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Preface

Microprocessors have evolved from units that handled data in
4-bit slices with rudimentary instruction sets into devices that rival,
or surpass, minicomputers in architecture and software instruction
repertoire. The Zilog Model Z-80 represents a microprocessor that is
extremely sophisticated from both a hardware implementation and
software implementation viewpoint. The Z-80 microprocessor is
truly a computer on a chip that requires only a few external compo-
nents—a 5-volt power supply, a simple oscillator, and read-only
memory—to construct a complete computer system. The instruction
set of the Z-80 includes that of the Intel 8080A as a subset, making
the Z-80 an ideal software replacement for the 8080A; the Z-80 has
many new instructions and addressing modes to supplement the
8080A instructions. A search of a string of characters, for example,
can be implemented with one instruction after initialization, the one
search instruction replacing four equivalent instructions in other
MiCroprocessors.

In addition to the Z-80 microprocessor itself, Zilog has imple-
mented other devices to supplement the power of the Z-80. A PIO
provides parallel I/O with two 8-bit ports, software configured I/0,
vectored-interrupt capability, and automatic priority interrupt en-
coding. A CTC, or Counter-Timer-Circuit, provides programmable
counting and timing functions for real-time events. Otber major
devices are also available. Zilog and other manufacturers have de-
veloped microcomputer systems based on this family of Z-80 devices,
and the systems have played their role in narrowing the gap between
“minicomputer systems” and “microcomputer systems,” a division
that becomes less and less distinct from month to month.

The purpose of this book is threefold, to acquaint the reader with
the hardware of the Z-80, to discuss the almost overwhelming (in
number of instructions ) software aspects of the Z-80, and to describe
microcomputer systems built around the Z-80.



Section I discusses Z-80 hardware. The architecture, interface sig-
nals, and timing are discussed in the first two chapters. Addressing
modes and instructions are covered in the next two chapters; both
addressing and instruction repertoire are fairly easily grouped and
explained, although they may appear confusing at first glance. The
effect of arithmetic operations and other operations on CPU flags is
presented in Chapter 6. The powerful interrupt sequences of the
Z-80 are discussed in the next chapter. Chapter 8 describes interfac-
ing examples of I/O and memory devices.

Section II describes Z-80 software. A representative Z-80 assembler
program is introduced in the first chapter of the section. An assem-
bler is almost a necessity with a microprocessor having such a large
instruction set, but machine language aspects are also covered.
Chapters 10 through 15 present the common programming opera-
tions of moving data, arithmetic operations, shifting and bit opera-
tions, list and table procedures, subroutine use, and 1/O functions in
relation to instruction set groups. Many examples of each kind of
operation are provided. The last chapter of the section details some
commonly used subroutines written in Z-80 assembly language.

The third section discusses microcomputers built around the Z-80.
Chapter 17 covers Zilog products including the microcomputer
board products in the Z-80 family and development systems. Four
other Z-80 microcomputer manufacturers are described in the last
chapter. Technical Design Labs, Inc., Cromemco, Inc., The Digital
Group, Inc., and Radio Shack. The hardware and software aspects
of all five manufacturers are presented.

The Z-80 will prove attractive to many users, not only as a succes-
sor to the 8080A, but as a powerful computer in its own right.

The Z-80 will soon have a successor, in this dynamic microcom-
puter development environment, but for the time being it represents
microcomputer “state-of-the-art.” The author hopes that the reader
will derive a great deal of benefit from the book and that the Z-80
will solve a few hardware and software implementation problems.

Much credit for this book goes to my wife, Janet, who has solved
my major software implementation problems—manuscript prepara-
tion.

WiLLiaM BARDEN, ]R.

To Bill and Norma and
the Little Green Onions.
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SECTION I

Z-80 Hardware



CHAPTER 1

Introduction

In 1971, Intel Corporation introduced the first microcomputer on
a chip, the Intel 4004. Although the 4004 was truly not a self-con-
tained computer on a single Large-Scale-Integration (LSI) chip, it
contained a great deal of logic associated with computer central
processing unit implementation. One LSI chip replaced hundreds of
circuits that were to be found in conventional minicomputers at the
time. Although the 46-instruction repertoire was not large, it was
adequate for control applications which required decision making
that could not easily be implemented in programmable-logic arrays
and in which extensive mathematical processing was not required.
The 4004 handled data 4 bits at a time and could perform 100,000
additions of two 4-bit operands per second.

The next generation of microprocessors from Intel retained the
PMOS (P-channel metal-oxide semiconductor) fabrication tech-
niques of the 4004, but offered an 8-bit wide data bus and a larger
instruction repertoire of 48 instructions. Designated the 8008, the
microprocessor had a faster instruction cycle time than the 4004 as
data for both instruction execution and decoding and for operands
could be handled in 8-bit slices. In addition, the 8008 could address
16,384 memory locations of 8 bits each, contained seven 8-bit regis-
ters, had memory stack capability, and had a single-level interrupt
capability. The 8008 could perform approximately 80,000 additions
of two 8-bit operands per second. The instruction set of the 8008 was
not compatible with the 4004.

The 8008 and 4004 had achieved widespread usage through the
electronics industry in a very short time after their introduction,
primarily because there was little else available in the way of micro-
processors. To achieve compatibility with the 8008 insofar as instruc-
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tion repertoire, the Intel 8080, introduced in late 1973, included
the instruction set of the 8008 and supplemented it with 30 more
instructions. Users of the 8008 could now change to a faster, more
versatile microprocessor while not discarding 8008 software pro-
grams, since all 8008 software would presumably execute on the
§080. The 8080 was an NMOS ( N-channel metal-oxide semiconduc-
tor) microprocessor that allowed faster clock rates. Additions of two
8-bit operands could now be carried out at rates of 500,000 per sec-
ond. In addition, all other instruction times were much shorter than
the 8008 as the 8080 was built around a 40-pin chip, requiring the
CPU to do much less time sharing of the data bus between data
transfers and instruction implementation.

The 8080 supplemented the hardware features of the 8008. In
place of 16,384 (16K) memory addresses, the 8080 could address
65,536 (64K ). Rather than a limited 7-level memory stack, the 8080
offered a memory stack in external memory itself instead of the CPU.
A binary-coded decimal or bed capability was built into the arith-
metic and logic unit in the CPU; additions of two bed operands
could now be implemented. Expanded addressing modes to permit
direct addressing of external memory was offered. Although the 78
instructions of the 8080 still seemed strange to many programmers,
the instruction set decidedly had moved away from one for pri-
marily control applications to one that was more general purpose in
nature.

In 1976, Intel brought out several variations on the 8080. The
Intel 8085 included a serial input/output capability on the micro-
processor chip itself. In addition, the 8085 had a requirement of
only a single-phase clock (the 8008 and 8080 were two-phase clocks)
and a single 5-volt power supply (the 8008 and 8080 required two
and three voltages, respectively). As the number of supporting
packages had grown impressively (such chips as a programmable
peripheral interface, interrupt controller, and crt controller) Intel
provided very powerful computing capability at faster and faster
speeds (770,000 8-bit adds per second), while still retaining com-
patability with existing software written for the 8008 and 8080.

Although the 8085 was an improvement over the 8080 in many
features, the instruction set remained very similar to the 8080. Only
two new instructions were added, one to read serial and interrupt
data, and one to write serial and interrupt data. Many of the inherent
inadequacies of the 8008 and 8080 remained.

The Zilog, Inc. Z-80 microprocessor chip has provided another
level of sophistication for the widely used 8008/8080 base. Bearing
in mind that the super computer of today is the surplus bargain of
tomorrow, the Z-80 has supplemented the instruction set and capa-
bilities of the 8080 in the same fashion as the 8080 increased the
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capabilities of the 8008. In addition, Zilog has produced a family
of support chips that supplement the Z-80. The Z-80 is software
compatible with the 8080, allowing existing 8008 and 8080 software
to be executed on the Z-80. While the limitations of the 8008 and
8080 instructions and architecture must of necessity be retained in
the Z-80, the Z-80 offers new instructions, new addressing modes,
and new hardware features that provide more capability and versa-

tility than ever before.

Z-80

8008/8080

REGI STER

FLAGS

A

FLAGS'

[

E

D!

'

A
B
D
H

L

H'

L

Fig. 1-1. Register comparison 8008,
8080, and Z-80.

INTERRUPT
VECTOR |

MEMORY

REFRESH R

INDEX REGISTER IX

Y

STACK POINTER SP

PROGRAM COUNTER PC

-

Z-80

In addition to providing the eight 8-bit CPU registers of the 8080,
the Z-80 duplicates the eight registers to offer sixteen registers. Two
index registers offer indexing capability not provided in the 8080.
An interrupt-vector register and memory-refresh register provide
special interrupt functions and dynamic memory-refresh capability.
Fig. 1-1 shows the basic register arrangement of the 8008, 8080, and

Z-80.

UNUSED
98

80 Z-80
INSTRUCTIONS

Z-80 30 8080
INSTRUCTIONS

8080
48 8008
8008 INSTRUCTIONS
L

p.

256 POSSIBLE
INSTRUCTION
TYPES (ONE
BYTE OP-CODE)

Fig. 1-2. Instruction comparison 8008, 8080, and Z-80.
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The 78 instructions of the 8080 are provided in the Z-80, but the
total number of instructions comes to 158. Many of these are logical
extensions of 8080 instructions, but many are extremely powerful
and a complete departure from the 8080. Fig. 1-2 shows the relative
differences between the 8008, 8080, and Z-80.

All Input/Output and interrupt capability of the 8080 is retained
in the Z-80. I/0 is expanded, however, to operate from any CPU
register and to operate in “block” fashion, that is, to facilitate transfer
of many bytes at a time over a programmed (non-DMA) I/O chan-
nel. Interrupts include the standard external interrupt capability of
the 8080, but supplement this with a separate “nonmaskable” inter-
rupt similar to the Motorola MC6800 and MOS Technology MCS
6502. Other interrupt capability allows for interrupt vectoring any-
where in memory, rather than just to eight locations in page 0, and
for up to 128 levels of interrupts, rather than eight.

The Z-80 Microcomputer Handbook is divided into three sections.
Section I covers the hardware aspects of the Z-80. Architecture, in-
terface signals and timing, addressing modes, instruction set, flags,
interrupt sequences, interface of memory and I/O devices, and DMA
operation are discussed. When applicable, differences between the
8080 and Z-80 are discussed. Section II discusses Z-80 software,
grouped in similar manner to Zilog Z-80 documentation. Section I
also provides programming examples of Z-80 code. Many times, a
short section of a program will greatly clarify the somewhat pedantic
descriptions of individual instructions. Section III discusses five
microcomputer manufacturers that have built microcomputers
around the Z-80 microprocessor chip. Appendix A provides complete
electrical specifications for the Z-80. Appendix B cross-references
8080 instructions to the Z-80 instruction set and Appendix C provides
a short description of each Z-80 instruction. Appendix D reviews
binary and hexadecimal representation while Appendix E lists
ASCII character codes. The last appendix, Appendix F, lists Z-80
Microcomputer manufacturers.
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CHAPTER 2

Z-80 Architecture

The architecture of the Z-80 is shown in Fig. 2-1. Thirteen CPU
and system control signals are sent to or generated in the instruction
decode and CPU control portion of the microprocessor. The data bus
is eight bits wide and is the path for all data transferred between
external memory and input/output devices and CPU registers. The
address bus is sixteen bits wide. Normally the address bus would
specify an external memory address of 0 to 65535 (0 to 64K — 1)
since the Z-80 has a full complement of input/output instructions
and no “memory-mapped” input/output would be required. (In
memory-mapped input/output, a portion of the memory addresses
must be dedicated to addresses of input/output devices).

The main path for data within the CPU is an internal data bus
which connects the CPU registers, arithmetic and logical unit, data
bus control, and instruction register. The arithmetic and logical unit
performs addition, subtraction, logical functions of ANDing, ORing,
and exclusive ORing, and shifting operations between two 8-bit
operands. In addition, binary-coded decimal (bcd) operations may
be performed under control of a Decimal Adjust Accumulator in-
struction.

GENERAL-PURPOSE REGISTERS

The Z-80 registers consist of fourteen general-purpose 8-bit regis-
ters designated A, B, C, D, E, H, and L and A’, B’, C', D', E/, H,
and L’. Only one set of seven registers and the corresponding flag
register F or F” can be active at any given time. A special Z-80 in-
struction selects A and F or A’ and F’, while a second instruction
selects B,C, D, E, H, L, or B, C’, IV, E/, H’, or L. The possible com-
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ALU BUS  fe—t—» DATA

CONTROL : BUS
i
1
CPU t
REG I STERS !
]

ADDRESS | 16-81T
BUS ; ADDRESS

CONTROL i BUS
i
1
|
SYSTEM !
SYSTEM !
CONTROL INTERNAL 1
CONTROL |— !
SIGNALS SIGNALS CONTROL '
i
1
!
1

A FLAGS| A' |FLAGS'
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D E D! E'
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! R

X

Y

SP

PC

Fig. 2-1. Z-80 Microprocessor architecture.

binations of A and F and the remaining six general-purpose registers
are shown in Fig, 2-2.

