table 3 shows
how the 40 data bits are organized.
The five flag bits (Z, P, C, U, V) are
derived from the original AES stream.

Following the four channel samples
are six ECC words that cover the words
from the start of the ADF through the
last sample. The standard ancillary data
checksum is the last word in the packet.
In the case of 299M, its utility is far
surpassed by the coverage of the previ-
ous ECC words.

Parsing a 299M packet is easy due to
its fixed length and structure. In appli-
cations that support only the common
48-kHz synchronous sampling rate, the
clock-phase indicator can be ignored.

The 299M standard limits the
number of audio data packets for a
given group to a maximum of two in
any horizontal ancillary data block.
The regular sampling rate of an audio
source, coupled with this burst restric-
tion, enables you to specify a minimum
and maximum receiver buffer size to
ensure that once sample extraction
begins, a valid audio stream never
causes a buffer underflow or overflow.

Audio control packets are the sec-
ond type of packets specified by 299M.
These control packets are inserted
into the luma channel of the 292M
videostream, are sent once per video
field, and are fixed length.

Each group has a control packet
that provides information such as
sampling rate, active channels within
the group, delay of audio to video, and
additional phase relations between
audio and video frames. Depending on
the application, it may be possible to
ignore these control packets.

MPEG-2 AND BEYOND
In the process of broadcasting an

HDTV program to your home, the
SMPTE 292M standard takes an HD
videostream from its origin, through
studio editing equipment, and into an
MPEG-2 encoder. Once inside the

encoder, it is compressed by a factor
of roughly 80:1. It then exits as seem-
ingly random bits. The MPEG-2 and
ATSC data infrastructure that allows
the compressed bits to be decoded and
displayed is a huge topic that I’ll dis-
cuss just briefly in Part 2.

DTV broadcast also brings with it
concepts of multiple channels, video
formats, data, and new business models,
which I’ll address in Part 3. I

Figure 6 —All four channels
(generally, two stereo pairs)
in a single audio group
(packet) share the same
sampling timebase. In
situations where all four
channels are not used,
undefined data is substi-
tuted in their place because
of the requirement to
transmit a fixed-length
packet containing four audio
channels.

0x000

0x3FF

0x3FF

Group DID

Clock
Phase (2)

DBN

0x218

Channel 1
(4)

Channel 2
(4)

Channel 3
(4)

Channel 4
(4)

ECC (6)

Checksum

www.atsc.org
www.fcc.gov
www.mpeg.org
www.smpte.org
www.gennum.com
www.amcc.com

74 Issue 112 November 1999 CIRCUIT CELLAR ® www.circuitcellar.com

FROM THE
BENCH

Jeff Bachiochi

Without
Acceleration

Sensor
technol-
ogy now
pack-
ages

sensors and signal
conditioning in small
surface-mount
chips. Here’s a way
to design an accel-
erometer data-acqui-
sition system using
a sensor on a chip.

or many of us,
acceleration and

gravity bring to mind
Newton’s laws of mo-

tion. And one can hardly think of
Newton without the familiar tale of
him getting bonked on the noggin
with an apple. Because of the force of
gravity, that famous apple went from
hanging on the tree (not moving) to
hitting the ground (and not moving) in
a very predictable way.

Gravity applied constant force on
the apple, causing it to fall. And at
each instant in time, the apple’s mo-
mentum was increased by this force.

The apple’s change in momentum
over time is acceleration.
The force of gravity on the
apple is defined as 1 g,
which causes the apple to
fall at an average velocity of
about 9.8 m in the first
second. If the tree was very
tall and it took two seconds
for the apple to fall, gravity
would continue to increase
the apple’s momentum to
19.6 m/s in those 2 s.
Gravity’s constant g-force
allows velocity to increase
over time.

But gravity isn’t the only
means to acceleration. Any
force acting on a mass can
produce acceleration:

acceleration= force
mass

Because acceleration (due to grav-
ity) is a constant (at our earth’s ra-
dius), the force of gravity on a mass is
proportional to its mass. Gravity has
the ability to accelerate a mass, yet at
any instant in time there is no accel-
eration, only velocity. Acceleration is
a measurement over time:

acceleration= ∆velocity
∆time

In the case of gravity, the accelera-
tion equals 9.8 m/s per second. This is
the distance any object falls (discount-
ing other influences) toward the cen-
ter of the earth, per second.

This measurement is called 1 g
(where g stands for gravity). Accelera-
tion is often described in units of g.

A dramatic illustration of accelera-
tion is felt while driving a car. Every
time we step on the accelerator, the
engine speeds up, applying forces that
increase the vehicle’s speed. We feel
these positive g-forces as we are
pressed back into the seat.

At the point where we ease off the
pedal and the velocity (speed) remains
constant, the acceleration falls to zero.
The g-forces that are still present
prevent any change in velocity. When
we apply the brakes, negative g-forces
reduce the velocity. Then, we can feel
our bodies rising out of the seat—a
good reason to wear a seatbelt.

For a moment, let’s revisit the

f

Part 1: All We Have Left is
Velocity

Figure 2 —The ICs labeled x, y, and z are op-amps whereas the other
two ICs (labeled with arrows) are accelerometers. x-y is the 250 and the
z-axis IC is the 150. The board on the right holds six trim pots and mates
with the sensor board to fit in the container at top right.

 CIRCUIT CELLAR ® Issue 112 November 1999 75www.circuitcellar.com

cessor has internal an 8-bit
ADC. Based on a 5-VCC,
each bit of resolution
would represent 19.5 mV:

At 38 mV/g output from
the sensor, that’s 0.5 g/bit
of A/D resolution. Depend-
ing on what you’re looking
for, this may or may not be
a reasonable quantity.

