
CELLAR
T H E M A G A Z I N E F O R C O M P U T E R A P P L I C A T I O N S

w
w

w
.c

ir
c

u
itc

e
lla

r
.c

o
m

CIRCUIT
®

 # 1 1 3 D E C E M B E R 1 9 9 9

EMBEDDED
INTERFACING
X-10 Temperature Sensor

Generating Thermoelectric Power

Network Data Collection

Near Space—
The Rediscovered Frontier

2 Issue 113 December 1999 CIRCUIT CELLAR ® www.circuitcellar.com

— COLUMNS —
Considering the Details
Getting Started with Embedded PCs
Bob Perrin
Sure, embedded ’x86 products are flooding the embedded-
systems market, but Bob still had a few questions about
embedded PCs, so he took the beginner’s route and ordered
the Flashlite V25+ development system from JK
Microsystems. This month, Bob considers the details of get-
ting started with an embedded PC.

Lessons from the Trenches
Graphing the Data
George Martin
In the July issue of Circuit Cellar Online, George was work-
ing on a data-logging project using Visual Basic. It took him a
while to get the bugs worked out, but now he’s ready to show
us how to finish up this data logger.

Silicon Update Online
Embedded I-Way Explosion
Tom Cantrell
Get your modem running, head out on the I-way…. If you’re
looking for adventure, then you might want to consider
making your next product web-ready. According to
Tom, this year’s Embedded Internet Work-
shop made it clear that big things
are coming soon.

Learning the Ropes: FPGA and CPLD
FPGA Tour
Ingo Cyliax
With FPGAs becoming more commonplace, we decided it
was time to introduce a bimonthly column to cover the ins
and outs of working with FPGAs and CPLDs. Who better to
provide this information than Circuit Cellar columnist Ingo
Cyliax, who discovered the benefits of FPGAs long before
they were considered mainstream?

Test Your EQ
8 Additional Questions

Double your technical pleasure each month. After you read Circuit Cellar magazine, get a
second shot of engineering adrenaline with Circuit Cellar Online, hosted by ChipCenter.

 — FEATURES —
PIC-Based Digital VOM
Duane Perkins
Today’s digital volt-ohm meters are great for measuring
DC volts. But, try measuring AC volts and you’ll find more
than a few problems. To make life easier, Duane used an
MCU to calculate the root-mean-square of any waveform
that’s being measured and display the true RMS voltage.

Helping the Environment
Embedded Software Development
Daniel Mann
Although embedded microprocessor applications are on the
rise, the tools used for developing embedded software are
having a hard time keeping up. ICEs can’t equal the com-
plexity of today’s processors, so Daniel shows us why
manufacturers like AMD are moving to on-chip support.

Dispensing the Goods, Embedded Style
Todd Rytting
According to Todd, the wave of embedded Internet will be
no more than a ripple unless we find an appropriate hard-
ware/software solution for the millions of devices with 8-
and 16-bit micros. Faced with the challenge of designing an
Internet-enabled vending machine, emWare’s engineers are
on the right track.

 Resource Links
• Real-Time Operating Systems
Benjamin Day
• TFTP
Myron Loewen
• High Voltage
• Spring Probes and Test Fixtures
Bob Paddock

Table of Contents for November 1999

WWW.CIRCUITCELLAR.COM/ONLINE

www.circuitcellar.com/pic2000
PIC® 2000contest

Internet

CIRCUIT CELLAR ® Issue 113 December 1999 3www.circuitcellar.com

ISSUE
INSIDE11311346 Nouveau PC

edited by Harv Weiner

48 RPC Real-Time PC
Parallel Port Interfacing
Ingo Cyliax

53 APC Applied PCs
Thin Is In
Clients, Servers, and Systems
Fred Eady

The Poisson Network
A One-Way Architecture for Data-Collection Applications
Carl Huben

Being Cool is Easy
A Temperature-Sensing Control Device
Donald Blake

Thermoelectric Micropower Generation
An Alternative Power
Randy Heisch

Asimov II
Getting a Near-Space Project Off the Ground
Lloyd Paul Verhage

And the Winners are...
Rob Walker

I MicroSeries
High-Definition TV
Part 2: MPEG-2 Transport and ATSC Data Infrastructure
Mark Balch

I From the Bench
Without Acceleration
Part 2: Good (and Bad) Vibrations
Jeff Bachiochi

I Silicon Update
Test Driving a Merced with Pins
Tom Cantrell

6

8

11

82

95

 96

12

20

30

34
60

62

72

78

Task Manager
Managing Managing Editors

Steve Meyst

New Product News
edited by Harv Weiner

Reader I/O

Test Your EQ

Advertiser’s Index
January Preview

Priority Interrupt
Steve Ciarcia

Reading Between
 the Lines

6 Issue 113 December 1999 CIRCUIT CELLAR ® www.circuitcellar.com

THE MAGAZINE FOR COMPUTER APPLICATIONS

TASK MANAGER

EDITORIAL DIRECTOR/PUBLISHER
Steve Ciarcia

MANAGING EDITOR
Steven Meyst

TECHNICAL EDITORS
Michael Palumbo Rob Walker

WEST COAST EDITOR
Tom Cantrell

CONTRIBUTING EDITORS
Mike Baptiste Ingo Cyliax Fred Eady
George Martin Bob Perrin

NEW PRODUCTS EDITOR
Harv Weiner

PROJECT EDITORS
Steve Bedford Ken Davidson
Janice Hughes Elizabeth Laurençot
David Tweed

EDITORIAL ADVISORY BOARD
Ingo Cyliax Norman Jackson David Prutchi

ASSOCIATE PUBLISHER
Sue Skolnick

CIRCULATION MANAGER
Rose Mansella

CHIEF FINANCIAL OFFICER
Jeannette Ciarcia

CUSTOMER SERVICE
Elaine Johnston

ART DIRECTOR
KC Zienka

GRAPHIC DESIGNER
Jessica Nutt

STAFF ENGINEERS
Jeff Bachiochi

John Gorsky

QUIZ MASTERS
Ray Payne

Benjamin Day
Bob Perrin

Cover photograph Ron Meadows—Meadows Marketing
PRINTED IN THE UNITED STATES

For information on authorized reprints of articles,
contact Jeannette Ciarcia (860) 875-2199 or e-mail jciarcia@circuitcellar.com.

Circuit Cellar® makes no warranties and assumes no responsibility or liability of any kind for errors in these programs or schematics
or for the consequences of any such errors. Furthermore, because of possible variation in the quality and condition of materials and
workmanship of reader-assembled projects, Circuit Cellar® disclaims any responsiblity for the safe and proper function of reader-
assembled projects based upon or from plans, descriptions, or information published in Circuit Cellar®.
Entire contents copyright © 1999 by Circuit Cellar Incorporated. All rights reserved. Circuit Cellar is a registered trademark of Circuit
Cellar Inc. Reproduction of this publication in whole or in part without written consent from Circuit Cellar Inc. is prohibited.

CONTACTING CIRCUIT CELLAR
SUBSCRIPTIONS:

INFORMATION: www.circuitcellar.com or subscribe@circuitcellar.com
TO SUBSCRIBE: (800) 269-6301 or via our editorial offices: (860) 875-2199

GENERAL INFORMATION:
TELEPHONE: (860) 875-2199 FAX: (860) 871-0411
INTERNET: info@circuitcellar.com, editor@circuitcellar.com, or www.circuitcellar.com
EDITORIAL OFFICES: Editor, Circuit Cellar, 4 Park St., Vernon, CT 06066

AUTHOR CONTACT:
E-MAIL: Author addresses (when available) included at the end of each article.
ARTICLE FILES: ftp.circuitcellar.com

CIRCUIT CELLAR®, THE MAGAZINE FOR COMPUTER APPLICATIONS (ISSN 0896-8985) and Circuit Cellar Online are published
monthly by Circuit Cellar Incorporated, 4 Park Street, Suite 20, Vernon, CT 06066 (860) 875-2751. Periodical rates paid at Vernon,
CT and additional offices. One-year (12 issues) subscription rate USA and possessions $21.95, Canada/Mexico $31.95, all
other countries $49.95. Two-year (24 issues) subscription rate USA and possessions $39, Canada/Mexico $55, all other
countries $85. All subscription orders payable in U.S. funds only via VISA, MasterCard, international postal money order, or check
drawn on U.S. bank.
Direct subscription orders and subscription-related questions to Circuit Cellar Subscriptions, P.O. Box 698, Holmes, PA
19043-9613 or call (800) 269-6301.
Postmaster: Send address changes to Circuit Cellar, Circulation Dept., P.O. Box 698, Holmes, PA 19043-9613.

ADVERTISING
ADVERTISING SALES MANAGER

Bobbi Yush Fax: (860) 871-0411
(860) 872-3064 E-mail: bobbi.yush@circuitcellar.com

ADVERTISING COORDINATOR
Valerie Luster Fax: (860) 871-0411
(860) 875-2199 E-mail: val.luster@circuitcellar.com

ADVERTISING CLERK Sally Collins

steve.meyst@circuitcellar.com

Managing Managing Editors

e lizabeth is moving to Boston this weekend.
Her Doctoral thesis combined with the relocation

make being a fulltime editor impossible. When Steve
hired me to learn the ropes, we didn’t think I’d be

soloing so quickly. It’s OK, though. There are a lot of experienced people
ready to help. For example, Ken Davidson was here a few days ago
dropping off editorial proofs on some of the articles for this issue. I’ve just
been looking over some correspondence from Janice and Dave. It seems
that editors never actually leave here - Elizabeth included. They just change
their orbits slightly. I think I’m beginning to see why that is.

I started here as managing editor a few weeks ago, after seven years in
academia editing engineering articles and proposals. The most refreshing
difference I’m finding between those articles and the ones I’ve seen here is
that Circuit Cellar articles are real. Each of them describe not only an
actual device or system, but a step-by-step method for replicating it.

That sort of procedure is essential to the scientific method and is
common to the types of experimentation and development found in both
college laboratories and in basement workshops. In working at a University
however, I sometimes felt that researchers frowned upon anything
sufficiently developed as to be practical and immediately useful. It really
pained some of them to have an idea simplified, let alone realized. Maybe
they just don’t like to share?

It’s quite a contrast to be working here and seeing such a variety of
authors sharing their experimental results so freely and with such
enthusiasm. While some of the similarly-themed trade magazines boast of a
large “readership”, more of the qualities of a community apply here. The
information flows in two directions, at the very least.

The articles reflect a diverse population of readers as well. It is
particularly satisfying to see the projects that cross over from electronics
into other areas of science. Paul Verhage’s discussion of constructing and
outfitting an instrumented weather balloon and Randy Heisch’s re-
engineered device for claiming electricity from heat fall into that category. If
you include mathematics, Carl Huben’s subversion of Poisson distributions
to simplify sensor networks is another example. I look forward to those
almost as much as the more straightforward articles and the in-depth
discussions of emerging technologies and standards.

The theme of this issue is embedded interfacing, but by now you know
that this is only a starting point. In FTB, Jeff makes some refinements to his
3-D accelerometer array and at last leaves the Circuit Cellar elevators
alone. Tom weighs in from the West Coast with an early review of the first
AI-64 chip in the latest Silicon Update, and Fred takes a look at the new,
old idea of thin clients.

8 Issue 113 December 1999 CIRCUIT CELLAR ® www.circuitcellar.com

NEW PRODUCT NEWS
Edited by Harv Weiner

DEVELOPMENT MODULE
The Qik Start 17 development module is a

standalone prototyping and training tool that enables
design engineers to develop hardware and software for
PICmicro 17-series microcontroller projects. The
module can be used as a stand-alone tool or installed
in a benchtop design center. It allows an expanded
prototyping area, interface components, signal genera-
tion, keypad, output displays and more, to be quickly
and easily interfaced. It joins the family of current
modules available for development, which include the
Qik Start 16 and PICmicro Education Board.

The module will accept DIP40, PLCC 68, and
PLCC 84 packaged microcontrollers. All VDD, VCC,
OSC, and MCLR are pre-wired, and the OSC signal is
generated from an onboard 4-MHz plug-in clock oscil-
lator or crystal. The 2–5-V adjustable power supply
can be sourced from a 9-V battery or AC power pack.
The MCLR can be initiated from the onboard momen-
tary reset button or via an external reset source.

There are two dedicated sockets for EEPROM (ei-
ther I2C or SPI) and bus memory can be added by plug-
ging in the appropriate ICs. Two serial ports are tied
to the Tx and Rx lines via a MAX232 RS-232 interface
chip to a male and female DE-9 connector. All port
pins are brought out to connecting terminal blocks for
easy access. It also has four potentiometers, three
momentary push-button switches and eight LEDs
complete with series resistors.

The Qik Start 17 Module sells for $144. A Power
Pak is available for $18 and a Wire Jumper Kit for $21.

Diversified Engineering and Manufacturing, Inc.
(203) 799-7875
Fax: (203) 799-7892
www.diversifiedengineering.net

KEYPAD INTERFACE MODULE
The MEMKey is a fully programmable keypad

encoder that supports (via jumper) either a simple
serial communication protocol or the standard PC/AT
communication protocol. In either communication
mode, it can decode key matrixes of up to four col-
umns by five rows. The rows and columns can be
programmed to match the row-column configuration
of any off-the-shelf keypad.

The value returned by the MEMKey can be pro-
grammed to any standard value. In addition, the
debounce time and typematic rate are fully program-
mable. All programmable values are stored in non-
volatile memory so they are saved when power is off.
When operating with the serial protocol, the MEM-
Key communicates at 2400 bps, 8N1, LSB first, asyn-
chronous. This can be either a one-wire or a two-wire
interface. In addition, there are 64 bytes of EEPROM
that are made available to the user as scratchpad
space.

The MEMKey’s small size and connection scheme
allow the device to be inserted directly into circuit
boards for production runs or into breadboards for
easy prototyping. Complete datasheets and applica-
tion notes are available online.

The MEMKey comes in a 1.6″ × 2.25″ SIP module,
and sells for $36.00.

Solutions Cubed
(530) 891-8045
Fax: (530) 891-1643
www.solutions-cubed.com

www.solutions-cubed.com
www.diversifiedengineering.net

CIRCUIT CELLAR ® Issue 113 December 1999 9www.circuitcellar.com

NEW PRODUCT NEWS
STEPPER MOTOR CONTROL KIT

The Stepper Motor Prototyping Kit from Mosaic
Industries facilitates prototyping motion-control appli-
cations. The kit provides two stepper motors and in-
corporates the functionality of indexers, motors,
drivers, and high-level software control.

Running at 200 steps per revolution, the two 4-
phase unipolar stepper
motors with 1.8° resolu-
tion are mounted on a
printed circuit board,
which is interfaced via a
ribbon cable to a QED
digital I/O board. The
digital I/O board provides
the required high-current
drivers for the unipolar
stepper motors. Pre-coded
library routines also make
it easy to specify starting/
jogging speeds, as well as
acceleration and decelera-
tion rates for each motor.

Simple functions can be called on to specify speed,
change speed, and specify the number of steps to be
taken. A QED board (not included in the kit) runs the
high-level motor control and application program.

The price of the kit is $279 and the QED Board is
$495.

Mosaic Industries, Inc.
(510) 790-1255
Fax: (510) 790-0925
www.mosaic-industries.com

www.mosaic-industries.com

10 Issue 113 December 1999 CIRCUIT CELLAR ® www.circuitcellar.com

NEW PRODUCT NEWS
THREE-CHANNEL THERMISTOR CONVERTER

The TH-03 Thermistor-to-PC-Converter is a highly
accurate, low-cost adapter that connects to a computer
serial port and allows up to three channels of tempera-
ture data to be recorded. It is ideal for applications
where measurements close to the computer are needed.

The TH-03 measures temperatures from –55°C to
300°C with an accuracy of ±0.2°C. Optional sensors
allow the user to check light levels and record the posi-
tion of a door or any magnet or micro-switch response.
The unit uses external precision thermistor sensors to
give an accuracy that was previously only obtainable
using expensive platinum PT100 sensors.

Supplied with PicoLog software for collecting data at
rates from once a second to once an hour, TH-03 can be
programmed to sound an alarm if a temperature goes
out of range. PicoLog has a wide range of functions to
assist in the analysis of the information that it collects,
and to transfer the information easily to other applica-
tions for further processing.

Data can be displayed on a PC in graphical or text
format, both during and after collection. TH-03 is sup-
plied with DOS drivers with program examples in C
and Pascal, and Windows 3.1/95/NT drivers with ex-

amples for C, Visual Basic, and LabView. It does not
require a power supply.

The TH-03 sells for $129 and comes complete with
manual and PicoLog software.

The Saelig Company
(716) 425-3753
Fax: (716) 425-3835
www.saelig.com

www.saelig.com

CIRCUIT CELLAR ® Issue 113 December 1999 11www.circuitcellar.com

READER I/O
GOT HELP?

I know my limits, and I know that I am too out
of practice when it comes to programming. But,
today’s handheld calculators have as much power
as early PCs. The TI line sports a 6-MHz Z-80 or a
68000 chip (depending on the model).

These devices are handheld computers with
great potential. One of these units (perhaps a TI-86
or 92, or an HP-48) would be an ideal field terminal
for programming, or even just checking the func-
tion of a PIC or a single-chip computer.

I’d do it myself if I had done any serious pro-
gramming in the last 10 years. Anybody have any
ideas?

Mike Walker
White Lakes, Wisconsin

THANK YOU
Just wanted to say thank you for putting the

Circuit Cellar back issues on CDs. I used them for
the first time while I was trying to get info on IrDA
and they are good enough to allow me to free up
some shelf space!

Phil Howson
p.howson@dial.pipex.com

PARTS BIN
Z-World had been trying to give away an SMT IR

reflow oven for months and had been unable to
drum up interest in it. After I posted it in the Parts
Bin, we got a good number of inquiries. Before too
long, a big truck was hauling the oven off to a
Circuit Cellar reader. Thanks!

Bob Perrin
bob@mobots.com

LET ME COUNT THE WAYS…
Whether it’s back-issue CDs or Parts Bin, Circuit

Cellar is always looking for new ways to provide a
helpful resource of engineering information.

Those of you who remember back to Steve’s BYTE
days, may recall a column called “Ask BYTE.”
Because Circuit Cellar readers have always been a
great source for input, we’d like to hear from you if
you think an “Ask Circuit Cellar” forum on our web
site would be useful. Of course, we would need
some engineers and programmers who’d be willing
to make a few bucks doing research and providing
answers for the questions.

So, as always, we’re listening. Drop us a note at
answers@circuitcellar.com. If you’re interested in
answering questions, give us a brief bio and what
topics or areas you would like to handle.

And here’s just a few more of the things we’ve
done on our web site:

• Navigating through our new homepage is easy
with our Site Navigation feature.

• You can now subscribe to Circuit Cellar or
renew your current subscriptions from our web
page.

• If you’re missing an issue or two, or if you’re
just looking for a certain issue or article, you
can view the issues we have available and
order the individual back issues you need.

• We’ve included a keyword search for all of the
articles from 1999. So, now you can spend less
time searching for topics that we’ve covered
this year.

• Ordering your CD-ROM of 1999 Circuit Cellar
back issues is quick and easy with our secure
ordering form.

Thanks to all of our readers for another great year
of feedback and ideas. Keep up the good work.

Rob Walker, Editor
rob.walker@circuitcellar.com

STATEMENT REQUIRED BY THE ACT OF AUGUST 12, 1970, TITLE 39, UNITED STATES CODE SHOWING THE OWNERSHIP, MANAGEMENT AND CIRCULATION OF CIRCUIT CELLAR, THE MAGAZINE FOR COMPUTER
APPLICATIONS, published monthly at 4 Park Street, Vernon, CT 06066. Annual subscription price is $21.95. The names and addresses of the Publisher, Editorial Director, and Editor-in-Chief are: Publisher, Steven Ciarcia, 4 Park
Street, Vernon, CT 06066; Editorial Director, Steven Ciarcia, 4 Park Street, Vernon, CT 06066; Editor-in-Chief, Steven Ciarcia, 4 Park Street, Vernon, CT 06066. The owner is Circuit Cellar, Inc., Vernon, CT 06066. The names
and addresses of stockholders holding one percent or more of the total amount of stock are: Steven Ciarcia, 4 Park Street, Vernon, CT 06066. The average number of copies of each issue during the preceding twelve months is:
A) Total number of copies printed (net press run) 29,900; B) Paid Circulation (1) Sales through dealers and carriers, street vendors and counter sales: 4,063, (2) Mail subscriptions: 22,220; C) Total paid circulation: 26,283; D)
Free distribution by mail (samples, complimentary and other free): 405; E) Free distribution outside the mail (carrier, or other means): 229; F) Total free distribution: 634; G) Total Distribution: 26,917; H) Copies not distributed: (1)
Office use leftover, unaccounted, spoiled after printing: 368; (2) Returns from News Agents: 2,615; I) Total: 29,900. Percent paid and/or requested circulation: 97.6%. Actual number of copies of the single issue published nearest
to filing date is (November 1999, Issue #112); A) Total number of copies printed (net press run) 28,600; B) Paid Circulation (1) Sales through dealers and carriers, street vendors and counter sales: 3,790, (2) Mail subscriptions:
21,720; C) Total paid circulation: 25,510; D) Free distribution by mail (samples, complimentary and other free): 50; E) Free distribution outside the mail (carrier, or other means): 0; F) Total free distribution: 50; G) Total
Distribution: 25,560; H) Copies not distributed: (1) Office use leftover, unaccounted, spoiled after printing: 409; (2) Returns from News Agents: 2,631; I) Total: 28,600. Percent paid and/or requested circulation: 99.8%. I certify
that the statements made by me above are correct and complete. Susan Skolnick, Associate Publisher.

12 Issue 113 December 1999 CIRCUIT CELLAR ® www.circuitcellar.com

A One-Way Architecture for
Data-Collection Applications

FEATURE
ARTICLE

Carl Huben

t
The technique de-
scribed here could cut
the cost, complexity,
and power consump-
tion of every sensor.
An unusual approach
to data collection?
Perhaps, but with Carl
as a guide, you can go
from network basics to
concept implementa-
tion in one sitting.

his article de-
scribes an unusual

approach to data col-
lection that may at first

glance seem unworkable. To be fair,
its usefulness is not exactly wide-
ranging, for applications that do not
require data on demand, this tech-
nique cuts the cost, complexity, and
power consumption of every sensor in
the network.

After explaining how this network
ticks, I’ll get into the nuts and bolts of
designing it to meet specific perfor-
mance criteria. In the final section,
I’ll trot out my own proof-of-concept
implementation.

CONVENTIONAL VS. POISSON
The technique I describe here is

best understood in relation to conven-
tional data-collection networks, in
which each sensor node is equipped
with a transceiver (if only in the most
general sense) and some external
means of coordination is employed to
make effective use of channel band-
width. For example, sensors might be
polled one at a time by a central
hub—a fairly typical and efficient
scheme.

In contrast, the network I propose
here consists of a pool of completely
autonomous nodes, each equipped
with just a transmitter, and a central

receiver with no power over the chan-
nel. Assuming it can be made to
work, such an architecture offers a
mixed bag of costs and benefits.

On the upside, we can axe the
receiver, often the most unwieldy
component in the whole design, from
each node. This deletion cuts the cost
of each sensor, enhances reliability,
and, if the sensors are battery powered
and disposable, stretches lifetime. The
network as a whole becomes less
complex and easier to maintain than a
conventional one in which the central
hub exerts control over the nodes.

Of course, there is a price to be
paid—messages lost in contention are
not recoverable, and transmissions
from a particular node cannot be elic-
ited on demand. The downside is
serious, but not insuperable. There are
many real-world applications in
which these features are not strictly
necessary.

The real problem, then, is this:
without some facility for external
control, how can we reliably obtain
data from the nodes?

We need a triggering algorithm for
the transmitters that can deliver, to a
specified probability, a particular level
of per-node throughput. Also, we
want it to run the same way on all
nodes, using identical hardware and
firmware, and it should be simple to
configure. But what kind of scheme
fits the bill?

The solution is to take a standard
tool of network analysis—the Poisson
process—and stand it on its head (i.e.,
purposely engineer nodes to send their
data at Poisson-random times).

As a result, the network takes on
some surprising properties. First and
foremost, its operation may be char-
acterizeded mathematically, making
it possible to design for specific per-
formance criteria.

Nearly as important, all nodes
operate the same way. They can use
identical hardware and software, and
each enjoys the same long-term
throughput.

A formal derivation of the relevant
design equations appears in the side-
bar on page 18. There are two equiva-
lent methods for specifying the
desired performance.

The
Poisson
Network

 CIRCUIT CELLAR ® Issue 113 December 1999 13www.circuitcellar.com

sample design because the port pin
itself has enough juice to cover these
two components. Note, however, that
you must tweak the firmware (set
USINGFETPOWERSW to 0) and short
the gate and drain lines if you ditch
the FET.

Why is the FET there, then? Two
reasons. First, the port pin does not
deliver a true 5.0 V, and it has limited
drive capability. This could be a prob-
lem if other, more powerful RF boards
are substituted for the TX-99.

Second, the FET may come in
handy when adapting this circuit to
other sensors. The DS1620 just hap-
pens to have such a low quiescent
draw (<1 µA) that it could be hooked
right into the main power. But in
general, sensors and their supporting
circuitry require power switching.

ABOUT THE PIC12CE519
This is a chip only a

hacker could love. Its archi-
tecture is quite convoluted.
Check out these limita-
tions:

• two-level stack
• no plain-Jane return

opcode; RETLW must be
used exclusively

• called functions must
reside in low half of each
program memory page

These restrictions make it
difficult to write a program
of any length without re-
sorting to MPLINK,
Microchip’s tool for creat-

One is to set the long-
term average per-node re-
ception rate. The other is to
specify the minimum prob-
ability of receiving at least
one valid packet per node
in a given time frame. In
either case, you are solving
for the same quantity, λa,
the Poisson-rate constant
ultimately used by the
nodes.

To demonstrate the
feasibility of this tech-
nique, I designed a trans-
mitter and receiver capable
of Poisson triggering. The battery-
powered transmitter sends data pack-
ets over a single channel radio link to
the receiver, which verifies the integ-
rity of incoming messages and passes
valid packets to a PC over a serial
link.

TRANSMITTER
The transmitter (see Figure 1) fea-

tures extremely low standby current
(< 20 µA), and a low parts count, and
it may be readily adapted to a variety
of sensors.

It is built around the PIC12CE519.
This quirky but capable microcontrol-
ler chip oversees the whole opera-
tion—data collection, transmission,
power switching, as well as the Pois-
son trigger.

The Poisson-rate constant and an
8-bit node ID are stored in the PIC’s
16-byte EEPROM area and may be set
via a push-button interface. For de-
tails, see the sidebar on the page 15.

In the this design, data is taken
from a DS1620 temperature sensor
from Dallas Semiconductor. For sim-
plicity and flexibility, off-the-shelf
hardware is used for the radio link:
Ming’s TX-99 serial RF transmitter,
and the matching RX-99 receiver used
in the circuit in Figure 2.

All aspects of hardware design are
keyed in to the idea of micropower
operation. I used an LM2936 to regu-
late down to 5 V from a 9-V battery.
This semiconductor consumes a pal-
try 10 µA at zero load.

A P-channel FET switches power to
the RF module and the LED. In fact,
you can omit this item from the

Figure 1 —This module transmits packets containing the transmitter ID and the current
temperature at Poisson random times over a single channel radio link. The rate con-
stant and other operational settings are programmed via a pusbutton and LED interface.
This proof-of-concept design supports 256 unique IDs, rate constants from under a
second to almost four hours, measures temperature to 0.1° F, and has a battery life of
two years.

Figure 2 —This module receives packets containing 8-bit transmitter IDs,
the current temperature, and CRC-16 checksums from up to 256 Poisson
transmitters. The data passes to a PC through the serial port.

ing executables from
relocatable blocks of code.

MPLINK is usually
helpful, but for this appli-
cation, I found myself
wasting gobs of space on
page and bank-switching
macros. So, for the pur-
poses of the transmitter
firmware, I whipped up a
more efficient and trans-
parent scheme that relies
on jump tables. Just make
sure you understand what
is going on before you
touch the code at the head

of each page.
Despite these idiosyncrasies, this

chip is perfect for this application. It
has plenty of horsepower, NVRAM,
and a low-power sleep mode. And, it
costs next to nothing.

SIMULATING POISSON
TRIGGERING

An excellent approximation to a
Poisson process is obtainable with no
external hardware whatsoever. You
should be able to get similar results
on any modern embedded CPU.

Here, in a nutshell, is the basic
idea. Poor-quality environmental
noise is used to generate a seed value
for a linear congruential pseudo-ran-
dom number generator. After each
packet transmission, the generator is
tapped once or twice (a decision based
on environmental noise) to produce a
new uniform deviate.