The advantage in two blocks of general-purpose registers is that
a programmer may rapidly switch from one block to another. In the
simplest case, this provides more register storage in the CPU. Reg-
ister storage in the CPU is to be preferred over storage in memory
as data can be accessed by a program much more rapidly from CPU
registers than from external memory. In a more sophisticated use of
the block switching capability, the unused set of registers may be
used to hold the environment after receiving an interrupt. This con-
cept will be discussed in a later chapter in this section.

Just as in the 8080, the general-purpose registers are somewhat
specialized in function. Eight bits of data may be moved between
memory and any of the seven registers or from one register to the
next. Arithmetic and logical operations, however, such as adding
two operands or exclusive ORing two operands can only be done
using the A register (or A’) and another register or memory location.
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A F NON PRIME
B c NON PRIME
D 3
H L
A F NON PRIME
B! c PRIME
D' E'
Hl LI

Fig. 2-2. Register block combingtions.
! F! PRIME

B c NON PRIME
D E :
H L
A' F! PRIME
B! c' PR IME
D' E'
HI Ll

The result of the operation always goes into the A register. In gen-
eral, then, the currently selected A register is the main register for
performing arithmetic and logical operations as shown in Fig. 2-3.

The remaining six registers are grouped into register pairs B,C;
D,E; and H,L. For many operations in the 8008, 8080, and Z-80 the
data within the three register pairs represents a memory address.
The H,L registers, for example, originally specified a High memory
address of eight more significant bits and a Low memory address of
eight less significant bits as shown in Fig. 2-4. The same is true of
the B,C and D,E registers. In the 8080, the capability also was pro-
vided to allow the B,C and D,E to specify a memory address, giving
three register pairs that could hold a memory address pointer to
data in memory. In general, the three register pairs will hold mem-
ory addresses as shown in Fig. 2-4, although a second use for them
is to allow double-precision arithmetic.

8-BIT

ARITHMETIC OR
LOG ICAL RESULT

ALU FLAGS

OPERAND 1 OPERAND 2
|¢———— MEMORY OPERAND

[ AR AN ] B (OR BY c(Ch OTHER GEN-
D" | E(EN ERAL PURPOSE
HHY | LY REGISTERS

Fig. 2-3. Arithmetic and logical operations.
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16-BIT MEMORY ADDRESS
OR DOUBLE-PRECISION VALUE

REG ISTER PA
hre RPAIR BB iy ]

REGISTER PAIR [ T T = )
ISTER PAIR
FEISTER PAR T HE) i ) ]
8HIGH-ORDER BITS 8 LOW-ORDER BITS

Fig. 2-4. Register pairs.

Double-precision arithmetic involves adding, subtracting, incre-
menting (adding one), or decrementing (subtracting one) a 16-bit
value. Most arithmetic and logical operations in the Z-80 are oriented
towards 8-bit operations, but the Z-80 allows limited operations be-
tween the register pairs and the stack pointer and index registers IX
and IY. The general philosophy for this probably evolved from the
requirement to manipulate memory address pointers in some con-
venient fashion, since all external memory addresses are 16-bit ad-
dresses and two 8-bit operations would have to be performed if 16-
bit arithmetic were not implemented. Fig. 2-5 shows the use of the
register pairs in double-precision operations.

16-B IT RESULT

ALU
ADD, SUBTRACT,
INCREMENT, DECREMENT FLAGS

OPER?XND 1 OPER’AND 2

Fig. 2-5. Register pair double-
precision operation.

B, C REGISTER PAIR
D,E REGISTER PAIR
" | H,LREGISTER PAIR
SP
IX
1y

FLAG REGISTER

The flag register is selected along with the A register. At any given
time A and F or A’ and F’ are selected. Although the flag register is
a register of eight bits as are the other seven CPU registers, it is more
a collection of eight bits conveniently grouped into one register than
a general-purpose register. The bits within the flag register specify
various CPU conditions that have occurred after an arithmetic, logi-
cal, or other CPU operation. For example, it is convenient to know
if the result of the addition of two operands resulted in a zero result,

18



a positive (zero or greater) result, or a negative result. A zero flag
and a sign flag in the flag register may be tested by the program after
the add to determine the nature of the result. Other flags are the
carry flag (C), the carry from the high order bit of the accumulator,
the parity/overflow flag (P/V), specifying a parity or overflow con-
dition, the half carry flag (H), which is essentially a bed carry or
borrow from the low order bed digit, and the subtract flag (N), set
for bed subtract operations. The flag register format is shown in Fig,.
2-6. The interaction of CPU operations and the flags is discussed in

BIT BIT
7 6 5 4 3 2 1 0

FLAG

REG ISTER S z X H X | PIVI N c

[ LCI\RRY FLAG

SUBTRACT FLAG

DUAL PURPOSE PARITY/
OVERFLOW FLAG

INDETERM INATE
BCD HALF CARRY FLAG

- INDETERM INATE
-ZERO FLAG
LSIGN FLAG

Fig. 2-6. Flag register format.

detail in a later chapter in this section. Throughout this book the
term flags, flag reigster, and condition codes will be used inter-
changeably.

SPECIAL-PURPOSE REGISTERS

The remaining CPU registers that are available to the programmer
are the I, R, IX, 1Y, SP, and PC registers. Two of these registers are
exactly the same as they are in the 8080, the SP, or Stack Pointer, and
PC, or Program Counter. The PC register is a 16-bit register that
holds the location of the current instruction being fetched from mem-
ory. Instructions in the Z-80 are one, two, three, or four bytes long.
If a sequence of eight instructions is being executed, as shown in
Fig. 2-7, the PC will hold the indicated values. Note that the PC
always points to the start of the next instruction, and that the CPU
will automatically increment the PC by one, two, three, or four
depending on the length of the instruction being executed. The PC
is available to the programmer only in the sense that it may be
loaded or stored. No arithmetic or logical operations on the PC are
permitted.
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Whereas the PC contains a pointer to external memory that speci-
fies the address of the next instruction to be executed, the SP contains
a pointer to an external memory stack. The concept of a memory
stack is not unique to microprocessors, but virtually every micro-
processor does have stack capability. The external memory stack is
simply an area of memory set aside for temporary storage of CPU
registers, the flag register, and the program counter. Certain instruc-
tions cause transfer of control from the current jump or branch in-

EXTERNAL CONTENTS OF
MEMORY * PC AT END OF
LOCATION INSTRUCTION
0100 INSTRUCTION 1 (1 BYTE) 0101
0101 0103

INSTRUCTION 2 {2 BYTES)

0103 0106
INSTRUCTION 3 (3 BYTES)

0106 | INSTRUCTIONA(1BYID | .0107 Fia. 2.7. P . i
0107 | INSTRUCTION 5(1BVTE) | 0108 '9. £-7. Frogram counter operation.
0108 [ INSTRUCTION 6 (1BYIE) | 0109

0108
0109 ' nsTRUCTION 7 (2 BYTES)
0108 010D

INSTRUCTION 8 (2 BYTES)

0100

% ALL VALUES HEXADECIMAL

struction to another instruction and cause the current contents of the
program counter (pointing to the instruction after the jump or
branch) to be automatically saved in the stack area. This saves the
location so that at some later time a return may be made back to the
next instruction in sequence after the jump or branch.

Not only is the PC saved for certain types of jumps or branches,
but it is automatically saved for interrupts. Here, the address of the
current instruction being executed is saved in the stack as the inter-
rupt occurs and a special interrupt processing routine is entered.
This action will be discussed in detail in a later chapter in this sec-
tion. Lastly, CPU registers and the flag register may be saved and
retrieved from the stack under program control using special stack

" instructions.

As data is entered or pushed into the stack area, the stack pointer
is decremented by one count. As data is retrieved from the stack or
pulled, the stack pointer is incremented by one count. A good anal-
ogy to stack operation is a poker hand that is laid down on the table
in a pile consisting of King of Hearts, Jack of Spades, and Ace of
Diamonds with the King at the bottom. When the cards are re-
trieved, the first card picked up is the last laid down, the Ace of
Diamonds, followed by Jack of Spades and King of Hearts. This type
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of stack operation is a LIFO operation, or last in, first out. The con-
tents of the SP during a typical instruction sequence is shown in
Fig. 2-8. Note that the stack builds from higher numbered memory
to lower numbered memory as more data is stored in the stack.

The remaining registers of the Z-80 are not contained in the 8080.
The index registers IX and 1Y are two 16-bit registers that permit
indexed addressing in Z-80 programs. While the 8080 had indexed-
like instructions, it did not permit true indexing. When an instruction
is executed in an indexed addressing mode, one of the two index
registers is used to calculate the memory address of the operand.

MEMORY STACK
(STACK) POINTER
LOCATION CONTENTS
0100
0101
0102 0103
0103 — DATAA
(1) PUSH DATA A
0100
0101
0102 DATA B 0102
0103 DATA A
Fig. 2-8. Stack Pointer (SP) operation. (22 PUSH DATA B
0100
0101
0102 DATA B 0103
0103 —»1 DATAA
{3 PULLDATA B
0100
0101 DATA C2
0102 DATA C1 0101
0103 DATA A
{4) PUSH DATA C
(TWO BYTES)

The effective address of the memory operand is obtained by adding
the contents of the index register and a 16-bit value contained in the
displacement field of the instruction employing the indexed address-
ing mode. Indexed operations of this kind are extremely powerful
for efficient programming and will be discussed in more detail later.

The Interrupt Vector Register I is an 8-bit register that can be
loaded with 8 bits of data specifying a memory address. This ad-
dress, when combined with a lower-order 8 bits of address supplied
by the interrupting device, represent a memory address whose con-
tents in turn specify the memory address of the software interrupt
handling routine for the device. Suppose that a paper-tape reader
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interrupts the Z-80. After the Z-80 recognizes the interrupt, it signals
the paper-tape-reader controller to pass over the low order 8 bits
of the address. The paper-tape-reader controller then passes over
the 8 least significant bits of the address which are combined with
the 8 higher order bits of the I register. If the paper-tape reader
supplied 14H (A suffix of “H” will represent base 16, or hexadecimal
in all subsequent discussions) and the I register contained FFH,
then the combined address would represent FF14H. The Z-80 con-
trol logic would then go to external memory location FF13H, pick
up its contents and transfer control to the location specified, in this
case EOOOH as shown in Fig. 2-9. In general, the I register holds the
8 most significant bits of an interrupt vector table which may hold
interrupt vectors for 128 interrupting devices.

LOW ORDER 8 BITS
FROM DEVICE

trecisteR  [rj1Jafaf1f1]a]1] [oJoJo]t]o]1]0]0]

[

16-BIT MEMORY

MEMORY ADDRESS = FF14H
LOCATION

FF10

FF11

FF12

FF13 - CONTENTS OF FF14

FFl4 E 0 POINTS TO INTERRUPT

FF15 0 0 PROCESSING ROUTINE { )

FF16 AT E000

FFI7

£005

£004

£003

£002

E001 )

E000 START AT INT ROUTINE

Fig. 2-9. | Register actions.

The I register is used in one of three interrupt modes which the
Z-80 may utilize under program control. One of the other two modes
is identical to the 8080 interrupt action, allowing up to eight vec-
tored interrupts. The last interrupt mode permits a special ninth in-
terrupt. In addition to the three external interrupt modes, a non-
maskable (always active) external interrupt permits a high-priority
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interrupt to yet another interrupt location. All four kinds of interrupt
groupings are discussed in a later chapter in this section.

The last special-purpose register is the 7-bit Memory Refresh reg-
ister R. When external memory is made up of dynamic memories,
the R register allows automatic refreshing of this kind of semicon-
ductor memory which periodically (typically every 2 milliseconds)
needs to have every cell read or refreshed to retain its contents. The
contents of the R register are incremented by one after every in-
struction fetch and the contents are sent out along the least signifi-
cant 7 bits of the address bus while the Z-80 CPU is not accessing
memory. Every cell of external memory with a predefined configura-
tion of its address bits equal to the R register can now be refreshed
without fear of contention (simultaneous read) of the same memory
cell by the Z-80 CPU. The R register is normally not used by the
programmer.

MICROCOMPUTER COMPONENT PARTS

As in any microcomputer, the microprocessor chip itself does not
constitute the complete computer system. Fig. 2-10 shows the com-
ponent parts of a typical Z-80 system. The Z-80 microprocessor chip

ADDRESS DATA
BUS  BUS
EXTERNAL
MEMORY
(RAM, ROM,
PROM,
EPROM,
2-80 ETC.)
MICROPROCESSOR .
AND ASSOCIATED
LOGIC
170 DEVICE
CONTRIOLLER e—— 1/0 DEVICE 1
2 e— 110 DEVICE 2
CONTROL
PANEL
LoGIC
(IF ANY)
> N 110 DEVICE 3

Fig. 2-10. Z-80 Microcomputer system component parts.

along with supporting circuitry interfaces to external memory. Con-
trol signals are passed between CPU circuitry and external memory,
memory addresses are passed along the 16-bit address bus, and data
is passed along the 8-bit address bus. External memory may be any
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combination of the many kinds of external memory available today.
RAM (random access memory) is semiconductor memory that can
be both read and written into. ROM (read only memory) is a pro-
duction-type memory that contains a program or data or both which
can be read but not altered. PROM (programmable read only
memory) may be programmed in the field with inexpensive equip-
ment, but may not be altered once programmed. EPROM (erasable
programmable read only memory) may be programmed for a read
only operation, but may be periodically erased under ultraviolet
light. Many wags have suggested another type, a WOM or write
only memory, but in most cases the former memory types are com-
monly used.