In some instances we
might be interested in
recording down to 0.1-g
increments or less. If so,
we’d need to add some gain
(a factor of 5) between the
sensor and the ADC. Here’s

where signal conditioning becomes
important.

Using a single op-amp in an invert-
ing amplifier configuration:

Gain =
Rf
Rin

I’m going to design for a minimum
gain of 2 and a maximum gain of 10
(practical).

A series 10-kΩ fixed and a 50-kΩ
pot as the Rinput resistance with a
100-kΩ Rfeedback resistance will furnish
gains of 10 (100k/10k) and 1.6 (100k/
60k) at the two extremes of the pot.
Since eight-pin IC DIPs offer dual as
well as single op-amps in the same
package, the second op-amp can add
additional filtering (see Figure 1).

The sensor’s onboard filtering lim-
its the bandwidth to 1 kHz. Even
limited to 1 kHz, the device noise can
be considerable if you’re interested in
sub-g measurements. Peak-to-peak
noise can be as high as 0.4 g. That’s
more than ±3 bits, if your circuit gain
is 5 (to give a 0.1-g resolution).

By limiting the bandwidth down to
100 Hz, you can reduce the peak-to-peak
noise by a factor of ~4, or less than
±2 bits. Not only does the gain of the
circuit increase the sensor output and
noise, but also any DC offset from the
nominal 0.5 VCC is increased as well.

Without gain, the bias offset can be
as much as ±10 g—by far the biggest
culprit to overall errors. The sensor’s

One of the great additions to this
sensor is an array of 12 electrostatic
cells that can force the movement of
the beam. This self-test feature is
enabled through an input pin. Apply-
ing a logic high to the input pin al-
lows both the mechanical and
electrical systems to be checked for
proper operation.

The onboard clock, demodulator,
filter, and buffer amp are all that you
will need to convert the capacitive
change to a voltage output. Both the
sensitivity and 0-g values are ratio-
metric to the supply voltage for this
sensor. Thus, using the sensor’s sup-
ply voltage as the A/D reference
makes everyone happy.

The voltage output of the sensor for
0 g is set at 0.5 VCC, so both negative and
positive forces can be measured. Sensi-
tivity of the device is ~38 mV/g.

Even though today’s 5-V rail-to-
rail op-amps can approach outputs of
ground and VCC, it is still a good idea
to steer clear of the rails whenever
possible. A swing of 2 V above and
below the 0-g output (2.5 V) will
indicate ±52.6 gs:

WHEN 50 IS TOO MUCH
To monitor this sensor I want to

use a PIC processor. The ’16C63 pro-

measurement of 1 g. If 1 g is
a velocity 9.8m/s (or 32 ft./
s), then let’s see how fast
this is in more familiar terms:

In other words, if your ve-
hicle could pull a constant 1
g of acceleration, it could do
0–60 mph in under 3s.

If we measure the amount
of “seat-squish” due to accel-
eration, we could develop a
scale for determining the g-
force applied based on our
body’s movement. This is
how a semiconductor accel-
erometer works.

ADXL150/250
Analog Devices has been fabricat-

ing sensor and signal-processing cir-
cuitry on the same chip since 1993.
Like the micromachined motors seen
on science programs for some time now,
the sensor element is created by de-
positing polysilicon on an oxide layer.

When the oxide layer is dissolved,
the polysilicon is suspended in midair
(so to speak). You can imagine how
delicate this sensor is. A drop to the
floor may be enough to ruin it. It’s not
the fall that does it, but the sudden stop.

Remember, the acceleration (or
deceleration) is:

∆velocity
∆time

Going from some speed to 0 instanta-
neously is a very large number. These
devices have a maximum 2000-g-force
rating unpowered and maximum 500-
g-force rating while powered.

The sensor looks like multiplate
variable capacitors, with 42 capacitor
cells forming the sensing structure.
Each cell has fixed plates and a mov-
ing plate connected to a moving beam.

The linear beam moves in one axis,
like your body squishing into the car’s
seat. Linear motion produces a differ-
ential change in capacitance which is
measured by the on-chip circuitry.

The ADXL150 holds a single x-axis
sensor, while the ADXL250 has x and
y-axis sensors mounted at right angles
to each other.

Figure 1 — Two sensors provide three axes of output. Each axis has its own signal
conditioner consisting of a filter and amplifier.

98 m/s × 60 s × 60 min.
5280 ft./mi.

= 21.8 mph

2V
0.038 V / g

= 52.6 g

5V
256 bits

= 0.0195 V / bit

76 Issue 112 November 1999 CIRCUIT CELLAR ® www.circuitcellar.com

bandwidth of the sensor is 1000 Hz
and I’ve filtered it down to 100 Hz to
improve the noise floor. So, the final
design is three channels at 100 Hz each.

A laptop PC can display the three
channel values onscreen because the
data is formatted with <cr><lf>. And,
the datastream can be recorded to a
file for later display.

I wrote the PIC software a bit dif-
ferently than I usually do. Everything
is done in three interrupt routines: a
timer overflow, an A/D conversion
complete, and a transmit buffer empty.

The 3.579-MHz resonator has a
period of 279 ns (1/3,579,500). Execu-
tion time is 1.117 µs (279 ns × 4),
making timer0 with no prescale over-
flow every 286 µs (1.117 × 256).

Every time that timer0 overflows,
the overflow interrupt routine reduces
a counter (initialized to 35) and then
exits the interrupt. Nothing happens
in the main loop.

Eventually, the timer0 counter is
reduced to zero in the interrupt rou-
tine. Instead of leaving the routine,
the counter is set back to 35 and an
A/D conversion is started on the first
channel. At this point, 10 ms has
passed (286 µs × 35).