14 Issue 113 December 1999 CIRCUIT CELLAR ® www.circuitcellar.com

Because intervals between succes-
sive Poisson-random events conform
to the so-called exponential distribu-
tion, the new random number is
transformed mathematically into an
exponential deviate and scaled up by
the current Poisson-rate constant to
give the delay between one current
transmission and the next.

I use the Park-Miller Minimal
Standard 31-bit random number gen-
erator for uniform deviates [1]. Algo-
rithms like this generate new
pseudo-random numbers based on
their last result, and so a four-byte
area is given over to the generator and
always holds the current deviate.

Using environmental noise to es-
tablish a seed value for the generator
ensures that different transmitters
generate novel sequences from the
start. The seed is assembled bytewise
from four iterations of a routine that
measure the differential between the
watchdog timer and the internal RC
clock. Both timers are built into the
PIC. The ∆t on the maximum watch-
dog delay provides some randomness.

Each iteration, the watchdog is set
to the maximum (nominally 2.3 s),
and TMR0 is set to increment every
internal clock cycle and left to run
until the watchdog resets the PIC. On
reset, the value of TMR0 is read, it is
XORed with the transmitter’s 8-bit ID
code (for good measure), and the re-
sult written to the seed register.

By the way, this produces good
results even for identical ID codes.
Another important note: we have to
make sure the seed value is nonzero.
Generators like the PM choke on
naughts.

THE MAIN LOOP
OK, so on powerup we run through

the seed generator, and from then on
each call to PM results in a nice, uni-
form random deviate, with all values
from 1 to 231—1 equally probable (an
idealization; see the Park Miller paper).

After this and other initializations,
the PIC enters an endless loop con-
sisting of these steps: read the sensor,
transmit the data, generate a new
uniform random number, and use it

along with the Poisson-rate constant
to compute the next sleep period,
sleep, repeat. Let’s take a closer look
at each step.

The sensor in this example is a
DS1620. This chip painlessly delivers
a 9-bit digital temperature over the
range of –55°C to 125°C through a
three-wire serial interface, with con-
version times under a second.

My design uses the technique de-
scribed in Dallas’ app note 105 to
wring out a few more bits of resolu-
tion. Right after each measurement,
the raw high-resolution temperature
is converted to IEEE 32-bit floating-
point format and added to a transmit
buffer.

Next, the RF module is flipped on
and used to transmit the data. There
are some issues here best covered in
connection to the receiver design, so
I’ll just give the broad strokes.

You need to send the measure-
ment, the box’s 8-bit ID, and a CRC-
16 based on the packet before going
off-air. Packet transmissions are ac-
companied by a flash from the LED.

 CIRCUIT CELLAR ® Issue 113 December 1999 15www.circuitcellar.com

Configuring the Transmitter
Assuming you have done the necessary

calculations and have the Poisson constant
in hand, the next step is to configure the
transmitters. Four byte-wide registers hold
the relevant operational constants:

0x00—flags (bit 0 : Set=Use poisson trigger /
Clr=Use periodic trigger)
0x01—least significant bit of rate constant
0x02—most significant bit of rate constant
0x03—transmitter ID

For a given Poisson rate of λe transmis-
sions per second, you can compute the 16-
bit rate constant from this relation:

RateConst = 4.81
λe

The transmitter supports average rates
from 4.81 transmissions/s down to 1 trans-
mission every 3.7 h. To set the transmitter
for an average rate of one transmission per
minute, the appropriate rate constant equals

4.81
1
60

= 289

Note that the actual interval may vary,
depending on the accuracy of the onboard
watchdog timer. In practice, the period is
becomes slightly dilated by the time used
to take and transmit measurement data.

Also, there is a provision for periodic
triggering. In this mode the packets are
transmitted at precise intervals using the
same rate constant. To change the value of
a register, disconnect the battery and recon-
nect it while holding down one pushbutton.

The third step is to release the button,
and enter the desired register address as an
8-bit binary number, most significant bit
first. Use S0 to toggle the current bit value
and S1 to enter the current bit.

The LED shows the current bit value
while S0 is down—the LED stays lit for a 1
and flashes to indicate 0. The bit value
starts out as 0, and defaults to 0 after each
press of S1. For example, to enter address
0x02, you would press S1 six times, then S0
once, followed by S1 twice.

After the last bit of the address has been
entered, the register’s contents will be
displayed on the LED as an 8-bit binary
number, using the coding scheme found in
step three. The LED goes dark for a fraction
of a second between successive bits.

Next, you can enter a new 8-bit value for
the register. The transfer does not take
place until the eighth bit is entered. The
LED lights up and stays on to indicate
success. To abort the process, disconnect
the battery at any time up to that point.

To set the value of a different register,
start the process over. To resume normal
operation, interrupt the power for a few
seconds and reconnect the battery with
both pushbuttons up.

 To restore factory settings, reconnect
the battery while holding both pushbuttons.
The LED will light up and remain on indi-
cating success.

16 Issue 113 December 1999 CIRCUIT CELLAR ® www.circuitcellar.com

Photo 1 —
With a short whip

antenna on the receiver (bottom),
the Poisson transmitters achieve good

range (typically >150") without external antennas.
On top is the transmitter design covered in this article.

After that, you have to cook up a
new sleep interval. Begin by calling
the random number generator once or
twice, depending on the CRC-16 com-
puted in the last step. The checksum
is a convenient pool of random bits,
since small changes in the measure-
ment have a big effect on its value.

I include this step because of its
relevance to large Poisson networks.
When you get into the thousands of
nodes, there is a real possibility of
two transmitters starting up on the
same seed. This additional measure
prevents them from remaining in
lockstep.

It is counterintuitive, but there is a
greater than even chance of this oc-
curring in a system of just 55,000
nodes. Actually, the true number is
much smaller because seeds are not
perfectly random. So, it’s a worth-
while precaution regardless of net-
work size.

In any case, the next step is to
convert the 31-bit uniform deviate to
a 16-bit exponential deviate by taking
its natural logarithm and negating

this result. Then we multiply the
result of that equation by the 16-bit
Poisson-rate constant from EEPROM,
the eight low bits are dropped and the
24 high bits become the next sleep
interval.

The PIC has a flexible sleep
timer, and propped up by a few
lines of code, the 24-bit sleep is
carried out with a minimum of
wakeups, from 0 ms to the maxi-
mum of almost 84 h with a
granularity of just 18 ms.

RECEIVER
The transmitter is where

all the action takes place. In
contrast, the receiver’s job
should be a cinch. All it has
to do is recognize incoming packets
and pass them to a PC through the
serial port.

In my design, the receiver leeches
power from the serial port lines, so
you must assert DTR high and RTS
low for the thing to work. Naturally,
you should keep the serial cable as
short as possible.

This arrangement works well on
the majority of PC’s. However, to
ensure that the receiver can be used
on as many machines as possible, I
included an external power jack in the
design. Through this jack, an ordinary
wall transformer can supply the lion’s
share of the receiver’s power needs,
allowing it to run on virtually all PCs

18 Issue 113 December 1999 CIRCUIT CELLAR ® www.circuitcellar.com

DESIGN CONSIDERATIONS
Packets as transmitted are compat-

ible with the RS-232 protocol, so that
the RF module’s output could, in
theory, be used to drive the port TX
line. However, a design like this could
get you fired, for several reasons.

For one, the output from RF mod-
ules is not always well behaved. Some
modules output static between trans-
mission—not something we want
going out on the serial port line, be-
cause it can lead to spurious recep-
tions and other nasties.

There is another problem, specific
to this transmitter design. Packets are

Photo 1 — Here is the inside of a transmitter module.
On the circuit board are is PIC that does the Poisson
calculations, and the pushbuttons and LED that make
up the (minimal) user interface.

Design Equations
The behavior of simple packet networks has been examined thoroughly in many

papers, and design equations are well known. Relevant to this derivation is the equa-
tion for channel throughput, adapted from [2]. Assume N users send fixed-length
packets, τ seconds in duration, to a central receiver over a common channel. Each
user’s transmission events follow a Poisson process of rate λa packets/sec. From the
perspective of a particular user, the throughput is:

λe = λae– 2λ aτ N – 1

This equation can be used to compute λ, the Poisson rate constant used by the
transmitters, from λe, the desired long-term per-node reception rate.

To use such a network as described in this article, it may be preferable to select λa

so that, to a given probability (µ), at least one valid packet arrives within a given time
period (T). To derive a relation between µ, T, and λa, recognize that for a Poisson pro-
cess of rate λe, the probability distribution of the time until the next event, F(t), is
equal to:

F t = 1 – e– λ et

Setting F(t) = µ and t = T, and solving for λe:

λe = –
1n 1 – µ

T
Combining with the first equation, we arrive at:

λae– 2λ aτ N – 1 = –
1n 1 – µ

T

sent at a nominal rate of 1200 bps, but
the actual rate is tied to the PIC’s
clock speed.

Because the design traded off crys-
tal precision for extra port pins, clock
speed is quite variable over tempera-
ture. The delta can be large enough to
bollix up the PC’s UART, which can
only tolerate data-rate variations of a
few percent.

To iron out these wrinkles, in the
receiver design I interpose a PIC-
12C508 between the RF receiver and
the port driver. The PIC listens to the
RF module for incoming messages,
using a timing byte at the head of
each packet to fix the data rate for the
rest of the packet. Note that this PIC
uses the crystal clock option and is
therefore able to talk to the PC with
no problem.

The receiver algorithm is finicky
about valid signals. It resets on
botched start and stop bits, successive
bytes separated by more than two bit
periods, and if the checksum at tail of
the message does not agree with the
locally computed value.

The hair-trigger reset is vital be-
cause it allows us to easily construct
a transmission sequence guaranteed to
reset the receiver.

 CIRCUIT CELLAR ® Issue 113 December 1999 19www.circuitcellar.com

REFERENCES
[1] S. K. Park and K. W. Miller,

“Random Number Generators:
Good Ones Are Hard To Find,”
Communications of the ACM,
31, 1192-1201, 1988.

[2] N. Abramson, “The Throughput
of Packet Broadcasting Chan-
nels,” IEEE Transactions on
Communications, 25, 117–135,
1977.

SOURCES
PIC12CE519, PIC12C508
Microchip Technology, Inc.
(888) 628-6247
(480) 786-7200
Fax: (480) 899-9210
www.microchip.com

DS1620
Dallas Semiconductor
(972) 371-4448
Fax: (972) 371-3715
www.dalsemi.com

TX-99, RX-99
Ming Microsystems
(818) 912-7756
Fax: (818) 912-9598

Carl Huben is a embedded-systems
specialist for his own firm, Huben Con-
sulting. Since earning an engineering
degree, he has been a programmer of
various stripes. You may reach Carl at
cchuben@ix.netcom.com.

SOFTWARE
The QBASIC data logger and firm-

ware can be downloaded via the
Circuit Cellar web site.

Why is this so important? Because
just prior to a valid packet, the re-
ceiver may be occupied, running up a
blind alley in the static. If we don’t
have some way of resetting the re-
ceiver just prior to a real packet, it
may miss the first few bits. Therefore,
the transmitter is designed to prepend
a reset-inducing header to the packet,
and everything is copacetic.

I wrote a simple data logger in
QBASIC to help me test the network
hardware in the article. This program
is only intended as a demo, but it does
support up to 16 transmitters, has a
constantly updated screen display of
the current and average temperature
for each node, and may be configured
to print a periodic summaries of the
collected data. This program is avail-
able free, along with the rest of the
source code for this article (see the
software, section).

Currently, I am developing com-
mercial versions of the network hard-
ware. Among other improvements,
the new design will run on lithium
coins, eliminating the need for a regu-

lator, and extending battery life con-
siderably. Sensors for humidity and
pressure are also in the works.

Although Poisson networks are of
limited applicability due to their
shortcomings, they do offer some
unique advantages. For example, it
might be good for collecting environ-
mental data from an array of cheap
sensors scattered over a large area. Or
for monitoring the tire pressure of the
tires on an 18-wheeler. For applica-
tions that require low power con-
sumption, low weight, and low cost,
this network architecture might be
worth a thought. I

www.circuitcellar.com
www.microchip.com
www.dalsemi.com

20 Issue 113 December 1999 CIRCUIT CELLAR ® www.circuitcellar.com

DS1820
digital

thermometer
PIC16C73A

microcontroller

Assigned
house code

TW-523
two-way
power

line
interface

DMC16207
LCD

1 3

7

4

Rx, Tx,
zero

crossing

Data (4)
control (3)

Power
line

Local temperature
alternating between

ºF and ºC

Controller requests
 and unit responses

Being Cool
is Easy

FEATURE
ARTICLE

Donald Blake

m
Skip the expensive
sunglasses and red
sports car.
According to Donald,
all you need is a
microcontroller, an
X-10 temperature
sensor, and some
interfacing software
to control a fan to
stay cool on a hot
summer day.

y experiments
with Microchip’s

PIC line of micro-
controllers began with

the ’16C84. The PIC16C84 is a good
starting device. Its 1-KB EEPROM is
quickly reprogrammed and inexpen-
sive programming devices are com-
mercially available or easily built
from readily available plans.

The elemental structure of any
embedded architecture consists of
input, processing, and output. My
initial experiments started with the
output component. I used a 2-line by
16-character LCD module.

The LCD module, which contains
an onboard controller, has a relatively
simple interface. I used the Optrex
DMC16207, although there are a
number of other manufacturers with
many sources for new and surplus
devices. The interface is
documented in Optrex’s
databook and there’s a good
technical document available
online.

Now that I had a working
output device capable of
presenting up to 32 char-
acters, I needed an input
device. I’ve always been
fascinated with temperature
measurement and that’s
where I focused.

My first temperature sensor was an
analog device. An external ADC as
well as a voltage reference was re-
quired because these functions aren’t
built into the ’16C84. Another down-
side to the analog device is that a
constant current source is required
when the sensor is placed at any
significant distance from the ADC.

I discovered the Dallas Semicon-
ductor DS1820 1-Wire digital thermo-
meter shortly after implementing the
analog sensor. The DS1820 provides a
digital interface, eliminates several
external components, gives better
accuracy, and permits the sensor to be
located a considerable distance from
the microcontroller.

Using the ’16C84, LCD display and
the DS1820 digital thermometer, my
first complete PIC project was a
simple indoor/outdoor thermometer
that recorded minimum and maxi-
mum temperature, and displayed
readings in Fahrenheit and Celsius.

THE X-10 INTERFACE
I’ve used the X-10 line of home

automation (HA) products for many
years. I started with simple one-way
“dumb” controllers and later migrated
to the programmable CP-290 X-10
Powerhouse. My current HA setup
uses the Homebase intelligent con-
troller by Home Controls, Inc. I
decided on an X-10 interface for the
next step in my PIC experiments.

Homebase uses the X-10 TW-523
two-way power line interface module
to send and receive X-10 commands.
My one and only TW-523 module
failed a short time back and left me to
rely on my old faithful CP-290 for
several days. I ordered a replacement
TW-523 along with a few spares.

Figure 1 —The PIC16C73A reads local temperature from the
DS1820 and responds to controller requests via the TW-523. The
optional LCD displays local temperature, controller requests, and
sensor responses.

A Temperature-Sensing
Control Device

 CIRCUIT CELLAR ® Issue 113 December 1999 21www.circuitcellar.com

The sensor decodes these
On commands to deter-
mine the temperature
threshold value to use for
the comparison.

The decoded value is
compared to the actual
sensed temperature. The
sensor responds with a
unit On command if the
temperature is greater
than or equal to the
queried temperature
value, or with an Off if
not. The homebase con-
troller then takes the
appropriate action based
on the response received
from the sensor.

An example of the
protocol is illustrated in

Table 1. The controller sends a 75°F
query and the temperature sensor
responds with a unit On command to
indicate that the current temperature
is equal to or greater than 75°F.

Note that an On command
consists of two X-10 transmissions.
Each transmission contains a House
Code and a Key or Function Code.
The Key Code of the first trans-
mission identifies the unit (1 through
16) and the Function Code of the
second transmission identifies the
Command Code (On in this case).

These spare TW-523
modules enabled me to
further my PIC
experimentation.

PUTTING IT ALL
TOGETHER

I now had to decide
what to do with an X-10
interface. I certainly could
make use of some sort of
motion-sensing device.
After some thought, I
decided that a temperature
sensing device would be a
logical extension to my
first project.

I also had a real need for
such a device. My daugh-
ter’s bedroom on the
second floor tends to get
hot during sunny summer days. I had
been using the Homebase controller to
turn on a fan on summer afternoons.

Most of the time this solution was
adequate. On occasion, however,
when we had a cool, rainy day (not
uncommon in central New York), the
bedroom would get too cool.

The obvious solution was to turn
the fan on in the afternoon only if the
temperature was above a certain level.
However, I’d also like to be able to
manually override the fan control
when I’m at home.

The more I thought about the
requirements for this fan controller, it
became obvious that an autonomous
device didn’t make sense. What I
needed was a “dumb” sensor device,
which provided input to the Home-
base controller.

My first thought was to implement
a remote temperature-sensing device
that would send an X-10 command to
the Homebase controller whenever
the temperature transitioned through
a predefined threshold.

There were two problems with this
approach. First, the threshold would
have to be set in the remote device.
Second, I already had enough X-10
transmission devices and adding one
(or more) additional device(s) that
transmitted on their own would only
increase the probability of a collision.

What I finally decided on was a
device that would speak only when

spoken to. The Homebase controller
sends a query to the remote tem-
perature sensor. This query specifies
the temperature threshold. The re-
mote temperature sensor then, and
only then, responds (transmits) to
indicate if the current temperature is
below, at, or above the specified
threshold.

The sensor is programmed for a
single house code and responds to
queries from the Homebase con-
troller. These queries consist of two
consecutive X-10 unit On commands.

Figure 2 —These are the two main elements of the temperature sensor software. The
foreground loop on the left manages the DS1820 and the LCD. The background interrupt-
driven task on the right receives and transmits X-10 commands via the TW-523.

Read and
display house
code setting

Power-on
initialization

Power-on

Read temperature,
display and save

Delay

Toggle Fahrenheit/
Celsius flag

Interrupt

RB0/INT

Setup TIMER0;
 set Tx state no. = 0

Start Tx envelope
if Tx in process

Yes
(zero-crossing)

Toggle heart-beat
LED every 60 interrupts

(once every 1/2 s)

Stop Tx
envelope

Tx state no.

Sample Rx
input

0

1,3,5

2,4

Start next Tx
envelope if

Tx in process

No

(TIMER0)

Setup TIMER0 for next
state;

 increment Tx state no.

Return from
interrupt

Display any X-10
request and response

Figure 3 —The PIC16C73A is wired directly to the DS1820, LCD, and two of the three TW-523 signals. The TW-523
Tx input is controlled indirectly through Q1.

22 Issue 113 December 1999 CIRCUIT CELLAR ® www.circuitcellar.com

OVERVIEW OF THE SENSOR
Refer to the block diagram of the

X-10 temperature sensor in Figure 1.
The PIC16C73A microcontroller is
central to the sensor and controls its
other elements. The PIC’s on-chip
program memory contains the X-10
temperature sensor software. There
are two main elements of the soft-
ware—a background component and a
foreground component (see Figure 2).

The main foreground loop is
entered on powerup after completing
initialization. In this main loop, the
temperature is read from the DS1820
digital thermometer once every 2 s
and displayed on the LCD. The tem-
perature display alternates between
Fahrenheit and Celsius. The tempera-
ture is also saved for use by the back-
ground component.

The PIC’s interrupt drives the
background component, which con-
trols the X-10 input and output inter-
face via the TW-523 two-way power

line interface module. There are two
interrupt sources: an external inter-
rupt generated from the TW-523 zero-
crossing signal and an internal
interrupt generated from PIC’s
Timer0.

The zero-crossing signal is used to
synchronize the sampling of the TW-
523 Rx output and control of the TW-
523 Tx input. The software sets up
the PIC’s internal Timer0 to create a
sequence of precise internal interrupts
synchronized with the zero-crossing
signal for this purpose.

The background component of the
software monitors the TW-523 Rx
output. X-10 transmissions are receiv-
ed bit-by-bit and reassembled. When a
query request is recognized, it is
compared to the temperature reading
that was saved in the main foreground
loop. The appropriate response is
generated and subsequently trans-
mitted bit-by-bit through control of
the TW-523 Tx input (see Figure 5).

THE MICROCONTROLLER
When I started the X-10 temperature

sensor, I had two different PIC micro-
controllers on-hand—the ’16C84 and
the ’16C73A (see Figure 3). The only
choice was the ’16C73A because the
’16C84 had insufficient I/O.

The software for the X-10 tem-
perature sensor was developed using
Microchip’s MPLAB Integrated
Development Environment (IDE) in
combination with Microchip’s
PICSTART Plus programmer. The
MPLAB IDE software, information on
the PICSTART Plus, and datasheets
for the PIC microcontrollers are
available from Microchip’s web site.

THE LCD
The LCD is an Optrex DMC16207

2-line by 16-character display. The
device operates with either a 4- or
8-bit bidirectional parallel data
interface and three control lines. The
X-10 temperature sensor initializes

the LCD to its 4-bit
mode. Only seven
microcontroller I/O
lines are required in 4-
bit mode instead of
11, which would be
required in 8-bit
mode. An external
10 kΩ potentiometer
controls LCD
contrast.

The LCD accepts
8-bit ASCII data and
control characters. In
4-bit mode, two con-
secutive output
operations are nece-
ssary to transfer each
ASCII or control
character to the
display. The four data
lines are bidirectional
and are also used to
read busy status from
the LCD.

The LCD is not
necessary to the
operation of the X-10
temperature sensor. It
can be eliminated
with no other mod-
ification to the
hardware or software.

1-wire
bus

Master WRITE "0" slot Master WRITE "1" slot

60 s<TX "0"<120 s
>1 s

s

s s s

s

sss

s s s s

s

15 015 30

DS1820 SAMPLES

MIN TYP MAX

Master READ "0" slot Master READ "1º" slot

15

>1

Master samples

15 15

DS1820 Samples

MIN TYP MAX

>1

>1

15 015

Master samples

Line type legend

Bus master active low

Both bus master and
DS1820 active low

DS1820 active low

Resistor pull-up

VCC

GND

1-wire
bus

VCC

GND

Figure 4 — Command bytes are written to and data bytes are read from the DS1820 a bit at a time. Each bit read or write slot takes 60 µs
with at least 1 µs between slots.

24 Issue 113 December 1999 CIRCUIT CELLAR ® www.circuitcellar.com

When present, the LCD displays the
selected house code at power-on,
current local temperature (alternating
between Fahrenheit and Celsius),
received requests, and transmitted
responses.

The local temperature is displayed
on the first line of the LCD and the
second line is displayed on the sel-
ected House Code or the X-10
controller query and transmitted
responses.

The selected House Code is
displayed for about 60 s following
power-on. A query received from the
X-10 controller and the response
transmitted by the X-10 temperature
sensor are displayed for about 120 s.
The second line is blanked after the
specified time period has elapsed. The
LCD is controlled by the foreground
software component.

The LCD was also invaluable
during debug of the X-10 temperature
sensor software. I used the second line
of the display to output information
to help troubleshoot problems.

TEMPERATURE SENSOR
The DS1820 1-Wire digital thermo-

meter from Dallas Semiconductor is
available in both a PR35 (3-pin) and a
16-pin SSOP package. The DS1820
provides a 9-bit digital value that
represents the device’s temperature in
0.5°C increments over a –55°C to
+125°C range.

I used the PR35 package for the
X-10 temperature sensor. There are
three connections with either
package: power, ground, and data in/

out. An unusual feature of the device
is that the power connection is
optional. The power and ground pins
can be tied together to operate the
device in its parasite power mode.

In this mode, which I use in the
X-10 temperature sensor, the DS1820
steals power from the data in/out pin
when it’s high. The data in/out line is
wired to the 16C73A Port A bit 0
(RA0) pin.

The DS1820 temperature conver-
sion cycle requires 500 ms. During
this time, up to 1 mA is required and
the data in/out pin must be held high
by the PIC. The 4.7-kΩ pull-up
resistor, used when reading from the
DS1820, will not supply sufficient
current during the conversion. The
X-10 temperature sensor software
performs the DS1820 read temp-
erature sequence shown in Table 2.

The sequence begins with a device
reset performed by pulling the data
in/out line low for 720 µs (minimum
480 µs, maximum 960 µs). The
DS1820 responds with a “device
present” indication 15 to 60 µs fol-
lowing the release of the data in/out
line. The DS1820 pulls the data in/
out line low for 60 to 240 µs.

The X-10 temperature sensor soft-
ware checks for the “device present”
response. If no device is detected, a
software flag is set to indicate that a
temperature reading is not available,
and the remainder of the read
temperature sequence is skipped.

The sensor uses three of the six
DS1820 commands. Each command
consists of 8-bits, which are written
serially a bit at a time. The bit write
timing is illustrated in Figure 4. To
write a one, the PIC drives the data
in/out line low for at least 1 µs and
then drives the line high.

The DS1820 samples the data in/
out line between 15 and 45 µs after
the PIC first drives it low. To write a
zero, the PIC drives the data in/out
line low and keeps it low for at least
60 µs. The PIC drives the data in/out
line high for at least 1 µs between bits.

Each DS1820 has a unique serial
number in built-in ROM that enables
several devices to be wired together
on the same 1-wire bus. A match
ROM command identifies the serial
number of the selected device.

The X-10 temperature sensor uses
the DS1820 in a single-drop config-
uration. The skip ROM command is
used to select the device in a single-
drop configuration. It works like the
match ROM command without need-
ing to provide the serial number.

The convert T command
instructs the DS1820 to begin a
temperature conversion cycle. The
conversion requires a maximum of
500 ms during which the data in/out
pin must be held high when using the
parasite power mode.

The temperature conversion is read
from the DS1820’s scratchpad mem-
ory by the last four steps in the
sequence. The DS1820 sends one
CRC byte following the eight bytes of
scratchpad memory. This byte can be
used to validate the data transfer.

Start code House code Key/Function code Three cycles
 H1 *H1 H2 *H2 H4 *H4 H8 *H8 D1 *D1 D2 *D2 D4 *D4 D8 *D8 D16 *D16 between codes

1 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 1 0 0 1
Start code House code ‘G’ Key code 5

Start code House code ‘G’ Key code 5

Start code House code ‘G’ ON function code

1 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 1 0 0 1

1 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 1 0 0 1

Start code House code ‘G’ ON function code
1 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 1 0 0 1

No gap

No gap

Three or more
cycle gap

Three or more
cycle gap

Figure 5 —Transmission of each X-10 command requires 11 power line cycles. Each command is transmitted twice
with three or more cycles between pairs.

Table 1— In this command protocol example, the X-10
controller sends a 75° query to the temperature sensor.
The sensor responds to indicate that the temperature is
at or above this value.

Controller
Transmit 75°F query:
Unit A, Key Code 7
Unit A, ON Command
Unit A, Key Code 5
Unit A, ON Command

Temperature sensor
Compare current temperature to 75°F
Transmit response:
Unit A, Key Code 16
Unit A, ON Command

Controller
Take appropriate action for temperature at
or above 75°F.

 CIRCUIT CELLAR ®www.circuitcellar.com

The sensor software reads these
nine bytes, one bit at a time. The
software saves the first two bytes,
which contain the 9-bit temperature
value. The remaining six bytes and
the CRC value are discarded. The
DS1820 datasheet further details the
reset, read, and write cycles, and has
information pertaining to additional
features, including the content of the
remaining scratchpad memory locations.

The bit-read timing is also illus-
trated in Figure 4. To read each bit,
the PIC first drives the data in/out
line low for at least 1 µs and then puts
the RA0 pin in the high-impedance
mode.

The DS1820 will drive the data in/
out line low to output a zero or put it
in a high-impedance mode to output a
one. The pull-up resistor causes the
data in/out line to go high when it’s
in the high-impedance mode. The PIC
samples RA0 15 µs from the time it
drives the line low.

POWER LINE INTERFACE
The TW-523 interface is used to

send and receive X-10 codes via the
AC power line. A technical note is
available online from X-10. For those
of you who are long-time subscribers
to Circuit Cellar, the X-10 protocol
and theTW-523 module were describ-
ed by Ken Davidson in issues 3 and 5.

An X-10 command consists of a
start code, a House Code, and a Key or
Function Code. Transmission of each

command requires
11 power line
cycles: two for the
Start Code, four for
the House Code,
and five for the Key
or Function Code.