The Z-80 microprocessor and associated CPU circuitry interface
to I/O device controllers along with external memory. I/O device
controllers perform several functions. Firstly, the I/O device con-
trollers buffer data passing between the Z-80 CPU registers or ex-
ternal memory and the I/O device. The buffering matches the high-
speed data-transfer rate of the Z-80 CPU to the relatively low-speed
rate of the I/O device. It is important for the CPU not to have to
wait until the I/O device accepts data, as the wait time may repre-
sent tens of thousands of Z-80 instructions. A Teletype Corporation
ASR-33 Teletype, for example, accepts data at the rate of 10 bytes
per second. While waiting for the Teletype to accept a byte of data,
the Z-80 microprocessor could be executing 1/10 second worth of
instructions or about 30,000 instructions. The Teletype controller
allows the Z-80 to pass a byte in several microseconds and signals
the Z-80 when the Teletype is done processing the data from the
Teletype device controller.

Another function performed by the 1/O device controller is for-
matting of the data. A floppy disc transmits data as a serial bit
stream. The floppy disc controller, among other functions, converts
the serial bit stream into 8-bit parallel bytes in proper format for
transmission to the Z-80 CPU over the data bus.

A third function of the I/O device controller is that of level con-
version. Data from CPU logic is in TTL (or Transistor-Transistor
Logic) signal levels, which are nominally 0 volts and 5 volts. A Se-
lectric I/O typewriter may require 24 to 48 volts to drive the sole-
noids of the Teletypes and obviously some voltage level conversion
is required.

Other functions of the I/O device controller are timing, synchro-
nization, control-signal handshaking, and transmission of device
status. A wide range of I/O devices interface to the Z-80 through
their respective device controllers, ranging from 5 character-per-
second Teletype equipment, audio cassette equipment, analog-to-
digital converters, and 100,000 byte-per-second graphic display
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equipment, to mention a few of the virtually dozens of devices.
Some of the more common generic types will be covered in a later
chapter of this section along with special-purpose LSI chips of the
Zilog Z-80 family which are designed to permit ease of interfacing.

The last functional block of Fig. 2-10 is that of the control panel.
Many current microcomputers have dispensed with a control panel
except for one sparsely configured with a power switch and a reset
switch. Pressing the reset switch causes a nonmaskable interrupt
which transfers control to a special monitor program in PROM or
ROM memory. The monitor program allows the user to interrogate
memory locations, change the contents of memory locations, modify
registers, load and save programs on I/O devices and other func-
tions. If a control panel is present, it performs the same functions
as the monitor program by allowing the user to manually address,
examine, and change data in CPU registers and memory. The only
advantage that a control panel would have over a monitor program
is that only the CPU, memory, and control panel are required to
execute programs. However, any viable system must have some kind
of I/O device and in almost all cases, the control panel is an added
complexity.

Section III discusses many of the more popular Z-80 microcom-
puter systems and will give the reader an overview of what is avail-
able in current Z-80 microcomputers insofar as system architecture
is concerned.
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CHAPTER 3

Interface Signals and Timing

The Z-80 CPU chip is a 40-pin dual in-line package. The pinout
of the chip is illustrated in Fig. 3-1, with the pins logically grouped
according to function, rather than the actual physical representation.

ADDRESS AND DATA BUS

The address bus is represented by signals A15 through A0, where
A1lS5 is the most significant bit of the address bus and AQ is the least
significant bit. A15 through A0 are active high and are a_tri-state
output meaning that when the address bus is inactive, its outputs
are in a high-impedance state. The address bus lines considered to-
gether represent a 16-bit memory or device address. Since 2!¢ ad-
dresses can be held in 16 bits, external memory of 65536,, or 64K
may be addressed directly by the Z-80 CPU. When I/O devices
are addressed, the least significant eight lines of the address bus,
AT7-AQ, hold the I/O device address, which may be 0 through 255,,.
In addition to memory or I/O device addresses, the least significant
seven lines of the address bus hold the contents of the R, or Memory
Refresh Register, for certain times during execution of each in-
struction.

The data bus, signals D7 through DO, are tri-state active high
signals with D7 representing the most significant bit and DO repre-
senting the last significant bit. The data bus is bidirectional, per-
mitting data to be transferred to CPU registers from external mem-
ory or I/O devices or from CPU registers to external memory or I/O.

BUS CONTROL SIGNALS

Associated with the address bus and data bus are two CPU bus
control signals, the input signal BUSRQ and the output (acknowl-
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[ A0 —% 25 f+——BUSRA | gys
Al =—3l _____{ contRoL
A2 —3 23— BUSAK
A3 +—33
A4 -——o 3 19— MREQ
A5 i35 21— RD MEMORY
A6 +—36 22— WR [ OPERATION
ADDRESS | A7 -—{37 28 |—RFSH
BUS A8 w—r138
A9 -—139 o
Al0e——40 20}—-T0RQ  INPUT/OUTPUT
Alle—roi 1 Z-80
Al2e——] 2 MICROPROCESSOR .
Al3e— 3 27 - M1
Alde—o 4
| AlS<e—d] 5 % RESET
MISCELLANEOUS
24 fe———TWAIT
[ D0 -—]14 .
D1 ~—ad15 18 |—HALT )
D2 -—f12
D3 wt——pd 8§
PATABUS) s = 7 VW | rergupr
05 <=1 9 — [ INpUTS
D6 <+— 10 16 fe—IN
L D7 13
6pe——0
11 fe——15y
29 fe——cND

Fig. 3-1. Z-80 interface signals.

edge) signal BUSAK. Signal BUSRQ is an active low signal that is
generated by an external device to gain control of the CPU busses.
During the time the external device has control of the busses, it will
probably perform a direct-memory access (DMA) operation. DMA
permits an external device to go directly to memory and transfer
data between memory and the device. The CPU must be “locked
out” during a DMA operation to avoid the conflict of the CPU re-
questing memory service at the same time and from the same mem-
ory location as an external device. When the external device brings
down (logic 0) the BUSEQ, Bus Request signal, the CPU responds
with acknowledge signal BUSAK, Bus Acknowledge. BUSAK is an
active low output that signifies that the address bus, data bus, and
CPU output-control signals are now in the high-impedance state
and can be controlled by an external device for DMA operations.

MEMORY SIGNALS

__There are four signals associated with memory operation, MREQ,
RD, WR, and RFSH. The first, MREQ, Memory Request, is a tri-
state active low signal indicating that the address bus holds a valid
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memory address. Essentially, this is part of a chip enable signal for
external memory to inform external memory to output data for a
memory read or to input data for a memory write. The RD and WR
signals are tri-state active low outputs to external memory indicating
whether the memory operation is to be a read or write. When signal
MREQ goes low, either RD or WR will also be low during a portion
of the machine cycle. When MREQ and RD are both low, an ex-
ternal memory read will be performed. When MREQ and WR are
both low, an external memory write will be performed. Both reads
and writes utilize the address on the address bus and transfer data
along the data bus.

The RFSH signal is not associated with normal memory opera-
tion. It is used only when dynamic memories are used as external
memories. Dynamic memories periodically require a refresh to
maintain the data stored within the memory cell. This is essentially
a memory read operation with the data not being transferred from
the memory. Typical dynamic memories are set up so that a refresh
signal can be input to the memory, along with five or six address line
inputs. To refresh an entire memory, six address line inputs would
require sixty-four separate refreshes (2¢) with the entire refresh
cycle lasting no longer than 2 milliseconds. When the output signal
RFSH is low and signal MREQ is also low, external dynamic memory
will use the contents of the least significant seven bits of the address
bus to implement one of the refresh cycles. RFSH is active at every
instruction fetch, and since the R register is continually being in-
cremented after each fetch, the address lines will continually reflect
a new address for the next refresh cycle. For the above example of
six address line inputs, it will take sixty-four instruction cycles to
refresh dynamic memory or approximately 256 microseconds (.256
milliseconds) at about 4 microseconds per instruction, average.

INPUT/OUTPUT SIGNALS

Signal IORQ is a tri-state, active low output signal used for Input/
Output Requests. When signal IORQ goes low, the least significant
eight bits of the address bus, A7-A0, hold an I/O device address.
Signals RD and WR must then be used to determine whether the
I/O operation is to be an I/O read or write. Signal IORQ is also
used in conjunction with signal M1 for interrupt responses as dis-
cussed below.

OTHER CPU SIGNALS

Signal M1 is an active low output signal that indicates the micro-
processor is in the fetch cycle of the instruction. Every instruction
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has a fetch cycle as the first byte of the instruction, the operation
code, is fetched from memory and then decoded. In the Z-80, unlike
the 8080, several instructions have two-byte operation codes and
signal M1 will be low during each of the fetches of one byte.

The RESET signal is an active low input signal that is used as a
master CPU reset. This signal would be brought low immediately
after power up, or at any time when the microcomputer system
was to be reset. When RESET is brought low, the following actions
occur:

1. The interrupt enable flip-flop is disabled, preventing system
interrupts except for NMI (see below).

Register I, the Interrupt Vector Register, is set to 00H.
Register R, the Refresh Register, is set to 00H.

Interrupt mode 0 is set.

The address bus goes to a high-impedance state.

The data bus goes to a high-impedance state.

All output-control signals go to the inactive state.

NS VU G

The WAIT signal is a signal associated with slow memories or
I/0 devices. As long as the WAIT signal is low, the CPU will “mark
time,” doing nothing, while the external memory or I/O device re-
sponds to a previous memory or I/O request. The WAIT signal en-
ables slow memories or (rarely) slow 1/O devices to be interfaced
to the Z-80 without buffering.

The HALT signal is_an active low output signal that goes low
during the time that a HALT instruction is being executed. A HALT
instruction in a program is typically used for one of two conditions.
Either the program has performed all of its functions and termi-
nated, or a halt has been reached and the program is waiting for an
interrupt to occur. When the CPU is in a halt state, it performs no-
operations instructions (NOP) to ensure proper memory refresh
activity.

INTERRUPT-RELATED SIGNALS

The remaining logic signals are associated with interrupt process-
ing. Signal NMI is a negative-edge triggered input that specifies a
nonmaskable interrupt is to be performed. When this signal is mo-
mentarily brought low, the CPU will recognize this interrupt at the
end of the current instruction. When the CPU recognizes the NMI
interrupt, the following actions occur:

1. The current contents of the program counter PC is saved in the
memory stack.
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2. The CPU transfers control to memory location 0066H, that is,
instruction execution starts from location 0066H which must
contain an NMI interrupt processing program.

An NMI interrupt of this kind cannot be disabled and will always
be recognized by the CPU at the end of the current instruction cycle.
The exceptions to this are that signal BUSRQ will take precedence
over a NMI signal, and that a continuous WAIT state will prevent
the current instruction from ending and thus prevent the NMI from
being recognized.

The main interrupt request is signal INT, an active low input
signal that is supplied by external devices to cause an interrupt. The
INT signal will be recognized by the CPU at the end of the current
instruction if the interrupt enable flip-flop IFF in the CPU has been
set by the program and if the BUSRQ signal is not active. If these
conditions are met, the CPU accepts the interrupt and acknowledges
the interrupt by sending out an IORQ during the fetch (M1) time
of the next instruction. Since IORQ never occurs during M1 for an
I/O instruction, the interrupting device recognizes the TORQ and
M1 condition as an interrupt acknowledge. Further actions taken for
this interrupt are discussed later in this section.

CPU ELECTRICAL SPECIFICATIONS

The electrical specifications for the Z-80 microprocessor chip are
shown in Chart 3-1. All inputs and outputs are TTL compatible
facilitating interfacing. There is only one power-supply voltage, a 5-
volt power supply. The Z-80 microprocessor chip alone requires a
maximum current of 200 milliamps. Unlike the 8080, there is only a
single-phase clock input required, which is also at TTL levels. The
frequency of the clock for the original Z-80 was 2.5 megahertz, how-
ever, faster versions will accept a 4-megahertz clock at this time of
writing. Detailed specifications for other dynamic parameters are
provided in Appendix A.