Next, an A/D conversion-complete
interrupt occurs. In the conversion-
complete interrupt routine, the con-
version value is stored into the
transmission buffer. The channel is
incremented, a new conversion is
started, and the interrupt routine is
exited.

Again, back to the main loop where
nothing happens (except for periodic

offset null input allows this
offset to be set to zero via a
trim pot or fixed resistor to VCC

or ground.

ADJUSTING THE
ADJUSTMENTS

Gravity can be used for the
offset and gain adjustments.
When the sensor’s measure-
ment axis is placed parallel to
the surface of the earth, gravity
has no effect on the sensor.

The offset adjustment can be
trimmed to produce one-half VCC

(2.5 V) at the output of the final
op-amp stage. This is the 0-g
output state.

Rotating the sensor’s measurement
axis perpendicular to the surface of
the earth will place 1 g on the sensor.
Depending on the polarity of the axis,
the sensor output will go up or down.

You can adjust the gain pot to guide
the sensor’s output to the appropriate
voltage. Choose this voltage based on
what you want for a full-scale output.
For instance, if you want a 5-g full
scale output—that is, the voltage
excursion from 0 to 5 g is 2.5 V (2.5 V
to 0.5 V)—then each g will output 0.5 V.

That’s it. Set the output to 3 V
(2.5 V + 0.5 V), or if the axis is re-
versed, 2 V (2.5 V – 5.0 V). Don’t for-
get to go back and readjust both pots
again if necessary. After final adjust-
ments, you should see the circuit’s
output go between 2 and 3 V as you
rotate the sensor from on-axis through
off-axis and back on the reverse-axis.

A TO D TO ASCII
To record data, we need to digitize

the analog output and save it to a file.
The analog output from the acceler-
ometer is connected to a PIC16C73
(Figure 1), which has an onboard ADC.

I want the processor to sample the
ADC and output the conversion value
at 19,200 bps. The value will be out-
put as a three-digit decimal number.

I want to do conversions on three
channels. So, the ASCII output will be
of the format xxx- yyy- zzz <cr><lf>.
These 13 characters will take just
over 6 ms. But I’m forced down to a
sampling rate of less than 200 S/s,
which isn’t so bad, considering that the

timer0 overflow.) When a
conversion of the final chan-
nel is complete, the first chan-
nel is selected but no
conversion is started (new
conversions don’t happen until
timer0 overflows 35 times,
remember?) This time the trans-
mitter empty interrupt is en-
abled.

On exiting from the last
A/D interrupt, a new inter-
rupt immediately takes over.
The transmit empty routine
loads a character into the
SBUF register for transmission
out of the UART. This rela-

tively quick interrupt routine exits back
to the main do-nothing loop.

The UART is double-buffered,
which means that the next character
can be loaded while the previous char-
acter is still being transmitted. This
feature ensures that the characters
will be transmitted one right after
another. Because the transmit buffer
is of a known length, once all the
characters are sent, the transmit
empty interrupt is disabled.

The linear buffer is preloaded with
the space and <cr> and <lf> characters.
This only needs to be done once be-
cause the A/D converted values are
stuffed into the buffer at the same
place each time, unlike a ring buffer
in which all the data must always be
completely written. Now, execution
remains in the main loop until the
timer0 again overflows 35 times and
the A/D conversion begins again.

FIRST DATA
It’s time for the first test of this

system. The outputs are in a xxx yyy
zzz format. However, this format
assumes that the module can be fas-
tened such that the orientation re-
mains the same as the module’s
markings. That won’t always be so.
Should the module have to be fastened
differently, then the x-y-z outputs
must be translated such that the data
matches that of the correct axis.

For this test, the sensor (shown in
Photo 1) is strapped to my right foot.
The umbilical cord connects to a
laptop’s serial port which I will carry
so that I can be mobile, uh…sort of.

D
at

a
(8

 b
it)

Time (10 ms)

Stairs
256

224

192

160

128

96

64

32

0
1 101 201 301

 Series1 Series4 Series2

Figure 2 —This graph shows two steps of my right foot. The positive excur-
sions are the lift and forward forces while the negative excursions are the
sudden stops as my foot hits the floor.

 CIRCUIT CELLAR ® Issue 112 November 1999 77www.circuitcellar.com

Let’s take a ride on the elevator at
Circuit Cellar World Headquarters. I
start the laptop, and using Hyper-
Terminal, I click on Transfer and
Capture Text. The output data scrolls on
the screen enroute to the hard drive.

A brief walk down the hallway
leads to the elevator. I shuffle in and
hit the lobby button. Whoosh. The
hydraulics are released and I drop in a
regulated free fall.

At the lobby, the doors part and I
press the 2 button to return back to
the second floor. Now, the pump has
to work to force the elevator back up.
This time, the ride is much slower
because gravity can’t be used. Exiting
the elevator at my floor, I again click
on Transfer, Capture Text, and Stop to
complete the test.

The datafile is simply a list of
numbers from all of the A/D conver-
sions. It doesn’t look too interesting
or readable. Fortunately, there are
tools available to make this data
easier to comprehend.

I used Excel’s spreadsheet for this
project. Importing data is simple if

you understand how Excel interprets
the file. Most importing algorithms
look for a delimiter to separate the
data into columns. Delimiters are
spaces, commas, semicolons, and so
on. Each row of data ends in a <cr>.

If you play by these exact rules, the
imported data is placed in a column/
row format directly into the spread-
sheet’s grid. Here’s where all the fun
begins.