Each command
is transmitted twice
with at least three
power line cycles
between pairs. The
four House Code
bits and the five
Key or Function
Code bits are
transmitted in true
and complement
form on alternating
half cycles of the

power line.
Here’s an example. To turn on unit

5 of House Code G requires the
following X-10 commands:

Start Code (1110), House Code G
(0101), Key Code 5 (00010)

Start Code (1110), House Code G
(0101), ON Function Code (00101)

Figure 5 illustrates the trans-
mission of these two X-10 commands.
The House Code, Key and Function
Code encoding is defined in the X-10
technical note.

ZERO CROSSING DETECT
The X-10 transmission must be

synchronized with zero crossing on
each half cycle of the power line. This
is the point when the AC voltage goes
from positive to negative or from
negative to positive. The TW-523
provides a zero-crossing output. This
output is a 60-Hz square wave and is
connected to the 16C73A RB0/INT pin.

The X-10 sensor software con-
figures the RB0/INT pin to generate
an interrupt. RB0/INT can be con-
figured to select either the rising edge
or the falling edge. An interrupt on
both edges is desirable and is achieved
by toggling the edge select (INTEDG
bit in the ’16C73A OPTION register)
just after each zero-crossing interrupt.

The software uses the ’16C73A
Timer0 in combination with the zero-
crossing interrupt to provide the

Photo 1 —All components except the LCD, DS1820 digital thermometer, and TW-
523 two-way power line interface are mounted on the printed circuit board. The
TW-523 cable plugs into the modular jack at lower right. The DS1820 is connected
via the twisted pair running from the terminal block at the lower left.

 CIRCUIT CELLAR ® Issue 113 December 1999 27www.circuitcellar.com

precise timing necessary for
sampling of incoming and
gating of outgoing X-10 com-
mands. This timing sequence is
illustrated in Figure 6 and
described in more detail in the
following sections.

The zero-crossing interrupt
is also used to blink the heart-
beat LED (LED2) at a 1-Hz rate,
which provides a warm fuzzy
indication that the temperature
sensor and TW-523 module are
alive and well.

RECEIVING REQUESTS
Each X-10 command is trans-

mitted twice. The TW-523 only
provides the second of the two trans-
missions via its Rx output. The Rx
output is valid between 500 and
700 µs after zero crossing. The soft-
ware sets up Timer0 to generate six
interrupts after each zero crossing.
The first Timer0 interrupt occurs at
600 µs after zero crossing and the Rx
output is sampled at this time.

Remember that it takes 11 power
line cycles or 22 zero-crossing events
for a complete X-10 transmission.
Four samples are required for the Start
Code, eight samples for the House Code,
and 10 for the Key or Function Code.

The temperature sensor looks for a
consistent X-10 transmission which
consists of:

• valid start code: 1 1 1 0
• four House Code bits in true and

complement form
• five Key or Function Code bits in

true or complement form

The incoming X-10 command and
any earlier received commands are
discarded if any inconsistencies are
detected and the software starts over
looking for a valid start code.

PROCESSING REQUESTS
The X-10 sensor recognizes a

request when it receives two con-
secutive On commands for the select-
ed House Code. Remember from the
example in Table 1 that one On com-
mand requires two X-10 transmis-
sions. The first provides the Key Code
and the second provides the Function

Code (On in this case). Combining the
two Key Codes forms the query value.
In the example of Table 1, the Key
Codes of 7 and 5 represent a query
value of 75°F.

The query value is compared to the
last local temperature read from the
DS1820, if any. If the local tempera-
ture is greater than or equal to the
query value, a response of Unit 16 On
is created. Otherwise, a response of
Unit 16 Off is created. An internal
software flag is set indicating that a
response is ready to be transmitted.

If the sensor detects an error during
DS1820 communication, all queries
are ignored and no response is gen-
erated or transmitted.

TRANSMITTING RESPONSES
As in receiving X-10 commands,

transmission must be synchronized to
the zero crossing event. The TW-523
Tx input controls when a high-fre-
quency (120 KHz) carrier is super-
imposed onto the power line. A “1” is
represented by a 120-KHz burst and a
“0” is represented by no burst. The
TW-523 Tx input is driven by the
16C73A RA2 output through Q1.

For single-phase residential power,
this burst begins at zero crossing and
lasts for 1 ms. A three-phase setup
requires three 1-ms bursts during each
half cycle. The temperature sensor is
designed to work in a three-phase setup.

The first burst begins at zero cross-
ing. Subsequent Timer0 interrupts
control when that burst ends or when
the remaining two bursts begin and
end. See Figure 6 for the exact timing.

The TW-523 doesn’t
handle the duplicate trans-
missions on outgoing
commands as it does for
incoming transmissions. The
X-10 software must handle
transmitting each command
twice with a gap of at least
three cycles between pairs.

I use 10 half cycles
between groups so it takes a
total of 108 half cycles (zero
crossing interrupts) to
transmit a complete
response. Breaking down the
108 figure, you get 44 half
cycles per group of two (11

cycles × 2 zero crossings/cycle × 2
transmissions), 10 half cycle gaps
between codes, × 2 codes (Unit/Key
Code and Unit/Function Code).

SYNCHRONIZATION OF
TEMPERATURE MONITORING

Remember from the high-level
software flow in Figure 2 that DS1820
communication takes place in the
main foreground loop and the
interrupt-driven background loop
deals with the TW-523. The DS1820
communication requires precise
timing. A zero crossing or Timer0
interrupt during DS1820 communi-
cation would disturb this timing.

One way to deal with this would
be to disable interrupts during the
periods of time-critical DS1820
communication. However, this
technique disturbs the precise timing
required for the TW-523 interface.

The solution is to synchronize the
time-critical DS1820 code with the
zero crossing and Timer0 interrupts.
Note in Figure 6 that there are three
intervals in each half cycle between
transmission bursts where no inter-
rupts occur. The intervals are
1.778 ms long—more than enough
time to deal with time-critical
DS1820 communication.

An interrupt synchronization
subroutine is called just before all
time-critical DS1820 code. This
subroutine sets an internal flag then
waits for that flag to be reset.

The ’16C73A interrupt handler
resets this flag at the start of each
1.778-ms interval. The interrupt

Figure 6 —Transmission of each bit of an X-10 command starts at the
zero crossing and lasts for 1000 µs. There are three transmissions of
each bit, one for each phase of a three-phase setup. Received data is
sampled at 600 µs after zero crossing.

Next zero crossing start Tx envelope
+6556 µs—stop Tx envelope

+5556 µs—start Tx envelope

+2778 µs—start Tx envelope
+1000 µs—stop Tx envelope

+600 µs—sample Rx

Zero crossing—start Tx envelope

+3778 µs—stop Tx envelope

28 Issue 113 December 1999 CIRCUIT CELLAR ® www.circuitcellar.com

synchronization subroutine has a
3-ms timeout for protection
against a situation where the zero
crossing interrupt has been lost.

PROTOTYPE CONSTRUCTION
I built the X-10 temperature

sensor on a microEngineering
Labs PICProto3 prototyping
board. The main components of
the sensor are mounted on the
PICProto3. This PCB provides
traces and pads for the standard PIC
components such as power supply
circuitry, microcontroller and the
oscillator circuitry.

The remaining temperature sensor
components (with the exception of
the LCD, digital thermometer, and
TW-523 module) are mounted in the
prototyping area of the PICProto3.
Direct point-to-point wiring using
26-AWG solid wire was implemented.

The LCD is connected to the
PICProto3 by a 10-wire ribbon cable
and header connector. The digital
thermometer is wired to a twisted
pair cable connected via a terminal

block. The TW-523 is connected by a
modular cable, which plugs into a
jack mounted on the PICProto3.

APPLICATIONS
The X-10 temperature sensor was

designed to aid in control of a house
fan in a remote location. This device
can also be used in other applications
where it’s desirable to determine
temperature in relation to a threshold.
Applications that come to mind are:

• monitoring freezer temperature to
generate an alarm if the temp-
erature is too high

• monitoring plumbing tem-
 perature to generate an alarm
 and/or turn on a heater if the
 temperature gets too low

For applications where it’s
desirable to obtain a remote
temperature, not just the
relationship to a given thresh-
old, the software could be easily
modified to transmit the local
temperature upon request. The

temperature could be encoded using
standard X-10 Key and Function
Codes. The X-10 controller could
then, for example, record hourly
temperatures and daily high and low
temperatures, as desired.

Although the X-10 sensor provides
feedback for a closed-loop environ-
ment, care should be exercised as
with any X-10 application. Because
X-10 control is not 100% reliable, it
shouldn’t be employed in a situation
where safety might be compromised.
For example, an electric heater should
never be controlled by X-10 alone if it
could cause a fire if left on too long.

Table 2—The temperature sensor uses 3 of the 6 DS1820 com-
mands to read the temperature. The skip ROM command is used to
select the device in a single-device configuration.

Reset device, check device present response
Send skip ROM command
Send convert T command
Delay 500 milliseconds (while holding data in/out high)
Reset device, check device present response
Send skip ROM command
Send read scratchpad command
Read scratch pad (8-bytes plus one CRC byte)

 CIRCUIT CELLAR ® Issue 113 December 1999 29www.circuitcellar.com

SOFTWARE
The complete source code for this
project is available for download
via the Circuit Cellar web site.

REFERENCES
David Tait’s 16C84 programmer

plans, www.man.ac.uk/~mbhstdj/
files/pic84v05.zip

LCD FAQ, ftp.ee.ualberta.ca /pub/
cookbook/faq/lcd.doc

TW-523 manual, www.x10.com/
support/support_manuals.htm

K. Davidson, “Power-Line-Based
Computer Control”, Circuit
Cellar 3, May/June 1998.

K. Davidson, “The X-10 TW523
Two-Way Power Line Interface”
Circuit Cellar 5, Sept/Oct 1988.

Don Blake has 30 years experience in
avionics embedded systems and
diagnostic software development. He
is a senior programmer at Lockheed
Martin Federal Systems in Owego,
NY. You may reach him at
donblake@worldnet.att.net.

SOURCES
PIC16C84
Microchip Technology, Inc.
(888) 628-6247
(480) 786-7200
Fax: (480) 899-9210
www.microchip.com

DMC16207
Optrex
(313) 471-6220
Fax: (313) 471-4767

DS-1820
Dallas Semiconductor
(972) 371-4448
Fax: (972) 371-3715
www.dalsemi.com

TW-253
X-10 USA
(800) 675-3044
(201) 784-9700
Fax: (201) 784-9464
www.x10.com

PICProto3
microEngineering Labs, Inc.
(719) 520-5323
Fax: (719) 520-1867
www.melabs.com

PIC development tools
Dontronics
(613) 9338-6286
Fax: (613) 9338-2935
www.dontronics.com

COOLING DOWN
The temperature sensor provides

remote temperature measurement
without wires, using only standard
X-10 Key and Function Codes. The
Extended Code/Data capabilities of
the X-10 standard are not required. In
addition, the device uses only a single
X-10 House Code.

Many other possibilities exist for
this temperature sensor. The protocol
could be expanded to share a single
House Code among multiple sensors.
The LCD could be left out to reduce the
number of I/O required and permit the
sensor to be used with an inexpensive
microcontroller such as a PIC16C84.
This technique could even be applied
to motion detectors, light-level
sensors, or other types of sensors. I

www.circuitcellar.com
www.man.ac.uk/~mbhstdj)files/pic84y05.zip
ftp.ee.ualberta.ca/pub/cookbook/faq/lcd.doc
www.x10.com/support/support_manuals.htm
www.microchip.com
www.dontronics.com
www.melabs.com
www.x10.com
www.dalsemi.com

30 Issue 113 December 1999 CIRCUIT CELLAR ® www.circuitcellar.com

ence across the junction, depending
on the temperature. From Seebeck’s
work, the thermocouple or thermo-
electric generator (TEG) was born.

Shortly thereafter, in 1834, Jean
Charles Athanase Peltier (1785–1831)
discovered the opposite of the Seebeck
effect: a current passed through the
junctions of dissimilar conductors
results in heat being pumped from one
junction to the other (i.e., one junction
gets colder and the other gets hotter).

Using modern semiconductor ma-
terials, highly reliable and compara-
tively useful thermoelectric coolers
(TECs) are possible, with heat-pump-
ing capacities of up to 100 W or more.

There are several manufacturers as
well as applications of TECs and
TEGs. TECs are employed in cigarette
lighter–powered ice chests but are
probably more routinely used to cool
electronic components.

TECs achieve an approximate
maximum of 68oC temperature differ-
ence between the hot and cold sides,
or heat loads of up to 100+ W. Perhaps
most importantly, TECs have no
moving parts (short of the muffin fan
often used to cool the hot side).

TECs are constructed using soldered
thermocouple junctions, which limits
the maximum working junction tem-
perature to somewhere below the melt-
ing point of solder. TEGs, by contrast,
are designed to exploit the Seebeck effect
for the purpose of measuring higher
temperatures and to generate electrical
power from a variety of heat sources.

To achieve higher levels of conver-
sion efficiency and power output, TEG
energy sources must provide higher
temperature differentials. One manu-
facturer specs a 5% efficiency at a
200oC temperature differential.

Thermoelectric
Micropower Generation

FEATURE
ARTICLE

Randy Heisch

y
In this project, Randy
mixes new technology
(a thermoelectric
cooler) with some old
technology (fire) to
create an alternative
low-power generator.
It may not be the solu-
tion to today’s increas-
ing power demands,
but if things get real
dark on January 1, it
might come in handy.

An Alternative Power

ou’ve no doubt
heard the term

“candlepower” used
to describe luminous

intensity. In this article, however, you
may discover that the term has a
potentially new use. My project? An
electrical power generator that uses an
ordinary candle as the energy source.

THERMOELECTRICITY
Thomas Johann Seebeck (1770–1831)

discovered in 1821 that if the junction
between heterogeneous conductors is
heated, an electromagnetic field (EMF)
is developed across the junction and a
current is caused to flow through the
conductors. Twisting the ends of two
dissimilar metals and heating
this junction results in a typi-
cally millivolt potential differ-

Figure 1— A typical thermoelectric cooling
module generates power when operated in
reverse. This top-down view shows heat applied
(arbitrary) to the hot side as the cool side
passively dissipates heat through a larger
finned heatsink, resulting in a micropower
thermoelectric generator.

GND
V+

TEC

HeatPassive
cooling

 CIRCUIT CELLAR ® Issue 113 December 1999 31www.circuitcellar.com

Figure 2— A voltage of 0.5 V is insufficient for most
electronic devices. This step-up switching power supply
raises the voltage output from the TEG to a usable 5 V.

These TEGs are constructed using
a hot-press thermocouple junction
attach method, which allows for these
higher operating temperatures. But
apparently, the TEG manufacturing
process is substantially more complex:
the modules cost upwards of five times
more than their TEC counterparts.

Fortunately, as I discovered while
implementing this prototype, the less-
costly TEC can be operated in reverse
as a TEG, at necessarily lower tem-
perature deltas. The result is much
lower efficiency and power output.
However, if high power isn’t required,
the TEC will generate power from
heat sources as simple and convenient
as an ordinary candle.

CONVERSION EFFICIENCY
Power-conversion efficiency is not

among the strengths of these devices
(although compared to some solar cells
with as little as 4% efficiency, one
might not consider this a weakness).
As indicated above, with a 200°C
temperature differential maintained
across the hot and cold sides, a typical
TEG might effectively convert 5% of
the input heat into electricity.

Under these conditions, a single
module can produce 1.6 V at 8 A with
a matched load, or almost 13 W, but it
requires the significant temperature
difference between the hot and cold
sides. However, in situations where
this heat is in the form of exhaust and
lost anyway, harvesting even 5% of
the waste is better than nothing, espe-
cially given the reliability and sim-
plicity of these modules.

THE PROTOTYPE
The prototype thermal

power generator, shown in
Figure 1, uses a single 1.5 in. sq.
TEC (because of its lower cost
and because that’s what I had
lying around the bench). I
fitted a heatsink to the hot side
of the TEG and attached the
cold side to a 4-in. sq. heatsink.

The cold side is passively
cooled (i.e., no external fan)
through the surface area of the
finned heatsink. I fashioned a
makeshift shroud from heavy
aluminum foil for the hot side
of the heatsink to confine the

heat rising from the candle to the
proximity of the heatsink.

Using this configuration and an
ordinary household candle (see Photo 1),
I measured an open-circuit voltage of
1.1 V. At near optimum load, the
module produces 0.5 V at 125 mA or
about 63 mW of electrical power. And
that’s with only a 20°F temperature
delta across the TEC!

With an LM34 temperature sensor
attached to the heatsink, I measured a
maximum hot-side temperature of
150°F and 130°F on the cold side. It’s
reasonable, I think, to expect a lower
conversion efficiency given this rela-
tively small temperature differential.
In fact, I expected even less efficiency,
so I was amazed to find this much
power available at such a low tem-
perature difference.

Using a fairly crude power-dissipa-
tion test bed, I measured about 18 W
of power liberated by the candle. As-
suming this measurement is correct,
this TEG configuration and the rela-
tively small temperature differential
provided by the candle and the passive
cooling result in only a 0.35% energy-
conversion efficiency. But, putting the
efficiency factor aside, note that 0.5 V
at 125 mA is enough power to breathe
life into a variety of low-power devices.

HIGH-EFFICIENCY SWITCHING
POWER SUPPLY

Because a 0.5-V supply voltage is
usually inadequate for most devices, I
added a low input, 3–5-V step-up
switching regulator (see Figure 2).
This regulator (the MAX756) specifies

an efficiency of about 82% at 1.2-V
input at a 10-mA load.

With the TEG providing less than
1.1 V loaded, the MAX756 is less
efficient. I measured 4.99 V at 9 mA
out of the switcher, or about a 71%
efficiency.

An alternative would be to include
several TEG modules connected in
series to increase the loaded voltage,
to either a usable range or a range
where the switcher is more efficient.
For example, 3.3 V at a 100-mA load
for the MAX756 results in almost
90% efficiency converting to a regu-
lated 5-V output.

But this design results in a larger
configuration, and a single candle as
the heat source would eventually
prove inadequate. For this sample
implementation, 5 V at 9 mA is suffi-
cient to demonstrate at least a couple
useful applications.

CANDLE POWER
I connected the MAX756 5-V output

to the battery terminals of an AM/FM
pocket radio. After a warm-up period
of about 2–3 min., the reverse-mode
TECs output voltage climbed enough
to allow the switcher to kick in and
the radio was brought to life.

Although the TEG described above
doesn’t produce enough power to run
your average laptop (well, maybe your
Palm Pilot, but I'll let someone else
try it on theirs first), the module is
capable of powering a variety of
microcontroller circuits.

Figure 3 shows a PIC12C672 tem-
perature-monitoring circuit powered
from the TEG. The ’12C672 requires
less than 2 mA at 5 V (at 4 MHz) and
features a four-channel 8-bit ADC and
DIO (configurable across six I/O pins).

Photo 1— The candle-powered radio shown here uses a reverse-
mode thermoelectric cooler to convert heat into electrical energy.
Power is boosted to a usable level by a step-up switching regulator,
which powers the AM/FM radio.

 CIRCUIT CELLAR ® Issue 113 December 1999 33www.circuitcellar.com

I attached an LM34 (a 90-µA Fahr-
enheit temperature sensor) to analog
input AN0 and general-purpose I/O
pin GP5 to an LED circuit. For sim-
plicity, I used the internal 5-V refer-
ence for the ADC.

The LED circuit is a simple RC
network that slowly charges the ca-
pacitor (at less than 2 mA max.) and
provides a quick +60-mA discharge
(controlled by the PIC) to achieve a
momentary bright pulse.

The LED pulses at about 1 Hz if
the LM34 temperature rises above
86oF. At a total maximum power
requirement of ~4 mA, this circuit
leaves ~5 mA to spare from the TEG.

Randy Heisch is a staff engineer in
Sun Microsystems’ Strategic Applica-
tions Engineering group.You may
reach him at randy.heisch@ sun.com.

SOURCES
MAX756
Maxim
(408) 737-7600
Fax: (408) 737-7194
www.maxim-ic.com

TEG/TECs
Hi-Z Technology, Inc.
(858) 695-6660
Fax: (858) 695-8870
www.hi-z.com

Marlow Industries, Inc.
(214) 340-4900
Fax: (214) 341-5212
www.marlow.com

PIC12C672
Microchip Technology, Inc.
(480) 786-7200
Fax: (480) 899-9210
www.microchip.com

RESOURCES
Introduction to the Thermoelectric
Module, http://server1.magi.net/
inbthermoelectric/thermo-
electric_cooler.htm.

FIRE IT UP
There probably aren’t many

circumstances where I’d opt for
an open-flame power source for
an electronic appliance (especially
indoors). But, I can imagine that
a campfire-driven power supply
might come in handy someday.

Or, if Y2K has you concerned
and you have enough combustible
materials on hand, you won’t

have to depend on the power grid to
tune in to your favorite doomsday radio
station—assuming, of course, that the
station has some form of alternative
power to drive their transmitter.

One word of caution: the electric
light bulb has several advantages over
its predecessors, but one of the more
important was the elimination of the
open flame. Be sure to keep in mind
the dangers of (re)introducing external
combustion to the workbench. I

Figure 3— This example low-power PIC microcontroller circuit
requires less than half the power supplied by the TEG described
in this article.

http://server1.magi.net/inbthermoelectric/thermoelectric_cooler.htm
www.maxim-ic.com
www.hi-z.com
www.marlow.com
www.microchip.com

34 Issue 113 December 1999 CIRCUIT CELLAR ® www.circuitcellar.com

Asimov II

FEATURE
ARTICLE

Lloyd Paul Verhage

s
Though not as glori-
ous as a space
shuttle mission, each
flight for the Kansas
Near-Space Project
is certainly exciting.
Prepare for liftoff as
Paul goes through
the pre-flight check-
list for a trip to the
stratosphere via
weather balloon.

pace may be the
final frontier, but

it’s darn difficult for
the amateur to get there.

So I’ve settled for the next best thing.
Knowing that I would soon be

teaching high-school electronics and
science, I developed an educational
project for my future school that in-
volved sending experiments into the
stratosphere. I refer to this as launch-
ing experiments into near space.

The first incarnation of this educa-
tional project was called the Kansas
Near-Space Project (KNSP) and was
active from November 1996 to July
1999. KNSP launched 19 near-space
missions that performed experiments
in meteorology, remote sensing, engi-
neering, radio propagation, space sci-
ence, and life science. In this article I
describe my near-space project and
tell you how I designed the electron-
ics for our near-space capsules.

I hope that some of you will bring
projects like this to other schools
across the country. They can be used
by K-12 students to enhance their
studies, which is what I am attempt-
ing now in Idaho with the Idaho Near-
Space Project (INSP).

First, a few words of explanation.
In real life, I’m not a professional
hardware or a software guy, however I
do a little bit of both on the side.
Professional software writers may
cringe at some of my code and hard-
ware folks may be shocked at some of
my electronics, but both the code and
hardware work well together. It’s my
opinion that the PCB is probably the
better part of the project because it
was designed to my specifications by
Mr. Steve Kelly at the KSU Physics
Electronics Shop (thanks Steve).

THE NEAR-SPACE STACK
The stack for a near-space flight

begins with a helium-filled latex
weather balloon, weighing either 1200
or 1500 grams. A 30′ length of nylon
line (the load line) ties the nozzle of
the balloon to the apex of a parachute.

The capsule itself is attached to the
shroud lines of this parachute and
hangs at the bottom of the stack.
Because of limitations imposed by the
FAA, our capsule actually consists of
two, six-pound boxes. These boxes are
constructed of polystyrene foam pan-
els glued together with hot melt glue.

The boxes are covered in an abra-
sion bag made of spinnaker nylon to
protect them when landing. The bag
also provides attachment points
(dacron loops and jump rings) for the
shroud lines and the other box.

Experiments are mounted to square
openings cut in three sides of each

Photo 1— A dash across a field to catch a descending
capsule after its 90-mile flight. (Inset) Here is a closer
look at the payload during ascent.

Getting a Near-Space Project Off the Ground

 CIRCUIT CELLAR ® Issue 113 December 1999 35www.circuitcellar.com

box. Because of these ports, we don’t
modify our near-space capsule for
each flight. This feature makes a
KNSP capsule similar to a space
shuttle in that the same airframe can
be reused for a wide range of experi-
ments and activities.

Power switches for the capsule’s
various power busses (main, servo,
and auxiliary) and a program header
for the BS2 are mounted to a panel on
the fourth side of each box. The
switches and program header enable
KNSP crew members to operate a
capsule without opening its hatch.

Power for a near-space capsule is
provided by military-surplus lithium
cells. Each cell provides 3 V and has a
capacity of six amp-hours. They have
the form factor of a standard “D” cell
but half the weight of an alkaline cell.
They’re also less sensitive to the low
temperatures experienced during a
flight (we’ve seen outside air tempera-
ture drop as low as –90°F).

Being able to easily mount a vari-
ety of experiments to a capsule air-
frame isn’t enough though. It’s the
near-space controller I designed that
gives a KNSP capsule its flexibility. I
call these controllers the integrated
housekeeping unit (IHU).

THE IHU
The IHU is microcontroller oper-

ated, which means necessary changes
for any flight are simply a software
change away. An IHU performs many
functions during a flight, including:

• monitoring the various bus voltages
• monitoring internal temperatures
• commanding the capsule’s GPS

receiver
• determining current flight status

(ascent or descent)
• performing mission experiments
• telemetering capsule status and

experimental data to ground sta-
tions

Designing an IHU was my first
exposure to microcontrollers. I choose
the Basic Stamp II (BS2) from Parallax
because it used EEPROM (I didn’t
know about flash memory) to store
code and is not an OTP microcontrol-
ler (an important factor when experi-

ments change from flight to flight).
Besides, like another columnist in
this magazine, I’m a crash and burn
kind of guy who makes lots of
changes before I’m satisfied.

The BS2 appeared to be an easy-to-
program microcontroller with a suffi-
ciently powerful set of commands. I
found plenty of app notes to get my
design off the ground (see Figure 1).

Most importantly, the price for the
BS2 and its programmer was right. For
my first use of a microcontroller, I
was quite happy with the results. I
believe I could eventually design a
simple satellite around the BS2.

Steve Kelly designed the IHU PCB
using Tango, a PCB CAD program.
The board itself was a presensitized,
double-sided board purchased from
Kepro.

After developing, the board was
etched in 100 ml of ammonium
persulfate. The board was left cov-
ered with resist at this point, protect-
ing the board as I drilled mounting
holes. The resist was then removed
using a longer soak time. The whole
process was clean and pleasant, unlike
methods that use a ferric chloride etch.
After tinning, it took about two hours
to solder components on the board.

Figure 1— Here is a look at all the components that go into making an IHU fit on a single 6" × 6" board. The set of
male 0.1" headers below the ULN2803 are for the drivers and expansion ports.

36 Issue 113 December 1999 CIRCUIT CELLAR ® www.circuitcellar.com

100000

80000

60000

40000

20000

0
–80 –60 –40 –20 0 20 40 60

Temperature (F)

A
lti

tu
de

 (
fe

et
)

b)100000

80000

60000

40000

20000

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pressure (relative to surface)

A
lti

tu
de

 (
fe

et
)

a)

Power for the entire IHU
board is provided by the
LM2940T-5, which supplies
5 V at up to 1 A of current.
The ’2940 is a low-dropout
voltage regulator that I used
in place of the more tradi-
tional LM7805 because the
’2940 can power the IHU with
6 V rather than with the 7–8 V
the ’7805 requires. Capacitors
between ground and the in-
put/output leads on the ’2940
provide bypassing and im-
proved voltage stability.

The Scott Edwards SSC
allows the BS2 to control up
to eight servos using a single
serial line. Servos are used to operate
experiments such as camera shutters
and release mechanisms.

The Scott Edwards Stamp Stretcher
doubles the number of I/O pins avail-
able to the BS2. Four Stretcher I/O
pins are used to operate the IHU’s SPI
devices (the ADCs and RTC). Eight of
the Stretcher I/O pins are used to
operate the ULN2803.

This arrangement enables the IHU
to operate experiments for which the
BS2 can’t source the necessary voltage or
current, such as firing rocket ignitors.
The last four pins of the ‘2803 are
used as low-power drivers for experi-
ments (they supply 5 V at up to 20 mA).

Many sensors we have flown re-
quire the IHU to digitize a signal
voltage. The IHU uses two MAX186
ADCs for this purpose. With a maxi-

mum input voltage of 4.096 V and a
resolution of 12 bits, the MAX186 has
a precision of 1/1000 of a volt, though
I suspect the board design will not
allow this level of accuracy.