CPU TIMING

All instruction execution in the Z-80 may be broken down into
a set of basic cycles. There are two kinds of cycles, the most basic
being a clock cycle, or T cycle. If a 4-MHz clock is being used for
the Z-80, each T cycle will be a constant length (period) of 250
nanoseconds as shown in Fig. 3-2. The T cycles are used to control
operations within a larger cycle called the machine cycle, or M
cycle. Every instruction executed within the Z-80 consists of from
one to six machine cycles (with the exception of special block-
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Chart 3-1. Z-80 Electrical Specifications

ABSOLUTE MAXIMUM RATINGS

Temperature Under Bias 0°C to 70°C
Storage Temperature —65°Cto +150°C
Voltage On Any Pin —0.3Vto +7V

with Respect to Ground
Power Dissipation 11w

® DC CHARACTERISTICS

Ta = 0°C to 70°C, Ve = 5V * 5% unless otherwise specified

*Comment

Stresses above those listed under
“Absolute Maximum Rating” may
cause permanent damage to the
device. This is a stress rating only
and functional operation of the
device at these or any other con-
dition above those indicated in
the operational sections of this
specification is not implied. Expo-
sure to absolute maximum rating
conditions for extended periods
may affect device reliability.

Symbol Parameter Min. { Typ. | Max. | Unit Test Condition
Vire Clock Input Low Voltage | —0.3 0.45 \
Vinc | Clock Input High Voltage | Voo™ Vee v
Vi Input Low Voltage —0.3 0.8 Vv
Vin Input High Votlage 2.0 Vee \'
Vor Ovutput Low Voltage 0.4 \ lo, = 1.8 mA
Von Output High Voltage 2.4 v lor = —100 A
lec Power Supply Current 200 | mA | t. = 400 nsec
1% Input Leakage Current 10 [ #A | Vin =0to Vee
lLon Tri-State Output Leakage 10 | A | Vour = 2.410 Ve
Current in Float
lLoL Tri-State Output Leakage —10 | #A | Vour =04V
Current in Float
lLo Data Bus Leakage Current +10 | pA | 0< Vin < Vee
in Input Mode
® CAPACITANCE Ti=—25°C, f =1 MHz
Symbo! Parameter Typ. Max. Unit Test Condition
Ce Clock Capacitance 20 pF
Cin Input Capacitance 5 pF g:::f::;rf:gizzn d
Cour Output Capacitance 10 pF
[1] Clock Driver Vee

STIL

>
>
>

Vee

An external clock pull-up resistor of (330£)) will meet both the ac and dc clock re-

quirements.

o
Z-80
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MEMORY DATA READ AND WRITE CYCLES

The memory read and write cycles will be illustrated with ex-
amples of the execution of two instructions. Fig. 3-4 shows the exe-
cution of an LD R, (HL) instruction which loads the contents of
the memory location pointed to by the H,L register pair into CPU
register R. The M1 cycle is identical to that previously discussed.
At the end of M1, the CPU has decoded the instruction and initiates
a memory read cycle to obtain the eight-bit operand from memory.
The address bus, MREQ, and RD signals are activated just as in
the case of the M1 cycle. The address bus holds the contents of the
H,L register pair during this time and external memory gates the
operand onto the data bus. On the falling edge of T3, the memory
operand is clocked into the CPU, loading register R.

LD R, (HU INSTRUCTION
M1 CYCLE MEMORY READ CYCLE

n 12 ! T n 12 3
® _4’_\_*_\_*—_\_*—_\_4_\__}_\_%—\_[—
AO-AL5 —C MEMORY ADDR.
WREQ T\ -
RD T\ g1
WR
g ®
WATT Y R Y A V) St

|—-———INSTRUCTION FETCH-——*———LD R, HL) EXECUTION—'{

Fig. 3-4. Read cycle.

A memory write is shown in Fig. 3-5. The instruction in this case
is an LD (HL), R which takes the contents of the specified CPU
register R and writes it into the external memory location pointed
to by the H,L register. The MREQ and address bus outputs are
active as in the previous examples. No RD signal is output, but the
contents of the specified CPU register are gated onto the data bus
after the falling edge of T1. This data remains on the data bus and
at the falling edge of T2 the WR signal becomes active. With MREQ
and WR active, external memory writes the data on the data bus into
the specified memory location, using address bus outputs A15-A0.
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LD (HL),R INSTRUCTION

M1 CYCLE MEMORY WRITE CYCLE

T 12 13 T4 11 2 T3
® - [\ N B W
AD-A15 ______MEMORY ADDR, X
MREQ \ /
RD
WR J Ve
DATA BUS — DATA OUT —
WATT R SO W i

Fig. 3-5. Write cycle.

I/0 READ AND WRITE CYCLES

An I/O Read or Write cycle occurs during an input or out-
put instruction. Input and output instructions generally are three
or four machine cycles long and from 10 to 20 T cycles (2.5 to 5
microseconds long for a 4-MHz clock). The more sophisticated 1/O
block-transfer instructions (INIR, INDR, OTIR, OTDR) transfer
up to 256 bytes, however, and repeat machine cycles until all bytes
have been transferred, resulting in total instruction times that are
dependent on the number of bytes to be transferred and the speed
of the I/0 device. Fig. 3-6 shows an input cycle and Fig. 3-7 shows

—— INSTRUCTION FETCH—+— LD (HL), R EXECUTION ’———|

110 READ CYCLE

! ¥ Ty 3 1
® S AR Y (N Y A \ |-
AD - A7 :x PORT ADDRESS X
10RQ AW /
®D \ /
DATA BUS {IN}
WATD S IS RS ] \___________1 _______

Fig. 3-6. 1/0 Read cycle.
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an output cycle. The 1/O device address is placed on lines A7-A0
of the address bus at the start of the machine cycle and the IORQ
is enabled after the rising edge of T2. If a read is taking place, sig-
nal RD is enabled at the same time as IORQ. The external device
controller recognizes a read by the JORQ and and gates its data
onto the data bus, where, on the falling edge of T3, it is clocked
into the CPU.

1/0 WRITE CYCLE
n 2 Tw 3 it

® 4 \ \ J \ \ |
s-a1 X PORT ADDRESS X

TORQ \ 1T
W \ ]

DATABUS —t+—{_ ouT

LA AR SN I A VO A A,

Fig. 3-7. 1/0 Write cycle.

If a write is taking place, the WR signal is enabled in place of
the RD at the same time as TORQ. Previous to the WK data from
the CPU has been placed in the CPU register (during T1). This
data is available during the remainder of the write cycle and the
external I/O device controller will input it somewhere in this period.

Note that for both input and output cycles, signal WAIT is inter-
nally enabled after T2. This causes the CPU to defer further I/O
processing until the WAIT line again is deactivated and effectively
adds one clock cycle to the time of the input and output cycle. This
condition is implemented to give the CPU additional time to sample
the external WAIT line to respond to slow I/O devices. Additional
WAIT states may be imposed by the external I/O device controller
for as long as it takes the I/O device controller to execute the 1/O
instruction. These would be inserted for n number of T cycles after
the CPU-imposed wait cycle.

BUS REQUEST/ACKNOWLEDGE CYCLE

At any time, an external device can gain control of the address
bus Al5-A0, data bus D7-D0, and MREQ, RD, WR, TIORQ, and
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RFSH lines by enabling the input signal BUSRQ. Normally, the
reason for this would be to allow an external device controller to
communicate directly with external memory to transfer data be-
tween high-speed I/O devices and memory without CPU interfer-
ence (Direct Memory Access or DMA). See Fig. 3-8. When signal
BUSRQ is enabled, the CPU detects the signal during the rising
edge of the last T cycle of a machine cycle. The T cycle is then
completed and on the next T cycle the CPU responds to the request
by output signal BUSAK. At the same time, the address bus, data
bus, and other signals are set to the tri-state high-impedance state.
Now any changes to the lines will not be affected by the CPU nor
will the CPU affect the state of the lines. When the I/O device
controller has completed the DMA transfer (typically one byte),
it will deactivate BUSRQ. This condition will be detected by the
CPU on the next rising edge of a T cycle and it will bring up or
disable BUSAK on the next T cycle after that. The CPU will then
continue processing from the point at which it gave control to the
bus requestor.

ANY M CYCLE BUS AVAILABLE STATES
LAST T T, T T n
STATE X X X
¢ Y B W AN [\ [\
BUSRQ SAMPLE /
— SAMPLE :
BUSAK \ /1
A0 - Al5 (p YA SR NI W
00 - D7 e - S
MREQ, RD, ) SR SN PR ¥ —
WR, T0RQ, FLOATING
FSH

Fig. 3-8. Bus Request/Acknowledge cycle.

INTERRUPT REQUEST/ACKNOWLEDGE CYCLE

If the CPU interrupt enable flip-flop has been set to allow ex-
ternal interrupts, and if a bus request action is not taking place,
the CPU is free to recognize external interrupts. An external device
makes the interrupt request by enabling signal INT. During the
rising edge of the last T cycle of the last machine cycle of an in-
struction, the CPU polls the state of the INT line, and, if low, starts
an interrupt cycle as shown in Fig. 3-9. During T1 of the interrupt
cycle, the M1 signal is enabled. T2 and two WAIT states are pro-
vided (the WAIT states are internally generated) to give sufficient
time for external daisy-chained interrupt circuitry to respond to the
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further processing until the memory or I/O device controller has
had time to respond. External memories must be capable of re-
sponding in a little over one T cycle, or 250 nanoseconds for a 4-
MHz clock, while input/output device controllers transferring data
to the CPU have about two T cycles or 500 nanoseconds.



CHAPTER 4

Addressing Modes

The Z-80 has a wide repertoire of instructions, ranging from a
simple instruction to set the interrupt enable flip-flop to a block-
search instruction that searches a string of bytes for a given byte.
Because of the wide range of functions that Z-80 instructions per-
form, instructions range in length from one byte to four bytes. In
addition to differences in length, instructions differ in how external
memory is addressed. Some instructions require no operand and can
be executed during the last portion of an M1 (fetch) cycle. Other
instructions require an operand from a CPU register and 2 second
operand either from another CPU register or external memory. The
second operand may be specified in a variety of ways. As an exam-
ple, the ADD instruction adds two 8-bit operands. One of the op-
erands is in the A register, while the second can be in another CPU
register (Register Addressing), an immediate value in the ADD
instruction itself (Immediate Addressing), in memory and pointed
to by the contents of the HL register pair (Register Indirect Ad-
dressing), or in a memory location whose address is computed by
adding a 16-bit displacement in the instruction and the contents of
an index register (Indexed Addressing). This chapter will describe
the various addressing modes of the Z-80, using examples of specific
instructions. The next chapter discusses instruction types and de-
scribes which addressing modes are valid for each instruction.

The Z-80 has the following addressing modes, generally ordered
from simple to complex:

1. Implied Addressing
2. Immediate Addressing



. Extended Immediate Addressing
. Register Addressing

. Register Indirect Addressing
Extended Addressing

Modified Page Zero Addressing
Relative Addressing

Indexed Addressing

Bit Addressing

SOEND Uk ®

—t

IMPLIED ADDRESSING

In this kind of addressing, the operation code of the instruction
is fixed. There are no variable fields within the instruction, and the
instruction always performs exactly the same function. Examples of
this kind are the CPL and LD SP, IY instructions.

The format of the CPL, Complement Accumulator, is shown in
Fig. 4-1. This instruction takes the contents of the A register, forms
the ones complement (changes all zeros to ones and all ones to
zeros) and stores the result back into the A register. No condition
code bits are affected. The source and location are fixed and no
other register can be used.

CPL COMPLEMENT ACCUMULATOR
Fig. 4-1. Implied addressing in

0 CPL instruction.

7
BYTEO {0 0 1 0 1 1 1 1| 2FH=OPCODE

The format of the LD, SP, 1Y instruction is shown in Fig. 4-2.
Load SP with IY takes the 16-bit contents of the IY register and
transfers it to the SP register. The contents of the IY register re-
mains unchanged and no condition-code bits are affected. The two-
byte configuration FDF9H will always produce the same action of
loading the SP register from the IY register.

LD SP,1Y LOAD SP WITH IY

Fig. 4-2. implied addressing in LD
SP,1Y instruction.

7 0
BYTEO |1 1 0 1 FDH}
BYTEL [1 1 0 1] F9H 0P CODE

1111
11180

All of the instructions discussed in the next chapter under General-
Purpose Arithmetic and CPU Control are of this kind, as are the
instructions under the Exchange, Block Transfer, and Search Group.
In the latter group, the actions are more elaborate, but the instruc-
tion format is fixed.
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IMMEDIATE ADDRESSING

In the immediate addressing mode, the second or third byte of
the instruction itself is the operand. Immediate addressing is valu-
able when it is necessary to load or perform an arithmetic or logical
operation with constant data. The immediate addressing instructions
ADD AN and XOR N are examples of this addressing type.

The format of the ADD A,N instruction is shown in Fig. 4-3. The
contents of the A register are added with the contents of the second

ADD A N ADD VALUE NTO ACCUMULATOR

Fig. 4-3. Immediate addressing in
ADD AN instruction. BYIEO [T 1 0 0 0 1 1 0] C6H=-0PCODE
BYTE 1 N IMMED IATE VALUE

byte of the instruction and the result put into the A register. If two
bytes of the ADD A,N instruction were C633H (ADD A,33H) and
the A register contained 80H, 80H and 33H would be added to
produce a result of B3H and this result would be put into the A
register. The condition codes would also be set on the results of
this instruction.