Graphing commands let you
choose any or all of the spreadsheet
data and plot it in a number of differ-
ent ways. But wait just a minute—
something must be wrong here. The
graph shows all of my steps, but
where is the vertical movement of the
elevator?

Hmm, the floor-to-floor height is
~16′. The time to move between
floors is 8 s. That’s 2 ft./s. Oh, that’s
only a small fraction of a g. So, let’s
look at only a small portion of the
graph. Figure 2 is just a portion of the
total test data. This part of the graph
(walking) is much more interesting
than the vertical lift.

THE END?
As you can see from this project,

using an accelerometer isn’t difficult.
Although using three sensors is prob-
ably overkill for most applications,
designing in an accelerometer for
vibration analysis, crash sensing,
active suspension, and a slew of other
applications may make perfect sense.

But, I’m not done yet. There are a
few changes I want to make to this
project that will greatly improve it.
Here’s a hint. I want to eliminate two
things: screwdrivers and wire. I

Jeff Bachiochi (pronounced“BAH-key-
AH-key”) is an electrical engineer on
Circuit Cellar’s engineering staff. His
background includes product design
and manufacturing. He may be reached
at jeff.bachiochi@circuitcellar.com.

SOURCE
ADXL150/ADXL250
Analog Devices
(617) 329-4700
Fax: (617 329-1241
www.analog.com

www.analog.com

78 Issue 112 November 1999 CIRCUIT CELLAR ® www.circuitcellar.com

a good 20 years
after it was born,

the 8051 remains one
of the most popular 8-bit

MCUs. In fact, according to the market
stats I’ve seen, the ’51 solidly occupies
second place, behind Motorola’s 68HC-
05 and well ahead of Microchip’s PIC.

If this seems surprising, it’s probably
because unlike the Motorola and PIC
architectures, which are essentially sole-
sourced, the ’51 is practically a people’s
micro. It’s offered by dozens of com-
panies as the basis for standard chips,
specialized variants, and ASIC cores.

More surprises when you zoom in
on the ’51 roster. Who’s the biggest
slugger? Is it Intel? Nah, they’ve got
bigger chips to fry. How about Atmel?
No, despite the great things they’ve
done with flash ’51s. Siemens? Oki?
Dallas? Nice try, but wrong again.

The answer is that the IC division
of that European consumer electronics
giant, Philips Semiconductors, is
number one in ’51s.

Frankly, I wouldn’t be surprised if
you have little idea of who Philips is
or any clue as to how they ended up
controlling a huge chunk of the MCU
biz. All the more surprising, considering
the iffy track record of offshore suppli-
ers (European or Japanese) penetrating
the tough U.S. MCU market.

As a supplier of TVs and stereos and
such, Philips has only recently started

selling under their own name in the
U.S., rather than under various labels
(Magnavox being one of the most
familiar). “Aha,” you say, “they may
ship a lot of ’51s but most are buried
in their own consumer gadgets.”

Wrong again. Although there is a
lot of internal use, the fact remains that
the merchant-market ’51 you buy is
more likely to have the Philips shield
on it than any other logo.

How did Philips manage to pull it
off? The answer is that they got a run-
ning start when they acquired Signetics,
one of the influential Silicon Valley
semi shops. I realize some of you may
never have heard of Signetics since, as
with Magnavox, the name was brought
under the Philips banner years ago.

The point is that the acquisition
bought Philips a key advantage because
“Sig” (as locals called them) already
had a viable ’51 business going, built
on a long-ago official licensing deal
with Intel. This meant that Philips
could take advantage of the existing
product line, distribution channels,
customer base, and perhaps most
importantly, a stable of local, experi-
enced talent.

Between the combination of the
original Philips and Signetics ’51 lines
and the subsequent addition of new
variants, the Philips ’51 family now
includes a dizzying array of parts that
pretty much covers the spectrum.

I say “pretty much” because Philips
arguably hasn’t kept up with the pack
when it comes to addressing the surg-
ing demand for very small and low-cost
chips, a trend that Motorola and Micro-
chip have jumped all over.

LOW PIN COUNT
That is until now. Enter the new

Philips LPC (low pin count) family of
’51s. The first part, the LPC764, shown
in Figure 1, includes 4-KB OTP EPROM
and 128 bytes RAM, and comes in a
20-pin package (both DIP and surface
mount). According to Philips, subse-
quent products will work their way
down with less memory (a forthcom-
ing LPC762 has 2-KB OTP EPROM)
and smaller packages, with 16-pin and
even 8-pin versions on the horizon.

LPC also means “low price chip.”
The ’764 is rolling out at $1.21, and

LPC

LPC may
stand for
“low pin
count” or
“low price

chip” or any number
of things, but this new
family of ’51s from
Philips offers much
more than fun with
words. Tom has all
the info on this new
microcontroller.

SILICON
UPDATE

Tom Cantrell

The Little Processor that Could

 CIRCUIT CELLAR ® Issue 112 November 1999 79www.circuitcellar.com

that only requires a PO for 500 parts,
which suggests that below-buck pricing
is in reach for high-volume customers.

At first glance under the hood, there
isn’t much to distinguish the ’764 from
the other ’51 variants on the market, or
for that matter, the circa-70s original.
However, although the basic configu-
ration and peripherals appear familiar,
there are a number of enhancements
that, taken as a whole, significantly
update and freshen the design.

Those improvements start with the
’51 core itself, which we can see from
Figure 1 has been accelerated. It cuts
the number of clocks required to ex-
ecute each instruction in half (which
in most cases is from 12 to 6).

Running at up to 20 MHz puts
performance around 3 MIPS, which is
what’s expected of an entry-level MCU
these days. Effectively, it allows the ’51
architecture to maintain its place in
the performance standings as competi-
tors make similar speed improvements.