The first ADC on the IHU per-
forms housekeeping functions like
monitoring bus voltages and capsule
temperatures. The voltage dividers on
the IHU are used for this ADC. The
second ADC is available for student
experiments. The BS2 connections to
the MAX186s are the CLK, Din, and
Dout pins. The Din and Dout share the
DATA_IO pin of the BS2, but the Dout

pin has a 1-kΩ resistor to protect it.
The PC140 and one of the LM335s

are used for meteorologic experi-
ments, allowing us to measure both
atmospheric pressure and temperature
during a flight. The PC140 requires at

least 8 V to operate. This volt-
age is provided by a voltage
doubler on the IHU.

The meteorological ’335 is
mounted outside the capsule
body where it’s exposed to the
air. Of the two other ’335s,
one is soldered directly to the
IHU and the other is mounted
to the end of twisted wires and
left inside the capsule. These
’335s enable us to monitor
both the IHU and interior
capsule temperatures as a part
of housekeeping.

Eight pins of the BS2 are
reserved as I/O for experi-
ments. Four of them form

expansion ports with access to only
GND and +5V, and the other four
form expansion ports with access to
GND, +5V, CLK, and DATA_IO.
Experiments using these expansion
ports connect to them with .025″
crimp connectors with 0.1″ spacing
between centers. These expansion
ports act a lot like expansion slots in
a computer.

Photo 2 shows the IHU. Half of its
design comes from a series of app
notes I downloaded from Parallax, and
the other half consists of boards
prebuilt by Scott Edwards Electronics.

INTERFACING EXTERNAL
DEVICES

Without external devices the IHU
would, for the most part, be blind and
mute. Interfaced to the IHU are a

Photo 2— In this IHU photo, the boards are the SSC and Stretcher. At the top
right is the black PC140. The BS2 is at the top center.

Figure 2a— This flight reached 87,000 feet and returned pressure data during the flight. You can see that pressure drops approximately logrithmically as a function of altitude.
b—Air temperature decreases with altitude until you reach the stratosphere, which occured at about 50,000 feet on this flight. Once in the stratosphere, the air temperature
begins to increase with altitude.

38 Issue 113 December 1999 CIRCUIT CELLAR ® www.circuitcellar.com

GPS, Packet Radio, and APRS
The National Marine Electronics Association

(NMEA) has developed a standard for marine electron-
ics, including GPS receivers. This standard, 0183,
Revision 2.0.1, defines how marine electronic devices
communicate over a standard RS-232 serial port.

There are seven standard GPS sentences, of which
amateur radio operators and KNSP typically use two.
All NMEA sentences are sent at 4800 bps, N81 and
begin with an ASCII $ (hex 24) and end with a ASCII
<CR><LF> (hex 0D and 0A).

The $ is followed by a two-part, five-character
address. For the GPS receivers, the first part is a two-
letter designator (GP) indicating that GPS data is be-
ing sent. The second part is a three-letter designator
indicating the type of GPS sentence being sent. The
seven types of GPS sentences are:

GGA—GPS fixed data
GLL—geographical position, latitude and longitude
GSA—GPS dilution of precision and active satellites
GSV—GPS satellites in view
RMC—recommended minimum specific GPS/TRAN-
SIT data
VTG—track made good and ground speed
ZDA—time and date

Amateur radio operators and KNSP use the GGA
(for the time, latitude, longitude, and altitude data)
and the RMC (for heading and speed data) sentences.

Here are two GPS sentences from one of our near-
space flights:

$GPGGA,143906.00,3758.2473,N,09737.8307,W,1,08,1.0,
20855.4,M,26.9,M,,*70

$GPRMC,143911.00,A,3758.2505,N,09737.8538,W,14.9,
278.8,200699,6.0,E*79

The format for the GGA is:

$GPGGA,hhmmss.ss,ddmm.mmmm,n,dddmm.mmmm,e,q,s
s,y.y,a.a,z,g.g,z,t.t,iiii*CC<CR><LF>

where:

hhmmss.ss is the UTC time of the GPS position fix
ddmm.mmmm,N is the latitude of the GPS position

fix
dddmm.mmmm,W is the longitude of the GPS posi-

tion fix
q is the quality of the GPS fix (1 means there is a fix,

but no differential correction)
ss is the number of satellites being used
y.y is the horizontal dilution of precision
a.a,M is the GPS antenna altitude in meters
g.g,M is the geoidal separation in meters

t.t is the age of the deferrential correction data
iiii is the deferential station’s ID
*CC is the checksum for the sentence

The format for the RMC is:

$GPRMC,hhmmss.ss,a,ddmm.mmmm,n,dddmm.mmmm,w,z.z,y.y,
ddmmyy,d.d.v*CC<CR><LF>

where:

hhmmss.ss is the UTC time of the GPS position fix
a is the status of the GPS data, V means it’s valid
ddmm.mmmm,N is the latitude of the GPS position fix
dddmm.mmmm,W is the longitude of the GPS position

fix
z.z is the speed over ground in knots
y.y is the heading of the GPS receiver, in reference to

true north
ddmmyy is the UTC time of the GPS fix
d.d is the magnetic variation in degrees
v is the sense of the variation, in either east or west
*CC is the checksum for the sentence

This information is from the Motorola OnCore User’s
Guide, 68P41117UOI, Revision 7.0, 1996.

It’s easier for our capsules to use packet radio to tele-
meter digital data to ground stations than it is for them
to use modulated analog signals that must be decoded.
However, the cheaper analog system is currently used by
the National Weather Service in their radiosondes.

In the early ’80s, radio enthusiasts in Tucson, Arizona
developed the TNC to handle the work of converting
serial data into audio tones that could be sent over a
radio. These individuals later became the Tucson Ama-
teur Packet Radio (TAPR) and made these TNCs avail-
able to the amateur radio community.

The TNC they developed collects the serial data,
breaks it into packets, calculates a CRC for each packet,
converts the data and CRC into audio tones, keys the
radio, then sends the tones over the radio. Another TNC
at the destination performs these steps in reverse to con-
vert the signal back into serial data, which is displayed
on a PC or dumb terminal.

Most packet radio, and that used by near space cap-
sules, is sent at 1200 bps over VHF (the 2-m amateur
band) or UHF (the 70-cm amateur band). The transmis-
sion range for packet radio is limited to just a bit further
than line of sight. However, during a balloon flight, line
of sight can extend over 400 mi.

Because data is broken into packets, multiple users
can use the same frequency, sharing the limited band
efficiently by time sharing. Packet radio has a collision
detection scheme built into it, so packets can be resent,
if necessary.

(continued)

40 Issue 113 December 1999 CIRCUIT CELLAR ® www.circuitcellar.com

terminal node controller (TNC) and
GPS. A TNC is a modem that uses
amateur radio instead of phone lines
for its data link. The capsule’s TNC is
programmed before flight to operate
in transparent mode (versus command
mode). In transparent mode the TNC
telemeters all data it receives, there’s
no attempt to send data to a specific
recipient on the ground.

The TNC takes some of the
workload off the BS2 by calculating
the CRC for the data and determining
the proper tones to send over the radio
(if the BS2 performed these functions
there would be no EEPROM left to fly
the mission). Three seconds after the
TNC finishes receiving data it keys
its radio and sends out the proper
tones. This particular TNC requires
data to be sent at RS–232-level sig-
nals, hence the MAX233 converter on
the IHU.

The MAX233 acts as a TTL/RS-232
transceiver. Its sole function is to
interface the TNC to the
rest of the board (only
half the chip is used). I
used the MAX233 in
place of the MAX232
because the ’233 doesn’t
need external capacitors.

Writing this article
has made me double
check the IHU design and
the logic used to operate
it. Signals to the AND
gate are inverted logic.
The MAX233 then sees a
single inverted TTL level
signal.

According to the datasheet, the
MAX233 inverts the signals again, so
the TNC will see a RS-232 level sig-
nal, but now in true, rather than in-
verted logic.

For the amateur radio operators out
there, the TNC I am currently using
is the Kantronics KPC3 with V.6
EEPROM. I chose this particular TNC
because of its popularity, price, and
because at the time I didn’t know the
difference between TTL and RS-232
levels (boy, did I learn fast).

The GPS receiver we use is a
Motorola VP OnCore (it’s just a GPS
engine with no display). I chose this
GPS because it will continue to out-
put data once above 60,000′. Some
commercially available GPS receivers
will not provide location data above
60,000′ because of an overly stringent
interpretation of DoD requirements.

To prevent commercial GPS re-
ceivers from being used to guide a
terrorist missile, the DoD prohibits

GPS, Packet Radio, and APRS (continued)
The communications protocol used in packet is

Amateur X.25, or AX.25. As with other networking
protocols, each packet of data contains the sender and
receiver’s identification, or call sign. In the case of the
near-space capsule, we don’t include a specific destina-
tion call sign, we just send packets to anyone listening.

When packet data contains information from a GPS
receiver, the program Automatic Packet Reporting
System (APRS) can display the GPS’s location graphi-
cally. APRS was developed by Bob Bruninga (WB4APR)
of the Naval Academy. Local amateurs can develop
maps of areas of interest or use the maps available
with programs like Delorme’s Street Atlas.

Not only is the location of the transmitting GPS

receiver displayed, but telemetry like weather condi-
tions can be included. Currently Bob is working on a
way to interface slow-scan television to APRS so that
live images may be included as part of the telemetry.

Most of our chase vehicles have APRS running on a
laptop. By carrying their own GPS and transmitting
their location, drivers have a real-time map indicating
their location along with the locations of the capsule
and other chase teams. It also enables chase teams to
send short messages to each other during a chase, keep-
ing everyone up to date with the current status of the
chase and recovery. With packet radio and APRS, chas-
ing a balloon is like shooting goldfish in an aquarium—
we just follow the balloon on the roads displayed.

civilian GPS receivers from providing
position data above 60,000′ when
traveling at speeds in excess of 999
knots. Many GPS receivers treat this
rule as an OR function, rather than
the AND function that it really is.

Using software sent to me by
Motorola, I programmed the OnCore
to withhold transmitting data until
specifically commanded. During a
flight, the BS2 determines when the
OnCore should send data and which
sentences are to be sent. Luckily, the
OnCore accepts TTL-level signals so
there’s no need to interface a MAX233
between the OnCore and the BS2.

Data from the OnCore is sent to
two locations on the IHU. One PCB
trace leads to one input of the AND
gate (after the other input, TNC_Out,
is set high) where OnCore and BS2
data are mixed and then fed into the
MAX233. Because the BS2 controls
the times the OnCore sends data,
there are no signal collisions at the

AND gate. OnCore data
is also sent straight to the
BS2 and parsed to deter-
mine the current altitude.

THE BS2’S POINT OF
VIEW

The flight code I have
developed treats a flight
as consisting of three
modes—preflight, flight,
and descent modes. There
are five, 1-min. loops in
the preflight (wait while
we fill the balloon) por-
tion of the flight code.

0 200 400 600 800

100000

80000

60000

40000

20000

0

Counts/min

A
lti

tu
de

 (
fe

et
)

10
00

 fe
et

Figure 3— Cosmic ray counts increase with altitude until we reach 62,000 feet. At this
altitude we are getting above the tertiary cosmic rays and into primaries and secondaries.

 CIRCUIT CELLAR ® Issue 113 December 1999 41www.circuitcellar.com

Here, the BS2 performs housekeep-
ing functions, like monitoring volt-
ages and capsule temperatures. This
data, along with current GPS data, is
sent to the TNC enabling us to moni-
tor the capsule’s status before we
commit to launch. We want to be sure
the capsule is fully functional before
launch, as they’re too expensive to get
lost in near space.

After we’re satisfied the capsule is
ready for flight, we attach the weather
balloon and take the entire stack out-
side to launch. At the end of preflight
mode, the BS2 goes to flight mode.

LET’S DO LAUNCH
Flight mode is divided into two

segments, the housekeep-
ing segment and the ex-
periments segment. In
Flight Mode, the BS2 con-
tinuously loops through
these two segments until
it has determined the cap-
sule is descending. Each
segment begins with a BS2
command to the OnCore
via the BS2 GPS_Out pin.
The BS2 commands the
OnCore to send the GGA
and the RMC sentences
(with a 3-s delay between

each command). I use the BS2 com-
mands shown in Table 1 to talk to the
OnCore module.

Data from the OnCore is received
over the BS2’s GPS_In pin. Currently,
the BS2 only parses the GGA sentence
for altitude data, but future flights
may parse other fields as well. I’ve
written the following code to get the
altitude from the GGA sentence. In
the real flight code this line is placed
right after the command to the
OnCore to send the GGA sentence.

curr_alt var word ;current
altitude

GPS_In con 3 ;data from
GPS

serinGPS_In,Ext_Comm,15000,
badalt,[wait ("$GPGGA"),
skip 45,dec curr_alt]

After getting the current altitude,
the BS2 telemeters the altitude in
clear text (without the surrounding
GPS sentence) for the benefit of the
chase crews who want to see a simple
altitude reading. But, this is the U.S.,
so I also have a short routine that
converts the current altitude to feet
and telemeters that also.

Because the BS2 doesn’t do floating-
point math, I have a convoluted rou-
tine that is sufficiently accurate to
satisfy our curiosity. When the cap-
sule reaches 60,000′ (both on ascent
and descent), we are required to notify
the FAA. So, the BS2 telemeters a
reminder at altitudes between 60,000′
and 70,000′.

KNSP uses the GGA sentence to
track the capsule’s location (latitude,
longitude, and altitude) and to keep
track of the mission elapsed time
(MET). We use the RMC sentence to
track wind speed and direction.

Typically, the OnCore responds
within a second of being commanded.
But, if the BS2 doesn’t receive its data
within 15 s, the BS2 will jump to the
BADALT routine, which reports that
the OnCore is not active.

It’s important to place an error
routine like this in the serin com-
mand. Without it, the BS2 will con-
tinue to wait for data if the GPS
receiver fails to respond. At 50,000′
you can’t get to the capsule to reset
the BS2 should the GPS hang. Listing
1 shows the current code we use
when the GPS locks up.

Future code modifications
will probably cut the capsule
loose at this point and begin
emergency recovery proce-
dures (like starting a tracking
beacon). The sooner we ter-
minate a failed mission, the
closer the capsule will be to
its last known position.

After GPS data is
telemetered, housekeeping
data is collected and sent to
the ground. After performing
housekeeping functions, the
mission’s experiments are

BadAlt: ;GPS did not respond in 15 sec
serout TNC_Out,Ext_Comm,
 [">NOGPS", cr] ;tell the world
pause 3000 ;wait for the TNC
GPS_Lock = 0 ;no GPS signal
End_GPS:
return

Listing 1— If the BS2 doesn’t receive data from the GPS within 15 seconds, it jumps to the BadAlt subroutine.

TNC_Out con 1 ;data to TNC
Ext_Comm con 188 ;baud for TNC/GPS 4800 baud,
true
GM_Count var byte ;number of RM-60 pulses
GM_Ch con 12 ;data from GM
'*********************
'* Geiger Counter *
'*********************
GM:
count GM_CH,10000,GM_Count ;Count pulses for 10 seconds
serout TNC_Out,Ext_Comm,[�GM:�,
dec GM_Count, cr] ;tell the world

pause 3000 ;Wait 3 sec for tnc to transmit
return

Listing 2— This subroutine counts the number of 5-V pulses given off by the RM-60 for 10 s. Each pulse is a
detection of a cosmic ray. We’re counting atoms emitted by distant stars.

Table 1—The last two serout commands tell the GPS to send the GGA and RMC
sentences. The first just to tells us on the ground that GPS data is about to be sent.

Command Function

GPS_Out con 4 data to GPS
Ext_Comm con 188 baud for TNC/GPS 4800 baud, true
serout TNC_Out,Ext_Comm, tell world were doing gps
 ["GPS", cr]
high TNC_Out keep TNC line high
serout GPS_Out,Ext_Comm, send GGA sentence, just once
 ["$PMOTG,GGA,0",CR,10]
pause 3000 wait for the tnc
serout GPS_Out,Ext_Comm, send rmc sentence, just once
 ["$PMOTG,RMC,0",CR,10]
pause 3000 wait for the TNC
output TNC_Out make an input

42 Issue 113 December 1999 CIRCUIT CELLAR ® www.circuitcellar.com

Listing 3— The BS2 communicates with the MAX186 SPI ADC with this subroutine. The loop controls the
number of channels we collect data from. Got a new experiment? Just increase the counter limit!

Stretch con 7 'data to
stretcher
CLK con 14 'clock line
DATA_IO con 15 ;data line
EXP_Value var word ;result of ADC conversion
ADC_Code var byte ;instructions to ADC
'*********************
'* Experiments ADC *
'*********************
ADC_Exp:
for loop = 0 to 2 ;three experiments this
flight
lookup loop,[$8C,$CC,$9C,$DC,$AC,$EC,
 $BC,$FC],ADC_Code
serout Stretch,IHU_Comm,["L",0] ;activate ADC
pause 100 ;time to quiet down
shiftout DATA_IO,CLK,1,[ADC_Code] ;shift in instructions
shiftin DATA_IO,CLK,2,[EXP_value\12] ;shift out data
serout TNC_Out,Ext_Comm,[">R-", dec
data_rep, "E-CH",dec loop+1,":",dec EXP_value]

pause 10
serout Stretch,IHU_Comm,["H",0] ;shut her down
pause 100 ;time to quiet down
next ;do again until done
pause 3000 ;tell the world
return

performed (see Figures 2a and b). Be-
cause many experiments need to
know the current altitude, the first
order of business is to get updated
GPS data. Some passive experimental
data is collected by counting pulses
from a sensor (such as a geiger
counter) while other passive experi-
mental data is collected via the ADC.

An example of a passive experi-
ment we have flown is the Aware
RM-60 geiger counter (see Figure 3).
The RM-60 is plugged into an IHU
expansion port where it uses the +5V,
GND, and an I/O pin. The code for
this experiment is shown in Listing 2.

The code I’ve written for the Ex-
periments’ ADC is in Listing 3. I
change the limits of the loop accord-
ing to the number of experiments on
each particular flight. The subroutine
in Listing 3 will report the ADC chan-
nel being read and its value.

Some of the experiments per-
formed are active. These include oper-
ating shutters of onboard cameras,
releasing gliders, or lowering tethered
capsules (see Photo 3). To position
servos I use the code in Listing 4, in
which a servo pulls back a pin, releas-
ing a glider.

The command to the SSC tells it to
set servo channel 2 to position 70.
The leading 255 is a start character for
the SSC. The SSC is able to position
servos with a precision of less than 1°.

Other active experiments include
firing rocket engine ignitors and oper-
ating cutdown devices. For instance,
the BS2 can command the Stamp
Stretcher to set a pin high or low (see
Listing 5). In this case, Stretcher pin 8
could connect to an input of a
ULN2803 to fire a rocket ignitor.

After completing the experiment
segment of the flight code, the BS2
returns back to the housekeeping
segment and repeats the process over
again. This setup enables us to collect
about 100 data records throughout a
flight, giving us a resolution of about
1000′ for each flight.

GOING DOWN
One function of the GPS subrou-

tine is to compare the current altitude
with the highest recorded altitude.
This comparison lets the BS2 deter-

mine if the capsule is still ascending,
or if the balloon has burst.

Selective Availability (SA) creates
errors in the calculated GPS position
and can produce jumps in altitude of
100 m while the capsule is on the
ground (and I was sure Kansas had no
earthquakes). During ascent, the cap-
sule usually rises at a rate of 750 feet
per minute. GPS data is collected
about once a minute, so the ascent
rate swamps any GPS altitude errors.

Just to be sure, I don’t let the BS2
enter descent mode until there is a
500-m drop in altitude. Early descent
speeds are greater than 100 mph, or
more than 45 meters per second. So it
only takes one or two loops during
flight mode to determine the balloon
has burst.

Currently I am experimenting with
monitoring barometric pressure as a
backup system to the GPS for deter-
mining balloon burst. I have found,

Listing 4— Here we drop a glider by having the SSC retract a servo. In this case we’re telling the SSC to
position servo number 2 to position 70. After the glider is dropped, we set its status bit (Glide) to one.

lide var bit
Servo con 6
IHU_Comm con 396+$4000 ;2400 bps, inverted
Release_Glider:
Glide = 1
serout Servo,IHU_Comm,[255,2,70] ;retract servo
pause 1000
return

IHU_Comm con 396+$4000 ;bps for servo and stretch 2400 bps, inverted
Stretch con 7 ;data to stretcher
serout Stretch,IHU_Comm,["H",8] ;set pin 8 high
pause 1000 ;wait a second
serout Stretch,IHU_Comm,["L",8] ;set pin 8 low

Listing 5— Need to launch a rocket? Here the BS2 tells the Stamp Stretcher to set its pin 8 high. This sets an
input pin on the ULN2803 high, firing the rocket ignitor.

 CIRCUIT CELLAR ® Issue 113 December 1999 43www.circuitcellar.com

to avoid damage from aerodynamic
forces.

Occasionally we perform experi-
ments during descent, but usually the
capsule only telemeters its location.
During the descent, the BS2 teleme-
ters GPS data more frequently to help
chase crews keep an accurate tab on
the capsule’s position.

At this time, no attempt is made
by the BS2 to determine when it
lands. Even if the flight code made the
determination of touchdown, it would
still only telemeter its location. Typi-
cally the chase crews are within a
mile of the capsule as it lands. But, for
the times we’re not that close, it’s
useful to have the capsule continue to
telemeter its location.

FUTURE PLANS
There are a few things about the

current IHU that I’m unhappy with.
One, we’ve never needed two-way
communication with the capsule (in
fact, we almost lost the first capsule
when a radio operator tried to com-
municate with it). The BS2 has al-
ways been programmed before launch
to be autonomous and has never re-
lied on commands from the ground.

Also, it’s a bit of a pain to need a
TTL-to-RS–232 converter as a part of
the IHU. Communications across the
capsule should be easy and straight-
forward. Finally, the board is double-
sided and therefore difficult to
replicate in a home workshop.

Future designs will implement a
few new features. First, the new IHU
will have a transmit-only TNC built
into the IHU. For this TNC, I’ll use
the MIM Module by Dr. Will Clem-
ent, which will remove about 6 oz
from the total capsule weight and the

however, that above 90,000′, the pres-
sure is lower than the PC140 can
accurately measure, so we occasion-
ally get bad readings. Future code
changes will assign a minimum
change in pressure to prevent PC140
readings from spoofing the BS2.

Ultimately, I’d like to use an accel-
erometer to make the determination
of balloon burst. After the balloon
bursts, speed picks up rapidly so it
should be difficult to fool an acceler-
ometer.

 After the BS2 determines there has
been a 500-m drop in altitude, the
flight program jumps to the descent
mode. There have been a few times
when the GPS lost the satellite lock
and the parse command generated bad
altitude data. When this happens, the
BS2 assumes the altitude has dropped
sufficiently to start recovery proce-
dures (we’ve never experienced an

error that lead the BS2 to determine
the capsule was still ascending).

After getting burned on one flight, I
modified the GPS subroutine so the
BS2 can jump back into flight mode
should it determine that the capsule
is really ascending. In this case, the
BS2 sends a message that it was
spoofed by the GPS before going back
into flight mode. The code used to
determine if the balloon has burst is
given in Listing 6.

After returning from the GPS sub-
routine, burst.bit1 is evaluated. If
it is set to 0 the flight code will jump
to flight mode, if it is set to 1, then
the flight code jumps to descent mode.

During descent we typically close
up dust samplers, release gliders (if
they’re still around), and stop collect-
ing science data. With descent speeds
in excess of 100 mph it’s important
that fragile items be retracted quickly

Photo 3a— The Earth’s
horizon at 85,000 feet.
Distance to the horizon
is over 300 miles away,
so we’re looking into
other states. You can
see the atmosphere as
a thin blue band hugg-
ing the horizon. b—
Looking down at farm
fields from 79,000 feet.

alt_curr var word ;current GPS alt
alt_max var word ;highest alt so far
alt_ft var word ;alt in feet
alt_temp var word ;temporary altitude holder

Check_4_Max: ;are we at a higher altitude?
if alt_curr > alt_max then New_Alt ;set new max alt
if alt_max - alt_curr >
 500 then Descent ;we are dropping
serout TNC_Out,Ext_Comm,[">Lost
 GPS on Descent?", cr] ;didn�t drop enough?
goto End_GPS ;finished

Descent: ;detected a drop
Burst.bit1 = 1 ;set burst status bit
if Phase = 1 then End_GPS ;did we know about this?
serout TNC_Out,Ext_Comm,[">GPS
 BURST", cr] ;tell the world
pause 3000 ;wait for tnc
goto End_GPS ;finish

Listing 6— Are we going up or down? This subroutine checks to see if the current GPS altitude is higher than
the last recorded one, or is 500 meters lower. If lower, we jump to Descent Mode and tell the world.

a) b)

44 Issue 113 December 1999 CIRCUIT CELLAR ® www.circuitcellar.com

SOURCES
Basic Stamp II
Parallax, Inc.
(916) 624-8333
Fax: (916) 624-8003
www.parallaxinc.com

Serial servo controller, Stamp
Stretcher
Scott Edwards Electronics
(602) 459-4802
Fax: (602) 459-0623
www.seetron.com

Weather Balloon
Kaymont Consolidated
(800) 644-6459
Fax: (516) 549-3076
www.kaymont.com

MAX186, MAX233
Maxim Integrated Products
(408) 737-7600
Fax: (408) 737-7194
www.maxim-ic.com

RM-60
Aware Electronics Corp.
(800) 729-5397
(302) 655-3800
Fax: (302) 655-3800
www.aw-el.com

KPC3
Kantonics Co, Inc.
(785) 842-7745
Fax: (785) 842-2031
www.kantonics.com

PCB
Kepro Circuit Systems, Inc.
(800) 325-3878
(636) 861-0364
Fax: (636) 861-9109
www.kepro.com

VP OnCore
Motorola
(512) 891-2030
Fax: (512) 891-3877
www.mot.com

TNCs
Tucson Amateur Packet Radio
(940) 383-0000
Fax: (940) 566-2544
www.tapr.org

RESOURCES
Kansas balloon projects,

www.ksu.edu/humec/knsp/,
jerryc.sound.net/habitat/,
homepage. netspaceonline.com/
~sias/

Nationwide balloon project,
www.amsat.org/amsat/balloons/

SOFTWARE
The software used in the KNSP
capsules can be downloaded from
the Circuit Cellar web site.

balloon.htm, www.geocities.com/
CapeCanaveral/3161/hablic.htm

APRS, www.aprs.org
TAPR, www.tapr.org

MAX233 as well. Because I can think
of a few times when two-way com-
munication may be needed, I’ll add a
DTMF decoder to the board.

Second, I recently developed my
own PCB workshop that works nicely
with single-sided boards (it could be
used to make double-sided boards
with more practice on my part). So I’ll
simplify the IHU design to make it
single-sided, which will enable me to
make IHUs for groups interested in
their own near-space project.

Also, making a few IHUs for my-
self will enable my near-space project
to launch several identical capsules at
the same time. Because each will be
identical, there will be no need to
build experiments to fit a specific
capsule. For those interested, I’ll post
information about my new design
when it becomes available, to the
KNSP webpage.

You now have a brief introduction
to what we do and the electronics and
code required to do it. Please visit the
KNSP web site, see the data we have
collected in past flights, and hear the
stories of our adventures. We’re al-
ways glad to help others who are
starting their own near-space project.
As Pete Sias, my mentor said, it really
is a poor-man’s space program. I

Lloyd P. Verhage, who prefers to be
called Paul, is a former network ad-
ministrator at Kansas State Univer-
sity and a current high school science
and electronics teacher at Nampa
Senior High School, Nampa, ID. His
hobbies include astronomy and near-
space exploration. He can be con-
tacted at pverhage@sd131.k12.id.us.

www.circuitcellar.com
www.ksu.edu/humec/knsp/jerryc.sound.net/habitat/homepage.netspaceonline.com/~sias
www.amsat.org/amsat/balloons/ballons.htm
www.geocities.com/CapeCanaveral/3161/hablic.htm
www.aprs.org
www.tapr.org
www.parallaxinc.com
www.seetron.com
www.kaymont.com
www.maxim-ic.com
www.aw-el.com
www.kantonics.com
www.kepro.com
www.mot.com
www.tapr.org

CIRCUIT CELLAR DECEMBER 199946

N
PC

www.circuitcellar.com

DIGITAL I/O CARD
The Model 5660 is a versatile, 48-line digital I/O card that

is fully ISA-bus compatible and operates in harsh industrial
environments from –40° to 85°C. The
card allows direct connection to many
devices including opto-module racks,
LEDs, relays, and other logic-level de-
vices. It interfaces with TTL signal de-
vices and industry-standard opto-mod-
ules like those from Opto 22 and
Grayhill providing high voltage/cur-
rent I/O with 4000 V of isolation.