The format of the XOR N instruction is shown in Fig. 4-4. The
contents of the A register are exclusive ORed with the second byte
of the instruction and the result put into the A register. The condi-
tion codes are set on the result of the instruction. If the instruction
were EE35H and the contents of the A register were 33H, 35H and
33H would be exclusive ORed to produce 06H, which would be
put into the A register.

XOR N EXCLUSIVE OR IMMEDIATE AND ACCUMULATOR

BYTEG {1 1 1 0 1 1 1 0| EEH=OPCODE
BYTE 1 N IMMED |ATE VALUE

Fig. 4-4. Immediate addressing in XOR N instruction.

In general, the immediate addressing mode is used for instruc-
tions in the 8-bit Arithmetic and Logical Group discussed in the
next chapter.

EXTENDED IMMEDIATE ADDRESSING

When the instruction is an immediate kind of instruction, but
16 bits of immediate data are required, the instruction format is
of the “extended” immediate kind. The extended addressing mode
is used in only a few instructions in the 16-Bit Load Group of in-
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LD 1Y, NN LOAD IY WITH VALUE N

BYTEO [1 1 1 1110 1 FDH} 0P CODE

BYIEL [0 0 1 0000 1| 2H

BYTE2- N LS BYTE } 16-BIT IMMEDIATE VALUE
BYTE 3 NMs BYTE

Fig. 4-5. Extended immediate addressing in LD 1Y,NN instruction.

structions. An example would be the instruction LD IX,NN which
is shown in Fig. 4-5. Note that the first {wo bytes comprise the oper-
ation code, and that the next two are the immediate data itself. LD
IX,NN loads the 16 bits of immediate data in bytes two and three
of the instruction into the IX register. The condition-code bits are
not affected. As in the case of all 8080 16-bit data, the data is
grouped least significant byte followed by most significant byte.
The instruction LD IX,123FH would load the IX register with
123FH and would appear as shown in Fig. 4-6.

LD IX,123FH
BYTEO [1 1 01 1101 }OPCODE Fig. 4-6. Extended immediate
BYTEL {0 01 000 01 addressing data arrangement.
BYE2 1001 11111 3FH
BYTE3 [0 0 0 1 0 0 1 O] 12H

REGISTER ADDRESSING

In the register addressing mode, one or more of the CPU registers
is addressed by the instruction. The instruction format would con-
tain a field(s) which would specify which CPU register(s) was to
be utilized in performing the instruction. Examples of this kind of
addressing would be the RL R and AND R instructions.

The RL R instruction format is shown in Fig. 4-7. The least sig-
nificant 3 bits of word 1 of the 2-byte instruction is a 3-bit field that
specifies one of the general-purpose CPU registers A, B, C, D, E, H,
or L. This instruction takes the contents of register R and shifts it
left one bit position. The most significant bit of the register is shifted
into the carry, while the previous contents of the carry are shifted
into the least significant bit position of the register. The condition-

RL R ROTATE LEFT THROUGH CARRY REGISTER R

BYTE 0

11 0
BYTEL [0 0

—

1 CBH = 0P CODE
R 00010, = OP CODE
R = CPU REGISTER CODE

00
01

1
o]

Fig. 4-7. Register addressing in RL R instruction.
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code bits are set according to the results of the shift. Valid values
for the R field of the instruction are as follows:

R Register Shifted
000
001
010
ont
100
101
111

Note that all bit permutations are possible except 110,. If 110,
were to be specified in this instruction, the instruction would become
another kind of addressing mode, Register Indirect Addressing and
would shift an external memory location rather than a CPU register.
Strictly speaking, the seven registers that may be specified result in
seven unique instructions, which could be viewed as seven Implied
Addressing instructions.

. The AND R instruction is shown in Fig. 4-8. Here the instruction
is a one-byte instruction (because it was an 8080 one-byte instruc-

>PrImoNw

AND R LOGICAL AND OF REGISTER R AND ACCUMULATOR

BYTEO [1 0 1 0 0] R ] 101102 =OP CODE
R = CPU REGISTER CODE

Fig. 4-8. Register addressing in AND R instruction.

tion) with the least significant three bits of the byte specifying the
register to be used in the instruction. The coding of the registers is
identical to the coding used in the RL, R. AND R takes the contents
of the specified R register (A, B, C, D, E, H, or L), logically
ANDs it with the contents of the A register, and puts the result
back into the A register. The condition codes are set on the result
of the aNping operation. As an example, the instruction shown in
Fig. 4-9 would anp the contents of the D register with the A reg-
ister contents and put the results in the A register.

AND D

BYEO [1 0 1 0 0Jo 1 0] 10100, =OP CODE
010, ~ CODE FOR D REGISTER

Fig. 4-9. Register addressing example.
Instruction groups that utilize this addressing mode would in-
clude the 8-Bit Arithmetic and Logical, 16-Bit Arithmetic, Rotate
and Shift, and Bit Set, Reset, and Test groups.
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RECISTER INDIRECT ADDRESSING

Instructions in this group include the original 8008 instructions
that utilized the H and L register pair (High and Low) as a mem-
ory address pointer. In the 8008, data in memory could only be ad-
dressed by the HL pointer. The 8080 added the capability to use
register pairs B,C and D,E as pointers and also added the capabil-
ity of Extended Addressing, where each memory location could be
individually addressed. Register Indirect Addressing is a detriment
where data must be addressed in random (noncontiguous) memory
locations. When data is grouped in contiguous blocks, such as tables
or strings, however, accessing data by the pointer method is some-
what more efficient. The reason for the inefficiency in accessing
random memory locations is that the pointer register must be loaded
with the address of the new byte of data to be accessed before each
instruction of this kind is executed. Access of contiguous data is
made simpler by instructions that automatically increment and dec-
rement by one the register pairs used as pointers. The two proce-
dures for accessing blocks of random and contiguous data are shown
in Table 4-1, along with the relative times. Note that the examples
are for illustrative purposes only to point out the deficiencies in
register indirect addressing; the Z-80 has more efficient ways to ac-
cess data and they will be described later in this chapter.

Table 4-1. Data Access Using Register Indirect Addressing Charts

CALL &RTN

THIRD DATA BYTE

FIRST DATA BYTE
SECOND DATA BYTE
FIRST DATA BYTE THIRD DATA BYTE
FOURTH DATA BYTE

SECOND DATA BYTE

FOURTH DATA BYTE LAST DATA BYTE

RANDOM ACCESS SEQUENTIAL (CONTIGUOUS) ACCESS

—

1. LOAD DATA POINTER WITH ADDRESS OF . LOAD DATA POINTER WITH START OF DATA,
NEXT DATA BYTE (5 UNITS), LOAD BYTE USING REGISTER INDIRECT
2. LOAD BYTE USING REGISTER IND IRECT ADDRESSING (3.9,

M

ADDRESSING (3, 9. 3, PROCESS DATA BYTE (X).
3. PROCESS DATA BYTE (X), 4. BUMP REGISTER POINTER BY 112, 5),
4, DONE? IF NOT, GO TO X (7, 5. DONE? IF NOT, GO TO 2 (7).
5. DONE. 6. DONE.
X + 15,5 UNITS/BYTE X + 13 UNITS/BYTE
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LD A, (BC) LOAD ACCUMULATOR
Fig. 4-10. Register indirect addressing WITH LOCATION POINTED T0 BY
in LD A,(BC) instruction. CONTENTS OF B,C
BYTEO [0 0 0 0 1 0 1 0} OAH=OPCODE

Examples of the instruction format for this way of addressing are
shown for an LD A,(BC) instruction ( Fig. 4-10) and an INC (HL)
instruction (Fig. 4-11). The LD A,(BC) is a one-byte instruction
that loads the contents of the memory location pointed to by regis-
ter pair BC into the A register. No condition codes are affected.
The INC (HL) instruction increments the contents of the memory
location pointed to by the HL register pair by one. The condition
codes are set on the results of the increment.

. e . INC (HL) INCREMENT LOCATION
Fig. 4-11. Register indirect addressing POINTED TO BY CONTENTS OF HL

in INC (HL) instruction. BYIE0 [0 0 1 1 0 1 00] H-0pPCODE

When register indirect addressing is employed, the register pairs
utilized as pointers hold the memory address as a 16-bit address as
one would expect:

Register Most Significant Least Significant
Pair Byte Byte
B,C B C
D,E D E
H,L H(igh) L{ow)
SP SP bits 15-8 SP bits 7-0

Register indirect addressing is primarily used for 8008 compatible
instruction groups such as the 8-Bit Load, 8-Bit Arithmetic and
Logical, and Rotate-Shift groups.

EXTENDED ADDRESSING

The extended addressing instructions hold the address of the data
in the instruction itself, in a fashion similar to many minicomputers
and larger machines. Although this means that the instruction word
is longer, all locations in memory can be addressed directly, and
this mode is many times called direct addressing. The format of
this kind of addressing is shown for an LD A,(NN) instruction and
an LD (NN),HL instruction.

The LD A,(NN) is a classical computer instruction shown in
Fig. 4-12. Bytes 1 and 2 of the instruction specify a location in
memory. The 8-bit contents of this location are loaded into the
accumulator. No condition codes are affected. Byte 1 of the address
is the least significant byte, while byte 2 is most significant.
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The LD (NN),HL instruction is an extended addressing instruc-
tion that does the opposite of the first example, It takes the contents
of register pair H,L. and stores it into the memory location specified
in bytes 1 and 2 of the instruction (see Fig. 4-13). Just as in all
instructions like this, the address of the memory location is ordered
the least significant byte (byte 1) followed by the most significant

LD A, (NN) LOAD ACCUMULATOR
WITH CONTENTS OF LOCATION NN

BYTEO (0 0 1 1 1 0 1 0] 3AH=OPCODE

BYTE 1 Nis BYTE 16-BIT
BYTE 2 Nms BYTE ADDRESS

Fig. 4-12. Extended addressing in
LD A,(NN) instruction.

byte (byte 2). The contents of the L register are stored in memory
location NN and the contents of the H register are stored in memory

: location NN+1. An interesting thing to note about instructions like

these that move data from CPU registers to memory is that Zilog
chose to refer to them as LDs or Loads, when the usual mnemonic
is ST for Stores. This classification may be rather confusing until
one has worked with the mnemonics for some time.

LD (NN}, HL LOAD LOCATION
NN WITH CONTENTS OF H,L

BYTEo [0 0 1 0 0 0 1 0] 2H-opcope Fig. 4-13. Extended addressing in LD
BYTE 1 NS BYTE 16-B1T (NN),HL instruction.
BYTE 2 Npms BYTE ADDRESS

Note that the 16-bit address in the instruction can address 2!¢ or
65,536 memory locations. The size of the address field in this instruc-
tion format together with the 16-bit width of the register pairs are
the primary limitations to the size of external memory that can be
employed without special memory banking schemes. Extended ad-
dressing is used primarily for instructions in the 8- and 16-bit Load
groups.

MODIFIED PAGE ZERO ADDRESSING

This addressing mode is used only for one instruction, the RST P
or Restart Page Zero instruction. The effect of this instruction is to
cause a branch to one of eight page 0 locations after pushing the
current contents of the program counter into the stack. Page 0 in
the Z-80 as in other computers is defined as the area of external
memory that can be addressed in 8 bits. Since 28 = 256, memory
locations 0 through 255 constitute page zero. The format of the
RST P is shown in Fig. 4-14. The T field in the instruction is three
bits wide. Depending on the configuration of bits in the T field, a
branch may be made to locations 0H, 8H, 10H, 18H, 20H, 28H,
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RST P RESTART TO LOCATION P

gvie [1 1] 1 J1 1 1] 11,/1m,-0PCODE

Fig. 4-14. Modified page zero
addressing in restart instruction.

AR EEEREI
\IO\\nAWNo—SOI—q

30H, or 38H as shown. This instruction is discussed more fully in
the next chapter.

RELATIVE ADDRESSING

Relative addressing is primarily used in minicomputers or micro-
computers to shorten instructions and reduce the amount of memory
that programs occupy. If direct (extended) addressing is used to en-
able addressing all of memory, the address portion of the instruction
is two bytes long (16 bits can address 64K). In both page zero and
relative addressing, the address portion of the instruction is one byte
long, reducing the instruction size from three bytes (op code plus
address) to two bytes. Page zero addressing allows addressing only
of page zero; relative addressing allows addressing of 256 memory
locations grouped around the current instruction. Fig. 4-15 shows
how this scheme is implemented. The second byte of the instruction
is a signed value of —128; to +127;, (10000000, to 01111111:).
When this value is added to the current contents of the program
counter, a memory location —126 to +129 bytes away is addressed
since the program counter points to the instruction after the relative
addressing instruction. As the cwrrent instruction moves through

BYTEO OP CODE
BYTE 1 D1SPLACEMENT VALUE -128)¢ TO +127;9

MEMORY
~12615 LOCATIONS BACK
CURRENT 10
INSTRUCTION - FLSA"&NG
LOCATION +129) LOCATIONS FORWARD

Fig. 4-15. Relative addressing.
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memory, the block of memory that can be addressed moves (or
floats) along with the current instruction. The premise for this man-
ner of addressing is that in most cases it is sufficient to address mem-
ory in the immediate area of the current instruction; most programs
will operate on data near the current instruction.