Those of you who’ve upgraded an
existing design with an enhanced CPU
know that timing differences related
to CPU and peripheral operations can
be a hassle, in the worst case requiring
all the hardware and software to be
reviewed and retuned.

By contrast, CPU and peripheral
timing is simply twice as fast for the
’764 as for a standard ’51. There’s even
an OTP configuration bit that divides
the clock in half for set-and-forget ’51
timing compatibility.

This timing discussion leads us to
the clock oscillator, shown in Figure 2,
an area significantly upgraded from
the traditional ’51. There are a total of
five clock source options including

external, internal, and three flavors of
crystal: 20–100 kHz, 100 kHz–4 MHz,
and 4–20 MHz (the latter two modes
support operation with a ceramic reso-
nator, as well).

The internal oscillator is especially
welcome, saving the cost and board
space of a crystal and its requisite RCs,
and boosting reliability (one less thing
to break). It runs at 6 MHz, but loose
±25% accuracy rules it out for timing-
critical applications.

Note that there’s a control bit that
allows the internal clock (divided by
one sixth, i.e., 1 MHz) to be optionally
output to a pin (X2/CLKOUT/P2.0) for
synchronous designs. Otherwise, the
pin is available for use as I/O. Gener-
ating and keeping the clock on-chip
has the benefit of reducing EMI. That
goal is further achieved with low slew
rate (10-ns minimum rise/fall times)
output drivers on the I/O lines.

Whatever the clock source, the ’764
runs it through an 8-bit divider with
divide ratio equals 2 × (n + 1) for n =
1–255 (i.e., cutting the clock rate be-
tween a factor of 4 and 512 before
sending it on to the rest of the chip.)
Unlike the divide-by-1-or-2 timing
compatibility feature which is set
with an OTP configuration bit, the
8-bit divider is dynamically program-
mable in normal operation (i.e., any-
time; not just during reset, etc.).

The chip takes care of making a
smooth switchover to the new clock
so you don’t have to be concerned about
timing glitches or disrupting anything—
an automatic transmission, if you will.

LOW-POWER CONTROLLER
The programmable clock and other

power-saving features make the LPC
well suited for battery-driven apps.
Supply voltage range is a wide 2.7–6 V,
but note that speed is restricted at lower
voltages (i.e., less than 10 MHz for
VDD less than 4.5 V).

Even running full-bore, the LPC
doesn’t use a lot of power—typically
15 mA at 5 V (20 MHz) and only 4 mA
at 3 V (10 MHz). Note that there’s a
control bit, LPEP (low-power EPROM),
that you can set if the supply voltage
is less than 4 V. This bit disables on-
chip circuits only required for higher
voltage, cutting power consumption
even further.

Two low-power modes stretch the
battery budget even further. Idle mode

Timer 0,1

UART

Accelerated 80C51 CPU

Watchdog

timer
and

oscillator
Port 0

128-Byte
Data RAM

4-KB
code EPROM

Internal bus

Analog
comparators

Port 1

Keypad
interrupt

Port 2
Configurable I/O

Configurable I/O

Configurable I/O

Power monitor
(power-on reset,
brownout reset)

Configurable
oscillator

Crystal or
resonator

On-chip R/C
oscillator

I2C

1

2

3

4

5

6

7

8

9

11

12

13

14

15

16

17

18

19

20CMP2/P0.0

P1.7

P1.6

*RST/P1.5

VSS

X1/P2.1

X2/CLKOUT/P2.0

*INT1/P1.4

SDA/*INT0/P1.3

SCL/T0/P1.2

P0.1/CIN2B

P0.2/CIN2A

P0.3/CIN1B

P0.4/CIN1A

P0.5/CMPREF

VDD

P0.6/CMP1

P1.0/TxD

P0.7/T1

P1.1/RxD10

Figure 1 —The Philips LPC764
keeps pace with Motorola and
Microchip in the race to deliver
ever more minimalist MCUs.

Clock select

Clock
sources

Clock
out

Crystal
selectInternal RC

oscillator

Crystal: low
frequency

Crystal: medium
frequency

Crystal: high
frequency

External
clock input

10-bit ripple counter

Reset
count

Count 256

Count 1024

Oscillator startup timer

Divide-by-M (DIVM register)
and CLKR select

CPU
clock

+1/+2

CLKR
(UCFG1.3)

Power down

Power monitor reset

FOSC0 (UCFG1.0)
FOSC1 (UCFG1.1)
FOSC2 (UCFG1.2) Figure 2 —Is the old ’51 “11.0592-MHz crystal or bust”

cramping your style? The LPC764 is much improved with a
wide selection of clock sources including, best of all, an
internal oscillator.

80 Issue 112 November 1999 CIRCUIT CELLAR ® www.circuitcellar.com

byte would interrupt each node, but
only the node with that address would
have to deal with subsequent data
bytes, leaving the others free to do
something useful.

That notion is a pretty good one,
but considering the small packets
likely encountered in simple apps, it’s
a hassle that each node has to check
every address. So, the ’LPC764 extends
the ninth data bit concept with auto-
matic address recognition (i.e., now a
node is only interrupted with an ad-
dress byte that matches its own ID).

Using two SFRs—an address
(SADDR) and a mask (SADEN)—
allows concocting clever group and
broadcast addressing schemes. For
instance, a three-node system could
be mapped such that each node is
independently addressable, each pair
of nodes is also addressable, or all can
be addressed at once.

This system reduces node overhead
to the absolute minimum because a
node is only interrupted by stuff it
needs to see. Also, this helps to ease
synchronization of activities across
multiple nodes since a message can be
sent to all of them at the same time.