The 5660 includes powerful pro-
gramming features that simplify sys-
tem design. Each port has individual
8-bit registers for data, masking, ris-
ing/falling edge sense, and change-
of-state sense. Each of the 48 lines is
programmable as an input or output
and features programmable debounce
from x to y to reject noise commonly
found in industrial applications. The
inputs can be programmed as inter-
rupts, making software polling unnec-

PCNouveau
edited by Harv Weiner

PC/104 ETHERNET ADAPTER
media types. Full duplex operation is supported on 100BaseT
and 10BaseT modes.

The COM1450 is a universal type PC/104-plus card-compat-
ible with 3.3- and 5-V bus systems. The module requires 3.3- and

5-V power. The 100BaseT interface of
the PHY is powered down when using
10BaseT. All options are software se-
lectable except the PCI slot number. A
MII compatible connector is available
for use with other media types. A socket
for a PLCC boot ROM is provided.
Because of the high integration, the
board consumes less than 2 W.

Eurotech SpA
+39-433-486258
Fax: +39-433-486263
www.eurotech.it

The COM-1450 is a high-performance
PCI 100BaseT Ethernet card in a PC/104-plus

form factor that provides flexibility and compatibility
with existing PC applications. It is fully compatible with

operating systems such as DOS,
QNX, Windows 95/98/NT, and

VxWorks. Its high integration makes
this module ideal for rugged embedded
applications where reliability is required.

The COM-1450 is a bus mastering
PCI Ethernet card using the Digital Semi-
conductor 21140 Ethernet chip. The bus
mastering architecture of the 21140
minimizes CPU involvement in packet
transmission and reception. The large
receive and transmit FIFOs permit effi-
cient operation even with high system
latencies. The 21140 chip is noted for its
high-performance advanced feature set,
and wide range of available drivers.
The module supports full autonegotiation
for automatic selection of all twisted

essary. Since software-scanning routines are not used for either
polling inputs or debounce, a system can have hundreds of I/O

points with little intervention of the
processor.

The card mounts in any desktop or
industrial PC and will withstand 5 g of
vibration and 40 g of shock. The I/O
lines are protected against over-volt-
age and ESD by means of a 4.7-KΩ
pull-up/down resistor and two clip-
ping diodes on each line. Optical
isolation also eliminates ground loops
and reduces the chance of EMI events
disturbing the control system.

The Model 5660 sells for $195.

Octagon Systems
(303) 430-1500
Fax: (303) 426-8126

www.eurotech.it

 DECEMBER 1999 EMBEDDEDPC 47

N
PC

www.circuitcellar.com

PCNouveau

The Graphics Client pricing starts around
$300.

Applied Data
Systems, Inc.
(301) 490-4007
Fax: (301) 490-4582
www.flatpanels.com

RISC-BASED SINGLE BOARD COMPUTER
The Graphics Client is a StrongARM RISC-based, single-

board computer running Microsoft’s Windows CE. The 4″ × 6″
card offers powerful RISC performance features along with
sophisticated graphics capabilities and the Windows CE operat-
ing environment. The computer is suited to a variety of applica-
tions including hand-held, battery-operated systems, or systems
requiring minimal embedded-computer space.

Significant features include the StrongARM SA1100 micropro-
cessor operating at 220 MHz, support for three major develop-
ment environments (Windows CE, MicroWare OS-9, and
Windriver VxWorks), video support up to 1024 × 1024 (XGA),
10BaseT Ethernet interface, USB, PCMCIA, and IRDA communi-
cations protocols, and three serial ports. Because of its RISC
environment and streamlined engineering platform, the Graphics
Client produces minimal heat output and has a power requirement
of less than 3 W.

Other features include128-KB EPROM as a boot device 10 TTL
digital, software-configurable I/O lines, four analog inputs with a
range of 0–5 V, and manufacturer-configurable I/O for keypad,
digital touchscreen and additional analog and digital ports. A
real time clock, LED status indicators, and onboard Codec are also
included.

PC/104-plus DISPLAY MODULE
The MiniModule/VFP-III module delivers ultra high-speed,

PCI-based CRT and flat-panel video performance on a compact,
low-power PC/104-plus expansion module. Designed to stack
directly with Ampro’s family of PC/104-plus–compliant
CoreModule CPU products, the module
offers multiple video interface options to
support a wide variety of display tech-
nologies.

Options include analog CRT, televi-
sion (NTSC or PAL), and digital flat-
panel (LCD, EL, and Plasma). An
onboard PanelLink transmitter option is
available for interfacing panels in sys-
tems requiring extreme noise immunity
or remote panel mounting. In addition,
a zoomed video (ZV) input port allows
a live video image from an external
frame grabber to be overlaid on a
standard VGA graphics screen.

To support variable signal timing
and interface requirements, a program-

mable VGA BIOS is located in an onboard flash memory.
Preprogrammed flat-panel BIOS files for several displays are
available, and OEMs can develop configuration files for addi-
tional displays using an optional flat-panel BIOS customization kit.

The MiniModule/VFP-III offers full
software compatibility with all popular
video standards. Resolutions of up to
1280 × 1024 and color depths to 24-bit
true color are supported. In addition, the
display controller includes GUI (graphi-
cal user interface) acceleration hard-
ware that can dramatically boost the
performance of Windows and other
graphics-intensive applications.

The MiniModule/VFP-III is priced from
$267 in OEM quantities of 100.

Ampro Computers, Inc.
(408) 360-0200
Fax: (408) 360-0220
www.ampro.com

www.flatpanels.com
www.ampro.com

R
PC

 CIRCUIT CELLAR DECEMBER 199948 www.circuitcellar.com

Figure 1—The standard parallel port uses only three regis-
ters. EPP/ECP parallel ports have additional registers that are
used to enable and control them.

Real-Time PC

Ingo Cyliax

Parallel Port Interfacing

L ike the serial ports I wrote about last
month, parallel ports are available on
almost all PCs. In many embedded-PC
applications, the parallel port is not used
to drive printers. The basic parallel port
on a PC is less structured than a serial
port. It doesn’t force you to use a specific
protocol, unless of course, you’re talking
to a printer.

THE HARDWARE
The standard parallel port hardware is

quite simple. There are three I/O regis-
ters—data, control, and status. Figure 1
gives you an idea of the basic register
layout. The registers are in a continu-
ous register address space and usu-
ally start at 0x3bc, 0x378, 0x278,
or 0x2bc.

Figure 2 shows the hardware and
the pin assignments on the individual
input and output signals. The data
register, which starts at the base
address, is a simple 8-bit output

latch. The 8-bit value you store in the data
port register appears on the eight data
lines (d0–7). When used with a printer,
these signals carry the information (i.e.,
bytes) you want to send to the printer.

The control register contains various
output signals most often used to control a
printer. Although these signals are impor-
tant to the printer controller, they are just
output signals (with a few twists) as far as
the printer port hardware is concerned.

First, most of the output signals in the
control port are inverted, which means
that when you set a 1 in the control
register, the inverted signal will present a

Join Ingo as he cruises the ins and outs of using the standard parallel port
interface found on your PC. This tour gives you the basics on the different
implementation modes as well as how to connect devices to the port.

low voltage level on the output pin. Not all
of the signals are inverted. In Figure 2,
inverted signals are marked with a bubble
(which signifies a voltage inversion).

The other twist on the control register is
that these are actually bidirectional sig-
nals that are implemented as an open
collector (open drain) signal. The hard-
ware can only pull the signal low so a
resistor is used to pull the signal high.
Other open-collector signals can also pull
this signal to a low state. By reading the
control port, we can detect the true state
of the signal.

If you want to read one of the control
signals, you set the control register
bits for that signal so that it sets a
high. If another open collector driver
pulls this signal low, it will read
back as a low signal.

Of course, you have to account
for the bubbles to find out what state
the control register is in. Writing a 1
to the strobe signal will set it low. So,

Base + 0 Data D7 D6 D5 D4 D3 D2 D1 D0

Base + 1 Status *BSY *ACK PAP OFON *ERR X X X

Base + 2 Control X X X IRQ DSL *INI ALF STR

DECEMBER 1999 EMBEDDEDPC

R
PC

49www.circuitcellar.com

if you want to read the true state of the
strobe signal, you have to write a 0 to the
strobe bit. When you read back the strobe
bit, a 0 means that the voltage is high and
1 means that the voltage is low.

Incidentally, on many parallel ports
the data registers function similarly. By
writing a 0 to a data bit, we can read the
true signal state if another device over-
rides the low voltage with a high voltage.
Although you can rely on the open-collec-
tor nature of the control port, you can’t be
sure that the parallel port on your PC will
behave in this sort of bidirectional mode.

Finally, the control port has an inter-
rupt request enable bit. This signal is not
available outside the port, but
controls the interrupt behavior of
the parallel port itself.

The status register is a true
read-only port. The signal can be
read by the software. You have to
account for the voltage inversion
of these signals. These are also
shown in Figure 2.

Finally, the ACK signal in the
status port will generate an inter-
rupt on the falling edge if the
interrupt request enable bit in the
control register is set to 1. When
used with a printer, the hand-
shake roughly follows this proto-
col (see Figure 3).

The CPU polls the busy signal
in the status register to make sure
the printer is available. The busy

printer has several con-
trol signals it can use to
signal error condition status
information (e.g., out of paper).

As printers got smarter, there
was a need to communicate more
information from the printer to the com-
puter. For example, in a laser printer you
may also want to communicate that al-
though the paper tray is not empty, it holds
the wrong kind of paper. The parallel port
also has the ability to transfer data faster
than a serial port, which makes it useful
for devices such as network adapters or

external disk/tape drives, and for con-
necting to other computers.

The original parallel port was opti-
mized to transfer data in only one direc-
tion—from the computer to the printer. For
bidirectional communication you need to
enhance the capabilities. Let’s take a
quick look at some ways to accomplish
this enhancement.

One way to achieve bidirectional trans-
fers is to use some of the five status bits as
general-purpose data bits. Because one is
already used to sense the printer ACK

signal, we use the remaining four
signals to transfer the data. Four
bits makes up a nibble so this
mode is called nibble mode over
the standard parallel port (SPP).

The IBM PS/2 computer pio-
neered the use of a bidirectional
parallel port. An extra bit in the
control register would change the
direction of the data port, thus
enabling you to read the data
back from the printer. This mode
is called PS/2 mode, or bidirec-
tional mode.

Transferring data one byte at
a time and checking the ACK bit
is time consuming, so you can
add some FIFOs and handshake
hardware. The enhanced paral-
lel port (EPP) can automatically

Table 1—For the standard parallel port signal-to-pin assignments,
the pin numbers correspond to the DB-25 connector found on all PCs.

signal is asserted if the printer’s buffer is
full or if the printer is offline. Once the
printer is not busy, the software will store
the data to be sent in the data register and
will pulse the strobe signal. The printer
uses the strobe signal to store the data in
a latch or buffer and then strobes the ACK
line. If enabled, this signal causes the
processor to interrupt and send the next
byte. This process continues until the pro-
cessor has no more data to send, or the
printer asserts busy.

The general-purpose outputs (data reg-
ister) and inputs (status register) as well as
the open-collector I/O (control reg-
ister) and the interrupt capability of
the parallel port give you plenty of
possibilities, even if you don’t use a
printer.

The PC parallel port is adapted
from the Centronics standard serial
port. The original Centronics paral-
lel port used a 37-pin connector.
The PC version shrunk this down to
a DB-25 connector so it could fit on
the original graphics adapter card. You’re
unlikely to find the old Centronics-style
connector except on some older printers.
Table 1 summarizes the signal types, the
port they appear in and the pin numbers
on the DB-25 connector. The directions
are relative to the computer.

Up until now, I have been speaking
only of the parallel port hardware. This
hardware is the minimum subset you will
see on a Windows-compatible computer
and works well with all types of parallel
printers. You may have noticed that the

Pin Signal Port Direction Description

1 STR Ctrl/0 I/O Data transfer strobe
2 D0 Data/0 O LSB of printer data
3 D1 Data/1 O Bit 1 of printer data
4 D2 Data/2 O Bit 2 of printer data
5 D3 Data/3 O Bit 3 of printer data
6 D4 Data/4 O Bit 4 of printer data
7 D5 Data/5 O Bit 5 of printer data
8 D6 Data/6 O Bit 6 of printer data
9 D7 Data/7 O MSB of printer data
10 ACK Stat/6 I Data acknowledge
11 BSY Stat/7 I Printer busy
12 PAP Stat/5 I Paper out
13 OFON Stat/4 I Off/on-line
14 ERR Stat/3 I Printer error
15 DSL Ctrl/3 I/O Printer select
16 INI Ctrl/2 I/O Reset printer
17 ALF Ctrl/1 I/O Auto line feed

18–25 GND — — Ground

Figure 2—Here are the physical pin assign-
ments of the SPP. A bubble indicates that
there is a voltage inversion on that pin. When
a signal is inverted like that, a 1 written in the
register will generate a low voltage on the
pin.

Data

b7

p2

Status

b0

*ACK PAP OFON *ERR X X X

Control

X X X IRQ DSL *INI ALF STR

p3

p4

p5

p6

p7

p8

p9

p15

p13

p12

p10

p11

b0

b7 b7

b0 p1

p14

p16

p17

Figure 3—During the basic Centronics printer hand-
shake, a strobe is used to indicate that a byte can be
stored in the printer. An acknowledge is sent by the
printer to indicate that the byte has been received.

d0–7

*str

*ack

R
PC

 CIRCUIT CELLAR DECEMBER 199950 www.circuitcellar.com

outb(0x278+2,0x01) /* assert strobe to start */
while(inb(0x278+1) & 0x40) /* wait for intr to go low */

;
outb(0x278+2,0x04) /* high nibble */
high_nib = inb(0x278+1);

outb(0x278+2,0x08) /* low nibble */
low_nib = inb(0x278+1);

high_nib = (high_nib ^ 0x80); /* invert bsy */
low_nib = (low_nib ^ 0x80); /* invert bsy */

/* reassemble 8bit data */
data = (high_nib & 0x80 >> 1) |

(high_nib & 0x20 |
(high_nib & 0x10 |
(high_nib & 0x08 << 4) |
(low_nib & 0x80 >> 5) |
(low_nib & 0x20 >> 4) |
(low_nib & 0x10 >> 4) |

(low_nib & 0x08) ;

Listing 1—Reading the 8-bit ADC using “nibble mode” isn’t so straightforward. Because
I wanted to make ACK line available for interrupts, the bits are kind of jumbled up. It’s not
really a problem, most ‘486-class machines will cut through this code much faster than the
ADC on the port anyway. The bit manipulation doesn’t present much overhead.

transfer 32-bit
words over the 8-bit

parallel port interface. You
can never have enough

speed, so the extended capabil-
ity port (ECP) adds data compres-

sion by using run-length encoding.
Both the EPP/ECP ports can be imple-
mented using DMA on some motherboards
to offload the CPU.

Now that you have SPP, PS/2, EPP
and ECP ports, and various ways of
implementing information flow from the
printer (or other external device), things
get kind of confusing. Many motherboards
let you select the parallel port implemen-
tation (primarily to make it work with the
right kind of peripherals). IEEE-1284 is a
standard that describes all the modes and
how to negotiate what mode/port types
to use. This standard also implements
standardized protocols to communicate
with the external device. One feature is
that you can now probe the printer and
find out what’s connected for plug-and-
play (PNP) capability.

The details of IEEE-1284 are beyond
the scope of this article since I'm focusing
on nonprinter uses for parallel port hard-
ware. As always, if enough of you let me
know that you’re interested in the details,
I can explore the topic in a later article.

HOOKING THINGS UP (INS/OUTS)
Now that you know how the parallel

port is wired, let’s look at some ways to
hook things up to it. Specifically, let’s look
at how to connect stuff to an SPP. In a
nutshell, all input and output signals are

TTL compatible and you can use any TTL-
compatible logic family (HCT, etc.).

Hooking up an 8-bit DAC is easy. You
only need to wire the eight data lines to
the parallel input port of the chip (see
Figure 4a). Just write the value to the data
port, and use a software timer to control
the output data rate of the DAC.

For this example, I used a DAC0808
from National; a fairly old chip that I
found in my junk box. Wiring up newer
chips shouldn’t be a problem. If the chip
you want to use needs a strobe to store the
date and start the conversion, you can use
the strobe line. Update rates of over 300
kHz are easily achieved in this way.

Figure 4b shows how to hook up an
8-bit input device to use for nibble mode
operation. Here you interface a basic
8-bit ADC. The strobe signal (wired to the
/WR of the ADC) starts the conversion.
You can use the ACK line of the parallel
port to sense when the conversion is done.

To multiplex the two nibbles, use the
DSL and ERR signal. A low on these
signals will enable one half of the
’HCT244. You have to be careful to only
assert one at a time. One bit is inverted on
the status port (p11) when we read the
nibble back. Also, the order is jumbled.
Listing 1 shows the code necessary to
read a byte from the ADC.

Figure 4a—The basic 8-bit D/A converter hookup is a no-brainer.
Just wire up the data signals and pump data to it with software.
Newer DACs might require a write strobe. We can use pin 1, the
strobe line, for that. b—Here we are hooking up an 8-bit A/D
converter in nibble-mode. The strobe line is used to initiate the
conversion. The ACK line is used to sense when the converter is
done converting and can be used to generate a interrupt request
on the CPU.

a) b)

 CIRCUIT CELLAR DECEMBER 199952 www.circuitcellar.com

Ingo Cyliax has written for Circuit Cellar
on topics such as embedded systems,
FPGA design, and robotics. He is a re-
search engineer at Derivation Systems Inc.,
a San Diego–based formal synthesis com-
pany, where he works on formal-method
design tools for high-assurance systems and
develops embedded-system products. You
may reach him at cyliax@derivation.com.

I mentioned that the parallel port has
interrupt capability. Because the INTR
signal from the ADC is already wired to
the ACK line, you can turn on the inter-
rupts in the control register. Now, when
the ADC is done converting, the ACK line
will go low and cause an interrupt (IRQ 5
or 7). You can use almost the same code
to read the data from the ADC, except you
don’t need a busy loop to poll the ACK bit.
A timer routine can be used to fire the
ADC at a regular interval.

Finally, how about a simple DC motor
controller interface? In Figure 5, I hooked
up an N channel power MOSFET to D0 of
the parallel port. When I turn the line on,
it sinks current through the motor to ground.

By modulating the MOSFET with a
pulse train, I can vary the amount of
power going to the motor. If the pulse train
is fast enough, the motor won’t respond to
the individual pulses and will essentially
average the power available. Thus, I can
control the motor speed by varying the
duty cycle of a pulse train on D0.

To measure the speed, I use an optical
interrupter. This works like an optoisolator,
except that the light path has an air gap.
The motor has a slotted disk wheel at-
tached to the shaft. When a slot passes
through the light path of the sensor, a
pulse occurs on the ACK line. The ACK
can then cause an interrupt and the inter-
rupt routine, with the aid of a real-time
counter, measures the pulse rate, and thus
the speed.

REFERENCES
J. Axelson, Parallel Port Complete, Lakeview Research,

Madison, WI, 1997.
W.L. Rosh, Hardware Bible, SAMS Publishing, India-

napolis, IN, 1997.
H. Messmer, The Indispensable PC Hardware Book,

Addison-Wesley, Essex, England, 1997.

SOURCE
DAC0808
National Semiconductor
(408) 721-5000
Fax: (408) 739-9803
www.national.com

Figure 5—In this single-bit DAC motor control-
ler with speed sensor feedback, you control
the speed by modulating the pulse width of
a fast pulse train to the MOSFET and sense the
speed by counting pulses from the optical
sensor that senses slots in a wheel attached
to the motor’s shaft.

This is a fairly crude example, but
illustrates the point. Some constraints to
this implementation result from the soft-
ware overhead necessary to process in-
terrupts and manage processes and tasks.
For example, in the RTOS I’m using (RT-
Linux), the interrupt latency can be up to
10 µsec, on the particular machine I’m
using. So, with a margin of 10:1, we
could probably only deal with a 100-µs
maximum interrupt rate. So, that would
give me 100 µs = 10 kHz = 600,000
RPM, which is overkill for this application,
but it’s good to know the limits. Similar
limits exist for the PWM code.

Of course, an 8-bit processor might be
much better suited for this application
since it’s cheaper. But, if you already
have a machine with a free parallel port,
this is essentially free. The processing can
be kept manageable by keeping the inter-
rupt handler code compact. In this ex-
ample, I was able to run a complete
network-capable operating system and
do other work, while the interrupt drive
parallel port interface “did its thing.”

BON VOYAGE
We have only scratched the surface

on this topic. For a more extensive refer-
ence, check out Jan Axelson’s Parallel
Port Complete. Also, some of the other
references have basic information about
the PC parallel port interface.

So, the next time you need a couple of
extra I/O bits, or perhaps an external
interrupt source, maybe you can use a
spare parallel port. RPC.EPC

www.national.com

DECEMBER 1999 EMBEDDEDPC

A
P
C

53www.circuitcellar.com

Applied PCs

Fred Eady

Anyone who’s seen the latest palmtop systems can attest to the fact that
computers are getting smaller. Fred looks at a new idea for making systems
even tinier—running apps on a remote server via some slim software.

Back in days of leased hardware and
software that filled rooms the size of
football fields, a relatively obscure com-
pany called IBM was successfully imple-
menting what we would know later as thin
client architecture.

The user terminal of choice was called
a 3270 workstation and consisted of a
CRT and keyboard. The CRT/keyboard
combination was the perfect picture of
a dumb terminal.

All of the smarts were contained
in a coax-attached external termi-
nal controller called a 3274.
The 3274 was a cluster control-
ler capable of handling up to
thirty-two 3270 devices.

Impact printers with 3xxx
designations could also be
attached to the 3274’s BNC
ports. Parallel channels using
massive cables passed data
between the central proces-
sor, the 3274, and its 3270
parasites.

At that time, the smallest of these pro-
cessors was the size of a large doublewide
refrigerator. Typically, though, the proces-
sor footprints were large enough to take a
little bit of time to walk around.

Practically all of the application smarts
were contained at the processor level. All
of the programs were run on the remote
processor that resided in the glass house.

The 3274 was only there to convert the
raw data and application interactions to
and from the 3270 terminal protocol.

This processing architecture still exists
today, with the 3274 and 3270 controller/
terminal combination giving way to smarter
devices at the terminal end. In fact, the
3270 green screen terminals gave way to
the 3279 high-resolution color units later

on. This was (and is) a large imple-
mentation of massive processing

power capable of simultaneously
serving thousands of users any-
where in the world.

To sum up the technology,
relatively small packets of
data from terminals were
bounced between a proces-
sor (server) and terminal
(client) with most of the heavy-
duty application processing
occurring at the server side.
It has been debated for years
as to the real value of having
such a behemoth system

Thin is In

Photo 1—This box's got real hinges, too!

Clients, Servers, and Systems

CIRCUIT CELLAR DECEMBER 199954 www.circuitcellar.com

when today’s miniature
desktops can do the
same job. I really don’t
want to get in that fight.

It’s funny that later
on, the powers of the
computing world de-
cided that this was not
the most efficient way to
compute or do business.
So, they decided to “distribute” the pro-
cessing by offloading the processor (server)
applications to the clients.

Thus, the clients (terminals) got smarter
and the processors (servers) got smaller.
IBM’s first smart terminal answer was the
3270PC, which was no more than an IBM
AT with some special BIOS hooks and a
3270 ISA adapter card.

At the time, the IBM AT ran at a mind-
bending 6 MHz on top of a 30-MB hard
drive! They even extended this PC/AT
technology to run the large OSs like VM
(Virtual Machine).

That was then, and this is now. Thin is
in…again.

OLD FRIENDS,
NEW TECHNOLOGY

Datalight, known for ROM-DOS and
WinLight, calls its Thin Client offering
ThinSystem. ThinSystem is a software pack-
age that includes major components re-
quired to connect and operate a thin client
system with a remote server. The end users
can access and run applications on the
remote server without having the burden
of containing the application at the client.

I wasn’t giving you a history lesson for
nothing. Like the old IBM 3270 systems,
Thin Client runs application programs like
browsers and spreadsheets remotely on

the server. The client system is responsible
for passing keystroke and mouse data
back to the server.

On the return stroke, and again just
like their 3270 ancestors, Thin Clients
receive raw data and video information
that must be translated and passed to the
eyes and ears of the user. In the IBM large
computer environment, the 3270 protocol
was the way data went from terminal to
mainframe and vice versa.

For the ThinSystem, the client-side soft-
ware (Citrix WinFrame or Microsoft Termi-
nal Server Client) must have corresponding
Citrix or Microsoft server-side components.
My little piece of IBM history didn’t go into
what other companies were doing at this
time, but we all know that another un-
known corporation called Digital was in
with the research and college crowds.
They are known for the VT series of async
terminals that connected to the then Digi-
tal VAX line of computers (and eventually
to most everything else).

ThinSystem can emulate VT100, 5250,
and 3270. 5250 is an IBM midrange
protocol used on System32, System34,
System36, System38, and AS/400 busi-
ness computers. The 5250 protocol is still
around and normally runs over what’s called
twin-ax cabling. The AS/400 is a formidable
processing system and is IBM’s premier

midrange system.
All of the System3x

stuff brings a story to
mind. At that time, Sys-
tem36 was one of the
most popular lines of
small business comput-
ers IBM sold. I remem-
ber meeting a couple
guys who wrote data-
base applications for
local businesses that had
System36 installations.

In case you’ve never
seen a System36, in
those days, the smallest

Photo 2—Strawberries and cream to any administrator.

Photo 3—Of course, I clicked on Modem via PPP.

A
P
C

CIRCUIT CELLAR DECEMBER 199956 www.circuitcellar.com

Photo 4—Had a little trouble being “smart” and toying with the
Modem Init string field.

will either prove me to
be a genius or generate
thousands of “Fred, you
idiot” e-mail responses.)
Regardless of the answer
to either of the above
mysteries, I’m still going
to start by describing
the hardware first.

Datalight ThinSystem
hardware comes housed
in a heavy duty, blue,
padded carrying case (see Photo 1).
Everything a ThinSystem developer needs
is in the case somewhere. There’s even an
adapter for PS/2 keyboards that takes the
smaller PS/2 connector to the larger legacy
5-pin DIN.

For the international readership, the
modular power supply can be outfitted
with three differing AC plug schemes. In
essence, the ThinSystem hardware comes
complete and ready to run right out of the
case most anywhere in the world.

ThinSystem software is shipped as a
CD but is also present within the bowels of
the Arcom SBC-MediaGX I found in the
blue case. Although designed specifically

as a design reference board, the Arcom
SBC-MediaGX is a whole bunch of em-
bedded peripherals supported by a fast
processor complex.

The idea is to develop the application
with this board and embed the same
hardware/software configuration into an
OEM product. The Arcom SBC-MediaGX
has all the functionality of any PC/AT-
compatible system with these additions:

• 16-bit SoundBlaster
• PC/104-plus expansion bus
• MMX-enhanced CPU
• high-performance flat-panel controller

The Arcom SBC-MediaGX clocks in at
233 MHz with a National/Cyrix proces-
sor, 32 MB of DRAM (128 MB max.), and
8 MB of Intel Strata flash memory. You can
skinny the above down to any combina-
tion of DRAM and flash memory, but the
SBC-MediaGX was specifically designed
to support the National/Cyrix processor
and it must remain the same.

On the communications side, the SBC-
MediaGX is strong. Not two, but four RS-
232 ports with a single RS-485-capable
port are on the board. Realtek supplies my
Ethernet interface at 10- or 100-BaseTX
specifications.

There are also a couple of USB inter-
faces. With all that hardware, you may
ask, what can’t this thing do? Well, all of
Bill’s Windows can be washed, including
his palmtop/embedded version, CE. You
can go north of the border for QNX and
you can pet the Linux penguin.

Although the SBC-MediaGX can ac-
cept the full complement of rotating me-
dia, I’ve decided to not attach any of that
stuff and to run the board only on flash
memory. If anything has to be down-
loaded or uploaded to the SBC-MediaGX,
I plan to do it with either the serial or the
Ethernet interfaces.

one was about the
size of a large freezer.

You know, the ones that
open from the top? Down South,

we keep fish in ours.
Anyway, I got to be friends with

these bit-heads and one day I asked
how they managed to write and debug
code for this system since it was normally
only found in a business environment.
“Well,” they said, “Get in the car.”

They drove me to their house and, lo
and behold, there was a full-blown Sys-
tem36 smack dab in the middle of their
living room! My kind of guys!

Anyway, I not only have the Datalight
ThinSystem software package, I have a
neat Arcom embedded PC to run our
ThinSystem on. Again, I’m going to take
you through my experiences, beginning
with the removal of the shrinkwrap.