Relative addressing on the Z-80 is used only for the Jump Group
of instructions, allowing conditional and unconditional jumps back
up to 126 locations or forward 129 locations from the current in-
struction. An example of relative addressing for a jump is shown
in Fig. 4-16.

JR Z,E JUMP RELATIVE IF ZERO

28H = OP CODE

VALUE = 1010 =AH

LOCATION 0300H 00

0301H 00

PC ———— 0302H
INSTRUCTION WILL JUMP TO 0302H + AH = 030CH

IF ZERO FLAG SET OR WILL EXECUTE NEXT
INSTRUCTION AT 0302H IF NOT SET

0 0
0 1

ol

1 10
0 10

Fig. 4-16. Relative addressing in JR Z,E instruction.

INDEXED ADDRESSING

Indexed addressing is an addressing mode that permits using the
two index registers in the Z-80, IX and 1Y. Many instruction groups
permit using the indexed addressing mode and it is one of the most
powerful features that the Z-80 offers. The format of this addressing
mode is shown in Fig. 4-17. The op code of the instruction is in
bytes 0 and 1; while the third byte holds an 8-bit signed displace-
ment of —128,, through +127,,. This displacement is added to the
contents of the specified index register IX or IY to determine the
effective address of the memory operand.

BYTEO 0P CODE

BYTE 1 OP CODE

BYTE 2 D 16-B1T SIGNED VALUE -128 TO 4'127“J
{BYTE 3) (VAR IES OR NONE)

EFFECTIVE ADDRESS = (IX) + D OR
(1Y) +D

Fig. 4-17. Indexed addressing.

For example, consider the instruction LD (IY + D),N that uses
the IY index register. This is shown in Fig. 4-18. The LD (IY + D),N
loads (stores) the immediate value N into the memory location
specified by the effective address. If the contents of IY are 1003H
(the index registers are 16-bit registers), an LD (IY + D),N with a
displacement field of 40H will store N into memory location 1043H.
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The indexing operation is powerful because many programs must
have the ability to process tables or lists of data in memory. Ex-
amples of the use of indexing are provided in section II. Instruction
groups using the indexed addressing mode are the 8-Bit Load, 8-Bit

LD (1Y + D), N LOAD LOCATION (1Y + D) WITH VALUE N

BYTE 3

11111101
BYTE2 {0 01 1 0110 OP CODE
BYTEL (01 0 000O0O0 D = 40H
BYTE 0 N VALUE TO BE STORED
(1Y} = 1003H
D= 40H

EFFECTIVE ADDRESS = 1040H
Fig. 4-18. Indexed addressing example.

Arithmetic and Logical, Rotate and Shift, and Bit, Set, Reset, and
Test Groups.

BIT ADDRESSING

The last addressing group is the bit addressing group. Bit address-
ing is used in conjunction with the previous addressing modes to
- provide testing, setting, or resetting any one of the 8-bits in an
operand. These operations would have to be performed by as many
as three instructions in the 8080 or other computers. An example
of this is provided for the SET B,(1X + D) instruction shown in
Fig. 4-19. The SET instruction sets a specified bit, and in this case
the address of the byte containing the bit to be set is given by
(IX + D), an indexed addressing operation. The bit specified in the
B field of the instruction will be set after the instruction has been
executed. No condition codes are affected. The bit to be set is as
follows:

B Field Bit to be Set
000 XXXXXXX1
001 XXXXXX1X
010 XXXXX1XX
011 XXXXTXXX
100 XXX TXXXX
101 XXTXXXXX
110 XTIXXXXXX
111 TXXXXXXX

Other examples of the bit addressing mode are shown in Fig. 4-20,
which shows the “before” and “after” condition for various SET B,R
instructions specifying a bit set for CPU register C.
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Chart 4-1. Z-80 Addressing Modes

REGISTER
IND IRECT

IMMED IATE
EXTENDED
IMMEDIATE
REG ISTER
EXTENDED
PAGE 0
INDEXED

BIT

IMPLIED
RELATIVE

NOTES

S IS ADDRESSING MODE TYPE

R ISREGISTERA, 8, C, D, E, H, ORL
N IS 8-BIT IMMEDIATE VALUE

A IS A REGISTER

,_
=3
%
-l

.

(3

cee

—
o
(%]
=

LD AS P

lofo

1 1S | REGISTER
R ISR REGISTER

R REGISTER
DD IS BC, DE, HL, SP

LD HL,(NN)
LD (NN)HL
LD (NN).DD
LD (NN)IX
LD (NN),IY
LD SPHL .
LD SP.IX .
LD SP.1Y .
PUSH QQ . QQ 1S BC, DE, HL, AF
PUSH IX .
PUSH IY .
POP QQ
POP IX °
POP Y o
EX DE,HL .
[ ]
[ ]

NN IS ADDRESS FIELD

EX AF.AF*
EXX

——*—— 16-8ITLOAD———~°f-—-8-BITLOAD—-i
[l el ol sl
ocoDoDoo
IxRSA:
’m'u:‘:>)
® o 00

oo|o

L X ] .|.I. [ BN N ]

SP),HL

RRR
..I.

SEE CHAPTER 5 FOR DETAILS

EXCHANGE, BLOCK
TRANSFER, SEARCH
-
o
=
ecee

>PTOO000
OOV UYUUOUw
> >
wun
ol
® e
® e o0 o0 00 @

;

‘

BIT ARITHMETIC
AND LOGI1CAL
(=]
2
w

OSF 8-
o Q=
mZ

|§nﬁ

Cwvwn

|(")

R}

‘l"

ERAL PURP
ARITHMETIC
v
]
=
(=
o

NEG, CCF NOTE--INSTRUCTIONS AND ADDRESSING MODES USED IN
SCE THE 8080 ARE DESIGNATED BY A SINGLE LINE UNDER THE
HALT, DI, DOT. THOSE USED IN THE 8008 AND 8080 ARE DESIGNATED
El, IMO BY A DOUBLE LINE UNDER THE DOT,

jEN
=
EX
~N




Chart 4-1. Z-80 Addressing Modes—cont

ADD HL,SS

ADD IX,PP
ADD IY,RR
INC SS
INC IX
= INCIY
& DEC SS
DEC IX
DEC IY
RLC A

IN AN
IN R,(C)
NI
INIR
IND
INDR
out (N),A
= OUT (O,R
T ouTl

LOTIR

AND OUTPUT

N

OoutD
OTDR

NOTES
DD IS BC, DE, HL, SP

NN 1S ADDRESS FIELD
E 1S DISPLACEMENT FIELD +2

P IS 00H, 084, ETC
N IS 8-BIT IMMEDIATE VALUE
C 1S C REGISTER

NOTE--INSTRUCTIONS AND ADDRESSING MODES USED IN
THE 8080 ARE DESIGNATED BY A SINGLE LINE UNDER THE
DOT, THOSE USED IN THE 8008 AND 8080 ARE DESIGNATED
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SET B,{IX +D) SET B OF LOCATION (iX + D)

BYIEO [1 1 01 1 10 1

BYTEY [1 10010 11 ]OPCODE

BYTE 2 D D VALUE

BviE3 [1 1] B J1 10 11,/110, = OP CODE

B =BIT CODE 0-7
Fig. 4-19. Bit addressing/indexed addressing in SET B,(I1X + D) instruction.

As the combinations of addressing modes employed in the various
instructions can be almost overwhelming on first encounter, Chart
4-1 provides a reference chart for instruction groups. The chart fol-
lows the same notation as has been used in the above description

REGISTER C INSTRUCTION
BEFORE AFTER
[01 01000 0] [01 01000 1] SET 0,C
%
[o 000000 o] {000100 0 0] SET 4,¢C
*
L1 1111 1) L1111 11 1] SET 5,C
*
|o 1 0010] [1oo10010] srrc
E 3
% = BIT SET

Fig. 4-20. Bit addressing example.

and that will be used in a discussion of the various instruction meth-
ods in the next chapter. Instructions and addressing modes used in
the 8080 are designated by a single line under the dot. Those used
in the 8008 and 8080 are designated by a double line under the dot.
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CHAPTER 5

Instruction Set

The table of addressing modes given in Chapter 4 cross-references
Z-80 instructions with its addressing modes. For discussion pur-
poses, the instruction repertoire of the Z-80 may be classified into
the groups shown in Chart 4-1. These groups are:

. 8-Bit Load

. 16-Bit Load

. Exchange, Block Transfer, and Search
. 8-Bit Arithmetic and Logical

. General-Purpose Arithmetic and CPU Control
16-Bit Arithmetic

Rotate and Shift

Bit Set, Reset, and Test

Jump

Call and Return

Input and Output

=S ©0N® U W0

et

8-BIT LOAD GROUP

The 8-Bit Load Group is shown in Table 5-1. About half of the
instructions in this group load an 8-bit value into a CPU register
from another CPU register, immediate value in the instruction, or
memory location. The other half of the instructions store an 8-bit
value from a CPU register or immediate value into a CPU register
or memory location. In all cases, the source register remains un-
changed after the transfer.

Four of the instructions simply transfer the contents of the I and
R registers into the current A register and vice versa. LD A1 loads
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the A register with the contents of the interrupt Vector Register L.
LD AR loads the A register with the contents of the Memory Re-
fresh Register R. LD I,A and LD R,A do the reverse. No condition
codes are affected for the latter two. The former two set the
condition codes as shown. These four instructions do not exist in
the 8080 or 8008 as neither microprocessor had the I or R registers.

The LD R,S instructions load the specified CPU register in the
R field with the contents of another CPU register (LD R,R’), an
8-bit immediate value (LD R,N), or an 8-bit value from a memory
location [LD R,(HL); LD R,(IX+D); LD R,(IY+D)]. None of
the condition-code bits are affected after the load. LD S,R does the
opposite of LD R,S, that is, the contents of a CPU register R is
transferred to a memory location using either an HL register pointer
method of addressing [LD (HL),R] or indexed addressing [LD
(IX+D),R or LD (IY+D),R]. This is in fact a “store” kind of in-
struction (called a MOV in the 8080 and 8008). LD S,N is similar

LDA,I LD AR
l CPU_A REG | [ CPU A REG ]

48BITS 48BITS
| CPU | REG | [ CPU R REG ]
LD I,A LDR,A
[ CPU | REG ] { CPU R REG |

T8BITS 18BITS
| CPUA REG | | CPU A REG ]

LDR,S TYPE

LD B,H LD C,HU (HL) = 1001H
[ crus res ] I CPU C REG

PN MEMORY g BITS
[ CPU H REG | 1000H

1001H

LD S,R TYPE (STORE)

LD (IX +30H),D  (1X) = 1014H LD {DE), A (STORE) (DE) = 2005
l CPU D REG [ CPU AREG ]
8 BITS
MEMORY MEMORY 8BITS
1083H 2004
10444 2005
2006

Fig. 5-1. Eight-bit load group examples.
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except that an immediate value is stored into a memory location
[LD (HL),N; LD(IX+D),N; or LD (IY+D),N]. None of the con-
dition codes are affected by the load (store).

The last instructions of this group load or store the A register
only with a memory location specified by register pointers BC, DE,
or by an extended (direct) addressing. A is loaded by LD A,(BC);
LD A,(DE); or LD A,(NN) and stored by LD (BC),A; LD (DE),
A; and LD (NN),A. No condition codes are affected.

Examples of this group are shown in Fig. 5-1 which illustrates the
various addressing modes and instruction types.

LD HL,1025H
LD HL1025H [0 0]1 610 0 0 1
INSTRUCTION S50
100
88IT§
CPU H REGISTER 8 BITS
CPU L REGISTER
LD (NN, IX
WwNnIX [T 1011101
INSTRUCTION [0 0 1 0 0 0 1.0
20H
a0 } MEMORY ADDRESS 5020H
HIGH ORDER IX REG ISTER
LOW ORDER
8 BITS 8BITS
MEMORY
5020H
5021 H
LD SPHL
CPU H REGISTER
CPU L REGISTER §BITS
STACK m
POINTER IGH ORDER 8BITS
REG!STER LOW ORDER

Fig. 5-2. Sixteen-bit load group examples.

16-BIT LOAD GROUP

This group allows any register pair BC, DE, HL, or SP, or the IX
and IY registers to be loaded by an extended immediate instruction
(LD DD,NN; LD IX,NN; or LD IY,NN). See Table 5-2. Here a
16-bit immediate value in the instruction is loaded into the selected
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register pair, IX, or IY. Any register pair IX or IY can also be loaded
or stored directly (extended addressing mode) by LD DD,(NN);
LD IX,(NN); LD IY,(NN); LD (NN),HL; LD (NN),DD; LD
(NN),IX; or LD (NN),IY.