Another popular serial interface the
’764 provides is I²C. Since
Philips invented I²C, it’s
not surprising that this is
far more than the tarted-
up shift-register imperson-
ator found on some chips.

Those of you who’ve
spent any time dinking
with I²C know that simple
bit-banging is OK for con-
necting a low-speed chip or
two, but getting the high-
speed and multimaster
modes working right is
nontrivial. To that end, the
’764 I²C subsystem includes
hardware features like bus

3 MHz for a 20 MHz ’764), feature the
usual modes. However, an added pin
toggle-on-overflow feature is especially
useful for PWM and other waveform
generation tasks.

There’s also a watchdog timer that
runs off either the CPU clock or its
own 500-kHz oscillator (see Figure 3).
It offers eight timeout options between
8k and 1M clocks (~16 ms to 2.1 s).

Using the watchdog’s own oscillator
increases reliability because it forces
the chip into reset should the CPU
clock fail. Make sure to consider the
fact that the watchdog oscillator is
only ±37% accurate when choosing a
timeout value.

The watchdog function is enabled
or disabled by an OTP configuration
bit. If the function is not required, the
watchdog can serve as a simple interval
timer, with status bit and/or interrupt
overflow detection.

Like the timer, the UART features
all the traditional modes and such,
including the now widely used ninth
data bit mode. This is especially use-
ful for multidrop networks in which
the ninth bit differentiates between an
address and data byte. When originally
devised, the idea was that an address

only cuts power consumption roughly
in half but leaves the oscillator and all
peripherals running for quick wakeup.
By contrast, power-down mode shuts
practically everything down, cutting
consumption to mere microamps.

However, waking up from power-
down is a bit sluggish. You have to
wait while the oscillator starts up
(256 clocks for the internal oscillator,
1024 clocks for external crystals). One
improvement is that wakeup from
powerdown, traditionally requiring a
reset, is now possible using an (enabled)
interrupt source.

In powerdown, the supply can be
cut to 1.5 V and still retain the RAM
contents. But note that the SFRs (spe-
cial function registers; i.e., peripherals,
etc.) aren’t guaranteed below the 2.7-V
operating minimum. You can either
refresh those that matter in your wake-
up software or take advantage of the
new software reset, which initializes
the SFRs (but doesn’t touch RAM).

The most significant power-man-
agement upgrade is the addition of
brown-out detection with selectable
trip voltages of either 3.8 or 2.5 V.
The default response to brownout is
to reset the processor, but optionally
an interrupt can be generated instead.

Your boot code can take advantage
of a brown-out flag (BOF) and power-
on flag (POF) to figure out just what
caused the latest reset. Do note the fine
print concerning power supply rise/fall
timing required to guarantee proper
operation of the brown-out feature.

LOTS OF PERIPHERALS
CRAMMED

If you take advantage of
the on-chip clock and reset,
a full 18 of the ’764’s 20 pins
are available for I/O, and the
chip manages to do quite a
bit with them, even within
the constraints of ’51 com-
patibility. The traditional
functions (timer/counters,
UART, parallel I/O, etc.)
are all there, but with a
variety of useful upgrades.

For instance, the two
16-bit counter/timers, run-
ning at up to one-sixth the
clock rate (i.e., greater than

Figure 3 —The watch-
dog timer features its
own independent
oscillator, eight different
timeouts, and select-
able reset or interrupt
on overflow.

Watchdog
interrupt

S
Q

20-bit counter

State clock
WDTE (UCFG1.7)

BOD (xxx.x)
POR (xxx.x)

Watchdog
reset

Clear

8 MSBs

8 to 1 Mux

Watchdog
feed detect

WDOVF
(WDCON.5)

WDS2–0
(WDCON.2–0)

WDTE + WDRUN

WDCLK *WDTE

500-kHz
R/C oscillator

Enable

Clock out

R

+

–

+

–

(P0.4) CIN1A
Comparator 1

(P0.3) CIN1B CO1

OE1
(P0.5) CMPREF

(P0.2) CIN2A
Comparator 2

(P0.1) CIN2B CO2

OE2

CP1

CN1

CP2

CN2

CMP2 (P0.0)

CMP1 (P0.6)

Change detect

CMF1 Interrupt

Change detect

CMF2 Interrupt

Vref

Figure 4 —The dual analog comparators, with programmable pin assignment, internal or
external reference, and pin and interrupt outputs, are quite versatile.

82 Issue 112 November 1999 CIRCUIT CELLAR ® www.circuitcellar.com

arbitration, bus timeout, and clock
stretching that handle the gory details,
so your software doesn’t have to.

On the analog front, there are two
comparators that can be configured in
a variety of ways (see Figure 4). To
sum up, the output of the compara-
tor, which can be monitored via sta-
tus bit or routed to a pin, is 1 when
the positive input (one of two select-
able pins) is greater than the negative
input (a pin or an internal 1.28 V
±10% reference). Optionally, an inter-
rupt can be generated every time the
comparator output changes state.

The comparators continue to work
in idle and power-down modes. The
good news is, the comparator can serve
as the alarm clock (interrupt) to wake
the chip up. The comparator’s pin out-
put will continue to work, but switch-
ing time may be slower (unless the
pin is configured in push-pull mode).

However, the comparator consumes
power, so if you don’t need it, make sure
to set the disable bit. It takes ~10 µs
to stabilize if and when it’s reenabled.

Even the parallel I/O lines have
been upgraded with selectable
bit-by-bit configuration (push-
pull, open-collector, quasi-bidi-
rectional, and input-only) and
optional port-by-port Schmitt
triggers with hysteresis on inputs.