THE CHICKEN OR THE EGG
Unless I’m out of touch, I haven’t seen

any scientific evidence confirming the
existence of a chicken laying the first egg.
I’m gonna stick my neck out and proclaim
that software followed hardware. (That

-

DECEMBER 1999 EMBEDDEDPC

A
P
C

57www.circuitcellar.com

continuous datastream. If we want to trans-
port these packets of data via an NIC, the
SBC-MediaGX Ethernet interface requires
the correct driver. Because the ThinSystem
can be run on many different embedded
platforms, it will obviously encounter many
differing NICs. The SBC-MediaGX uses
the Realtek RTL8139A Ethernet controller.

Realizing that design engineers have
better things to do than run down obscure
NIC drivers via the Internet, the Arcom/
Datalight ThinSystem development kit
comes loaded with the correct Realtek
NIC driver. As well, standard drivers like

the NE2000 driver are
included on the CD. For
those choosing to run
ThinSystem on a desktop and
other special cases, the CD docu-
mentation provides a URL for a good
source of packet drivers.

ThinSystem configuration depends on
who’s doing the configuration and his or
her goals and expectations. A designer,
like you, would have a nuts-and-bolts
approach to configuring a ThinSystem
client, whereas an end user wouldn’t be
concerned with the hows and whys. They’d

I’m not going into the CMOS setup
detail because it is a standard process
and differs little from any other PC-com-
patible embedded platform. However, I
printed out the 0.397″ of doc that comes
in Acrobat format on the hardware SBC-
MediaGX support CD. It’s thorough.

Basically, I took the brand spankin’ new
SBC-MediaGX embedded PC out of that
beautifully engineered and padded anti-
static case, and immediately dropped it!

I live in an older Florida home, and the
floors are made of a mix of rock and
concrete called terrazzo. The processor
heatsink is glued on, and the first thing I
thought I was going to have to do was
chase the sink across the hard, slick Florida
Room floor. I had installed the DRAM stick
before I fumbled the SBC-MediaGX and I
thought the DRAM stick wouldn’t survive
the meeting with the terrazzo either.

Well, what do I know? I plugged in the
video ribbon and connected a standard
mouse and keyboard. The power supply
connector is supposedly keyed and con-
tains only a +5-V and ground termination.
Looks like you could put it on either way,
so I took the path of least resistance.

I installed the standard AC plug set on
the power brick and fired it up. No
problems. I was surprised to find the
ThinSystem software and ROM-DOS al-
ready installed in flash memory. I was
expecting to have to tell you about doing
that. It’s OK—I just get more page space
for important things like describing how to
connect to Datalight’s Citrix server with
the ThinSystem-filled SBC-MediaGX.

THE SOFTWARE SKINNY
Datalight’s ThinSystem includes Data-

light Sockets, WinLight, Citrix WinFrame
client software, a VT100 terminal emula-
tor, and ThinSystem configuration utilities.
Datalight Sockets is a Winsock 1.1–com-
pliant TCP/IP stack. WinLight is Datalight’s
implementation of Bill’s most famous work.

Our ThinSystem requires a fully com-
patible MS-DOS operating system. ROM-
DOS fits the bill here and is included with
the development kit. One extra that ROM-
DOS brings to the table is the ability to
interface with Datalight’s FlashFX. FlashFX
works with ROM-DOS to eliminate the
spinning mechanical stuff.

Recall that data is sent and received
between the client system and server in
small packets. By design, there is no

CIRCUIT CELLAR DECEMBER 199958 www.circuitcellar.com

just want it to work. An administrator
would be concerned with how the Thin-
System software could be configured to
interact seamlessly with the ThinSystem
designer’s efforts and the user’s goals.
Let’s take a look at this as a designer from
the administrator’s view.

ADMINISTERING THINSYSTEM
Most administrators are password-

happy. So, the first thing the ThinSystem
software does is put up the change admin-
istrator password screen (see Photo 2).

After a password is established, choos-
ing the Admin Mode entry from the user
menu exposes the system admin functions.
After entering Admin Mode, the adminis-
trator can alter the administrative pass-
word, select the position of the WinLight
taskbar, configure TCP/IP, define connec-
tions, and perform file transfer functions.

The taskbar display settings let you put
the taskbar at the top or bottom of the
WinLight screen. A mouse-over mode can
also be set here. Ctrl+Esc activates the
taskbar if no mouse is present.

ThinSystem can communicate with a
remote server via the SBC-MediaGX
Ethernet interface or standard RS-232 via
a modem. Unfortunately, the SBC-Media-
GX development kit didn’t come with an
external modem. If your design is dial-up
based, be sure to take that into account.

Either way, Datalight Sockets must be
configured for everything to work cor-
rectly. If the connection is to be made via
an NIC and DHCP is not available, the
system administrator or designer must
supply the correct IP address, net mask,
and gateway address. Photo 3 is where
the IP work begins.

I don’t have a direct LAN connection to
the Internet so I dug out an old U.S.
Robotics 28.8 Sportster external modem
and attached it to COM2.

Since the Florida Room is without a
Citrix server, the Datalight folks were kind
enough to allow me to access theirs. All I

had to do was enter the COM port, phone
number of my ISP, my ISP login name, and
my ISP login password. The PPP skeleton
can be seen in Photo 4.

The next step was to set up a connec-
tion to the Citrix server out in Washington
State. All the data I needed was supplied
by the Datalight folks, with the exception
of the connection name. Photo 5 shows the
Connections Properties window.

OK. All set up and ready to connect to
the Citrix server. I pushed the mouse pointer
to the top of the screen, and the Start
button appeared.

A click of the Start button, another click
on the Connections menu item, and a final
click on the Circuit Cellar to Datalight
connection. Nothing, nothing at all. The
phone line won’t give me a dial tone and
the client just keeps retrying with no luck.

I went to the nearest phone that was on
the same line I was attempting to dial from
and picked up the handset. Silence. Dang
hurricanes! I’ll bet the little splice job I did
on the phone line outside the Florida
Room is a tad wet from Floyd.

Well, not just wet—gone. I never
claimed to be a professional “telephone
guy.” No problem. I fixed it and fired up
the ThinSystem client again. Still nothing.

Two days later, I discovered that put-
ting text into the Modem Init string field
(Photo 4) under PPP Configuration was a
mistake. (I do claim to be a telecommuni-
cations expert.)

Seems that just entering “AT&F” to reset
the U.S. Robotics external modem didn’t
hack it with the ThinSystem software. The
giveaway was that after the command
was processed, it was echoed back to the
terminal debug screen and the expected
“OK” never appeared.

The key to entering text in the Modem
Init field is to add everything as a character.
That is, to send a carriage return, you must
enter its Hayes command equivalent.

The simple thing to do was to not put
anything there. Son of a gun! After apply-

Photo 5—Piece of cake.
Circuit Cellar to Datalight
is the connection name,
MetaFrame is the connec-
tion type, and 12.17.135.
100 is the Datalight Citrix
server address.

 DECEMBER 1999 EMBEDDEDPC 59www.circuitcellar.com

SOURCES
ThinSystem
Datalight
(360) 435 8086
Fax: (360) 435-0253
www.datalight.com

SBC-MediaGX
Arcom Control Systems, Inc.
(888) 941-2224
(816) 941-7025
Fax: (816) 941-7807
ww.arcomcontrols.com

Fred Eady has over 20 years’ experience as
a systems engineer. He has worked with
computers and communication systems large
and small, simple and complex. His forte is
embedded-systems design and communica-
tions. Fred may be reached at fred@edtp.com.

ing that fix, I got a dial tone and connec-
tion but still no logical session with the
Citrix server. To the phones….

I spoke with Datalight’s Robert Krantz
and his first suggestion was to hook up to
the ISP and attempt to ping 12.17.135.100
(the Citrix server). Sounds reasonable.
Did I say something about being a tele-
communications expert? It helps to
enter the correct IP address.

Again I fired up the SBC-MediaGX/
U.S. Robotics combo. The normal modem
tones were exchanged, my ISP delivered
an IP address to my SBC-MediaGX, and
whap! A little man in a business suit holding
a briefcase was flying on my MetaFrame
screen that was being served from the
Citrix server. Moments later, a familiar
sight, the Windows NT desktop, appeared.

MY DESK(TOP) IN
WASHINGTON STATE

Just for grins, I clicked up Microsoft
Word to look at what NIC was installed
on the server. I played around just like I’d
never seen NT or any of its innards. It was
pure joy. The reality of operating a Win-
dows NT machine from an embedded PC
all the way across the U.S. was awesome.

Although the SBC-MediaGX has plenty
of spunk, I wasn’t even moving its stress
meter. And then it occurred to me that I
was only connected at 26 kbps, not
56 kbps, through an ISP connection running
heavy Microsoft apps as if I was sitting
there with Mr. Krantz!

Once again, the computing world has
gone full circle with Thin Client technology.
And now, Datalight and Robert Krantz
have proven that it doesn’t have to be
complicated (or big) to be embedded.
APC.EPC

www.datalight.com
www.arcomcontrols.com

This project aims at testing the
feasibility of driving an object using a
GPS and a digital compass. In this
case, the object is a model boat that
can sail autonomously along a course
planned in advance. The HC908GP20
stores the coordinates of the way-
points to follow and, according to the
data received from the GPS and from
the digital compass, controls the elec-
tric motor for the propeller and the
proportional servo for the rudder.
Three switches enable the test modes
and a potentiometer allows you to
trim the rudder center position.

A MON08 interface allows the
connection with the ICS08GP20 board
to control Roboat directly from a PC
for testing purposes and when new
waypoint coordinates need to be
stored.

The software for the HC908GP20
is written in assembler and controls
all the functions of Roboat. The main
actions range from starting the propel-
ler and powering up the GPS, to ac-
quiring data from the digital compass,
to computing the course correction in

order to head towards the next
waypoint.

Because of all the computations
with coordinates, plenty of effort
was put into developing routines
in assembler to deal with simpli-
fied mathematics and to handle
arithmetic operation with four-
byte numbers, azimuth angles, and
the trigonometric function
ArcTangent.

Riccardo Rocca
Piacenza, Italy
riccardo.rocca@iol.it

The practical functionality of mod-
ern digital oscilloscopes (as well as
other test equipment) is unquestion-
able. Many modern digital scopes are
eclipsing their analog counterparts in
applications ranging from digital sys-
tems debug to RF design.

However, the advantages of many
of these advanced capabilities can be
somewhat negated by cumbersome
user interfaces. Sometimes there are
not enough buttons (function keys) on

the scope, or quanti-
ties intuitively asso-
ciated with knobs
require multiple
keystrokes to adjust.

As the name im-
plies, the sCo*Pilot
is a device intended
to function as a “co-
pilot” for operating

an oscilloscope. Targeted at the
Tektronix THS series of handheld
digital oscilloscopes, the sCo*Pilot
functions as a “copilot” between the
user and the scope by providing hu-
man interface enhancement to the
THS scope. The sCo*Pilot eliminates
the frustration and confusion of using
the scope’s native “soft keys” to cycle
through hierarchical menus. The
single-button access to commonly
used features, knobs (with accelera-
tion) for adjusting analog quantities,
and LED status indication have dra-
matically increased user efficiency
and usability of the THS scopes (or
other digitally controlled instru-
ments).

Derek Matsunaga
Lousiville, Colorado
derek700@aol.com

Design99: a world of opportunity
for the development engineer.

Roboat
$5000 Prize

sCo*Pilot
$5000 Prize

Here are the top winners of Circuit CellarÔs
explore the 68HC908GPXX family of

RoBoat

sCo*Pilot

Considered a research topic for
years, neural networks are now a
mature technology with proven per-
formance, in particular for
pattern recognition
and process
control. How-
ever, the use
of neural net-
work tech-
niques in
embedded sys-
tems is still
limited, mainly
due to the poor
offering of
ready-made low-
cost hardware
platforms and dedicated development
tools. To improve this situation, Rob-
ert designed a low-cost canned neural
network implementation he calls the
Neural Stamp.

Thanks to the NS’Drive, the
Neural Stamp can be a quick and
cost-effective solution for many me-
dium complexity embedded-control
applications. The speed of the
HC908GP20 gives the Neural Stamp
a response time of 50 ms, which is
adequate for the majority of process
control applications.

And if one Neural Stamp isn’t
enough for a given application, several
Neural Stamp macro-chips can be
easily chained together to build more
complex networks.

Because the microcontroller still
has a lot of free RAM and flash
memory, there’s room for improve-
ments such as including learning
algorithms directly on the target pro-
cessor, which could open the door to
adaptive in-field training.

Robert Lacoste
Chaville, France
rlacoste@
nortelnetworks.com

Similar to the “black
box” on airplanes, the Wit-
ness keeps track of valuable
information that can be
used as evidence or in acci-
dent reconstruction. The
Witness stores the informa-
tion as time-coded packets
of data into a battery-
backed SRAM. Each packet
has a CRC for error check-
ing. If the unfortunate hap-
pens and an accident occurs,

Neural Stamp
$5000 Prize

The Witness
$5000 Prize

the device would be retrieved and the
data would be transferred to a PC
software package. Using the informa-
tion from the device, a computer-
generated simulation of the accident
can be created. Insurance companies,
police departments, lawyers, and acci-
dent victims, could use the simula-
tion as evidence to determine the
cause of the accident.

When the car is turned on, the
device begins checking the sensors
every 100 ms. If the sensor data
changes, a time-stamped packet is
stored into SRAM. Sensor data would
include accelerometers, headlights or
blinkers, brakes, as well as side- or
bumper-impact switches.

Nobody likes to think about get-
ting in an accident, but if you do
you’ll be glad that you had the Wit-
ness with you (unless, of course,
you’re guilty!).

Travis Feirtag
Madison, Wisconsin
tfeirtag@etcconnect.com

eleventh design contest, Design99. These projects
flash memory microcontrollers from Motorola.

The Witness

The Neural Stamp

sponsored by:

THE MAGAZINE FOR COMPUTER APPLICATIONS

62 Issue 113 December 1999 CIRCUIT CELLAR ® www.circuitcellar.com

2
3

High-Definition TV

MICRO
SERIES

Mark Balch

p
MGT, PMT,
VCT....
As Mark

shows us, there’s
now much more to
TV signals than just
NTSC. In the second
article of this series,
he takes us through
the details of HDTV’s
signal and its data
structure.

roducing a high-
definition tele-

vision (HDTV)
program in a studio is

just the first step in the overall pro-
cess of broadcasting those images into
living rooms across the country. The
first article in this series discussed the
organization of the raw HDTV signal
and its associated data structures.

For the last half-century, broad-
casters have transmitted their TV
images by modulating RF carriers
assigned by the FCC with the analog
NTSC signals they created in their
studios. The FCC allocated a fixed
6-MHz portion of the RF spectrum to
each local TV station for that specific
purpose.

In the realm of digital television
(DTV), the FCC decided to stick with
that bandwidth allotment and is
granting new 6-MHz slots to local TV
stations as they transition to digital
broadcast. (At the end of the
transition period in 2006, stations
will have to relinquish one of their
two frequency assignments.)

As mentioned in Part 1, the term
DTV does not directly equate with
HDTV, but simply refers to the
MPEG-2 compressed digital transport
and formatting of television pictures

and their associated data. DTV is
extremely flexible because it gives
broadcasters a fixed chunk of
bandwidth to organize in almost any
way they wish. There are stations
today conducting multi-channel DTV
broadcasts of both HD and standard
definition (SD) material.

Given this digital content, RF
engineers worked out a digital
modulation scheme referred to as
8-VSB (vestigial side band) that allows
19.39 Mbps to be transmitted within
the assigned 6-MHz channel band-
width. Recall that the raw HDTV
signal occupies nearly 1.5 Gbps of
bandwidth—not quite a good match
for a data channel with less than
20 Mbps of capacity! The requirement
for some form of data compression
was clear and it was decided that the
MPEG-2 video compression standard
was well suited for the task.
Therefore, once an HDTV program
has been produced and is ready for
broadcast, the raw signal is fed into an
MPEG-2 encoder where it is
compressed by a factor of roughly
80:1. In his article a few years ago
(Circuit Cellar #86), Do-While Jones
provided us with a discussion of
MPEG-2 compression.

To be properly displayed on a TV,
the compressed bitstream requires
additional data resources to enable the
decoder to reconstruct the original
timing of the video signal and to
navigate and select the correct bits
within the incoming 19.39 Mbps
broadcast datastream. Although these
topics are complex enough to fill
volumes, this article will provide an
overview of these data structures and

MPEG-2 Transport and ATSC Data
Infrastructure

Figure 1 —The MPEG-2 STC is recovered at the
receiver by means of a PLL. The phase reference and
feedback terms are digital count values that are
compared and converted into an analog signal that
drives a voltage-controlled oscillator. As in many PLLs,
a low-pass filter is useful to stabilize the loop’s
response.

P
ar

t 2
3

VCO

42-bit STC

27 MHz

–

Low-pass
filter

A/D
converter

+

PCR stream

 CIRCUIT CELLAR ® Issue 113 December 1999 63www.circuitcellar.com

explain how they work together to
enable a complete DTV broadcast.

TIMING AND
SYNCHRONIZATION

Motion video is inherently real
time in its nature. For a given video
format, each pixel must be excited at
a predetermined time, each line must
have a fixed duration, and frames
must be displayed at regular intervals.
If these critical timing parameters
differ from source to destination, the
result will be a corrupted image.

One of the most critical functions
of the MPEG-2 (ISO/IEC 13818)
standard is to convey sufficient
information to allow the decoder to
accurately reconstruct the same clock
that was used to encode the original
video signal. With the decoder’s
internal clock running at the same
frequency and phase as the encoder’s
clock, it can properly reverse the
compression process and display a
faithful representation of the original
moving image.

MPEG-2 defines a system time
clock (STC) that is 42 bits wide and
comprised of two sections. The first
component is the nine least signifi-
cant bits that implement a modulo-
300 counter clocked at 27 MHz,
which is the fundamental MPEG-2
system clock rate and is generally
derived from the video signal by
means of a phase-locked loop (PLL).

Because of the stringent timing
requirements of video, this 27-MHz
clock is specified with an end-to-end
system tolerance of ±30 ppm. To
guarantee this level of system
accuracy across multiple pieces of
studio equipment and inexpensive
consumer decoders, the accuracy of
the master clock generated by an
MPEG-2 encoder must be
significantly tighter.

The result of this modulo-300
counter is a 90-kHz increment rate
that drives the 33 most significant
bits—the second component of the
STC. These 33 bits are used as a
reference for the presentation times of
various components of an encoded
program.

During the compression process,
the MPEG-2 encoder generates groups

of bits that translate into
visible pictures. The encoder is
able to control the display of
these bits on the TV screen by
attaching a presentation time
stamp (PTS) to them. When the
decoder finishes processing one
of these collections of bits, it
holds the uncompressed result
in its memory until the
associated 33-bit PTS matches
the decoder’s 90-kHz STC
component.

The STC is used for more
than simply keeping video in
synchronization with itself.
Have you ever watched an old movie
on TV where the speech was not
properly synchronized to the
movement of a actor’s lips? Sections
of audio are also accompanied by their
own PTS values so they pass through
speakers at the correct time. The
general term for this process is audio/
video synchronization (A/V sync).

There is yet another use for the
PTS—synchronized data. It is
conceivable that a data-enhanced
DTV program could be created where
arbitrary events occurred at specific
times during the program (perhaps
graphical displays or other effects).

So you see how important it is for
the decoder to be able to operate using
a faithful reproduction of the
encoder’s STC. But how can a 42-bit,
30-ppm, 27-MHz clock be duplicated
by a decoder that may be miles away
from the compressed signal’s origin?

It is done by a combination of a
PLL within the decoder and regular
phase reference markers sent by the
encoder. Each of these markers is
referred to as a program clock
reference (PCR). The MPEG-2 encoder
takes a snapshot of its STC at least 10
times per second and records this
value (embeds a PCR) in the outgoing
compressed bitstream.

The decoder contains a 27-MHz
voltage controlled oscillator (VCO)
that drives a local STC. As PCRs
arrive at the receiver, their values are
compared to the local STC. If they do
not match, the VCO’s frequency is
adjusted slightly so that, over time,
the frequency and phase of the STC
agree with the encoder’s master STC.

Figure 1 illustrates a generic STC
recovery PLL within an MPEG-2
decoder.

TRANSPORT STREAM PACKETS
Once an MPEG-2 bitstream has

been created within an encoder, it is
broken up into chunks and inserted
into 188-byte fixed-length transport
stream packets. (The raw MPEG-2 bit
stream is referred to as an elementary
stream. Compressed audio and data
are other examples of elementary
streams.) Why not just send the
elementary stream? Small, fixed
length packets enable easier time
division multiplexing of multiple
datastreams onto a single medium.

As previously mentioned, more
than just a single compressed
bitstream comprises a DTV broadcast
(additional video, compressed audio,
and data structures are sent as well).
At the same time, small, fixed-length
packets can reduce the overall timing
jitter that multiplexing causes (more
on this later).

The structure of the MPEG-2
transport stream packet is shown in
Figure 2. Notice that the header is
four bytes long, leaving 184 bytes for
payload—roughly 98% efficiency. The
first byte is the sync byte and is
assigned a fixed value of 0x47. The
receiver uses this sync byte to lock to
the incoming transport stream so it
may begin to examine individual
packets.

You can be sure that the value
0x47 will be present at other places in
some packets because there are no
restrictions on data values in the

Figure 2 —MPEG-2 transport stream packets are 188 bytes in
length and contain a four-byte header. A 13-bit PID uniquely
identifies packets from different datastreams. The 0x47 sync byte
allows a receiver to discover the beginning of packets by
searching for 0x47 values spaced every 188 bytes.

0x47

PID

PID

continuity counter
transport

scrambling
control

adaptation
field control

trans.
error
indic.

PUSI
trans.
priority 4-byte

header

184-byte payload

07 (MSB)

64 Issue 113 December 1999 CIRCUIT CELLAR ® www.circuitcellar.com

packet. Therefore, the
receiver’s locking algorithm
must be sufficiently robust to
avoid false detection of sync
bytes. Clearly, if the receiver
gets fooled into thinking a
data byte is a sync byte, it
will begin parsing packet
headers that are actually
payloads of other packets.

A robust locking
algorithm can be
implemented through the use
of a counter to detect
consecutive hits or misses of
the sync value 0x47. Given
the fixed 188-byte packet
length, the algorithm is
smart enough to know that 0x47
values spaced fewer than 188 bytes
apart are data values. The receiver
would begin looking for a 0x47 value
and, when found, would wait 188
bytes. At this point, it would expect
to see another 0x47 value. If so, the
counter would be incremented. If not,
the receiver would again begin
looking for the sync byte.

When the counter reaches a certain
threshold, the receiver would declare
that it has achieved lock on the
incoming transport stream. Using a
method similar to this would allow
the receiver to achieve lock relatively
quickly on a real-world transport
stream that contains many thousands
of packets per second.

Following the sync byte are three
flag bits. The first is the transport
error indicator. This flag would
commonly be set by a lower level data
link over which the transport stream
is actually being carried. A 1 value
indicates that the current packet
contains at least one uncorrectable
error. Transport streams do not
contain any header or payload error
detection or correction information.
This responsibility is left to the
application-specific data link.

The second flag bit is the payload
unit start indicator. The use of this
bit is dependent on the specific type
of payload carried within the packet.
It is used to indicate the beginning of
various data structures that are
defined in the ISO/IEC 13818
standard. If the packet is carrying

private data that is not defined under
the standard, this bit is undefined.

Transport priority is the last flag
bit. It was originally intended to serve
as a means of communication with
the data link in instances where the
data link is overloaded and must drop
a packet. Therefore, the idea is to
label the most important packets
with a 1 and all the rest with a 0.

In reality, this bit is largely ignored
because data links that carry MPEG-2
transport streams almost always have
a sufficient allocated bandwidth. In
rare instances where packets are
dropped, the drops are either not at
the discretion of the transmitter (i.e.,
they result from physical signal
problems), or the transmitter simply
does not have the intelligence to store
packets and provide special handling
for those with the transport priority
bit set.

The next 13 bits form the
important packet identifier (PID)
field. Each PID value denotes a
separate collection of transport
stream packets. For example, the
packets that comprised a single
compressed video stream would all be
labeled with a unique PID. A different
PID would be used to mark the
associated audio for that video.

The receiver uses the PID field to
filter different elementary streams
and send them to the proper
processing units. Therefore, PIDs for a
given elementary stream must be
unique within their transport stream.
Otherwise, you might get video and

audio data mixed up and
lose the ability to properly
decode either. There are
some reserved PIDs that
may not be used by generic
applications. These are
0x0000–0x000F. Some of
these reserved values are
used to convey necessary
data structures that will be
discussed later.

The PID value 0x1FFF is
used to uniquely identify
null packets. In cases where
a packet must be
transmitted, but there is no
useful information to send, a
null packet would be

generated and marked with a PID
value of 0x1FFF. This is not
uncommon because data links that
carry compressed video are often
constant bit-rate interfaces (19.39
Mbps for U.S. terrestrial DTV
broadcasters), which means packets
must be sent regardless of the need for
them. Various complexities and
inefficiencies in real-world systems
can result in the generation of null
packets.

Three more data fields round out
the transport stream packet header.
Transport scrambling control
indicates the scrambling mode of the
packet payload. When set to 0x0, the
payload is unscrambled. Other data
values have application-specific
definitions.

Adaptation field control indicates
the contents of the packet payload.
Adaptation fields convey special
information such as the PCR. An
adaptation field control value of 0x3
indicates that the payload contains an
adaptation field followed by other
data. A value of 0x2 indicates that the
payload contains only an adaptation
field. A value of 0x1 indicates that the
payload contains only other data. The
0x0 value is reserved for future
definition.

The remaining four bits of the
header are defined as a continuity
counter that is incremented for
successive packets which contain the
same PID. This counter allows the
receiver to make a determination as
to whether a packet has been lost or if

Figure 3 —An arbitrary number of transport streams can be multiplexed into one
stream as long as their aggregate bandwidth does not exceed that of the final
stream and there are sufficient unique PIDs to mark all of the incoming packets
uniquely in the outgoing stream. PCR correction ensures that PCR-containing
packets that are forced to wait in an input FIFO for their transmission timeslot are
adjusted to account for this delay instead of introducing excessive jitter into the PCR
streams.

Input
port

PID
mapper FIFO

MPEG-2
transport
stream

Input
port

PID
mapper FIFO

MPEG-2
transport
stream

Input
port

PID
mapper FIFO

MPEG-2
transport
stream

P
a
c
k
e
t

s
c
h
e
d
u
l
e
r

PCR
corrector

MPEG-2
transport
stream

 CIRCUIT CELLAR ® Issue 113 December 1999 65www.circuitcellar.com

a duplicate has been received. A lost
packet would be indicated if, for
example, two consecutive packets
with the same PID were received with
continuity count values 0x6 and 0x8.
A duplicate packet would be indicated
if the continuity count for two con-
secutive packets was the same value.

Of course, this protection is not
perfect because if 15 or 16 consecutive
packets containing the same PID were
lost, the receiver would not properly
detect these events based on the
continuity counter state.

TRANSPORT STREAM
MULTIPLEXING

All complete MPEG-2 transport
streams are multiplexed in some
fashion (i.e., they all contain packets
from multiple elementary streams
with multiple PIDs). The simplest
program consisting of just video and
audio would require a transport
stream to contain multiple unique
PIDs. Therefore, all MPEG-2
broadcast systems contain at least one
multiplexing element.

The basic job of a transport stream
multiplexer is to combine multiple
transport stream packets from
multiple sources into a single
transport stream on the same
outgoing transmission channel. These
packets need to be time-division
multiplexed because two pieces of
data cannot coexist at the same
instant in time in a single transport
stream. Therefore, incoming packets
need to be buffered until the next free
transmission slot opens up for them.

Additionally, the restriction of
unique PIDs within a single transport
stream must be adhered to so unique
elementary streams will not be
corrupted. This requirement creates
the need for a PID mapping function.
Incoming packets may need to have
their assigned PIDs mapped to new
values prior to transmission.

The architecture of a basic MPEG-2
transport stream multiplexer is
illustrated in Figure 3. Basic elements
such as input FIFO buffers, PID
mappers, and a central scheduling
module are shown.

The scheduling module is
responsible for deciding which input
source feeds the output during any
given transmission slot. Each slot
lasts for 188 bytes—the length of all
transport stream packets. Scheduling
can be done in a variety of ways. It
can be on a first-come-first-served
basis or on an allocated-bandwidth
basis where specific inputs have
priorities based on their allocated
percentage of the output data rate.

Scheduling implies that some
incoming packets will have to wait
before being transmitted. It doesn’t
take long to realize that this wait will
vary depending on the instantaneous
traffic entering the multiplexer.
Therefore, the multiplexer will
inherently introduce a certain amount
of jitter into the overall system.