The contents of HL, IX, or IY can be transferred to the SP regis-
ter by LD SP,HL; LD SP,IX; or LD SP,IY.

The remaining instructions in this group allow 16-bit register pairs
BC, DE, HL, or AF (A register and flags) to be pushed onto or
pulled from the stack.) Fig. 5-2 shows examples of the use of these
instructions.

EXCHANGE, BLOCK TRANSFER,
AND SEARCH GROUP

The exchange instructions in this group allow various exchanges
of 16 bits of data between register pairs in the same set of registers
and exchanges between the two sets of registers (see Table 5-3).

CPU D REGISTER
3

8 BITS 8 BITS Fig. 5-3. EX DE, HL instructions.

CPU H REGISTER
L

EX DE,HL simply exchanges the contents of register pairs DE and
HL in the current set of registers as shown in Fig. 5-3. EX AF,AF,
however, exchanges the contents of the A register and flag register
of the current set of registers and the inactive set of registers as
shown in Fig. 5-4. EX X swaps the contents of the current set of BC,
DE, and HL with the inactive set of BC’, DE’, and HL’ as shown
in the same figure. No condition codes are affected in any of the
above instructions. These instructions permit switching back and
forth between the two sets of CPU registers with one or two in-
structions.

ACTIVE CPU REGISTERS

A F
8 BITS B ¢ 8BITS (EX AF,AF"
(EX AF,AFY D E
H L
INACTIVE CPU REGIS
U REGISTERS 48 BITS (EX X)
Al FI
B' c'
D' £
H' L'

Fig. 5-4. EX AF,AF’; EX X instructions.
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The three additional exchange instructions operate using the SP
register as a pointer to the stack area. The stack pointer is not af-
fected by execution of the instructions. Either HL, IX, or IY may
be exchanged with current fop of stack by instructions EX (SP),HL;
EX (SP).,IX; or EX (SP),IY. Examples of the three kinds of ex-
changes are shown in Fig. 5-5.

EX (SP), HL (SP) = 1025H
CPU H REGISTER
L
MEMORY >
102H (TOP OF STACK)
10264 (TOP OF STACK + 1
EX (SP), IX (SP) = 20434
1X HIGH ORDER
1X LOW ORDER
;
MEMORY
2043H (TOP OF STACK)
2044H (TOP OF STACK + 1)
EX (SP), IY (SP) = 128AH
1Y HIGH ORDER
1Y LOW ORDER
MEMORY [
128AH (TOP OF STACK)
1288H (TOP OF STACK +1

Fig. 5-5. EX (SP) instructions.

LDI, LDIR, LDD, and LDDR are four block transfer instructions
that use register pairs BC, DE, and HL. All four instructions trans-
fer a block of data from one place in memory to another. The block
may be 1 to 64K bytes. Register pair BC must be preset with the
number of bytes to be transferred, register pair HL must point to
the starting address of the source block, and register pair DE must
point to the starting address of the destination block. Instruction
LDI performs the following actions when executed:

1. A byte is transferred from the source block to the destination
block using registers HL. and DE as pointers.
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2. The HL and DE registers are incremented by one to point to
the next byte of each block.

3. The byte count in BC is decremented by one.

4. If (BC) == 0, the P/V bit in the flags is set.

Instruction LDD performs the same functions as LDI except that
the HL. and DE registers in step 2 are decremented by one (LDI =
Load and Increment, while LDD = Load and Decrement). LDI,
therefore, transfers data from block start to block end while LDD
transfers data from block end to block start. The action of LDI and
LDD are shown in Fig. 5-6.

10004
MEMORY | 10014 <— (HU AFTER LDD
SOURCE { 10021 ~— (HL) BEFORE INSTRUCTION
BLOCK | 10034
<+— (HL} AFTER LDI
10041
8BITS
2000H
2001 ~— (DE) AFTER LDD
DESTINATION | z002 ~— (DE) BEFORE INSTRUCTION
2003H ~— (DE) AFTER LD
2004H
LDI ACTIONS

1. TRANSFER BYTE FROM 10024 TO 2002H
2, ADD 170 HL TO POINT TO 1003H
3, ADD 170 DE TO POINT TO 2003H
4, SUBTRACT 1FROM BC (BYTE COUNT)
5, GO ON TO NEXT INSTRUCTION
LDD ACTIONS
1, TRANSFER BYTE FROM 1002H TO 2002H
2. SUBTRACT 1 FROM HL TO POINT TO 1001H
3. SUBTRACT 1 FROM DE TO POINT TO 2001H
4. SUBTRACT 1 FROM BC (BYTE COUNT)
5. GO ON TO NEXT INSTRUCTION

Fig. 5-6. LDl and LDD instructions.

LDIR and LDDR perform identical functions to LDI and LDD
with a supplemental action. If the byte count is not zero (P/V flag
set), then the instruction continues transferring data until the byte
count is 0. This means that there will be N executions of an LDIR
or LDDR, where N is the initial value of the BC register. LDIR
and LDDR are automatic transfers of a block of data while LDI and
LDD are “semi-automatic,” requiring a separate test of the P/V flag
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for completion. Both are useful, as will be demonstrated in section IIL.
Fig. 5-7 shows the actions of LDIR and LDDR.

The search instructions CPI, CPIR, and CPDR are similar to the
block transfer instructions in that a block of memory locations is
involved and these memory locations are scanned from start to end,
or from end to start. The A register holds an 8-bit search key that
can be 0 to 255. BC, as before, holds a byte count of 1 to 255 and
HL holds the starting address of the block (CPI or CPIR) or end-

1000H - (U AT START (LDIR)
LDIR
MemoRy | 100 '
SOURCE { 10024
BLOCK | 10034
1004H «— (HL) AT START (LDOR)
20144 |«— (DE) AT START (LDIR)
MEM 2015H + LDIR
DESTINATION { 20164
2017 4 Loor
2018H L« (HL) AT START (LDDR)
LDIR ACTIONS
1. TRANSFER BYTE 1
2. ADD1TO HL THESE ACTIONS REPEATED
3, ADD 170 DE e f
4. SUBTRACT 1 FROM BC Y IN‘I,{I‘-:E\'EEYN t
5. IF(BC)# 0G0 TO STEP 1

6. GO ON TO NEXT INSTRUCTION ]
LDDR ACTIONS

1. TRANSFER BYTE

2. SUBTRACT 1FROM HL
3, SUBTRACT 1 FROM DE

4, SUBTRACT 1 FROM BC

5. IF(BC)# 0GO TO STEP 1
6. GO ON TO NEXT INSTRUCTION J

Fig. 5-7. LDIR and LDDR instructions.

3

THESE ACTIONS REPEATED
N TIMES WHERE N = #
IN BC INITIALLY

ing address of the block (CPD or CPDR). When a CPI instruction
is executed, the contents of the memory location addressed by HL
is accessed and compared to the A register. If the memory byte
equals the A register, flag Z is set in the condition codes. The byte
count in BC is then decremented and the pointer in HL is incre-
mented to point to the next memory location. CPD functions in the
same manner except that the pointer in HL is decremented. CPI
and CPD will search a block for a given byte semi-automatically
as a test of the Z flag must be made after every execution of CPI
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or CPD to determine whether the byte was found. Fig. 5-8 shows
the actions of CPI and CPD.

CPIR and CPDR are similar to CPI and CPD except that they
are fully automatic. If the byte count in BC is not equal to zero at
the end of execution of the instruction, and the current memory byts
does not equal the key value, the instruction is again executed for
another comparison. The instruction is continually executed until
either the byte count in BC is zero or until a memory location
matches the key, as shown in Fig. 5-9.

3005H HL AT START (CPI}
3006H |~¢——— HL AFTER CPI

3007H
3008H
30094
300AH
3008H [<e——— HL AFTER CPD

300CH f#——— HL AT START (CPD)

CPl ACTIONS

1. READ NEXT BYTE
2, ADD 170 HL
3, SUBTRACT 1FROM BC
4. COMPARE BYTE TO (A) AND SET FLAGS
5. GO ON TO NEXT INSTRUCTION
CPD ACTIONS

1. READ NEXT BYTE

2, SUBTRACT 1 FROM HL

3, SUBTRACT 1FROM BC

4, COMPARE BYTE TO (A) AND SET FLAGS
5. GO ON TO NEXT INSTRUCTION

Fig. 5-8. CPI and CPD instructions.

8-BIT ARITHMETIC AND LOGICAL GROUP

The 8-bit arithmetic and logical instructions are used to add, sub-
tract, AND, OR, exclusive OR, or compare two 8-bit operands, one
of which must be in the A register. The second operand may be an
immediate operand, may be in another CPU register, or may be in
memory and referenced by HL register indirect addressing or by
indexed addressing. The two operands are obtained, the designated
function is performed, and the result goes into the A register. The
condition codes are set as presented in Table 5-4.

There are two kinds of adds, ADD A,S and ADC AS. In the first,
the contents of the A register and the second operand are simply
added and the results put into A; in the second, the contents of the
A register, the second operand, and the current state of the carry
flag are added and the results are put into the A register. The second
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(11AAH e——HL AT START (CPID)
11ABH
1IACH ——HL AT END (CPDD)
11ADH 334
BLOCK TO T1AEH «——HL AT END (CPID)
BE SEARCHED | 1,01

11B0H
11BIH
hlszu +——HL AT START (CPDD)

AT START
(HL) = 11AAH FOR CPIR 11B2H FOR CPDR
8O =9
W =3H
CPID ACTIONS
1. READ NEXT BYTE )
2. ADD 17O HL
3. SUBTRACT 1 FROM BC T T IO
4. COMPARE BYTE T0 (A) AND SET FLAGS | RiviEs
5. 1F BC 0 AND BYTE # A T0 STEP 1
6. GO ON TO NEXT INSTRUCTION
CPDD ACTIONS
READ NEXT BYTE
o~
" SUBTRACT 1 FROM HL THESE ACHIONS
SUBTRACT 1 FROM BC THESE ACTION
COMPARE BYTE T0 (A) AND SET FLAGS [ REPER
IF BC # 0 AND BYTE § A GO TO STEP 1
. GO ON T0 NEXT INSTRUCTION )

Fig. 5-9. CPIR and CPDR instructions.

o sn e po

add permits multiple-precision addition and is discussed in Section
I1. Subtracts are analogous to the adds. SUB S subtracts the second
operand from the contents of the A register, while SBC A,S sub-
tracts the second operand and the current state of the carry from
the contents of the A register. The add and subtract instructions are
shown in three addressing mode examples in Fig. 5-10.

There are two additional instructions in this group, the INC §
and DEC S instructions. They increment or decrement the contents
of a CPU register (A, B, C, D, E, H, L) or memory location by one
and set certain condition codes as listed in Table 5-4. As an immedi-
ate instruction makes no sense for this one-operand instruction only
register, register indirect HL, and indexed addressing modes are
permitted as shown in Fig. 5-11.

GENERAL-PURPOSE ARITHMETIC
AND CPU CONTROL GROUP

The instructions in this group are listed in Table 5-5. They are
all implied addressing instructions involving one or no operands.
Two of the instructions involve one operand, CPL and NEG. Both
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CPL and NEG operate on the contents of the A register. CPL ones-
complements the contents of the A register, changing all zeros to
ones and all ones to zeros, as shown in Fig. 5-12. NEG negates the
contents of the A register changing all zeros to ones and all ones
‘to zeros and adding one as shown in the figure. The effect of CPL
is to find the value —[(A)+1] and NEG to find the value —A, where
(A) is the previous contents of the A register. Condition codes are
set as shown in Table 5-4.
ADD A,B

__* 8-BIT RESULT

ALU
(ADD}

spits} }sans

[cPUA ReG) [cPU B REG]
[}

ADC A, (HL)
[ }&-BITRESWT
mnéw
WITH HL
CARRY) L —l
8 snsi ‘ 6_4185”5
CPUAREG | [cV]
&l MEMORY
L1 OPERAND
)
SBC A, (IX +D)
[ }s-simresua
ALU
(SUBTRACT [ IX +D
WITH CARRY)

MEMORY
OPERAND

8BITS 8BITS
CPU_A REG

Fig. 5-10. Add and Subtract instruction examples.

Two of the instructions in this group operate on the carry (CY)
flag of the condition codes. SCF sets the carry flag to a 1; CCF com-
plements the current state of the carry — a 1is set to a 0, and a 0
is set to a 1. These instructions are useful in setting the carry prior to
arithmetic or shifting operations.

The NOP instruction does nothing and is used to “pad” a pro-
gram area or is implemented automatically by the Z-80 during a
HALT state to guarantee dynamic-memory refresh.