Each pin can drive up to
20 mA, plenty for LEDs and
such, though as usual the com-
bined total output of all pins is
limited by package thermal con-
siderations. A keyboard interrupt
allows easy detection of activity
on any or all pins of port 0.

LET’S PROGRAM CHIPS
One hallmark of the ’51 family

is lots of tool support, and the
’764 is no exception. Thanks to
the maturity of the architecture,
the selection, quality, and robust-
ness of available tools is good.

For ASM, C, and such you can choose
from dozens of suppliers—just down-
load an LPC764-specific header file
from the Philips web site that defines
chip-specific registers and you’re off
to the races. Because the ’764 is ’51
compatible, you can also use an exist-
ing ’51 emulator or SBC for preliminary
development and prototyping. Although
it won’t know about the ’764 upgrades,
it’s possible to either ignore or work
around the differences early on.

Philips offers an ’764-specific emu-
lator for $399 and also resells Ceibo’s
EB-764, shown in Photo 1, for $299.
That’s a good deal for a full-featured
unit that, exploiting an authentic
Philips bond-out chip, offers full-speed
emulation and real-time trace.

There are plenty of shareware tools
to get you started as well. The software
that comes with the EB-764 can be
downloaded from Ceibo’s web site
and includes a Windows development
environment with, notably, ’764-
specifics built in (see Photo 2). Meta-
link also has a demo version of their
popular Windows package, though it
only targets a generic ’51.

Eventually you’ll end up with a .hex
file that has to be burned into the ’764’s

Photo 2 —You can download the software that comes with the EB-
764, including the LPC764-specific simulator, from Ceibo’s web site.

Photo 1 —Exploiting a Philips bond-out chip (makes internal signals
accessible), the EB-764 emulator board delivers high-end features (like
real-time trace) yet doesn’t cost an arm and a leg.

 CIRCUIT CELLAR ® Issue 112 November 1999 83www.circuitcellar.com

CIRCUIT CELLAR Test Your EQ

Problem 2—You are asked to mix an 8.5-
Molal solution of NaCl in water for calibrat-
ing a new water-activity instrument you are
developing. You obtain a box of reagent-
grade NaCl, because run-of-the-mill table
salt has way too many impurities. You fill
up a pitcher with deionized water. Describe
the procedure for mixing the calibration
solution. Describe the difference between
Molarity and Molality.

Problem 3—The circuit shown (proportional current driver) is a
free-running PWM current driver for ground-referenced loads. The
output current is proportional to the drive voltage. What is the
function of the zener diode D1?

Problem 1—Can you write a function in C
that will return a number indicating the bit
position of the most significant bit in a
byte? Can you write the function without
using a compare statement such as “if”?
The function should return 0 if no bits are
set, and 1 indicates the least significant bit
is the most significant bit set. A sample
function prototype is given below:

int ms_bitpos(unsigned char b);

Have you forgotten the basics since getting that management job? Did your university ignore real circuits and tell you that HTML was the only path to fortune? Each month, Test
Your EQ presents some basic engineering problems for you to test your engineering quotient. What’s your EQ? The answers are posted at www.circuitcellar.com along with past
quizzes and corrections. Questions and answers are provided by Ray Payne of Under Control, Benjamin Day of Schweitzer Engineering Laboratories, and Bob Perrin of Z-World.
You may contact the quizmasters at eq@circuitcellar.com.

OTP EPROM. The chip is programmed
using a clock serial scheme requiring
five pins: clock, data, Vp-p (10.75 V),
5 V, and ground.

It’s a matter of issuing a simple
command sequence (i.e., set address,
write, start and stop programming,
read) to program and verify the OTP.
Programming time is only 250 µs per
byte, which adds up to just a second
or so for the entire chip.

The ’764 is suitable for in-system
programming on the production line.
Feel free to add a small header for blow
and go as long as you avoid pin conflicts
(e.g., the pin used for Vp-p [10.75 V]
also serves as the external reset input).

If you take advantage of the on-chip
reset, no problem, but make sure that
whatever’s connected to the pin can
take 10.75 V without choking. Watch
out for possible gotcha specs such as
Vp-p minimum rise/fall time (1 µs) and
minimum VDD to Vp-p delay (20 µs) that
rule out hot-plugging the chip.

Although hacking your own program-
mer is fun, those in a hurry should
probably just pick up the $99 Philips

programmer (also resold by Ceibo). It
connects to a PC serial port and in-
cludes built-in Vp-p generation. Also,
many popular party programmers (BP,
EETools, Needhams, etc.) offer up-
graded drivers that support the ’764.

Philips is one of the many MCU
suppliers that have hopped on the em-
Ware bandwagon, so if you want to
hang a ’764 on the Internet, check out
the Link-51 evaluation kit. Although
it’s an emWare-specific (not general-
purpose) development tool, the kit does
come with the Metalink assembler and
the price is definitely right at $79.95.

LE PERFECTO CONTESTO
If you think the ’764 is right up your

alley, the Design2K contest offers you
the perfect chance to check it out. So,
all you ’51 gurus out there, now’s the
chance to show those sissies who think
you need a 32-bit RISC to run a toaster
what embedded is all about. I

Tom Cantrell has been working on
chip, board, and systems design and
marketing in Silicon Valley for more

SOURCES

51LPC764
Philips Semiconductors
(408) 991-5207
Fax: (408) 991-3773
www.semiconductors.philips.com

EB-764
Ceibo
(314) 830-4084
Fax: (314) 830-4083
www.ceibo.com

EMIT
emWare
(801) 256-3883
Fax: (801) 256-9267
www.emware.com

Assembler
MetaLink Corp.
(480) 926-0797
Fax: (480) 926-1198
www.metaice.com

Problem 4—You are designing electrical equipment for use in a
glovebox that’s used for sorting low-level radioactive waste like
clothing, tools, and supplies. You want to use really good wire for
this job and you know that Teflon-insulated wire is great stuff with
extraordinary temperature range. Would this be an acceptable choice?

than ten years. You may reach him by
e-mail at tom.cantrell@circuitcellar.
com, by telephone at (510) 657-0264,
or by fax at (510) 657-5441.