Constant delays in an MPEG-2
system are not a problem because all
data elements are offset by the same
unit of time and therefore have a zero
relative offset. However, variable
delays can create problems, especially
with regard to the sensitive PCRs.

66 Issue 113 December 1999 CIRCUIT CELLAR ® www.circuitcellar.com

standards documents themselves.
MPEG-2 PSI consists of four tables

in the original standard: the program
association table (PAT), the program
map table (PMT), the conditional
access table (CAT), and the network
information table (NIT).

The PAT is the central defining
table that serves as the receiver’s
index to the incoming transport
stream. As such, it is assigned the
reserved PID of 0x0. When the
receiver is first turned on, and in the
absence of any descriptive inform-
ation about how to parse the
incoming transport stream, it knows
that it can look at the payload of
packets with PID=0x0 and obtain the
necessary information to begin
parsing the complete transport
stream. As its name implies, the PAT
associates program numbers with
their PMT. Therefore, the PAT is a
list of program number and PMT PID
pairs along with certain overhead
information.

The program number is a unique
16-bit field whose value is arbitrarily
assigned by the broadcaster. For
example, it may correspond to an
indicated channel number on the TV.

Each program has an associated
PMT section that may reside on its
own unique PID or share a PID with
other sections. The PMT provides the
mappings between program numbers
and the program elements that
comprise them. For example, a
common video program would
contain separate video and audio
elements whose unique PIDs and

Excessive PCR jitter can cause the
receiver’s clock to lose lock. In an
extreme case, this would be visible to
the TV viewer as a corrupted image.
Therefore, a well-designed multi-
plexer will be able to compensate for
this variable delay by correcting PCRs
as they flow through the system.

Over small lengths of time, the
STC increments continuously.
Therefore, if the multiplexer keeps
track of how long a PCR-containing
packet has been stored in the system,
it can add this time offset to the PCR
value to nullify the delay.

When this operation is performed
on all PCRs in a stream, the effect of
the variable delay is negligible. Note
that it is still desirable to minimize
the variable delay through the multi-
plexer, and hence the PCR correction
applied, to reduce exposure to
discontinuities in the STC arising
from splices or other events.

PROGRAM-SPECIFIC
INFORMATION

So far, I have discussed the basic
structure and functionality of the
MPEG-2 transport stream with
references to the data structures that
allow sense to be made out of all the
seemingly random bits.

The MPEG-2 standard defines
several basic tables that provide the
minimum necessary navigation of the
transport stream. These tables are
collectively referred to as program
specific information (PSI). Other
standards bodies geared to specific
implementations of MPEG-2 have
created their own ancillary data
structures to suit their own purposes.

The Advanced Television Systems
Committee is one notable example
that will be discussed later because of
its direct relevance to U.S. terrestrial
DTV broadcast. Another is the Digital
Video Broadcasting (DVB) consortium
whose data structures and standards
are in widespread use throughout the
world.

It is important to realize that all
such data structures are fairly
complex in their nature and
application, and cannot be covered in
complete detail in this article. For
complete information, consult the

presence would be called out in the
program’s PMT. The PID associated
with the program’s PCR is also
signified in the PMT.

Unlike the other three PSI tables,
the NIT is largely undefined by the
MPEG-2 standard, its contents are
private (application specific) and its
presence is completely optional.
About the only standard provision for
it is a reserved notation in the PAT
(i.e., if present, its PID is called out).
This seemingly odd decision was
made because it was recognized that
the carriage of basic information
specific to the distribution medium
would be useful, yet that information
would be so network-specific that a
common data structure for it would
not be possible.

Figure 4 illustrates the relation-
ships and common uses of the
standard MPEG-2 PSI tables.

CONDITIONAL ACCESS
The CAT is the fourth PSI table

and represents an important part of
most subscription video broadcast
systems. However, before discussing
the function of the CAT, it is first
necessary to discuss the concept and
basic operation of conditional access
(CA).

Many video broadcast systems are
offered to viewers on a subscription or
pay-per-view basis. Consider the
monthly cable bill and the additional
pay-per-view channels that are
continuously available. Clearly, the
broadcaster is trading the right to
view a particular program for a
monetary fee.

To guard against unauthorized
viewing of a particular program, the
broadcaster usually implements some
form of security to prevent those who
have not paid the required fee from
watching that program. CA is the
general process by which a broad-
caster gives a specific receiver the
rights to display a program and the
mechanisms that enforce those rights.

In the context of DTV, conditional
access is implemented by scrambling
the MPEG-2 transport payloads and
distributing keys to the appropriate
receivers in a secure fashion. The
general idea is to enable the

Figure 4— The four basic PSI tables enable a receiver
to discover the contents of an MPEG-2 transport stream
so separate datastreams (video, audio, etc.) can be
extracted and processed. This information is hierarch-
ical in its organization to allow for the distinction of
separate programs, each with its own component
datastreams.

Program
association

table
(PAT)

PID=0x00

Network information
table (NIT)

Program
map table

(PMT)

Elementary streams
(video, audio, etc.),

data, ECMs

Conditional access
table (CAT)
PID=0x01

System-wide
access controls

(EMMs)

68 Issue 113 December 1999 CIRCUIT CELLAR ® www.circuitcellar.com

broadcaster to send the correct
descrambling keys to those
customers who have paid for
them. A customer’s receiver
would then use these keys to
descramble the compressed
bitstream and decode the
program normally.

The heart of this method-
ology is obviously the secure
distribution of the keys. These
security and authentication
mechanisms can be extremely
complex and are proprietary
systems. However, the means
of communicating much of
this proprietary information
has been standardized to
enable different vendors to
operate using a common
infrastructure with known
interfaces.

Each receiver in most DTV
broadcast systems that implement
CA contains a small, secure micro-
controller embedded into a card
roughly the size of a credit card. This
removable microcontroller is called a
smartcard. Each smartcard has a
unique identifier embedded within it
containing proprietary decryption
algorithms that operate using this
unique ID.

The first step in allowing a
particular receiver to display a
scrambled program is for the
broadcaster’s CA system to tell the
receiver’s smartcard that it has rights
to that program. Entitlement
management messages (EMMs) are
broadcast messages that do just that.

Each program has an EMM stream
associated with it (indicated by the
CAT). If present in a transport stream,
the CAT is always found on PID
0x0001.

An EMM contains a proprietary
message to each smartcard in the
broadcaster’s whole CA system.
Therefore, as the number of sub-
scribers grows, the size of the EMM
stream increases. An individual
receiver picks out the EMM that is
specifically addressed to it and for-
wards the contents to its local
smartcard. Once the smartcard re-
ceives an EMM, it updates its internal
permissions if the message is valid.

Entitlement control messages
(ECMs) contain the encrypted control
words (keys) used to descramble
transport payloads. ECMs begin
streaming when their associated
program begins. Just as the PMT
associates video and audio packet
PIDs with a program number, the
PMT also indicates a program’s ECM
PID.

When the viewer tunes to the
scrambled program, the associated
ECMs are forwarded to the smartcard.
Based on previous EMMs received, the
smartcard attempts to decrypt the
control words. If successful, it returns
those control words to the receiver as
descrambling keys. At this point, the
receiver is able to use these keys to
descramble the payloads of the
incoming video and audio transport
packets and then decode them to yield
a viewable program. Figure 5
illustrates the basic CA system’s
components as they relate to one
another.

Encryption and scrambling are two
different processes. Encryption is
more computationally demanding
than scrambling and is suited for
relatively small, discrete data.
Scrambling can be performed on the
fly more easily to streaming data such
as an MPEG-2 bitstream. Encryption
generally provides a higher level of

security at the cost of
increased processing power.
This is why the individual
control words or keys, are
encrypted, while the MPEG-
2 data is scrambled.

To strengthen the system
against someone applying
brute-force methods to
determine the control words
and thereby gaining
unauthorized access to the
scrambled program, some
powerful CA systems update
the control words as often as
every few seconds. This
means that, should you apply
enough computing power to
crack a descrambling key, it
will only provide you with a
second or so of video before
having to crack a new key.

Given the frequent
updates of control words, the
tempting piece of the CA chain to try
to break is the smartcard itself.
Although no invention should claim
to be perfectly tamper proof, it should
be obvious that cracking these new
digital CA systems is orders of
magnitude more complex and
expensive than the commonly
available analog cable TV
descrambling boxes.

ATSC PSIP
The structure of terrestrial DTV

broadcast in the U.S. is largely defined
by the Advanced Television Systems
Committee (ATSC), an industry
standards group whose membership
includes both broadcasters and
equipment manufacturers. Many of
the ATSC’s recommendations have
been adopted by the FCC and are
therefore mandatory in the U.S. One
of these adopted recommendations is
the Program and System Information
Protocol (PSIP) called out in the ATSC
standard document A/65.

PSIP builds on MPEG-2’s PSI
resources by providing additional
detailed information about the
programs contained in the transport
stream. Therefore, the PAT, PMT, and
CAT are present along with the new
tables defined by the ATSC. The PSI
provides detailed mappings of related

Figure 5— The conditional-access system architecture in an MPEG-2 system
enables the viewing of scrambled programs by distributing encrypted
descrambling keys (control words) along with entitlement messages. A secure
decryption engine at the receiver (generally implemented within a smartcard) uses
this information to pass or reject control words, thereby controlling access to the
scrambled program.

CAT
MPEG-2
transport
stream

PID filter and
EMM selector

EMM PID #

Entitlement
tracking

Control word
decryption

EMM stream

PID filter and
ECM selector ECM stream

for current
program

PMT

Transport
stream

descramblerVideo PID
filter

ECM PID #

Video PID #

Scrambled
MPEG-2 data*

Decrypted
control words

Smartcard

Descrambled
MPEG-2 data

* only video is scrambled in this example

 CIRCUIT CELLAR ® Issue 113 December 1999 69www.circuitcellar.com

datastreams and PIDs, but it’s PSIP
that enhances the program tuning
process and defines a method for pro-
gram schedule, rating, and description.

Six basic table types compose PSIP.
Four of these are base tables that share
the same PID, 0x1FFB. They are the
system time table (STT), the master
guide table (MGT), the rating region
table (RRT), and the virtual channel
table (VCT). Similar to the way in
which the PAT directs the receiver to
the PMT and NIT, the MGT provides
the lengths and PIDs for all PSIP
tables with the exception of the STT.

The two other table types have
multiple instances depending on
broadcast needs and are carried on
arbitrary PIDs called out by the MGT.
These two tables are the event
information table (EIT) and the
extended text table (ETT). Figure 6
illustrates the relationship of these
PSIP tables.

As its name implies, the STT
communicates the current date and
time to the receiver. This time is
expressed in global positioning system

(GPS) terms—a 32-bit count of the
number of seconds since 12 AM,
January 6, 1980. The receiver converts
this GPS time into local time after it
determines the time zone in which it
is located.

When the receiver is first turned
on, its location would typically be
programmed by the consumer.
Additionally, daylight savings time
change information is passed in the
STT to ensure that all receivers
change their internal clocks at the
same time.

You may know that just as movies
have ratings, TV shows have ratings
as well. DTV offers the ability to
convey detailed rating information for
each program and enables consumer
electronics manufacturers to add
parental controls to DTV products.

The RRT exists to carry these
program ratings. It associates a
geographical region of the world with
an arbitrary rating scale that is
specific to that region. Descriptive
text such as the name of the region
and the names of the different rating

levels are also provided. Once this
information has been processed by the
receiver, it may be referenced by
content advisory descriptors present
in the EIT (more on this later).

The VCT lists various attributes
for programs carried within the
MPEG-2 transport stream and
enhances the basic program “tuning”
capabilities of MPEG-2 PSI. Programs
are referred to as virtual channels
because of the broadcasters’ desire to
retain the familiar concept of a
“channel” representing a single
program. With NTSC, viewers are
accustomed to tuning in to various
channels and finding a series of
individual programs on each of the
channels.

Because DTV gives a broadcaster
the ability to deliver multiple
programs within the same physical
channel (single carrier modulated over
a 6-MHz bandwidth), there’s the need
to refer to each program as its own
virtual channel. To this end, the
concept of major and minor channel
numbers was created.

70 Issue 113 December 1999 CIRCUIT CELLAR ® www.circuitcellar.com

Mark Balch is a senior hardware design
engineer and has participated in a
variety of MPEG-2 product designs,
including an HDTV MPEG-2 encoder.
Mark actively attends meetings of the
ATSC and SMPTE industry standards
groups. You may reach him at
mark_balch@hotmail.com.

REFERENCES
ISO/IEC 13818-1:1996(E),
Information technology – Generic
coding of moving pictures and
associated audio information:
Systems

ATSC A/65, Program and System
Information Protocol for
Terrestrial Broadcast and Cable,
1997.

www.atsc.org
www.fcc.gov
www.mpeg.org
www.smpte.org

Figure 6— The ATSC’s PSIP tables complement MPEG-2’s PSI by
providing programming information, including text descriptions, rating
information, and channel mapping. Each U.S. terrestrial broadcaster
emits its own PSIP information as part of its MPEG-2 transport stream.

System time
table (STT)

Rating region
table (RRT)

Master guide
table (MGT)

Virtual
channel table

(VCT)

EIT-0 EIT-1 EIT-2 EIT-3

Event information tables

ETT-0 ETT-1

Extended text tables

PID=0x1FFB
The major channel number

maps to the physical range of RF
spectrum that is carrying the
complete transport stream. The
minor channel is a second level of
hierarchy that is assigned
arbitrarily by the broadcaster to
represent individual programs
within the major channel
(transport stream).

The ATSC actually created
two similar versions of the VCT.
The Terrestrial VCT (TVCT)
contains basic information fields
relevant to over-the-air broadcast.
The Cable VCT (CVCT) contains
additional information fields
relevant to the broadband cable
medium.

DTV PROGRAM SCHEDULES
Like MPEG-2’s PSI tables, the STT,

MGT, RRT, and VCT provide inform-
ation that is primarily used by the
receiver to navigate the multiprogram
transport stream that is sent from the
broadcaster. The two remaining PSIP
tables contain information that is
primarily for the viewer. These tables
carry both program schedule
information and text descriptions of
what the programs actually are.

The event information table (EIT)
carries basic program information
such as title, start time, and duration.
A program is conventionally thought
of as a TV picture with sound, but
DTV programs don’t have to conform
to this mold. A program could be a
data service that may not contain any
video or audio. There are multiple
instances of the EIT in ATSC broadcasts
(a minimum of four and a maximum of
128 at any one time).

Each EIT instance is mandated to
have a fixed duration of 3 h and starts
on standard 3-h boundaries: 0:00
(midnight), 3:00, 6:00, 9:00, 12:00
(noon), 15:00, 18:00, and 21:00. The
EIT instances are numbered upwards
from 0 with EIT-0 being the event
information for the current 3-h time
segment. EIT-1, EIT-2, and EIT-3 are
also required and provide information
for the next three consecutive 3-h
segments.

At the end of a 3-h segment, EIT-0
becomes obsolete, the other EITs

move up in time and a new EIT is
added to the transport stream to meet
the minimum requirement of four
EITs. Beyond the four mandated EITs,
longer range event information is at
the discretion of the broadcaster.

In the case where a broadcaster
wishes to send a lengthier text de-
scription of a program, the extended
text table (ETT) is utilized. The
presence of ETTs is completely
optional. They simply carry additional
text information above and beyond
those carried in other tables (e.g.,
program plot synopsis, actors’ names,
etc.).

All of this textual program
information can be used in a variety
of creative ways by DTV consumer
electronics manufacturers. Whether
in standalone set-top boxes (STBs) or
in digital televisions, DTV receivers
incorporate microprocessors and
graphics hardware that far exceed the
capabilities of most NTSC televisions
and receivers today.

Electronic program guides (EPGs)
have become the norm for digital
broadcast satellite customers whose
STBs already have this type of
internal enhancement. With the
proliferation of DTV broadcast, EPGs
will become available to all television
viewers and potentially change the
norms of TV viewing. Applications
range from simple EPGs that can be
browsed with a remote control, to

targeted ads depending on the
program being browsed, to inter-
active guides that let the viewer
search for specific types of
programs.

THE DTV STATION
By now you can see that

there’s much more to a DTV
broadcast than MPEG-2
compressed bits. Timing
synchronization allows the
remote decoder to work in lock
step with the encoder. Transport
multiplexing provides the
flexible end-to-end carriage of
multiple bitstreams. And the PSI
and PSIP tables enable not only
the viewing of the compressed
program, but also a wide range of

other applications. Many of these
potential applications are still
mysteries to both consumers and the
industry itself.

 The next, and final, article in this
series will explore the system view of
DTV terrestrial broadcast in the U.S.
Many pieces of equipment are used to
create and transmit the various com-
ponents of a DTV broadcast. We’ll
discuss DTV station architecture, the
operation of DTV equipment, and
potential applications for this powerful
new television infrastructure. I

www.atsc.org
www.fcc.gov
www.mpeg.org
www.smpte.org

72 Issue 113 December 1999 CIRCUIT CELLAR ® www.circuitcellar.com

FROM THE
BENCH

Jeff Bachiochi

Without
Acceleration

In Part I,
Jeff con-
structed
his por-
table

3-D accelerometer.
In Part 2, he adds a
radio packet control-
ler for data transmis-
sion and other
hardware refine-
ments that make the
design more usable.

emember last
time when I dis-

covered through
charting my 3-D accel-

erometer that walking had a more
exciting signature than a ride on the
elevator here at Circuit Cellar World
Headquarters? Well, I promised a
couple of changes to my project’s
circuitry and this month I intend to
keep that promise.

The part I like best about presenting
these goofy projects is that they often
become an exercise in multiple sub-
jects. This project is a case in point.

No matter how good an idea looks
on the surface, it isn’t until you’ve
actually used it that you find inad-
equacies and inefficiencies. This goes
for tools, kitchen appliances, toys,
you name it. If you’re like
me, every time I pick some-
thing up I’m thinking about
ways it could be improved.

Well, two things come
to mind with this project. I
was forever twiddling the
six pots in this design. Ev-
ery time I changed gains, I
twiddled. And every time I
twiddled, I unintentionally
twiddled the wrong one,
leading to even more twid-
dling.

This month I want to
twiddle them right out of

the design. To accomplish this I’ll use
digital pots made by Dallas Semicon-
ductor, and set these using only two
outputs from the microprocessor.

The second faux pas was having to
lug my laptop around, or drag a very
long umbilical cord over which the
data gushed. Moving data at this rate
(19.2 kbps) required more than the
everyday 2400-bps RF link.

Fortunately, by adding dollars you
can easily move upscale. Although a
transceiver is overkill for this project,
I had this pair kicking around and use
them often because they are so reli-
able and almost user-friendly.

DIGITAL POT
Dallas wasn’t the first company I

looked to for digital pots to use in this
project. However, they make a single,
dual, quad, and six-pack of pots (in a
single package) controlled through an
I2C interface (two I/Os).

I needed two different values, so I
chose to use two quad packages. The
pots do not have a nonvolatile mem-
ory so they do not remember where
they were, but power up set to the
midpoint of their range.

One package we’ll use to set the
gain of the external amplifier and the
other we’ll use to cancel the offset of
each sensor’s output. You may recog-
nize the schematic in Figure 3 from last
month. This time it has the digital
pots instead of the manual trimmers.

And if you compare Photo 1 with
the photo in Part 1 (Circuit Cellar
112), you’ll also see why I put the pots
on a separate PCB. The digital pots
plug in, replacing the mechanical

Part 2: Good (and Bad) Vibrations

Photo 1 —The 3-axis accelerometer uses Dallas solid-state pots to set
gain and offset trim and help to automate this project.

r

 CIRCUIT CELLAR ® Issue 113 December 1999 73www.circuitcellar.com

to automatically tweak the
offset pot in an attempt to
reach an output of ½ Vcc (128
conversion value) or as close
as possible within the resolu-
tion of the digital pot.

Similarly, if the initial com-
pensation conversion is greater
than 128, the “greater than”
flag is set and the compensa-
tion adjustment loop contin-
ues to reduce the output until
it is equal to or less than 128.

If the I2C transmissions are
not acknowledged or the
digital pot is adjusted to the
end of either stop, the pro-
cessor jumps into an error

mode causing the LEDs to blink. Once
all three sensors have been compen-
sated, execution proceeds to the work
phase where all three channels are
sampled and the conversion values are
reported every 10 ms. You can refer to
Part 1 to get the lowdown on how the
processor samples and converts the
sensor outputs into ASCII data.

RADIO PACKETIZING
As presented last month, the out-

put from the project was 19.2 kbps
ASCII serial data. I rewrote the output
routine to send parallel nibble data,
instead of the serial bit stream. This
change allows the project to interface
directly to an RPC (radio packet con-
troller) as you can see in Photo 2.

The RPC is a complete RF trans-
ceiver. It can accept up to 28 bytes of
data (including a length byte). The
RPC accepts nibble transfers using
four hardware handshaking control
lines (two for transmitting and two
for receiving). Its bidirectional nibble
bus is quick.

Once the data has been transferred
to the RPC, it modulates its RF out-
put with a preamble string of alter-
nating 1s and 0s followed by a frame
sync byte. The actual data bytes are
expanded into 12-bit symbols to
ensure that each symbol has a 50-50
balance of ones and zeros and never
more than four zeros or four ones in a
row. Balanced data is required when
pushing some receiver designs to the
limits. The packet ends with a check-
sum byte (also expanded to 12 bits).

ready for offset compensation calibra-
tion. The first compensation will be
performed on the x-axis.

I must hold the 3-D module so that
the x-axis is perpendicular to gravity.
That way, gravity will have no effect
on its output. When positioned cor-
rectly, I press the x button to let the
micro know it may proceed with the
compensation. The microcontroller
turns off an LED and sends the x-
offset digital pot a midpoint setting
via the I2C bus. This produces some
sensor output, which is filtered and
amplified creating a final output voltage.

As you can see from Figure 2, each
sensor/signal conditioner channel has
its own A/D input on the micropro-
cessor. The micro now selects the
appropriate A/D channel and begins a
conversion.

When the conversion is complete,
the 8-bit value is compared to 128
(which is what the output should be
at 0 g without any offset), If the con-
version is 128, then everything is
perfect and the micro turns the LED
back on, and this process is repeated
for the remaining two axes (y and z).

However, if the conversion is less
than 128, the micro sets the “less
than” compensation flag and bumps
the x-offset digital by one bit. Again,
an A/D conversion is performed and
the value is compared to 128.

This compensation adjustment
loop continues until the conversion
value is equal to or greater than 128.
Bumping the offset by 1 bit and re-
sampling the output allows the micro

ones, keeping the same exte-
rior dimensions and avoiding a
rewire of the sensor PCB.

By far the easiest implemen-
tation is with the gain pots.
Setting these is based on the
gain selected via two input
pins. These two pins are sam-
pled during the initialization of
the PIC16C74 microcontroller.
Each of the four combinations
of inputs will load the appro-
priate wiper position value
into a gain register.

The wiper position value
(6 bits) is based on the tap
resistance of the pot. For the
50-Ω pot, each tap is 1/64 of
the total resistance or 781.25 Ω
(50000/64).

Depending on the gain selected at
the inputs, a data constant is sent
over the I2C interface to three of the
four digital pots (the fourth isn’t
used). Although the 16C74 does have
an I2C port, it only supports slave
operation in hardware.

Therefore, as a master, I must bit-
bang the SCL and SDA lines through
software. I can set all three gain pots
with a single I2C operation (back-to-
back register writes).

Now that the gains have been set,
something must be done about that
nasty offset. As we saw last month, it is
most important for the higher gains.
Remember, there is always 1g pulling
us toward the center of the earth.

If a sensor’s element is aligned
(even slightly) with the Earth’s grav-
ity, this g-force will create an output.
This output will be easily confused
with the natural (0-g) offset we are
trying to eliminate, so sensor align-
ment is critical during offset compen-
sation. Because the 3-D sensor is
moveable, but the micro can’t tell
which sensor is on or off axis, the user
will manage this important task.

To get me in sync with the micro-
controller, I use LEDs and push but-
tons. The LEDs are used by the
microcontroller to signal me, while
the push buttons are used by me to
signal the micro.

Once the gains have been set on all
three amplifier channels, both LEDs
turn on, signaling that the micro is

Photo 2 —The radio packet controller plugs on to the back of the 3-axis accel-
erometer controller circuit shown in Figure 2.

 CIRCUIT CELLAR ® Issue 113 December 1999 75www.circuitcellar.com

Of course, this strategy also
assumes there is no transmission
error, no acknowledgement, and no
retransmission. The host PC would
have to handle packet acknowledge-
ment if it is required .

Let’s take a look at the RPC to
micro interface. The RPC is normally
in listen mode searching for a pre-
amble signal. This signal allows the
RPC to sync its recovery clock to the
incoming data.

Once a frame sync is received, the
RPC moves into the data decode state.
Because the first data byte sent is the
byte count, the RPC can determine
the end of packet and test for proper
checksum. If the packet was received
correctly, the RPC will now signal the
host for a data transfer by lowering
the RXR control line (data request).

The host in this case is a PIC16C63.
When the micro sees the RXR line
low, it prepares to read data via the
nibble bus by setting the four I/Os to
inputs and lowering the RXA control
line (request accepted). The RPC
places a nibble on the bus and raises
the RXR line (data ready).

And finally, the micro reads the
data nibble and raises the RXA line

At the receiving end, if the packet
is not 100% received with a correct
checksum, it is thrown out. No data
is preferred over bad data. The re-
ceiver in Figure 1 shows an RPC to
RS-232 converter.

It does no good to send RF data if
there is no way to retrieve the data.
Remember, the RPC is a nibble par-
allel interface and while it may be
interfaced a bit more easily to a PC’s
parallel port, there would be a lot of
programming needed at the PC end to
be able to use it. An RS-232 interface
allows it to be used on any computer
with the standard terminal emulation
software.

RF 2 RS-232
For this end of the project, I

thought double buffering would be a
good idea, meaning that once the
serial input buffer is full, the contents
get moved to the parallel output
buffer. And, vice versa, once the
parallel input buffer fills, buffer
contents are transferred to the serial
output buffer. Transferring the data in
this fashion will allow more data to
continue to be received (presumably)
without any need to wait.

(data read). This sequence is repeated
until all the data has been transferred
to the micro one nibble at a time.

As the nibbles come into the
micro, they are assembled back into
their respective bytes and are placed
into the parallel input buffer.

In an attempt to keep things sim-
ple, the data is not passed directly to the
UART for transmission because the
RPC-to-micro transfer would be held
up while waiting for each character to
be transmitted (RXREG empty).

 Instead, once the whole data
packet has been received from the
RPC, it is transferred to the serial
output buffer, where the micro can
feed characters to RXREG at the
UART’s pace without interfering with
any other function.

The first data byte is the byte
count and is not sent to the UART
with the data. The ’C63 takes care of
counting serial input bytes so that the
attached PC does not have to pad or
unpad the data.

Transfer of data to the RPC is
similar, except the micro has control.
The UART will receive data via the
RS-232 interface. No byte count is
sent. Instead, the micro counts data

Figure 1 — This circuit
creates an RS-232 inter-
face to a Radiometrix RF
packet controller. The PIC
16C63 double buffers data
between a 19.2 kbps serial
data stream and the RPC’s
nibble interface.

76 Issue 113 December 1999 CIRCUIT CELLAR ® www.circuitcellar.com

bytes and when the serial input buffer
is full (27 bytes or when a <CR> is
received) the micro adds a byte count
to the data and transfers it to the
parallel output buffer.

Now the micro passes the data, a
nibble at a time, to the RPC. The
micro lowers TXR and waits for the
RPC to reply by lowering TXA.

The micro sets the nibble bus’s
four I/Os to outputs, places a nibble
on the bus, and raises the TXR. When
the RPC has read the nibble, it raises
the TXA line. This sequence is re-
peated until all the data has been
transferred. The RPC then packetizes
the data and sends it out if the receiver
is not busy with a data reception.

RPC PARAMETERS
There are a number of parameters

held in EEPROM on the RPC. These
have to do with things like the pre-
amble length, extended preamble,
sleep, TX-to-RX delay, PWR-to-RX
delay, TX backoff delay, slot delay,
and reset state. See the manufacturer
for more detail on these functions.

In addition to these parameters, the
RPC has some built-in test modes.
These were used for some stand-alone
testing, which comes in handy when
setting up your RF link.

The test modes are automatically
entered on powerup if you have in-
stalled any of the TEST0–3 jumpers.
The micro reads these jumpers on

Figure 2 —Although Part 1 of this series used serial output, the 3-axis accelerometer controller in this RF version
doesn’t use the UART of the 16C73, so a 16C63 could be substituted in the design.

powerup and places the RPC into the
associated test mode reflected by the
jumper settings.