72



INC D ‘ }'s BITS

INC D
INsTRucTion [0 0J0 ¥ o1 0 o] AL
SPECIFIES {INCREMENT)
)
8BITS
CPU D REG

INC (HL} —*8 BITS

INC (HD
INSTRUCTION[0 0 1 1 0 1 0 0] AL
(INCREMENT)
[ HL ] s
L8iTs
—_ MEMORY
OPERAND

INC (1Y +D) l.sB”'S

INC {IY + D)

INSTRUCTION [1 1 1 1 1101 "

e 1Do 2.0 (INCREMENT)

8

\ s T
[ IY | MENORY
RAND

/ 4
Gy +D

Fig. 5-11. INC and DEC instruction examples.

DI and EI disable or enable external (non-NMI) interrupts by
resetting or setting the interrupt enable flip-flops IFF1 and IFF2,
IM 0, IM 1, and IM 2 set interrupt modes 0, 1, or 2. The meaning

of the various modes is discussed in Chapter 7.
cpL
(A) BEFORE INSTRUCTION [L 0 1 1 0 1 1 0] (74

0s =+ 1s | 1s = 0s

(A) AFTER INSTRUCTION [0 1 0 0 1 0 0 1] 73

NEG

(A} BEFORE INSTRUCTION [1 011011 0] (-74)

0s.»1s | 1s»0s
01001001
+ 1
(A} AFTER INSTRUCTION [0 100101 0] (+74)

Fig. 5-12. CPL and NEG instruction examples.
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The last instruction in this group is the DAA instruction. DAA,
or Decimal Adjust Accumulator, allows the Z-80 to perform binary-
coded decimal (bed) addition or subtraction. (The 8080 can per-
form only bed addition automatically.) The DAA is performed di-
rectly after an ADD, ADC, INC, SUB, SBC, DEC, or NEG and
changes the binary results of the operation into bed results. Bed
addition will be discussed in detail in Section II.

ADD HL,SS

toof s 100 1]
Fig. 5-13. Sixteen-bit arithmetic —
register encoding. 0 - BC
01 - DE
10 = HL
1 = Sp

16-BIT ARITHMETIC GROUP

All of the instructions in this group operate on 16-bit double-
precision values in either register pairs BC, DE, or HL, or in 16-bit
SBC HL, SP

+I6BITS
u

AL
(SUBTRACT
WITH CARRY)

16 an} 16BITS
L HL 1Yl SP ]

ADD IX,IX

AL
{ADD)
1 16BITS
16 B1TS (SECOND OPERAND)
[ X ]

Fig. 5-14. Sixteen-bit arithmetic instruction examples.
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CPU registers IX, 1Y, or SP. Increments and decrements of BC, DE,
HL, SP, IX, or IY can be performed by INC SS, INC IX, INC IY,
DEC SS, DEC IX, or DEC 1Y. The SS-type instructions increment
or decrement BC, DE, HL, or SP depending on the SS field of the
instruction as shown in Fig. 5-13. The remaining increment and
decrements are all implied addressing types.

Three of the instructions in this group permit adding, adding with
carry, or subtracting with carry. The contents of BC, DE, HL, or
SP can operate on the contents of the HL register with the result
going to the HL register. The condition codes are set as shown in
Table 5-6, and an example of the instructions is shown in Fig. 5-14.
ADD IX,PP and ADD IY,RR permit addition of BC, DE, SP, or the
same index register to IX and IY, respectively. The condition codes
are set as listed in the table, and an example of the instruction is
shown in the figure.

ROTATE AND SHIFT GROUP

The instructions in this group include the 8080 (8008) instruc-
tions that rotated only the A register and new instructions to shift
A, B, C, D, E, H, or L or a memory operand in just about every
possible shift configuration. Table 5-7 shows the rotate and shift
instructions.

RLCA ACTION

7~ A0
.'—r" SHIFT LEFT ONE I.] 8BITS)

RLA ACTION

1Y YA 0

SHIFT LEFT ONE J-] 9BITS)

RRCA ACTION
1y Ay Yo
SHIFT RIGHT ONE 8BITS)
RRA ACTION

7~y Ay vy
SHIFT RIGHT ONE
{9BITS)

Fig. 5-15. RLCA, RLA, RRCA, RRA instructions.
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RLD ACTION ABITS
7 43 [0 7 7 43 g 0

A [uncHanceD | 1 [ ] ] MEMORY OPERAND
4BITS 48ITS
RRD ACTION 4BITS
7 43 § 0 77 43 | 0
A [UNCHANGED] ] [ I "] MEMORY OPERAND
, v L}
7 7
4BITS 4BITS

Fig. 5-16. RLD and RRD instructions.

RLCA, RLA, RRCA, and RRA rotate the A register only. The first
letter of the mnemonic stands for Rotate, the last Accumulator, and
the second the direction of the rotate, left or right. RLCA rotates
left with the most significant bit going into the carry (CY) and the
least significant bit position. RRCA performs a similar operation
with a right shift. RLA and RRA perform a nine-bit shift with the
previous contents of the carry shifting into the A register and the
bit shifted out from the A register going into the carry. All four
shifts are shown in Fig. 5-15.

Two shifts of this group RLD and RRD operate on the contents
of a memory location, addressed by register indirect addressing HL,
and the A register, and shifts four bits at a time. These two shifts
are implemented to facilitate bed operations, where each bed digit
is made up of four bits. If the reader considers bits 7-4 of the A
register or memory location bed digit position 0 and bits 3-0 bed
digit position 1, then these shifts are somewhat easier to follow.
RLD shifts the memory operandgep; into memory operand gcpo and
memory operandpcpo into Agepi. The previous contents of memory
operandgen; are replaced by Aycp: as shown in Fig. 5-16. Instruc-

SRA S
Tovevvyy?
OPERAND S| SHIFT RIGHT ONE
SLA'S

TN
SHIFT LEFT ONE 0 OPERAND

SRLM
Ve e " Y
0 —{SHIFT RIGHT ONE Y]

Fig. 5-17. SRA, SLA, SRL instructions.




tion RRD operates in the reverse direction as shown in the illustra-
tion. The condition codes are set as shown in Table 5-6.

The remaining shifts in this group operate either on CPU registers
or on a memory location addressed by register indirect HL. address-
ing or indexed addressing. Those with a mnemonic starting with
an R are rotates, and those with a mnemonic starting with an S are
arithmetic (SLA S, SRA S) or logical (SRL S). SLA S and SRA S
perform arithmetic left and right shifts. Arithmetic shifts sign-extend
the sign bit to the right on a right shift and sometimes retain the
sign bit on a left shift. The Z-80 SRA S does extend the sign bit on a
right shift as shown in Fig. 5-17, but does not retain it on a left shift.

RICS OPERAND
T~ w0
SHIFT LEFT ONE
8 BITS)
RLS OPERAND
NN YO
SHIFT LEFT ONE
(9BITS)
RRCS ; OPERAND »

fa e "a e e Ve
r-[ SHIFT RIGHT ONE (8BITS)

RRM OPERAND
A AA.TA"ATA
SHIFT RIGHT ONE

(9BITS)

Fig. 5-18. RLC, RL, RRC, RR instructions.

Any of the seven current CPU registers can be shifted when register
addressing is used with the R field specifying the register as shown
in Fig. 5-17. The condition codes are set as listed in Table 5-6. In-
struction SRL S performs a logical right shift with a zero going into
the sign bit position. Note that for all three shifts a zero is shifted
into the operand and that the carry is set by the bit shifting out of
the operand.

Shifts RLC, RL, RRC, and RR are rotate shifts performing either
an 8-bit shift (operand without carry), or a nine-bit shift (operand
with carry). RLC and RRC rotate in 8-bit fashion, while RL and
RR rotate in 9-bit fashion. All four shifts are shown in Fig. 5-18.
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BIT, SET, RESET, AND TEST GROUP

The instructions in this group set, reset, or test one of the eight
bits in a CPU register (A, B, C, D, E, H, or L) or memory operand.
Register, register indirect, or indexed addressing may be used (see
Table 5-8). In all three types, the B field specifies which bit of the
byte is to be operated on as follows:

BIT B

000
001
o010
on
100
101
110
11

BIT B,R tests the bit and sets the Z flag if the bit is a zero and
resets the Z flag if the bit is a 1. SET sets the indicated bit and does

SET 7.D

NOOAWN—-O

[0 1 01 11 1 1] DBEFORE INSTRUCTION

[T710 1 1 11 1] bAFTER INSTRUCTION

RES 5, (HL)

[ HL

MEMORY
OPERAND XX 0 X X X X X

THIS B IT RESET
BIT 0,(IX +D)

BIT 0.(IX + D)
INSTRUCTION

[ .

1011101
1001011 ~\
D L ]

0 1[0 0 0JT 10

———
BIT 0 SPECIFIED

(X + D)
MEMORY /
MEMORY XX X X X X x o1
! SETZ IF BIT =0

RESETZ IFBIT =1
Fig. 5-19. SET, RES, BIT instruction examples.
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JP 107AH

JP107AH
INSTRUCTION [ 1 1 0 0 0 0 1 1
7AH

10AH

JP_2,107AH

JP 107AH 1 1J0 1 0Jo 1 0
7AH 010, = JUMP ON
104 NO CARRY

Fig. 5-20. JP and JPCC instruction examples.

not change the condition codes, while RES resets the indicated bit
and does not change the condition codes. Fig. 5-19 shows the three
kinds of bit instructions and examples of their use with various ad-
dressing modes.

JUMP GROUP

The instructions in the jump group are shown in Table 5-9. Basi-
cally, these can be divided into jumps, calls, and returns. Jumps
cause a transfer to another location in memory and do not save the
contents of the program counter to mark where the jump occurred,
Calls perform the same action as a jump, but save the PC in the
memory stack so that return may be made to the instruction follow-
ing the call. Returns effect the transfer back to the instruction fol-
lowing the call by popping the stack and restoring the contents of
the top of stack to the program counter. Calls and returns are used
for subroutine processing. Subroutines are segments of code ranging
from several instructions to hundreds of instructions that are called
from many parts of a program. This avoids redundancy in writing
the subroutine code many times throughout the program and saves
memory and development time.

Two of the jump instructions JP NN and JP CC,NN exist in the
8080 and 8008 in extended addressing and are shown in Fig. 5-20.
The NN field is the jump address. JP NN jumps unconditionally to
the address, while JP CC,NN jumps to the address if the conditions
CC are met. The encoding of the CC field is as follows:

CcC Condition

000 Z=0 (nonzero)
001 Z=1 (zero)

010 C=0 (no carry)
011 CcC=1 (carry)

100 P=0 (parity odd)
101 P=1 (parity even)
110 S=0 (positive)
111 S=1 (negative)
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JR

E
JR 103AH

JR 103AH INSTRUCTION 0 0 0 1 1 0 0 0 1000H
\ 38H 1001H
PCe-NEXT INSTRUCTION ) 1002H

DISPLACEMENT FIELD = 103AH - PC
= 103AH - 1002
~38H
Fig. 5-21. JR E instruction example.

In addition to extended addessing, the Z-80 allows register indirect
HL and indexed addressing for the JP NN instruction.

The remaining jumps are all of the relative addressing kind. JR E
emulates the former jump. JR E is an unconditional relative jump
to the effective address and is shown in Fig. 5-21. JR C,E; JR NCE;
JRZE; and JR NZE are relative conditional jumps that perform the
jump if the carry is set or reset or if the zero flag is set or reset, re-
spectively. The DJNZ E instruction is unique in that it decrements
the contents of the B register. If the result is nonzero, the jump is
performed; if zero, the next instruction in sequence is executed.

The two call instructions in this group also appear in the 8080 and
8008. CALL NN is an unconditional call and CALL CC,NN condi-
tionally calls the subroutine at address NN. The conditions CC are
the same as in the previous list. Likewise, RET and RET CC are
also identical to the 8080 and 8008 instructions. RET uncondition-
ally returns to the instruction after the call, while RET CC condi-
tionally returns based on the CC field and the state of the condition-
code register.

N

L JFIED
004 000
OgH 001
10H 010
184 o1
M 100
28 101
M 110

38H 11
Fig. 5-22. RST P instruction.
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RETI and RETN are two special instructions that provide for
special actions for returning from an external maskable interrupt
(RETI) and nonmaskable interrupt (RETN). They will be dis-
cussed in Chapter 7.

RST P is also an instruction present in the 8080 and 8008. It is
used for two operations. The primary operation is as an instruction
that an interrupting device “jams” onto the data bus to effect a
vectored interrupt. The subordinate function is to allow a special
call to one of eight page 0 locations. The interrupt functions will
be discussed in Chapter 7. When the RST P is used to call a page 0
location, the instruction acts as any unconditional call. The jump is
made to one of eight page 0 locations based on the T field of the
RST P as shown in Fig. 5-22.

INPUT AND OUTPUT GROUP

The last grouping of Z-80 instructions (Table 5-10) is the Input
and Output group. The instructions in this group allow for transfer
of 8-bit bytes of data to and from CPU registers A, B, C, D, E, H, or
L with any of 256 possible 1/O device addresses specified in the in-
struction. In addition, block transfers similar to the block transfers
in the previous block transfer group can be implemented. Up to 64K
bytes may be transferred semi-automatically or automatically be-
tween an I/O device and a memory block by using the I/O block
tr