R1 10 kΩ

R2 1 M

+12 V

+24 V

+

–

–12 V

D1
15 V

+12 V

+

–

–12 V

R8 100 kΩ

R9 3.99 kΩ

R3
100 kΩ

R7
3.99 kΩQ1

R6 0.1
R5 47C1 10 nF

D2

R4
2 kΩ

Ω
Ω

Ω

www.semiconductors.philips.com
www.ceibo.com
www.emware.com
www.metaice.com

96 Issue 112 November 1999 CIRCUIT CELLAR ®

PRIORITY INTERRUPT

steve.ciarcia@circuitcellar.com

Another Typical Trip

t his year’s Embedded Systems Conference in San Jose illustrated that embedded controls are still a booming business.
There were more 32-bit processor and tool vendors than you could shake a stick at. It’s a bit disconcerting for hands-on

engineers like myself to admit that designing and implementing microcontrols has become 10% hardware and 90% software.
Design finesse is still a revered goal in engineering departments, but inexpensive embedded PCs lead many designers to simply

nuke the problem with processing power and clean up the fallout in software. I’m learning to accept it.
ESC exemplifies the trend in this industry—the big get bigger and the small can’t afford to display at this show. Although it’s nice to visit the Intel

and Microsoft traveling circuses, I prefer to meet the entrepreneurs and engineers who are designing products that will become tomorrow’s Microsoft
or 3-Com. Fortunately, the Embedded Internet Workshop is still new enough to have the distinct flavor of discovery and entrepreneurship.

As a pure business decision, I continually evaluate the merits of attending these shows. After all, sending a half dozen people to a show for a week
not only impacts the schedule but gets damn expensive. But, I get to press the flesh with readers and I come away with a pocket full of author contacts.

That’s the good news. The bad news is that I don’t like traveling and this last trip didn’t help the prospects for the next one. Don’t get me wrong. I’m
not a hermit. I’ll drive 400 miles to spend a nice weekend somewhere. But, tell me I have to fly cross country and live out of a suitcase for a week and
it’s nothing but dread. Why? Because stuff always happens. This last trip was no exception.

Normally my wife and I fly out of Hartford (BDL) on United Airlines. This time there was almost a $1000 difference in cost between tickets from BDL
and Providence (PVD) so we stayed overnight at PVD and left at 6:15 AM on American for San Jose (SJC), with a plane change at JFK. The rest of
the staff flew out of BDL.

I should have known things were going too well. Both shows were great and I was anxious to get home so I could act on all the commitments I had
made. We got to the airport 1½ hours before the return flight to JFK. A half hour before takeoff they changed the gate. Then they said there was a
delay due to equipment problems. One more gate change and 2½ hours later, we lifted off while the captain made excuses. Five hours later and 1½
hours late, we landed at JFK.

We saw the puddle-jumper that we were supposed to take to PVD boarding as we taxied in. We vaulted (as much as someone my size is capable
of doing) out of the plane and ran to our connection. The door was closed and the best we could get from any airline personnel was, “I don’t know.”
After watching the plane to PVD taxi out, we went back to the airline desk and were informed that we could wait 6 hours, go across town to Laguardia,
and fly out on US Air. Forget the luggage. Put in a claim and it might show up in a couple days.

Eventually we found out that airlines typically dump all the luggage from missed connections. We walked through the whole terminal looking for the
right dumping ground. At the last carousel we saw our suitcases in a heap. Mine looked odd. The locks had been cut off, the web belt I secure around
it was missing, and the contents had been tossed.

At that point, renting a car and driving 175 miles from JFK to Providence seemed far more appealing than subjecting myself to more airline abuse.
Unfortunately, we’d have to drive 60 miles past our house to get to Providence, only to pick up the car and drive back to Connecticut, but our choices
were limited. After 5 hours, 3 construction sites, and 2 accidents on I-95, we pulled into Providence.

I pulled up to our car to dump the luggage before returning the rental. What? Dead battery?! In my haste to toss something in the car when we left
a week ago, I must have left the dome light on. Well, what is AAA good for if not to call at 1 AM to start your car? He didn’t even snicker.

At 3 AM we pulled into our driveway. Everything seemed normal. I punched in the code. The HCS and the alarm system did their thing and we
entered the house. I picked up the pile of unread mail and clicked the answering machine at the same time. As I read a note from the Resident State
Trooper to call him about “damage to the wall,” I heard, “Hi, this is Genevieve next door. If you had your driveway video system on last week you may
want to check it. There’s an article on page 18 in Wednesday’s Journal about a high-speed car chase and crash into someone’s driveway. I think it was
your driveway!” Beep.

I quickly dug though the pile of newspapers. Car chase? Criminals? The biggest crime in this town in the last 5 years was a rash of smashed mail
boxes. We don’t even have a police force. Eventually I found the article. Some guy had robbed a liquor store and stolen an SUV in the next town. Eight
police cars chased him through Vernon into a long residential driveway. Guess whose.

I grabbed a flashlight and went outside. It didn’t take long to notice that he had crashed through a free-standing railroad-tie planter that even my big
diesel tractor with the backhoe couldn’t hope to move. I walked back to the house and shook my head.

After the events of the day all I could say was, “Well, it was another typical trip to the West Coast! I can’t wait for the next one.”