The most useful modes are Echo
and Radar. As the name suggests,
Echo mode retransmits any packet it
receives. Radar mode periodically
sends out packets and watches for
their return. Although you can watch
the TX and RX LEDs on the RPC
modules, the ’C63 will signal a good
reception by turning on its LED.

TIMING IS EVERYTHING
In this project, the data is 13 ASCII

bytes (XXX_YYY_ZZZ<cr><lf>) from
the three accelerometers sampled
every 10 ms. For all of this to work,
the samples need to be taken and the
8-bit digital conversion values need to
be turned into ASCII data and shipped
out every 10 ms. Certainly if the
values were sent just as they are
(three 8-bit values), the process would
be much simpler, and the datastream
much shorter.

Binary data (0–255) doesn’t display
as well as viewable ASCII data, so I
decided to sacrifice simplicity for
viewable data (much easier to debug).
As we saw last month, the conversion
and translation times were quick
enough that the micro had plenty of
time to ship out the 13 bytes at
19.2 kbps through its onboard UART.

This month’s addition of the RPC
modules replaced the UART with a

 CIRCUIT CELLAR ® Issue 113 December 1999 77www.circuitcellar.com

Jeff Bachiochi (pronounced“BAH-key-
AH-key”) is an electrical engineer on
Circuit Cellar’s engineering staff. His
background includes product design
and manufacturing. He may be reached
at jeff.bachiochi@circuitcellar.com.

SOURCES
ADXL150/250
Analog Devices
1 Technology Way, PO Box 9106
Norwood, MA 02062
781-461-3060 • www.analog.com

PIC16C63/73
Microchip
2355 W. Chandler Blvd.
Chandler, AZ 85224
888-628-6247 • www.microchip.com

DS1844
Dallas Semiconductor
4401 S. Beltwood Parkway
Dallas, TX 75244
972-371-4000 • www.dalsemi.com

Radio Packet Controller
Radiometrics Limited
Hartcran House, Gibbs Couch
Carpenders Park, Watford
Hertfordshire, England WD1 5EZ
www.radiometrix.co.uk

Figure 3 —The I2C interface allows the six solid-
state pots to be accessed with just two I/O lines.
This keeps the pots with the amplifier and away
from the controller circuitry.

parallel interface. The actual parallel
transfer rate of this data from the
micro to the RPC is about 25 µs/
nibble (or 8µs/bit). This speed is about
ten times faster than the 19.2-kbps
rate it dealt with in the previous
design (so there is no bottleneck here).

The RPC’s RF transmission rate is
40 kbps. Transmission requires 200
bits of preamble, an 8-bit sync byte,
13 data bytes (each expanded to 12
bits), and one checksum byte (also
expanded to 12 bits). That’s a total of
368 bits (200 + [13 × 12] + [1 × 12]).

The 40-kbps rate yields a total
transmission time of 9.2 ms (368 ×
25 µs). Whew, that’s less than 10%
room to spare!

At the receiving end, things are a
bit simpler. The RPC passes the data
packet off through its parallel inter-
face to the receiving micro at the
same 8-µs/bit timing as its trans-
mitter counterpart. The micro’s
UART dashes through the data in its
buffer in about 7 ms (clearly not a
bottleneck).

BAD VIBRATIONS
The road to Hell is paved with good

intentions. The big wrap-up here was
to be a trip to Riverside Amusement
Park to give this project a real work-

out. There was one tiny flaw in the
day’s schedule.

Because I would be placing the 3-D
probe on my kids and storing the data
with my laptop from afar, I didn’t
want to miss out on a full day of fun.
So I decided to take a quick roller
coaster ride. Riverside has two of the
best wooden coasters in existence and
I’ve ridden them for years.

But something different happened
this time. My equilibrium was
thrown for a loop (so to speak) and I
emerged from the ride with beads of
sweat running down my face. “Dad,
you don’t look so good,” commented
Kristafer, my youngest.

Needless to say, I was in no shape
to work. For the rest of the day, I felt
as though I had a whopping hangover
and just wanted to curl up in a ball.

And so, I did not work. I did not
play. I just tried not to spoil the day.
What a shame, I love coasters.

I guess I’ll be leaving the fun up to
you. Even if you don’t build this
whole project, most of you will find
some part of it useful. Be it accel-
erometers, real-time data collection,
interfacing, serial/parallel conversion,
or RF packet transmission, the whole
is often not as intriguing as the value
of its parts. I

www.analog.com
www.microchip.com
www.dalsemi.com
www.radiometrix.com

78 Issue 113 December 1999 CIRCUIT CELLAR ® www.circuitcellar.com

i t’s been cooler
than normal here

in Silicon Valley and
the San Francisco Bay

area isn’t exactly tropical in the sum-
mer to begin with. All that fog and
wind prompted Mark Twain to say
something like, “The coldest winter I
ever spent was the summer in San
Francisco.” Go to any of the SF tourist
traps in the summer and be amused
by the gaggle of visitors in their Ber-
muda shorts and tank tops freezing
their buns off.

Fortunately, things warm up nicely
as you head down the peninsula into
Silicon Valley proper. In fact, if you
hit Palo Alto and Stanford University
in the middle of August, it gets down-
right hot because that’s when the Hot
Chips conference comes to town.

As usual, there was a lot of inter-
esting technology on the table, stuff
like SOC (System-On-Chip), CMP
(Chip Multi-Processors), and embed-
ded DRAM. However, instead of my
usual roundup (and prompted by
Intel’s half-day tutorial on the sub-
ject), I’m going to focus on the chip on
lots of people’s minds—Merced, or
“Itanium” in Intelese, which will be
the first chip to incorporate the new
IA-64 architecture.

Personally, I to stick with a PC
until the march of silicon and bloat-
ware renders it indisputably obsolete.

Therefore, you won’t find me lining
up at the computer shop to be the first
on my block to get a Merced-based PC.

So, why do hot chips like Merced
and the others matter? Circuit Cellar
isn’t PC Week after all.

The point is, as I’ve said before
(and feel I’ve been proven right),
today’s hot chip always yields insight
into tomorrow’s practical embedded
chip, stripped of the gaudiest chrome
and tail fins though it might be.

SMART COMPILER, DUMB
PROCESSOR

For those of you not up on com-
puter architecture, I strongly recom-
mend Computer Architecture: A
Quantitative Approach [1] by
Hennessy and Patterson. Its 800+
pages shed light on just about every-
thing 1s-and-0s, yet it is quite read-
able. I especially like the historical
perspectives at the end of the chapters.

However, Hennesy and Patterson
do give short shrift to the concept of
long instructions (i.e., very long in-
struction word, or VLIW). Indeed,
credit for the catchy heading above,
which sums up its fundamental
premise, goes to early ‘80s pioneers of
the modern-day VLIW concept [2].

The 1985 doctoral dissertation
written by Ellis is a good place to

Test Driving a
Merced with Pins

Ready or
not, IA-64
archi-
tectures
are

headed down the
pipeline. You won’t
find a Merced in your
Timex this century,
but Tom points out
many new features
that may be there in
the next.

SILICON
UPDATE

Tom Cantrell

Figure 1 —IA-64, like every computer back to the
abacus, stands on the shoulders of its predecessors.
However, relatively speaking, it represents a major shift
in direction, and a major blessing for the VLIW concept.

1956General purpose
registers,

Ferranti Pegasus
1959

Pipelining, IBM
Stretch 7030

1963

Stack machine,
Burroughs B5000

1964Load/Store
architecture,

CDC 6600
1964 Dynamic

Scheduling,
IBM 360/91

1967Branch Prediction,
IBM 360/85 1968

Cache, IBM 360/85

1972
Virtual memory,

IBM S/370 1972
SIMD/Vector,
CDC STAR-100

1975
RISC, IBM 801

1980 Berkeley
RISC-I1981

Stanford MIPS 1981
VLIW, Floating Point
Systems AP-120B

1984
MIMD with cache

coherence, Synapse N+1 1987
Superscalar, IBM
America

 CIRCUIT CELLAR ® Issue 113 December 1999 79www.circuitcellar.com

explore the roots of VLIW [3]. Though
not as easy a read as Hennesy and
Patterson, it offers 300+ pages devoted
to the subject, and to smart compilers.

Actually, smarter compilers are a
good thing no matter how the transis-
tors are arranged. It’s been said that
RISC sometimes means Relegate the
Impossible Stuff to the Compiler. And
furthermore, the developments in
VLIW hardware being bandied about
today point to future processors that
are by no means dumb.

Nevertheless, the essence of the
concept remains: aren’t programs run
more often than they are compiled?
Why not put the complexity in the
compiler instead of the chip?

Yes, the software developers may
gripe about compile times, as Ellis did
[3] when hamstrung by a quaint DEC
minicomputer with a (by modern
standards) measly 1.5 MB of RAM
that delivered compile times mea-
sured in hours. Perhaps they won’t
gripe at all (time for another long
coffee break). Either way, are pokey
compilers worse than making millions
of chip users pay for
extra silicon baggage?

As far as Intel is
concerned, VLIW and
IA-64 are quite differ-
ent, and never the
twain shall meet. I
believe I heard the term
“VLIW” mentioned
only once in the Intel
slide presentation—and

even then it was in refer-
ence to work done by IA-64
development partner HP.

I hope as history is
(re)written, the early pio-
neers won’t be overlooked.
Of course, few things in
computing are brand new (see
Figure 1) and much of the
architecture underlying the
VLIW concept goes back to,
for example, the days of
microcoding. Success in
computer architecture has
never been revolutionary
but rather a process of in-
cremental improvement,
not to mention fortuitous
marketing strategies.

VLIB?
Whatever Intel calls it, it looks like

a VLIW to me (see Figure 2). Each 128-
bit bundle is comprised of three 41-bit
instructions and a 5-bit template. The
template defines the parallel execu-
tion characteristics of the instructions
within the bundle, most notably, if
and at which point the CPU should
stop and wait for instructions in
progress to complete.

This is clever since it frees the
compiler to find maximum parallel-
ism in a program without being con-
strained by the limitations of a
particular CPU implementation.

Suppose the compiler found six
instructions that can execute in paral-
lel. That turns into two 128-bit
bundles, only the last with a stop. In
principle, a version of IA-64 that’s
capable of executing three instruc-
tions at a time will take two clocks
while a version that can execute six at
a time will take only one, running
exactly the same binary without the
need to recompile it. That’s cool, and

a real boon for the shrink-wrapped
software set.

The individual instructions look
pretty much like a run-of-the mill
three-operand RISC, with the addition
of bits known as Qualifying Predi-
cates. More on this topic in a mo-
ment. Do note the 7-bit register
specifiers. IA-64 includes 128 65-bit
general purpose, 128 82-bit floating
point and dozens of other special pur-
pose registers.

SPECULATIVE FEVER
We’re not talking Internet IPOs

here, though the concept of specula-
tive execution also seems to fit in a
world where the goal is peak perfor-
mance at any price and something
ventured always equals something
gained.

The >1 IPC (instructions per clock)
challenge is to find as many instruc-
tions that can be executed at the same
time as possible. Unfortunately, doing
so in hardware at runtime speeds (à la
current superscalars) is difficult and
leads to the silicon equivalent of
bloatware (i.e., it takes a lot more
transistors to get a little more IPC).

That makes chips costly, but even
worse, ultimately impinges on the
critical path and makes them slower
as well. Boosting IPC by 10% at the
expense of a 20% drop in the clock
rate just won’t do.

Even if hardware imposed no lim-
its, the basic block bummer lurks in
the shadows. Basic blocks are defined
as a chunk of code delimited by
single entry and exit points (in es-
sence, the distance between branches).

The good news is it’s relatively
easy to identify instructions that can
be executed in parallel within a basic
block. The bad news is that it’s hard
to do so across basic block boundaries,

and branches are all too
frequent, which drasti-
cally limits the amount
of instruction-level
parallelism (ILP) avail-
able for mining.

IA-64 takes a two-
pronged approach that
boils down to making
basic blocks larger by
eliminating branches,

128 bits

Instruction 2
41 bits

Instruction 1
41 bits

Instruction 0
41 bits

template
5 bits

Instruction types
M: Memory
I: Shifts, MM
A: ALU
B: Branch
F: Floating Point
L+X: Long

Template types
Regular: MII, MLX, MMI, MFI, MMF
Stop: MI_I M_MI
Branch: MIB, MMB, MFB, MBB, BBB
All come in two versions:

• with stop at end
• without stop at end

major
opc 4B

minor opcode or
immediate 10 bits

register id
7 bits

register id
7 bits

register id
7 bits

qual. pred
6 bits

Qualifying predicates (6 bits)
• A few instructions do not have a QP

Register operand identifiers (7 bits)
Register result identifier(s) (6 or 7 bits)
Immediate operands (8-22 bits)
Minor opcode
Major opcode (4 bits)

Figure 3 —Conditional execution (aka, predication) enables all sorts of compiler tricks. Traditionally,
it’s been considered a way to eliminate branches (a), but Intel takes it much further with, for ex-
ample, multiple assignment. Notice in (b) the reduction in the worst-case path (i.e., from three
bundles to two) even if the original version branches were predicted perfectly.

Original

p1 p2

Predicated

(p1)
(p2)(p1)
(p2)

Original
cmp p1, p2-
(p1) br. cond

r8 = 5

r8 = 7 r8 = 10

cmp p3, p4-
(p3) br. cond

Transform/
reschedule

cmp p1, p2- ;;
(p2) cmp p3, p4 -

(p1) r8 = 5

(p4) r8 = 10
(p3) r8 = 7

a) b)

Figure 2 —Each IA-64 128-bit instruction bundle includes a “template”
characterizing the type and parallel issue capabilities of the three 41-bit
instructions. The instructions themselves are rather conventional with
the notable exception that most feature conditional execution based on
the state of one of 64 “predicate” bits.

80 Issue 113 December 1999 CIRCUIT CELLAR ® www.circuitcellar.com

Figure 5 —Pointers (variables used as memory ad-
dresses) hinder optimization. How can the compiler
know that r2 won’t equal r3 at runtime? Hard to tell, but
if so, they are aliases and the instructions cannot even
be executed at the same time, much less in reverse
order. By watching for subsequent writes to the same
address (i.e., r3 does turn out to equal r2) at runtime,
IA-64 solves the problem.

fault. Instead, IA-64 defers faults and
simply sets an exception bit associ-
ated with the loaded register. This,
the 65th bit in each register, is known
as the NaT bit which stands for “Not
a Thing”, analogous to the ‘x87 NaN
“Not a Number” bit, which performs
a similar role tracking the validity of
floating-point calculations. When it is
time to use the loaded value, a check
instruction verifies whether the load
faulted (i.e., NaT bit set), in which
case recovery code can be executed.

Similarly, data speculation moves
loads (and possibly uses) above poten-
tially overlapping stores (see Figure 5).
Potentially overlapping stores refers to
the infamous pointer alias problem.
It’s difficult to guarantee that two
pointers don’t reference the same
address in memory, incurring a depen-
dency. There are complicated analyses
that can be applied to the problem of
pointer disambiguation, but these
tend to carry flaws, such as an inabil-
ity to guarantee finite compile time!

Instead, IA-64 effectively does
pointer disambiguation in hardware
using a combination of advanced loads
and checks. An advanced load is
moved ahead of a possibly overlapping
store and the load address is automati-
cally saved into an advanced load
address table (ALAT). From this point
on, the hardware watches all memory
write traffic for stores to the same
address. Should one occur, the ad-
vanced load address is removed from
the ALAT.

When the time comes to actually
use the loaded value, a check instruc-
tion confirms whether or not it’s safe

and then moving code across basic
block boundaries.

Eliminating branches brings us
back to the Qualifying Predicate bits
mentioned earlier. Traditionally,
CPUs relied on condition codes or,
more recently, combined compare and
branch instructions. But for IA-64,
most (but not all) instructions feature
conditional execution based on the
state of one of 64 predicate bits (the
particular one specified by the 6-bit
field in the instruction).

Predication not only simplifies
control flow (i.e., eliminates branches
thereby increasing basic block size),
but also supports multiple selection,
multiway branching (case statement)
and multiple AND/OR compares (see
Figure 3). Conditional execution is not
a new concept (the ARM comes to
mind), but Intel has taken it further.

Absent perfect branch prediction,
moving code across basic block
boundaries is an exercise in specula-
tion. Without knowing with certainty
which way a branch will go, you can’t
guarantee code moved from one basic
block into another will be executed.

Of course, a smart compiler will
move every nonspeculative instruc-
tion (one that will always be ex-
ecuted) it can, but beyond that, there’s
no choice but to execute instructions
on spec and hope for the best.

There are two kinds of speculation:
control and data. Control speculation
involves moving loads (and possibly
instructions that use the loaded value)
above a branch upon which their ex-
ecution depends (see Figure 4).

Normally, the compiler wouldn’t
do that because if the branch went the
other way, the speculated load could

Figure 4 —Moving a load above a branch not only
increases basic block length, but gives the memory
hierarchy a head start. However, there is the risk the
load will fault, if it never should have happened. The IA-
64 speculative load (.s) defers, but keeps track of such
a fault, for later inspection and, if necessary, recovery.

Control speculation

Original:
(p1) br. cond

1d8 r1 = [r2]

Transformed:
1d8.s r1 = [r2]
...

(p1) br. cond
...
chk.s rl, recovery

Data speculation

Original:

1d8 r1 = [r2]

Transformed:
1d8.a r1 = [r2]
...

...
chk.a rl, recovery

st4 [r3] = r7]

st4 [r3] = r7

 CIRCUIT CELLAR ® Issue 113 December 1999 81www.circuitcellar.com

ments automatically with each itera-
tion of the loop.

Notably, by eliminating the over-
head and duplication of traditional
software pipelining, the IA-64 scheme
is suitable not only for rocket science
DSP-loops and such, but also for the
typical small loops that characterize
meat and potato code.

All the registers are grand, but
ultimately stuff has to get to and from

to proceed (i.e., nothing
else wrote to the same
address in the meantime)
by confirming the address
is still in the ALAT. If a
collision occurred and an
address disappeared from
the ALAT, a recovery
routine would be ex-
ecuted, but otherwise, and
most often, everything
will be hunky-dory.

ROCK AND ROLL
REGISTERS

All those registers are
put to good use thanks to
automatic stacking and rotation capa-
bility. The stacking feature shares the
motivation of other register window
schemes (à la SPARC), which is to
minimize the push and pull overhead
associated with subroutine calls. The
rotation capability is more unique and
works in concert with special branch
instructions to facilitate software
pipelining of loops.

Most of you have probably heard of
the idea of loop unrolling, in which
the body of the loop is replicated n
times, reducing the amount of time
spent on loop overhead and branching
by 1/n and further increasing the basic
block size to expose more parallelism.
Software pipelining takes the concept
even further by reorganizing the code
such that different iterations of the
loop execute in parallel. It’s com-
pletely analogous to a hardware pipe-
line, including the need to fill and
drain the pipeline (see Figure 6).

Although software pipelining, like
its hardware counterpart, can signifi-
cantly improve throughput, there is a
cost—the unrolling (i.e., copies of the
loop body) and the need for extra pro-
logue (fill) and epilogue (drain) rou-
tines leads to bloaty code.

The Intel rotation scheme cleverly
works in concert with special looping-
oriented branches and counters to
achieve the benefits of software
pipelining with less code and com-
plexity. In essence, it provides a hard-
ware assist through a kind of register
renaming in which reference to a
single virtual register number maps to
a physical register number that incre-

Start-up
code

Time

Number
of

overlapped
operations

Wind-down
code

Number
of

overlapped
operations

Proportional
to number of

unrolls
Overlap between
unrolled iterations

Time

Figure 6 —As shown in Hennessey and Patterson [1] (a) software pipelining, (executing
different iterations of a loop at the same time) goes beyond simple loop unrolling. IA-64 (b)
brings all features, including rotating registers, predication and dedicated looping hardware,
to bear on the subject, moving the technique out of the lab and into the mainstream.

memory. Here, IA-64
incorporates prefetch in-
structions and also hints
to give the programmer/
compiler a measure of
explicit control over the
memory hierarchy. Ide-
ally, critical data ends up
residing near the CPU,
while rarely used, one-off
data remains further
adrift. In essence, the goal
is to balance the best of
both cache (automatic but
statistical speed-up of data
access in general) and
RAM (deterministic ac-

cess to hot items without cache
thrash).

NOW COMES THE TRICKY PART
Based on what I’ve seen so far, IA-

64 is quite impressive. I think Intel
and HP have done an excellent job of
extending the state-of-the-art. Most
notably, it goes beyond the smart
compiler, dumb chip genesis of VLIW
by adding features to the hardware

a)

b)

From microcontroller
output pin

C2
100 µF

D1
1N914

R1
100 k

D2
1N914

C1
1 µF

R2
680

Q1
VN2222

+5 V

U1
RS2501

R3
20 k

R4
5.6 k

D3
1N4001

+24 V

Q2
IRF9Z34

L1
Hydraulic
isolation
valve

ISOGND

DGND

CIRCUIT CELLAR Test Your EQ
Problem 3 —What does this circuit do?

Problem 4 —The SMT-33 stepper motor has 15° full steps. An eight-tooth
gear is attached to the motor shaft. The eight-tooth gear in return drives a 40-
tooth gear attached to a wheel of 50-mm diameter. The wheel rests on the
ground and drives the robot.

What is the minimum displacement the robot is capable of, assuming the
robot can perform half-stepping?

Problem 1 —Does the hole in a metal flat washer get larger or smaller
as the washer is heated?

Problem 2 —The function shown below is used to generate a series of
values for programming a DAC that will generate a sine wave output. The
sine wave produced seems to have a slight glitch on every other zero
crossing point. Can you identify the problem in the lookup table value-
generating function?

#define TABSIZ 33
static unsigned short dac_sine_val[TABSIZ];

void dac_val_gen(void) {
 int i;
 unsigned short val;
 float f;

 for (i=0; i<TABSIZ; i++)
 {
 f=sin(2 * i * 3.1415 / (TABSIZ-1));
 printf(�%f,�, f);

 val = (short)((f+1.0) * 32767);

 dac_sine_val[i]= val;
 }
}

REFERENCES

[1] J. Hennessy and D. Patterson,
Computer Architecture: A Quan-
titative Approach, Morgan
Kaufmann, Chicago, IL, 1996.

[2] J. Fisher, J. Ellis, J. Ruttenberg,
and A. Nicolau, “Parallel Process-
ing: A smart compiler and a dumb
processor,” SIGPLAN conference
on compiler construction proceed-
ings, June, 1984.

[3] J. Ellis, Bulldog: A Compiler for
VLIW Architectures, MIT Press,
Cambridge, MA, 1986.

Hot Chips Conference, www.hot.org.
http://developer.intel.com/design/

IA64

Tom Cantrell has been working on
chip, board, and systems design and
marketing in Silicon Valley for more
than ten years. You may reach him by
e-mail at tom.cantrell@circuitcellar.
com, by telephone at (510) 657-0264,
or by fax at (510) 657-5441.

that don’t displace the compiler’s
authority, but rather make it easier
for the compiler to do a better job.

 In a vacuum, “IA-64 Wins
WunderChip Wars” would be the
headline of this story. But there is the
small matter of all those old ‘x86
binaries rattling around in the closet,
a subject the tutorials said absolutely
nothing about. I certainly presume the
IA-64 chips will be able to run ‘x86
code, no doubt relying on runtime
translation techniques similar to
those Intel already uses to run old
software on their current RISC-in-drag
chips. Still, I wonder to what degree
the native potential of the architec-
ture will be lost in the translation.

Maybe it doesn’t matter. At this
point at least, Intel is positioning IA-
64 and future IA-64 chips as targeting
servers rather than PCs. Of course,
traditionally, last year’s server turns
into next year’s PC, but I’m not sure
that IA-64 won’t represent a bit more
of a discontinuity.

Intel is caught between the rock of
running decades-old binaries and the

hard place of competition posed by new-
comers with less baggage (the next gen-
eration Playstation comes to mind).
Since completely casting off the yoke of
compatibility isn’t an option, I suspect
that when push comes to shove, Intel
will realize they must favor the future,
rather than the past.

So what will an IA–64-based box
look like? Will it run DOS and
Win95/98? How about your archive of
1.44-MB floppies?

The “Developer’s Interface Guide
for IA-64 Servers” I downloaded from
http://dig64.org is illuminating. The
short answer is that most of these
things are possible (though not all; it’s
curtains for ISA) but Intel really
would rather everyone march to the
beat of a legacy-free drummer with
IA-64. I imagine they’ll continue to
offer new and improved IA-32 chips
for the masses of plain PC users.

But when it comes to IA-64, I have
to agree with Intel. It is time for a
change, and what time could be better
than the start of a new millennium?
Hey, a 64-bit register can hold all

8 bytes of a calendar date, so at least
there won’t be a year 3000 problem. I

CIRCUIT CELLAR

What’s your EQ?—The answers and 4
additional questions and answers are
posted at www.circuitcellar.com.

You may contact the quizmasters
at eq@circuitcellar.com.

8 more EQ

questions

each month in

Circuit Cellar Online

see pg. 2

www.hot.org
http://developer.intel.com/design/IA64

96 Issue 113 December 1999 CIRCUIT CELLAR ® www.circuitcellar.com

PRIORITY INTERRUPT

steve.ciarcia@circuitcellar.com

Reading Between the Lines

t he index is the first thing I look at when I pick up one of the many magazines shipped to me gratis every week.
If I find some interesting items in the index, I place the magazine in one pile, the rest go in the trash. It’s just a fact

of life for a working manager faced with diminishing time to indulge in optional reading.
The last page is where I go when I receive a brand new issue of Circuit Cellar. Why? Your thoughts are insightful, full of

common sense, and sometimes outright inspirational. After reading your commentary, I know I am in good hands and can take the
magazine home with me like a good bottle of wine. I place it next to the bed and savor it for a whole month.

Your comments in September’s editorial prompted me to write this letter. Not because what you said was controversial, but to
remind you about the statement you made, “By engineers, for engineers.” This, in my opinion, excludes some of us who are not
engineers by profession but who use your magazine to raise their knowledge bar.

So, you should be glad to know that your wisdom and magazine go beyond your profession.

– Anthony Cervone, VP of Manufacturing, Excell Mfg.

Well, Anthony, it’s actually worse than that. I didn’t just say it in my editorial. We also have that motto plastered all over our media kit and
web site. I assure you, it’s not meant to exclude anyone. It’s just that I don’t know a better phrase to describe what Circuit Cellar is all about,
without going into a longer description. Let me explain.

I think the real issue here is what I mean by “engineer.” What do you think of when I say engineer? Do you think back to college and the
propeller-head geeks at the end of the hall, or the ones who spent so much time on the computer that you’d swear they had DSL implants?
The picture that people get in their mind when you say “engineer” depends primarily on their experience and expertise. Somewhere in the
overlap of impressions, however, everyone will agree that the word “engineer” denotes technical expertise. That’s what I’m counting on.

A lot of us on the Circuit Cellar staff are engineers (I’d say “real” engineers, but that sounds corny). We don’t let it go to our heads. All
that means is that we stand a chance of understanding some of the stuff we publish. Perhaps one of the reasons you like Circuit Cellar is
that we recognize that we don’t have a corner on the market and this expertise is shared by all of you as well. I know that every issue is read
by people who are a great deal smarter than the lot of us. It doesn’t intimidate me. It’s a healthy fear. It challenges us to check the facts,
proof things over and over, and constantly review the accuracy of our content.

Regardless of whether you think my terminology is correct, you know from the author biographies that these people aren’t all engineers.
They are manufacturing VPs, educators, systems analysts, programmers, experimenters, and oh by the way, engineers. Circuit Cellar’s
strength is that it isn’t put together by authors all with the same expertise. And, unlike a trade journal, our readers are our authors (and vice
versa). Every columnist was a reader first. Every project we publish comes to you because a reader wants to share that knowledge. Are they
all engineers? Nope.

I really coined the “by engineers, for engineers” motto for everyone else. It’s for the part of the public that isn’t at our level and tends to
group anything technical into easily defined categories. If something is “for engineers” they at least think about it before subscribing. Years
ago, before we had this statement, I had people complaining that I wasn’t teaching them electronics! Our content was too advanced and we
hadn’t warned them. What you have to realize, is that in the minds of most of the world, the people who understand Circuit Cellar are all
engineers.

So, let's face it, the phrase we use is a factual overstatement. The good news is that you are the first person to take me to task for it in
all the time I’ve said it. I can only hope that readers like you continue to value Circuit Cellar as a vehicle for raising the knowledge bar. No,
Circuit Cellar isn’t just by and for engineers. I suppose it’s more accurate if we say, “by technically astute individuals with embedded-
systems expertise for an equally well-informed readership of multi-disciplinary aptitude.” Of course, saying “by engineers, for engineers” (and
hoping you all understand) is a lot easier.

